WO2007102496A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2007102496A1
WO2007102496A1 PCT/JP2007/054305 JP2007054305W WO2007102496A1 WO 2007102496 A1 WO2007102496 A1 WO 2007102496A1 JP 2007054305 W JP2007054305 W JP 2007054305W WO 2007102496 A1 WO2007102496 A1 WO 2007102496A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression
compression chamber
compressor
refrigerant
chamber
Prior art date
Application number
PCT/JP2007/054305
Other languages
English (en)
French (fr)
Inventor
Takahiro Yamaguchi
Satoshi Ishikawa
Masahiro Yamada
Kazuhiro Furusho
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US12/224,420 priority Critical patent/US8225624B2/en
Priority to CN2007800066172A priority patent/CN101389867B/zh
Priority to AU2007223244A priority patent/AU2007223244B2/en
Priority to EP07737852.9A priority patent/EP1992820A4/en
Publication of WO2007102496A1 publication Critical patent/WO2007102496A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/04Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal-axis type
    • F04C18/045Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal-axis type having a C-shaped piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/322Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/02Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • F04C29/0035Equalization of pressure pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/03Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/12Vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Definitions

  • the present invention relates to a refrigeration apparatus including a compressor having a plurality of compression chambers and performing a refrigeration cycle.
  • Patent Document 1 discloses an air conditioner having a two-cylinder compressor.
  • the refrigerant circuit of this air conditioner is provided with a compressor, an indoor heat exchanger, an expansion valve, an outdoor heat exchanger, and the like.
  • the compressor includes a drive motor, a drive shaft driven by the drive motor, and first and second compression mechanisms coupled to the drive shaft.
  • the two compressor mechanisms are constituted by so-called rotary type compression mechanisms in which the piston rotates eccentrically in the cylinder chamber in the cylinder. That is, each compression mechanism constitutes a positive displacement fluid machine in which the volume of the refrigerant compression chamber formed in the cylinder chamber changes periodically.
  • the compression operation in the compressor can be switched by switching the refrigerant flow path according to the operating conditions. Specifically, in the compressor of this air conditioner, a parallel compression operation, a cylinder deactivation operation, and a two-stage compression operation can be switched.
  • the refrigerant is divided into the first compression mechanism and the second compression mechanism, and the refrigerant is single-stage compressed by each compression mechanism.
  • the refrigerant is compressed only by the first compressor mechanism, while the refrigerant is not compressed by the second compression mechanism.
  • the refrigerant is compressed by the first compression mechanism, and this refrigerant is further compressed by the second compression mechanism. That is, in this two-stage compression operation, the refrigerant is compressed in two stages with the first compression mechanism on the low-stage side and the second compression mechanism on the high-stage side.
  • Patent Document 1 Japanese Patent Laid-Open No. 64-10066
  • the compression operation of the refrigerant is performed by periodically changing the volume of the compression chamber. Specifically, in this compression operation, the volume of the compression chamber increases with the rotation of the piston, whereby the refrigerant is sucked into the compression chamber, and then the pressure of the refrigerant gradually increases as the volume of the compression chamber decreases. To rise. When the refrigerant pressure reaches the maximum pressure, the discharge valve that has closed the compression chamber is opened, and the compression chamber refrigerant is discharged.
  • the volume of the compression chamber periodically changes every time the drive shaft makes one rotation, and the refrigerant pressure in the compression chamber also changes periodically with the periodic fluctuation of the volume of the compression chamber.
  • the torque of the drive shaft compression torque
  • the refrigerant is not compressed by the second compression mechanism, and the refrigerant compression operation is performed only by the first compression mechanism. For this reason, the compression torque of the drive shaft is affected only by the pressure of the refrigerant in the compression chamber of the first compression mechanism. Therefore, if the refrigerant pressure fluctuation in the compression chamber of the first compressor mechanism becomes large, the compression torque of the drive shaft will also fluctuate greatly.
  • the first compression mechanism on the lower stage side generally has a larger refrigerant compression ratio than the second compressor mechanism on the higher stage side. For this reason, the compression torque of the drive shaft is easily affected by the refrigerant compression operation of the first compression mechanism having a large compression ratio. Therefore, also in this two-stage compression operation, if the fluctuation of the refrigerant pressure in the compression chamber of the first compression mechanism becomes large, the compression torque of the drive shaft tends to fluctuate.
  • the compression torque is likely to fluctuate during the cylinder deactivation operation or the two-stage compression operation. If the compression torque fluctuates greatly in this way, the compressor vibration and noise increase.
  • the present invention has been made in view of the points to be applied, and an object thereof is driving in a refrigeration apparatus including a compressor having a plurality of compression chambers during a cylinder deactivation operation or a two-stage compression operation. It is to effectively suppress fluctuations in the compression torque of the shaft.
  • a refrigeration apparatus constitutes a positive displacement fluid machine having a plurality of compression chambers (61, 62, 63, 64), and each compression chamber (61, 62, 63, 64).
  • the compressor main body (30) that periodically changes the volume of the compressor, and a compressor (20) having a drive shaft (23) that drives the compressor main body (30) are connected to the compressor (20).
  • a refrigerant circuit (10) that performs a refrigeration cycle, and the compressor main body (30) has a phase change of volume fluctuation periods of the first compression chamber (61) and the second compression chamber (62).
  • the compressor (20) is configured to be shifted by 180 ° and the phase of the fluctuation period of the volume of the third compression chamber (63) and the fourth compression chamber (64) is shifted from each other by 180 °.
  • Parallel compression operation in which the refrigerant is compressed in a single stage in each of the compression chambers (61, 62, 63, 64) up to and in the third compression chamber (63) and the fourth compression chamber (64) in a single stage.
  • the cooling in the first compression chamber (61) and the second compression chamber (62) is performed. This is characterized in that it is performed by switching to the cylinder deactivation operation for deactivating the compression of the medium.
  • compression cycle of the compression chamber volume refers to a change cycle of the volume of the compression chamber that periodically changes when the drive shaft makes one revolution and the piston or the like revolves. It means the fluctuation cycle of the refrigerant pressure in the compression chamber that changes with the fluctuation of the volume of the refrigerant.
  • the compressor main body (30) of the compressor (20) includes the first to fourth compression chambers (61, 62, 63). 64) is formed.
  • the compressor (20) the refrigerant compression operation is performed by periodically changing the volume of each compression chamber (61, 62, 63, 64).
  • the compressor (20) can perform the following parallel compression operation and cylinder deactivation operation.
  • the refrigerant is individually compressed in the first to fourth compression chambers (61, 62, 63, 64).
  • the phase of the fluctuation cycle of the volume of the first compression chamber (61) and the second compression chamber (62) is shifted by 180 ° from each other, and the third compression chamber (63) and the fourth compression chamber
  • the phase of the fluctuation cycle of the volume of the chamber (64) is also shifted by 180 °.
  • the phases of the fluctuation periods of the refrigerant pressure are shifted from each other by 180 °, and the third compression chamber (63) and the fourth compression chamber (64) are also mutually connected.
  • the phase of the fluctuation cycle of the refrigerant pressure is shifted by 180 °. Therefore, when the drive shaft (23) rotates, the phase at which the refrigerant pressure reaches the maximum in the first compression chamber (61) and the second compression chamber (62) is also shifted by 180 °. The phase at which the refrigerant pressure becomes maximum in the three compression chambers (63) and the fourth compressor chamber (64) is also shifted by 180 °. So As a result, fluctuations in the compression torque of the drive shaft (23) during this parallel compression operation are reduced.
  • the refrigerant compression operation is not performed in the first compression chamber (61) and the second compression chamber (62), and the third compression chamber (63) and the fourth compression chamber (64 ), The refrigerant is compressed.
  • the phase of the fluctuation cycle of the volume of the third compression chamber (64) and the fourth compression chamber (64) is shifted by 180 ° from each other, so that the third compression chamber (63) and the fourth pressure chamber
  • the phase at which the refrigerant pressure reaches the maximum in the contraction chamber (64) is also shifted by 180 °.
  • the refrigeration apparatus constitutes a positive displacement fluid machine having a plurality of compression chambers (61, 62, 63, 64), and each compression chamber (61, 62, 63, 64).
  • the compressor main body (30) that periodically changes the volume of the compressor, and a compressor (20) having a drive shaft (23) that drives the compressor main body (30) are connected to the compressor (20).
  • a refrigerant circuit (10) that performs a refrigeration cycle, and the compressor main body (30) has a phase change of volume fluctuation periods of the first compression chamber (61) and the second compression chamber (62).
  • the compressor (20) is configured to be shifted by 180 ° and the phase of the fluctuation period of the volume of the third compression chamber (63) and the fourth compression chamber (64) is shifted from each other by 180 °.
  • Parallel compression operation in which the refrigerant is single-stage compressed in each of the compression chambers (61, 62, 63, 64) up to, and single-stage compression in each of the first compression chamber (61) and the second compression chamber (62).
  • the refrigerant is further compressed in the third compression chamber (63) and the fourth compression chamber (64). It is characterized by switching between the two-stage compression operation.
  • the compressor (20) switches between the parallel compression operation and the two-stage compression operation described above. Therefore, in the parallel compression operation, fluctuations in the compression torque can be suppressed as in the first invention.
  • the refrigerant is single-stage compressed in each of the first compression chamber (61) and the second compression chamber (62).
  • the refrigerant compressed in the first compression chamber (61) and the second compression chamber (62) is further compressed in the third compression chamber (63) and the fourth compression chamber (64). That is, in the two-stage compression operation of the present invention, the first compression chamber (61) and the second compression chamber (62) are on the lower stage side, and the third compression chamber (63) and the fourth compression chamber (64) are on the higher stage.
  • the refrigerant is compressed in two stages.
  • the phase of the fluctuation cycle of the volume of the first compression chamber (61) and the second compression chamber (62), which has a relatively large compression ratio and the pressure of the refrigerant is likely to change, is shifted by 180 °. I have to. So as a result, the phase in which the refrigerant pressure reaches the maximum in the first compression chamber (61) and the second compression chamber (62) is also shifted by 180 °, and the fluctuation of the compression torque during the two-stage compression operation is effectively reduced. .
  • a refrigeration apparatus constitutes a positive displacement fluid machine having a plurality of compression chambers (61, 62, 63, 64), and each compression chamber (61, 62, 63, 64).
  • the compressor main body (30) that periodically changes the volume of the compressor, and a compressor (20) having a drive shaft (23) that drives the compressor main body (30) are connected to the compressor (20).
  • a refrigerant circuit (10) that performs a refrigeration cycle, and the compressor main body (30) has a phase change of volume fluctuation periods of the first compression chamber (61) and the second compression chamber (62).
  • the compressor (20) is configured so that the phase of the fluctuation cycle of the volume of the third compression chamber (63) and the fourth compression chamber (64) is shifted by 180 ° from each other. 61) and the second compression chamber (62), respectively, a two-stage compression operation for further compressing the refrigerant compressed in the single stage in the third compression chamber (63) and the fourth compression chamber (64), and the third compression chamber. (63) and the fourth compression chamber (64), It is characterized in that performed at the first compression chamber (61) and the second compression chamber (62) by switching between the cylinder deactivation operation to halt compression of refrigerant within.
  • the compressor (20) switches between the two-stage compression operation and the cylinder deactivation operation described above. Therefore, in the two-stage compression operation, the fluctuating force of the compression torque is reduced as in the second invention. Further, in the parallel compression operation, the variation in the compression torque is reduced as in the first invention.
  • a refrigeration apparatus constitutes a positive displacement fluid machine having a plurality of compression chambers (61, 62, 63, 64), and each compression chamber (61, 62, 63, 64).
  • the compressor main body (30) that periodically changes the volume of the compressor, and a compressor (20) having a drive shaft (23) that drives the compressor main body (30) are connected to the compressor (20).
  • a refrigerant circuit (10) that performs a refrigeration cycle, and the compressor main body (30) has a phase change of volume fluctuation periods of the first compression chamber (61) and the second compression chamber (62).
  • the compressor (20) is configured to be shifted by 180 ° and the phase of the fluctuation period of the volume of the third compression chamber (63) and the fourth compression chamber (64) is shifted from each other by 180 °.
  • Parallel compression operation in which the refrigerant is compressed in a single stage in each of the compression chambers (61, 62, 63, 64) up to and in the third compression chamber (63) and the fourth compression chamber (64) in a single stage. Simultaneously with the compression, the cooling in the first compression chamber (61) and the second compression chamber (62) is performed.
  • Cylinder deactivation operation that stops the compression of the medium and the first pressure Switching between the two-stage compression operation in which the refrigerant compressed in the single stage in the compression chamber (61) and the second compression chamber (62) is further compressed in the third compression chamber (63) and the fourth compression chamber (64), respectively. It is characterized by
  • the compressor (20) performs switching between the parallel compression operation, the cylinder deactivation operation, and the two-stage compression operation described above. Therefore, in the parallel compression operation and the cylinder deactivation operation, the variation in the compression torque can be suppressed as in the first invention. Further, in the two-stage compression operation, the variation in the compression torque can be suppressed as in the second invention.
  • the compressor body (30) of the compressor (20) includes the first compression mechanism (24) and the second compression mechanism. (25), and each compression mechanism (24, 25) is disposed in a cylinder (52, 56) forming an annular cylinder chamber (54, 58) and in the cylinder chamber (54, 58).
  • the cylinder chambers (54,58) are respectively provided with annular pistons (53,57) that divide into two spaces inside and outside, and the cylinder (52,56) and piston are rotated as the drive shaft (23) rotates.
  • (53, 57) are configured to relatively eccentrically rotate, and the outer space in the cylinder chamber (54) of the first compression mechanism (24) is the first compression chamber (61).
  • the inner space constitutes the third compression chamber (63), while the outer space in the cylinder chamber (58) of the second compression mechanism (25) is the second compression chamber (62).
  • the inner space defines the fourth compression chamber (64). It is characterized by composing!
  • the compressor (20) is provided with the first compression mechanism (24) and the second compression mechanism (25).
  • each compression mechanism (24, 25) an annular piston (53, 57) is disposed in an annular cylinder chamber (54, 58).
  • the cylinder chamber (54, 58) is partitioned into an outer space and an inner space of the piston (53, 57), respectively, and these spaces constitute a compression chamber.
  • the first compression mechanism (24) when the drive shaft (23) rotates, the cylinder (52) and the piston (53) relatively eccentrically rotate, so that the outer side of the piston (53)
  • the volume of the first compression chamber (61) formed in the first and third compression chambers (63) formed inside the piston (53) changes.
  • the two compression mechanisms (24, 25) as described above have the capacity of the first compression chamber (61) and the second compression chamber (62). Connected to the drive shaft (23) so that the phase of the product fluctuation cycle is 180 ° shifted from each other and the phase of the volume change cycle of the third compression chamber (63) and the fourth compression chamber (64) is also 180 ° shifted from each other. It is done. Therefore, when the compressor (20) performs the parallel compression operation, the cylinder deactivation operation, and the two-stage compression operation as described above, the fluctuation of the compression torque is reduced.
  • a sixth invention is the invention according to any one of the first to fourth inventions, wherein the compressor body (30) of the compressor (20) is provided with the first to fourth compression chambers (61). , 62, 63, 64), the first to fourth rotary compression mechanisms (24, 25, 26, 27) forming the respective compression chambers (61, 62, 63, 64) are provided. Be prepared!
  • the compressor (20) is provided with first to fourth compression mechanisms (24, 25, 26, 27).
  • Each of these compression mechanisms (24, 25, 26, 27) is composed of a rotary compression mechanism in which a piston is housed in a cylinder chamber.
  • Each compression mechanism (24, 25, 26, 27) includes First to fourth compression chambers (61, 62, 63, 64) are formed, respectively.
  • the four compression mechanisms (24, 25, 26, 27) as described above have the phase of the fluctuation cycle of the volume of the first compression chamber (61) and the second compression chamber (62) shifted from each other by 180 °.
  • the third compression chamber (63) and the fourth compression chamber (64) are connected to the drive shaft (23) so that the phase of the fluctuation cycle of the volume is also shifted by 180 °. Therefore, when the compressor (20) performs the parallel compression operation, the cylinder deactivation operation, and the two-stage compression operation as described above, fluctuations in the compression torque are reduced.
  • the phase of the volume fluctuation cycle of the first compression chamber (61) is the third compression chamber (63) and the fourth compression chamber (64). However, it is characterized in that it is shifted by 180 ° from the phase of the fluctuation period of one of the volumes.
  • the four rotary compression mechanisms (24, 25, 26, 27) are provided so that the compression chambers (61, 61, 60, 27) can cancel out the centrifugal force accompanying the eccentric rotation of the piston.
  • 62,63,64) the phase of the volume fluctuation period is set. That is, in the present invention, the phase of the fluctuation cycle of the volume of the first compression chamber (61) and the third compression chamber (63) is shifted by 180 ° and at the same time the second compression chamber (62) and the fourth compression chamber (64).
  • the phase of the volume fluctuation cycle is shifted 180 °, or the phase of the volume fluctuation cycle of the first compression chamber (61) and the fourth compression chamber (64) is shifted 180 ° and at the same time the second compression chamber (62) and The phase of the volume fluctuation cycle of the third compression chamber (63) is shifted by 180 °.
  • the two pistons of the four compression mechanisms 24, 25, 26, 27
  • the remaining two pistons are also driven
  • the relationship is shifted by 180 ° around (23). Therefore, in this compressor (20), the centrifugal forces of the pistons that rotate eccentrically as a pair cancel each other, so the torque fluctuation of the drive shaft (23) is reduced.
  • four compression chambers are provided in the compressor body (30) of the compressor (20), and the first compression chamber (61) and the second compression chamber (30) are provided.
  • the phase of the volume fluctuation cycle of the compression chamber (62) is shifted 180 ° to each other, and the phase of the volume fluctuation cycle of the third compression chamber (63) and the fourth compression chamber (64) is also shifted 180 ° to each other. I have to.
  • the cycle of the pressure fluctuation of the refrigerant in the third compression chamber (63) and the fourth compression chamber (63) is shifted by 180 °, so that the variation in the compression torque during the cylinder deactivation operation is small. Become. Therefore, it is possible to reduce the vibration and noise of the compressor (20) during the cylinder deactivation operation.
  • the cycle of the pressure fluctuation of the refrigerant in the first compression chamber (61) and the second compression chamber (62) having a relatively large compression ratio is shifted by 180 °.
  • the compression torque during the compression operation can be effectively reduced.
  • the cycle of the pressure fluctuation of the refrigerant in the first compression chamber (61) and the third compression chamber (63) is shifted by 180 °, and the third compression chamber (63) and the fourth compression chamber.
  • the cycle of the pressure fluctuation of the refrigerant in (64) is also shifted by 180 °. Therefore, the compression torque at the time of this parallel compression operation can be reduced.
  • the torque can be reduced.
  • the space outside the piston (53, 57) in the cylinder chamber (54, 58) is defined as the first compression chamber (61) and the second compression chamber (62).
  • the space outside the piston (53, 57) is larger in volume than the space inside the piston (53, 57) by the larger radius of curvature. Therefore, it is possible to increase the displacement volume of the first compression chamber (61) and the second compression chamber (62), which are on the lower stage side during the two-stage compression operation, and to effectively compress the refrigerant in two stages.
  • the compressor (20) of the type in which one compression chamber is formed in each of the four compression mechanisms (24, 25, 26, 27) is as described above. Thus, the compression torque in each compression operation can be reduced.
  • the mechanical force of the drive shaft (23) is obtained by canceling out the centrifugal force of each of the two pistons in the four compression mechanisms (24, 25, 26, 27). Torque fluctuations can be reduced. Therefore, according to the present invention, vibration and noise of the compressor (20) can be further effectively reduced.
  • FIG. 1 is a piping system diagram of a refrigerant circuit of an air conditioner according to Embodiment 1.
  • FIG. 2 is a longitudinal sectional view of the compressor.
  • FIG. 3 is a cross-sectional view of the first compression mechanism (second compression mechanism).
  • FIG. 4 is a piping diagram illustrating a parallel compression operation during heating operation.
  • FIG. 5 is a piping diagram illustrating cylinder deactivation operation during heating operation.
  • FIG. 6 is a piping diagram illustrating a two-stage compression operation during heating operation.
  • FIG. 7 is a piping diagram illustrating a parallel compression operation during cooling operation.
  • FIG. 8 is a graph showing the relationship between the compression torque and the rotation angle of the drive shaft.
  • FIG. 9 is a piping system diagram of a refrigerant circuit of an air conditioner according to Embodiment 2.
  • FIG. 10 is a cross-sectional view of the first compression mechanism.
  • FIG. 11 is a piping diagram illustrating a parallel compression operation during heating operation.
  • FIG. 12 is a piping diagram illustrating a two-stage compression operation during heating operation.
  • FIG. 13 is a piping diagram illustrating a two-stage compression operation during heating operation.
  • the refrigeration apparatus constitutes an air conditioner (1) that performs switching between indoor heating and cooling.
  • the air conditioner (1) includes a refrigerant circuit (10) that performs a refrigeration cycle by circulating the refrigerant, and constitutes a so-called heat pump type air conditioner.
  • the refrigerant circuit (10) includes, as main components, a compressor (20), an indoor heat exchanger (11), an expansion valve (12), and an outdoor heat exchanger ( 13) is provided.
  • the indoor heat exchange (11) is provided in the indoor unit. This indoor heat exchange (11) exchanges heat between the indoor air blown by the indoor fan and the refrigerant.
  • the outdoor heat exchanger (13) is provided in the outdoor unit. The outdoor heat exchanger (13) exchanges heat between the outdoor air blown by the outdoor fan and the refrigerant.
  • the expansion valve (12) is provided between the indoor heat exchanger (11) and the outdoor heat exchanger (13) in the refrigerant circuit (10). This expansion valve (12) is composed of an electronic expansion valve whose opening degree is adjustable.
  • the refrigerant circuit (10) includes a four-way switching valve (14), an internal heat exchanger (15), a pressure reducing valve (16), and a receiver.
  • a liquid vessel (17) is also provided.
  • the four-way selector valve (14) includes first to fourth ports.
  • the four-way selector valve (14) has a first port connected to the discharge side of the compressor (20), a second port connected to the indoor heat exchanger (11), and a third port connected to the liquid receiver. It is connected to the suction side of the compressor (20) via the compressor (17), and its fourth port is connected to the outdoor heat exchanger (13).
  • This four-way selector valve (14) has a state in which the first port and the second port communicate with each other and the third port and the fourth port communicate with each other, and the first port and the fourth port communicate with each other. It is possible to switch to the state where 3 ports communicate.
  • the internal heat exchanger (15) constitutes a double-tube heat exchanger having a first heat exchange channel (15a) and a second heat exchange channel (15b).
  • the first heat exchange channel (15a) is disposed so as to straddle the refrigerant pipe between the indoor heat exchanger (11) and the expansion valve (12).
  • the second heat exchange channel (15b) is disposed so as to straddle the intermediate index pipe (18) branched from between the internal heat exchanger (15) and the expansion valve (12).
  • the intermediate injection pipe (18) is provided with the pressure reducing valve (16) on the upstream side of the internal heat exchanger (15).
  • the high-pressure liquid refrigerant flowing through the first heat exchange channel (15a) and the intermediate pressure refrigerant flowing through the second heat exchange channel (15b) can exchange heat. /!
  • the refrigerant circuit (10) is provided with first to fourth bypass pipes (36, 37, 38, 39) and a three-way valve (41) having three ports.
  • One end of the first bypass pipe (36) is connected to the first suction pipe (32a) and the second suction pipe (32b) of the compressor (20), and the other end is the first of the three-way valve (41). Connected to 1 port.
  • the second bypass pipe (37) has one end connected to the second port of the three-way valve (41) and the other end connected to the first suction communication pipe (34a) and the second suction communication pipe (34b) of the compressor (20). ).
  • the outflow end of the intermediate injection pipe (18) described above is connected to the third port of the three-way valve (41).
  • the three-way valve (41) has a state in which the first port and the second port communicate with each other and the third port closes simultaneously, and a state in which the second port and the third port communicate with each other simultaneously with the first port closed. It is possible to switch to.
  • the third bypass pipe (38) has one end connected to the first discharge communication pipe (33a) and the second discharge communication pipe (33b) of the compressor (20), and the other end connected to the compressor (20).
  • the first suction communication pipe (34a) and second suction pipe Connected to the incoming communication pipe (34b).
  • the third bypass pipe (38) is provided with an electromagnetic on-off valve (42) for opening and closing the refrigerant flow path.
  • One end of the fourth bypass pipe (39) is connected to the first discharge communication pipe (33a) and the second discharge communication pipe (33b) of the compressor (20), and the other end is connected to the compressor (20).
  • the fourth bypass pipe (39) has a check valve (43) that prohibits the flow of refrigerant from the branch communication pipe (35) side to the discharge communication pipe (33a, 33b) side and allows the reverse flow. ) Is provided.
  • the compressor (20) includes an electric motor (22), a drive shaft (23), and two compression mechanisms (24, 25) in a sealed casing (21).
  • the compressor main body (30) is housed.
  • the compressor (20) is a so-called high-pressure dome type compressor in which the inside of the casing (21) is filled with a high-pressure refrigerant.
  • the electric motor (22) is disposed on an upper portion of the casing (21). Inside the electric motor (22), the drive shaft (23) penetrates vertically. The drive shaft (23) is rotated by being driven by the electric motor (22).
  • the drive shaft (23) is formed with a first eccentric portion (23a) located near the lower portion and a second eccentric portion (23b) located near the central portion.
  • the first eccentric part (23a) and the second eccentric part (23b) are each eccentric from the axis of the drive shaft (23).
  • the first eccentric part (23a) and the second eccentric part (23b) are 180 ° out of phase with each other about the axis of the drive shaft (23).
  • the compressor body (30) is provided below the drive shaft (23).
  • the compressor body (30) includes a first compression mechanism (24) near the bottom of the casing (21) and a second compression mechanism (25) near the electric motor (22).
  • the rotational speed of the drive shaft (23) is variable by inverter control.
  • both compression mechanisms (24, 25) form an inverter type compression mechanism with variable capacity!
  • the first compression mechanism (24) includes a first housing (51) fixed to the casing (21), and a first cylinder (52) accommodated in the first saw and the winging (51). I have.
  • An annular first piston (53) projecting upward is provided inside the first housing (51).
  • the first cylinder (52) includes a disc-shaped end plate portion (52a), an annular inner cylinder portion (52b) projecting downward from an inner peripheral end portion of the end plate portion (52a), and the end plate And an annular outer cylinder portion (52c) protruding downward from the outer peripheral end of the portion (52a).
  • the first eccentric part (23a) is fitted in the da part (52b).
  • the first cylinder (52) is configured to rotate eccentrically about the axis of the first eccentric portion (23a) as the drive shaft (23) rotates.
  • the first cylinder (52) has an annular first cylinder chamber (54) formed between the outer peripheral surface of the inner cylinder portion (52b) and the inner peripheral surface of the outer cylinder portion (52c).
  • the first piston (53) is disposed in the first cylinder chamber (54).
  • the first cylinder chamber (54) has a first compression chamber (61) formed between the outer peripheral surface of the first piston (53) and the inner wall outside the first cylinder chamber (54), It is partitioned into a third compression chamber (63) formed between the inner peripheral surface of the first piston (53) and the inner wall inside the first cylinder chamber (54).
  • the first cylinder (52) has an outer cylinder portion (52c) that communicates the space outside the first cylinder (52) with the first compression chamber (61). Is formed.
  • the blade (45) extends from the inner peripheral surface of the outer cylinder portion (52c) to the outer peripheral surface of the inner cylinder portion (52b). /!
  • the blade (45) divides the first compression chamber (61) and the third compression chamber (63) into a low pressure chamber on the suction side and a high pressure chamber on the discharge side.
  • the first piston (53) has a C shape in which a part of the annular shape is divided, and the blade (45) is inserted through the divided portion.
  • a semi-circular bush (46, 46) is fitted to the part of the piston (53) so as to sandwich the blade (45)!
  • the bushes (46, 46) are configured to be swingable at the end of the piston (53).
  • the cylinder (52) can move forward and backward in the extending direction of the blade (45), and can swing together with the bushes (46, 46).
  • the drive shaft (23) rotates
  • the cylinder (52) rotates eccentrically in the order of (A) force (D) in Fig. 3, and the refrigerant is compressed in the first compression chamber (61) and the third compression chamber (63). Is done.
  • the first compression chamber (61) and the third compression chamber (63) are displaced so as to be 180 ° out of phase with each other around the axis of the drive shaft (23).
  • the second compression mechanism (25) is configured by the same mechanical elements as the first compression mechanism (24) so as to be turned upside down with respect to the first compression mechanism (24).
  • the second compression mechanism (25) includes a second housing (55) fixed to the casing (21) and a second cylinder (56) housed in the second housing (55). I have.
  • An annular second piston (57) protruding downward is provided inside the second housing (55).
  • the second cylinder (56) is a disc-shaped end plate Part (56a), inner peripheral end force of the end plate part (56a), an annular inner cylinder part (56b) protruding upward, and an annular end part protruding upward from the outer end of the end plate part (56a) And an outer cylinder part (56c).
  • the second cylinder (56) is configured to rotate eccentrically about the axis of the second eccentric portion (23b) as the drive shaft (23) rotates.
  • the second cylinder (56) has an annular second cylinder chamber (58) formed between the outer peripheral surface of the inner cylinder portion (56b) and the inner peripheral surface of the outer cylinder portion (56c).
  • the second piston (57) is disposed in the second cylinder chamber (58).
  • the second cylinder chamber (58) has a second compression chamber (62) formed between the outer peripheral surface of the second piston (57) and the outer inner wall of the second cylinder chamber (58), It is partitioned into a fourth compression chamber (64) formed between the inner peripheral surface of the second piston (57) and the inner wall inside the second cylinder chamber (58).
  • the second cylinder (56) has an outer cylinder portion (56c) that communicates with the space outside the second cylinder (56) and the third compression chamber (63). Is formed!
  • the first suction pipe (32a), the first discharge communication pipe (33a), and the first suction communication pipe (34a) are connected to the first compression mechanism (24).
  • the first suction pipe (32a) is connected to the suction side of the first compression chamber (61) via the first communication passage (59).
  • the first discharge communication pipe (33a) is connected to the discharge side of the first compression chamber (61).
  • the first discharge communication pipe (33a) is provided with a first discharge valve (65).
  • the first discharge valve (65) is configured to open when the differential pressure between the refrigerant pressure on the discharge side of the first compression chamber (61) and the pressure on the first discharge communication pipe (33a) exceeds a predetermined pressure. It is made.
  • the first compression mechanism (24) is provided with a discharge port (66) for communicating the discharge side of the third compression chamber (63) with the internal space of the casing (21).
  • the discharge port (66) is provided with a second discharge valve (67).
  • the second discharge valve (67) is configured to be opened when the differential pressure between the refrigerant pressure on the discharge side of the third compression chamber (63) and the internal pressure of the casing (21) exceeds a predetermined pressure. .
  • the second compression mechanism (25) includes the above-described second suction pipe (32b), second discharge communication pipe (33b), and And the second suction communication pipe (34b) is connected.
  • the second suction pipe (32b) is connected to the suction side of the second compression chamber (62) via the second communication path (60).
  • the second discharge communication pipe (33b) is connected to the discharge side of the second compression chamber (62).
  • the second discharge connecting pipe (33b) has a third discharge valve.
  • the third discharge valve (68) opens so that the differential pressure between the refrigerant pressure on the discharge side of the second compression chamber (62) and the pressure on the second discharge communication pipe (33b) becomes a predetermined pressure or more. It is configured.
  • the second compression mechanism (25) is provided with a discharge port (69) for communicating the discharge side of the fourth compression chamber (64) with the internal space of the casing (21). This discharge port
  • the fourth discharge valve (70) is configured to open when the differential pressure between the refrigerant pressure on the discharge side of the fourth compression chamber (64) and the internal pressure of the casing (21) exceeds a predetermined pressure.
  • a discharge pipe (31) is connected to the top of the casing (21) of the compressor (20), and a branch connecting pipe (35) is connected to the trunk of the casing (21). One end of each of the discharge pipe (31) and the branch connection pipe (35) faces the internal space of the casing (21).
  • each cylinder (52, 56) of each compression mechanism (24, 25) is moved to each piston (53, 57) as the drive shaft (23) rotates.
  • the eccentric rotational movement is performed relative to.
  • the volume of each compression chamber (61, 63) of the first compression mechanism (24) changes periodically
  • the volume of each compression chamber (62, 64) of the second compression mechanism (25) also changes periodically.
  • the rotation angle at which the first compression chamber (61) force discharges the refrigerant and the third compression chamber (63) force The rotation angle is different by 180 °. That is, in the first compression mechanism (24), the phase of the volume fluctuation cycle of the first compression chamber (61) and the volume fluctuation cycle of the third compression chamber (63) are shifted by 180 °.
  • the rotation angle at which the refrigerant is discharged from the second compression chamber (62) and the fourth compression chamber (64) force the refrigerant
  • the rotation angle is different by 180 °. That is, in the second compression mechanism (25), the phase of the volume fluctuation cycle of the second compression chamber (62) and the volume fluctuation cycle of the fourth compression chamber (64) are shifted by 180 °.
  • the phases of the fluctuation periods of the volumes of the first compression chamber (61) and the second compression chamber (62) are shifted from each other by 180 °, and the third compression chamber (61)
  • the phase of the fluctuation cycle of the volume of the chamber (63) and the fourth compression chamber (64) is also shifted by 180 ° from each other!
  • the four-way switching valve (14) is set to the state shown in FIGS. 4 to 6, and the opening degree of the expansion valve (12) is appropriately adjusted. Further, in this heating operation, the settings of the three-way valve (41) and the electromagnetic on-off valve (42) are switched, so that the parallel compression operation by the compressor (20), the cylinder deactivation operation, and the two-stage compression operation are performed. Switching is possible.
  • the compressor (20) performs a parallel compression operation.
  • the three-way valve (41) is in the state shown in FIG. 4, and the electromagnetic on-off valve (42) of the third bypass pipe (38) is closed.
  • the opening of the pressure reducing valve (16) is closed.
  • the refrigerant discharged from the discharge pipe (31) of the compressor (20) flows through the indoor heat exchanger (11) via the four-way switching valve (14).
  • the indoor heat exchanger (11) the refrigerant dissipates heat to the indoor air and condenses. As a result, the room is heated.
  • the refrigerant condensed in the indoor heat exchanger (11) flows through the first heat exchange channel (15a) of the internal heat exchanger (15) as it is and is decompressed to a low pressure by the expansion valve (12). After that, it flows through the outdoor heat exchanger (13). In the outdoor heat exchanger (13), the refrigerant absorbs heat from the outdoor air and evaporates. The refrigerant evaporated in the outdoor heat exchanger (13) is sent to the suction side of the compressor (20) via the liquid receiver (17).
  • the refrigerant flowing to the suction side of the compressor (20) is divided into the first suction pipe (32a), the second suction pipe (32b), and the first bypass pipe (36).
  • the refrigerant flowing through the first suction pipe (32a) is compressed in the first compression chamber (61) of the first compression mechanism (24), and then from the first discharge communication pipe (33a) to the first compression chamber (61 ) Is discharged to the outside.
  • This refrigerant is sent to the internal space of the casing (21) via the fourth bypass pipe (39).
  • the refrigerant flowing through the second suction pipe (32b) is compressed in the second compression chamber (62) of the second compression mechanism (25), and then from the second discharge communication pipe (33b) to the second compression chamber (62 ) To the outside.
  • This refrigerant is sent to the internal space of the casing (21) via the fourth bypass pipe (39).
  • the refrigerant flowing through the first bypass pipe (36) passes through the second bypass pipe (37).
  • the flow is divided into the first suction communication pipe (34a) and the second suction communication pipe (34b).
  • the refrigerant flowing through the first suction communication pipe (34a) is compressed in the third compression chamber (63) and then discharged from the discharge port (66) to the internal space of the casing (21).
  • the refrigerant flowing through the second suction communication pipe (34b) is compressed in the fourth compression chamber (64) and then discharged from the discharge port (69) to the internal space of the casing (21).
  • the low-pressure refrigerant is single-stage compressed in the first to fourth compression chambers (61, 62, 63, 64) to become a high-pressure refrigerant.
  • This high-pressure refrigerant is discharged from the discharge pipe (31) to the outside of the casing (21) again.
  • the compressor (20) performs the cylinder deactivation operation.
  • the three-way valve (41) is in the state shown in FIG. 5, and the electromagnetic on-off valve (42) of the third bypass pipe (38) is in the open state.
  • the pressure reducing valve (16) is closed.
  • the refrigerant discharged from the discharge pipe (31) of the compressor (20) flows through the indoor heat exchanger (11) via the four-way switching valve (14).
  • the indoor heat exchanger (11) the refrigerant dissipates heat to the indoor air and condenses. As a result, the room is heated.
  • the refrigerant condensed in the indoor heat exchanger (11) flows through the first heat exchange channel (15a) of the internal heat exchanger (15) as it is, and is decompressed to a low pressure by the expansion valve (12). After that, it flows through the outdoor heat exchanger (13). In the outdoor heat exchanger (13), the refrigerant absorbs heat from the outdoor air and evaporates. The refrigerant evaporated in the outdoor heat exchanger (13) is sent to the suction side of the compressor (20) via the liquid receiver (17).
  • the refrigerant that has flowed to the suction side of the compressor (20) is divided into the first suction pipe (32a), the second suction pipe (32b), and the first bypass pipe (36).
  • the refrigerant flowing through the first suction pipe (32a) is sucked into the first compression chamber (61) of the first compression mechanism (24), while the refrigerant flowing through the second suction pipe (32b)
  • the air is sucked into the second compression chamber (62) of the compression mechanism (25).
  • the suction side and the discharge side of the first compression chamber (61) are connected to the first bypass pipe (36), the second bypass pipe (37), the third bypass pipe (38), and It communicates via the first discharge communication pipe (33a).
  • the suction side and the discharge side of the second compression chamber (62) are the first bypass pipe (36), the second bypass pipe (37), the third bypass pipe (38), and the second discharge communication pipe (33b). ) To communicate.
  • the first The pressure on the suction side and the pressure on the discharge side of the compression chamber (61) are equalized, and the pressure on the suction side and the pressure on the discharge side of the second compression chamber (62) are also equalized.
  • the first discharge valve (65) is always open, and the pressure on the discharge side is small in the second compression chamber (62).
  • the third discharge valve (68) is always open.
  • the refrigerant passes through the opened first discharge valve (65) without being compressed and flows out to the first discharge communication pipe (33a).
  • the refrigerant passes through the open third discharge valve (68) without being compressed and flows out to the second discharge communication pipe (33b). That is, in the first compression chamber (61) and the second compression chamber (62) during the cylinder deactivation operation, refrigerant compression work is not performed, and the refrigerant passes through each compression chamber (61, 63) as it is. Will do.
  • the refrigerant flowing through the first suction communication pipe (34a) is compressed in the third compression chamber (63) and then discharged from the discharge port (66) to the internal space of the casing (21).
  • the refrigerant flowing through the second suction communication pipe (34b) is compressed in the fourth compression chamber (64) and then discharged from the discharge port (69) to the internal space of the casing (21).
  • the refrigerant compression operation in the first compression chamber (61) and the second compression chamber (62) is suspended, and at the same time, the third compression chamber (63) and In the fourth compression chamber (64), the low-pressure refrigerant is compressed in a single stage to become high-pressure refrigerant.
  • the high-pressure refrigerant is again discharged from the casing (21) through the discharge pipe (31).
  • the compressor (20) performs a two-stage compression operation.
  • the three-way valve (41) is in the state shown in FIG. 6, and the electromagnetic switching valve (42) of the third bypass pipe (38) is in the open state.
  • the opening of the pressure reducing valve (16) is adjusted as appropriate.
  • the refrigerant discharged from the discharge pipe (31) of the compressor (20) flows through the indoor heat exchanger (11) via the four-way switching valve (14).
  • the indoor heat exchanger (11) the refrigerant dissipates heat to the indoor air and condenses. As a result, the room is heated.
  • the refrigerant condensed in the indoor heat exchanger (11) passes through the first heat exchange channel (1 Flow 5a).
  • the refrigerant that is diverted to the intermediate injection pipe (18) and depressurized to the intermediate pressure by the pressure reducing valve (16) flows through the second heat exchange channel (15b). It has become. That is, in the internal heat exchange (15), a high-pressure refrigerant flows through the first heat exchange flow path (15a), and an intermediate-pressure refrigerant flows through the second heat exchange flow path (15b).
  • the remaining refrigerant that does not flow to the intermediate injection pipe (18) side is reduced to a low pressure by the expansion valve (12), and then flows through the outdoor heat exchanger (13).
  • the refrigerant also absorbs the outdoor aerodynamic force and evaporates.
  • the refrigerant evaporated in the outdoor heat exchange (13) is sent to the suction side of the compressor (20) via the liquid receiver (17).
  • the refrigerant sent to the suction side of the compressor (20) is divided into the first suction pipe (32a) and the second suction pipe (32b).
  • the refrigerant flowing through the first suction pipe (32a) is compressed in the first compression chamber (61) of the first compression mechanism (24), and then from the first discharge communication pipe (33a) to the first compression chamber (61). Discharged to the outside.
  • the refrigerant flowing through the second suction pipe (32b) is compressed in the second compression chamber (62) of the second compression mechanism (25), and then from the second discharge communication pipe (33b) to the second compression chamber (62 ) Is discharged to the outside.
  • the refrigerant discharged from each discharge connection pipe (33a, 33b) joins in the third bypass pipe (38).
  • the refrigerant evaporated in the internal heat exchanger (15) flows through the intermediate injection pipe (18). Therefore, the refrigerant flows through the three-way valve (41) and the second bypass pipe (37), and then merges with the refrigerant flowing through the third bypass pipe (38). As described above, in this two-stage compression operation, the intermediate-pressure refrigerant is mixed with the refrigerant compressed in the first compression chamber (61) and the second compression chamber (62) through the intermediate injection pipe (18). By doing so, reduce the discharge refrigerant temperature of the first compression mechanism (24)! / Speak.
  • the combined refrigerant is divided into the first suction communication pipe (34a) and the second suction communication pipe (34b).
  • the refrigerant flowing through the first suction communication pipe (34a) is further compressed in the third compression chamber (63) and then discharged from the discharge port (66) to the internal space of the casing (21).
  • the refrigerant flowing through the second suction communication pipe (34b) is further compressed in the fourth compression chamber (64) and then discharged from the discharge port (69) to the internal space of the casing (21).
  • the refrigerant compressed to the intermediate pressure in the first compression chamber (61) and the second compression chamber (62) is converted into the third compression chamber (63) and the second compression chamber (63).
  • 4High-pressure refrigerant further compressed in the compression chamber (64). This high-pressure refrigerant is discharged from the discharge pipe (31) to the outside of the casing (21) again.
  • Discharge pipe (31) force of compressor (20) The discharged high-pressure refrigerant flows through the outdoor heat exchanger (13) via the four-way switching valve (14).
  • the outdoor heat exchanger (13) the refrigerant dissipates heat to the outdoor air and condenses.
  • the refrigerant condensed in the outdoor heat exchanger (13) is depressurized by the expansion valve (12) and then flows through the indoor heat exchanger (11).
  • the indoor heat exchanger (11) the refrigerant absorbs heat from the indoor air and evaporates. As a result, the room is cooled.
  • the refrigerant evaporated in the indoor heat exchanger (11) is sent to the suction side of the compressor (20) via the liquid receiver (17).
  • a parallel compression operation is performed in the same manner as described above. That is, the refrigerant sucked into the compressor (20) is single-stage compressed in each compression chamber (61, 62, 63, 64). The refrigerant compressed in each compression chamber (61, 62, 63, 64) is discharged again from the discharge pipe (31) from the internal space of the casing (21).
  • the third compression chamber (63) and the fourth compression chamber ( 64) compresses the refrigerant.
  • the phase at which the refrigerant pressure is maximum in the third compression chamber (63) the phase at which the refrigerant pressure is maximum in the fourth compression chamber (64), and the force S180 ° It will shift.
  • the fluctuation range of the compression torque when the drive shaft (23) rotates is smoothed. Therefore, the compression torque during the cylinder deactivation operation is smaller than that of a two-cylinder compressor.
  • the refrigerant is compressed in two sets of compression chambers (61, 62, 63, 64) that are 180 ° different in phase of the volume fluctuation period. Is done. For this reason, when the drive shaft (23) rotates, the phase at which the refrigerant pressure reaches the maximum in the first compression chamber (61) and the second compression chamber (62) is shifted by 180 °, and the third compression chamber (23) The phase at which the refrigerant pressure reaches the maximum in the chamber (63) and the fourth compression chamber (64) is also shifted by 180 °. As a result, the pressure of the drive shaft (23) The compression torque is smoothed, and the fluctuation of the compression torque during this parallel compression operation is smaller than that of the two-cylinder compressor.
  • the first compression mechanism (24) having the two compression chambers (61, 63), the second compression mechanism (25) having the two compression chambers (62, 64), and In the compressor (20) provided with the first compression chamber (61) and the second compression chamber (62), the third variable compression chamber (63) and the third compression chamber (63) And the phase of the fluctuation cycle of the volume of the fourth compression chamber (64) are also shifted from each other by 180 °.
  • the phases of the fluctuation periods of the refrigerant pressure in the third compression chamber (63) and the fourth compression chamber (63) can be shifted by 180 ° from each other. It is possible to reduce the fluctuation of the compression torque. Therefore, the compression torque can be effectively reduced in the cylinder deactivation operation that is likely to increase vibration and noise, and the compressor (20) can be reduced in vibration and noise.
  • the phases of the fluctuation periods of the refrigerant pressure in the first compression chamber (61) and the second compression chamber (62) on the lower stage side are mutually equal. It can be shifted by 180 °, and the compression torque during the two-stage compression operation can be effectively reduced.
  • each of the cylinders (52, 56) having the annular cylinder chamber (54, 58) has an annular piston (53, 57).
  • each annular piston (53,57) is connected to the drive shaft (23) via a mirror plate or the like, while each cylinder (52,56) is fixed to a housing or the like, and each piston (53,57) ) May be eccentrically rotated with respect to each cylinder (52, 56).
  • the space outside the piston (53, 57) is defined as the first compression chamber (61) and the second compression chamber (62), and the space inside the piston (53, 57) is defined as the space inside the piston (53, 57).
  • the space inside the piston (53, 57) is defined as the first compression chamber (61) and the second compression chamber (62), and the space outside the piston (53, 57) is The third compression chamber (63) and the fourth compression chamber (64) may be used.
  • the air conditioner (1) of the second embodiment is different from the first embodiment in the configuration of the compressor (20).
  • the compressor body (30) of the compressor (20) of Embodiment 2 includes the first to fourth compression mechanisms (24, 25, 26, 27)! / The
  • the drive shaft (23) has a first compression mechanism (24), a third compression mechanism (26), a second compression mechanism (25), and a fourth compression in order from the lower end side upward.
  • a mechanism (27) is provided. As shown in FIG. 10, each compression mechanism (24, 25, 26, 27) constitutes a rotary compression mechanism of a swing piston type.
  • the first piston (71) is housed in the cylinder chamber.
  • the first compression mechanism (24) is formed with a first compression chamber (61) whose volume is periodically changed by the eccentric rotation of the first piston (71).
  • the second piston (72) is accommodated in the cylinder chamber.
  • the second compression mechanism (25) is formed with a second compression chamber (62) whose volume is periodically changed by the eccentric rotation of the second piston (72).
  • the third piston (73) is housed in the cylinder chamber.
  • the third compression mechanism (26) is formed with a third compression chamber (63) whose volume is periodically changed by the eccentric rotation of the third piston (73).
  • the fourth piston (74) is housed in the cylinder chamber.
  • the fourth compression mechanism (27) is formed with a fourth compression chamber (64) whose volume periodically changes due to the eccentric rotation of the fourth piston (74).
  • the first suction pipe (32a) is connected to the suction side of the first compression chamber (61), and the second suction pipe (32b) is connected to the suction side of the second compression chamber (62).
  • the first discharge communication pipe (33a) is connected to the discharge side of the first compression chamber (61), and the second discharge communication pipe (33b) is connected to the discharge side of the second compression chamber (62). ing.
  • the first discharge communication pipe (33a) and the second discharge communication pipe (33b) are each provided with a discharge valve (not shown).
  • the first suction communication pipe (34a) is connected to the suction side of the third compression chamber (63), and the second suction communication pipe (34b) is connected to the suction side of the fourth compression chamber (64). Yes.
  • the third compression chamber (63) and the second compression chamber On the discharge side of the four compression chambers (64), a discharge port connected to the internal space of the casing (21) and a discharge valve for opening and closing each discharge port are provided (not shown).
  • the third piston (73) and the fourth piston (74) are shifted from each other by 180 ° around the drive shaft (23). That is, in the compressor (20), the phase of the fluctuation cycle of the volume of the first compression chamber (61) and the second compression chamber (62) is shifted by 180 °, and the third compression chamber (63) and the fourth compression chamber The phase of the volume fluctuation cycle of (64) is 180 ° out of phase.
  • the phases of the first piston (71) and the third piston (73) are shifted from each other by 180 ° about the drive shaft (23), and the second piston (72) And the fourth piston (74) are 180 ° out of phase with each other about the drive shaft (23). That is, in the compressor (20), the phase of the fluctuation cycle of the volume of the first compression chamber (61) and the third compression chamber (63) is also shifted by 180 °, and the second compression chamber (62) and the fourth compression chamber (62) The phase of the fluctuation cycle of the volume of the compression chamber (64) is also shifted by 180 °.
  • the operation of the air conditioner (1) according to the second embodiment will be described.
  • the heating operation and the cooling operation can be switched as in the first embodiment, but only the heating operation of the air conditioner (1) will be described below.
  • the four-way selector valve (14) is set to the state shown in Figs. 11 to 13 and the opening degree of the expansion valve (12) is appropriately adjusted.
  • the setting of the three-way valve (41) and the electromagnetic on-off valve (42) is switched, so that the parallel compression operation by the compressor (20) can be performed.
  • the cylinder deactivation operation and the two-stage compression operation can be switched.
  • the three-way valve (41) is in the state shown in FIG. 11, and the electromagnetic on-off valve (42) of the third bypass pipe (38) is closed.
  • the opening of the pressure reducing valve (16) is closed.
  • the refrigerant discharged from the compressor (20) flows through the indoor heat exchanger (11) and the outdoor heat exchanger (13) and is sent to the suction side of the compressor (20), as in the parallel compression operation of the first embodiment. It is. [0112]
  • the refrigerant flowing to the suction side of the compressor (20) is divided into the first suction pipe (32a), the second suction pipe (32b), and the first bypass pipe (36).
  • the refrigerant flowing through the first suction pipe (32a) is compressed in the first compression chamber (61) of the first compression mechanism (24), and then from the first discharge communication pipe (33a) to the first compression chamber (61 ) Is discharged to the outside.
  • This refrigerant is sent to the internal space of the casing (21) via the fourth bypass pipe (39).
  • the refrigerant flowing through the second suction pipe (32b) is compressed in the second compression chamber (62) of the second compression mechanism (25), and then from the second discharge communication pipe (33b) to the second compression chamber (62 ) To the outside.
  • This refrigerant is sent to the internal space of the casing (21) via the fourth bypass pipe (39).
  • the refrigerant flowing through the first bypass pipe (36) is divided into the first suction communication pipe (34a) and the second suction communication pipe (34b) via the second bypass pipe (37).
  • the refrigerant flowing through the first suction communication pipe (34a) is compressed in the third compression chamber (63) of the third compression mechanism (26) and then discharged from the discharge port to the internal space of the casing (21).
  • the refrigerant flowing through the second suction communication pipe (34b) is compressed in the fourth compression chamber (64) of the fourth compression mechanism (27) and then discharged from the discharge port to the internal space of the casing (21). .
  • the three-way valve (41) is in the state shown in FIG. 12, and the electromagnetic on-off valve (42) of the third bypass pipe (38) is in the open state.
  • the pressure reducing valve (16) is closed.
  • the refrigerant discharged from the compressor (20) flows through the indoor heat exchanger (11) and the outdoor heat exchanger (13) and is sent to the suction side of the compressor (20) in the same manner as in the cylinder deactivation operation of the first embodiment. It is possible.
  • the refrigerant flowing to the suction side of the compressor (20) is divided into the first suction pipe (32a), the second suction pipe (32b), and the first bypass pipe (36).
  • the refrigerant flowing through the first suction pipe (32a) is sucked into the first compression chamber (61) of the first compression mechanism (24), while the refrigerant flowing through the second suction pipe (32b)
  • the air is sucked into the second compression chamber (62) of the compression mechanism (25).
  • the suction side and discharge side of the first compression chamber (61) and the suction side and discharge side of the second compression chamber (62) communicate with each other. It becomes. Therefore, the discharge valves provided in the first discharge communication pipe (33a) and the second discharge communication pipe (33b) are always open, respectively, and in the first compression chamber (61) and the second compression chamber (62), respectively.
  • the refrigerant is not compressed.
  • the refrigerant flowing through the first suction communication pipe (34a) is compressed in the third compression chamber (63) of the third compression mechanism (26) and then discharged from the discharge port to the internal space of the casing (21). .
  • the refrigerant flowing through the second suction communication pipe (34b) is compressed in the fourth compression chamber (64) of the fourth compression mechanism (27) and then discharged from the discharge port to the internal space of the casing (21).
  • the three-way valve (41) is in the state shown in FIG. 13, and the electromagnetic on-off valve (42) of the third bypass pipe (38) is in the open state.
  • the opening of the pressure reducing valve (16) is adjusted as appropriate.
  • the refrigerant discharged from the compressor (20) flows through the indoor heat exchanger (11) and the outdoor heat exchanger (13) in the same manner as in the two-stage compression operation of the first embodiment, to the suction side of the compressor (20). Sent.
  • the refrigerant sent to the suction side of the compressor (20) is divided into the first suction pipe (32a) and the second suction pipe (32b).
  • the refrigerant flowing through the first suction pipe (32a) is compressed in the first compression chamber (61) of the first compression mechanism (24), and then from the first discharge communication pipe (33a) to the first compression chamber (61). Discharged to the outside.
  • the refrigerant flowing through the second suction pipe (32b) is compressed in the second compression chamber (62) of the second compression mechanism (25), and then from the second discharge communication pipe (33b) to the second compression chamber (62 ) Is discharged to the outside.
  • the refrigerant discharged from each discharge connection pipe (33a, 33b) joins in the third bypass pipe (38).
  • the refrigerant is mixed with an intermediate pressure refrigerant having an intermediate injection pipe (18) force.
  • the merged refrigerant is divided into the first suction communication pipe (34a) and the second suction communication pipe (34b).
  • the refrigerant flowing through the first suction communication pipe (34a) is further compressed in the third compression chamber (63) of the third compression mechanism (26), and then from the discharge port (66) to the internal space of the casing (21). Is discharged.
  • the refrigerant flowing through the second suction communication pipe (34b) is further compressed in the fourth compression chamber (64) of the fourth compression mechanism (27) and then discharged from the discharge port to the internal space of the casing (21).
  • the compression provided with the first to fourth compression mechanisms (24, 25, 26, 27) each having one compression chamber (61, 62, 63, 64).
  • the phase of the fluctuation cycle of the volume of the first compression chamber (61) and the second compression chamber (62) is shifted by 180 ° from each other, and the third compression chamber (63) and the fourth compression chamber (64) The phase of the fluctuation period of the volume of the is doing.
  • the phase in which the refrigerant reaches the maximum pressure in the third compression chamber (63) and the fourth compression chamber (64) is shifted by 180 ° to deactivate the cylinder.
  • the compression torque during operation can be reduced.
  • the phase at which the refrigerant reaches the maximum pressure is shifted by 180 ° in the first compression chamber (61) and the second compression chamber (62) on the lower stage side, and the two-stage compression operation is performed. The compression torque during the compression operation can be effectively reduced.
  • the phases of the first piston (71) and the third piston (73) are shifted by 180 ° around the drive shaft (23), and the second piston (72) and the fourth piston are shifted.
  • the phase of (74) is shifted 180 ° around the drive shaft (23). Therefore, the centrifugal force of the first piston (71) and the third piston (73) and the centrifugal force of the second piston (72) and the fourth piston (74) can cancel each other. Therefore, the torque of the drive shaft (23) can be further reduced, and the compressor (20) can be reduced in noise and vibration.
  • the first piston (71) and the fourth piston (74) are shifted in phase by 180 °, and the second piston
  • each piston (71, 72, 73, 74) may be canceled by shifting the phase of (72) and the third piston (73) by 180 °. Also in this case, the phase of the fluctuation cycle of the volume of the first compression chamber (61) and the second compression chamber (62) is shifted by 180 °, and the third compression chamber (63) and the fourth compression chamber (64) are shifted. By shifting the phase of the volume fluctuation cycle by 180 °, the compression torque for each compression operation can be reduced.
  • the parallel compression operation, cylinder deactivation operation, and two-stage compression operation can be switched.
  • the refrigeration apparatus may be configured so that any two of these three operations are switched to each other.
  • the compression mechanism of the compressor (20) is constituted by a compression mechanism in which an annular piston rotates eccentrically, or a rotary piston type rotary compression mechanism.
  • a rotary piston type or a compression mechanism of other configuration may be used.
  • the refrigeration apparatus of each of the above embodiments is suitable for an air conditioner (1) that exchanges heat between air and refrigerant. It is used.
  • the refrigeration apparatus of the present invention may be applied to a cold / hot water chiller or a water heater that obtains cold water or hot water by exchanging heat between a heat medium such as water and a refrigerant.
  • the present invention is useful for a refrigeration apparatus that includes a compressor having a plurality of compression chambers and performs a refrigeration cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

圧縮機(20)には、4つの圧縮室(61,62,63,64)を有する圧縮機構(61,62)が設けられる。圧縮機(20)では、第1圧縮室(61)及び第2圧縮室(62)の容積の変動周期の位相が180°ずれ、第3圧縮室(63)及び第4圧縮室(64)の容積の変動周期の位相も180°ずれる。気筒休止動作では、第1圧縮室(61)及び第2圧縮室(62)で冷媒がそれぞれ単段圧縮されると同時に第3圧縮室(63)及び第4圧縮室(64)の圧縮動作が休止される。二段圧縮動作では、第1圧縮室(61)及び第2圧縮室(62)でそれぞれ単段圧縮した冷媒が第3圧縮室(63)及び第4圧縮室(64)で更に圧縮される。 

Description

明 細 書
冷凍装置
技術分野
[0001] 本発明は、複数の圧縮室を有する圧縮機を備え、冷凍サイクルを行う冷凍装置に 関するものである。
背景技術
[0002] 従来より、冷媒が循環して冷凍サイクルを行う冷媒回路を備えた冷凍装置は、空調 機等に広く利用されている。
[0003] 例えば、特許文献 1には、 2シリンダ型の圧縮機を有する空調機が開示されている。
この空調機の冷媒回路には、圧縮機、室内熱交換器、膨張弁、及び室外熱交換器 等が設けられている。上記圧縮機は、駆動モータと、該駆動モータに駆動される駆動 軸と、該駆動軸に連結される第 1と第 2の圧縮機構を備えている。なお、 2つの圧縮機 構は、シリンダ内のシリンダ室をピストンが偏心回転する、いわゆるロータリー型の圧 縮機構で構成されている。つまり、各圧縮機構は、シリンダ室に形成される冷媒の圧 縮室の容積が周期的に変化する、容積型の流体機械を構成している。
[0004] この空調機では、運転条件に応じて冷媒の流路が切り換わることで、上記圧縮機に おける圧縮動作が切換可能となっている。具体的に、この空調機の圧縮機では、並 列圧縮動作と、気筒休止動作と、二段圧縮動作とが切換え可能となっている。
[0005] 上記並列圧縮動作では、冷媒が第 1圧縮機構と第 2圧縮機構とに分流し、各圧縮 機構で冷媒がそれぞれ単段圧縮される。また、上記気筒休止動作では、第 1圧縮機 構のみで冷媒が圧縮される一方、第 2圧縮機構では冷媒が圧縮されない。更に、上 記二段圧縮動作では、まず、第 1圧縮機構で冷媒が圧縮され、この冷媒が更に第 2 圧縮機構で圧縮される。つまり、この二段圧縮動作では、第 1圧縮機構を低段側とし 、第 2圧縮機構を高段側として冷媒がニ段圧縮される。
特許文献 1:特開昭 64— 10066号公報
発明の開示
発明が解決しょうとする課題 [0006] ところで、上述のような容積型の流体機械から成る圧縮機構では、圧縮室の容積が 周期的に変化することで、冷媒の圧縮動作が行われる。具体的に、この圧縮動作で は、ピストンの回転に伴い圧縮室の容積が拡大することで冷媒が圧縮室内に吸入さ れ、その後、圧縮室の容積が縮小するに連れて冷媒の圧力が徐々に上昇していく。 そして、この冷媒圧力が最大圧力となると、圧縮室内を閉鎖していた吐出弁が開放さ れ、圧縮室力 冷媒が吐出される。以上のように、圧縮機構では、駆動軸が一回転 する毎に圧縮室の容積が周期的に変化し、このような圧縮室の容積の周期変動に伴 い、圧縮室の冷媒圧力も周期的に変化する。そして、このような圧縮室内の冷媒圧力 の変化に伴い、駆動軸のトルク (圧縮トルク)も変動することになる。
[0007] 一方、上記特許文献 1のような 2シリンダ型の圧縮機では、特に上述の気筒休止動 作時や二段圧縮動作時に駆動軸の圧縮トルクが変動し易い。
[0008] 具体的に、上述の気筒休止動作では、第 2圧縮機構で冷媒が圧縮されず、第 1圧 縮機構のみで冷媒の圧縮動作が行われる。このため、駆動軸の圧縮トルクは、第 1圧 縮機構の圧縮室内の冷媒の圧力のみに影響を受けることとなる。従って、第 1圧縮機 構の圧縮室内の冷媒圧力の変動が大きくなると、駆動軸の圧縮トルクも大きく変動し てしまうことになる。
[0009] また、上述の二段圧縮動作は、低段側の第 1圧縮機構の方が高段側の第 2圧縮機 構よりも冷媒の圧縮比が大きいのが一般的である。このため、駆動軸の圧縮トルクは 、圧縮比が大きい第 1圧縮機構の冷媒の圧縮動作に影響を受け易い。従って、この 二段圧縮動作においても、第 1圧縮機構の圧縮室内の冷媒圧力の変動が大きくなる と、駆動軸の圧縮トルクも変動し易い。
[0010] 以上のように、従来の 2シリンダ型の圧縮機では、気筒休止動作や二段圧縮動作に おいて、圧縮トルクが変動し易い。そして、このように圧縮トルクが大きく変動すると、 圧縮機の振動や騒音の増大を招 、てしまう。
[0011] 本発明は、力かる点に鑑みてなされたものであり、その目的は、複数の圧縮室を有 する圧縮機を備えた冷凍装置において、気筒休止動作や二段圧縮動作時における 駆動軸の圧縮トルクの変動を効果的に抑えるようにすることである。
課題を解決するための手段 [0012] 第 1の発明の冷凍装置は、複数の圧縮室 (61,62,63,64)を有する容積型の流体機 械を構成すると共に、各圧縮室 (61,62,63,64)の容積を周期的に変化させる圧縮機 本体部 (30)、及び該圧縮機本体部 (30)を駆動する駆動軸 (23)を有する圧縮機 (20) と、該圧縮機 (20)が接続されて冷凍サイクルを行う冷媒回路(10)とを備え、上記圧 縮機本体部 (30)は、第 1圧縮室 (61)及び第 2圧縮室 (62)の容積の変動周期の位相 が互いに 180° ずれ、且つ第 3圧縮室 (63)及び第 4圧縮室 (64)の容積の変動周期 の位相が互いに 180° ずれるように構成され、上記圧縮機 (20)は、第 1から第 4まで の圧縮室 (61,62,63,64)内で冷媒をそれぞれ単段圧縮する並列圧縮動作と、第 3圧 縮室 (63)及び第 4圧縮室 (64)内で冷媒をそれぞれ単段圧縮すると同時に第 1圧縮 室 (61)及び第 2圧縮室 (62)内での冷媒の圧縮を休止させる気筒休止動作とを切り 換えて行うことを特徴とするものである。なお、 "圧縮室の容積の変動周期"とは、駆 動軸が一回転してピストン等の公転する際に周期的に変化する圧縮室の容積の変 動周期を示し、換言すると、圧縮室の容積の変動に伴って変化する圧縮室内の冷媒 圧力の変動周期を意味するものである。
[0013] 第 1の発明では、従来の 2シリンダ型の圧縮機と異なり、圧縮機 (20)の圧縮機本体 部(30)に、第 1から第 4までの圧縮室 (61,62,63,64)が形成される。この圧縮機 (20) では、各圧縮室 (61,62,63,64)の容積を周期的に変化させることで、冷媒の圧縮動作 が行われる。また、この冷凍装置では、圧縮機 (20)で以下のような並列圧縮動作及 び気筒休止動作が可能となって 、る。
[0014] 並列圧縮動作では、第 1から第 4までの圧縮室 (61,62,63,64)で冷媒がそれぞれ単 段圧縮される。ここで、圧縮機 (20)では、第 1圧縮室 (61)及び第 2圧縮室 (62)の容 積の変動周期の位相が互いに 180° ずれ、第 3圧縮室 (63)及び第 4圧縮室 (64)の 容積の変動周期の位相も互いに 180° ずれている。つまり、第 1圧縮室 (61)及び第 2圧縮室 (62)では、互いに冷媒圧力の変動周期の位相が 180° ずれ、第 3圧縮室( 63)及び第 4圧縮室 (64)でも、互いに冷媒圧力の変動周期の位相が 180° ずれるこ とになる。このため、駆動軸 (23)がー回転する際には、第 1圧縮室 (61)及び第 2圧縮 室 (62)で冷媒圧力が最大となる位相も 180° ずれることになり、また、第 3圧縮室 (63 )及び第 4圧縮機室 (64)で冷媒圧力が最大となる位相も 180° ずれることになる。そ の結果、この並列圧縮動作時における駆動軸 (23)の圧縮トルクの変動が小さくなる。
[0015] 一方、上記気筒休止動作では、第 1圧縮室 (61)及び第 2圧縮室 (62)内で冷媒の 圧縮動作が行われず、第 3圧縮室 (63)及び第 4圧縮室 (64)で冷媒の圧縮動作が行 われる。ここで、この気筒休止動作においても、第 3圧縮室 (64)及び第 4圧縮室 (64) の容積の変動周期の位相が互いに 180° ずれるため、第 3圧縮室 (63)及び第 4圧 縮室 (64)で冷媒圧力が最大となる位相も 180° ずれることになる。その結果、気筒 休止動作時における駆動軸 (23)の圧縮トルクの変動が効果的に小さくなる。
[0016] 第 2の発明の冷凍装置は、複数の圧縮室 (61,62,63,64)を有する容積型の流体機 械を構成すると共に、各圧縮室 (61,62,63,64)の容積を周期的に変化させる圧縮機 本体部 (30)、及び該圧縮機本体部 (30)を駆動する駆動軸 (23)を有する圧縮機 (20) と、該圧縮機 (20)が接続されて冷凍サイクルを行う冷媒回路(10)とを備え、上記圧 縮機本体部 (30)は、第 1圧縮室 (61)及び第 2圧縮室 (62)の容積の変動周期の位相 が互いに 180° ずれ、且つ第 3圧縮室 (63)及び第 4圧縮室 (64)の容積の変動周期 の位相が互いに 180° ずれるように構成され、上記圧縮機 (20)は、第 1から第 4まで の圧縮室 (61,62,63,64)内で冷媒をそれぞれ単段圧縮する並列圧縮動作と、第 1圧 縮室 (61)及び第 2圧縮室 (62)内でそれぞれ単段圧縮した冷媒を第 3圧縮室 (63)及 び第 4圧縮室 (64)内で更に圧縮する二段圧縮動作とを切り換えて行うことを特徴とす るものである。
[0017] 第 2の発明では、圧縮機 (20)が、上述した並列圧縮動作と、二段圧縮動作とを切り 換えて行う。従って、並列圧縮動作では、第 1の発明と同様にして圧縮トルクの変動 が抑えられる。
[0018] 一方、本発明の二段圧縮動作では、まず冷媒が第 1圧縮室 (61)及び第 2圧縮室 (6 2)でそれぞれ単段圧縮される。第 1圧縮室 (61)及び第 2圧縮室 (62)で圧縮された冷 媒は、第 3圧縮室 (63)及び第 4圧縮室 (64)で更に圧縮される。つまり、本発明の二 段圧縮動作では、第 1圧縮室 (61)及び第 2圧縮室 (62)が低段側となり、第 3圧縮室( 63)及び第 4圧縮室 (64)が高段側となって、冷媒がニ段圧縮される。
[0019] ここで、本発明では、比較的圧縮比が大きく冷媒の圧力が変化し易い第 1圧縮室( 61)及び第 2圧縮室 (62)の容積の変動周期の位相を 180° ずらすようにしている。そ の結果、第 1圧縮室 (61)及び第 2圧縮室 (62)で冷媒圧力が最大となる位相も 180° ずれることになり、二段圧縮動作時の圧縮トルクの変動が効果的に小さくなる。
[0020] 第 3の発明の冷凍装置は、複数の圧縮室 (61,62,63,64)を有する容積型の流体機 械を構成すると共に、各圧縮室 (61,62,63,64)の容積を周期的に変化させる圧縮機 本体部 (30)、及び該圧縮機本体部 (30)を駆動する駆動軸 (23)を有する圧縮機 (20) と、該圧縮機 (20)が接続されて冷凍サイクルを行う冷媒回路(10)とを備え、上記圧 縮機本体部 (30)は、第 1圧縮室 (61)及び第 2圧縮室 (62)の容積の変動周期の位相 が互いに 180° ずれ、且つ第 3圧縮室 (63)及び第 4圧縮室 (64)の容積の変動周期 の位相が互いに 180° ずれるように構成され、上記圧縮機 (20)は、第 1圧縮室 (61) 及び第 2圧縮室 (62)内でそれぞれ単段圧縮した冷媒を第 3圧縮室 (63)及び第 4圧 縮室 (64)内で更に圧縮する二段圧縮動作と、第 3圧縮室 (63)及び第 4圧縮室 (64) 内で冷媒をそれぞれ単段圧縮すると同時に第 1圧縮室 (61)及び第 2圧縮室 (62)内 での冷媒の圧縮を休止させる気筒休止動作とを切り換えて行うことを特徴とするもの である。
[0021] 第 3の発明では、圧縮機 (20)が、上述した二段圧縮動作及び気筒休止動作を切り 換えて行う。従って、二段圧縮動作では、第 2の発明と同様にして圧縮トルクの変動 力 、さくなる。また、並列圧縮動作では、第 1の発明と同様にして圧縮トルクの変動が 小さくなる。
[0022] 第 4の発明の冷凍装置は、複数の圧縮室 (61,62,63,64)を有する容積型の流体機 械を構成すると共に、各圧縮室 (61,62,63,64)の容積を周期的に変化させる圧縮機 本体部 (30)、及び該圧縮機本体部 (30)を駆動する駆動軸 (23)を有する圧縮機 (20) と、該圧縮機 (20)が接続されて冷凍サイクルを行う冷媒回路(10)とを備え、上記圧 縮機本体部 (30)は、第 1圧縮室 (61)及び第 2圧縮室 (62)の容積の変動周期の位相 が互いに 180° ずれ、且つ第 3圧縮室 (63)及び第 4圧縮室 (64)の容積の変動周期 の位相が互いに 180° ずれるように構成され、上記圧縮機 (20)は、第 1から第 4まで の圧縮室 (61,62,63,64)内で冷媒をそれぞれ単段圧縮する並列圧縮動作と、第 3圧 縮室 (63)及び第 4圧縮室 (64)内で冷媒をそれぞれ単段圧縮すると同時に第 1圧縮 室 (61)及び第 2圧縮室 (62)内での冷媒の圧縮を休止させる気筒休止動作と、第 1圧 縮室 (61)及び第 2圧縮室 (62)内でそれぞれ単段圧縮した冷媒を第 3圧縮室 (63)及 び第 4圧縮室 (64)内で更に圧縮する二段圧縮動作とを切り換えて行うことを特徴とす るものである。
[0023] 第 4の発明では、圧縮機 (20)が、上述した並列圧縮動作、気筒休止動作、及び二 段圧縮動作を切り換えて行う。従って、並列圧縮動作及び気筒休止動作では、第 1 の発明と同様にして圧縮トルクの変動が抑えられる。また、二段圧縮動作では、第 2 の発明と同様にして圧縮トルクの変動が抑えられる。
[0024] 第 5の発明は、第 1乃至第 4のいずれか 1の発明において、上記圧縮機 (20)の圧縮 機本体部 (30)は、第 1圧縮機構 (24)及び第 2圧縮機構 (25)を備え、該各圧縮機構( 24,25)は、環状のシリンダ室(54,58)を形成するシリンダ (52,56)と、該シリンダ室(54, 58)内に配置されて該シリンダ室(54,58)を内外に 2つの空間に区画する環状のビス トン (53,57)とをそれぞれ備え、上記駆動軸 (23)の回転に伴 、シリンダ (52,56)及び ピストン (53,57)が相対的に偏心回転運動を行うようにそれぞれ構成されており、上記 第 1圧縮機構 (24)のシリンダ室 (54)内の外側の空間が上記第 1圧縮室 (61)を構成し 、内側の空間が上記第 3圧縮室 (63)を構成する一方、上記第 2圧縮機構 (25)のシリ ンダ室 (58)内の外側の空間が上記第 2圧縮室 (62)を構成し、内側の空間が上記第 4圧縮室 (64)を構成して!/ヽることを特徴とするものである。
[0025] 第 5の発明では、圧縮機 (20)に第 1圧縮機構 (24)と第 2圧縮機構 (25)とが設けら れる。各圧縮機構 (24,25)では、環状のシリンダ室 (54,58)内に、環状のピストン (53,5 7)が配置される。その結果、シリンダ室(54,58)は、ピストン (53,57)の外側の空間と内 側の空間とにそれぞれ仕切られ、これらの空間が圧縮室を構成する。そして、第 1圧 縮機構 (24)では、駆動軸 (23)の回転に伴!、シリンダ (52)とピストン (53)とが相対的 に偏心回転運動を行うと、ピストン (53)の外側に形成される第 1圧縮室 (61)と、ピスト ン (53)の内側に形成される第 3圧縮室 (63)との容積が変化する。一方、第 2圧縮機 構 (25)では、駆動軸 (23)の回転に伴 、シリンダ (56)とピストン (57)とが相対的に偏 心回転運動を行うと、ピストン (57)の外側に形成される第 2圧縮室 (62)と、ピストン (5 7)の内側に形成される第 4圧縮室 (64)との容積が変化する。
[0026] 以上のような 2つの圧縮機構 (24,25)は、第 1圧縮室 (61)及び第 2圧縮室 (62)の容 積の変動周期の位相が互いに 180° ずれると共に、第 3圧縮室 (63)及び第 4圧縮室 (64)の容積の変動周期の位相も互いに 180° ずれるように、駆動軸 (23)に連結され る。従って、この圧縮機 (20)で、上述したような並列圧縮動作、気筒休止動作、及び 二段圧縮動作を行う際、圧縮トルクの変動が小さくなる。
[0027] 第 6の発明は、第 1乃至第 4のいずれか 1の発明において、上記圧縮機 (20)の圧縮 機本体部 (30)が、上記第 1から第 4までの圧縮室 (61,62,63,64)に対応するように、各 圧縮室 (61,62,63,64)をそれぞれ形成する第 1から第 4までのロータリー式圧縮機構( 24,25,26,27)を備えて!/ヽることを特徴とするものである。
[0028] 第 6の発明では、上述した第 5の発明と異なり、圧縮機 (20)に第 1から第 4までの圧 縮機構 (24,25,26,27)が設けられる。これらの各圧縮機構 (24,25,26,27)は、シリンダ 室内にピストンが収納されるロータリー式圧縮機構でそれぞれ構成されており、各圧 縮機構 (24,25,26,27)には、それぞれ第 1から第 4までの圧縮室 (61,62,63,64)が形成 される。
[0029] 以上のような 4つの圧縮機構 (24,25,26,27)は、第 1圧縮室 (61)及び第 2圧縮室 (62 )の容積の変動周期の位相が互いに 180° ずれると共に、第 3圧縮室 (63)及び第 4 圧縮室 (64)の容積の変動周期の位相も互いに 180° ずれるように、駆動軸 (23)に 連結される。従って、この圧縮機 (20)で、上述したような並列圧縮動作、気筒休止動 作、及び二段圧縮動作を行う際、圧縮トルクの変動が小さくなる。
[0030] 第 7の発明は、第 6の発明において、上記第 1圧縮室 (61)の容積の変動周期の位 相が、上記第 3圧縮室 (63)及び上記第 4圧縮室 (64)の 、ずれか一方の容積の変動 周期の位相と 180° ずれていることを特徴とするものである。
[0031] 第 7の発明では、 4つのロータリ式圧縮機構 (24,25,26,27)につ 、て、ピストンの偏 心回転に伴う遠心力を相殺できるように、各圧縮室 (61,62,63,64)の容積の変動周期 の位相が設定される。つまり、本発明では、第 1圧縮室 (61)及び第 3圧縮室 (63)の 容積の変動周期の位相を 180° ずらすと同時に第 2圧縮室 (62)及び第 4圧縮室 (64 )の容積の変動周期の位相を 180° ずらすか、あるいは第 1圧縮室 (61)及び第 4圧 縮室 (64)の容積の変動周期の位相を 180° ずらすと同時に第 2圧縮室 (62)及び第 3圧縮室 (63)の容積の変動周期の位相を 180° ずらすようにしている。その結果、こ の圧縮機 (20)では、 4つの圧縮機構(24,25,26,27)のうちの 2つのピストンが駆動軸( 23)を中心として 180° ずれた関係となり、残り 2つのピストンも駆動軸 (23)を中心とし て 180° ずれた関係となる。従って、この圧縮機 (20)では、対となって偏心回転する ピストン同士の遠心力が互いに相殺されるので、駆動軸 (23)のトルク変動が小さくな る。
発明の効果
[0032] 本発明では、圧縮機 (20)の圧縮機本体部 (30)に 4つの圧縮室 (61,62,63,64)を設 けるようにし、第 1圧縮室 (61)及び第 2圧縮室 (62)の容積の変動周期の位相を互!、 に 180° ずらすと共に、第 3圧縮室 (63)及び第 4圧縮室 (64)の容積の変動周期の 位相も互いに 180° ずらすようにしている。このため、上述の気筒休止動作では、第 3圧縮室 (63)及び第 4圧縮室 (63)内の冷媒の圧力変動の周期が 180° ずれるため 、気筒休止動作時の圧縮トルクの変動が小さくなる。従って、気筒休止動作時におけ る圧縮機 (20)の低振動化、低騒音化を図ることができる。
[0033] また、上記二段圧縮動作においても、比較的圧縮比の大きい第 1圧縮室 (61)及び 第 2圧縮室 (62)内の冷媒の圧力変動の周期が 180° ずれるため、二段圧縮動作時 の圧縮トルクを効果的に低減することができる。更に、上記並列圧縮動作においても 、第 1圧縮室 (61)及び第 3圧縮室 (63)内の冷媒の圧力変動の周期が 180° ずれ、 且つ第 3圧縮室 (63)及び第 4圧縮室 (64)内の冷媒の圧力変動の周期も 180° ずれ ることになる。従って、この並列圧縮動作時の圧縮トルクを低減することができる。
[0034] また、第 5の発明によれば、 2つの圧縮機構 (24,25)内に 2つの圧縮室をそれぞれ 形成するタイプの圧縮機 (20)について、上述したような各圧縮動作における圧縮トル クを低減することがでさる。
[0035] また、第 5の発明では、シリンダ室(54,58)内におけるピストン(53,57)の外側の空間 を第 1圧縮室 (61)及び第 2圧縮室 (62)としている。ここで、ピストン (53,57)の外側の 空間は、ピストン (53,57)の内側の空間と比較すると、曲率半径が大きい分だけ容積 が大きくなる。従って、二段圧縮動作時に低段側となる第 1圧縮室 (61)及び第 2圧縮 室 (62)の押しのけ容積を大きくすることができ、冷媒を効果的に二段圧縮することが できる。 [0036] また、第 6の発明によれば、 4つの圧縮機構 (24,25,26,27)内に 1つの圧縮室をそれ ぞれ形成するタイプの圧縮機 (20)について、上述したような各圧縮動作における圧 縮トルクを低減することができる。
[0037] 特に、第 7の発明によれば、 4つの圧縮機構 (24,25,26,27)における 2個ずつのビス トンの遠心力を互いに相殺することで、駆動軸 (23)のメカ的なトルク変動を低減する ことができる。従って、本発明によれば、圧縮機 (20)の振動や騒音を一層効果的に 低減することができる。
図面の簡単な説明
[0038] [図 1]図 1は、実施形態 1に係る空調機の冷媒回路の配管系統図である。
[図 2]図 2は、圧縮機の縦断面図である。
[図 3]図 3は、第 1圧縮機構 (第 2圧縮機構)の横断面図である。
[図 4]図 4は、暖房運転時の並列圧縮動作を説明する配管系統図である。
[図 5]図 5は、暖房運転時の気筒休止動作を説明する配管系統図である。
[図 6]図 6は、暖房運転時の二段圧縮動作を説明する配管系統図である。
[図 7]図 7は、冷房運転時の並列圧縮動作を説明する配管系統図である。
[図 8]図 8は、圧縮トルクと、駆動軸の回転角度との関係を示すグラフである。
[図 9]図 9は、実施形態 2に係る空調機の冷媒回路の配管系統図である。
[図 10]図 10は、第 1圧縮機構の横断面図である。
[図 11]図 11は、暖房運転時の並列圧縮動作を説明する配管系統図である。
[図 12]図 12は、暖房運転時の二段圧縮動作を説明する配管系統図である。
[図 13]図 13は、暖房運転時の二段圧縮動作を説明する配管系統図である。
符号の説明
[0039] 1 空調機
10 冷媒回路
20 圧縮機
23 駆動軸
24 第 1圧縮機構
25 第 2圧縮機構 26 第 3圧縮機構
27 第 4圧縮機構
30 圧縮機本体部
52 第 1シリンダ
53 第 1ピストン
54 第 1シリンダ室
56 第 2シリンダ
57 第 2ピストン
58 第 2シリンダ室
61 第 1圧縮室
62 第 2圧縮室
63 第 3圧縮室
64 第 4圧縮室
発明を実施するための最良の形態
[0040] 以下、本発明の実施形態を図面に基づいて詳細に説明する。
[0041] 《実施形態 1》
本発明の実施形態に係る冷凍装置は、室内の暖房と冷房とを切り換えて行う空調 機(1)を構成している。この空調機(1)は、冷媒が循環して冷凍サイクルを行う冷媒回 路(10)を備えており、 V、わゆるヒートポンプ式の空調機を構成して 、る。
[0042] 図 1に示すように、冷媒回路(10)には、主な構成機器として、圧縮機 (20)、室内熱 交換器 (11)、膨張弁 (12)、及び室外熱交換器 (13)が設けられて 、る。
[0043] 上記室内熱交翻(11)は、室内機に設けられている。この室内熱交翻(11)は、 室内ファンが送風する室内空気と冷媒とを熱交換させる。上記室外熱交換器(13)は 、室外機に設けられている。この室外熱交換器 (13)は、室外ファンが送風する室外 空気と冷媒とを熱交換させる。上記膨張弁(12)は、冷媒回路(10)における室内熱交 翻(11)と室外熱交翻(13)の間に設けられている。この膨張弁 (12)は、その開度 が調節可能な電子膨張弁で構成されて 、る。
[0044] 冷媒回路(10)には、四路切換弁(14)、内部熱交換器 (15)、減圧弁(16)、及び受 液器(17)も設けられている。
[0045] 上記四路切換弁(14)は、第 1から第 4までのポートを備えている。四路切換弁(14) は、その第 1ポートが圧縮機 (20)の吐出側と接続し、その第 2ポートが室内熱交換器 (11)と接続し、その第 3ポートが上記受液器 (17)を介して圧縮機 (20)の吸入側と接 続し、その第 4ポートが室外熱交翻(13)と接続している。この四路切換弁(14)は、 第 1ポートと第 2ポートが連通すると同時に第 3ポートと第 4ポートが連通する状態と、 第 1ポートと第 4ポートが連通すると同時に第 2ポートと第 3ポートが連通する状態とに 切り換え可能となっている。
[0046] 上記内部熱交翻 (15)は、第 1熱交換用流路(15a)と第 2熱交換用流路(15b)とを 有する二重管熱交換器を構成している。第 1熱交換用流路 (15a)は、室内熱交換器 ( 11)と膨張弁(12)の間の冷媒配管に跨るように配置されている。第 2熱交換用流路(1 5b)は、内部熱交 (15)と膨張弁(12)の間から分岐する中間インジ クシヨン配管 (18)に跨るように配置されている。中間インジェクション配管(18)には、内部熱交換 器 (15)の上流側に上記減圧弁(16)が設けられている。そして、内部熱交 (15) では、第 1熱交換用流路(15a)を流れる高圧液冷媒と、第 2熱交換用流路(15b)を流 れる中間圧冷媒とが熱交換可能となって!/、る。
[0047] 冷媒回路(10)には、第 1から第 4までのバイパス管(36,37,38,39)と、 3つのポートを 有する三方弁 (41)が設けられて 、る。
[0048] 上記第 1バイパス管 (36)は、一端が圧縮機 (20)の第 1吸入管 (32a)及び第 2吸入 管 (32b)と接続し、他端が三方弁 (41)の第 1ポートと接続している。上記第 2バイパス 管 (37)は、一端が三方弁 (41)の第 2ポートと接続し、他端が圧縮機 (20)の第 1吸入 連絡管 (34a)及び第 2吸入連絡管 (34b)と接続している。また、三方弁 (41)の第 3ポ ートには、上述した中間インジェクション配管(18)の流出端が接続している。この三 方弁 (41)は、第 1ポートと第 2ポートを連通させると同時に第 3ポートを閉鎖する状態 と、第 2ポートと第 3ポートを連通させると同時に第 1ポートを閉鎖する状態とに切り換 え可能となっている。
[0049] 上記第 3バイパス管 (38)は、一端が圧縮機 (20)の第 1吐出連絡管 (33a)及び第 2 吐出連絡管 (33b)と接続し、他端が圧縮機 (20)の第 1吸入連絡管 (34a)及び第 2吸 入連絡管 (34b)と接続している。また、第 3バイパス管 (38)には、冷媒の流路を開閉 するための電磁開閉弁 (42)が設けられている。
[0050] 上記第 4バイパス管 (39)は、一端が圧縮機 (20)の第 1吐出連絡管 (33a)及び第 2 吐出連絡管 (33b)と接続し、他端が圧縮機 (20)の分岐連絡管 (35)と接続して!/ヽる。 また、第 4バイパス管 (39)には、分岐連絡管 (35)側から吐出連絡管 (33a,33b)側へ の冷媒の流れを禁止し、その逆の流れを許容する逆止弁 (43)が設けられている。
[0051] 図 2に示すように、圧縮機 (20)は、密閉型のケーシング (21)内に、電動機 (22)、駆 動軸 (23)、及び 2つの圧縮機構 (24,25)を有する圧縮機本体部 (30)が収納されて 、 る。この圧縮機 (20)は、ケーシング (21)内が高圧の冷媒で満たされる、いわゆる高圧 ドーム式の圧縮機で構成されて 、る。
[0052] 上記電動機(22)は、ケーシング (21)の上部に配置されている。この電動機(22)の 内部には、上記駆動軸 (23)が上下に貫通している。駆動軸 (23)は、電動機 (22)に 駆動されて回転可能となっている。また、駆動軸 (23)には、その下部寄りに位置する 第 1偏心部 (23a)と、その中央部寄りに位置する第 2偏心部 (23b)とが形成されて!、る 。第 1偏心部 (23a)と第 2偏心部 (23b)とは、それぞれ駆動軸 (23)の軸心から偏心し ている。また、第 1偏心部 (23a)と第 2偏心部 (23b)とは、駆動軸 (23)の軸心を中心と して互いに 180° 位相がずれている。
[0053] 圧縮機本体部(30)は、駆動軸 (23)の下側に設けられて 、る。この圧縮機本体部(3 0)は、ケーシング (21)の底部側寄りの第 1圧縮機構 (24)と、電動機 (22)側寄りの第 2 圧縮機構 (25)とを備えている。なお、上記駆動軸 (23)の回転速度は、インバータ制 御によって可変となっている。つまり、両圧縮機構 (24,25)は、容量が可変なインバー タ式の圧縮機構を構成して!/ヽる。
[0054] 第 1圧縮機構 (24)は、ケーシング (21)に固定される第 1ハウジング (51)と、この第 1 ノ、ウジング (51)内に収納される第 1シリンダ (52)とを備えている。第 1ハウジング (51) の内側には、上方に突出する環状の第 1ピストン (53)が設けられている。
[0055] 第 1シリンダ (52)は、円盤状の鏡板部(52a)と、該鏡板部(52a)の内周端部から下 方に突出する環状の内側シリンダ部(52b)と、該鏡板部(52a)の外周端部から下方に 突出する環状の外側シリンダ部(52c)とを備えている。第 1シリンダ (52)の内側シリン ダ部(52b)には、上記第 1偏心部(23a)が嵌合している。そして、第 1シリンダ (52)は、 駆動軸 (23)の回転に伴い第 1偏心部(23a)の軸心を中心として偏心回転するように 構成されている。
[0056] また、第 1シリンダ (52)には、その内側シリンダ部(52b)の外周面と外側シリンダ部( 52c)の内周面との間に環状の第 1シリンダ室 (54)が形成されている。そして、第 1シリ ンダ室 (54)内には、上記第 1ピストン (53)が配置されている。その結果、第 1シリンダ 室 (54)は、第 1ピストン (53)の外周面と第 1シリンダ室 (54)の外側の内壁との間に形 成される第 1圧縮室 (61)と、第 1ピストン (53)の内周面と第 1シリンダ室 (54)の内側の 内壁との間に形成される第 3圧縮室 (63)とに区画される。また、第 1シリンダ (52)の外 側シリンダ部(52c)には、第 1シリンダ (52)の外側の空間と、上記第 1圧縮室 (61)とを 連通させる第 1連通路 (59)が形成されている。
[0057] 図 3に示すように、第 1シリンダ (52)には、外側シリンダ部(52c)の内周面から内側 シリンダ部(52b)の外周面に亘つてブレード(45)が延在して!/、る。このブレード (45) は、上記第 1圧縮室 (61)及び第 3圧縮室 (63)を吸入側となる低圧室と吐出側となる 高圧室とに区画している。一方、上記第 1ピストン (53)は、環状の一部が分断された C型形状をしており、この分断箇所に上記ブレード (45)が挿通されている。また、ビス トン (53)の分断箇所には、ブレード (45)を挟むように半円形状のブッシュ (46,46)が 嵌合して!/、る。このブッシュ (46,46)はピストン (53)の端部で揺動自在に構成されて いる。以上の構成により、シリンダ (52)は、ブレード (45)の延在方向に進退可能となり 、また、ブッシュ (46,46)とともに揺動可能となる。駆動軸 (23)が回転すると、シリンダ( 52)は、図 3の (A)力 (D)の順に偏心回転し、第 1圧縮室 (61)及び第 3圧縮室 (63) で冷媒が圧縮される。この際、第 1圧縮室 (61)と第 3圧縮室 (63)とは、駆動軸 (23)の 軸心を中心として互 、に 180° 位相が異なるように変位する。
[0058] 第 2圧縮機構 (25)は、上記第 1圧縮機構 (24)と上下反転するようにして該第 1圧縮 機構 (24)と同じ機械要素によって構成されている。具体的に、第 2圧縮機構 (25)は、 ケーシング (21)に固定される第 2ハウジング (55)と、この第 2ハウジング (55)内に収 納される第 2シリンダ (56)とを備えている。第 2ハウジング (55)の内側には、下方に突 出する環状の第 2ピストン (57)が設けられている。第 2シリンダ (56)は、円盤状の鏡板 部(56a)と、該鏡板部(56a)の内周端部力 上方に突出する環状の内側シリンダ部(5 6b)と、該鏡板部(56a)の外周端部から上方に突出する環状の外側シリンダ部(56c) とを備えている。そして、第 2シリンダ (56)は、駆動軸 (23)の回転に伴い第 2偏心部( 23b)の軸心を中心として偏心回転するように構成されて 、る。
[0059] また、第 2シリンダ (56)には、その内側シリンダ部(56b)の外周面と外側シリンダ部( 56c)の内周面との間に環状の第 2シリンダ室 (58)が形成されている。そして、第 2シリ ンダ室 (58)内には、上記第 2ピストン (57)が配置されている。その結果、第 2シリンダ 室 (58)は、第 2ピストン (57)の外周面と第 2シリンダ室 (58)の外側の内壁との間に形 成される第 2圧縮室 (62)と、第 2ピストン (57)の内周面と第 2シリンダ室 (58)の内側の 内壁との間に形成される第 4圧縮室 (64)とに区画される。また、第 2シリンダ (56)の外 側シリンダ部(56c)には、第 2シリンダ (56)の外側の空間と、上記第 3圧縮室 (63)とを 連通させる第 2連通路 (60)が形成されて!ヽる。
[0060] 第 2圧縮機構 (25)は、駆動軸 (23)が回転すると、第 1圧縮機構 (24)と同じく図 3に 示すようにして、第 2シリンダ (56)が偏心回転する。その結果、第 2圧縮室 (62)及び 第 4圧縮室 (64)で冷媒が圧縮される。なお、第 2圧縮室 (62)と第 4圧縮室 (64)とは、 駆動軸(23)の軸心を中心として互 、に 180° 位相が異なるように変位する。
[0061] 上記第 1圧縮機構 (24)には、上述の第 1吸入管 (32a)、第 1吐出連絡管 (33a)、及 び第 1吸入連絡管 (34a)が接続されている。第 1吸入管 (32a)は、上記第 1連通路 (59 )を介して第 1圧縮室 (61)の吸入側と繋がっている。第 1吐出連絡管 (33a)は、第 1圧 縮室 (61)の吐出側と繋がっている。また、第 1吐出連絡管 (33a)には、第 1吐出弁 (65 )が設けられている。この第 1吐出弁 (65)は、第 1圧縮室 (61)の吐出側の冷媒圧力と 第 1吐出連絡管 (33a)側の圧力との差圧が所定圧力以上になると開放するように構 成されている。また、第 1圧縮機構 (24)には、第 3圧縮室 (63)の吐出側とケーシング( 21)の内部空間とを連通させる吐出ポート(66)が設けられて 、る。この吐出ポート(66 )には、第 2吐出弁 (67)が設けられている。この第 2吐出弁 (67)は、第 3圧縮室 (63) の吐出側の冷媒圧力とケーシング (21)の内部圧力との差圧が所定圧力以上になる と開放するように構成されている。
[0062] 上記第 2圧縮機構 (25)には、上述の第 2吸入管 (32b)、第 2吐出連絡管 (33b)、及 び第 2吸入連絡管 (34b)が接続されている。第 2吸入管 (32b)は、上記第 2連通路 (6 0)を介して第 2圧縮室 (62)の吸入側と繋がっている。第 2吐出連絡管 (33b)は、第 2 圧縮室 (62)の吐出側と繋がっている。また、第 2吐出連絡管 (33b)には、第 3吐出弁
(68)が設けられている。この第 3吐出弁 (68)は、第 2圧縮室 (62)の吐出側の冷媒圧 力と第 2吐出連絡管 (33b)側の圧力との差圧が所定圧力以上になると開放するように 構成されている。また、第 2圧縮機構 (25)には、第 4圧縮室 (64)の吐出側とケーシン グ (21)の内部空間とを連通させる吐出ポート(69)が設けられている。この吐出ポート
(69)には、第 4吐出弁 (70)が設けられている。この第 4吐出弁 (70)は、第 4圧縮室 (6 4)の吐出側の冷媒圧力とケーシング (21)の内部圧力との差圧が所定圧力以上にな ると開放するように構成されて 、る。
[0063] 圧縮機 (20)のケーシング (21)には、その頂部に吐出管 (31)が接続されており、そ の胴部に分岐連絡管 (35)が接続している。吐出管 (31)及び分岐連絡管 (35)は、そ の一端がケーシング (21)の内部空間にそれぞれ臨んで 、る。
[0064] 以上のような構成の圧縮機 (20)では、駆動軸 (23)の回転に伴い、各圧縮機構 (24, 25)の各シリンダ (52,56)が各ピストン (53,57)に対して相対的に偏心回転運動を行う 。その結果、第 1圧縮機構 (24)の各圧縮室 (61,63)の容積が周期的に変化すると同 時に第 2圧縮機構 (25)の各圧縮室 (62,64)の容積も周期的に変化する。
[0065] 第 1圧縮機構 (24)では、駆動軸 (23)がー回転する際に、第 1圧縮室 (61)力も冷媒 が吐出する回転角度と、第 3圧縮室 (63)力 冷媒が吐出する回転角度とが 180° 異 なる。つまり、第 1圧縮機構 (24)では、第 1圧縮室 (61)の容積の変動周期と、第 3圧 縮室(63)の容積の変動周期との位相が 180° ずれている。
[0066] 第 2圧縮機構 (25)では、駆動軸 (23)がー回転する際に、第 2圧縮室 (62)から冷媒 が吐出する回転角度と、第 4圧縮室 (64)力 冷媒が吐出する回転角度とが 180° 異 なる。つまり、第 2圧縮機構 (25)では、第 2圧縮室 (62)の容積の変動周期と、第 4圧 縮室(64)の容積の変動周期との位相が 180° ずれている。
[0067] 更に本実施形態の圧縮機 (20)では、第 1圧縮室 (61)及び第 2圧縮室 (62)の容積 の変動周期の位相が互いに 180° ずれており、また、第 3圧縮室 (63)及び第 4圧縮 室(64)の容積の変動周期の位相も互いに 180° ずれて!/、る。 [0068] 運転動作
次に、実施形態 1に係る空調機(1)の運転動作について説明する。この空調機(1) では、以下に述べる暖房運転や冷房運転等が切り換え可能となって 、る。
[0069] (暖房運転)
空調機(1)の暖房運転では、四路切換弁(14)が図 4〜図 6に示す状態に設定され ると共に、膨張弁(12)の開度が適宜調節される。また、この暖房運転では、三方弁 (4 1)及び電磁開閉弁 (42)の設定が切り換わることで、圧縮機 (20)による並列圧縮動作 と、気筒休止動作と、二段圧縮動作とが切り換え可能となっている。
[0070] 《並列圧縮動作》
暖房運転において、室内の暖房負荷が比較的高ぐ暖房能力が不足している場合 には、圧縮機 (20)が並列圧縮動作を行う。この並列圧縮動作では、三方弁 (41)が図 4に示す状態となり、第 3バイパス管 (38)の電磁開閉弁 (42)が閉の状態となる。また、 並列圧縮動作では、減圧弁 (16)の開度が閉の状態となる。
[0071] 図 4に示すように、圧縮機 (20)の吐出管 (31)から吐出された冷媒は、四路切換弁( 14)を経由して室内熱交換器(11)を流れる。室内熱交換器(11)では、冷媒が室内空 気へ放熱して凝縮する。その結果、室内の暖房が行われる。
[0072] 室内熱交換器 (11)で凝縮した冷媒は、内部熱交換器 (15)の第 1熱交換用流路(1 5a)をそのまま流れ、膨張弁(12)で低圧まで減圧された後、室外熱交換器 (13)を流 れる。室外熱交換器 (13)では、冷媒が室外空気から吸熱して蒸発する。室外熱交換 器 (13)で蒸発した冷媒は、受液器 (17)を経由して圧縮機 (20)の吸入側へ送られる。
[0073] 圧縮機 (20)の吸入側へ流れた冷媒は、第 1吸入管 (32a)、第 2吸入管 (32b)、及び 第 1バイパス管 (36)へ分流する。第 1吸入管 (32a)を流れる冷媒は、第 1圧縮機構 (2 4)の第 1圧縮室 (61)内で圧縮された後、第 1吐出連絡管 (33a)から第 1圧縮室 (61) の外部へ吐出される。この冷媒は、第 4バイパス管(39)を経由してケーシング (21)の 内部空間へ送られる。第 2吸入管 (32b)を流れる冷媒は、第 2圧縮機構 (25)の第 2圧 縮室 (62)内で圧縮された後、第 2吐出連絡管 (33b)から第 2圧縮室 (62)の外部へ吐 出される。この冷媒は、第 4バイパス管(39)を経由してケーシング (21)の内部空間へ 送られる。また、第 1バイパス管 (36)を流れる冷媒は、第 2バイパス管 (37)を経由して 第 1吸入連絡管 (34a)と第 2吸入連絡管 (34b)とに分流する。第 1吸入連絡管 (34a)を 流れる冷媒は、第 3圧縮室 (63)内で圧縮された後、吐出ポート (66)からケーシング( 21)の内部空間へ吐出される。第 2吸入連絡管 (34b)を流れる冷媒は、第 4圧縮室 (6 4)内で圧縮された後、吐出ポート(69)からケーシング (21)の内部空間へ吐出される
[0074] 以上のように、この並列圧縮動作では、第 1から第 4までの圧縮室(61,62,63,64)で 低圧の冷媒がそれぞれ単段圧縮されて高圧冷媒となる。この高圧冷媒は、上記吐出 管(31)より再びケーシング (21)の外部へ吐出される。
[0075] 《気筒休止動作》
暖房運転において、外気温度が比較的高ぐ室内の暖房負荷も小さい場合には、 圧縮機 (20)が気筒休止動作を行う。この気筒休止動作では、三方弁 (41)が図 5に示 す状態となり、第 3バイパス管 (38)の電磁開閉弁 (42)が開の状態となる。また、この 気筒休止動作では、減圧弁(16)が閉の状態となる。
[0076] 図 5に示すように、圧縮機 (20)の吐出管 (31)から吐出された冷媒は、四路切換弁( 14)を経由して室内熱交換器(11)を流れる。室内熱交換器(11)では、冷媒が室内空 気へ放熱して凝縮する。その結果、室内の暖房が行われる。
[0077] 室内熱交換器 (11)で凝縮した冷媒は、内部熱交換器 (15)の第 1熱交換用流路(1 5a)をそのまま流れ、膨張弁(12)で低圧まで減圧された後、室外熱交換器 (13)を流 れる。室外熱交換器 (13)では、冷媒が室外空気から吸熱して蒸発する。室外熱交換 器 (13)で蒸発した冷媒は、受液器 (17)を経由して圧縮機 (20)の吸入側へ送られる。
[0078] 圧縮機 (20)の吸入側へ流れた冷媒は、第 1吸入管 (32a)、第 2吸入管 (32b)、及び 第 1バイパス管 (36)へ分流する。第 1吸入管 (32a)を流れる冷媒は、第 1圧縮機構 (2 4)の第 1圧縮室 (61)内に吸入される一方、第 2吸入管 (32b)を流れる冷媒は、第 2圧 縮機構 (25)の第 2圧縮室 (62)内に吸入される。ここで、この気筒休止動作では、第 1 圧縮室 (61)の吸入側と吐出側とが、第 1バイパス管 (36)、第 2バイパス管 (37)、第 3 バイパス管 (38)、及び第 1吐出連絡管 (33a)を介して連通する。また、第 2圧縮室 (62 )の吸入側と吐出側とは、第 1バイパス管 (36)、第 2バイパス管 (37)、第 3バイパス管( 38)、及び第 2吐出連絡管 (33b)を介して連通する。つまり、気筒休止動作では、第 1 圧縮室 (61)の吸入側の圧力と吐出側の圧力とが均圧し、第 2圧縮室 (62)の吸入側 の圧力と吐出側の圧力も均圧する。このため、第 1圧縮室 (61)では、吐出側の圧力 が小さいため、第 1吐出弁 (65)が常時開放状態となり、第 2圧縮室 (62)では、吐出側 の圧力が小さいため、第 3吐出弁 (68)が常時開放状態となる。従って、第 1圧縮室 (6 1)では、冷媒が圧縮されないまま開放状態の第 1吐出弁 (65)を通過して第 1吐出連 絡管 (33a)へ流出する。また、第 2圧縮室 (62)では、冷媒が圧縮されないまま開放状 態の第 3吐出弁 (68)を通過して第 2吐出連絡管 (33b)へ流出する。即ち、気筒休止 動作時の第 1圧縮室 (61)及び第 2圧縮室 (62)内では、冷媒の圧縮仕事がなされず 、冷媒は、各圧縮室 (61,63)をそのままの状態で通過することになる。
[0079] 第 1吐出連絡管 (33a)及び第 2吐出連絡管 (33b)を流出した冷媒は、第 3バイパス 管 (38)を流れた後に第 1吸入連絡管 (34a)及び第 2吸入連絡管 (34b)に分流する。 第 1吸入連絡管 (34a)を流れる冷媒は、第 3圧縮室 (63)内で圧縮された後、吐出ポ ート(66)からケーシング (21)の内部空間へ吐出される。第 2吸入連絡管(34b)を流れ る冷媒は、第 4圧縮室 (64)内で圧縮された後、吐出ポート (69)からケーシング (21) の内部空間へ吐出される。
[0080] 以上のように、この気筒休止動作では、第 1圧縮室 (61)及び第 2圧縮室 (62)での 冷媒の圧縮動作が休止されると同時に、第 3圧縮室 (63)及び第 4圧縮室 (64)で低圧 の冷媒がそれぞれ単段圧縮されて高圧冷媒となる。この高圧冷媒は、上記吐出管 (3 1)より再びケーシング (21)の外部へ吐出される。
[0081] 《二段圧縮動作》
暖房運転において、外気温度が極めて低いような場合には、圧縮機 (20)が二段圧 縮動作を行う。この二段圧縮動作では、三方弁 (41)が図 6に示す状態となり、第 3バ ィパス管 (38)の電磁開閉弁 (42)が開の状態となる。また、二段圧縮動作では、減圧 弁(16)の開度が適宜調節される。
[0082] 図 6に示すように、圧縮機 (20)の吐出管 (31)から吐出された冷媒は、四路切換弁( 14)を経由して室内熱交換器(11)を流れる。室内熱交換器(11)では、冷媒が室内空 気へ放熱して凝縮する。その結果、室内の暖房が行われる。
[0083] 室内熱交換器 (11)で凝縮した冷媒は、内部熱交換器 (15)の第 1熱交換用流路(1 5a)を流れる。一方、内部熱交換器(15)では、中間インジェクション配管(18)へ分流 して減圧弁(16)で中間圧まで減圧された冷媒が、第 2熱交換用流路(15b)を流れる 状態となっている。つまり、内部熱交 (15)では、高圧の冷媒が第 1熱交換用流 路(15a)を流通しており、中間圧の冷媒が第 2熱交換用流路(15b)を流通して 、る。 従って、内部熱交翻 (15)では、第 1熱交換用流路(15a)側の冷媒の熱が、第 2熱 交換用流路(15b)側の冷媒に付与され、この第 2熱交換用流路(15b)側の冷媒が蒸 発する。
[0084] 一方、中間インジェクション配管(18)側へ分流しない残りの冷媒は、膨張弁(12)で 低圧まで減圧された後、室外熱交換器 (13)を流れる。室外熱交換器 (13)では、冷媒 が室外空気力も吸熱して蒸発する。室外熱交 (13)で蒸発した冷媒は、受液器( 17)を経由して圧縮機 (20)の吸入側へ送られる。
[0085] 圧縮機 (20)の吸入側へ送られた冷媒は、第 1吸入管 (32a)及び第 2吸入管 (32b) へ分流する。第 1吸入管 (32a)を流れる冷媒は、第 1圧縮機構 (24)の第 1圧縮室 (61 )内で圧縮された後、第 1吐出連絡管 (33a)から第 1圧縮室 (61)の外部へ吐出される 。第 2吸入管 (32b)を流れる冷媒は、第 2圧縮機構 (25)の第 2圧縮室 (62)内で圧縮さ れた後、第 2吐出連絡管 (33b)から第 2圧縮室 (62)の外部へ吐出される。各吐出連 絡管 (33a,33b)から吐出された冷媒は、第 3バイパス管 (38)で合流する。
[0086] 一方、上述のように、中間インジェクション配管(18)には、内部熱交換器(15)で蒸 発した冷媒が流れている。従って、この冷媒は、三方弁 (41)及び第 2バイパス管 (37) を流れた後、第 3バイパス管 (38)を流れる冷媒と合流する。以上のように、この二段 圧縮動作では、第 1圧縮室 (61)及び第 2圧縮室 (62)で圧縮した後の冷媒に、中間ィ ンジヱクシヨン配管(18)を介して中間圧冷媒を混合させることで、第 1圧縮機構 (24) の吐出冷媒温度を低下させるようにして!/ヽる。
[0087] 合流後の冷媒は、第 1吸入連絡管 (34a)と第 2吸入連絡管 (34b)とに分流する。第 1 吸入連絡管 (34a)を流れる冷媒は、第 3圧縮室 (63)内で更に圧縮された後、吐出ポ ート(66)からケーシング (21)の内部空間へ吐出される。第 2吸入連絡管(34b)を流れ る冷媒は、第 4圧縮室 (64)内で更に圧縮された後、吐出ポート (69)からケーシング( 21)の内部空間へ吐出される。 [0088] 以上のように、この二段圧縮動作では、第 1圧縮室 (61)及び第 2圧縮室 (62)で中 間圧まで圧縮された冷媒が、第 3圧縮室 (63)及び第 4圧縮室 (64)で更に圧縮された 高圧冷媒となる。この高圧冷媒は、上記吐出管 (31)より再びケーシング (21)の外部 へ吐出される。
[0089] (冷房運転)
空調機(1)の冷房運転では、四路切換弁(14)が図 7に示す状態に設定されると共 に、膨張弁(12)の開度が適宜調節される。また、この冷房運転では、三方弁 (41)及 び電磁開閉弁 (42)の設定が切り換わることで、上述したような並列圧縮動作と気筒 休止動作とが切り換え可能となっている。ここでは、冷房運転における並列圧縮動作 についてのみ説明する。
[0090] 圧縮機 (20)の吐出管 (31)力 吐出された高圧冷媒は、四路切換弁(14)を経由し て室外熱交換器 (13)を流れる。室外熱交換器 (13)では、冷媒が室外空気へ放熱し て凝縮する。室外熱交換器 (13)で凝縮した冷媒は、膨張弁 (12)で減圧された後、室 内熱交換器(11)を流れる。室内熱交換器(11)では、冷媒が室内空気から吸熱して 蒸発する。その結果、室内の冷房が行われる。室内熱交換器(11)で蒸発した冷媒は 、受液器( 17)を経由して圧縮機 (20)の吸入側へ送られる。
[0091] 圧縮機 (20)では、上述と同様に並列圧縮動作が行われる。つまり、圧縮機 (20)に 吸入された冷媒は、各圧縮室 (61,62,63,64)でそれぞれ単段圧縮される。各圧縮室( 61,62,63,64)で圧縮された冷媒は、ケーシング (21)の内部空間から吐出管(31)から 再び吐出される。
[0092] 〈圧縮トルクの評価〉
ところで、従来の 2シリンダ型の圧縮機では、上述のような並列圧縮動作、気筒休止 動作、及び二段圧縮動作を行うと、各圧縮室における冷媒の圧縮動作に起因して駆 動軸の圧縮トルクが変動し易くなる。具体的に、従来の 2シリンダ型の圧縮機で一方 の圧縮室での冷媒の圧縮動作を休止して気筒休止動作を行う場合、駆動軸が一回 転する際に、他方の圧縮室の冷媒の圧力が大きく変動するため、圧縮トルクの変動 も顕著となり易い (例えば 7の破線参照)。また、このような 2シリンダ型の圧縮機で二 段圧縮動作を行う場合にも、比較的圧縮比の高い低段側圧縮室では、冷媒の圧力 が変動し易ぐ圧縮トルクの増大を招き易い。従って、従来の 2シリンダ型の圧縮機で は、気筒休止動作や二段圧縮動作において、圧縮トルクの変動に伴い振動や騒音 が大きくなつてしまうという問題が生じる。また、このような二段圧縮動作や気筒休止 動作は、駆動軸の回転速度を低速として行う場合が多いが、このように圧縮機を低速 運転する場合、一般的には振動や騒音が大きくなり易いことが知られている。従って 、駆動軸の回転速度が低速となり易い二段圧縮動作や気筒休止動作では、特に圧 縮トルクの変動を抑える必要がある。このため、本実施形態の圧縮機 (20)では、二段 圧縮動作や気筒休止動作における圧縮トルクの変動を低減させるために、互いに容 積の変動周期の位相が異なる一対の圧縮室を 2組設けるようにしている。
[0093] 具体的に、本実施形態の圧縮機 (20)では、気筒休止動作において、互いに容積 の変動周期の位相が 180° ずれて 、る第 3圧縮室 (63)及び第 4圧縮室 (64)で冷媒 を圧縮するようにしている。このため、本実施形態の圧縮機 (20)では、第 3圧縮室 (63 )内で冷媒圧力が最大となる位相と、第 4圧縮室 (64)で冷媒圧力が最大となる位相と 力 S180° ずれることとになる。その結果、図 8の実線で示すように、駆動軸 (23)がー 回転する際の圧縮トルクの変動幅が平滑化される。従って、気筒休止動作時の圧縮 トルクは、 2シリンダ型の圧縮機と比較して小さくなる。
[0094] また、本実施形態の圧縮機 (20)の二段圧縮動作においても、低段側となる第 1圧 縮室 (61)及び第 2圧縮室 (62)の容積の変動周期の位相が互い 180° ずれるため、 第 1圧縮室 (61)及び第 2圧縮室 (62)で冷媒圧力が最大となる位相も 180° ずれるこ とになる。従って、第 1圧縮室 (61)及び第 2圧縮室 (62)での冷媒の圧縮動作に起因 する圧縮トルクの挙動は、図 8の気筒休止動作と同じような挙動になる。その結果、こ の二段圧縮動作時の圧縮トルクの変動は、 2シリンダ型の圧縮機と比較して小さくな る。
[0095] 更に、本実施形態の圧縮機 (20)の並列圧縮動作では、互いに容積の変動周期の 位相が 180° 異なる 2組の圧縮室(61,62,63,64)で冷媒がそれぞれ圧縮される。この ため、駆動軸 (23)がー回転する際には、第 1圧縮室 (61)及び第 2圧縮室 (62)で冷 媒圧力が最大となる位相が 180° ずれ、また、第 3圧縮室 (63)及び第 4圧縮室 (64) で冷媒圧力が最大となる位相も 180° ずれることになる。その結果、駆動軸 (23)の圧 縮トルクが平滑化され、この並列圧縮動作時の圧縮トルクの変動は、 2シリンダ型の 圧縮機と比較して小さくなる。
[0096] 一実施形態 1の効果
以上のように、上記実施形態 1では、 2つの圧縮室 (61,63)を有する第 1圧縮機構( 24)と、 2つの圧縮室 (62,64)を有する第 2圧縮機構 (25)とを備えた圧縮機 (20)にお いて、第 1圧縮室 (61)と第 2圧縮室 (62)の容積の変動周期の位相を互いに 180° ず らすと共に、第 3圧縮室 (63)と第 4圧縮室 (64)の容積の変動周期の位相も互いに 18 0° ずらすようにしている。
[0097] このため、気筒休止動作では、第 3圧縮室 (63)及び第 4圧縮室 (63)内での冷媒圧 力の変動周期の位相を互いに 180° ずらすことができ、気筒休止動作時の圧縮トル クの変動を低減することができる。従って、比較的振動や騒音の増大を招き易い気筒 休止動作において、圧縮トルクを効果的に低減することができ、圧縮機 (20)の低振 動化、低騒音化を図ることができる。
[0098] また、上記実施形態 1の二段圧縮動作においても、低段側となる第 1圧縮室 (61)及 び第 2圧縮室 (62)内での冷媒圧力の変動周期の位相を互いに 180° ずらすことが でき、二段圧縮動作時の圧縮トルクを効果的に低減することができる。
[0099] 更に、上記実施形態 1では、駆動軸 (23)によって駆動される第 1シリンダ (52)及び 第 2シリンダ (56)の位相を駆動軸 (23)を中心として 180° ずらすようにしている。従つ て、この圧縮機 (20)の運転時に、両シリンダ (52,56)に作用する遠心力を互いに相殺 することができるので、この圧縮機 (20)の騒音及び振動を一層効果的に低減するこ とがでさる。
[0100] なお、上記実施形態 1の 2つの圧縮機構 (24,25)は、環状のシリンダ室 (54,58)を有 する各シリンダ (52,56)が、環状の各ピストン (53,57)に対して相対的に偏心回転運動 を行うものである。しかしながら、例えば環状の各ピストン (53,57)を鏡板等を介して駆 動軸 (23)に連結する一方、各シリンダ (52,56)をハウジング等に固定し、各ピストン (5 3,57)を各シリンダ (52,56)に対して偏心回転させるようにしても良い。
[0101] また、上記実施形態 1では、ピストン (53,57)の外側の空間を第 1圧縮室 (61)及び 第 2圧縮室 (62)とし、ピストン (53,57)の内側の空間を第 3圧縮室 (63)及び第 4圧縮 室(64)としている。し力しながら、これとは逆に、ピストン (53,57)の内側の空間を第 1 圧縮室 (61)及び第 2圧縮室 (62)とし、ピストン (53,57)の外側の空間を第 3圧縮室 (6 3)及び第 4圧縮室 (64)とするようにしても良 、。
[0102] 《実施形態 2》
実施形態 2の空調機(1)は、上記実施形態 1と圧縮機 (20)の構成が異なるものであ る。図 9に示すように、実施形態 2の圧縮機 (20)の圧縮機本体部 (30)は、第 1から第 4までの圧縮機構 (24,25,26,27)を備えて!/、る。
[0103] 上記駆動軸 (23)には、その下端側から上方に向かって順に、第 1圧縮機構 (24)、 第 3圧縮機構 (26)、第 2圧縮機構 (25)、及び第 4圧縮機構 (27)が設けられて ヽる。 各圧縮機構 (24,25,26,27)は、図 10に示すように、それぞれ揺動ピストン型のロータリ 一式の圧縮機構を構成して!/ヽる。
[0104] 第 1圧縮機構 (24)では、シリンダ室内に第 1ピストン (71)が収納されている。この第 1圧縮機構 (24)には、第 1ピストン (71)の偏心回転によって容積が周期的に変化す る第 1圧縮室 (61)が形成されている。第 2圧縮機構 (25)では、シリンダ室内に第 2ピ ストン (72)が収納されている。この第 2圧縮機構 (25)には、第 2ピストン (72)の偏心回 転によって容積が周期的に変化する第 2圧縮室 (62)が形成されている。第 3圧縮機 構 (26)では、シリンダ室内に第 3ピストン (73)が収納されている。この第 3圧縮機構 (2 6)には、第 3ピストン (73)の偏心回転によって容積が周期的に変化する第 3圧縮室( 63)が形成されている。第 4圧縮機構 (27)では、シリンダ室内に第 4ピストン (74)が収 納されている。この第 4圧縮機構 (27)には、第 4ピストン (74)の偏心回転によって容 積が周期的に変化する第 4圧縮室 (64)が形成されている。
[0105] 第 1圧縮室 (61)の吸入側には第 1吸入管 (32a)が、第 2圧縮室 (62)の吸入側には 第 2吸入管 (32b)がそれぞれ接続されている。また、第 1圧縮室 (61)の吐出側には第 1吐出連絡管 (33a)が、第 2圧縮室 (62)の吐出側には第 2吐出連絡管 (33b)がそれ ぞれ接続されている。第 1吐出連絡管 (33a)及び第 2吐出連絡管 (33b)には、図示し な 、吐出弁がそれぞれ設けられて 、る。
[0106] 第 3圧縮室 (63)の吸入側には第 1吸入連絡管 (34a)が、第 4圧縮室 (64)の吸入側 には第 2吸入連絡管 (34b)がそれぞれ接続されている。また、第 3圧縮室 (63)及び第 4圧縮室 (64)の吐出側には、各々、ケーシング (21)の内部空間と繋がる吐出ポートと 、各吐出ポートを開閉する吐出弁とが設けられている(図示省略)。
[0107] 実施形態 2の圧縮機 (20)では、第 1ピストン (71)と第 2ピストン (72)の位相が駆動軸
(23)を中心として互いに 180° ずれており、第 3ピストン(73)と第 4ピストン(74)の位 相が駆動軸 (23)を中心として互いに 180° ずれている。即ち、圧縮機 (20)では、第 1圧縮室 (61)及び第 2圧縮室 (62)の容積の変動周期の位相が 180° ずれており、 第 3圧縮室 (63)及び第 4圧縮室 (64)の容積の変動周期の位相が 180° ずれて 、る
[0108] また、この圧縮機 (20)では、第 1ピストン (71)と第 3ピストン (73)の位相が駆動軸 (23 )を中心として互いに 180° ずれており、第 2ピストン (72)と第 4ピストン (74)の位相が 駆動軸 (23)を中心として互いに 180° ずれている。即ち、圧縮機 (20)では、第 1圧 縮室 (61)及び第 3圧縮室 (63)の容積の変動周期の位相も 180° ずれており、第 2圧 縮室 (62)及び第 4圧縮室 (64)の容積の変動周期の位相も 180° ずれて 、る。
[0109] 運転動作
次に、実施形態 2に係る空調機(1)の運転動作について説明する。この空調機(1) では、実施形態 1と同様に暖房運転や冷房運転等が切り換え可能となっているが、 以下には、空調機(1)の暖房運転時についてのみ説明する。
[0110] 空調機(1)の暖房運転では、四路切換弁(14)が図 11〜図 13に示す状態に設定さ れると共に、膨張弁(12)の開度が適宜調節される。また、実施形態 2の空調機(1)の 暖房運転にぉ 、ても、三方弁 (41)及び電磁開閉弁 (42)の設定が切り換わることで、 圧縮機 (20)による並列圧縮動作と、気筒休止動作と、二段圧縮動作とが切り換え可 能となっている。
[0111] 《並列圧縮動作》
並列圧縮動作では、三方弁 (41)が図 11に示す状態となり、第 3バイパス管 (38)の 電磁開閉弁 (42)が閉の状態となる。また、並列圧縮動作では、減圧弁 (16)の開度が 閉の状態となる。圧縮機 (20)の吐出冷媒は、実施形態 1の並列圧縮動作と同様にし て、室内熱交換器 (11)及び室外熱交換器 (13)を流れ、圧縮機 (20)の吸入側へ送ら れる。 [0112] 圧縮機 (20)の吸入側へ流れた冷媒は、第 1吸入管 (32a)、第 2吸入管 (32b)、及び 第 1バイパス管 (36)へ分流する。第 1吸入管 (32a)を流れる冷媒は、第 1圧縮機構 (2 4)の第 1圧縮室 (61)内で圧縮された後、第 1吐出連絡管 (33a)から第 1圧縮室 (61) の外部へ吐出される。この冷媒は、第 4バイパス管(39)を経由してケーシング (21)の 内部空間へ送られる。第 2吸入管 (32b)を流れる冷媒は、第 2圧縮機構 (25)の第 2圧 縮室 (62)内で圧縮された後、第 2吐出連絡管 (33b)から第 2圧縮室 (62)の外部へ吐 出される。この冷媒は、第 4バイパス管(39)を経由してケーシング (21)の内部空間へ 送られる。また、第 1バイパス管 (36)を流れる冷媒は、第 2バイパス管 (37)を経由して 第 1吸入連絡管 (34a)と第 2吸入連絡管 (34b)とに分流する。第 1吸入連絡管 (34a)を 流れる冷媒は、第 3圧縮機構 (26)の第 3圧縮室 (63)内で圧縮された後、吐出ポート からケーシング (21)の内部空間へ吐出される。第 2吸入連絡管(34b)を流れる冷媒 は、第 4圧縮機構 (27)の第 4圧縮室 (64)内で圧縮された後、吐出ポートからケーシン グ (21)の内部空間へ吐出される。
[0113] 《気筒休止動作》
気筒休止動作では、三方弁 (41)が図 12に示す状態となり、第 3バイパス管 (38)の 電磁開閉弁 (42)が開の状態となる。また、この気筒休止動作では、減圧弁 (16)が閉 の状態となる。圧縮機 (20)の吐出冷媒は、実施形態 1の気筒休止動作と同様にして 、室内熱交換器 (11)及び室外熱交換器 (13)を流れ、圧縮機 (20)の吸入側へ送られ る。
[0114] 圧縮機 (20)の吸入側へ流れた冷媒は、第 1吸入管 (32a)、第 2吸入管 (32b)、及び 第 1バイパス管 (36)へ分流する。第 1吸入管 (32a)を流れる冷媒は、第 1圧縮機構 (2 4)の第 1圧縮室 (61)内に吸入される一方、第 2吸入管 (32b)を流れる冷媒は、第 2圧 縮機構 (25)の第 2圧縮室 (62)内に吸入される。ここで、この気筒休止動作では、実 施形態 1と同様に、第 1圧縮室 (61)の吸入側と吐出側、及び第 2圧縮室 (62)の吸入 側と吐出側とが連通する状態となる。従って、第 1吐出連絡管 (33a)及び第 2吐出連 絡管 (33b)に設けられた吐出弁は、それぞれ常時開放状態となり、第 1圧縮室 (61) 及び第 2圧縮室 (62)では、冷媒の圧縮動作が行われな 、。
[0115] 第 1吐出連絡管 (33a)及び第 2吐出連絡管 (33b)を流出した冷媒は、第 3バイパス 管 (38)を流れた後に第 1吸入連絡管 (34a)及び第 2吸入連絡管 (34b)に分流する。 第 1吸入連絡管 (34a)を流れる冷媒は、第 3圧縮機構 (26)の第 3圧縮室 (63)内で圧 縮された後、吐出ポートからケーシング (21)の内部空間へ吐出される。第 2吸入連絡 管 (34b)を流れる冷媒は、第 4圧縮機構 (27)の第 4圧縮室 (64)内で圧縮された後、 吐出ポートからケーシング (21)の内部空間へ吐出される。
[0116] 《二段圧縮動作》
二段圧縮動作では、三方弁 (41)が図 13に示す状態となり、第 3バイパス管 (38)の 電磁開閉弁 (42)が開の状態となる。また、二段圧縮動作では、減圧弁 (16)の開度が 適宜調節される。圧縮機 (20)の吐出冷媒は、実施形態 1の二段圧縮動作と同様にし て、室内熱交換器 (11)及び室外熱交換器 (13)を流れ、圧縮機 (20)の吸入側へ送ら れる。
[0117] 圧縮機 (20)の吸入側へ送られた冷媒は、第 1吸入管 (32a)及び第 2吸入管 (32b) へ分流する。第 1吸入管 (32a)を流れる冷媒は、第 1圧縮機構 (24)の第 1圧縮室 (61 )内で圧縮された後、第 1吐出連絡管 (33a)から第 1圧縮室 (61)の外部へ吐出される 。第 2吸入管 (32b)を流れる冷媒は、第 2圧縮機構 (25)の第 2圧縮室 (62)内で圧縮さ れた後、第 2吐出連絡管 (33b)から第 2圧縮室 (62)の外部へ吐出される。各吐出連 絡管 (33a,33b)から吐出された冷媒は、第 3バイパス管 (38)で合流する。そして、この 冷媒には、中間インジェクション配管(18)力 の中間圧冷媒が混合される。
[0118] 合流後の冷媒は、第 1吸入連絡管 (34a)と第 2吸入連絡管 (34b)とに分流する。第 1 吸入連絡管 (34a)を流れる冷媒は、第 3圧縮機構 (26)の第 3圧縮室 (63)内で更に圧 縮された後、吐出ポート (66)からケーシング (21)の内部空間へ吐出される。第 2吸入 連絡管 (34b)を流れる冷媒は、第 4圧縮機構 (27)の第 4圧縮室 (64)内で更に圧縮さ れた後、吐出ポートからケーシング (21)の内部空間へ吐出される。
[0119] 一実施形態 2の効果
以上のように、上記実施形態 2では、各々が 1つの圧縮室 (61,62,63,64)を有する第 1から第 4までの圧縮機構 (24,25,26,27)を備えた圧縮機 (20)において、第 1圧縮室( 61)と第 2圧縮室 (62)の容積の変動周期の位相を互いに 180° ずらすと共に、第 3 圧縮室 (63)と第 4圧縮室 (64)の容積の変動周期の位相も互いに 180° ずらすように している。
[0120] このため、上記実施形態 1と同様、気筒休止動作では、第 3圧縮室 (63)及び第 4圧 縮室 (64)で冷媒が最大圧力となる位相を 180° ずらして、気筒休止動作時の圧縮ト ルクを低減することができる。また、実施形態 2の二段圧縮動作においても、低段側と なる第 1圧縮室 (61)及び第 2圧縮室 (62)で冷媒が最大圧力となる位相を 180° ずら して、二段圧縮動作時の圧縮トルクを効果的に低減することができる。
[0121] また、上記実施形態 2では、第 1ピストン (71)と第 3ピストン (73)の位相を駆動軸 (23 )を中心として 180° ずらすと共に、第 2ピストン(72)と第 4ピストン(74)の位相を駆動 軸 (23)を中心として 180° ずらすようにしている。従って、第 1ピストン (71)及び第 3ピ ストン (73)の遠心力と、第 2ピストン (72)及び第 4ピストン (74)の遠心力とを、それぞ れ互いに相殺することができる。従って、駆動軸 (23)のトルクを更に低減し、圧縮機( 20)の低騒音化、低振動化を図ることができる。
[0122] なお、第 1ピストン (71)と第 4ピストン (74)の位相を 180° ずらすと共に、第 2ピストン
(72)と第 3ピストン(73)の位相を 180° ずらすことで、各ピストン(71,72,73,74)の遠心 力を相殺するようにしても良い。この場合にも、第 1圧縮室 (61)及び第 2圧縮室 (62) の容積の変動周期の位相を 180° ずらすと共に、第 3圧縮室 (63)及び第 4圧縮室 (6 4)の容積の変動周期の位相を 180° ずらすことで、各圧縮動作についての圧縮トル クを低減することがでさる。
[0123] 《その他の実施形態》
上述した各実施形態にっ 、ては、以下のような構成としてもよ!/、。
[0124] 上記各実施形態の圧縮機 (20)では、並列圧縮動作、気筒休止動作、及び二段圧 縮動作とが切換可能となっている。し力しながら、これら 3つの動作のうちのいずれか の 2つの動作を相互に切り換えるように冷凍装置を構成しても良い。
[0125] また、上記各実施形態では、圧縮機 (20)の圧縮機構を、環状のピストンが偏心回 転する圧縮機構や、揺動ピストン型のロータリー式の圧縮機構で構成している。しか しながら、これらの圧縮機構に代わって回転ピストン型のものや、それ以外の構成の 圧縮機構を用いるようにしても良 、。
[0126] また、上記各実施形態の冷凍装置は、空気と冷媒とを熱交換させる空調機(1)に適 用されている。し力 ながら、例えば水などの熱媒体と冷媒とを熱交換させて冷水や 温水を得る冷温水チラ一や給湯器等に本発明の冷凍装置を適用するようにしてもよ い。
[0127] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではない。
産業上の利用可能性
[0128] 以上説明したように、本発明は、複数の圧縮室を有する圧縮機を備え、冷凍サイク ルを行う冷凍装置について有用である。

Claims

請求の範囲
[1] 複数の圧縮室を有する容積型の流体機械を構成すると共に、各圧縮室の容積を 周期的に変化させる圧縮機本体部、及び該圧縮機本体部を駆動する駆動軸を有す る圧縮機と、
上記圧縮機が接続されて冷凍サイクルを行う冷媒回路とを備え、
上記圧縮機本体部は、第 1圧縮室及び第 2圧縮室の容積の変動周期の位相が互 いに 180° ずれ、且つ第 3圧縮室及び第 4圧縮室の容積の変動周期の位相が互い に 180° ずれるように構成され、
上記圧縮機は、第 1から第 4までの圧縮室内で冷媒をそれぞれ単段圧縮する並列 圧縮動作と、第 3圧縮室及び第 4圧縮室内で冷媒をそれぞれ単段圧縮すると同時に 第 1圧縮室及び第 2圧縮室内での冷媒の圧縮を休止させる気筒休止動作とを切り換 えて行うことを特徴とする冷凍装置。
[2] 複数の圧縮室を有する容積型の流体機械を構成すると共に、各圧縮室の容積を 周期的に変化させる圧縮機本体部、及び該圧縮機本体部を駆動する駆動軸を有す る圧縮機と、
上記圧縮機が接続されて冷凍サイクルを行う冷媒回路とを備え、
上記圧縮機本体部は、第 1圧縮室及び第 2圧縮室の容積の変動周期の位相が互 いに 180° ずれ、且つ第 3圧縮室及び第 4圧縮室の容積の変動周期の位相が互い に 180° ずれるように構成され、
上記圧縮機は、第 1から第 4までの圧縮室内で冷媒をそれぞれ単段圧縮する並列 圧縮動作と、第 1圧縮室及び第 2圧縮室内でそれぞれ単段圧縮した冷媒を第 3圧縮 室及び第 4圧縮室内で更に圧縮する二段圧縮動作とを切り換えて行うことを特徴とす る冷凍装置。
[3] 複数の圧縮室を有する容積型の流体機械を構成すると共に、各圧縮室の容積を 周期的に変化させる圧縮機本体部、及び該圧縮機本体部を駆動する駆動軸を有す る圧縮機と、
上記圧縮機が接続されて冷凍サイクルを行う冷媒回路とを備え、
上記圧縮機本体部は、第 1圧縮室及び第 2圧縮室の容積の変動周期の位相が互 いに 180° ずれ、且つ第 3圧縮室及び第 4圧縮室の容積の変動周期の位相が互い に 180° ずれるように構成され、
上記圧縮機は、第 1圧縮室及び第 2圧縮室内でそれぞれ単段圧縮した冷媒を第 3 圧縮室及び第 4圧縮室内で更に圧縮する二段圧縮動作と、第 3圧縮室及び第 4圧縮 室内で冷媒をそれぞれ単段圧縮すると同時に第 1圧縮室及び第 2圧縮室内での冷 媒の圧縮を休止させる気筒休止動作とを切り換えて行うことを特徴とする冷凍装置。
[4] 複数の圧縮室を有する容積型の流体機械を構成すると共に、各圧縮室の容積を 周期的に変化させる圧縮機本体部、及び該圧縮機本体部を駆動する駆動軸を有す る圧縮機と、
上記圧縮機が接続されて冷凍サイクルを行う冷媒回路とを備え、
上記圧縮機本体部は、第 1圧縮室及び第 2圧縮室の容積の変動周期の位相が互 いに 180° ずれ、且つ第 3圧縮室及び第 4圧縮室の容積の変動周期の位相が互い に 180° ずれるように構成され、
上記圧縮機は、第 1から第 4までの圧縮室内で冷媒をそれぞれ単段圧縮する並列 圧縮動作と、第 3圧縮室及び第 4圧縮室内で冷媒をそれぞれ単段圧縮すると同時に 第 1圧縮室及び第 2圧縮室内での冷媒の圧縮を休止させる気筒休止動作と、第 1圧 縮室及び第 2圧縮室内でそれぞれ単段圧縮した冷媒を第 3圧縮室及び第 4圧縮室 内で更に圧縮する二段圧縮動作とを切り換えて行うことを特徴とする冷凍装置。
[5] 請求項 1乃至 4のいずれ力 1において、
上記圧縮機の圧縮機本体部は、第 1圧縮機構及び第 2圧縮機構を備え、 上記各圧縮機構は、環状のシリンダ室を形成するシリンダと、該シリンダ室内に配 置されて該シリンダ室を内外に 2つの空間に区画する環状のピストンとをそれぞれ備 え、上記駆動軸の回転に伴!、シリンダ及びピストンが相対的に偏心回転運動を行う ようにそれぞれ構成されており、
上記第 1圧縮機構のシリンダ室内の外側の空間が上記第 1圧縮室を構成し、内側 の空間が上記第 3圧縮室を構成する一方、
上記第 2圧縮機構のシリンダ室内の外側の空間が上記第 2圧縮室を構成し、内側 の空間が上記第 4圧縮室を構成していることを特徴とする冷凍装置。
[6] 請求項 1乃至 4のいずれ力 1において、
上記圧縮機の圧縮機本体部は、上記第 1から第 4までの圧縮室に対応するように、 各圧縮室をそれぞれ形成する第 1から第 4までのロータリー式圧縮機構を備えている ことを特徴とする冷凍装置。
[7] 請求項 6において、
上記第 1圧縮室の容積の変動周期の位相が、上記第 3圧縮室及び上記第 4圧縮 室のいずれか一方の容積の変動周期の位相と 180° ずれていることを特徴とする冷 凍装置。
PCT/JP2007/054305 2006-03-09 2007-03-06 冷凍装置 WO2007102496A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/224,420 US8225624B2 (en) 2006-03-09 2007-03-06 Refrigeration system
CN2007800066172A CN101389867B (zh) 2006-03-09 2007-03-06 冷冻装置
AU2007223244A AU2007223244B2 (en) 2006-03-09 2007-03-06 Refrigeration system
EP07737852.9A EP1992820A4 (en) 2006-03-09 2007-03-06 FREEZING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006064539A JP4797715B2 (ja) 2006-03-09 2006-03-09 冷凍装置
JP2006-064539 2006-03-09

Publications (1)

Publication Number Publication Date
WO2007102496A1 true WO2007102496A1 (ja) 2007-09-13

Family

ID=38474924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054305 WO2007102496A1 (ja) 2006-03-09 2007-03-06 冷凍装置

Country Status (7)

Country Link
US (1) US8225624B2 (ja)
EP (1) EP1992820A4 (ja)
JP (1) JP4797715B2 (ja)
KR (1) KR101006601B1 (ja)
CN (1) CN101389867B (ja)
AU (1) AU2007223244B2 (ja)
WO (1) WO2007102496A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2196677A1 (en) * 2007-09-14 2010-06-16 Daikin Industries, Ltd. Rotary fluid machine
EP2261579A4 (en) * 2008-03-18 2011-05-25 Daikin Ind Ltd FREEZING DEVICE

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715561B2 (ja) * 2006-03-06 2011-07-06 ダイキン工業株式会社 冷凍装置
JP2008175111A (ja) * 2007-01-17 2008-07-31 Daikin Ind Ltd 圧縮機
JP5151410B2 (ja) * 2007-11-14 2013-02-27 ダイキン工業株式会社 密閉型圧縮機
JP4367567B2 (ja) 2008-02-04 2009-11-18 ダイキン工業株式会社 圧縮機及び冷凍装置
JP4396773B2 (ja) * 2008-02-04 2010-01-13 ダイキン工業株式会社 流体機械
JP5217818B2 (ja) * 2008-09-12 2013-06-19 ダイキン工業株式会社 回転式圧縮機
JP5040907B2 (ja) * 2008-09-30 2012-10-03 ダイキン工業株式会社 冷凍装置
JP5234168B2 (ja) * 2008-09-30 2013-07-10 ダイキン工業株式会社 冷凍装置
JP5338231B2 (ja) * 2008-09-30 2013-11-13 ダイキン工業株式会社 二段圧縮機
JP5343501B2 (ja) * 2008-10-07 2013-11-13 ダイキン工業株式会社 回転式圧縮機
JP5217876B2 (ja) * 2008-10-08 2013-06-19 ダイキン工業株式会社 二段圧縮機
JP5217909B2 (ja) * 2008-10-30 2013-06-19 ダイキン工業株式会社 圧縮機
US8061151B2 (en) * 2009-05-18 2011-11-22 Hamilton Sundstrand Corporation Refrigerant compressor
JP5263089B2 (ja) * 2009-09-02 2013-08-14 ダイキン工業株式会社 ロータリ圧縮機
US20110160030A1 (en) * 2009-12-17 2011-06-30 Andreas Heilmann Laboratory centrifuge with compressor cooling
US9518754B2 (en) * 2012-01-24 2016-12-13 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2014119125A (ja) * 2012-12-13 2014-06-30 Daikin Ind Ltd 冷凍装置
CN104101125B (zh) * 2013-04-09 2016-10-05 珠海格力电器股份有限公司 空调器
CN103953544B (zh) * 2014-04-10 2016-01-27 珠海格力节能环保制冷技术研究中心有限公司 压缩机和空调器
CN103953545B (zh) * 2014-04-10 2016-01-27 珠海格力节能环保制冷技术研究中心有限公司 压缩机及空调器
CN105626523B (zh) * 2014-11-05 2018-02-02 珠海格力节能环保制冷技术研究中心有限公司 压缩机、空调系统和压缩机控制方法
CN105756930A (zh) * 2014-12-19 2016-07-13 珠海格力节能环保制冷技术研究中心有限公司 压缩机
CN105180510B (zh) * 2015-08-06 2017-06-27 芜湖美智空调设备有限公司 空调装置及其控制方法
CN106704189A (zh) * 2015-08-10 2017-05-24 珠海格力节能环保制冷技术研究中心有限公司 压缩机和换热系统
US10465682B2 (en) * 2015-08-24 2019-11-05 Guangdong Meizhi Compressor Co., Ltd. Rotary compressor and refrigeration cycle device having same
CN105466060A (zh) * 2015-12-28 2016-04-06 珠海格力电器股份有限公司 一种可变容双级压缩系统及其控制方法
CN111306064A (zh) 2016-02-23 2020-06-19 大金工业株式会社 摆动活塞式压缩机
US11480178B2 (en) * 2016-04-27 2022-10-25 Mark W. Wood Multistage compressor system with intercooler
WO2018084868A1 (en) 2016-11-07 2018-05-11 Wood Mark W Scroll compressor with circular surface terminations
CN106168214A (zh) * 2016-06-29 2016-11-30 珠海格力节能环保制冷技术研究中心有限公司 一种转缸增焓活塞压缩机及具有其的空调系统
US11686309B2 (en) 2016-11-07 2023-06-27 Mark W. Wood Scroll compressor with circular surface terminations
CN106839346B (zh) * 2017-04-13 2020-04-24 青岛海尔空调器有限总公司 一种空调器及控制方法
CN107084485B (zh) * 2017-04-13 2021-03-16 青岛海尔空调器有限总公司 一种空调器及控制方法
CN107120785B (zh) * 2017-04-13 2020-08-04 青岛海尔空调器有限总公司 一种空调器及控制方法
CN107014039B (zh) * 2017-04-13 2019-09-03 青岛海尔空调器有限总公司 一种空调器及控制方法
CN107023960B (zh) * 2017-04-13 2020-01-31 青岛海尔空调器有限总公司 一种地暖式空调器及控制方法
CN107023959B (zh) * 2017-04-13 2020-04-24 青岛海尔空调器有限总公司 一种空调器及控制方法
CN107023961B (zh) * 2017-04-13 2020-09-25 青岛海尔空调器有限总公司 一种空调器及控制方法
CN106871385B (zh) * 2017-04-13 2020-08-25 青岛海尔空调器有限总公司 一种空调器及控制方法
CN107023958B (zh) * 2017-04-13 2021-04-20 青岛海尔空调器有限总公司 一种空调器及控制方法
WO2019000869A1 (zh) * 2017-06-30 2019-01-03 广东美的制冷设备有限公司 空调系统和空调系统的控制方法
CN110985384B (zh) * 2019-11-29 2023-11-17 安徽美芝精密制造有限公司 压缩机及制冷设备
CN111005871B (zh) * 2019-12-11 2020-11-10 珠海格力电器股份有限公司 压缩机并联系统的减振方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410066A (en) * 1987-06-30 1989-01-13 Toshiba Corp Air conditioner
JPS6436689U (ja) * 1987-08-31 1989-03-06
WO2005103496A1 (ja) * 2004-04-23 2005-11-03 Daikin Industries, Ltd. 回転式流体機械
WO2005124156A1 (ja) * 2004-06-15 2005-12-29 Toshiba Carrier Corporation 多気筒形回転式圧縮機

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3231754C2 (de) * 1982-08-26 1986-01-02 Pierburg Gmbh & Co Kg, 4040 Neuss Rotationskolbenmaschine für kompressible Medien
JPS6436689A (en) * 1986-05-27 1989-02-07 Exxon Research Engineering Co Wax crystal modifying method using dewaxing aid under stirring condition
JPS6410066U (ja) * 1987-07-03 1989-01-19
JPS6460795A (en) * 1987-08-31 1989-03-07 Toshiba Corp Rotary compressor
JPS6480790A (en) * 1987-09-21 1989-03-27 Mitsubishi Electric Corp Two-cylinder rotary compressor
JP2555464B2 (ja) * 1990-04-24 1996-11-20 株式会社東芝 冷凍サイクル装置
JPH0420751A (ja) * 1990-05-15 1992-01-24 Toshiba Corp 冷凍サイクル
US6283723B1 (en) * 1997-01-27 2001-09-04 Vairex Corporation Integrated compressor expander apparatus
JP3778730B2 (ja) * 1999-07-01 2006-05-24 三洋電機株式会社 多気筒回転圧縮機の製造方法
JP3389539B2 (ja) * 1999-08-31 2003-03-24 三洋電機株式会社 内部中間圧型2段圧縮式ロータリコンプレッサ
JP2001263882A (ja) * 2000-03-17 2001-09-26 Daikin Ind Ltd ヒートポンプ装置
JP3370046B2 (ja) * 2000-03-30 2003-01-27 三洋電機株式会社 多段圧縮機
JP3723491B2 (ja) * 2001-11-09 2005-12-07 三洋電機株式会社 二段圧縮式コンプレッサ
JP4013552B2 (ja) * 2002-01-07 2007-11-28 株式会社日立製作所 密閉形圧縮機
TW200530509A (en) * 2004-03-15 2005-09-16 Sanyo Electric Co Multicylinder rotary compressor and compressing system and refrigerating unit with the same
JP3800240B2 (ja) 2004-04-23 2006-07-26 ダイキン工業株式会社 回転式流体機械
JP3757977B2 (ja) * 2004-05-11 2006-03-22 ダイキン工業株式会社 回転式流体機械
CN1721804A (zh) * 2004-07-12 2006-01-18 乐金电子(天津)电器有限公司 电冰箱的温度控制装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410066A (en) * 1987-06-30 1989-01-13 Toshiba Corp Air conditioner
JPS6436689U (ja) * 1987-08-31 1989-03-06
WO2005103496A1 (ja) * 2004-04-23 2005-11-03 Daikin Industries, Ltd. 回転式流体機械
WO2005124156A1 (ja) * 2004-06-15 2005-12-29 Toshiba Carrier Corporation 多気筒形回転式圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1992820A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2196677A1 (en) * 2007-09-14 2010-06-16 Daikin Industries, Ltd. Rotary fluid machine
EP2196677A4 (en) * 2007-09-14 2015-01-14 Daikin Ind Ltd ROTATION TURBOMACHINE
EP2261579A4 (en) * 2008-03-18 2011-05-25 Daikin Ind Ltd FREEZING DEVICE

Also Published As

Publication number Publication date
JP2007239666A (ja) 2007-09-20
KR20080087894A (ko) 2008-10-01
CN101389867A (zh) 2009-03-18
EP1992820A1 (en) 2008-11-19
US8225624B2 (en) 2012-07-24
AU2007223244B2 (en) 2010-02-25
US20090013714A1 (en) 2009-01-15
CN101389867B (zh) 2012-05-23
EP1992820A4 (en) 2014-01-08
AU2007223244A1 (en) 2007-09-13
KR101006601B1 (ko) 2011-01-07
JP4797715B2 (ja) 2011-10-19

Similar Documents

Publication Publication Date Title
JP4797715B2 (ja) 冷凍装置
JP5306478B2 (ja) ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法
JP4457928B2 (ja) 冷凍装置
WO2007105440A1 (ja) 冷凍装置
JP4367567B2 (ja) 圧縮機及び冷凍装置
JP4013981B2 (ja) 冷凍空調装置
JP5077464B1 (ja) 冷媒流路切換弁、及びそれを用いた空気調和装置
JP4396773B2 (ja) 流体機械
WO2010038360A1 (ja) 冷凍装置
WO2019003291A1 (ja) 空気調和装置
JP2007255889A (ja) 冷凍空調装置
JP4039024B2 (ja) 冷凍装置
JP4096544B2 (ja) 冷凍装置
WO2020203708A1 (ja) 冷凍サイクル装置
JP5962143B2 (ja) 冷凍装置
JP2007232280A (ja) 冷凍装置
JP4457831B2 (ja) 冷凍装置
WO2021201143A1 (ja) 冷凍装置
JPS63212797A (ja) 2シリンダ型ロ−タリ式圧縮機
KR101053600B1 (ko) 공기조화기
WO2009119003A1 (ja) 冷凍装置及び膨張機
KR101154946B1 (ko) 공기조화기
JP2013209898A (ja) 二段圧縮機
JP5169003B2 (ja) 空気調和装置
JP2010014344A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007223244

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020087020219

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780006617.2

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2007737852

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007737852

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12224420

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE