WO2009119003A1 - 冷凍装置及び膨張機 - Google Patents

冷凍装置及び膨張機 Download PDF

Info

Publication number
WO2009119003A1
WO2009119003A1 PCT/JP2009/000860 JP2009000860W WO2009119003A1 WO 2009119003 A1 WO2009119003 A1 WO 2009119003A1 JP 2009000860 W JP2009000860 W JP 2009000860W WO 2009119003 A1 WO2009119003 A1 WO 2009119003A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
refrigerant
fluid chamber
path
auxiliary suction
Prior art date
Application number
PCT/JP2009/000860
Other languages
English (en)
French (fr)
Inventor
熊倉英二
岡本昌和
浮舟正倫
鉾谷克己
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2009119003A1 publication Critical patent/WO2009119003A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Definitions

  • the present invention relates to a refrigeration apparatus having an expansion mechanism for recovering the power of refrigerant expanded in a fluid chamber, and an expander applied to the refrigeration apparatus.
  • Patent Document 1 discloses this type of refrigeration apparatus.
  • the power recovered from the high-pressure refrigerant is transmitted to the compression mechanism via the drive shaft and used as drive power for the compression mechanism.
  • the circulation amount of the refrigerant passing through the compression mechanism per unit time (corresponding to the mass flow rate, the same shall apply hereinafter) and the circulation amount of the refrigerant passing through the expansion mechanism must always match. I must.
  • the expansion mechanism is designed at a certain design specification point (for example, heating rating), when operated under conditions that deviate from the design specification point, the amount of circulation between the compression mechanism and the amount of circulation in the expansion mechanism is between. Excess or deficiency will occur.
  • the optimum suction volume of the expansion mechanism is the heating rating at the cooling rating when the suction pressure of the compression mechanism increases. Since it becomes larger than the case of time, the refrigerant is insufficient and overexpansion occurs.
  • a communication pipe is connected to the expansion mechanism.
  • One end of the communication pipe communicates with the main suction passage of the expansion mechanism, and the other end passes through the expansion mechanism and communicates with the suction / expansion process position of the fluid chamber.
  • the communication pipe is provided with an electric valve outside the expansion mechanism.
  • the motor-operated valve is opened to a predetermined opening, and the high-pressure refrigerant is introduced into the suction / expansion process position of the fluid chamber through the communication pipe.
  • FIG. 13 is a PV diagram showing the relationship between the cylinder volume and the refrigerant pressure in the expansion mechanism.
  • the pressure of the refrigerant and the cylinder volume change in a behavior such as point A ⁇ point B ⁇ point C ⁇ point D. That is, in the expansion mechanism, the volume of the fluid chamber is expanded from the point A to the point B, and the refrigerant is sucked into the fluid chamber (suction process). Next, from point B to point C, the volume of the fluid chamber further increases, and the refrigerant pressure gradually decreases (expansion process). Thereafter, the volume of the fluid chamber is reduced from point C to point D, and the decompressed refrigerant flows out of the fluid chamber (discharge process).
  • the present invention has been made in view of such a point, and an object of the present invention is to reduce the dead volume of the auxiliary suction passage that is in a closed state with respect to the expansion mechanism that introduces the refrigerant into the fluid chamber of the expansion mechanism through the auxiliary suction passage. It is to improve the power recovery efficiency.
  • a fluid chamber (52) is formed between the first member (50) and the second member (51) that are relatively eccentrically rotated, and the fluid chamber (52) is sucked into the fluid chamber (52).
  • a refrigeration apparatus provided with an expansion mechanism (41) for recovering the power of the refrigerant is assumed.
  • the refrigeration apparatus has an auxiliary suction path (70) that branches from the suction side of the fluid chamber (52) and communicates with the suction / expansion process position of the fluid chamber (52) inside the expansion mechanism (41).
  • An open / close member (83) that opens and closes the auxiliary suction path (70) is provided in the auxiliary suction path (70).
  • the refrigerant expands in the fluid chamber (52) formed between the first member (50) and the second member (51).
  • the power of the refrigerant expanded in the fluid chamber (52) is recovered as the rotational power of the first member (50) and the second member (51).
  • An auxiliary suction path (70) branched from the suction side of the fluid chamber (52) is formed inside the expansion mechanism (41) of the present invention.
  • an opening / closing member (83) is provided inside the auxiliary suction passage (70).
  • an auxiliary suction path (70) is formed inside the expansion mechanism (41), and an opening / closing member (83) is provided inside the auxiliary suction path (70). Therefore, compared with the case where the opening / closing member (motor-operated valve) is arranged outside the expansion mechanism as in Patent Document 1, the present invention is more closed to the fluid chamber (52) from the opening / closing member (83) in the closed state. The distance can be shortened. As a result, in the present invention, the dead volume formed in the auxiliary suction path (70) can be reduced.
  • the open / close member (83) is arranged in a closed state so as to follow the inner wall of the fluid chamber (52). ) Is configured to be a valve body (83) that closes.
  • the opening / closing member (83) is constituted by the valve body (83).
  • the valve body (83) closes the outflow end (75) along the inner wall of the fluid chamber (52) when in the closed state in which the auxiliary suction path (70) is closed. Thereby, when the auxiliary suction path (70) is closed, a space (dead volume) is hardly formed between the valve body (83) and the fluid chamber (52).
  • the auxiliary suction passage (70) is branched between the suction side of the fluid chamber (52) and the inside of the expansion mechanism (41). It is characterized by this.
  • the suction side of the fluid chamber (52) and the auxiliary suction path (70) are branched inside the expansion mechanism (41). That is, in the present invention, the auxiliary suction path (70) is formed inside the expansion mechanism (41) without providing a pipe branching from the suction side of the fluid chamber (52) outside the expansion mechanism (41).
  • the valve body (83) is disposed between the open / close positions of the auxiliary suction passage (70) in the expansion mechanism (41).
  • a valve body chamber (80) for slidably accommodating is formed, and a refrigerant introduction path (26, 27, 28, 77) for introducing a refrigerant to the back side of the valve body (83) in the valve body chamber (80),
  • a pressure control mechanism (19, 20) for controlling the pressure of the refrigerant in the refrigerant introduction path (26, 27, 28, 77) is further provided.
  • the valve body (83) is housed in the valve body chamber (80) formed inside the expansion mechanism (41). Refrigerant from the refrigerant introduction path (26, 27, 28, 77) is introduced to the back side of the valve body (83). On the other hand, the pressure of the refrigerant from the fluid chamber (52) acts on the distal end side of the valve body (83).
  • the valve body (83) is moved to the rear side by the pressure of the refrigerant from the fluid chamber (52). Displace. As a result, the valve body (83) can be displaced to the open position.
  • the pressure of the refrigerant in the refrigerant introduction path (26, 27, 28, 77) is controlled to be high by the pressure control mechanism (19, 20)
  • the pressure of the refrigerant from the refrigerant introduction path (26, 27, 28, 77) The valve body (83) is displaced to the tip side.
  • the valve body (83) can be displaced to the closed position.
  • the refrigerant introduction path (26, 27, 28, 77) has one end communicating with the outflow side of the expansion mechanism (41) and the other end of the valve body.
  • Low pressure side introduction path (27) connected to the chamber (80), and high pressure side introduction path (28,77) whose one end communicates with the suction side of the expansion mechanism (41) and the other end communicates with the valve body chamber (80)
  • the pressure control mechanism includes an opening degree adjustment valve (19, 20) that adjusts the opening degree of one or both of the low pressure side introduction path (27) and the high pressure side introduction path (28, 77). ).
  • the opening degree of either one or both of the high pressure side introduction path (28, 77) and the low pressure side introduction path (27) is adjusted by the opening degree adjustment valve (19, 20) as a pressure control mechanism. Is done.
  • the pressure of the refrigerant on the back side of the valve body (83) can be adjusted as appropriate, and the valve body (83) can be displaced between the open position and the closed position.
  • the on-off control valve is composed of an on-off valve (19) for opening and closing the low-pressure side introduction path (27), and the high-pressure side introduction path (28, 77). ) Is provided with a throttle portion (90) that provides resistance to the flow of the refrigerant.
  • the low pressure refrigerant is introduced to the back side of the valve body (83) by opening the on-off valve (19) as the opening degree adjusting valve.
  • the valve body (83) is displaced to the open position by the pressure of the fluid chamber (52).
  • the throttle part (90) is provided in the high-pressure side introduction path (28, 77), it is possible to minimize the introduction of the high-pressure refrigerant into the valve body chamber (80). .
  • the high-pressure side introduction path (77) has one end communicating with the auxiliary suction path (70) and the other end connected with the valve body chamber (80). It is formed inside the expansion mechanism (41).
  • the high-pressure side introduction path (77) is formed inside the expansion mechanism (41).
  • the high-pressure refrigerant in the auxiliary suction passage (70) is introduced into the high-pressure side introduction passage (77), and this high-pressure refrigerant acts on the back side of the valve body (83) in the valve body chamber (80).
  • a biasing means (87) for biasing the valve body (83) toward the closed position in the valve body chamber (80). Is provided.
  • the urging means (87) urges the valve body (83) to the closed position where the outflow end (75) of the auxiliary suction passage (70) is closed. For this reason, even if the internal pressure of the fluid chamber (52) changes, the valve body (83) is prevented from swinging back and forth. As a result, the generation of dead volume at the outflow end (75) of the auxiliary suction path (70) is also reliably prevented.
  • the expansion mechanism is rotatably accommodated in the cylinder (50) as the first member and the cylinder (50). It is comprised by the rotary type expansion mechanism (41) which has the piston (51) as said 2nd member, and the obstruction
  • the expansion mechanism is a so-called rotary expansion mechanism.
  • the auxiliary suction passage (70) includes an arc-shaped passage (72) formed in the circumferential direction along the cylinder (50). It is characterized by this.
  • an arcuate channel (72) extending in the circumferential direction along the cylinder (50) is formed, and the arcuate channel (72) is formed as the auxiliary suction channel (70).
  • An eleventh aspect of the invention is the refrigeration apparatus of the ninth or tenth aspect of the invention, wherein at least a part of the auxiliary suction path (70) is one of the cylinder (50) and the closing member (43, 44) or It is characterized by comprising groove portions (71, 72, 73) formed on both end faces.
  • a groove (71, 72, 73) is formed on one or both end surfaces of the cylinder (50) and the closing member (43, 44), and the groove (71, 72, 73) is formed. It constitutes a part of the auxiliary suction path (70). Thereby, the auxiliary suction path (70) can be processed / formed relatively easily inside the expansion mechanism (41).
  • a twelfth aspect of the invention is the refrigeration apparatus according to any one of the first to eleventh aspects of the invention, wherein the auxiliary suction passage (70) is branched into a plurality of branch passages (the branch passage branching from the suction side of the fluid chamber (52)). 70a, 70b) and one confluence channel with one end connected to the outflow end of a plurality of branch channels (70a, 70b) and the other end communicating with the suction / expansion process position of the fluid chamber (52) 74), and the opening and closing member (83) is configured to open and close the merging channel (74).
  • the auxiliary suction passage (70) of the twelfth aspect of the invention has a plurality of branch passages (70a, 70b) and one merge passage (74).
  • the opening / closing member (83) opens the merging channel (74)
  • the refrigerant on the suction side of the fluid chamber (52) flows through the branch channels (70a, 70b) and then passes through the merging channel (74). It joins and is introduced into the suction / expansion process position of the fluid chamber (52).
  • By forming a plurality of branch channels (70a, 70b) in this way the pressure loss of the refrigerant in the auxiliary suction channel (70) is reduced. As a result, it is possible to avoid a decrease in the pressure of the refrigerant introduced from the auxiliary suction path (70) into the fluid chamber (52).
  • a fluid chamber (52) is formed between the first member (50) and the second member (51) that are relatively eccentrically rotated, and the fluid chamber (52) is sucked into the fluid chamber (52).
  • An expander including an expansion mechanism (41) for recovering the power of the refrigerant is assumed.
  • the refrigeration apparatus includes an auxiliary suction path (70) that branches from the suction side of the fluid chamber (52) into the expansion mechanism (41) and communicates with the suction / expansion process position of the fluid chamber (52). And an opening / closing member (83) for opening and closing the auxiliary suction passage (70) is provided in the auxiliary suction passage (70).
  • an expander applied to the refrigeration apparatus of the first invention can be configured.
  • a fourteenth invention is the expander of the thirteenth invention, wherein the opening / closing member (83) closes the outflow end of the auxiliary suction passage (70) so as to follow the inner wall of the fluid chamber (52) in the closed state. It is characterized by comprising a valve body (83).
  • an expander applied to the refrigeration apparatus of the second invention can be configured.
  • an auxiliary suction path (70) is formed in the expansion mechanism (41), and an opening / closing member (83) is provided in the auxiliary suction path (70).
  • the outlet (75) of the auxiliary suction passage (70) is closed so that the valve body (83) in the closed state follows the inner wall of the fluid chamber (52).
  • the dead volume between the valve body (83) in the closed state and the fluid chamber (52) can be almost eliminated, and the power recovery efficiency of the expansion mechanism (41) can be further improved.
  • the suction side of the fluid chamber (52) and the auxiliary suction path (70) are branched inside the expansion mechanism (41).
  • the auxiliary suction passage (70) can be formed inside the expansion mechanism (41) without providing a branching pipe outside the expansion mechanism (41), thereby reducing the number of parts and the expansion mechanism (41 ) Can be made compact.
  • valve body (83) is displaced between the open position and the closed position by controlling the pressure of the refrigerant on the back side of the valve body (83).
  • the valve body (83) inside the expansion mechanism (41) can be opened and closed with a relatively simple structure.
  • the on-off valve (19) is provided in the low-pressure side introduction path (27), and the throttle part (90) is provided in the low-pressure side introduction path (27), thereby using two on-off valves.
  • the valve body (83) can be opened and closed without any trouble.
  • the expansion mechanism (41) since the high-pressure side introduction passage (77) is formed inside the expansion mechanism (41) so as to communicate with the auxiliary suction passage (70), the outside of the expansion mechanism (41) There is no need to provide piping or the like for configuring the high-pressure side introduction path. Therefore, the expansion mechanism (41) can be made compact and simple.
  • valve body (83) since the valve body (83) is urged toward the closed position by the urging means (87), the valve body (83) according to the change in the internal pressure of the fluid chamber (52). ) Can be suppressed, and generation of dead volume and vibration due to this can be prevented.
  • the rotary expansion mechanism (41) can prevent the dead volume from being generated in the closed auxiliary suction passage (70) and can improve the power recovery efficiency.
  • the arcuate channel (72) extending in the circumferential direction along the cylinder (50) is used as at least a part of the auxiliary suction channel (70). 70) can be prevented from interfering with other members, and the outflow end (75) of the auxiliary suction passage (70) can be formed at a desired angular position.
  • the groove (71, 72, 73) on the end surface of the cylinder (50) or the closing member (43, 44) is used as at least a part of the auxiliary suction passage (70).
  • the auxiliary suction path (70) can be formed inside the expansion mechanism (41) by simple processing.
  • the pressure loss of the auxiliary suction passage (70) can be reduced. Thereby, it can suppress that the pressure of the fluid introduce
  • an expander that exhibits the effects of the first invention can be provided, and according to the fourteenth invention, an expander that exhibits the effects of the second invention can be provided.
  • FIG. 1 is a schematic structure figure of a refrigerant circuit of an air harmony device concerning this embodiment.
  • FIG. 2 is a longitudinal sectional view of the two-stage expansion unit, in which the valve body is in an open state.
  • FIG. 3 is an enlarged sectional view showing a transverse section of the two-stage expansion unit, in which the valve body is opened.
  • FIG. 4 is a longitudinal sectional view of the two-stage expansion unit, in which the valve body is in a closed state.
  • FIG. 5 is an enlarged cross-sectional view showing a cross section of the two-stage expansion unit during the first operation, and illustrates the operation of the eccentric portion at every 90 ° rotation angle.
  • FIG. 2 is a longitudinal sectional view of the two-stage expansion unit, in which the valve body is in an open state.
  • FIG. 3 is an enlarged sectional view showing a transverse section of the two-stage expansion unit, in which the valve body is opened.
  • FIG. 4 is a longitudinal sectional view of the two-stage expansion
  • FIG. 6 is an enlarged cross-sectional view showing a cross section of the two-stage expansion unit during the second operation, and illustrates the operation of the eccentric portion at every 90 ° rotation angle.
  • FIG. 7 is a schematic configuration diagram of a refrigerant circuit of an air-conditioning apparatus according to Modification 1.
  • FIG. 8 is a schematic configuration diagram of a refrigerant circuit of an air-conditioning apparatus according to Modification 2.
  • FIG. 9 is an enlarged cross-sectional view showing a cross section of the two-stage expansion unit according to the modified example 2.
  • FIG. 9 (A) shows the valve body in a closed state
  • FIG. 9 (B) shows the valve body open. It is a state.
  • FIG. 9 (A) shows the valve body in a closed state
  • FIG. 9 (B) shows the valve body open. It is a state.
  • FIG. 9 (A) shows the valve body in a closed state
  • FIG. 9 (B) shows the valve body open. It is a state.
  • FIG. 10 is a longitudinal sectional view of a two-stage expansion unit according to another modification 1, in which the valve body is in a closed state.
  • FIG. 11 is a longitudinal sectional view of a two-stage expansion unit according to another modification 2 in which the valve body is in a closed state.
  • FIG. 12 is a longitudinal sectional view of a two-stage expansion unit according to another modification 2 in which the valve body is in a closed state.
  • FIG. 13 is a PV diagram showing the relationship between the cylinder volume and the refrigerant pressure in the expansion operation, for explaining the problem of the conventional example.
  • Air conditioning equipment 19 Low pressure introduction valve (pressure control mechanism, opening control valve) 20 High-pressure introduction valve (pressure control mechanism, opening control valve) 26 Main introduction pipe (refrigerant introduction path) 27 Low pressure inlet pipe (refrigerant inlet, low pressure inlet) 28 High-pressure inlet pipe (refrigerant inlet, high-pressure inlet) 40 Two-stage expansion unit (expander) 41 First expansion mechanism (expansion mechanism) 43 Front head (blocking member) 44 Intermediate plate (blocking member) 50 First cylinder (first member) 51 First piston (second member) 52 First fluid chamber (fluid chamber) 70 Auxiliary suction path 70a Upper branch channel (Branch channel) 70b Lower branch channel (Branch channel) 71 First channel (auxiliary suction channel, groove) 72 Second channel (auxiliary suction channel, groove, arc channel) 73 Third channel (auxiliary suction channel, groove) 74 Fourth channel (auxiliary suction channel, merge channel) 75 Outflow opening (outflow end) 77 High-pressure distribution channel (
  • the refrigeration apparatus constitutes an air conditioner (10).
  • the air conditioner (10) is configured to switch between indoor cooling and heating.
  • the air conditioner (10) includes a refrigerant circuit (11).
  • the refrigerant circuit (11) constitutes a closed circuit in which the refrigerant circulates and performs a refrigeration cycle.
  • the refrigerant circuit (11) is filled with carbon dioxide (CO 2 ) as a refrigerant. That is, in the refrigerant circuit (11), a so-called supercritical cycle is performed in which carbon dioxide is compressed to a critical pressure or higher.
  • the refrigerant circuit (11) includes a compression / expansion unit (30), an outdoor heat exchanger (12), an indoor heat exchanger (13), a four-way switching valve (14), a bridge circuit (15), and a pre-expansion valve (17 ) And are provided.
  • the compression / expansion unit (30) is provided with a casing (31) formed in the shape of a vertically long cylindrical sealed container.
  • a compression mechanism (32), an electric motor (33), and a two-stage expansion unit (40) are provided in order from the lower part to the upper part.
  • the compression / expansion unit (30) is provided with an output shaft (34) for connecting the compression mechanism (32), the electric motor (33), and the two-stage expansion unit (40).
  • the compression mechanism (32) is a rotary positive displacement compressor, and is configured as a so-called oscillating piston type.
  • the refrigerant compressed by the compression mechanism (32) is introduced into the casing (31) through the discharge port. That is, the compression / expansion unit (30) has a so-called high-pressure dome type in which the inside of the casing (31) is filled with the high-pressure refrigerant.
  • the electric motor (33) includes a stator part (35) fixed to the inner peripheral surface of the casing (31), and a rotor part (36) that is located inside the stator part (35) and is connected to the output shaft (34). have.
  • the rotation speed of the electric motor (33) is variable by adjusting the output frequency. That is, the compression / expansion unit (30) is configured as an inverter.
  • the two-stage expansion unit (40) is a so-called two-cylinder expansion unit, and includes a first expansion mechanism (41) and a second expansion mechanism (42).
  • the first expansion mechanism (41) and the second expansion mechanism (42) are rotary positive displacement expanders, and are configured as so-called oscillating piston types.
  • the first expansion mechanism (41) and the second expansion mechanism (42) are connected in series, the first expansion mechanism (41) is the upstream expansion mechanism, and the second expansion mechanism (42) is the downstream expansion mechanism. Is configured.
  • the displacement volume of the first expansion mechanism (41) is smaller than the displacement volume of the second expansion mechanism (42).
  • the first expansion mechanism (41) and the second expansion mechanism (42) are connected to the output shaft (34). Details of the two-stage expansion unit (40) will be described later.
  • the compression / expansion unit (30) is provided with a suction pipe (21), a discharge pipe (22), an inflow pipe (23), and an outflow pipe (24).
  • the suction pipe (21) passes through the casing (31) and is directly connected to the suction side of the compression mechanism (32).
  • the discharge pipe (22) passes through the casing (31) and opens into the casing (31).
  • the inflow pipe (23) passes through the casing (31) and is directly connected to the suction side (inflow side) of the first expansion mechanism (41).
  • the outflow pipe (24) passes through the casing (31) and is directly connected to the discharge side (outflow side) of the second expansion mechanism (42).
  • Both the outdoor heat exchanger (12) and the indoor heat exchanger (13) constitute a cross fin type fin-and-tube heat exchanger.
  • the four-way switching valve (14) has first to fourth ports. The first port communicates with the suction pipe (21), and the second port communicates with the discharge pipe (22). The third port communicates with one end of the outdoor heat exchanger (12), and the fourth port communicates with one end of the indoor heat exchanger (13).
  • the four-way switching valve (14) includes a state in which the first port and the fourth port communicate with each other and a state in which the second port and the third port communicate with each other (state indicated by a solid line in FIG. 1), The port and the third port communicate with each other, and the second port and the fourth port communicate with each other (state indicated by a broken line in FIG. 1).
  • the bridge circuit (15) is configured by connecting four pipes each having a check valve (16) in a bridge shape.
  • the bridge circuit (15) always causes the refrigerant to flow in the same direction to the two-stage expansion unit (40) even if the refrigerant circulation direction is changed in accordance with the switching of the four-way switching valve (14).
  • a four-way switching valve may be provided instead of the bridge circuit (15).
  • the pre-expansion valve (17) is provided in a pipe connecting the bridge circuit (15) and the inflow pipe (23).
  • the pre-expansion valve (17) constitutes a flow rate adjustment valve whose opening degree can be adjusted.
  • a bypass pipe (25), a main introduction pipe (26), a low pressure introduction pipe (27), and a high pressure introduction pipe (28) are connected to the refrigerant circuit (11).
  • the bypass pipe (25) has one end connected to the pipe between the pre-expansion valve (17) and the inflow pipe (23) and the other end connected to the pipe between the bridge circuit (15) and the outflow pipe (24).
  • a bypass valve (18) is provided in the bypass pipe (25).
  • the bypass valve (18) constitutes a flow rate control valve whose opening degree can be adjusted.
  • the end of the main introduction pipe (26) is connected to a valve body chamber (details will be described later) of the first expansion mechanism (41).
  • the starting ends of the main introduction pipe (26) are connected to the ends of the low pressure introduction pipe (27) and the high pressure introduction pipe (28), respectively.
  • the starting end of the low pressure introduction pipe (27) is connected to the outflow side of the two-stage expansion unit (40) (that is, the low pressure line of the refrigerant circuit (11)). That is, the low pressure introduction pipe (27) constitutes a low pressure side introduction path communicating with the outflow side of the two-stage expansion unit (40).
  • the starting end of the high pressure introduction pipe (28) is connected to the suction side of the two-stage expansion unit (40) (that is, the high pressure line of the refrigerant circuit (11)). That is, the high pressure introduction pipe (28) constitutes a high pressure side introduction path that communicates with the suction side of the two-stage expansion unit (40).
  • the low pressure introduction pipe (27) is provided with a low pressure introduction valve (19)
  • the high pressure introduction pipe (28) is provided with a high pressure introduction valve (20).
  • the low pressure introduction valve (19) and the high pressure introduction valve (20) constitute an on-off valve (opening control valve) that can be freely opened and closed. Note that the low pressure introduction valve (19) and the high pressure introduction valve (20) do not necessarily have to be switched between two stages of opening and closing, and are flow rate adjustment valves (motorized valves) capable of fine adjustment of the opening degree. May be.
  • the two-stage expansion unit (40) includes the first expansion mechanism (41), the second expansion mechanism (42), the front head (43), the intermediate plate (44), and the rear head (45).
  • the two-stage expansion unit (40) from the lower end to the upper end of the output shaft (34), the front head (43), the first expansion mechanism (41), the intermediate plate (44), the second expansion mechanism (42), And the rear head (45) is arranged and laminated in order.
  • the first expansion mechanism (41) has a first cylinder (50) and a first piston (51).
  • the second expansion mechanism (42) has a second cylinder (60) and a second piston (61).
  • Each expansion mechanism (41, 42) is configured such that the piston (51, 61) as the second member rotates relatively eccentrically with respect to the cylinder (50, 60) as the first member.
  • the cylinder (50, 60) is formed in a substantially cylindrical shape with both upper and lower ends open.
  • the inner diameter and thickness of the first cylinder (50) are shorter than the inner diameter and thickness of the second cylinder (60).
  • the first cylinder (50) has a lower end surface closed by the front head (43) and an upper end surface closed by the intermediate plate (44).
  • the second cylinder (60) has a lower end surface closed by the intermediate plate (44) and an upper end surface closed by the rear head (45). That is, the front head (43), the intermediate plate (44), and the rear head (45) constitute a closing member that closes the end of the cylinder (50, 60). Further, these closing members (43, 44, 45) and the cylinders (50, 60) constitute a fixing member fixed to the casing (31).
  • a first piston (51) is accommodated in the first cylinder (50), and a first fluid chamber (52) is defined between the first cylinder (50) and the first piston (51). Yes.
  • a second piston (61) is accommodated in the second cylinder (60), and a second fluid chamber (62) is defined between the second cylinder (60) and the second piston (61). Yes.
  • the pistons (51, 61) are formed in a cylindrical shape or an annular shape.
  • the inner diameter, outer diameter, and thickness of the first piston (51) are shorter than the inner diameter, outer diameter, and thickness of the second piston (51).
  • Inside the first piston (51) is a first eccentric part (34a) of the output shaft (34), and inside the second piston (61) is a second eccentric part (34b) of the output shaft (34). Are fitted inside.
  • the eccentric parts (34a, 34b) constitute the crankshaft of the piston (51, 61).
  • the amount of eccentricity of the first eccentric portion (34a) with respect to the axis of the output shaft (34) is smaller than the amount of eccentricity of the second eccentric portion (34b).
  • the first expansion mechanism (41) has a first blade (53) and a pair of first bushes (54), and the second expansion mechanism (42) has a second blade (63) and a pair.
  • the second bush (64) is provided.
  • the blades (53, 63) are formed in a plate shape extending radially outward from the outer peripheral surface of the piston (51, 61).
  • the pair of bushes (54, 64) are fitted in bush grooves (55, 65) formed in the cylinder (50, 60).
  • the pair of bushes (56, 64) each have a flat surface portion and an arc portion, and are disposed so that the flat surface portions face each other.
  • the blades (53, 63) are sandwiched between the pair of bushes (56, 64).
  • the bush (56, 64) is rotatable with respect to the cylinder (50, 60), and the blade (53, 63) is movable with respect to the bush (54, 64).
  • the piston (51, 61) integrated with the blade (53, 63) is allowed to rotate (revolve) while sliding on the inner wall of the cylinder (50, 60).
  • the outflow end of the main suction passage (46) is open in the first fluid chamber (52) of the first cylinder (50).
  • the main suction passage (46) is formed by extending the intermediate plate (44) in the radial direction, and the inflow pipe (23) is connected to the inflow end side thereof (see FIG. 2).
  • the first fluid chamber (52) of the first cylinder (50) has an inflow end of the communication path (47).
  • the communication path (47) is formed by extending the intermediate plate (44) obliquely in the axial direction. In the first expansion mechanism (41), the outflow end of the main suction passage (46) and the inflow end of the communication passage (47) are arranged so as to be close to each other while being blocked by the first blade (53).
  • the outflow end of the communication path (47) is opened in the second fluid chamber (62) of the second cylinder (60). Further, the inflow end of the outflow passage (48) is opened in the second fluid chamber (62) of the second cylinder (60).
  • the outflow passage (48) is formed by extending the second cylinder (60) in the radial direction, and the outflow pipe (24) is connected to the outflow end side (see FIG. 2).
  • the outflow end of the communication passage (47) and the inflow end of the outflow passage (48) are arranged so as to be close to each other while being blocked by the second blade (63).
  • the first fluid chamber (52) is partitioned into two spaces by the first blade (53).
  • the space partitioned on the right side of the first blade (53) constitutes a high pressure chamber (52a) communicating with the main suction passage (46), and the space partitioned on the left side is connected with the communication passage (47).
  • a first expansion chamber (52b) that communicates is configured.
  • the second fluid chamber (62) is partitioned into two spaces by the second blade (63).
  • the space partitioned on the right side of the second blade (63) constitutes the second expansion chamber (62a) communicating with the communication passage (47), and the space partitioned on the left side is the outflow passage (48).
  • the auxiliary suction path (70) is formed inside the first expansion mechanism (41).
  • the auxiliary suction path (70) branches from the suction side of the first fluid chamber (52) and communicates with the first fluid chamber (52).
  • the auxiliary suction path (70) is composed of first to fourth flow paths (71, 72, 73, 74).
  • the first flow path (71) is formed by extending the intermediate plate (44) in the axial direction so that the start end is connected to the main suction path (46) and the other end faces the upper end surface of the first cylinder (50).
  • the first flow path (71) is constituted by a groove formed on the lower end surface of the intermediate plate (44).
  • the second channel (72) has a start end connected to the first channel (71), and extends in the circumferential direction on the upper end surface of the first cylinder (50).
  • the second flow path (72) forms an arc-shaped flow path formed in the circumferential direction along the cylinder (50).
  • the third channel (73) is formed such that its start end is connected to the end of the second channel (72) and extends in the axial direction toward the inside of the first cylinder (50).
  • the 2nd channel (72) and the 3rd channel (73) are constituted by the slot formed in the upper end surface of the 1st cylinder (50).
  • the fourth flow path (74) is connected to the end of the third flow path (73) at the start end, and the inside of the first cylinder (50) has a diameter so that the end opens to the first fluid chamber (52). It extends in the direction.
  • the outflow end of the auxiliary suction passage (70) configured as described above is open to the suction / expansion process position of the first fluid chamber (52). That is, the outflow opening (75) of the auxiliary suction path (70) can communicate with the outflow end of the main suction path (46) via the high pressure chamber (52a) during the rotation of the first piston (51).
  • the angular position is set so that it can communicate with the inflow end of the communication passage (47) via the first expansion chamber (52b).
  • the angular position of the outflow opening (75) of the auxiliary suction passage (70) when the first blade (53) to the first bush (54) are used as a reference with an angular position of 0 degree. Is set at about 220 ° in the direction of rotation.
  • the angular position of the outflow opening (75) is not limited to this, and is arbitrarily set according to the operating conditions of the air conditioner (10).
  • the valve body chamber (80) is also formed inside the first expansion mechanism (41). Specifically, the first cylinder (50) is formed with a bulging portion (57) that bulges radially from the outer peripheral surface thereof, and the valve body chamber (80) is formed in the bulging portion (57).
  • the valve body chamber (80) is comprised by the large diameter cylinder part (81) and the small diameter cylinder part (82).
  • the large-diameter cylindrical portion (81) is formed so as to extend in the radial direction inside the bulging portion (57) so that one end opens at the tip of the bulging portion (57).
  • the outflow end portion of the main introduction pipe (26) is fitted into and connected to the opening on one end side of the large diameter cylindrical portion (81).
  • the small diameter cylindrical portion (82) is formed with a smaller diameter than the large diameter cylindrical portion (81), and one end thereof is connected to the other end of the large diameter cylindrical portion (81).
  • the small diameter cylindrical portion (82) is formed to extend in the radial direction, and the other end communicates with the fourth flow path (74). Further, the inner diameter of the small diameter cylindrical portion (82) is substantially equal to the inner diameter of the fourth flow path (74).
  • the valve body (80) accommodates the valve body (83).
  • the valve body (83) constitutes an opening / closing member for opening / closing the auxiliary suction passage (70).
  • the valve body (83) includes a large diameter portion (84) and a small diameter portion (85).
  • the large-diameter portion (84) and the small-diameter portion (85) are each formed in a columnar shape, the large-diameter portion (84) is fitted into the large-diameter cylindrical portion (81), and the small-diameter portion (85) is small-diameter cylindrical portion ( 82).
  • the valve body (83) is configured to advance and retract in the axial direction in the valve body chamber (80).
  • valve body (83) communicates the third flow path (73) and the fourth flow path (74) to open the auxiliary suction path (70) (see FIGS. 2 and 3).
  • the third flow path (73) and the fourth flow path (74) are blocked and can be displaced to a closed position (see FIG. 4) where the auxiliary suction path (70) is closed.
  • the valve body (83) in the closed position (closed state), is such that the tip of the small diameter portion (85) is along the inner peripheral surface of the first cylinder (50) (the inner wall of the first fluid chamber (52)).
  • the outflow opening (75) of the auxiliary suction passage (70) is closed.
  • the tip surface of the small diameter portion (85) is set so as to be substantially coincident (or slightly depressed) with the inner peripheral surface of the first fluid chamber (52).
  • a spring member (87) is accommodated on the back side of the valve body (83).
  • One end of the spring member (87) is in contact with or connected to the outflow end portion of the main introduction pipe (26), and the other end is in contact with or connected to the large diameter portion (84) of the valve body (83).
  • the spring member (87) biases the valve body (83) toward the radially inner side of the first cylinder (50). That is, the spring member (87) constitutes a biasing means that biases the valve body (83) toward the closed position.
  • the refrigerant can be introduced from the main introduction pipe (26) toward the back side of the valve body (83).
  • the valve body chamber (80) includes a low-pressure refrigerant from the low-pressure introduction pipe (27) (that is, a refrigerant on the discharge side of the two-stage expansion unit (40)) and a high-pressure introduction pipe (28).
  • the high-pressure refrigerant (that is, the refrigerant on the suction side of the two-stage expansion unit (40)) is introduced through the main introduction pipe (26) (see FIG. 1). That is, the main introduction pipe (26), the low pressure introduction pipe (27), and the high pressure introduction pipe (28) constitute a refrigerant introduction path for introducing refrigerant to the back side of the valve body (83) in the valve body chamber (80). is doing.
  • the low pressure refrigerant and the high pressure refrigerant are selectively introduced into the valve body chamber (80) by switching the low pressure introduction valve (19) and the high pressure introduction valve (20) described above. Specifically, when the low pressure introduction valve (19) of the low pressure introduction pipe (27) is opened and the high pressure introduction valve (20) of the high pressure introduction pipe (28) is closed, the low pressure line and valve body chamber of the refrigerant circuit (11) (80) communicates and the valve body chamber (80) becomes a low pressure atmosphere. Thereby, the valve body (83) is displaced to the open position by the internal pressure of the first fluid chamber (52).
  • the low pressure introduction valve (19) of the low pressure introduction pipe (27) is closed and the high pressure introduction valve (20) of the high pressure introduction pipe (28) is opened, the high pressure line of the refrigerant circuit (11) and the valve body chamber (80 ) And the valve body chamber (80) becomes a high pressure atmosphere.
  • the valve body (83) is biased by the spring member (87) and displaced to the open position.
  • the low pressure introduction valve (19), the high pressure introduction valve (20), and the refrigerant introduction passage (26, 27, 28) are pressure control mechanisms that control the pressure of the refrigerant on the back side of the valve body (83). Is configured.
  • the four-way switching valve (14) is set to the state shown by the solid line in FIG.
  • the motor (33) of the compression / expansion unit (30) is energized in this state, a refrigeration cycle is performed in which the outdoor heat exchanger (12) serves as a radiator and the indoor heat exchanger (13) serves as an evaporator.
  • the refrigerant compressed by the compression mechanism (32) is discharged into the casing (31) of the compression / expansion unit (30).
  • the high-pressure refrigerant in the casing (31) flows through the outdoor heat exchanger (12) via the discharge pipe (22).
  • the refrigerant radiates heat to the outdoor air.
  • the high-pressure refrigerant radiated by the outdoor heat exchanger (12) is sucked into the second stage expansion unit (40) through the inflow pipe (23).
  • the high-pressure refrigerant expands and power is recovered from the high-pressure refrigerant.
  • the low-pressure refrigerant after expansion flows through the indoor heat exchanger (13) via the outflow pipe (24).
  • the indoor heat exchanger (13) the refrigerant absorbs heat from the room air, and the room air is cooled.
  • the refrigerant evaporated in the indoor heat exchanger (13) is sucked into the compression mechanism (32) through the suction pipe (21) and compressed again.
  • the four-way selector valve (14) is set to the state indicated by the broken line in FIG.
  • the motor (33) of the compression / expansion unit (30) is energized in this state, a refrigeration cycle is performed in which the indoor heat exchanger (13) serves as a radiator and the outdoor heat exchanger (12) serves as an evaporator.
  • the refrigerant compressed by the compression mechanism (32) is discharged into the casing (31) of the compression / expansion unit (30).
  • the high-pressure refrigerant in the casing (31) flows through the indoor heat exchanger (13) via the discharge pipe (22).
  • the indoor heat exchanger (13) the refrigerant dissipates heat to the room air, and the room air is heated.
  • the high-pressure refrigerant that has radiated heat in the indoor heat exchanger (13) is drawn into the two-stage expansion unit (40) through the inflow pipe (23).
  • the high-pressure refrigerant expands and power is recovered from the high-pressure refrigerant.
  • the low-pressure refrigerant after expansion flows through the outdoor heat exchanger (12) via the outflow pipe (24).
  • the refrigerant absorbs heat from the outdoor air and evaporates.
  • the refrigerant evaporated in the outdoor heat exchanger (12) is sucked into the compression mechanism (32) through the suction pipe (21) and compressed again.
  • the operation of the two-stage expansion unit (40) will be described.
  • the first operation and the second operation can be switched according to the open / close state of the low pressure introduction valve (19) and the high pressure introduction valve (20).
  • the first operation and the second operation are appropriately switched according to switching between the cooling operation and the heating operation, or a change in the outside air temperature.
  • High-pressure refrigerant flows into the high-pressure chamber (52a).
  • the high-pressure refrigerant flows into the high-pressure chamber (52a) from the main suction passage (46) until the rotation angle of the eccentric portions (34a, 34b) reaches about 360 ° (the outflow opening of the main suction passage (46) is closed).
  • the auxiliary suction path (70) is closed by the valve body (83) as described above. Therefore, no refrigerant is introduced from the auxiliary suction passage (70) into the high-pressure chamber (52a) during the suction process.
  • the refrigerant expands in the first fluid chamber (52) and the second fluid chamber (62).
  • the first expansion mechanism (41) when the rotation angle of the eccentric part (34a, 34b) is slightly rotated from a state of 360 °, the high pressure chamber (52a) partitioned from the main suction passage (46) is formed.
  • the high pressure chamber (52a) becomes the first expansion chamber (52b) in communication with the inflow opening of the communication passage (47). Further, the first expansion chamber (52b) communicates with the second expansion chamber (62a) of the second expansion mechanism (42) via the communication path (47).
  • the drive power of the compression mechanism (32) by an electric motor (33) is reduced, and energy saving of an air conditioning apparatus (10) is achieved.
  • the auxiliary suction path (70) is closed by the valve body (83). Accordingly, no refrigerant is introduced from the auxiliary suction passage (70) into the first expansion chamber (52b) during the expansion process.
  • the refrigerant flows out from the second fluid chamber (62) of the second expansion mechanism (42).
  • the second expansion chamber (62a) and the outflow passage (48) communicate with each other, and the second expansion chamber (62a ) Becomes the low pressure chamber (62b).
  • the rotational angles of the eccentric portions (34a, 34b) gradually increase to 810 °, 900 °, and 990 °
  • the refrigerant in the low pressure chamber (62b) flows out to the outflow passage (48).
  • the refrigerant outflow from the low pressure chamber (62b) to the outflow path (48) continues until the rotation angle of the eccentric parts (34a, 34b) reaches about 1080 °.
  • the valve body (83) has the small diameter portion (85) with the tip end accommodated in the small diameter cylindrical portion (82) (see FIGS. 3 and 6).
  • the valve body (83) is displaced to the open position in this way, the third flow path (73) and the fourth flow path (74) of the auxiliary suction path (70) are connected, and the auxiliary suction path (70) and the first flow path are connected.
  • the fluid chamber (52) communicates.
  • the rotation angles of the eccentric parts (34a, 34b) are 0 ° (FIG. 6A), 90 ° (FIG. 6B), 180 ° (FIG. 6C) in the same manner as described above.
  • the high-pressure refrigerant flows from the main suction passage (46) into the high-pressure chamber (52a).
  • the rotation angle of the eccentric portions (34a, 34b) reaches about 220 °, the high pressure chamber (52a) and the outflow opening (75) of the auxiliary suction passage (70) begin to communicate with each other. Therefore, in the suction process of the second operation, the high-pressure refrigerant is introduced from both the main suction path (46) and the auxiliary suction path (70).
  • the first expansion chamber (52b) communicates with the second expansion chamber (62a) via the communication path (47). To do. As the rotational angle of the eccentric portions (34a, 34b) gradually increases to 540 °, 630 °, and 720 °, the refrigerant expands in the expansion chambers (52b, 62a). Here, the first expansion chamber (52b) and the auxiliary suction passage (70) remain in communication until the rotation angle of the eccentric portions (34a, 34b) reaches about 580 °. Accordingly, in the expansion process of the second operation, the refrigerant is introduced from the auxiliary suction passage (70) into the first expansion chamber (52b).
  • the second expansion chamber (62a) communicates with the outflow passage (48) after the rotation angle of the eccentric part (34a, 34b) reaches 720 °.
  • the rotation angle of the eccentric portions (34a, 34b) gradually increases to 810 °, 900 °, 990 °, 1080 °
  • the refrigerant in the low pressure chamber (62b) flows out to the outflow passage (48).
  • the pressure of the refrigerant flowing out from the low pressure chamber (62b) during the second operation becomes higher than that during the first operation due to the introduction of the refrigerant from the auxiliary suction passage (70).
  • the pressure of the refrigerant flowing out from the two-stage expansion unit (40) is appropriately changed by selectively switching between the first operation and the second operation. Can be adjusted. Accordingly, even when the suction pressure of the compression mechanism changes due to, for example, switching between the cooling operation and the heating operation, or a change in the outside air temperature, the two-stage expansion unit (40) causes the refrigerant to follow the refrigerant pressure. So that the occurrence of so-called overexpansion can be prevented.
  • the auxiliary suction passage (70) is formed in the first expansion mechanism (41) of the two-stage expansion unit (40), and the auxiliary suction passage (70) can be opened and closed by the valve body (83).
  • the amount of refrigerant sucked into the first fluid chamber (52) can be adjusted by opening and closing the valve body (83) and switching between the first operation and the second operation, and the compression is performed.
  • the refrigerant circulation amount between the mechanism (32) and the two-stage expansion unit (40) can be balanced.
  • coolant which acts on the back surface of a valve body (83) is changed by switching the opening-and-closing state of a low pressure introduction valve (19) and a high pressure introduction valve (20), and a valve body (83 ) Can be easily switched.
  • the spring member (87) for biasing the valve body (83) to the closed position is provided on the back side of the valve body (83), the valve body (83) in the first operation is in the first fluid chamber. Displacement back and forth due to the influence of the change in internal pressure in (52) can be avoided, and the generation of dead volume and the occurrence of vibrations can be reliably prevented.
  • the first flow path (71), the second flow path (72), and the third flow path (73) of the auxiliary suction path (70) are configured by the groove portions, the intermediate plate (44 ) And the first cylinder (50), it is easy to process these flow paths (71, 72, 73).
  • the second flow path (72) has an arc shape extending in the circumferential direction of the first cylinder (50), in the first expansion mechanism (41), the auxiliary suction path (70) does not interfere with other members. ) Can be formed.
  • ⁇ Modification 1> In the air conditioner (10) of Modification 1 shown in FIG. 7, the high pressure introduction valve (20) of the high pressure introduction pipe (28) is replaced with a capillary tube (90) in the air conditioner (10) of the above embodiment. Is.
  • the capillary tube (90) constitutes a throttling portion that gives a predetermined resistance to the high-pressure refrigerant flowing through the high-pressure introduction pipe (28).
  • the low pressure introduction valve (19) is closed.
  • the high-pressure refrigerant on the high-pressure introduction pipe (28) side gradually passes through the capillary tube (90) and is sent to the back side of the valve element (83) through the main introduction pipe (26).
  • the valve body (83) is displaced to the closed position by the high-pressure refrigerant and the spring member (87), and closes the outflow opening (75) of the auxiliary suction passage (70) (see FIGS. 4 and 5).
  • the low pressure introduction valve (19) is opened.
  • the refrigerant on the back side of the valve body (83) gradually becomes a low-pressure atmosphere. Therefore, the valve body (83) is pressed to the open position by the internal pressure of the first fluid chamber (52), and the auxiliary suction passage (70 ) In the open state (see FIGS. 2 and 3).
  • the capillary tube (90) is provided in the high pressure introduction pipe (28)
  • the refrigerant on the high pressure introduction pipe (28) side is moved to the suction side of the first expansion mechanism (41) during the second operation. Leakage is minimized.
  • the valve body (83) is provided without providing the open / close valves (19, 20) in both the low pressure introduction pipe (27) and the high pressure introduction pipe (28) as in the above embodiment. It can be displaced between the open and closed positions.
  • the structure of an air conditioning apparatus (10) and the opening / closing control of a valve body (83) can be simplified.
  • the air conditioner (10) of Modification 2 shown in FIG. 8 has a configuration in which the high pressure introduction pipe (28) and the high pressure introduction valve (20) are omitted from the air conditioner (10) of the above embodiment.
  • the first expansion mechanism (41) of Modification 2 has a high-pressure distribution channel (77) formed in the first cylinder (50).
  • the inflow end of the high-pressure branch channel (77) communicates with the second channel (72) of the auxiliary suction channel (70), and the outflow end communicates with the valve body chamber (80). That is, the high-pressure distribution channel (77) is formed inside the first expansion mechanism (41) so that one end communicates with the auxiliary suction channel (70) and the other end communicates with the valve body chamber (80). This constitutes the high-pressure side introduction path.
  • the high-pressure distribution channel (77) has a smaller channel cross section than the auxiliary suction channel (70). That is, the high-pressure branch channel (77) constitutes a throttle portion that provides resistance to the flow of the refrigerant flowing through the high-pressure branch channel (77).
  • the high-pressure distribution channel (77) is configured to switch the communication state with the valve body chamber (80) in accordance with the open / close position of the valve body (83). Specifically, when the valve body (83) is in the open position, the outflow end of the high-pressure branch channel (77) is blocked by the large diameter portion (84) of the valve body (83). As a result, the high-pressure distribution channel (77) is partitioned from the back side of the valve body (83) through a slight gap (see FIG. 9A). On the other hand, when the valve body (83) is in the closed position, the outflow end of the high-pressure branch channel (77) is in communication with the back side of the valve body (83) (see FIG. 9B).
  • the low pressure introduction valve (19) is closed.
  • the high-pressure refrigerant on the auxiliary suction passage (70) side is sent to the periphery of the large-diameter portion (84) of the valve body (83) through the high-pressure branch passage (77).
  • the refrigerant in the high-pressure distribution channel (77) gradually leaks from the periphery of the large diameter portion (84) to the back side of the valve element (83).
  • the pressure on the back side of the valve body (83) gradually increases, and the valve body (83) is displaced toward the closed position.
  • the valve body (83) finally closes the outflow opening (75) of the auxiliary suction passage (70) (see FIG. 9B).
  • the high-pressure distribution channel (77) is completely connected to the back side of the valve body (83), so that the valve body (83) is securely held in the closed position.
  • the low pressure introduction valve (19) is opened.
  • the refrigerant on the back side of the valve body (83) gradually becomes a low-pressure atmosphere. Therefore, the valve body (83) is pressed to the open position by the internal pressure of the first fluid chamber (52), and the auxiliary suction passage (70 ) Is opened (see FIG. 9A).
  • the auxiliary suction channel It is minimized that the (70) side refrigerant leaks to the back side of the valve body (83).
  • the valve body (83) can be displaced between the open and closed positions without providing the high pressure introduction pipe (28) and the high pressure introduction valve (20) as in the above embodiment. .
  • the structure of an air conditioning apparatus (10) and the opening / closing control of a valve body (83) can be simplified.
  • the auxiliary suction passage (70), the main suction passage (46), and the like may be formed at different locations.
  • the main suction passage (46) is formed so as to penetrate the first cylinder (50) in the radial direction.
  • the first flow path (71) is at the upper end surface of the first cylinder (50), and the second flow path (72) is below the intermediate plate (44). It is formed on the end face.
  • the first flow path (71) is at the lower end surface of the first cylinder (50) and the second flow path (72) is above the front head (43). It is formed on the end face.
  • the auxiliary suction path (70) of the example shown in FIG. 12 has two branch flow paths (70a, 70b) and one merge flow path (74).
  • the two branch flow paths are an upper branch flow path (70a) formed on the upper end side of the first cylinder (50) and a lower branch formed on the lower end side of the first cylinder (50).
  • One end of each of the upper branch channel (70a) and the lower branch channel (70b) communicates with the main suction channel (46).
  • the merged flow channel constitutes the fourth flow channel (74) of each of the above embodiments, and its start end communicates with the other ends of the upper branch flow channel (70a) and the lower branch flow channel (70b). ing.
  • the terminal end of the fourth flow path (74) communicates with the suction / expansion process position of the first fluid chamber (52).
  • the sum of the channel cross sections of the auxiliary suction channel (70) is increased by forming two branch channels (70a, 70b) in the auxiliary suction channel (70). For this reason, in the state which opened the auxiliary suction path (70), the pressure loss in the auxiliary suction path (70) can be reduced. As a result, the pressure of the refrigerant introduced from the auxiliary suction path (70) into the first fluid chamber (52) can be suppressed from being reduced in the auxiliary suction path (70), and the power recovery efficiency can be increased. Even if the two branch channels (70a, 70b) are formed in this way, the valve element (83) opens and closes the outflow opening (75) of the merge channel (74). It is not necessary to provide a plurality of valve bodies (83) so as to correspond to the passages (70a, 70b).
  • only one outflow opening (75) of the auxiliary suction passage (70) is provided in the fluid chamber (52).
  • two or more outflow openings (75) may be provided.
  • a plurality of valve bodies (83) may be used so as to correspond to each outflow opening (75).
  • the present invention is applied to the two-stage expansion unit having a plurality of expansion mechanisms.
  • the present invention is applied to one expansion mechanism or an expansion unit including three or more expansion mechanisms.
  • the auxiliary suction path (70) and the valve body (83) of the present invention may be applied to each of the expansion mechanisms.
  • the present invention is applied to a so-called rotary-type volumetric expansion mechanism.
  • the present invention may be applied to other expansion mechanisms such as a scroll expansion mechanism.
  • this invention is applied about the air conditioning apparatus which air-conditions a room
  • the present invention is useful for a refrigeration apparatus having an expansion mechanism that recovers the power of refrigerant expanded in a fluid chamber, and an expander applied to the refrigeration apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 補助吸入路を通じて膨張機構の流体室へ冷媒を導入する膨張機構において、閉鎖状態とした補助吸入路の死容積を削減し、動力回収効率の向上を図る。 第1流体室(52)の吸入側から分岐して第1流体室(52)の吸入/膨張過程位置と繋がる補助吸入路(70)と、補助吸入路(70)の流出開口部(75)を閉塞可能な弁体(83)が第1膨張機構(41)の内部に設けられる。

Description

冷凍装置及び膨張機
 本発明は、流体室で膨張した冷媒の動力を回収する膨張機構を備えた冷凍装置と、この冷凍装置に適用される膨張機に関するものである。
 従来より、冷凍サイクルを行う冷凍装置は、空気調和装置等に広く適用されている。この種の冷凍装置として、冷媒回路に膨張機構を接続し、膨張機構で冷媒の動力を回収するものがある。
 特許文献1には、この種の冷凍装置が開示されている。この冷凍装置の膨張機構では、高圧冷媒から回収された動力が、駆動軸を介して圧縮機構へ伝えられ、圧縮機構の駆動動力として利用される。
 ところで、冷媒回路は閉回路であるため、単位時間当たりに圧縮機構を通過する冷媒の循環量(質量流量に相当、以下同じ)と膨張機構を通過する冷媒の循環量は、常に一致していなければならない。ところが、膨張機構をある設計仕様点(例えば暖房定格)で設計すると、その設計仕様点から外れた条件で運転した場合には、圧縮機構での循環量と膨張機構での循環量との間に過不足が生じることになる。具体的には、例えば、暖房定格時に上記圧縮機構と膨張機構との循環量が一致するように設計すると、圧縮機構の吸入圧力が高くなる冷房定格時には、最適な膨張機構の吸入容積は暖房定格時の場合よりも大きくなるため、冷媒が不足して過膨張が生じることになる。
 そこで、上記特許文献1では、膨張機構に連通管を接続するようにしている。この連通管は、一端が膨張機構の主吸入路と連通し、他端側が膨張機構を貫通して流体室の吸入/膨張過程位置に連通している。また、連通管には、膨張機構の外側において電動弁が設けられている。膨張機構では、例えば圧縮機構の吸入圧力が高くなる運転条件において、電動弁が所定開度に開放され、高圧冷媒が連通管を通じて流体室の吸入/膨張過程位置に導入される。これにより、膨張機構の流出側の冷媒の圧力が圧縮機構の吸入圧力に近づくので、上述したような過膨張の発生を防止することができる。
特開2004-197640号公報
 特許文献1に開示された膨張機構では、圧縮機構の吸入圧力と、膨張機構の流出側の冷媒の圧力とがほぼ等しい場合、電動弁を閉鎖状態としながら冷媒を膨張させている。ところが、電動弁を閉鎖状態とした場合には、連通管において、閉鎖状態の電動弁から流体室に至るまでの空間が死容積となり、膨張機構での動力回収効率が低下してしまうことがある。
 この点について、図13を参照しながら説明する。図13は、膨張機構でのシリンダ容積と冷媒の圧力との関係を示すPV線図である。膨張機構の連通管内に上述の死容積が形成されない場合、A点→B点→C点→D点のような挙動で冷媒の圧力及びシリンダ容積が変化する。即ち、膨張機構では、A点からB点に至るまで流体室の容積が拡大され、流体室へ冷媒が吸入される(吸入過程)。次に、BからC点では更に流体室の容積が拡大し、冷媒の圧力が徐々に低下する(膨張過程)。その後、C点からD点に至るまで流体室の容積が縮小され、減圧後の冷媒が流体室から流出する(吐出過程)。
 これに対し、連通管内に上述の死容積が形成される場合には、例えばA点→B’点→B1’点→B2’点→C点→D点のような挙動で冷媒の圧力及びシリンダ容積が変化してしまう。即ち、A点からC点に至るまでの間の吸入/膨張過程では、流体室に吸入された冷媒が死容積の影響により膨張/減圧される。その結果、死容積がある場合には、死容積がない場合と比較して、膨張機構で回収される動力(即ち、A~Dで囲まれる面積(仕事量))が減少してしまう。
 以上のように、特許文献1に開示されるような膨張機構では、電動弁を閉鎖状態とした場合に、死容積が形成されて動力回収効率が低下してしまう問題が生じる。特に、特許文献1では、電動弁が膨張機構の外側に配置されているので、電動弁から流体室に至るまでの空間(死容積)が比較的大きくなる。従って、この膨張機構では、死容積に起因する動力回収効率の低下が一層顕著となってしまう。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、補助吸入路を通じて膨張機構の流体室へ冷媒を導入する膨張機構について、閉鎖状態とした補助吸入路の死容積を削減し、動力回収効率の向上を図ることである。
 第1の発明は、相対的に偏心回転運動する第1部材(50)と第2部材(51)との間に流体室(52)を形成すると共に、上記流体室(52)に吸入された冷媒の動力を回収する膨張機構(41)を備えた冷凍装置を前提としている。そして、この冷凍装置は、膨張機構(41)の内部に、流体室(52)の吸入側から分岐して該流体室(52)の吸入/膨張過程位置に連通する補助吸入路(70)が形成され、上記補助吸入路(70)内に、該補助吸入路(70)を開閉する開閉部材(83)が設けられていることを特徴とするものである。
 第1の発明の膨張機構(41)では、第1部材(50)と第2部材(51)との間の形成された流体室(52)で冷媒が膨張する。流体室(52)で膨張した冷媒の動力は、第1部材(50)や第2部材(51)の回転動力として回収される。本発明の膨張機構(41)の内部には、流体室(52)の吸入側から分岐する補助吸入路(70)が形成される。更に、補助吸入路(70)の内部には、開閉部材(83)が設けられる。これにより、開閉部材(83)を開閉させることで、流体室(52)の吸入/膨張過程へ導入される冷媒の流量が調節可能となる。従って、圧縮機構と膨張機構(41)との冷媒循環量をバランスさせることができ、膨張機構(41)での過膨張の発生が防止される。
 ここで、本発明では、膨張機構(41)の内部に補助吸入路(70)を形成し、この補助吸入路(70)の内部に開閉部材(83)を設けている。従って、特許文献1のように膨張機構の外側に開閉部材(電動弁)を配置した場合と比較すると、本発明の方が、閉鎖状態とした開閉部材(83)から流体室(52)までの距離を短くできる。その結果、本発明では、補助吸入路(70)に形成される死容積を縮小できる。
 第2の発明は、第1の発明の冷凍装置において、上記開閉部材(83)は、閉鎖状態で上記流体室(52)の内壁に沿うように上記補助吸入路(70)の流出端(75)を閉塞する弁体(83)で構成されていることを特徴とするものである。
 第2の発明では、開閉部材(83)が弁体(83)によって構成される。弁体(83)は、補助吸入路(70)を閉鎖する閉鎖状態となると、流体室(52)の内壁に沿うように流出端(75)を閉塞する。これにより、補助吸入路(70)の閉鎖時には、弁体(83)と流体室(52)との間にほとんど空間(死容積)が形成されなくなる。
 第3の発明は、第1又は第2の発明の冷凍装置において、上記補助吸入路(70)は、上記流体室(52)の吸入側と上記膨張機構(41)の内部で分岐していることを特徴とするものである。
 第3の発明では、膨張機構(41)の内部で流体室(52)の吸入側と補助吸入路(70)とが分岐される。つまり、本発明では、膨張機構(41)の外側に流体室(52)の吸入側と分岐する配管を設けることなく、膨張機構(41)の内部に補助吸入路(70)が形成される。
 第4の発明は、第1乃至第3のいずれか1つの発明において、上記膨張機構(41)の内部には、上記弁体(83)を上記補助吸入路(70)の開閉位置の間で変位自在に収容する弁体室(80)が形成され、上記弁体室(80)における弁体(83)の背面側へ冷媒を導入する冷媒導入路(26,27,28,77)と、該冷媒導入路(26,27,28,77)の冷媒の圧力を制御する圧力制御機構(19,20)とを更に備えていることを特徴とするものである。
 第4の発明では、膨張機構(41)の内部に形成された弁体室(80)に弁体(83)が収容される。弁体(83)の背面側には、冷媒導入路(26,27,28,77)からの冷媒が導入される。一方、弁体(83)の先端側には、流体室(52)からの冷媒の圧力が作用する。圧力制御機構(19,20)によって冷媒導入路(26,27,28,77)の冷媒の圧力を低く制御すると、流体室(52)からの冷媒の圧力により弁体(83)が背面側に変位する。その結果、弁体(83)を開放位置に変位させることができる。また、圧力制御機構(19,20)によって冷媒導入路(26,27,28,77)の冷媒の圧力を高く制御すると、冷媒導入路(26,27,28,77)からの冷媒の圧力により弁体(83)が先端側に変位する。その結果、弁体(83)を閉鎖位置に変位させることができる。
 第5の発明は、第4の発明の冷凍装置において、上記冷媒導入路(26,27,28,77)は、一端が上記膨張機構(41)の流出側と連通して他端が弁体室(80)と繋がる低圧側導入路(27)と、一端が上記膨張機構(41)の吸入側と連通して他端が弁体室(80)と繋がる高圧側導入路(28,77)とを有し、上記圧力制御機構は、上記低圧側導入路(27)と高圧側導入路(28,77)とのいずれか一方又は両方の開度を調節する開度調節弁(19,20)を有していることを特徴とするものである。
 第5の発明では、圧力制御機構としての開度調節弁(19,20)によって高圧側導入路(28,77)と低圧側導入路(27)とのいずれか一方又は両方の開度が調節される。その結果、弁体(83)の背面側の冷媒の圧力を適宜調整することができ、弁体(83)を開放位置と閉鎖位置との間で変位させることができる。
 第6の発明は、第5の発明の冷凍装置において、上記開閉調節弁は、上記低圧側導入路(27)を開閉する開閉弁(19)で構成され、上記高圧側導入路(28,77)には、冷媒の流れに対して抵抗を付与する絞り部(90)が設けられていることを特徴とするものである。
 第6の発明では、開度調節弁としての開閉弁(19)を開放させることで、弁体(83)の背面側に低圧冷媒が導入される。その結果、弁体(83)は流体室(52)の圧力によって開放位置に変位する。ここで、高圧側導入路(28,77)には、絞り部(90)が設けられているので、高圧冷媒が弁体室(80)へ導入されてしまうのを最小限に抑えることができる。一方、低圧側導入路(27)の開閉弁(19)を閉鎖させると、高圧側導入路(28,77)の高圧冷媒が絞り部(90)を通じて弁体室(80)へ徐々に流れ、弁体(83)の背面側に高圧冷媒が作用する。その結果、高圧冷媒によって弁体(83)を閉鎖位置に変位させることができる。
 第7の発明は、第5の発明の冷凍装置において、上記高圧側導入路(77)は、一端が上記補助吸入路(70)と連通して他端が弁体室(80)と繋がるように上記膨張機構(41)の内部に形成されていることを特徴とするものである。
 第7の発明では、膨張機構(41)の内部に高圧側導入路(77)が形成される。高圧側導入路(77)には、補助吸入路(70)内の高圧冷媒が導入され、この高圧冷媒が弁体室(80)における弁体(83)の背面側に作用する。
 第8の発明は、第4乃至第7のいずれか1つの発明において、上記弁体室(80)には、上記弁体(83)を閉鎖位置に向かって付勢する付勢手段(87)が設けられていることを特徴とするものである。
 第8の発明では、付勢手段(87)によって弁体(83)が補助吸入路(70)の流出端(75)を閉鎖する閉鎖位置に付勢される。このため、流体室(52)の内圧が変化しても弁体(83)が前後に揺れ動くことが防止される。その結果、補助吸入路(70)の流出端(75)での死容積の発生も確実に防止される。
 第9の発明は、第1乃至第8のいずれか1つの冷凍装置において、上記膨張機構は、上記第1部材としてのシリンダ(50)と、該シリンダ(50)内に回転自在に収容される上記第2部材としてのピストン(51)と、上記シリンダ(50)の端部を閉塞する閉塞部材(43,44)とを有するロータリー式の膨張機構(41)で構成されることを特徴とするものである。
 第9の発明では、膨張機構が、いわゆるロータリー式の膨張機構で構成される。
 第10の発明は、第9の発明の冷凍装置において、上記補助吸入路(70)は、上記シリンダ(50)に沿うように周方向に形成される円弧状流路(72)を含んでいることを特徴とするものである。
 第10の発明の膨張機構(41)では、シリンダ(50)に沿うように周方向に延びる円弧状流路(72)が形成され、この円弧状流路(72)が補助吸入路(70)の少なくとも一部を構成する。このように、シリンダ(50)に沿うように円弧状流路(72)を形成することで、補助吸入路(70)が他の部材等に干渉してしまうことを回避できる。
 第11の発明は、第9又は第10の発明の冷凍装置において、上記補助吸入路(70)の少なくとも一部は、上記シリンダ(50)及び上記閉塞部材(43,44)のいずれか一又は両方の端面に形成される溝部(71,72,73)によって構成されることを特徴とするものである。
 第11の発明では、シリンダ(50)と閉塞部材(43,44)とのいずれか一方又は両方の端面に溝部(71,72,73)が形成され、この溝部(71,72,73)が補助吸入路(70)の一部を構成する。これにより、補助吸入路(70)を膨張機構(41)の内部に比較的容易に加工/成形することができる。
 第12の発明は、第1乃至第11のいずれか1つの発明の冷凍装置において、上記補助吸入路(70)は、上記流体室(52)の吸入側から複数本に分岐する分岐流路(70a,70b)と、一端が複数本の分岐流路(70a,70b)の流出端と接続し、他端が流体室(52)の吸入/膨張過程位置に連通する1本の合流流路(74)とを有し、上記開閉部材(83)は、上記合流流路(74)を開閉するように構成されていることを特徴とするものである。
 第12の発明の補助吸入路(70)は、複数の分岐流路(70a,70b)と1本の合流流路(74)とを有している。開閉部材(83)が合流流路(74)を開放させると、流体室(52)の吸入側の冷媒は、各分岐流路(70a,70b)を流れた後、合流流路(74)で合流して流体室(52)の吸入/膨張過程位置に導入される。このように複数本の分岐流路(70a,70b)を形成することで、補助吸入路(70)での冷媒の圧力損失が小さくなる。その結果、補助吸入路(70)から流体室(52)へ導入される冷媒の圧力が低下してしまうのを回避できる。
 第13の発明は、相対的に偏心回転運動する第1部材(50)と第2部材(51)との間に流体室(52)を形成すると共に、上記流体室(52)に吸入された冷媒の動力を回収する膨張機構(41)を備えた膨張機を前提としている。そして、この冷凍装置は、上記膨張機構(41)の内部に、流体室(52)の吸入側から分岐して該流体室(52)の吸入/膨張過程位置に連通する補助吸入路(70)が形成され、上記補助吸入路(70)内に、該補助吸入路(70)を開閉する開閉部材(83)が設けられていることを特徴とするものである。
 第13の発明では、第1の発明の冷凍装置に適用される膨張機を構成することができる。
 第14の発明は、第13の発明の膨張機において、上記開閉部材(83)は、閉鎖状態で上記流体室(52)の内壁に沿うように上記補助吸入路(70)の流出端を閉塞する弁体(83)で構成されていることを特徴とするものである。
 第14の発明では、第2の発明の冷凍装置に適用される膨張機を構成することができる。
 第1の発明では、膨張機構(41)の内部に補助吸入路(70)を形成し、この補助吸入路(70)内に開閉部材(83)を設けている。これにより、膨張機構(41)の外側に開閉部材を設ける場合と比較して、補助吸入路(70)の流出開口部から流体室(52)までの距離を短くすることができ、閉鎖状態の開閉部材(83)から流体室(52)までの間の空間(死容積)を削減することができる。その結果、死容積に起因して流体室(52)の冷媒が減圧されるのを防止でき、膨張機構(41)の動力回収効率を向上できる。
 特に、第2の発明では、閉鎖状態とした弁体(83)が流体室(52)の内壁に沿うように補助吸入路(70)の流出端(75)を閉塞する。これにより、閉鎖状態の弁体(83)と流体室(52)との間の死容積をほぼ無くすことができ、膨張機構(41)の動力回収効率を更に向上できる。
 第3の発明では、膨張機構(41)の内部において、流体室(52)の吸入側と補助吸入路(70)とを分岐させている。これにより、膨張機構(41)の外部に分岐用の配管を設けることなく、膨張機構(41)の内部に補助吸入路(70)を形成することができ、部品点数の削減、膨張機構(41)のコンパクト化を図ることができる。
 第4の発明では、弁体(83)の背面側の冷媒の圧力を制御することで、弁体(83)を開放位置と閉鎖位置との間で変位させている。これにより、比較的シンプルな構造により、膨張機構(41)の内部の弁体(83)を開閉させることができる。
 特に、第5の発明によれば、膨張機構(41)の流入側と繋がる高圧側導入路(28,77)と、膨張機構(41)の流出側と繋がる低圧側導入路(27)との開度を開度調節弁(19,20)で調節することで、弁体(83)の背面に作用する冷媒の圧力を容易且つ速やかに変化させることができる。
 また、第6の発明によれば、低圧側導入路(27)に開閉弁(19)を設け、低圧側導入路(27)に絞り部(90)を設けることで、2つの開閉弁を用いることなく、弁体(83)の開閉制御を行うことができる。
 また、第7の発明によれば、高圧側導入路(77)を補助吸入路(70)と連通するように膨張機構(41)の内部に形成しているので、膨張機構(41)の外部に高圧側導入路を構成するための配管等を設ける必要がない。従って、膨張機構(41)のコンパクト化、簡素化を図ることができる。
 更に、第8の発明によれば、付勢手段(87)によって弁体(83)を閉鎖位置に向かって付勢しているので、流体室(52)の内圧の変化に伴う弁体(83)のバタツキを抑えることができ、これに伴う死容積の発生や振動の発生等を防止できる。
 第9の発明によれば、ロータリー式の膨張機構(41)について、閉鎖状態とした補助吸入路(70)での死容積の発生を防止でき、動力回収効率を向上できる。
 また、10の発明によれば、補助吸入路(70)の少なくとも一部として、シリンダ(50)に沿うように周方向に延びる円弧状流路(72)を用いているので、補助吸入路(70)が他の部材等と干渉することを回避でき、所望とする角度位置に補助吸入路(70)の流出端(75)を形成することができる。
 第11の発明によれば、補助吸入路(70)の少なくとも一部として、シリンダ(50)や閉塞部材(43,44)の端面の溝部(71,72,73)を用いているので、比較的単純な加工により、膨張機構(41)の内部に補助吸入路(70)を形成することができる。
 第12の発明によれば、補助吸入路(70)の一部を複数の分岐流路(70a,70b)によって構成しているので、補助吸入路(70)の圧力損失を低減できる。これにより、補助吸入路(70)から流体室(52)へ導入される流体の圧力が低下してしまうのを抑制でき、流体室(52)で回収される冷媒の動力を増加させることができる。
 第13の発明によれば、第1の発明の作用効果を奏する膨張機を提供でき、第14の発明によれば、第2の発明の作用効果を奏する膨張機を提供できる。
図1は、本実施形態に係る空気調和装置の冷媒回路の概略構成図である。 図2は、2段膨張ユニットの縦断面図であり、弁体を開放状態としたものである。 図3は、2段膨張ユニットの横断面を示す拡大断面図であり、弁体を開放状態としたものである。 図4は、2段膨張ユニットの縦断面図であり、弁体を閉鎖状態としたものである。 図5は、第1動作中の2段膨張ユニットの横断面を示す拡大断面図であり、偏心部の回転角90°毎の動作を説明するものである。 図6は、第2動作中の2段膨張ユニットの横断面を示す拡大断面図であり、偏心部の回転角90°毎の動作を説明するものである。 図7は、変形例1に係る空気調和装置の冷媒回路の概略構成図である。 図8は、変形例2に係る空気調和装置の冷媒回路の概略構成図である。 図9は、変形例2の2段膨張ユニットの横断面を示す拡大断面図であり、図9(A)は弁体を閉鎖状態としたものであり、図9(B)は弁体を開放状態としたものである。 図10は、その他の変形例1の2段膨張ユニットの縦断面図であり、弁体を閉鎖状態としたものである。 図11は、その他の変形例2の2段膨張ユニットの縦断面図であり、弁体を閉鎖状態としたものである。 図12は、その他の変形例2の2段膨張ユニットの縦断面図であり、弁体を閉鎖状態としたものである。 図13は、膨張動作におけるシリンダ容積と冷媒圧力との関係を示すPV線図であり、従来例の課題を説明するためのものである。
符号の説明
10   空気調和装置(冷凍装置)
19   低圧導入弁(圧力制御機構、開度調節弁)
20   高圧導入弁(圧力制御機構、開度調節弁)
26   主導入管(冷媒導入路)
27   低圧導入管(冷媒導入路、低圧側導入路)
28   高圧導入管(冷媒導入路、高圧側導入路)
40   2段膨張ユニット(膨張機)
41   第1膨張機構(膨張機構)
43   フロントヘッド(閉塞部材)
44   中間プレート(閉塞部材)
50   第1シリンダ(第1部材)
51   第1ピストン(第2部材)
52   第1流体室(流体室)
70   補助吸入路
70a  上側分岐流路(分岐流路)
70b  下側分岐流路(分岐流路)
71   第1流路(補助吸入路、溝部)
72   第2流路(補助吸入路、溝部、円弧状流路)
73   第3流路(補助吸入路、溝部)
74   第4流路(補助吸入路、合流流路)
75   流出開口部(流出端)
77   高圧分流路(冷媒導入路、高圧側導入路、絞り部)
80   弁体室
83   弁体(開閉部材)
87   バネ部材(付勢手段)
90   キャピラリーチューブ(絞り部)
 以下、本発明の実施形態を図面に基づいて説明する。
 本実施形態では、本発明に係る冷凍装置が空気調和装置(10)を構成している。空気調和装置(10)は、室内の冷房と暖房とを切り換えて行うように構成されている。
  〈空気調和装置の全体構成〉
 図1に示すように、空気調和装置(10)は、冷媒回路(11)を備えている。冷媒回路(11)は、冷媒が循環して冷凍サイクルを行う閉回路を構成している。冷媒回路(11)には、冷媒として二酸化炭素(CO)が充填されている。つまり、冷媒回路(11)では、二酸化炭素を臨界圧力以上まで圧縮する、いわゆる超臨界サイクルが行われる。冷媒回路(11)には、圧縮・膨張ユニット(30)と室外熱交換器(12)と室内熱交換器(13)と四方切換弁(14)とブリッジ回路(15)と予膨張弁(17)とが設けられている。
 圧縮・膨張ユニット(30)は、縦長円筒形の密閉容器状に形成されたケーシング(31)を備えている。ケーシング(31)内には、その下部から上部へ向かって順に、圧縮機構(32)、電動機(33)、及び2段膨張ユニット(40)が設けられている。また、圧縮・膨張ユニット(30)には、圧縮機構(32)と電動機(33)と2段膨張ユニット(40)とを連結する出力軸(34)が設けられている。
 圧縮機構(32)は、ロータリー式の容積型圧縮機であって、いわゆる揺動ピストン型に構成されている。圧縮機構(32)で圧縮された冷媒は、吐出口を通じてケーシング(31)内に導入される。つまり、圧縮・膨張ユニット(30)は、ケーシング(31)の内部が高圧冷媒で満たされる、いわゆる高圧ドーム式に構成されている。
 電動機(33)は、ケーシング(31)の内周面に固定されるステータ部(35)と、ステータ部(35)の内側に位置して出力軸(34)と連結するロータ部(36)とを有している。電動機(33)は、その出力周波数が調節されることで、回転速度が可変となっている。つまり、圧縮・膨張ユニット(30)は、インバータ式に構成されている。
 2段膨張ユニット(40)は、いわゆる2シリンダ型の膨張ユニットであって、第1膨張機構(41)と第2膨張機構(42)とを有している。第1膨張機構(41)及び第2膨張機構(42)は、ロータリー式の容積型膨張機であって、いわゆる揺動ピストン型に構成されている。第1膨張機構(41)と第2膨張機構(42)とは直列に接続され、第1膨張機構(41)が上流側の膨張機構を、第2膨張機構(42)が下流側の膨張機構を構成している。第1膨張機構(41)の押しのけ容積は、第2膨張機構(42)の押しのけ容積よりも小さくなっている。また、第1膨張機構(41)及び第2膨張機構(42)は、出力軸(34)に連結されている。2段膨張ユニット(40)の詳細は後述する。
 圧縮・膨張ユニット(30)には、吸入管(21)と吐出管(22)と流入管(23)と流出管(24)とが設けられている。吸入管(21)は、ケーシング(31)を貫通して圧縮機構(32)の吸入側に直に接続されている。吐出管(22)は、ケーシング(31)を貫通して該ケーシング(31)の内部に開口している。流入管(23)は、ケーシング(31)を貫通して第1膨張機構(41)の吸入側(流入側)に直に接続されている。流出管(24)は、ケーシング(31)を貫通して第2膨張機構(42)の吐出側(流出側)に直に接続されている。
 上記室外熱交換器(12)及び室内熱交換器(13)は、いずれもクロスフィン型のフィン・アンド・チューブ式熱交換器を構成している。上記四方切換弁(14)は、第1から第4までのポートを有している。第1ポートは吸入管(21)と連通し、第2ポートは吐出管(22)と連通している。第3ポートは室外熱交換器(12)の一端と連通し、第4ポートは室内熱交換器(13)の一端と連通している。四方切換弁(14)は、第1のポートと第4のポートとが連通して第2のポートと第3のポートとが連通する状態(図1の実線で示す状態)と、第1のポートと第3のポートとが連通して第2のポートと第4のポートとが連通する状態(図1の破線で示す状態)とに切り換え自在に構成されている。
 上記ブリッジ回路(15)は、各々が逆止弁(16)を有する4本の配管がブリッジ状に接続されて構成されている。このブリッジ回路(15)は、四方切換弁(14)の切り換えに伴い冷媒の循環方向が変更されても、2段膨張ユニット(40)に対して常に同じ方向で冷媒を流通させるものである。なお、ブリッジ回路(15)に換えて四方切換弁を設けるようにしても良い。上記予膨張弁(17)は、ブリッジ回路(15)と流入管(23)とを繋ぐ配管に設けられている。予膨張弁(17)は、開度が調節可能な流量調節弁を構成している。
 冷媒回路(11)には、バイパス管(25)と主導入管(26)と低圧導入管(27)と高圧導入管(28)とが接続されている。バイパス管(25)は、一端が予膨張弁(17)と流入管(23)との間の配管に接続し、他端がブリッジ回路(15)と流出管(24)との間の配管に接続している。バイパス管(25)には、バイパス弁(18)が設けられている。バイパス弁(18)は、開度が調節可能な流量調節弁を構成している。
 主導入管(26)は、その終端が第1膨張機構(41)の弁体室(詳細は後述する)に接続されている。主導入管(26)の始端には、上記低圧導入管(27)及び高圧導入管(28)の終端がそれぞれ接続されている。低圧導入管(27)の始端は、2段膨張ユニット(40)の流出側(即ち、冷媒回路(11)の低圧ライン)に接続している。つまり、低圧導入管(27)は、2段膨張ユニット(40)の流出側と連通する低圧側導入路を構成している。高圧導入管(28)の始端は、2段膨張ユニット(40)の吸入側(即ち、冷媒回路(11)の高圧ライン)に接続している。つまり、高圧導入管(28)は、2段膨張ユニット(40)の吸入側と連通する高圧側導入路を構成している。また、低圧導入管(27)には低圧導入弁(19)が、高圧導入管(28)には高圧導入弁(20)がそれぞれ設けられている。低圧導入弁(19)及び高圧導入弁(20)は、開閉自在な開閉弁(開度調節弁)を構成している。なお、低圧導入弁(19)及び高圧導入弁(20)は、必ずしも開閉の2段階に切り換えられるものでなくても良く、その開度の微調整が可能な流量調節弁(電動弁)であっても良い。
  〈2段膨張ユニットの構成〉
 図2に示すように、上記圧縮・膨張ユニット(30)の上部には、上述した2段膨張ユニット(40)が設けられている。2段膨張ユニット(40)は、上記第1膨張機構(41)と第2膨張機構(42)とフロントヘッド(43)と中間プレート(44)とリアヘッド(45)とを備えている。2段膨張ユニット(40)では、出力軸(34)の下端から上端に向かって、フロントヘッド(43)、第1膨張機構(41)、中間プレート(44)、第2膨張機構(42)、及びリアヘッド(45)が順に配列されて積層されている。
 第1膨張機構(41)は、第1シリンダ(50)と第1ピストン(51)とを有している。第2膨張機構(42)は、第2シリンダ(60)と第2ピストン(61)とを有している。各膨張機構(41,42)では、第1部材としてのシリンダ(50,60)に対して第2部材としてのピストン(51,61)が相対的に偏心回転するように構成されている。
 シリンダ(50,60)は、上下の両端が開放された略筒状に形成されている。第1シリンダ(50)の内径及び厚みは、第2シリンダ(60)の内径及び厚みよりもそれぞれの寸法が短くなっている。第1シリンダ(50)は、その下端面がフロントヘッド(43)に閉塞され、その上端面が中間プレート(44)に閉塞されている。第2シリンダ(60)は、その下端面が中間プレート(44)に閉塞され、その上端面がリアヘッド(45)に閉塞されている。つまり、フロントヘッド(43)、中間プレート(44)、及びリアヘッド(45)は、シリンダ(50,60)の端部を閉塞する閉塞部材を構成している。また、これらの閉塞部材(43,44,45)及びシリンダ(50,60)は、ケーシング(31)に固定される固定部材を構成している。
 第1シリンダ(50)の内部には、第1ピストン(51)が収容され、第1シリンダ(50)と第1ピストン(51)との間に第1流体室(52)が区画形成されている。第2シリンダ(60)の内部には、第2ピストン(61)が収容され、第2シリンダ(60)と第2ピストン(61)との間に第2流体室(62)が区画形成されている。ピストン(51,61)は、筒状あるいは環状に形成されている。第1ピストン(51)の内径、外径、及び厚みは、第2ピストン(51)の内径、外径、及び厚みよりもそれぞれの寸法が短くなっている。第1ピストン(51)の内部には、出力軸(34)の第1偏心部(34a)が、第2ピストン(61)の内部には、出力軸(34)の第2偏心部(34b)がそれぞれ内嵌している。偏心部(34a,34b)は、ピストン(51,61)のクランク軸を構成している。第1偏心部(34a)における出力軸(34)の軸心に対する偏心量は、第2偏心部(34b)の偏心量よりも小さくなっている。
 図3に示すように、第1膨張機構(41)には第1ブレード(53)及び一対の第1ブッシュ(54)が、第2膨張機構(42)には第2ブレード(63)及び一対の第2ブッシュ(64)がそれぞれ設けられている。ブレード(53,63)は、ピストン(51,61)の外周面から径方向外側へ延びる板状に形成されている。一対のブッシュ(54,64)は、シリンダ(50,60)に形成されたブッシュ溝(55,65)に内嵌している。一対のブッシュ(56,64)は、それぞれ平面部及び円弧部を有し、その平面部が互いに向き合うように配置されている。一対のブッシュ(56,64)の間には、上記ブレード(53,63)が挟み込まれる。ブッシュ(56,64)は、シリンダ(50,60)に対して回動自在となり、且つブレード(53,63)はブッシュ(54,64)に対して進退自在となっている。これにより、ブレード(53,63)と一体化されたピストン(51,61)は、シリンダ(50,60)の内壁に摺接しながら旋回(公転)する運動が許容されている。
 第1シリンダ(50)の第1流体室(52)には、主吸入路(46)の流出端が開口している。主吸入路(46)は、上記中間プレート(44)を径方向に延びて形成され、その流入端側に上記流入管(23)が接続されている(図2を参照)。第1シリンダ(50)の第1流体室(52)には、連通路(47)の流入端が開口している。連通路(47)は、中間プレート(44)を軸方向斜めに延びて形成されている。第1膨張機構(41)では、主吸入路(46)の流出端と連通路(47)の流入端とが、第1ブレード(53)によって遮断されながら互いに近接するように配置されている。
 第2シリンダ(60)の第2流体室(62)には、上記連通路(47)の流出端が開口している。また、第2シリンダ(60)の第2流体室(62)には、流出路(48)の流入端が開口している。流出路(48)は、第2シリンダ(60)を径方向に延びて形成され、その流出端側に上記流出管(24)が接続されている(図2を参照)。第2膨張機構(42)では、連通路(47)の流出端と流出路(48)の流入端とが、第2ブレード(63)によって遮断されながら互いに近接するように配置されている。
 第1流体室(52)は、第1ブレード(53)によって2つの空間に仕切られている。図3においては、第1ブレード(53)の右側に仕切られる空間が、主吸入路(46)と連通する高圧室(52a)を構成し、左側に仕切られる空間が、連通路(47)と連通する第1膨張室(52b)を構成する。第2流体室(62)は、第2ブレード(63)によって2つの空間に仕切られている。図3においては、第2ブレード(63)の右側に仕切られる空間が、連通路(47)と連通する第2膨張室(62a)を構成し、左側に仕切られる空間が、流出路(48)と連通する低圧室(62b)を構成する。
 本実施形態では、第1膨張機構(41)の内部に補助吸入路(70)が形成されている。補助吸入路(70)は、第1流体室(52)の吸入側から分岐して第1流体室(52)に連通している。
 図2若しくは図3に示すように、補助吸入路(70)は、第1から第4までの流路(71,72,73,74)によって構成されている。第1流路(71)は、始端が上記主吸入路(46)と接続し、他端が第1シリンダ(50)の上端面に臨むように中間プレート(44)を軸方向に延びて形成されている。つまり、主吸入路(46)と補助吸入路(70)とは、第1膨張機構(41)の内部で分岐している。また、第1流路(71)は、中間プレート(44)の下端面に形成される溝部によって構成される。第2流路(72)は、その始端が第1流路(71)と接続し、第1シリンダ(50)の上端面を周方向に延びている。つまり、第2流路(72)は、シリンダ(50)に沿うように周方向に形成される円弧状流路を構成している。第3流路(73)は、その始端が第2流路(72)の終端と接続して第1シリンダ(50)の内部に向かって軸方向に延びて形成されている。第2流路(72)及び第3流路(73)は、第1シリンダ(50)の上端面に形成される溝部によって構成される。第4流路(74)は、その始端が第3流路(73)の終端と接続し、その終端が第1流体室(52)に開口するように第1シリンダ(50)の内部を径方向に延びて形成されている。
 以上のような構成の補助吸入路(70)は、その流出端が第1流体室(52)の吸入/膨張過程位置に開口している。つまり、補助吸入路(70)の流出開口部(75)は、第1ピストン(51)の回転動作時において、高圧室(52a)を介して主吸入路(46)の流出端と連通可能で、且つ第1膨張室(52b)を介して連通路(47)の流入端と連通可能となるように角度位置が設定されている。
 具体的に、本実施形態では、第1ブレード(53)ないし第1ブッシュ(54)を角度位置0度として基準とした場合に、補助吸入路(70)の流出開口部(75)の角度位置は、回転方向に向かって約220°に設定されている。なお、流出開口部(75)の角度位置は、これに限らず、空気調和装置(10)の運転条件に応じて任意に設定される。
 本実施形態では、第1膨張機構(41)の内部に弁体室(80)も形成されている。具体的に、第1シリンダ(50)には、その外周面から径方向に膨出する膨出部(57)が形成され、この膨出部(57)に上記弁体室(80)が形成されている。弁体室(80)は、大径筒部(81)と小径筒部(82)とによって構成されている。大径筒部(81)は、一端が膨出部(57)の先端に開口するように膨出部(57)の内部を径方向に延びて形成されている。大径筒部(81)の一端側の開口部には、上記主導入管(26)の流出端部が内嵌して接続されている。小径筒部(82)は、大径筒部(81)よりも小径に形成され、一端が大径筒部(81)の他端と接続している。小径筒部(82)は、径方向に延びて形成され、その他端が上記第4流路(74)と連通している。また、小径筒部(82)の内径は、第4流路(74)の内径と概ね等しくなっている。
 弁体室(80)には、弁体(83)が収容されている。弁体(83)は、補助吸入路(70)を開閉するための開閉部材を構成している。弁体(83)は、大径部(84)と小径部(85)とによって構成されている。大径部(84)及び小径部(85)は、それぞれ円柱状に形成され、大径部(84)が大径筒部(81)に内嵌し、小径部(85)が小径筒部(82)に内嵌している。弁体(83)は、弁体室(80)内をその軸方向に進退自在に構成されている。これにより、弁体(83)は、第3流路(73)と第4流路(74)とを連通させて補助吸入路(70)を開放する位置(図2及び図3を参照)と、第3流路(73)と第4流路(74)とを遮断して補助吸入路(70)を閉鎖する閉鎖位置(図4を参照)とに変位可能となっている。ここで、弁体(83)は、閉鎖位置(閉鎖状態)において、小径部(85)の先端が第1シリンダ(50)の内周面(第1流体室(52)の内壁)に沿うように補助吸入路(70)の流出開口部(75)を閉塞する。つまり、弁体(83)は、その大径部(84)が大径筒部(81)の他端部と当接する位置(閉鎖位置)に変位すると、その小径部(85)の先端面が第1流体室(52)の内周面と略一致する(あるいは僅かに陥没する)ように、小径部(85)の長さが設定されている。なお、小径部(85)の先端面において、第1シリンダ(50)の内周面の半径と同じ円弧半径となるような円弧状の凹みを形成しても良い。
 弁体室(80)には、弁体(83)の背面側にバネ部材(87)が収容されている。バネ部材(87)は、一端が主導入管(26)の流出端部と当接若しくは接続し、他端が弁体(83)の大径部(84)と当接若しくは接続されている。バネ部材(87)は、弁体(83)を第1シリンダ(50)の径方向内側に向かって付勢している。つまり、バネ部材(87)は、弁体(83)を上記の閉鎖位置に向かって付勢する付勢手段を構成している。
 また、弁体室(80)では、上記主導入管(26)から弁体(83)の背面側に向かって冷媒が導入可能となっている。具体的に、弁体室(80)には、上記低圧導入管(27)からの低圧冷媒(即ち、2段膨張ユニット(40)の吐出側の冷媒)と、上記高圧導入管(28)からの高圧冷媒(即ち、2段膨張ユニット(40)の吸入側の冷媒)とが主導入管(26)を介して導入されるように構成されている(図1を参照)。つまり、主導入管(26)と低圧導入管(27)と高圧導入管(28)とは、弁体室(80)における弁体(83)の背面側へ冷媒を導入する冷媒導入路を構成している。
 また、弁体室(80)には、上述した低圧導入弁(19)と高圧導入弁(20)の開閉の切り換えにより、低圧冷媒と高圧冷媒とが選択的に導入される。具体的に、低圧導入管(27)の低圧導入弁(19)を開放して高圧導入管(28)の高圧導入弁(20)を閉鎖すると、冷媒回路(11)の低圧ラインと弁体室(80)とが連通して弁体室(80)が低圧雰囲気となる。これにより、弁体(83)は、第1流体室(52)の内圧によって開放位置に変位する。一方、低圧導入管(27)の低圧導入弁(19)を閉鎖して高圧導入管(28)の高圧導入弁(20)を開放すると、冷媒回路(11)の高圧ラインと弁体室(80)とが連通して弁体室(80)が高圧雰囲気となる。その結果、弁体(83)は、バネ部材(87)によって付勢されて開放位置に変位する。以上のように、低圧導入弁(19)、高圧導入弁(20)、及び冷媒導入路(26,27,28)は、弁体(83)の背面側の冷媒の圧力を制御する圧力制御機構を構成している。
  -空気調和装置の動作-
 まず、空気調和装置(10)の基本的な運転動作について説明する。空気調和装置(10)では、四方切換弁(14)の設定に応じて冷房運転と暖房運転とが切り換えて行われる。
  〈冷房運転〉
 冷房運転時には、四方切換弁(14)が図1の実線で示す状態に設定される。この状態で圧縮・膨張ユニット(30)の電動機(33)に通電すると、室外熱交換器(12)が放熱器となり室内熱交換器(13)が蒸発器となる冷凍サイクルが行われる。
 圧縮機構(32)で圧縮された冷媒は、圧縮・膨張ユニット(30)のケーシング(31)内に吐出される。ケーシング(31)内の高圧冷媒は、吐出管(22)を経由して室外熱交換器(12)を流れる。室外熱交換器(12)では、冷媒が室外空気へ放熱する。
 室外熱交換器(12)で放熱した高圧冷媒は、流入管(23)を通じて2段膨張ユニット(40)へ吸入される。2段膨張ユニット(40)では、高圧冷媒が膨張し、高圧冷媒から動力が回収される。膨張した後の低圧冷媒は、流出管(24)を経由して室内熱交換器(13)を流れる。室内熱交換器(13)では、冷媒が室内空気から吸熱し、室内空気が冷却される。室内熱交換器(13)で蒸発した冷媒は、吸入管(21)を通じて圧縮機構(32)に吸入されて再び圧縮される。
  〈暖房運転〉
 暖房運転時には、四方切換弁(14)が図1の破線で示す状態に設定される。この状態で圧縮・膨張ユニット(30)の電動機(33)に通電すると、室内熱交換器(13)が放熱器となり室外熱交換器(12)が蒸発器となる冷凍サイクルが行われる。
 圧縮機構(32)で圧縮された冷媒は、圧縮・膨張ユニット(30)のケーシング(31)内に吐出される。ケーシング(31)内の高圧冷媒は、吐出管(22)を経由して室内熱交換器(13)を流れる。室内熱交換器(13)では、冷媒が室内空気へ放熱し、室内空気が加熱される。
 室内熱交換器(13)で放熱した高圧冷媒は、流入管(23)を通じて2段膨張ユニット(40)へ吸入される。2段膨張ユニット(40)では、高圧冷媒が膨張し、高圧冷媒から動力が回収される。膨張した後の低圧冷媒は、流出管(24)を経由して室外熱交換器(12)を流れる。室外熱交換器(12)では、冷媒が室外空気から吸熱して蒸発する。室外熱交換器(12)で蒸発した冷媒は、吸入管(21)を通じて圧縮機構(32)に吸入されて再び圧縮される。
  -2段膨張ユニットの動作-
 次に、2段膨張ユニット(40)の動作について説明する。2段膨張ユニット(40)では、低圧導入弁(19)及び高圧導入弁(20)の開閉状態に応じて、第1動作と第2動作とが切り換え可能となっている。第1動作と第2動作とは、冷房運転と暖房運転の切り換え、あるいは外気温度の変化などに応じて適宜切り換えられる。
  〈第1動作〉
 第1動作では、冷媒回路(11)の低圧導入弁(19)が閉鎖状態となり高圧導入弁(20)が開放状態となる。これにより、上述のように、弁体室(80)における弁体(83)の背面側は高圧雰囲気となる。このため、弁体(83)の背面側の圧力は、弁体(83)の先端側(第1流体室(52)側)の圧力と同等、あるいはそれ以上となる。従って、弁体(83)は、バネ部材(87)に付勢されながら弁体室(80)の径方向内側に向かって変位する。その結果、弁体(83)は、その大径部(84)が小径筒部(82)に当接して保持される(図4及び図5を参照)。弁体(83)がこのように閉鎖位置に変位すると、上記補助吸入路(70)の第4流路(74)がほぼ完全に閉塞される。
 このような状態において、2段膨張ユニット(40)では、冷媒が吸入される過程(吸入過程)、冷媒が膨張する過程(膨張過程)、及び冷媒が吐出される過程(吐出過程)が順次繰り返される。
 吸入過程では、第1膨張機構(41)の第1流体室(52)へ高圧冷媒が吸入される。具体的に、第1膨張機構(41)では、偏心部(34a,34b)の回転角が0°の状態(図5(A)に示す状態)から僅かに回転すると、第1ピストン(51)と第1シリンダ(50)との接触位置が主吸入路(46)の流出開口部を通過し、主吸入路(46)から高圧室(52a)へ高圧冷媒が流入し始める。その後、偏心部(34a,34b)の回転角が90°(図5(B))、180°(図5(C))、270°(図5(D))と次第に大きくなるに連れて、高圧室(52a)へ高圧冷媒が流入してゆく。主吸入路(46)から高圧室(52a)への高圧冷媒の流入は、偏心部(34a,34b)の回転角が約360°に達するまで(主吸入路(46)の流出開口部が閉じられるまで)続く。また、第1動作の吸入過程では、上記のように補助吸入路(70)が弁体(83)によって閉塞されている。従って、吸入過程において、補助吸入路(70)から高圧室(52a)へ冷媒が導入されることはない。
 次の膨張過程では、第1流体室(52)及び第2流体室(62)で冷媒が膨張する。具体的に、第1膨張機構(41)では、偏心部(34a,34b)の回転角が360°の状態から僅かに回転すると、主吸入路(46)と仕切られた高圧室(52a)が連通路(47)の流入開口部と連通し、高圧室(52a)が第1膨張室(52b)となる。更に、第1膨張室(52b)は、連通路(47)を介して第2膨張機構(42)の第2膨張室(62a)と連通する。偏心部(34a,34b)の回転角が540°、630°と次第に大きくなるに連れ、第1膨張室(52b)の容積が縮小するが、第2膨張室(62a)の容積がそれ以上に拡大される。この第1膨張室(52b)と第2膨張室(62a)の容積の総和の拡大は、偏心部(34a,34b)の回転角が720°に達する直前まで続く。その結果、膨張過程では、冷媒が膨張して減圧されると共に、膨張した冷媒の動力がピストン(51,61)及び偏心部(34a,34b)を介して出力軸(34)の回転動力に変換される。これにより、電動機(33)による圧縮機構(32)の駆動動力が軽減され、空気調和装置(10)の省エネ化が図られる。また、第1動作の膨張過程においても、補助吸入路(70)が弁体(83)によって閉塞されている。従って、膨張過程において、補助吸入路(70)から第1膨張室(52b)へ冷媒が導入されることはない。
 次の吐出過程では、第2膨張機構(42)の第2流体室(62)から冷媒が流出する。具体的には、偏心部(34a,34b)の回転角が720°の状態から僅かに回転すると、第2膨張室(62a)と流出路(48)とが連通し、第2膨張室(62a)が低圧室(62b)となる。偏心部(34a,34b)の回転角が810°、900°、990°と次第に大きくなるに連れ、低圧室(62b)の冷媒が流出路(48)へ流出してゆく。低圧室(62b)から流出路(48)への冷媒の流出は、偏心部(34a,34b)の回転角が約1080°に達するまで続く。
  〈第2動作〉
 第2動作では、冷媒回路(11)の低圧導入弁(19)が開放状態となり高圧導入弁(20)が閉鎖状態となる。これにより、上述のように、弁体室(80)における弁体(83)の背面側は低圧雰囲気となる。このため、弁体(83)の背面側の圧力は、弁体(83)の先端側(第1流体室(52)側)の圧力よりも小さくなる。従って、弁体(83)は、バネ部材(87)に付勢力に抗して弁体室(80)の径方向外側に向かって変位する。その結果、弁体(83)は、その小径部(85)の先端が小径筒部(82)内に収容される(図3及び図6を参照)。弁体(83)がこのように開放位置に変位すると、補助吸入路(70)の第3流路(73)と第4流路(74)とが繋がり、補助吸入路(70)と第1流体室(52)とが連通する。
 このような状態において、2段膨張ユニット(40)では、上記の第1動作と同様にして吸入過程、膨張過程、及び吐出過程が順次繰り返される。
 吸入過程では、上述と同様にして、偏心部(34a,34b)の回転角が0°(図6(A))、90°(図6(B))、180°(図6(C))、270°(図6(D))と次第に大きくなるに連れて、主吸入路(46)から高圧室(52a)へ高圧冷媒が流入してゆく。ここで、偏心部(34a,34b)の回転角が約220°に達すると、高圧室(52a)と補助吸入路(70)の流出開口部(75)とが連通し始める。従って、第2動作の吸入過程では、主吸入路(46)と補助吸入路(70)との双方から高圧冷媒が導入されることになる。
 次の膨張過程では、偏心部(34a,34b)の回転角が360°に達した後から、第1膨張室(52b)が連通路(47)を介して第2膨張室(62a)と連通する。そして、偏心部(34a,34b)の回転角が540°、630°、720°と次第に大きくなるに連れ、膨張室(52b,62a)で冷媒が膨張する。ここで、偏心部(34a,34b)の回転角が約580°に達するまでは、第1膨張室(52b)と補助吸入路(70)とは連通したままである。従って、第2動作の膨張過程では、補助吸入路(70)から第1膨張室(52b)へ冷媒が導入される。
 次の吐出過程では、偏心部(34a,34b)の回転角が720°に達した後から、第2膨張室(62a)と流出路(48)とが連通する。そして、偏心部(34a,34b)の回転角が810°、900°、990°、1080°と次第に大きくなるに連れ、低圧室(62b)の冷媒が流出路(48)へ流出してゆく。ここで、第2動作中に低圧室(62b)から流出する冷媒の圧力は、補助吸入路(70)からの冷媒の導入により、第1動作中よりも高くなる。
 以上のように、本実施形態の2段膨張ユニット(40)では、上記第1動作と第2動作とを選択的に切り換えることで、2段膨張ユニット(40)から流出する冷媒の圧力を適宜調節することができる。これにより、例えば冷房運転と暖房運転の切り換え、あるいは外気温度の変化などに起因して、圧縮機構の吸入圧力が変化した場合にも、2段膨張ユニット(40)では、これに追随させて冷媒を膨張させることができ、いわゆる過膨張の発生を防止できる。
  -実施形態の効果-
 上記実施形態では、2段膨張ユニット(40)の第1膨張機構(41)の内部に補助吸入路(70)を形成し、この補助吸入路(70)を開閉自在な弁体(83)を設けている。これにより、本実施形態によれば、弁体(83)を開閉させて第1動作と第2動作とを切り換えることで、第1流体室(52)に吸入される冷媒量を調節でき、圧縮機構(32)と2段膨張ユニット(40)との冷媒循環量をバランスさせることができる。その結果、空気調和装置(10)の運転条件が変化しても、2段膨張ユニット(40)の流出側で過膨張が発生することを回避でき、2段膨張ユニット(40)での動力回収効率の向上を図ることができる。
 また、上記実施形態では、第1動作中に弁体(83)が補助吸入路(70)を閉鎖する状態となると、弁体(83)の先端が補助吸入路(70)の流出開口部(75)をほぼ完全に閉塞するようにしている。これにより、弁体(83)の先端から第1流体室(52)までの間の空間(死容積)をほぼ無くすことができる。これにより、例えば死容積が形成された場合には、図13の実線で示すように死容積に起因して動力回収量(仕事量)が小さくなってしまうのに対し、本実施形態では、図13の破線で示すように、動力回収量が低減することがなく、2段膨張ユニット(40)で所望とする動力回収効率を得ることができる。
 また、上記実施形態では、低圧導入弁(19)と高圧導入弁(20)との開閉状態を切り換えることで、弁体(83)の背面に作用する冷媒の圧力を変化させて弁体(83)の開閉位置を容易に切り換えることができる。また、弁体(83)の背面側には、弁体(83)を閉鎖位置に付勢するバネ部材(87)を設けたので、第1動作中の弁体(83)が第1流体室(52)の内圧の変化の影響により前後に変位してしまうことを回避でき、死容積の発生や振動の発生等を確実に防止できる。
 更に、上記実施形態では、補助吸入路(70)の第1流路(71)や第2流路(72)や第3流路(73)を溝部によって構成しているので、中間プレート(44)や第1シリンダ(50)において、これらの流路(71,72,73)の加工が容易となる。また、第2流路(72)を第1シリンダ(50)の周方向に延びる円弧状としたので、第1膨張機構(41)において、他の部材等に干渉することなく補助吸入路(70)を形成することができる。
  《実施形態の変形例》
 上記実施形態については、以下のような各変形例のような構成としても良い。
  〈変形例1〉
 図7に示す変形例1の空気調和装置(10)は、上記実施形態の空気調和装置(10)において、高圧導入管(28)の高圧導入弁(20)をキャピラリーチューブ(90)に置き換えたものである。キャピラリーチューブ(90)は、高圧導入管(28)を流れる高圧冷媒に対して所定の抵抗を付与する絞り部を構成している。
 変形例1の第1動作では、低圧導入弁(19)が閉鎖状態となる。一方、高圧導入管(28)側の高圧冷媒は、キャピラリーチューブ(90)を徐々に通過し、主導入管(26)を介して弁体(83)の背面側に送られる。これにより、弁体(83)は高圧冷媒及びバネ部材(87)によって閉鎖位置に変位し、補助吸入路(70)の流出開口部(75)を閉鎖する(図4及び図5を参照)。
 一方、変形例1の第2動作では、低圧導入弁(19)が開放状態となる。これにより、弁体(83)の背面側の冷媒は、徐々に低圧雰囲気となるので、弁体(83)は第1流体室(52)の内圧によって開放位置に押し付けられ、補助吸入路(70)の流出開口部(75)が開放状態となる(図2及び図3を参照)。ここで、高圧導入管(28)にはキャピラリーチューブ(90)が設けられているので、第2動作中において、高圧導入管(28)側の冷媒が第1膨張機構(41)の吸入側に漏れてしまうことが最小限に抑えられる。
 以上のように、変形例1では、上記実施形態のように低圧導入管(27)と高圧導入管(28)の双方に開閉弁(19,20)を設けることなく、弁体(83)を開閉位置の間で変位させることができる。これにより、変形例1によれば、空気調和装置(10)の構造や弁体(83)の開閉制御の簡素化を図ることができる。
  〈変形例2〉
 図8に示す変形例2の空気調和装置(10)は、上記実施形態の空気調和装置(10)において、高圧導入管(28)及び高圧導入弁(20)が省略された構成となっている。一方、図9に示すように、変形例2の第1膨張機構(41)には、第1シリンダ(50)に高圧分流路(77)が形成されている。
 高圧分流路(77)は、その流入端が補助吸入路(70)の第2流路(72)に連通し、その流出端は弁体室(80)に連通している。つまり、高圧分流路(77)は、一端が上記補助吸入路(70)と連通して他端が弁体室(80)と繋がるように第1膨張機構(41)の内部に形成される、高圧側導入路を構成している。また、高圧分流路(77)は、補助吸入路(70)と比較して、その流路断面が小さくなっている。つまり、高圧分流路(77)は、その内部を流れる冷媒の流れに対して抵抗を付与する絞り部を構成している。
 更に、高圧分流路(77)は、弁体(83)の開閉位置に応じて弁体室(80)との連通状態が切り換わるように構成されている。具体的に、弁体(83)が開放位置となると、高圧分流路(77)の流出端が弁体(83)の大径部(84)によって閉塞される。その結果、高圧分流路(77)は、弁体(83)の背面側と僅かな隙間を介して仕切られる状態となる(図9(A)を参照)。一方、弁体(83)が閉鎖位置となると、高圧分流路(77)の流出端が弁体(83)の背面側と連通する状態となる(図9(B)を参照)。
 変形例2の第1動作では、低圧導入弁(19)が閉鎖状態となる。一方、補助吸入路(70)側の高圧冷媒は、高圧分流路(77)を通じて弁体(83)の大径部(84)の周囲まで送られる。これにより、高圧分流路(77)の冷媒は、大径部(84)の周囲より弁体(83)の背面側に徐々に漏れ込む。このため、弁体(83)の背面側の圧力が徐々に上昇し、弁体(83)が閉鎖位置に向かって変位する。その結果、最終的には、弁体(83)が補助吸入路(70)の流出開口部(75)を閉鎖する状態となる(図9(B)を参照)。この状態では、高圧分流路(77)が弁体(83)の背面側と完全に繋がった状態となるので、弁体(83)は閉鎖位置で確実に保持される。
 一方、変形例2の第2動作では、低圧導入弁(19)が開放状態となる。これにより、弁体(83)の背面側の冷媒は、徐々に低圧雰囲気となるので、弁体(83)は第1流体室(52)の内圧によって開放位置に押し付けられ、補助吸入路(70)の流出開口部(75)が開放状態となる(図9(A)を参照)。ここで、高圧分流路(77)の流出端は弁体(83)の大径部(84)によってほぼ閉塞され、且つ高圧分流路(77)は絞り部を構成しているので、補助吸入路(70)側の冷媒が弁体(83)の背面側に漏れてしまうことが最小限に抑えられる。
 以上のように、変形例2では、上記実施形態のような高圧導入管(28)や高圧導入弁(20)を設けることなく、弁体(83)を開閉位置の間で変位させることができる。これにより、変形例2によれば、空気調和装置(10)の構造や弁体(83)の開閉制御の簡素化を図ることができる。
  《その他の実施形態》
 本発明は、上記実施形態について、以下のような構成としてもよい。
 上記各実施形態において、補助吸入路(70)や主吸入路(46)等を異なる箇所に形成しても良い。具体的に、図10、図11、及び図12に示す例では、主吸入路(46)が第1シリンダ(50)を径方向に貫通するように形成されている。一方、図10の例の補助吸入路(70)は、その第1流路(71)が第1シリンダ(50)の上端面に、第2流路(72)が中間プレート(44)の下端面に形成されている。また、図11の例の補助吸入路(70)は、その第1流路(71)が第1シリンダ(50)の下端面に、第2流路(72)がフロントヘッド(43)の上端面に形成されている。
 更に、図12に示す例の補助吸入路(70)は、2本の分岐流路(70a,70b)と、1本の合流流路(74)とを有している。具体的に、2本の分岐流路は、第1シリンダ(50)の上端側に形成される上側分岐流路(70a)と、第1シリンダ(50)の下端側に形成される下側分岐流路(70b)とを有している。上側分岐流路(70a)と下側分岐流路(70b)の一端は、それぞれ主吸入路(46)と連通している。一方、合流流路は、上記各実施形態の第4流路(74)を構成しており、その始端が上側分岐流路(70a)と下側分岐流路(70b)の他端と連通している。第4流路(74)の終端は、第1流体室(52)の吸入/膨張過程位置に連通している。
 図12に示す例では、補助吸入路(70)に2本の分岐流路(70a,70b)を形成することにより、補助吸入路(70)の流路断面の総和が大きくなる。このため、補助吸入路(70)を開放させた状態において、補助吸入路(70)での圧力損失を低減できる。その結果、補助吸入路(70)から第1流体室(52)へ導入される冷媒の圧力が補助吸入路(70)で減圧されてしまうことを抑制でき、動力回収効率を高めることができる。また、このように2本の分岐流路(70a,70b)を形成したとしても、弁体(83)は合流流路(74)の流出開口部(75)を開閉させているので、分岐流路(70a,70b)に対応するように複数の弁体(83)を設ける必要もない。
 また、上記実施形態では、補助吸入路(70)の流出開口部(75)を流体室(52)内に一つだけ設けているが、これを2つ以上設けるようにしても良い。この場合には、各流出開口部(75)に対応するように、複数の弁体(83)を用いるようにすれば良い。また、上記実施形態では、複数の膨張機構を有する2段膨張ユニットについて本発明を適用しているが、1つの膨張機構、あるいは3つ以上の膨張機構から成る膨張ユニットについて、本発明を適用しても良いし、各膨張機構のそれぞれについて本発明の補助吸入路(70)や弁体(83)を適用しても良い。
 また、上記実施形態では、いわゆるロータリー式の容積型の膨張機構について、本発明を適用しているが、例えばスクロール式の膨張機構のように他の膨張機構に本発明を適用しても良い。また、上記実施形態では、室内の空調を行う空気調和装置について、本発明を適用しているが、例えば給湯機やチラーユニット、庫内の冷蔵/冷凍を行う冷却機等の冷凍装置に本発明を適用しても良い。
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 以上説明したように、本発明は、流体室で膨張した冷媒の動力を回収する膨張機構を備えた冷凍装置と、この冷凍装置に適用される膨張機に関し有用である。

Claims (14)

  1.  相対的に偏心回転運動する第1部材と第2部材との間に流体室を形成すると共に、上記流体室に吸入された冷媒の動力を回収する膨張機構を備えた冷凍装置であって、
     上記膨張機構の内部には、流体室の吸入側から分岐して該流体室の吸入/膨張過程位置に連通する補助吸入路が形成され、
     上記補助吸入路内に、該補助吸入路を開閉する開閉部材が設けられていることを特徴とする冷凍装置。
  2.  請求項1において、
     上記開閉部材は、閉鎖状態で上記流体室の内壁に沿うように上記補助吸入路の流出端を閉塞する弁体で構成されていることを特徴とする冷凍装置。
  3.  請求項1において、
     上記補助吸入路は、上記流体室の吸入側と上記膨張機構の内部で分岐していることを特徴とする冷凍装置。
  4.  請求項2において、
     上記膨張機構の内部には、上記弁体を上記補助吸入路の開閉位置の間で変位自在に収容する弁体室が形成され、
     上記弁体室と接続して弁体の背面側へ冷媒を導入する冷媒導入路と、該冷媒導入路の冷媒の圧力を制御する圧力制御機構とを更に備えていることを特徴とする冷凍装置。
  5.  請求項4において、
     上記冷媒導入路は、一端が上記膨張機構の流出側と連通して他端が弁体室と繋がる低圧側導入路と、一端が上記膨張機構の吸入側と連通して他端が弁体室と繋がる高圧側導入路とを有し、
     上記圧力制御機構は、上記低圧側導入路と高圧側導入路とのいずれか一方又は両方の開度を調節する開度調節弁を有していることを特徴とする冷凍装置。
  6.  請求項5において、
     上記開閉調節弁は、上記低圧側導入路を開閉する開閉弁で構成され、
     上記高圧側導入路には、冷媒の流れに対して抵抗を付与する絞り部が設けられていることを特徴とする冷凍装置。
  7.  請求項5において、
     上記高圧側導入路は、一端が上記補助吸入路と連通して他端が弁体室と繋がるように上記膨張機構の内部に形成されていることを特徴とする冷凍装置。
  8.  請求項4において、
     上記弁体室には、上記弁体を閉鎖位置に向かって付勢する付勢手段が設けられていることを特徴とする冷凍装置。
  9.  請求項1乃至8のいずれか1つにおいて、
     上記膨張機構は、上記第1部材としてのシリンダと、該シリンダ内に回転自在に収容される上記第2部材としてのピストンと、上記シリンダの端部を閉塞する閉塞部材とを有するロータリー式の膨張機構で構成されることを特徴とする冷凍装置。
  10.  請求項9において、
     上記補助吸入路は、上記シリンダに沿うように周方向に形成される円弧状流路を含んでいることを特徴とする冷凍装置。
  11.  請求項9において、
     上記補助吸入路の少なくとも一部は、上記シリンダ及び上記閉塞部材のいずれか一方又は両方の端面に形成される溝部によって構成されることを特徴とする冷凍装置。
  12.  請求項1において、
     上記補助吸入路は、上記流体室の吸入側から複数本に分岐する分岐流路と、一端が複数本の分岐流路の流出端と接続し、他端が流体室の吸入/膨張過程位置に連通する1本の合流流路とを有し、
     上記開閉部材は、上記合流流路を開閉するように構成されていることを特徴とする冷凍装置。
  13.  相対的に偏心回転運動する第1部材と第2部材との間に流体室を形成すると共に、上記流体室に吸入された冷媒の動力を回収する膨張機構を備えた膨張機であって、
     上記膨張機構の内部には、流体室の吸入側から分岐して該流体室の吸入/膨張過程位置に連通する補助吸入路が形成され、
     上記補助吸入路内に、該補助吸入路を開閉する開閉部材が設けられていることを特徴とする膨張機。
  14.  請求項13において、
     上記開閉部材は、閉鎖状態で上記流体室の内壁に沿うように上記補助吸入路の流出端を閉塞する弁体で構成されていることを特徴とする膨張機。
PCT/JP2009/000860 2008-03-24 2009-02-26 冷凍装置及び膨張機 WO2009119003A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008075707A JP2009228568A (ja) 2008-03-24 2008-03-24 冷凍装置及び膨張機
JP2008-075707 2008-03-24

Publications (1)

Publication Number Publication Date
WO2009119003A1 true WO2009119003A1 (ja) 2009-10-01

Family

ID=41113218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000860 WO2009119003A1 (ja) 2008-03-24 2009-02-26 冷凍装置及び膨張機

Country Status (2)

Country Link
JP (1) JP2009228568A (ja)
WO (1) WO2009119003A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046222A (ja) * 2004-08-05 2006-02-16 Daikin Ind Ltd 容積型膨張機及び流体機械
JP2006132523A (ja) * 2004-10-05 2006-05-25 Denso Corp 複合流体機械
WO2007052510A1 (ja) * 2005-10-31 2007-05-10 Matsushita Electric Industrial Co., Ltd. 膨張機およびこれを用いたヒートポンプ
JP2007127052A (ja) * 2005-11-04 2007-05-24 Matsushita Electric Ind Co Ltd 膨張機とその膨張機を用いた冷凍サイクル装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046222A (ja) * 2004-08-05 2006-02-16 Daikin Ind Ltd 容積型膨張機及び流体機械
JP2006132523A (ja) * 2004-10-05 2006-05-25 Denso Corp 複合流体機械
WO2007052510A1 (ja) * 2005-10-31 2007-05-10 Matsushita Electric Industrial Co., Ltd. 膨張機およびこれを用いたヒートポンプ
JP2007127052A (ja) * 2005-11-04 2007-05-24 Matsushita Electric Ind Co Ltd 膨張機とその膨張機を用いた冷凍サイクル装置

Also Published As

Publication number Publication date
JP2009228568A (ja) 2009-10-08

Similar Documents

Publication Publication Date Title
JP4797715B2 (ja) 冷凍装置
JP3674625B2 (ja) ロータリ式膨張機及び流体機械
KR100826755B1 (ko) 용적형 팽창기 및 유체기계
JP5306478B2 (ja) ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法
JP4367567B2 (ja) 圧縮機及び冷凍装置
WO2019003291A1 (ja) 空気調和装置
US20090007590A1 (en) Refrigeration System
JP4039024B2 (ja) 冷凍装置
EP1411309A2 (en) Expander
JP4617764B2 (ja) 膨張機
JP2004197640A (ja) 容積型膨張機及び流体機械
JP4735159B2 (ja) 膨張機
JP2012093017A (ja) 冷凍サイクル装置
WO2013027237A1 (ja) 二段圧縮機及びヒートポンプ装置
WO2009119003A1 (ja) 冷凍装置及び膨張機
JP2013019336A (ja) 膨張機および冷凍装置
JP4618266B2 (ja) 冷凍装置
JP2009133319A (ja) 容積型膨張機及び流体機械
JP4650040B2 (ja) 容積型膨張機
JP5321055B2 (ja) 冷凍装置
JP5987413B2 (ja) 二段圧縮機
JP2010156499A (ja) 冷凍装置
JP5233690B2 (ja) 膨張機
JP4617810B2 (ja) 回転式膨張機及び流体機械
JP5835299B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09724087

Country of ref document: EP

Kind code of ref document: A1