WO2013027237A1 - 二段圧縮機及びヒートポンプ装置 - Google Patents

二段圧縮機及びヒートポンプ装置 Download PDF

Info

Publication number
WO2013027237A1
WO2013027237A1 PCT/JP2011/004655 JP2011004655W WO2013027237A1 WO 2013027237 A1 WO2013027237 A1 WO 2013027237A1 JP 2011004655 W JP2011004655 W JP 2011004655W WO 2013027237 A1 WO2013027237 A1 WO 2013027237A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
low
refrigerant
injection
muffler
Prior art date
Application number
PCT/JP2011/004655
Other languages
English (en)
French (fr)
Inventor
哲英 横山
雷人 河村
関屋 慎
利秀 幸田
佐々木 圭
英明 前山
高橋 真一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/004655 priority Critical patent/WO2013027237A1/ja
Priority to JP2013529781A priority patent/JP5599514B2/ja
Publication of WO2013027237A1 publication Critical patent/WO2013027237A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Definitions

  • the present invention relates to a two-stage compressor used in a vapor compression refrigeration cycle, and a heat pump apparatus equipped with the two-stage compressor.
  • Vapor compression refrigeration cycle technology using a refrigerant compressor is widely used in refrigerators, air conditioners, heat pump water heaters, and the like.
  • Injection cycle technology is also attracting attention and has been partially commercialized.
  • Non-Patent Document 1 As an example of a general two-stage compressor used in the two-stage compression injection cycle technology, for example, there is a two-stage rotary compressor disclosed in Non-Patent Document 1.
  • the two-stage rotary compressor described in Non-Patent Document 1 includes a low-stage compression section and a high-stage compression section in a sealed container, and includes a discharge side of the low-stage compression section and a suction side of the high-stage compression section. Are connected by an intermediate connecting pipe.
  • this two-stage rotary compressor has a configuration in which an injection flow path is connected to a portion of the intermediate connecting pipe disposed outside the sealed container, and an injection refrigerant is injected from the connection portion.
  • Such a two-stage compressor is injected with a wet refrigerant (changes in a dryness range of 0 to 1, usually about 0.5).
  • the injection refrigerant is mixed with the gas refrigerant discharged from the lower stage compression section, and the mixed refrigerant is sucked into the higher stage compression section.
  • the refrigerant sucked into the higher stage compression section is a gas refrigerant having a temperature higher than that of the saturated gas state.
  • the wet injection refrigerant is sucked into the higher stage compression section as it is.
  • Patent Document 1 in a heat pump heating apparatus in which injection is performed during a compression stroke of a compressor through a gas injection pipe, the refrigerant in the gas injection pipe is heated with heat released from the compressor in the middle of the gas injection pipe.
  • a configuration is disclosed in which a heat exchange part is provided and heat is exchanged with a part of the liquid refrigerant after gas-liquid separation.
  • the heat pump type heating device disclosed in Patent Document 1 has an effect of recovering a part of the amount of heat conventionally discharged from the sealed container and increasing the heating capacity (or hot water supply capacity).
  • Patent Document 2 has a configuration in which the compressor of Patent Document 1 is replaced with a two-stage rotary compressor.
  • a two-stage rotary compressor disclosed in Patent Document 2 includes a heat exchange unit that heats an injection refrigerant or a refrigerant discharged from a low-stage compression unit. This heat exchanging section heats the injection refrigerant or the refrigerant discharged from the low-stage compression section at the outer surface of the hermetic container of the compressor.
  • the heat exchanging unit includes a high-pressure refrigerant discharged from the high-stage side compression unit, a lubricating oil stored in the high-pressure refrigerant environment, and an injection refrigerant or a low-stage side compression unit. Heat exchange is performed with the discharged refrigerant.
  • Patent Document 1 and Patent Document 2 can partially recover the amount of heat released from the compressor by the injection refrigerant, so that the effect of improving the heating capacity (or hot water supply capacity) can be obtained.
  • the prior arts described in Patent Document 1 and Patent Document 2 increase the temperature of the refrigerant sucked by the high-stage compression unit and increase the suction heating loss, so that the efficiency of the compressor decreases (non- (See Patent Document 1).
  • heating COP is not necessarily improved.
  • the prior art described in Patent Document 1 and Patent Document 2 is not originally a technique for improving the cooling capacity.
  • the suction heating loss increases, the compressor efficiency decreases and the cooling COP decreases. .
  • Patent Document 1 and Patent Document 2 is a technique suitable for an apparatus dedicated to heating (hot water supply), and is not suitable for an apparatus that combines cooling and heating. Furthermore, when a non-injection operation is performed even with a dedicated heating (hot-water supply) device, the two-stage compressor disclosed in FIGS. 2-1, 7-1 and 8-1 of Patent Document 2 has the above suction heating loss. Increases the compressor efficiency and lowers the heating COP. As described above, the prior art described in Patent Document 1 and Patent Document 2 is an invention that is effective only when heating (hot water supply) is a dedicated device and heating capacity (or hot water supply capacity) needs to be improved by injection operation. In other applications, there is a risk of lowering the COP.
  • the two-stage compressor used in the vapor compression refrigeration cycle has a heat exchange part that exchanges heat with an injection refrigerant or the like in a compact container, or from a low-stage compression part to a high-stage compression part. It is also an important issue to reduce the pressure loss generated at the intermediate connecting portion.
  • the conventional two-stage compressor described in Patent Document 2 has not been sufficiently studied for a specific structure for improving these.
  • the present invention has been made to solve the above-described problems, and it is possible to achieve both the expansion of the injection operation range of the vapor compression refrigeration cycle and the improvement of the efficiency and reliability of the two-stage compressor.
  • a first object is to obtain a possible two-stage compressor.
  • a second object is to obtain a heat pump apparatus equipped with this two-stage compressor.
  • a two-stage compressor according to the present invention is used in a vapor compression refrigeration cycle, and a low-stage side compression unit that compresses a low-pressure refrigerant of the vapor compression refrigeration cycle guided through a suction pipe;
  • a high-stage compression section that compresses the refrigerant discharged from the low-stage compression section and discharges high-pressure refrigerant to the vapor compression refrigeration cycle via a discharge pipe; a discharge side of the low-stage compression section;
  • An intermediate connecting part that connects the suction side of the high stage side compression part, a sealed container that houses at least the low stage side compression part and the high stage side compression part, the low stage side compression part, and the high stage side compression
  • a two-stage compressor comprising: a driving device that drives a section; and an injection flow path that guides an injection refrigerant of the vapor compression refrigeration cycle to the intermediate connection section; and the injection refrigerant that flows through the injection flow path and the Intermediate consolidation
  • a heat exchange part that exchanges heat with the refriger
  • a heat pump device includes the above-described two-stage compressor.
  • the two-stage compressor according to the present invention can achieve both the expansion of the injection operation range of the vapor compression refrigeration cycle and the improvement of the efficiency and reliability of the two-stage compressor.
  • FIG. 2 is a cross-sectional view taken along line A-A ′ of FIG. 1. It is a longitudinal cross-sectional view which shows the two-stage compressor which concerns on Embodiment 2 of this invention.
  • FIG. 4 is a cross-sectional view taken along the line A-A ′ of FIG. 3. It is a longitudinal cross-sectional view which shows the two-stage compressor which concerns on Embodiment 3 of this invention.
  • FIG. 6 is a cross-sectional view taken along the line A-A ′ of FIG. 5. It is a longitudinal cross-sectional view which shows the two-stage compressor which concerns on Embodiment 4 of this invention.
  • FIG. 8 is a cross-sectional view taken along the line A-A ′ of FIG. 7. It is the schematic which shows the structure of the heat pump type heating hot-water supply system which concerns on Embodiment 5 of this invention.
  • Embodiments 1 to 3 an example of a two-stage compressor according to the present invention will be described. Moreover, in Embodiment 4, an example of the heat pump apparatus provided with the two-stage compressor which concerns on this invention is demonstrated.
  • the present invention will be described taking a rotary piston type rotary two-stage compressor as an example.
  • the two-stage compressor according to the present invention is a rotary piston type rotary two-stage compressor. It is not limited.
  • the pressure of the refrigerant is expressed as “high pressure”, “medium pressure”, and “low pressure”, but these pressures are not absolute pressures, but change depending on the refrigerant used, the operating conditions of the heat pump device, etc. Means relative pressure.
  • FIG. 1 is a longitudinal sectional view showing a two-stage compressor according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG.
  • the arrow shown in FIG.1 and FIG.2 shows the flow of a refrigerant
  • the two-stage compressor 100 has two compression sections (compression mechanisms), a low-stage compression section 10 and a high-stage compression section 20.
  • the two-stage compressor 100 includes a low-stage compression unit 10, a high-stage compression unit 20, a low-stage discharge muffler 30, a high-stage discharge muffler 50, a lower support member 60, inside the hermetic shell 8 (sealed container).
  • An upper support member 70, a storage unit 3, an intermediate partition plate 5, a drive shaft 6, a motor unit 9 and the like are provided.
  • the closed shell 8 has a low-stage discharge muffler 30, a lower support member 60, a low-stage compression unit 10, an intermediate partition plate 5, a high-stage compression unit 20, and an upper support member from the bottom to the top. 70, the high-stage discharge muffler 50, and the motor unit 9 are stacked in this order.
  • the drive shaft 6 is provided along the vertical direction of the sealed shell 8, and a storage portion 3 for storing lubricating oil is formed in a lower portion of the sealed shell 8 (that is, a lower end portion of the drive shaft 6). ing. This lubricating oil lubricates each compression part and each bearing part.
  • the low-stage compression unit 10 includes a cylinder 11, a rotary piston 12, a vane 14, and the like.
  • the cylinder 11 has a substantially parallel plate shape, and a substantially cylindrical cylinder chamber 11a is formed at a substantially central portion.
  • the lower opening is closed by the lower support member 60 (specifically, the discharge port side surface portion 62), and the upper opening is closed by the intermediate partition plate 5, thereby ensuring airtightness.
  • the cylinder chamber 11 a communicates with the suction port 15 formed in the cylinder 11 and the discharge port 16 formed in the discharge port side surface portion 62.
  • the suction port 15 is connected to the suction pipe 1 via a connecting pipe 4 and a suction muffler 7 provided outside the sealed shell 8.
  • the suction port 15 is connected to the low pressure side of the vapor compression refrigeration cycle. More specifically, the low-pressure refrigerant flowing in the vapor compression refrigeration cycle flows into the suction muffler 7 via the suction pipe 1 and is separated into gas refrigerant and liquid refrigerant, and the separated gas refrigerant is sucked into the suction port via the connection pipe 4. 15 flows into the cylinder chamber 11a. Further, the discharge port 16 communicates with a suction port 25 of the high-stage compression unit 20 described later via an intermediate connection portion (the low-stage discharge muffler 30 and the intermediate connection flow path 84). The details of the intermediate connecting portion (the low-stage discharge muffler 30 and the intermediate connecting flow path 84) will be described later.
  • Rotating pistons 12 and vanes 14 are provided in the lower stage cylinder chamber 11a.
  • the rotary piston 12 has a substantially cylindrical shape and is provided at an eccentric portion of the drive shaft 6.
  • the vane 14 is slidably provided in a vane groove formed in the cylinder 11.
  • the vane 14 is urged in the direction of the drive shaft 6 by an urging member such as a spring, and the tip portion thereof can follow the outer peripheral portion of the rotary piston 12.
  • the cylinder chamber 11 a is partitioned by the vane 14 into a suction chamber that communicates with the suction port 15 and a compression chamber that communicates with the discharge port 16. That is, the low-stage compression unit 10 has a configuration in which the refrigerant is sucked into the cylinder chamber 11a from the suction port 15 by the rotation of the vane 14, compressed, and then discharged from the discharge port 16.
  • the high-stage compression unit 20 includes a cylinder 21, a rotary piston 22, a vane 24, and the like.
  • the cylinder 21 has a substantially parallel plate shape, and a substantially cylindrical cylinder chamber 21a is formed at a substantially central portion.
  • the lower opening is closed by the intermediate partition plate 5, and the upper opening is closed by the upper support member 70 (specifically, the discharge port side surface portion 72) to ensure airtightness.
  • the cylinder chamber 21a communicates with the suction port 25 formed in the cylinder 21 and the discharge port 26 formed in the upper support member 70 (specifically, the discharge port side surface portion 72).
  • the suction port 25 of the high-stage compression unit 20 communicates with the discharge port 16 of the low-stage compression unit 10 via an intermediate connection part (the low-stage discharge muffler 30 and the intermediate connection flow path 84).
  • the details of the intermediate connecting portion (the low-stage discharge muffler 30 and the intermediate connecting flow path 84) will be described later.
  • a rotary piston 22 and a vane 24 are provided in the high-stage cylinder chamber 21a.
  • the rotary piston 22 has a substantially cylindrical shape and is provided at an eccentric portion of the drive shaft 6.
  • the vane 24 is slidably provided in a vane groove formed in the cylinder 21. Further, the vane 24 is urged in the direction of the drive shaft 6 by an urging member such as a spring, and a tip portion thereof can follow the outer peripheral portion of the rotary piston 22.
  • the cylinder chamber 21 a is partitioned by the vane 24 into a suction chamber that communicates with the suction port 25 and a compression chamber that communicates with the discharge port 26. That is, the high-stage compression unit 20 is configured to suck the refrigerant from the suction port 25 into the cylinder chamber 21a as the vane 24 rotates, and then discharge the refrigerant from the discharge port 26 after being compressed.
  • the lower support member 60 includes a lower bearing portion 61 and a discharge port side surface portion 62.
  • the lower bearing portion 61 is formed in a substantially cylindrical shape, and rotatably supports the lower end side of the drive shaft 6.
  • the discharge port side portion 62 has a substantially flat plate shape that is a parallel plate, and closes the lower opening of the cylinder chamber 11a.
  • the discharge port 16 of the low-stage compression unit 10 is formed in the discharge port side surface portion 62, and a discharge valve 17 (open / close valve) is provided in the discharge port 16. More specifically, a recess 18 (groove) for installing the discharge valve 17 is formed around the discharge port 16, and the discharge valve 17 is provided in the recess 18.
  • the refrigerant compressed by the low-stage compression unit 10 is discharged by opening the discharge valve 17 of the discharge port 16 when the pressure exceeds a predetermined pressure.
  • the low-stage discharge muffler 30 includes a cup-shaped container 32 having an upper opening.
  • the container 32 is a non-pressure-resistant container.
  • the container 32 is provided below the discharge port side surface portion 62 of the lower support member 60, and forms a low-stage discharge muffler space 31 surrounded by the discharge port side surface portion 62 and the inner surface portion of the container 32. That is, the refrigerant discharged from the discharge port 16 of the low-stage compression unit 10 flows into the low-stage discharge muffler space 31.
  • the lower bearing part 61 of the lower support member 60 is provided so as to penetrate the container 32.
  • the low-stage discharge muffler space 31 communicates with a communication port 34 formed on the discharge port side surface 62 of the lower support member 60.
  • the communication port 34 communicates with the suction port 25 of the high-stage compression unit 20 via the intermediate connection channel 84. That is, the refrigerant that has flowed into the low-stage discharge muffler space 31 is sucked into the high-stage compression unit 20 through the intermediate connection flow path.
  • a hole penetrating the cylinder 11 and the intermediate partition plate 5 of the low-stage compression unit 10 in the drive shaft direction is formed, and the intermediate connection channel 84 is configured by the through hole.
  • the upper support member 70 includes an upper bearing portion 71, a discharge port side portion 72, and the like.
  • the upper bearing portion 71 is formed in a substantially cylindrical shape and rotatably supports a substantially intermediate portion of the drive shaft 6.
  • the discharge port side surface portion 72 has a substantially disk shape and closes the upper opening of the cylinder chamber 21a.
  • the discharge port side surface portion 72 is formed with the discharge port 26 of the high-stage compression unit 20 as described above, and the discharge port 26 is provided with a discharge valve 27 (open / close valve). More specifically, a recess 28 (groove) for installing the discharge valve 27 is formed around the discharge port 26, and the discharge valve 27 is provided in the recess 28. That is, the refrigerant compressed by the high-stage compression unit 20 is discharged by opening the discharge valve 27 of the discharge port 26 when the pressure exceeds a predetermined pressure.
  • the high-stage discharge muffler 50 includes a cup-shaped container 52 that is open at the bottom.
  • the container 52 is a pressure resistant container.
  • the container 52 is provided so as to cover the discharge port side surface portion 72 of the upper support member 70, and forms a high-stage discharge muffler space 51 surrounded by the discharge port side surface portion 72 and the inner surface portion of the container 52. That is, the refrigerant discharged from the discharge port 26 of the high stage side compression unit 20 flows into the high stage discharge muffler space 51.
  • the upper bearing portion 71 of the upper support member 70 is provided so as to penetrate the container 52.
  • the two-stage compressor 100 is a high-pressure shell type compressor in which the inside of the hermetic shell 8 becomes the pressure of the high-pressure refrigerant discharged from the high-stage side compression unit 20.
  • the discharge pipe 2 is provided, for example, at the upper part of the closed shell 8, and the high-pressure refrigerant discharged to the closed shell 8 is discharged from the discharge pipe 2 to the outside.
  • the motor unit 9 serves as a drive source for the low-stage compression unit 10 and the high-stage compression unit 20, and the upper end of the drive shaft 6 is connected to the rotor of the motor unit 9.
  • the motor unit 9 does not need to be provided inside the sealed shell 8.
  • the drive source of the low stage side compression part 10 and the high stage side compression part 20 is not limited to a motor.
  • the two-stage compressor 100 according to the first embodiment is used in a two-stage compression injection cycle technology, and an injection flow path 85 (intermediate pressure refrigerant distributed in a refrigerant circuit described later joins the intermediate connecting portion 80. And the injection circuit 87 and the second low-stage discharge muffler 40).
  • the intermediate connection portion 80 (configured by the low-stage discharge muffler 30 and the intermediate connection flow path 84 that connect the low-stage discharge port 17 and the high-stage suction port 26).
  • the non-pressure-resistant low-stage discharge muffler container 32 is replaced with the pressure-resistant second low-stage discharge muffler container 42 in order to arrange heat injection between the refrigerant flowing through the refrigerant and the refrigerant flowing through the injection flow path 85.
  • the injection refrigerant before merging flows into the second low-stage discharge muffler space 41 between 32 and 42 so as to be covered with a double structure.
  • the arrangement and configuration of the injection flow path 85 according to the first embodiment will be described in more detail.
  • the second low-stage discharge muffler 40 includes a cup-shaped second container 42 that is open at the top, and the second container 42 is a pressure-resistant container, and has a lower portion so as to cover the outer periphery of the low-stage discharge muffler 30. It is provided in the lower part of the discharge port side surface part 62 of the support member 60. As a result, a second low-stage discharge muffler space 41 is formed between the low-stage discharge muffler container 32 and the second container 42. The space between the second container 42 and the lower bearing portion 61 of the lower support member 60 is sealed by a seal portion 43, and the second low-stage discharge muffler space 41 of intermediate pressure and the high-pressure storage portion 3 are hermetically partitioned. Yes.
  • An injection circuit connecting port 86 is formed in the second container 42 of the second low-stage discharge muffler 40, and an injection circuit 87 is connected to the 86, so that the injection refrigerant flowing into the second low-stage discharge muffler space 41 is low.
  • the refrigerant discharged from the stage side compressor 10 to the low stage discharge muffler space 31 exchanges heat.
  • a heat exchange section 36 is formed on the outer surface of the container 32.
  • the heat exchange unit 36 according to the first embodiment is configured by a plurality of protrusions (for example, dimple shape, fin shape, etc.) formed on the container 32.
  • the container 32 is formed with a plurality of holes.
  • One injection port 44 is provided.
  • the injection circuit connection port 86 of the second container 42 is provided with a guide 47 for flowing the refrigerant flowing into the second low-stage discharge muffler space 41 in the direction of the first injection port.
  • the low-pressure refrigerant of the vapor compression refrigeration cycle flows into the suction muffler 7 ((2) in FIG. 1) via the suction pipe 1 ((1) in FIG. 1).
  • the refrigerant flowing into the suction muffler 7 is separated into a gas refrigerant and a liquid refrigerant in the suction muffler 7, and then the gas refrigerant is sucked into the cylinder chamber 11 a of the low-stage compression unit 10 through the connecting pipe 4. ((3) in FIG. 1).
  • the refrigerant sucked into the cylinder chamber 11a is compressed to an intermediate pressure by the low-stage compression unit 10.
  • the refrigerant compressed to the intermediate pressure is discharged from the discharge port 16 to the low-stage discharge muffler space 31 ((4) in FIGS. 1 and 2).
  • the refrigerant discharged into the low-stage discharge muffler space 31 passes through the intermediate connection channel 84 from the communication port 34 ((5) in FIG. 1), and is sucked into the cylinder chamber 21a of the high-stage compression unit 20 from the suction port 25. ((6) in FIG. 1).
  • the refrigerant sucked into the cylinder chamber 21 a is compressed to a high pressure by the high stage side compression unit 20.
  • the refrigerant compressed to a high pressure is discharged from the discharge port 26 to the high-stage discharge muffler space 51 ((7) in FIG. 1) and discharged from the communication port 54 to the inside of the sealed shell 8 ((8) in FIG. 1). ).
  • the refrigerant discharged into the sealed shell 8 passes through the gap of the motor portion 9 above, and then is discharged to the external refrigerant circuit through the discharge pipe 2 provided in the sealed shell 8 ((9 in FIG. 1). )).
  • the injection refrigerant ((10) in FIGS. 1 and 2) flowing through the injection circuit 87 is injected into the second low-stage discharge muffler space 41 from the injection circuit connection port 86.
  • the injection refrigerant injected into the second low-stage discharge muffler space 41 flows in the second low-stage discharge muffler space 41 as follows.
  • a guide 47 is attached to the injection circuit connection port 86 so that the injection refrigerant circulates in the second low-stage discharge muffler space 41 in the forward direction ( ⁇ direction A in FIG. 2). Thereby, the injection refrigerant is prevented from flowing in the reverse direction ( ⁇ B direction in FIG. 2), and mixing can be performed without disturbing the forward flow of the refrigerant discharged from the low stage side as much as possible. Can reduce pressure loss.
  • the injection refrigerant circulates in the second low-stage discharge muffler space 41 in the forward direction ( ⁇ A direction in FIG. 2), so that the injection refrigerant and the heat exchange part 36 (projection) formed on the outer surface part of the container 32. It flows in contact ((11) in FIGS. 1 and 2).
  • the injection refrigerant that has absorbed heat from the refrigerant flowing through the low-stage discharge muffler space 31 by increasing contact with the heat exchange unit 36 (projections) increases the dryness.
  • the refrigerant in the gas state flows into the low-stage discharge muffler space 31 through the first inlet 44 ((12) in FIGS. 1 and 2), and the low-stage side. It merges with the refrigerant discharged from the compressor 10 and circulates in the low-stage discharge muffler space 31 ((13) in FIGS. 1 and 2).
  • These refrigerants are mixed in the low-stage discharge muffler space 31 and guided to the intermediate connection channel 84 from the communication port 34.
  • the suction thin tube 38 is attached to the container 32, the liquid refrigerant of the injection refrigerant whose dryness has been increased is sucked into the low-stage discharge muffler space 31 through the suction thin tube 38, It merges with the refrigerant discharged from the stage side compressor 10.
  • This refrigerant is also mixed with the refrigerant discharged from the low-stage compression unit 10 in the low-stage discharge muffler space 31 and guided to the intermediate connection channel 84 from the communication port 34.
  • the compression operations of the low-stage compression unit 10 and the high-stage compression unit 20 are as follows.
  • the low-stage compression unit 10 and the high-stage compression unit 20 are configured such that when the drive shaft 6 rotates and the rotary pistons 12 and 22 rotate eccentrically, the compression chamber volume and the suction chamber volume change, and the suction port The refrigerant sucked from 15 and 25 is compressed.
  • the discharge valves 17 and 27 are opened and closed, and the compressed refrigerant is discharged from the discharge ports 16 and 26.
  • the two-stage compressor 100 configured as described above can exhibit the following functions. -Pressure loss reduction function-Uniform mixing function-Heat insulation function during non-injection operation-Compactness
  • functions and effects of the two-stage compressor 100 according to the first embodiment will be sequentially described.
  • the refrigerant (low-stage discharge refrigerant) compressed to medium pressure by the low-stage compression unit 10 is discharged from the discharge port 16 to the low-stage discharge muffler space 31. . Then, the low-stage discharge refrigerant flows from the discharge port 16 toward the communication port 34 and flows into the intermediate connection channel 84 from the communication port 34. At this time, the flow direction of the low-stage discharge refrigerant from the discharge port 16 to the communication port 34 is the positive direction (direction A in FIG. 2).
  • the flow direction of the injection refrigerant flowing from the second low-stage discharge muffler space 41 into the low-stage discharge muffler space 31 is also the positive direction ( ⁇ A in FIG. 2).
  • 1st injection port 44 is formed so that it may become (direction). That is, when viewed from the discharge port 16, the first injection port 44 is formed on the side opposite to the direction of the low-stage discharge refrigerant flowing from the discharge port 16 to the communication port 34 (hereinafter referred to as the back side of the discharge port 16). ing.
  • the injection refrigerant injected into the low-stage discharge muffler space 31 through the first inlet 44 formed at such a position becomes a flow along the flow direction of the low-stage discharge refrigerant and is mixed with the low-stage discharge refrigerant. Is done. Therefore, the refrigerant flow in the low-stage discharge muffler space 31 can be prevented from being disturbed, and an increase in pressure loss at the intermediate connecting portion can be prevented.
  • the injection refrigerant flows into the second low-stage discharge muffler space 41 in a low-temperature liquid state or a liquid-mixed state (gas-liquid two-phase state).
  • the injection refrigerant that has flowed into the second low-stage discharge muffler space 41 flows so as to be in contact with the heat exchanging portion 36 formed on the outer surface portion of the container 32 of the low-stage discharge muffler 30, so that the low-stage discharge refrigerant in a gas state
  • heat exchange is performed with an intermediate pressure refrigerant having a high dryness (close to a gas state) after mixing with the injection refrigerant.
  • the shape of the heat exchanging portion 36 is a shape that can provide a large heat transfer area of the heat exchanging portion 36 by providing convex and concave portions on the inner and outer surfaces of the container 32 or welding fin-shaped slits.
  • the metal aluminum, copper, and these alloys
  • the container 42 needs to have a thickness necessary for pressure resistance, but it is desirable to make the thickness of the container 32 that does not require pressure resistance as thin as possible. If the heat exchange part 36 is comprised as mentioned above, the heat passage rate [W / m ⁇ 2> / K] from the inner side to the outer side of the container 32 can be increased.
  • the injection refrigerant heated by the heat exchanging unit 36 increases its dryness, and the gas refrigerant component of the injection refrigerant is injected into the low-stage discharge muffler space 31 from the first inlet 44.
  • the efficiency fall and damage of the high stage side compression part 20 can be prevented, and the injection operation range can be expanded.
  • the first inlet 44 forms a plurality of first inlets 44 in a wide area on the back side of the outlet 16. For this reason, the injection refrigerant injected into the low-stage discharge muffler space 31 and the low-stage discharge refrigerant in the gas state can be more uniformly mixed.
  • the injection refrigerant absorbs heat from the low-stage discharge refrigerant in the low-stage discharge muffler space 31. For this reason, since the temperature rise of the refrigerant
  • the two-stage compressor 100 according to the first embodiment has a configuration necessary for the functions (1) to (3) described above as an integral structure with the low-stage discharge muffler 30. Therefore, the two-stage compressor 100 according to the first embodiment can maintain the same size as a conventional two-stage compressor (a two-stage compressor having no injection function), which is advantageous for downsizing.
  • the two-stage compressor 100 according to Embodiment 1 aims to increase the efficiency and reliability of the two-stage compressor and to expand the injection operation range of the vapor compression refrigeration cycle as compared with the conventional one. It becomes possible.
  • FIG. FIG. 3 is a longitudinal sectional view showing a two-stage compressor according to Embodiment 2 of the present invention.
  • 4 is a cross-sectional view taken along the line AA ′ of FIG.
  • the arrows shown in FIGS. 3 and 4 indicate the flow of the refrigerant.
  • the two-stage compressor 100 according to the second embodiment will be described with reference to FIGS. 3 and 4.
  • the two-stage compressor 100 according to the second embodiment will be described by focusing on the difference from the first embodiment.
  • items not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • the two-stage compressor 100 according to the second embodiment differs from the two-stage compressor 100 shown in the first embodiment in the shapes of the low-stage discharge muffler 30 and the second low-stage discharge muffler 40, and the intermediate connection flow. This is the arrangement position of the path 84.
  • the low-stage discharge muffler 30 includes a cup-shaped container 32 having an upper opening.
  • the container 32 is a non-pressure-resistant container, for example.
  • the container 32 is provided below the discharge port side surface portion 62 of the lower support member 60, and forms a low-stage discharge muffler space 31 surrounded by the discharge port side surface portion 62 and the inner surface portion of the container 32.
  • a low-stage discharge muffler space 31 is formed around the lower bearing portion 61 (in other words, an annular low-stage discharge that is concentric with the axis of the drive shaft 6).
  • the muffler space 31 is formed.
  • the container 32 according to the second embodiment is formed by pressing a material having high thermal conductivity (such as aluminum). And the uneven
  • FIG. 1 A material having high thermal conductivity (such as aluminum).
  • the second low-stage discharge muffler 40 includes a cup-shaped second container 42 having an upper opening.
  • the second container 42 is a pressure-resistant container, and is provided below the discharge port side surface portion 62 of the lower support member 60 so as to cover the outer periphery of the low-stage discharge muffler 30. That is, in the second embodiment, the second low-stage discharge muffler space 41 is formed in an annular shape that is concentric with the axis of the drive shaft 6 and the low-stage discharge muffler space 31.
  • the intermediate connection channel 84 according to the second embodiment is provided so that a part thereof is disposed outside the sealed shell 8. For this reason, the communication port 34 that communicates the intermediate connection channel 84 and the low-stage discharge muffler space 31 is formed in the container 32 of the low-stage discharge muffler 30.
  • the injection refrigerant flowing through the injection circuit 87 is injected into the second low-stage discharge muffler space 41 from the injection circuit connection port 86.
  • the injection refrigerant injected into the second low-stage discharge muffler space 41 flows so as to circulate in the second low-stage discharge muffler space 41 in the forward direction (direction A in FIG. 4).
  • the injection refrigerant exchanges heat with a low-stage discharge refrigerant (refrigerant in the low-stage discharge muffler space 31) in a gas state at a heat exchanging portion 36 (uneven portion) formed in the container 32.
  • the heat-absorbed injection refrigerant increases in dryness, and the gas refrigerant component of the injection refrigerant is injected into the low-stage discharge muffler space 31 from the plurality of first injection ports 44 formed on the back side of the discharge port 16.
  • the injection refrigerant injected into the low stage discharge muffler space 31 becomes a flow along the flow direction of the low stage discharge refrigerant and is mixed with the low stage discharge refrigerant.
  • a part of the mixed refrigerant is guided to the high-stage compression unit 20 through an intermediate connection channel 84 that is partly disposed outside the sealed shell 8.
  • the uneven portion is formed on the outer surface side and the inner surface side of the container 32 to form the heat exchanging portion 36.
  • the container 32 may be formed of a material having high thermal conductivity (such as aluminum).
  • the container 32 itself may function as a heat exchanger. That is, the uniform mixing function according to the first embodiment can be obtained without forming the protrusions shown in the first embodiment and the uneven portions shown in the second embodiment in the container 32.
  • Embodiment 3 FIG.
  • the two-stage compressor 100 shown in the first embodiment and the second embodiment shows a form in which a part of the injection flow path 85 is configured by the second low-stage discharge muffler 40. It is also possible to configure the two-stage compressor 100 without forming the second low-stage discharge muffler 40.
  • the two-stage compressor 100 according to the third embodiment will be described by focusing on the differences from the first and second embodiments.
  • items that are not particularly described are the same as those in the first or second embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 5 is a longitudinal sectional view showing a two-stage compressor according to Embodiment 3 of the present invention.
  • FIG. 6 is a cross-sectional view taken along the line AA ′ of FIG.
  • the arrow shown in FIG.5 and FIG.6 shows the flow of a refrigerant
  • the low-stage discharge muffler 30 includes a cup-shaped container 32 having an upper opening.
  • the container 32 is a pressure resistant container.
  • the container 32 is provided below the discharge port side surface portion 62 of the lower support member 60, and forms a low-stage discharge muffler space 31 surrounded by the discharge port side surface portion 62 and the inner surface portion of the container 32.
  • the third embodiment is different from the first and second embodiments in that the injection flow path 85 is configured without the second low-stage discharge muffler 40.
  • the injection flow path 85 is formed of, for example, a copper tube, is wound around the outer peripheral surface (cup-shaped side surface and bottom surface) of the container 32 of the low-stage discharge muffler 30, and the end thereof is connected to the container 32, A first inlet 44 is configured.
  • the two-stage compressor 100 according to the third embodiment it is injected into the low-stage discharge muffler space 31 by arranging so that the contact area between the outer wall of the injection flow path 85 and the outer wall of the container 32 increases.
  • the previous injection refrigerant exchanges heat with the low-stage discharge refrigerant in the low-stage discharge muffler space 31.
  • a groove for winding the injection circuit 87 is formed on the outer peripheral surface of the container 32.
  • the container 32 and the injection circuit 87 are welded by brazing or the like.
  • the cross section of the injection circuit 87 is flattened (ellipse, oval, rectangle) to increase the contact area. It is preferable to add a configuration such as the above.
  • the injection refrigerant flowing through the injection flow path 85 is low in the container 32 through the outer wall of the injection flow path 85 in contact with the outer wall of the container 32.
  • Heat exchange with the gas refrigerant discharged into the stage discharge muffler space 31 is performed.
  • the heat-injected injection refrigerant increases in dryness and is injected into the low-stage discharge muffler space 31 from the first injection port 44 formed on the back side of the discharge port 16.
  • the injection refrigerant injected into the low-stage discharge muffler space 31 becomes a flow along the flow direction of the low-stage discharge refrigerant and is mixed with the low-stage discharge refrigerant to be uniform.
  • a part of the mixed refrigerant is guided to the high-stage compression unit 20 through an intermediate connection channel 84 that is partly disposed outside the sealed shell 8.
  • the two-stage compressor 100 when the non-injection operation is performed under the condition that the heating capacity is sufficient, the two-stage compressor 100 shown in the first and second embodiments. Similarly, the suction heating loss of the high-stage compression unit 20 can be prevented, and the efficiency can be improved as compared with the two-stage compressor described in Patent Document 2.
  • the two-stage compressor 100 according to the third embodiment similarly to the two-stage compressor 100 shown in the first embodiment, higher efficiency and higher reliability of the two-stage compressor than in the past, and The effects according to the first embodiment can be obtained, such as the expansion of the injection operation range of the vapor compression refrigeration cycle.
  • Embodiment 4 FIG.
  • the two-stage compressor 100 shown in the third embodiment is configured so as to cover the entire outer peripheral surface (cup-shaped side surface and bottom surface) of the low-stage discharge muffler container 31 with the injection flow path 85, but the intermediate connecting portion 80. There may be a case where the two-stage compressor 100 is configured so as to cover a part thereof with the injection flow path 85.
  • the two-stage compressor 100 according to the fourth embodiment will be described by focusing on the difference from the first to third embodiments.
  • items that are not particularly described are the same as those in the first to third embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 7 is a longitudinal sectional view showing a two-stage compressor according to Embodiment 4 of the present invention.
  • FIG. 8 is a cross-sectional view taken along the line AA ′ of FIG.
  • the arrow shown in FIG.7 and FIG.8 shows the flow of a refrigerant
  • the low-stage discharge muffler 30 includes a cup-shaped pressure-resistant container 32 having an upper opening.
  • the container 32 is provided below the discharge port side surface portion 62 of the lower support member 60, and forms a low-stage discharge muffler space 31 surrounded by the discharge port side surface portion 62 and the inner surface portion of the container 32.
  • the injection flow path 85 does not include the second low-stage discharge muffler 40 and is configured by an injection circuit 87.
  • the injection refrigerant flowing through the injection flow path 85 is injected into the low-stage discharge muffler space 31 from the first inlet 44 provided in the container 32 of the low-stage discharge muffler 30, and after joining and mixing with the low-stage discharge refrigerant, The air is sucked into the cylinder chamber 21 a from the suction port 25 of the high stage side cylinder 21 through the intermediate connection channel 84 from the communication port 34 provided in the container 32.
  • middle connection flow path 84 is the characteristics.
  • the first injection port 44 and the communication port 34 are arranged substantially concentrically with the container 32 of the low-stage discharge muffler 30, and a circular pipe-shaped injection flow path 85.
  • a double tube structure in which the intermediate connection channel 84 is inserted therein is configured, and a heat exchanging portion 83 formed of a fin-shaped protrusion is provided on the outer surface of the intermediate connection channel 84.
  • the injection refrigerant flowing through the injection flow path 85 passes through the heat exchange portion 83 on the outer surface of the intermediate connection flow path 84 and is mixed with the injection refrigerant. Promotes heat exchange with intermediate-pressure refrigerant with high dryness (close to gas state).
  • the heat-injected injection refrigerant increases in dryness and is injected into the low-stage discharge muffler space 31 from the first injection port 44 formed on the back side of the discharge port 16.
  • the injection refrigerant injected into the low-stage discharge muffler space 31 becomes a flow along the flow direction of the low-stage discharge refrigerant and is mixed with the low-stage discharge refrigerant to be uniform.
  • a part of the mixed refrigerant is guided to the high-stage compression unit 20 through an intermediate connection channel 84 that is partly disposed outside the sealed shell 8.
  • the suction heating loss of the high-stage compression unit 20 is reduced, and is described in Patent Document 2.
  • the effect of improving the efficiency is obtained as compared with the two-stage compressor. That is, when the two-stage compressor 100 according to the fourth embodiment performs the non-injection operation under the condition that the heating capacity is sufficient, the injection refrigerant does not flow into the injection flow path 85. At this time, since the intermediate connection channel 84 immediately after the low-stage discharge muffler 30 flows out is covered with the injection channel, the intermediate connection channel 84 is in an adiabatic state.
  • the two-stage compressor 100 according to the fourth embodiment can also prevent the suction heating loss of the high-stage compression unit 20, so although the improvement effect is smaller than that of the two-stage compressor of 3, the efficiency can be improved as compared with the two-stage compressor described in Patent Document 2.
  • the rotary piston type two-stage compressor 100 has been described.
  • the two-stage compressor according to the present invention may be of any compression type as long as it is a two-stage compressor in which a high-stage compression section and a low-stage compression section are intermediately connected.
  • various two-stage compressors such as a swing piston type and a sliding vane type are used as the compression type of the two-stage compressor according to the present invention
  • the two-stage compression shown in the first to third embodiments is used. The same effect as the machine 100 can be obtained.
  • the pressure in the hermetic shell 8 is changed to the pressure in the high-stage compression section 20 (more specifically, the pressure of the refrigerant discharged from the high-stage compression section 20).
  • An equal high pressure shell type two-stage compressor 100 has been described.
  • the two-stage compressor according to the present invention is an intermediate pressure shell type two-stage compressor in which the pressure in the hermetic shell 8 becomes the discharge refrigerant pressure of the low-stage compression unit 10, or the pressure in the hermetic shell 8 is low.
  • a low-pressure shell-type two-stage compressor that serves as the suction refrigerant pressure of the stage-side compressor 10 may be used.
  • the same effect as the two-stage compressor 100 shown in the first to third embodiments can be obtained.
  • the low-stage compression unit 10 is disposed below the high-stage compression unit 20 and discharges the refrigerant downward into the low-stage discharge muffler space 31.
  • the compressor 100 has been described. However, in the case of a two-stage compressor in which the low-stage side compression unit 10, the high-stage side compression unit 20, and the low-stage discharge muffler 30 are arranged differently, the effects in accordance with the first to fourth embodiments are achieved. can get. In general, since the low-stage discharge muffler 30 disposed on the lower side is disposed in the lubricating oil storage unit 3 in the sealed container, the refrigerant discharged into the low-stage discharge muffler space 31 is heated by the lubricating oil. Cheap.
  • the low-stage discharge muffler 30 disposed on the upper side is not easily heated by the lubricating oil. Therefore, when the low-stage discharge muffler 30 is disposed on the upper side, the effect of heat insulation is small by covering with the injection flow path as in the first to fourth embodiments. However, the effect of achieving uniform mixing by heating the injection refrigerant flowing through the injection flow path with the refrigerant flowing through the intermediate connecting portion is the same as when the low-stage discharge muffler 30 is disposed on the lower side.
  • a discharge valve mechanism for opening and closing the discharge port 16 the elasticity of a thin plate-like valve and the pressure of the low-stage compression unit 10 and the low-stage discharge muffler space 31 are used.
  • the description has been made assuming a reed valve system that opens and closes depending on the difference.
  • other types of discharge valve mechanisms may be used.
  • it may be an open / close valve that opens and closes the discharge port 16 using a pressure difference between the low-stage compression unit 10 and the low-stage discharge muffler space 31 such as a poppet valve type used in an intake / exhaust valve of a four-stroke engine. .
  • the two-stage compressor 100 shown in the first to fourth embodiments is not limited to the refrigerant to be used.
  • HFC and refrigerant R410A, R22, R407 others
  • HC refrigerant isobutane, propane
  • natural refrigerant such as or CO 2 refrigerant
  • the two-stage compressor 100 shown in the first to third embodiments is a refrigerant having a small physical property such as HC refrigerant (isobutane, propane) or HFO1234yf and having a small discharge superheat (temperature after adiabatic compression-saturated gas temperature).
  • the low-stage compressor 100 in which the low-stage compressor is disposed below the high-stage compressor is a low-stage compressor (that is, lubricating oil) in the low-stage compressor 100.
  • the heat exchange part 36 heats the injection refrigerant during the injection operation, and the non-injection operation.
  • the entire periphery of the low-stage discharge muffler container portion 32 is covered with the injection flow path 85 (the second low-stage discharge muffler 40 and the injection circuit 87). Indicated. In the case of a structure that covers a part of the container part 32, the effect of heating the injection refrigerant by the heat exchanging unit 36 during the injection operation, and the effect of insulating the low-stage discharge refrigerant and improving the compressor efficiency during the non-injection operation are reduced. .
  • Embodiment 5 an example of a cooling / heating heat pump apparatus including the two-stage compressor 100 shown in the first to fourth embodiments will be described.
  • FIG. 9 is a schematic diagram showing the configuration of a cooling / heating heat pump device according to Embodiment 5 of the present invention.
  • the cooling / heating heat pump apparatus 200 includes a two-stage compressor 100, a four-way valve 201, a first heat exchanger 202, a first expansion valve 203, a second heat exchanger 206, an injection expansion valve 205, an injection heat exchanger 204, a main refrigerant.
  • a circuit 207 and an injection circuit 87 are provided.
  • the two-stage compressor 100 of the cooling / heating heat pump apparatus 200 is the two-stage compressor 100 described in the first to fourth embodiments.
  • an intermediate connecting portion 80 described later of the two-stage compressor 100 corresponds to the low-stage discharge muffler 30 and the intermediate connecting flow path 84 described in the first to fourth embodiments. Further, the vicinity of the connection portion with the intermediate coupling portion 80 in the injection circuit 87 corresponds to the injection flow path 85 described in the first to fourth embodiments.
  • the cooling / heating heat pump apparatus 200 includes a main heat pump 202, a first expansion valve 203, and an injection heat exchanger 204 that are sequentially connected from the two-stage compressor 100 through the four-way valve circuit 201a during the cooling operation.
  • a part of the refrigerant branches at the branch point 209 between the refrigerant circuit 207, the injection heat exchanger 204, and the second expansion valve 205, and flows through the injection expansion valve 205 and the injection heat exchanger 204. It is composed of an injection circuit 209 that returns the refrigerant to the intermediate connecting portion 80, operates as an economizer cycle, reduces the compressor input, and increases the cooling capacity generated by the second heat exchanger 206 on the indoor unit side, Is improved.
  • the effect of expanding the injection operation range by the homogeneous mixing of the injection refrigerant can be obtained during the injection operation, and the low-stage side discharged refrigerant can be insulated from the non-injection operation.
  • the effect of improving COP can be obtained.
  • the effect of expanding the injection operation range by the homogeneous mixing of the injection refrigerant can be obtained during the injection operation, and the low-stage side discharged refrigerant can be insulated from the non-injection operation.
  • the effect of improving COP can be obtained.
  • the two-stage compressor 100 is excellent in the efficiency of a single compressor. Furthermore, when an economizer cycle is configured by mounting such a two-stage compressor 100 in the heat pump heating / hot water supply system 200 described in the fifth embodiment, a configuration superior in efficiency can be realized.
  • the vapor compression refrigeration cycle that heats or cools a gas such as air with the refrigerant compressed by the two-stage compressor 100 described in the first to fourth embodiments has been described.
  • the present invention is not limited to this, and in the case of a heat pump type heating hot water supply system (ATW (Air To Water) system) that heats water with the refrigerant compressed by the two-stage compressor 100 described in the first to third embodiments.
  • AW Air To Water
  • the same effect can be obtained. Or the same effect is acquired also in the case of a cooling only machine, a refrigeration refrigerator, and a low-temperature refrigerator.
  • a refrigeration air conditioner can also be constructed by the two-stage compressor 100 described in the first to fourth embodiments.
  • Such a refrigerating and air-conditioning apparatus using the two-stage compressor 100 is excellent in high efficiency.
  • the two-stage compressor 100 described in the first to third embodiments can prevent a suction heating loss of the high-stage compression unit 20, and is therefore suitable for an apparatus that combines cooling and heating.
  • the present invention is an indispensable technique for a refrigerating and air-conditioning apparatus that combines cooling and heating.
  • the two-stage compressor 100 described in the first to fourth embodiments is suitable for a heat pump device having a wide injection operation range. That is, the present invention is a technology indispensable for a heat pump apparatus having a wide injection operation range.
  • the two-stage compressor 100 described in the first to fourth embodiments is mounted on the heat pump device, when performing liquid injection operation at a large ratio or when performing non-injection operation under light load conditions with sufficient capacity A great effect can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 蒸気圧縮式冷凍サイクルのインジェクション運転範囲拡大と、二段圧縮機の効率改善及び信頼性向上との両立を図ることが可能な二段圧縮機を得る。 二段圧縮機201は、低段側圧縮部10と、高段側圧縮部20と、低段側圧縮部10の吐出側と前記高段側圧縮部の吸入側とを連結する中間連結部(低段吐出マフラ30及び中間連結流路84)と、インジェクション冷媒を中間連結部に導くインジェクション流路(第2低段吐出マフラ40及びインジェクション回路87)と、を備える。二段圧縮機201は、第2低段吐出マフラ40を流れるインジェクション冷媒と低段吐出マフラ30を流れる冷媒とを熱交換させる熱交換部36を備え、インジェクション冷媒は、第2低段吐出マフラ40において熱交換部36を介して低段吐出マフラ30を流れる冷媒と熱交換した後に、低段吐出マフラ30内に注入されるものである。

Description

二段圧縮機及びヒートポンプ装置
 本発明は蒸気圧縮式冷凍サイクルに用いられる二段圧縮機、及びこの二段圧縮機を備えたヒートポンプ装置に関するものである。
 冷凍冷蔵庫、空調機及びヒートポンプ式給湯機等には、冷媒圧縮機を用いた蒸気圧縮式冷凍サイクル技術が広く用いられている。近年、地球温暖化防止を図る観点から、一層の省エネルギー化、高効率化の要望が高まり、低段側圧縮部と高段側圧縮部を直列に接続した二段圧縮機を用いた二段圧縮インジェクションサイクル技術も注目され、一部製品化されている。
 二段圧縮インジェクションサイクル技術に用いられる一般的な二段圧縮機の一例として、例えば、非特許文献1に開示されている二段ロータリ圧縮機がある。非特許文献1に記載の二段ロータリ圧縮機は、密閉容器内に低段側圧縮部及び高段側圧縮部を備え、低段側圧縮部の吐出側と高段側圧縮部の吸入側とが中間連結管で接続された構成となっている。また、この二段ロータリ圧縮機は、中間連結管の密閉容器外に配置された部分にインジェクション流路を接続し、当該接続部からインジェクション冷媒をインジェクションする構成となっている。
 このような二段圧縮機には、湿り冷媒(乾き度0~1の範囲で変化、通常は0.5程度)がインジェクションされる。インジェクション冷媒は低段側圧縮部から吐出されたガス冷媒と混合され、この混合された冷媒は、高段側圧縮部に吸入される。この高段側圧縮部に吸入される冷媒は、飽和ガス状態より高温のガス冷媒となっているのが理想的である。しかしながら、インジェクション冷媒が低段側圧縮部から吐出されたガス冷媒と十分に混合されない場合、湿り状態のインジェクション冷媒がそのまま高段側圧縮部に吸入されることになる。このとき、インジェクション冷媒は一部液状態であるため、高段側圧縮部に冷媒が吸入されると、圧縮機構隙間に介在する油膜をはがして、圧縮機構の損傷や圧縮ガスの漏れ増加を招く原因となる。さらに、インジェクション流路から液冷媒や湿り冷媒を多量に流入する場合には、高段側圧縮部に液冷媒のまま流入しやすくなるので、液圧縮による圧縮機構の損傷を招く原因となりやすい。このため、低段側圧縮部から吐出されたガス冷媒とインジェクション冷媒を混合し高段側圧縮部に吸入する場合、できるだけ均一なガス状態に近づける対策が必要である。
 上記の対策を施した従来技術としては、例えば特許文献1や特許文献2に開示されたものが知られている。
 特許文献1には、ガスインジェクション管を介して圧縮機の圧縮行程中にインジェクションするヒートポンプ式暖房装置において、上記ガスインジェクション管の途中に、ガスインジェクション管内の冷媒を圧縮機からの放出熱で加熱する熱交換部を設けるとともに、気液分離後の液冷媒の一部とも熱交換する構成が開示されている。特許文献1に開示されたヒートポンプ式暖房装置は、従来、密閉容器から放出していた熱量の一部を回収し、暖房能力(または給湯能力)を増加させる効果が得られる。
 特許文献2の従来技術は、特許文献1の圧縮機を二段ロータリ式圧縮機に置き換えた構成となっている。例えば、特許文献2に開示された二段ロータリ式圧縮機は、インジェクション冷媒又は低段側圧縮部から吐出された冷媒を加熱する熱交換部を備えている。この熱交換部は、圧縮機の密閉容器の外面部において、インジェクション冷媒又は低段側圧縮部から吐出された冷媒を加熱するものである。また、この熱交換部は、圧縮機の密閉容器において、高段側圧縮部から吐出された高圧冷媒やこの高圧冷媒環境下に貯留されている潤滑油と、インジェクション冷媒又は低段側圧縮部から吐出された冷媒と、を熱交換するものである。
特開昭59-66662号公報 特開2008-248865号公報
T.Yokoyama,et al.:"Developing an Injection Type Two-Stage Rotary Compressor for CO2  Heat Pump",日本冷凍空調学会論文集,Vol26,No.3(2009),pp205-pp215
 特許文献1及び特許文献2に記載の従来技術は、インジェクション冷媒によって圧縮機の放熱量を一部回収できるので、暖房能力(または給湯能力)を向上させる効果が得られる。しかしながら、特許文献1及び特許文献2に記載の従来技術は、高段側圧縮部が吸入する冷媒の温度が上昇して吸入加熱損失が増加するので、圧縮機の効率が低下してしまう(非特許文献1を参照)。このため、特許文献1及び特許文献2に記載の従来技術では、暖房COPは必ずしも改善されない。また、特許文献1及び特許文献2に記載の従来技術は、もともと、冷房能力を向上させる技術ではなく、その上、上記吸入加熱損失が増加するため圧縮機効率が低下して冷房COPは低下する。すなわち、特許文献1及び特許文献2に記載の従来技術は、暖房(給湯)専用装置に適した技術であって、冷房と暖房を兼用する装置には適さない。さらに、暖房(給湯)専用装置であっても非インジェクション運転する場合、特許文献2の図2-1、図7-1及び図8-1に開示された二段圧縮機は、上記吸入加熱損失が増加するため圧縮機効率が低下し暖房COPを低下させる。以上、特許文献1及び特許文献2に記載の従来技術は、暖房(給湯)専用装置で、インジェクション運転で暖房能力(または給湯能力)を向上させる必要がある場合のみで有効な発明である。それ以外の用途では、かえって、COP低下させる危険性があるので要注意である。
 また、蒸気圧縮式冷凍サイクルに用いられる二段圧縮機は、インジェクション冷媒等が熱交換する熱交換部を密閉容器内にコンパクトに配置することや、低段側圧縮部から高段側圧縮部までの中間連結部で発生する圧力損失を小さくすることも重要な課題である。しかしながら、特許文献2に記載の従来の二段圧縮機は、これらを改善するための具体的な構造検討が不十分であった。
 本発明は、上述のような課題を解決するためになされたものであり、蒸気圧縮式冷凍サイクルのインジェクション運転範囲拡大と、二段圧縮機の効率改善及び信頼性向上との両立を図ることが可能な二段圧縮機を得ることを第1の目的とする。また、この二段圧縮機を備えたヒートポンプ装置を得ることを第2の目的とする。
 本発明に係る二段圧縮機は、蒸気圧縮式冷凍サイクルに使用されるものであり、吸入管を介して導かれた前記蒸気圧縮式冷凍サイクルの低圧冷媒を圧縮する低段側圧縮部と、該低段側圧縮部から吐出された冷媒を圧縮し、吐出管を介して前記蒸気圧縮式冷凍サイクルへ高圧冷媒を吐出する高段側圧縮部と、前記低段側圧縮部の吐出側と前記高段側圧縮部の吸入側とを連結する中間連結部と、前記低段側圧縮部及び前記高段側圧縮部を少なくとも収容する密閉容器と、前記低段側圧縮部及び前記高段側圧縮部を駆動する駆動装置と、前記蒸気圧縮式冷凍サイクルのインジェクション冷媒を前記中間連結部に導くインジェクション流路と、を備えた二段圧縮機であって、前記インジェクション流路を流れるインジェクション冷媒と前記中間連結部を流れる冷媒とを熱交換させる熱交換部を備え、前記インジェクション流路を流れるインジェクション冷媒は、前記熱交換部で熱交換した後に前記中間連結部に流入し、前記低段側圧縮部から吐出された冷媒と混合されるものである。
 本発明に係るヒートポンプ装置は、上記の二段圧縮機を備えたものである。
 本発明に係る二段圧縮機は、蒸気圧縮式冷凍サイクルのインジェクション運転範囲拡大と、二段圧縮機の効率改善及び信頼性向上との両立を図ることができる。
本発明の実施の形態1に係る二段圧縮機を示す縦断面図である。 図1のA-A’断面図である。 本発明の実施の形態2に係る二段圧縮機を示す縦断面図である。 図3のA-A’断面図である。 本発明の実施の形態3に係る二段圧縮機を示す縦断面図である。 図5のA-A’断面図である。 本発明の実施の形態4に係る二段圧縮機を示す縦断面図である。 図7のA-A’断面図である。 本発明の実施の形態5に係るヒートポンプ式暖房給湯システムの構成を示す概略図である。
 以下、実施の形態1~実施の形態3において、本発明に係る二段圧縮機の一例について説明する。また、実施の形態4において、本発明に係る二段圧縮機を備えたヒートポンプ装置の一例について説明する。
 なお、実施の形態1~実施の形態3では回転ピストン式のロータリ二段圧縮機を例に本発明を説明するが、本発明に係る二段圧縮機は回転ピストン式のロータリ二段圧縮機に限定されるものではない。また、以下の説明では、冷媒の圧力を「高圧」、「中圧」、「低圧」と表現するが、これらの圧力は絶対的な圧力ではなく、使用冷媒やヒートポンプ装置の運転条件等によって変化する相対的な圧力を意味する。
実施の形態1.
 図1は、本発明の実施の形態1に係る二段圧縮機を示す縦断面図である。また、図2は、図1のA-A’断面図である。なお、図1及び図2に示す矢印は、冷媒の流れを示すものである。
 本実施の形態1に係る二段圧縮機100は、低段側圧縮部10及び高段側圧縮部20の2つの圧縮部(圧縮機構)を有するものである。この二段圧縮機100は、密閉シェル8(密閉容器)の内部に、低段側圧縮部10、高段側圧縮部20、低段吐出マフラ30、高段吐出マフラ50、下部支持部材60、上部支持部材70、貯蔵部3、中間仕切板5、駆動軸6、モータ部9等を備えている。より詳しくは、密閉シェル8の内部には、下部から上部にかけて、低段吐出マフラ30、下部支持部材60、低段側圧縮部10、中間仕切板5、高段側圧縮部20、上部支持部材70、高段吐出マフラ50及びモータ部9の順で積層配置されている。また、駆動軸6は、密閉シェル8の上下方向に沿って設けられており、密閉シェル8の下部(つまり、駆動軸6の下端部)には、潤滑油を貯留する貯蔵部3が形成されている。この潤滑油は、各圧縮部や各軸受け部等を潤滑するものである。
 低段側圧縮部10は、シリンダ11、回転ピストン12及びベーン14等で構成されている。シリンダ11は、略平行平板形状をしており、略中心部には略円筒形状のシリンダ室内11aが形成されている。このシリンダ室内11aは、下部開口が下部支持部材60(詳しくは、吐出口側面部62)によって閉塞され、上部開口が中間仕切板5によって閉塞され、気密性が確保されている。また、シリンダ室内11aには、シリンダ11に形成された吸入口15と、吐出口側面部62に形成された吐出口16が連通している。吸入口15は、密閉シェル8の外部に設けられた連結管4及び吸入マフラ7を介して、吸入管1と接続されている。つまり、吸入口15は、蒸気圧縮式冷凍サイクルの低圧側と接続されることとなる。より詳しくは、蒸気圧縮式冷凍サイクルを流れる低圧冷媒は吸入管1を介して吸入マフラ7に流入してガス冷媒と液冷媒に分離され、分離されたガス冷媒が連結管4を介して吸入口15からシリンダ室内11aに流入することとなる。また、吐出口16は、中間連結部(低段吐出マフラ30及び中間連結流路84)を介して、後述する高段側圧縮部20の吸入口25と連通している。なお、中間連結部(低段吐出マフラ30及び中間連結流路84)の詳細は後述する。
 低段側シリンダ室内11aには、回転ピストン12とベーン14(点線で投影)が設けられている。回転ピストン12は、略円筒形状をしており、駆動軸6の偏心部に設けられている。ベーン14は、シリンダ11に形成されたベーン溝に摺動自在に設けられている。また、ベーン14は、バネ等の付勢部材によって駆動軸6方向に付勢されており、その先端部が回転ピストン12の外周部に追従自在となっている。これにより、シリンダ室内11aは、ベーン14により、吸入口15が連通する吸入室と、吐出口16が連通する圧縮室とに区画される。つまり、低段側圧縮部10は、ベーン14が回転することによって、吸入口15からシリンダ室内11aに冷媒を吸入し、圧縮した後に吐出口16から吐出する構成となっている。
 高段側圧縮部20は、シリンダ21、回転ピストン22及びベーン24等で構成されている。シリンダ21は、略平行平板形状をしており、略中心部には略円筒形状のシリンダ室内21aが形成されている。このシリンダ室内21aは、下部開口が中間仕切板5によって閉塞され、上部開口が上部支持部材70(詳しくは、吐出口側面部72)によって閉塞され、気密性が確保されている。また、シリンダ室内21aには、シリンダ21に形成された吸入口25と、上部支持部材70(詳しくは、吐出口側面部72)に形成された吐出口26が連通している。また、高段側圧縮部20の吸入口25は、中間連結部(低段吐出マフラ30及び中間連結流路84)を介して、低段側圧縮部10の吐出口16と連通している。なお、中間連結部(低段吐出マフラ30及び中間連結流路84)の詳細は後述する。
 高段側シリンダ室内21aには、回転ピストン22とベーン24が設けられている。回転ピストン22は、略円筒形状をしており、駆動軸6の偏心部に設けられている。ベーン24は、シリンダ21に形成されたベーン溝に摺動自在に設けられている。また、ベーン24は、バネ等の付勢部材によって駆動軸6方向に付勢されており、その先端部が回転ピストン22の外周部に追従自在となっている。これにより、シリンダ室内21aは、ベーン24により、吸入口25が連通する吸入室と、吐出口26が連通する圧縮室とに区画される。つまり、高段側圧縮部20は、ベーン24が回転することによって、吸入口25からシリンダ室内21aに冷媒を吸入し、圧縮した後に吐出口26から吐出する構成となっている。
 下部支持部材60は、下部軸受け部61と吐出口側面部62で構成する。下部軸受け部61は、略円筒形状に形成されており、駆動軸6の下端側を回転自在に支持する。吐出口側面部62は、平行平板の略円板形状であり、シリンダ室内11aの下部開口を閉塞するものである。吐出口側面部62には、上述のように低段側圧縮部10の吐出口16が形成されており、この吐出口16には、吐出バルブ17(開閉弁)が設けられている。より詳しくは、吐出口16の周辺部には、吐出バルブ17を設置するための凹部18(溝)が形成されており、吐出バルブ17は、この凹部18に設けられている。つまり、低段側圧縮部10で圧縮された冷媒は、所定圧力以上になると、吐出口16の吐出バルブ17を開いて吐出されることとなる。
 低段吐出マフラ30は、上部が開口したカップ形状の容器32を備えている。容器32は、非耐圧性の容器である。この容器32は、下部支持部材60の吐出口側面部62の下部に設けられ、吐出口側面部62と容器32の内面部とで囲まれた低段吐出マフラ空間31を形成している。つまり、低段側圧縮部10の吐出口16から吐出された冷媒は、この低段吐出マフラ空間31に流入することとなる。なお、容器32が吐出口側面部62の下部に設けられた状態においては、下部支持部材60の下部軸受け部61が容器32を貫通するように設けられている。
 また、低段吐出マフラ空間31には、下部支持部材60の吐出口側面部62に形成された連通口34も連通している。この連通口34は、中間連結流路84を介して、高段側圧縮部20の吸入口25に連通している。つまり、低段吐出マフラ空間31に流入した冷媒は、中間連結流路を介して高段側圧縮部20に吸入されることとなる。なお、本実施の形態1では、低段側圧縮部10のシリンダ11及び中間仕切板5を駆動軸方向に貫通する孔を形成し、この貫通孔によって中間連結流路84を構成している。
 上部支持部材70は、上部軸受け部71及び吐出口側面部72等を備える。上部軸受け部71は、略円筒形状に形成されており、駆動軸6の略中間部を回転自在に支持する。吐出口側面部72は、略円板形状をしており、シリンダ室内21aの上部開口を閉塞するものである。吐出口側面部72には、上述のように高段側圧縮部20の吐出口26が形成されており、この吐出口26には、吐出バルブ27(開閉弁)が設けられている。より詳しくは、吐出口26の周辺部には、吐出バルブ27を設置するための凹部28(溝)が形成されており、吐出バルブ27は、この凹部28に設けられている。つまり、高段側圧縮部20で圧縮された冷媒は、所定圧力以上になると、吐出口26の吐出バルブ27を開いて吐出されることとなる。
 高段吐出マフラ50は、下部が開口したカップ形状の容器52を備えている。容器52は、耐圧性の容器である。この容器52は、上部支持部材70の吐出口側面部72を覆うように設けられ、吐出口側面部72と容器52の内面部とで囲まれた高段吐出マフラ空間51を形成している。つまり、高段側圧縮部20の吐出口26から吐出された冷媒は、この高段吐出マフラ空間51に流入することとなる。なお、容器52が吐出口側面部72を覆うように設けられた状態においては、上部支持部材70の上部軸受け部71が容器52を貫通するように設けられている。
 また、容器52には、連通口54が形成されている。この連通口54は、密閉シェル8の内部と連通している。つまり、本実施の形態1に係る二段圧縮機100は、密閉シェル8内が高段側圧縮部20から吐出された高圧冷媒の圧力となる高圧シェル型の圧縮機である。密閉シェル8の例えば上部には吐出管2が設けられており、密閉シェル8に吐出された高圧冷媒は、この吐出管2から外部へ吐出されることとなる。
 モータ部9は低段側圧縮部10及び高段側圧縮部20の駆動源となるものであり、モータ部9のロータには駆動軸6の上端部が接続されている。なお、モータ部9は、密閉シェル8の内部に設けられている必要はない。また、低段側圧縮部10及び高段側圧縮部20の駆動源はモータに限定されるものではない。
 本実施の形態1に係る二段圧縮機100は、二段圧縮インジェクションサイクル技術に用いられるものであり、インジェクション流路85(後述の冷媒回路で分配した中間圧冷媒が中間連結部80に合流するまでの流路で、インジェクション回路87及び第2低段吐出マフラ40で構成)を備えている。
 ここで、本実施の形態1に係る二段圧縮機100では、中間連結部80(低段吐出口17と高段吸入口26を連結する低段吐出マフラ30及び中間連結流路84で構成)を流れる冷媒とインジェクション流路85を流れる冷媒とが熱交換するようにインジェクション流路85を配置するため、非耐圧性の低段吐出マフラ容器32を、耐圧性の第2低段吐出マフラ容器42で覆うように二重構造に配置し、32と42の間の第2低段吐出マフラ空間41に合流前のインジェクション冷媒が流すことが特徴である。
 以下、さらに詳しく、本実施の形態1におけるインジェクション流路85の配置と構成について説明する。
 第2低段吐出マフラ40は、上部が開口したカップ形状の第2容器42を備えており、第2容器42は耐圧性の容器であり、低段吐出マフラ30の外周を覆うように、下部支持部材60の吐出口側面部62の下部に設けられている。これにより、低段吐出マフラ容器32と第2容器42と間に第2低段吐出マフラ空間41が形成する。なお、第2容器42と下部支持部材60の下部軸受け部61との間はシール部43でシールされ、中間圧の第2低段吐出マフラ空間41と高圧の貯蔵部3とを密閉区画している。
 第2低段吐出マフラ40の第2容器42にはインジェクション回路連結口86が形成されており、86にインジェクション回路87が接続され、第2低段吐出マフラ空間41に流入したインジェクション冷媒が、低段側圧縮部10から低段吐出マフラ空間31に吐出された冷媒とが熱交換する構成となっている。これらの冷媒間での熱交換を促進するため、容器32の外面部には熱交換部36が形成されている。本実施の形態1に係る熱交換部36は、容器32に形成された複数の突起物(例えば、ディンプル形状やフィン形状など)で構成されている。また、容器32には、第2低段吐出マフラ空間41において低段吐出マフラ空間31の冷媒と熱交換した後の冷媒が低段吐出マフラ空間31に流入するため、複数穴で形成された第1注入口44が設けられている。なお、第2容器42のインジェクション回路連結口86には、第2低段吐出マフラ空間41に流入した冷媒を第1注入口の方向に流すためのガイド47が設けられている。
(冷媒流れ)
 続いて、本実施の形態1に係る二段圧縮機100の冷媒流れについて説明する。まず、蒸気圧縮式冷凍サイクルの低圧冷媒は、吸入管1を経由して(図1の(1))、吸入マフラ7へ流入する(図1の(2))。吸入マフラ7へ流入した冷媒は、吸入マフラ7の中でガス冷媒と液冷媒とに分離された後、ガス冷媒は連結管4を通って、低段側圧縮部10のシリンダ室内11aへ吸入される(図1の(3))。シリンダ室内11aへ吸入された冷媒は、低段側圧縮部10で中間圧まで圧縮される。中間圧まで圧縮された冷媒は、吐出口16から低段吐出マフラ空間31へ吐出される(図1、図2の(4))。
 低段吐出マフラ空間31へ吐出された冷媒は、連通口34から中間連結流路84を通って(図1の(5))、吸入口25から高段側圧縮部20のシリンダ室内21aへ吸入される(図1の(6))。シリンダ室内21aに吸入された冷媒は、高段側圧縮部20で高圧まで圧縮される。高圧まで圧縮された冷媒は、吐出口26から高段吐出マフラ空間51へ吐出され(図1の(7))、連通口54から密閉シェル8の内部へ吐出される(図1の(8))。密閉シェル8内に吐出された冷媒は、上方にあるモータ部9の隙間を通った後、密閉シェル8に設けられた吐出管2を経て、外部冷媒回路へ吐出される(図1の(9))。
 また、インジェクション運転がされている場合、インジェクション回路87を流れるインジェクション冷媒(図1、図2の(10))は、インジェクション回路連結口86から第2低段吐出マフラ空間41へ注入される。このとき、第2低段吐出マフラ空間41へ注入されたインジェクション冷媒は、次のように第2低段吐出マフラ空間41内を流れる。
 インジェクション冷媒が第2低段吐出マフラ空間41内を正方向(図2の←A方向)に循環するように、インジェクション回路連結口86にはガイド47が取り付けられている。これにより、インジェクション冷媒が逆方向(図2の→B方向)に流れることを防止し、低段側から吐出する冷媒の正方向の流れを極力乱さない混合できるので、低段吐出マフラ空間31内で生じる圧力損失を低減できる。
 インジェクション冷媒が第2低段吐出マフラ空間41内を正方向(図2の←A方向)に循環することにより、インジェクション冷媒は容器32の外面部に形成された熱交換部36(突起物)と接触するように流れる(図1、図2の(11))。
 熱交換部36(突起物)と接触することによって低段吐出マフラ空間31を流れる冷媒から吸熱したインジェクション冷媒は乾き度を上げる。この乾き度が上がったインジェクション冷媒のうち、ガス状態の冷媒は、第1注入口44を通って低段吐出マフラ空間31内に流入し(図1、図2の(12))、低段側圧縮部10の吐出冷媒と合流して、低段吐出マフラ空間31内を循環する(図1、図2の(13))。これらの冷媒は、低段吐出マフラ空間31内で混合し、連通口34から中間連結流路84に導かれる。一方、容器32には吸入細管38が取り付けられているため、乾き度が上がったインジェクション冷媒のうちの液状態の冷媒は、吸入細管38を介して低段吐出マフラ空間31内へ吸い上げられ、低段側圧縮部10の吐出冷媒と合流する。この冷媒も、低段吐出マフラ空間31内で低段側圧縮部10の吐出冷媒と混合し、連通口34から中間連結流路84に導かれる。
 二段圧縮機100の動作中、低段側圧縮部10及び高段側圧縮部20の圧縮動作は次のようになる。低段側圧縮部10と高段側圧縮部20とは、駆動軸6が回転して回転ピストン12,22が偏芯回転することにより、圧縮室容積と吸入室容積とが変化し、吸入口15,25から吸入した冷媒を圧縮する。冷媒圧力が所定圧力以上になると、吐出バルブ17,27が開閉することで、吐出口16,26から圧縮された冷媒が吐出される。
 このように構成された二段圧縮機100は、以下のような機能を発揮することができる。
・圧力損失低減機能
・均一混合機能
・非インジェクション運転時の断熱機能
・コンパクト化
 以下、本実施の形態1に係る二段圧縮機100の機能とその効果について、順次説明する。
(1)圧力損失低減機能
 図2に示すように、低段側圧縮部10で中圧に圧縮された冷媒(低段吐出冷媒)は、吐出口16から低段吐出マフラ空間31に吐出される。そして、低段吐出冷媒は、吐出口16から連通口34に向かって流れ、連通口34から中間連結流路84へ流入する。このとき、吐出口16から連通口34への低段吐出冷媒の流れ方向は、正方向(図2の←A方向)となる。ここで、本実施の形態1に係る二段圧縮機100においては、第2低段吐出マフラ空間41から低段吐出マフラ空間31に流入するインジェクション冷媒の流れ方向も正方向(図2の←A方向)となるように、第1注入口44が形成されている。つまり、第1注入口44は、吐出口16から見た場合、吐出口16から連通口34へ流れる低段吐出冷媒の方向の反対側(以下、吐出口16の背面側と称する)に形成されている。このような位置に形成された第1注入口44を通って低段吐出マフラ空間31に注入されたインジェクション冷媒は、低段吐出冷媒の流れ方向に沿った流れとなって低段吐出冷媒と混合される。したがって、低段吐出マフラ空間31内の冷媒流れが乱れることを抑制でき、中間連結部での圧力損失の増加を防止することができる。
(2)均一混合機能
 インジェクション冷媒は、低温の液状態又は液混じり状態(気液二相状態)で第2低段吐出マフラ空間41に流入する。第2低段吐出マフラ空間41に流入したインジェクション冷媒は、低段吐出マフラ30の容器32の外面部に形成された熱交換部36を接触するように流れることで、ガス状態の低段吐出冷媒、または、インジェクション冷媒と混合後の乾き度の高い(ガス状態に近い)中間圧冷媒と熱交換する。例えば、熱交換部36の形状は、容器32の内外表面に凸凹部を設けたり、フィン形状のスリットを溶接したりして、熱交換部36の大きな伝熱面積をとれる形状である。容器32と熱交換部36を構成する材料としては、熱伝導率が高い金属(アルミニウムや銅、及び、これらの合金)が望ましい。また、容器42は耐圧に必要な肉厚が必要であるが、耐圧の必要ない容器32の肉厚は極力薄くすることが望ましい。以上のように熱交換部36を構成すれば、容器32の内側から外側への熱通過率[W/m2/K]を高めることができる。熱交換部36で加熱されたインジェクション冷媒は乾き度をあげ、インジェクション冷媒のガス冷媒成分が第1注入口44から低段吐出マフラ空間31内に注入される。このように、低段吐出冷媒と混合する前にインジェクション冷媒の熱交換を促進することで、混合後に液滴が残りにくくなる。したがって、高段側圧縮部20の効率低下や損傷を防止でき、インジェクション運転範囲を拡大することができる。
 また、本実施の形態1に係る二段圧縮機100は、第1注入口44が、吐出口16の背面側の広い領域に複数の第1注入口44を形成している。このため、低段吐出マフラ空間31内に注入されたインジェクション冷媒とガス状態の低段吐出冷媒とがより均一に混合しやすくなる。
 また、本実施の形態1に係る二段圧縮機100においては、インジェクション冷媒は、低段吐出マフラ空間31内の低段吐出冷媒から吸熱する。このため、高段側圧縮部20に吸入される冷媒の温度上昇を防止することができるので、高段側圧縮部20の吸入加熱損失を防止できる。したがって、二段圧縮インジェクションサイクル技術に用いられる従来の二段圧縮機と比べ、二段圧縮機100の効率を改善することができるという効果も得られる。
(3)非インジェクション運転時の断熱機能
 暖房能力が十分足りた条件で非インジェクション運転する場合には、第2低段吐出マフラ空間41にインジェクション冷媒が流れない状態となる。このとき、第2低段吐出マフラ40の第2容器42が低段吐出マフラ30を覆うように設けられているので、低段吐出マフラ空間31内の低段吐出冷媒は断熱状態となる。つまり、低段吐出マフラ空間31内の低段吐出冷媒が密閉シェル8の貯蔵部3に貯蔵されている高温の潤滑油に加熱されることを防止できる。したがって、本実施の形態1に係る二段圧縮機100は、特許文献2に記載された二段圧縮機と異なり、高段側圧縮部20の吸入加熱損失を防止できるので、特許文献2に記載された二段圧縮機よりも効率を改善することができる。
(4)コンパクト化
 本実施の形態1に係る二段圧縮機100は、上記(1)~(3)の機能に必要な構成を、低段吐出マフラ30と一体構造で構成している。したがって、本実施の形態1に係る二段圧縮機100は、従来の二段圧縮機(インジェクション機能を有しない二段圧縮機)と同等サイズを保つことができ、コンパクト化に優位である。
 以上のように、本実施の形態1に係る二段圧縮機100は、従来よりも二段圧縮機の高効率化、信頼性向上、及び、蒸気圧縮式冷凍サイクルのインジェクション運転範囲の拡大を図ることが可能となる。
実施の形態2.
 図3は、本発明の実施の形態2に係る二段圧縮機を示す縦断面図である。また、図4は、図3のA-A’断面図である。図3及び図4に示す矢印は、冷媒の流れを示すものである。以下、図3及び図4を用いて、本実施の形態2に係る二段圧縮機100について説明する。なお、以下では、実施の形態1との差異点に着目して本実施の形態2に係る二段圧縮機100を説明するものとする。また、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 本実施の形態2に係る二段圧縮機100が実施の形態1で示した二段圧縮機100と異なる点は、低段吐出マフラ30及び第2低段吐出マフラ40の形状と、中間連結流路84の配置位置である。
 より詳しくは、低段吐出マフラ30は、上部が開口したカップ形状の容器32を備えている。容器32は、例えば非耐圧性の容器である。この容器32は、下部支持部材60の吐出口側面部62の下部に設けられ、吐出口側面部62と容器32の内面部とで囲まれた低段吐出マフラ空間31を形成している。ここで、本実施の形態2に係る容器32は、下部軸受け部61の周囲に低段吐出マフラ空間31が形成される(換言すると、駆動軸6の軸心と同心円となる環状に低段吐出マフラ空間31が形成される)形状となっている。また、本実施の形態2に係る容器32は、熱伝導率の高い材料(アルミニウム等)をプレス加工して形成されている。そして、容器32の外面側と内面側に凹凸部を形成し、この凹凸部を熱交換部36としている。
 第2低段吐出マフラ40は、上部が開口したカップ形状の第2容器42を備えている。第2容器42は、耐圧性の容器であり、低段吐出マフラ30の外周を覆うように、下部支持部材60の吐出口側面部62の下部に設けられている。つまり、本実施の形態2では、駆動軸6の軸心及び低段吐出マフラ空間31と同心円となる環状に、第2低段吐出マフラ空間41が形成される。
 また、本実施の形態2に係る中間連結流路84は、その一部が密閉シェル8の外部に配置されるように設けられている。このため、中間連結流路84と低段吐出マフラ空間31とを連通する連通口34は、低段吐出マフラ30の容器32に形成されている。
 このように構成された二段圧縮機100がインジェクション運転されている場合、インジェクション回路87を流れるインジェクション冷媒は、インジェクション回路連結口86から第2低段吐出マフラ空間41へ注入される。このとき、第2低段吐出マフラ空間41へ注入されたインジェクション冷媒は、第2低段吐出マフラ空間41内を正方向(図4の←A方向)に循環するように流れる。そして、このインジェクション冷媒は容器32に形成された熱交換部36(凹凸部)で、ガス状態の低段吐出冷媒(低段吐出マフラ空間31内の冷媒)と熱交換する。そして、吸熱したインジェクション冷媒は乾き度をあげ、インジェクション冷媒のガス冷媒成分は、吐出口16の背面側に形成された複数の第1注入口44から低段吐出マフラ空間31内に注入される。低段吐出マフラ空間31に注入されたインジェクション冷媒は、低段吐出冷媒の流れ方向に沿った流れとなって低段吐出冷媒と混合される。この混合された冷媒は、その一部が密閉シェル8の外部に配置された中間連結流路84を通って、高段側圧縮部20に導かれる。
 以上、本実施の形態2に係る二段圧縮機100においても、実施の形態1で示した二段圧縮機100と同様に、従来よりも二段圧縮機の高効率化、信頼性向上、及び、蒸気圧縮式冷凍サイクルのインジェクション運転範囲の拡大を図ることが可能となる。
 なお、本実施の形態2では、容器32の外面側と内面側に凹凸部を形成して熱交換部36としたが、熱伝導率の高い材料(アルミニウム等)で容器32が形成されていれば、容器32そのものを熱交換器として機能させてもよい。つまり、実施の形態1で示した突起部や実施の形態2で示した凹凸部等を容器32に形成しなくても、実施の形態1に準ずる均一混合機能が得られる。
実施の形態3.
 実施の形態1及び実施の形態2で示した二段圧縮機100は、インジェクション流路85の一部分を第2低段吐出マフラ40で構成した形態を示した。第2低段吐出マフラ40を形成しないで二段圧縮機100を構成することも可能である。なお、以下では、実施の形態1及び実施の形態2との差異点に着目して本実施の形態3に係る二段圧縮機100を説明するものとする。また、本実施の形態3において、特に記述しない項目については実施の形態1又は実施の形態2と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図5は、本発明の実施の形態3に係る二段圧縮機を示す縦断面図である。また、図6は、図5のA-A’断面図である。なお、図5及び図6に示す矢印は、冷媒の流れを示すものである。
 低段吐出マフラ30は、上部が開口したカップ形状の容器32を備えている。容器32は、耐圧性の容器である。この容器32は、下部支持部材60の吐出口側面部62の下部に設けられ、吐出口側面部62と容器32の内面部とで囲まれた低段吐出マフラ空間31を形成している。
 本実施の形態3では、第2低段吐出マフラ40を備えないでインジェクション流路85を構成した点が、実施の形態1と実施の形態2とは異なる。インジェクション流路85は、例えば銅管で形成されており、低段吐出マフラ30の容器32の外周面(カップ形状の側面及び底面)に巻き付けられており、その端部が容器32に接続され、第1注入口44を構成している。
 本実施の形態3に係る二段圧縮機100においては、インジェクション流路85の外壁と容器32の外壁との接触面積が大きくなるように配置することで、低段吐出マフラ空間31に注入される前のインジェクション冷媒は、低段吐出マフラ空間31内の低段吐出冷媒と熱交換することとなる。
 なお、容器32の外周面とインジェクション流路85との接触面積を大きくするために、
・容器32の外周面に、インジェクション回路87巻きつけ用の溝加工を行う。
・容器32とインジェクション回路87とをろう付け等で溶着させる。
・インジェクション回路87の断面を扁平化(楕円、長円、長方形)させて接触面積を増加させる。
等の構成を追加することが好ましい。
 このように構成された二段圧縮機100がインジェクション運転されている場合、インジェクション流路85を流れるインジェクション冷媒は、容器32の外壁と接するインジェクション流路85の外壁を介して、容器32内の低段吐出マフラ空間31に吐出されたガス冷媒と熱交換する。そして、吸熱したインジェクション冷媒は乾き度をあげ、吐出口16の背面側に形成された第1注入口44から低段吐出マフラ空間31内に注入される。低段吐出マフラ空間31に注入されたインジェクション冷媒は、低段吐出冷媒の流れ方向に沿った流れとなって低段吐出冷媒と混合され均一化される。この混合された冷媒は、その一部が密閉シェル8の外部に配置された中間連結流路84を通って、高段側圧縮部20に導かれる。
 また、本実施の形態3に係る二段圧縮機100においても、暖房能力が十分足りた条件で非インジェクション運転する場合には、実施の形態1及び実施の形態2で示した二段圧縮機100と同様に、高段側圧縮部20の吸入加熱損失を防止でき、特許文献2に記載された二段圧縮機よりも効率を改善することができる。
 以上、本実施の形態3に係る二段圧縮機100においても、実施の形態1で示した二段圧縮機100と同様に、従来よりも二段圧縮機の高効率化、信頼性向上、及び、蒸気圧縮式冷凍サイクルのインジェクション運転範囲の拡大を図るなど、実施の形態1に準じた効果が得られる。
実施の形態4.
 実施の形態3で示した二段圧縮機100は、低段吐出マフラ容器31の外周面(カップ形状の側面及び底面)全体をインジェクション流路85で覆うように構成としたが、中間連結部80の一部をインジェクション流路85で覆うように二段圧縮機100を構成した場合もありうる。
 なお、以下では、実施の形態1から3との差異点に着目して本実施の形態4に係る二段圧縮機100を説明するものとする。また、本実施の形態4において、特に記述しない項目については実施の形態1から3と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図7は、本発明の実施の形態4に係る二段圧縮機を示す縦断面図である。また、図8は、図7のA-A’断面図である。なお、図7及び図8に示す矢印は、冷媒の流れを示すものである。
 低段吐出マフラ30は、上部が開口したカップ形状で耐圧性の容器32を備えている。この容器32は、下部支持部材60の吐出口側面部62の下部に設けられ、吐出口側面部62と容器32の内面部とで囲まれた低段吐出マフラ空間31を形成している。
 本実施の形態4に係るインジェクション流路85は、第2低段吐出マフラ40を備えておらず、インジェクション回路87で構成される。このインジェクション流路85を流れるインジェクション冷媒は、低段吐出マフラ30の容器32に設けた第1注入口44から低段吐出マフラ空間31内に注入され、低段吐出冷媒と合流し混合した後に、容器32に設けた連通口34から中間連結流路84と通って、高段側シリンダ21の吸入口25からシリンダ室内21aに吸入される。このとき、インジェクション流路85と中間連結流路84との熱交換を促進する熱交換部83を有する構造が特徴である。
 本実施の形態4に係る二段圧縮機100では、第1注入口44と連通口34とを、低段吐出マフラ30の容器32のほぼ同心位置に配置し、円管形状のインジェクション流路85の中に中間連結流路84を挿入した二重管構造を構成し、中間連結流路84の外表面にフィン形状の突起からなる熱交換部83を設ける構造にした。
 このように構成された二段圧縮機100がインジェクション運転される場合、インジェクション流路85を流れるインジェクション冷媒は、中間連結流路84の外表面の熱交換部83を介して、インジェクション冷媒混合後の乾き度の高い(ガス状態に近い)中間圧冷媒との熱交換を促進する。
 そして、吸熱したインジェクション冷媒は乾き度をあげ、吐出口16の背面側に形成された第1注入口44から低段吐出マフラ空間31内に注入される。低段吐出マフラ空間31に注入されたインジェクション冷媒は、低段吐出冷媒の流れ方向に沿った流れとなって低段吐出冷媒と混合され均一化される。この混合された冷媒は、その一部が密閉シェル8の外部に配置された中間連結流路84を通って、高段側圧縮部20に導かれる。
 また、本実施の形態4に係る二段圧縮機100においても、暖房能力が十分足りた条件で非インジェクション運転する場合、高段側圧縮部20の吸入加熱損失を低減し、特許文献2に記載された二段圧縮機よりも効率を改善する効果が得られる。つまり、暖房能力が十分足りた条件で本実施の形態4に係る二段圧縮機100が非インジェクション運転する場合、インジェクション流路85にインジェクション冷媒が流れない状態となる。このとき、低段吐出マフラ30の流出直後の中間連結流路84はインジェクション流路で覆われているので、断熱状態となる。つまり、中間連結流路84を流れる冷媒が貯蔵部3の高温の潤滑油に加熱されることを防止する効果が得られる。但し、潤滑油から断熱効果が得られる部分は限定的である。したがって、本実施の形態4に係る二段圧縮機100も、特許文献2に記載された二段圧縮機と異なり、高段側圧縮部20の吸入加熱損失を防止できるので、実施の形態1から3の二段圧縮機より改善効果が小さいものの、特許文献2に記載された二段圧縮機よりも効率を改善することができる。
 以上、本実施の形態4に係る二段圧縮機100においても、実施の形態1で示した二段圧縮機100と同様にして、従来よりも二段圧縮機の高効率化、信頼性向上、及び、蒸気圧縮式冷凍サイクルのインジェクション運転範囲の拡大を図ることが可能となる。
 なお、以上の実施の形態1~実施の形態4では、回転ピストン式の二段圧縮機100について説明した。しかしながら、本発明に係る二段圧縮機は、高段側圧縮部と低段側圧縮部を中間連結した二段圧縮機であれば、どのような圧縮形式であってもよい。例えば、本発明に係る二段圧縮機の圧縮形式として、スイングピストン式やスライディングベーン式等の様々な二段圧縮機を用いても、実施の形態1~実施の形態3で示した二段圧縮機100と同様の効果が得られる。
 また、以上の実施の形態1~実施の形態4では、密閉シェル8内の圧力が高段側圧縮部20内の圧力(より詳しくは、高段側圧縮部20が吐出する冷媒の圧力)に等しい高圧シェル型の二段圧縮機100について説明した。しかしながら、本発明に係る二段圧縮機は、密閉シェル8内の圧力が低段側圧縮部10の吐出冷媒圧力となる中間圧シェル型の二段圧縮機や、密閉シェル8内の圧力が低段側圧縮部10の吸入冷媒圧力となる低圧シェル型の二段圧縮機であっても勿論よい。いずれの二段圧縮機であっても、実施の形態1~実施の形態3で示した二段圧縮機100と同様の効果が得られる。
 また、以上の実施の形態1~実施の形態4では、低段側圧縮部10が高段側圧縮部20より下側に配置され、低段吐出マフラ空間31へ冷媒を下向きに吐出する二段圧縮機100について説明した。
 しかし、低段側圧縮部10、高段側圧縮部20、低段吐出マフラ30の上下配置が異なる二段圧縮機の場合には、実施の形態1~実施の形態4に順じた効果が得られる。
 一般的に、下側に配置された低段吐出マフラ30は密閉容器内の潤滑油貯蔵部3内に配置されるため、低段吐出マフラ空間31に吐出される冷媒は、潤滑油により加熱されやすい。一方、上側に配置された低段吐出マフラ30は、元々、潤滑油により加熱されにくい。よって、低段吐出マフラ30は上側に配置した場合は、本実施の形態1から4のようにインジェクション流路で覆うことで断熱する効果は小さい。しかしながら、中間連結部を流れる冷媒が前記インジェクション流路を流れるインジェクション冷媒を加熱することで、均一混合を図る効果は、低段吐出マフラ30は下側に配置した場合と同様である。
 また、以上の実施の形態1~実施の形態4では、吐出口16を開閉する吐出バルブ機構として、薄い板状のバルブの弾性と低段側圧縮部10と低段吐出マフラ空間31との圧力差によって開閉するリードバルブ方式を想定して説明した。しかし、その他の方式の吐出バルブ機構であってもよい。例えば、4ストローク機関の吸排気バルブで用いられるポペットバルブ式など、低段側圧縮部10と低段吐出マフラ空間31との圧力差を利用して吐出口16を開閉する開閉弁であればよい。吐出口26を開閉する吐出バルブ機構においても、同様である。
 また、以上の実施の形態1~実施の形態4で示した二段圧縮機100は、使用する冷媒を限定するものではない。例えば、HFC冷媒(R410A、R22、R407他)や、HC冷媒(イソブタン、プロパン)やCO2 冷媒等の自然冷媒や、HFO1234yf等の低GWP冷媒等を用いた場合であっても、上述した効果を得ることができる。
 特に、上記実施の形態1~実施の形態3で示した二段圧縮機100は、HC冷媒(イソブタン、プロパン)やHFO1234yfなど吐出スーパヒート(断熱圧縮後の温度-飽和ガス温度)が小さな物性の冷媒においてインジェクション冷媒の均一混合化による効果、すなわち、蒸気圧縮式冷凍サイクルのインジェクション運転範囲拡大と、二段圧縮機の信頼性向上を図る効果が大きい。
 また、以上の実施の形態1~実施の形態4では、低段圧縮部を高段圧縮部より下方に配置する二段圧縮機100で、貯蔵部3(つまり、潤滑油)内にある低段吐出マフラの容器部32の周囲をインジェクション流路85(第2低段吐出マフラ40、及び、インジェクション回路87)で覆うことで、インジェクション運転時には熱交換部36でインジェクション冷媒を加熱し、非インジェクション運転時には低段側吐出冷媒を断熱する構造について説明した。
 一般的に、低段圧縮部を高段圧縮部より上方に配置する二段圧縮機の場合には、低段吐出マフラの容器部の大部分は貯蔵部3より上方の冷媒ガス雰囲気中にあるため、潤滑油中に比べて元々加熱されにくい。本発明の実施の形態1~実施の形態3のように、低段吐出マフラの容器部32の周囲をインジェクション流路85で覆うことで、インジェクション運転時には熱交換部36でインジェクション冷媒を加熱する効果については同様であるが、一方、非インジェクション運転時に低段側吐出冷媒を断熱し圧縮機効率を改善する効果は小さくなる。
 また、以上の実施の形態1~実施の形態4では、低段吐出マフラの容器部32の全周囲をインジェクション流路85(第2低段吐出マフラ40、及び、インジェクション回路87)で覆う構造を示した。容器部32の一部を覆う構造の場合は、インジェクション運転時には熱交換部36でインジェクション冷媒を加熱する効果、非インジェクション運転時に低段側吐出冷媒を断熱し圧縮機効率を改善する効果は小さくなる。
実施の形態5.
 本実施の形態5では、実施の形態1~実施の形態4で示した二段圧縮機100を備えた冷暖兼用ヒートポンプ装置の一例について説明する。
 図9は、本発明の実施の形態5に係る冷暖兼用ヒートポンプ装置の構成を示す概略図である。冷暖兼用ヒートポンプ装置200は、二段圧縮機100、四方弁201、第1熱交換器202、第1膨張弁203、第2熱交換器206、インジェクション膨張弁205、インジェクション熱交換器204、主冷媒回路207、インジェクション回路87を備える。
 ここで、冷暖兼用ヒートポンプ装置200の二段圧縮機100は、以上の実施の形態1~実施の形態4で説明した二段圧縮機100である。また、二段圧縮機100の後述する中間連結部80は、以上の実施の形態1~実施の形態4で説明した低段吐出マフラ30及び中間連結流路84に相当するものである。また、インジェクション回路87における中間連結部80との接続部近傍は、以上の実施の形態1~実施の形態4で説明したインジェクション流路85に相当する。
 冷暖兼用ヒートポンプ装置200は、冷房運転時には二段圧縮機100から、四方弁回路201aを通って、第1熱交換器202、第1膨張弁203、及び、インジェクション熱交換器204を順次接続した主冷媒回路207と、インジェクション熱交換器204と第2膨張弁205の間の分岐点209で一部の冷媒が分岐してインジェクション膨張弁205及びインジェクション熱交換器204を流れ、二段圧縮機100の中間連結部80に冷媒を戻すインジェクション回路209から構成され、エコノマイザサイクルとして動作し、圧縮機入力の低減と、室内機側にある第2熱交換器206で発生する冷房能力が増加し、冷房COPが改善される。このときに、本発明の実施の形態1~実施の形態4のような手段によって、インジェクション運転時にはインジェクション冷媒均一混合によるインジェクション運転範囲拡大効果が得られ、非インジェクション運転時に低段側吐出冷媒を断熱しCOPを改善する効果が得られる。
 また、暖房運転時には二段圧縮機100から、四方弁回路201bを通って、第2熱交換器206、第2膨張弁205、及び、インジェクション熱交換器204を順次接続した主冷媒回路207と、第2膨張弁205とインジェクション熱交換器204との間の分岐点209で一部の冷媒が分岐してインジェクション膨張弁205及びインジェクション熱交換器204を流れ、二段圧縮機100の中間連結部80に冷媒を戻すエコノマイザサイクルとして動作し、圧縮機入力の低減と、室内機側にある第2熱交換器206で発生する暖房能力が増加し、暖房COPが改善する効果が得られる。
 このときに、本発明の実施の形態1~実施の形態4のような手段によって、インジェクション運転時にはインジェクション冷媒均一混合によるインジェクション運転範囲拡大効果が得られ、非インジェクション運転時に低段側吐出冷媒を断熱しCOPを改善する効果が得られる。
 実施の形態1~実施の形態4で上述したように、二段圧縮機100は単体の圧縮機効率に優れている。さらに、このような二段圧縮機100を本実施の形態5で説明したヒートポンプ式暖房給湯システム200に搭載することによってエコノマイザサイクルを構成すると、高効率化に優位な構成が実現できる。
 なお、本実施の形態5では、実施の形態1~実施の形態4で説明した二段圧縮機100によって圧縮された冷媒で空気等の気体を加熱又は冷却する蒸気圧縮式冷凍サイクルについて説明した。しかし、これに限らず、実施の形態1~実施の形態3で説明した二段圧縮機100によって圧縮された冷媒で水を加熱するヒートポンプ式暖房給湯システム(ATW(Air To Water)システム)の場合も同様の効果が得られる。あるいは、冷房専用機や、冷蔵冷凍機、低温冷凍機の場合にも、同様の効果が得られる。
 つまり、実施の形態1~実施の形態4で説明した二段圧縮機100により冷凍空調装置を構築することもできる。このような二段圧縮機100を用いた冷凍空調装置は、高効率化に優れている。特に、実施の形態1~実施の形態3で説明した二段圧縮機100は、高段側圧縮部20の吸入加熱損失を防止できるため、冷房と暖房を兼用する装置にも適している。つまり、本発明は、冷房と暖房を兼用する冷凍空調装置に必要不可欠な技術である。
 また、実施の形態1~実施の形態4で説明した二段圧縮機100は、インジェクション運転範囲の広いヒートポンプ装置に適している。つまり、本発明は、インジェクション運転範囲の広いヒートポンプ装置に必要不可欠な技術である。実施の形態1~実施の形態4で説明した二段圧縮機100をヒートポンプ装置に搭載することにより、多量の割合で液インジェクション運転する場合や、能力が足りた軽負荷条件で非インジェクション運転する場合に大きな効果が得られる。
 1 吸入管、2 吐出管、3 潤滑油貯蔵部、4 連結管、5 中間仕切板、6 駆動軸、7 吸入マフラ、8 密閉シェル、9 モータ部、10 低段側圧縮部、20 高段側圧縮部、11,21 シリンダ、11a,21a シリンダ室内、12,22 回転ピストン、14,24 ベーン、15,25 吸入口、16,26 吐出口、17,27 吐出バルブ、18,28 凹部、30 低段吐出マフラ、31 低段吐出マフラ空間、32 容器、34 連通口、36 熱交換部、38 吸入細管、40 第2低段吐出マフラ、41 第2低段吐出マフラ空間、42 第2容器、43 シール部、44 第1注入口、45 第1注入口ガイド、47 ガイド、48 液冷媒、50 高段吐出マフラ、51 高段吐出マフラ空間、52 容器、54 連通口、60 下部支持部材、61 下部軸受け部、62 吐出口側面部、70 上部支持部材、71 上部軸受け部、72 吐出口側面部、80 中間連結部、83 熱交換部、84 中間連結流路、85 インジェクション流路、86 インジェクション回路連結口、87 インジェクション回路、100 二段圧縮機、
200 冷暖兼用ヒートポンプ式装置、201 四方弁、201a 四方弁回路、202 第1熱交換器(室外熱交器)、203 第1膨張弁、204 インジェクション熱交換器、205 第2膨張弁、206 第2熱交換器(室内熱交器)、207 主冷媒回路、209 インジェクション回路分岐点。
 

Claims (14)

  1.  蒸気圧縮式冷凍サイクルに使用されるものであり、
     吸入管を介して導かれた前記蒸気圧縮式冷凍サイクルの低圧冷媒を圧縮する低段側圧縮部と、
     該低段側圧縮部から吐出された冷媒を圧縮し、吐出管を介して前記蒸気圧縮式冷凍サイクルへ高圧冷媒を吐出する高段側圧縮部と、
     前記低段側圧縮部の吐出側と前記高段側圧縮部の吸入側とを連結する中間連結部と、
     前記低段側圧縮部及び前記高段側圧縮部を少なくとも収容する密閉容器と、
     前記低段側圧縮部及び前記高段側圧縮部を駆動する駆動装置と、
     インジェクション冷媒を前記中間連結部に導くインジェクション流路と、前記インジェクション流路と前記中間連結部とを接続する注入口と
     を備えた二段圧縮機であって、
     前記インジェクション流路を流れるインジェクション冷媒と
    前記中間連結部を流れる冷媒とを熱交換させる熱交換部を前記密閉容器内に備え、
     前記インジェクション流路を流れるインジェクション冷媒は、前記熱交換部で熱交換した後に前記中間連結部に流入し、前記低段側圧縮部から吐出された冷媒と混合されることを特徴とする二段圧縮機。
  2.  前記中間連結部は、
     前記低段側圧縮部から冷媒が吐出される第1マフラ空間が形成され、当該マフラ空間に吐出された冷媒を第1連通口から流出する第1マフラと、
     該第1マフラの前記第1連通口と前記高段側圧縮部の吸入側とを連結する中間連結流路と、前記インジェクション流路を第1マフラに接続する注入口と、を備え、
     前記第1マフラを形成する容器部に前記熱交換部を備え、
     前記インジェクション流路を流れるインジェクション冷媒は、前記熱交換部を介して、前記低段側圧縮部から前記第1マフラ空間に吐出された冷媒と熱交換し、
     前記インジェクション流路を流れるインジェクション冷媒は、前記熱交換部で熱交換した後に、前記第1マフラ空間に流入し、前記低段側圧縮部から吐出された冷媒と混合されることを特徴とする請求項1に記載の二段圧縮機。
  3.  前記熱交換部は、前記中間連結部を流れる冷媒が前記インジェクション流路を流れるインジェクション冷媒を加熱する熱交換部であることを特徴とする請求項1又は請求項2に記載の二段圧縮機。
  4.  前記密閉容器の底部に潤滑油を貯蔵する貯蔵部を備え、前記インジェクション冷媒と前記中間連結部を流れる冷媒とを熱交換させる前記熱交換部を前記インジェクション流路で覆うようにして、前記貯蔵部内に配置されたことを特徴とする請求項1から請求項3に記載の二段圧縮機。
  5.  前記インジェクション流路を流れるインジェクション冷媒は、前記熱交換部で前記中間連結部を流れる冷媒により加熱される熱量の方が、前記密閉容器内の冷媒または油により加熱される熱量より大きいことを特徴とする請求項1から4に記載の二段圧縮機。
  6.  前記第1マフラの容器部の外表面を覆うように第2マフラが設けられ、
     前記第1マフラの容器部の外表面と前記第2マフラの容器部の内表面との間にインジェクション流路の一部を兼ねる第2マフラ空間を形成し、インジェクション冷媒が第2マフラ空間を流れると、前記熱交換部で前記低段側圧縮部から吐出された冷媒と熱交換することを特徴とする請求項2に記載の二段圧縮機。
  7.  前記インジェクション冷媒が流れるインジェクション流路は、
     前記第1マフラの容器部の外表面の伝熱面積の方が、前記第2マフラの容器部の内表面の伝熱面積より、大きいことを特徴とする請求項6に記載の二段圧縮機。
  8.  前記第1マフラの容器部を形成する平均肉厚の方が、前記第2マフラの容器部を形成する平均肉厚より薄いことを特徴とする請求項6に記載の二段圧縮機。
  9.  前記第1マフラの容器部を形成する平均肉厚の方が、前記第2マフラの容器部を形成する平均肉厚より薄いことを特徴とする請求項6に記載の二段圧縮機。
  10.  前記熱交換部は、前記第1マフラの容器部に形成された突起物、あるいは、凹凸部であることを特徴とする請求項1~5に記載の二段圧縮機。
  11.  前記第1マフラへ前記注入口から流入するインジェクション冷媒の方向が、前記低段側圧縮部から吐出された冷媒が前記第1連通口へ流れる方向に沿うように、前記インジェクション流路と前記第1マフラとを接続する前記注入口を形成したことを特徴とする請求項2から請求項10のうちのいずれか一項に記載の二段圧縮機。
  12.  前記駆動軸の周りを一周する環状の第1マフラ空間であって、前記低段圧縮部が吐出した冷媒が第1連通口に向かう環状流れ方向に、インジェクション冷媒が前記第2連通口を介して前記第1マフラに流入し、前記逆方向へ流れることを妨げる注入口ガイドを前記注入口付近に備え、前記低段圧縮部が吐出した冷媒と同じ方向に循環させながら、前記低段側圧縮部から吐出された冷媒と混合されることを特徴とする請求項2から請求項10のうちのいずれか一項に記載の二段圧縮機。
  13.  請求項1~請求項12のいずれか一項に記載の二段圧縮機を備えたことを特徴とするヒートポンプ装置。
  14.  請求項1~請求項12のいずれか一項に記載の二段圧縮機を備えたことを特徴とする冷房機能を有するヒートポンプ装置。
PCT/JP2011/004655 2011-08-22 2011-08-22 二段圧縮機及びヒートポンプ装置 WO2013027237A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/004655 WO2013027237A1 (ja) 2011-08-22 2011-08-22 二段圧縮機及びヒートポンプ装置
JP2013529781A JP5599514B2 (ja) 2011-08-22 2011-08-22 二段圧縮機及びヒートポンプ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/004655 WO2013027237A1 (ja) 2011-08-22 2011-08-22 二段圧縮機及びヒートポンプ装置

Publications (1)

Publication Number Publication Date
WO2013027237A1 true WO2013027237A1 (ja) 2013-02-28

Family

ID=47746019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004655 WO2013027237A1 (ja) 2011-08-22 2011-08-22 二段圧縮機及びヒートポンプ装置

Country Status (2)

Country Link
JP (1) JP5599514B2 (ja)
WO (1) WO2013027237A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109372747A (zh) * 2018-11-07 2019-02-22 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机
US10309704B2 (en) 2013-11-25 2019-06-04 The Coca-Cola Company Compressor with an oil separator between compressing stages
WO2024189944A1 (ja) * 2023-03-10 2024-09-19 ダイキン工業株式会社 冷凍サイクル装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109595164B (zh) * 2017-09-30 2024-07-12 广东美芝制冷设备有限公司 压缩机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073974A (ja) * 1998-08-26 2000-03-07 Daikin Ind Ltd 2段圧縮機及び空気調和装置
JP2008096072A (ja) * 2006-10-16 2008-04-24 Hitachi Appliances Inc 冷凍サイクル装置
JP2008248865A (ja) * 2007-03-30 2008-10-16 Fujitsu General Ltd インジェクション対応2段圧縮ロータリ圧縮機およびヒートポンプシステム
JP2010071643A (ja) * 2009-11-27 2010-04-02 Mitsubishi Electric Corp 超臨界蒸気圧縮式冷凍サイクルおよびこれを用いる冷暖房空調設備とヒートポンプ給湯機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966662A (ja) * 1982-10-06 1984-04-16 ダイキン工業株式会社 ヒ−トポンプ式暖房装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073974A (ja) * 1998-08-26 2000-03-07 Daikin Ind Ltd 2段圧縮機及び空気調和装置
JP2008096072A (ja) * 2006-10-16 2008-04-24 Hitachi Appliances Inc 冷凍サイクル装置
JP2008248865A (ja) * 2007-03-30 2008-10-16 Fujitsu General Ltd インジェクション対応2段圧縮ロータリ圧縮機およびヒートポンプシステム
JP2010071643A (ja) * 2009-11-27 2010-04-02 Mitsubishi Electric Corp 超臨界蒸気圧縮式冷凍サイクルおよびこれを用いる冷暖房空調設備とヒートポンプ給湯機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10309704B2 (en) 2013-11-25 2019-06-04 The Coca-Cola Company Compressor with an oil separator between compressing stages
CN109372747A (zh) * 2018-11-07 2019-02-22 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机
CN109372747B (zh) * 2018-11-07 2024-03-08 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机
WO2024189944A1 (ja) * 2023-03-10 2024-09-19 ダイキン工業株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
JP5599514B2 (ja) 2014-10-01
JPWO2013027237A1 (ja) 2015-03-05

Similar Documents

Publication Publication Date Title
US8857211B2 (en) Injectable two-staged rotary compressor and heat pump system
JP3674625B2 (ja) ロータリ式膨張機及び流体機械
JP5306478B2 (ja) ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法
JP2008106738A (ja) ロータリ圧縮機およびヒートポンプシステム
US20110232325A1 (en) Refrigerating apparatus
US20090007590A1 (en) Refrigeration System
JP4367567B2 (ja) 圧縮機及び冷凍装置
JPWO2012004992A1 (ja) ロータリ圧縮機及び冷凍サイクル装置
JP2008286037A (ja) ロータリ圧縮機およびヒートポンプシステム
CN208793221U (zh) 涡旋压缩机及包括该涡旋压缩机的空调系统
JP5599514B2 (ja) 二段圧縮機及びヒートポンプ装置
KR20150054268A (ko) 스크롤 압축기 및 이를 포함하는 공기조화기
JP2009063247A (ja) 冷凍サイクル装置およびそれに用いる流体機械
US8156756B2 (en) Fluid machine
JP4617822B2 (ja) ロータリ式膨張機
JP2005226913A (ja) 遷臨界冷媒サイクル装置
JP4492284B2 (ja) 流体機械
JP2005264829A (ja) 流体機械
JP2001207983A (ja) 気体圧縮機
JP5321055B2 (ja) 冷凍装置
JP2009133319A (ja) 容積型膨張機及び流体機械
EP3492748B1 (en) Compressor as well as cooling-heating refrigeration device and cooling-only refrigeration device having same
JP2013253541A (ja) 二段圧縮機
JPS5922313Y2 (ja) インジエクション冷却装置を具備した冷凍サイクル
JP2012136967A (ja) 二段圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013529781

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871130

Country of ref document: EP

Kind code of ref document: A1