WO2007099956A1 - 光電子増倍管および放射線検出装置 - Google Patents

光電子増倍管および放射線検出装置 Download PDF

Info

Publication number
WO2007099956A1
WO2007099956A1 PCT/JP2007/053643 JP2007053643W WO2007099956A1 WO 2007099956 A1 WO2007099956 A1 WO 2007099956A1 JP 2007053643 W JP2007053643 W JP 2007053643W WO 2007099956 A1 WO2007099956 A1 WO 2007099956A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
stem
photomultiplier tube
anode
dyl
Prior art date
Application number
PCT/JP2007/053643
Other languages
English (en)
French (fr)
Inventor
Hideki Shimoi
Katsuma Nagai
Hiroyuki Kyushima
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to US12/224,367 priority Critical patent/US7902509B2/en
Priority to EP07737445.2A priority patent/EP1998357B1/en
Priority to CN2007800070604A priority patent/CN101395692B/zh
Publication of WO2007099956A1 publication Critical patent/WO2007099956A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/22Dynodes consisting of electron-permeable material, e.g. foil, grid, tube, venetian blind

Definitions

  • the present invention relates to a photomultiplier tube and a radiation detection apparatus.
  • electrons emitted from a photocathode provided on one side of a vacuum vessel are amplified by an electron multiplier section formed of an electrode laminate in which dynodes in which a plurality of channel regions are formed are stacked.
  • a photomultiplier tube that is detected by an electron detector composed of a plurality of anodes arranged corresponding to the above.
  • the electrode stack has a connecting portion protruding from each dynode constituting the electrode stack, and the stem pin individually connected to each connecting portion causes the electrode detecting portion to be placed on the electron detecting portion. It is supported while being electrically insulated from the electron detector.
  • a shaft for sliding the electron multiplier portion is provided in parallel with the tube axis of the photomultiplier tube when the photomultiplier tube is manufactured, and the electron multiplier portion is fixed to the shaft when completed.
  • a configured photomultiplier tube see, for example, Patent Document 3.
  • the stem pins individually connected to each dynode there is also known one that supports the electrode stack by placing the electrode stack on an insulating spacer disposed on the periphery of the electron detector. It has been.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-149860 (Page 3, Figure 2)
  • Patent Document 2 JP-A-9 288992 (Page 4, Figure 2)
  • Patent Document 3 Japanese Patent Laid-Open No. 62-287560 (Pages 4-5, Fig. 1)
  • the seismic resistance is sufficiently increased and the reliability is improved by increasing the fixing strength of the electrode laminated portion arranged on the electron detecting portion in which a plurality of anodes are arranged. It is hoped to improve.
  • the present invention has been made to solve such a problem, and is excellent in earthquake resistance, and the positional accuracy between the photocathode and the electron multiplier is improved, and predetermined detection characteristics are obtained.
  • An object of the present invention is to provide a photomultiplier tube and a radiation detection apparatus.
  • the present invention provides a method for supplying incident light incident through a light-receiving face plate into a vacuum vessel having a light-receiving face plate constituting one end and a stem constituting the other end.
  • a photoelectron multiplier comprising a photocathode to be converted into a photoelectron, an electron multiplier for multiplying electrons emitted from the photocathode, and an electron detector for sending an output signal based on the electrons multiplied by the electron multiplier
  • the electron multiplier section has an electrode stack section in which electrodes including dynodes constituting a plurality of channels are stacked in a plurality of stages, and the electron detector section is separated from the final stage electrode in the electrode stack section.
  • the anode has a plurality of anodes arranged corresponding to the channels, and the stem is provided with support means for mounting the final stage electrode.
  • the electron multiplying portion is stably supported by the support means, and the earthquake resistance is improved.
  • the position of the electron multiplier is precisely defined, the distance from the photocathode to the electron multiplier can be set accurately.
  • no insulator is interposed between the anode and the dynode, it is possible to prevent the occurrence of leakage current due to the charging of the insulator and the light emission that occurs when the multiplied electrons collide with the insulator. .
  • the plurality of electrodes are laminated with an insulator interposed therebetween, and the insulator and the support means are arranged coaxially.
  • the electron multiplier can be fixed by applying sufficient pressure in the stacking direction, and the earthquake resistance is further improved.
  • an extraction electrode having an opening for allowing electrons emitted from the dynode to reach the anode may be provided as the final electrode of the electrode stack.
  • the extraction electrode provided with a lower potential than the electron detection unit that is higher than the final detection dynode is provided between the final detection dynode and the electron detection unit, thereby Even when the electric field strength between the electron detectors is increased uniformly and the installation accuracy of each of the nodes constituting the electron detectors varies, electrons can be drawn uniformly from the last stage dynode.
  • the electron detection unit use either a multi-anode in which a plurality of anodes are two-dimensionally arranged or a linear anode in which a plurality of anodes are arranged one-dimensionally.
  • electrons can be detected by a plurality of anodes, and the incident position of incident light incident on the photomultiplier tube can be measured.
  • the supporting means is made of a conductive material.
  • the support means includes a support portion extending from the stem in the stacking direction of the electrode stacking portion and a mounting portion on which the final-stage electrode is mounted, and a cross section of the mounting portion on a plane orthogonal to the stacking direction.
  • the product is preferably larger than the cross-sectional area of the support portion in the plane orthogonal to the stacking direction.
  • the electrode in the stacking direction It is possible to reliably define the positional accuracy of the laminated body and to stably place the electrode laminated body on the placement surface of the placement portion.
  • a first fitting portion is formed on a surface of the placement portion on which the final stage electrode is placed, and a fitting portion is formed on the surface of the placement portion on which the final stage electrode is placed.
  • the first fitting portion and the second fitting portion are fitted to each other! /, .
  • a photomultiplier tube and a radiation detector which have high seismic resistance and high positional accuracy between the photocathode and the electron multiplier and ensure predetermined characteristics.
  • FIG. 1 A schematic cross-sectional view of a radiation detection apparatus 1 according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the photomultiplier tube 10 along the II-II plane in FIG.
  • FIG. 3 is a plan view showing an inner side surface 29a of the stem 29, a tubular member 31, and an extending portion 32.
  • FIG. 4 is a cross-sectional view in the IV-IV plane of FIG.
  • FIG. 5 is a partially enlarged view of FIG.
  • FIG. 6 is a partially enlarged view of FIG.
  • FIG. 7 is a partially enlarged view of FIG.
  • FIG. 9 is a partially enlarged view of FIG.
  • FIG. 10 An overview of the dynode Dy 12 and its lower z-axis configuration with the X-axis upward force also seen.
  • FIG. 11 is a partially enlarged view of FIG.
  • FIG. 12 An overview of the focus electrode 17 and its lower z-axis configuration as viewed from the upper z-axis.
  • FIG. 13 is a partially enlarged view of FIG.
  • FIG. 14 is a diagram showing an electron orbit from 14 photocathodes to dynode Dyl projected onto the xy and xz planes.
  • FIG. 15 is a diagram showing partition walls provided in a normal dynode.
  • FIG. 16 is a diagram showing partition walls provided in a predetermined dynode.
  • FIG. 18 is a cross-sectional view of FIG.
  • FIG. 19 is a cross-sectional view showing the configuration in the vicinity of the exhaust pipe 40.
  • FIG. 20 is a diagram showing a method for manufacturing the exhaust pipe 40 and the stem 29.
  • FIG. 20 is a diagram showing a method for manufacturing the exhaust pipe 40 and the stem 29.
  • FIG. 21 is a diagram showing a method for manufacturing the exhaust pipe 40 and the stem 29.
  • FIG. 22 is a diagram showing a method of manufacturing the exhaust pipe 40 and the stem 29.
  • FIG. 23 is a perspective view showing an anode 125 according to a first modification.
  • FIG. 24 is a schematic cross-sectional view showing a radiation detection apparatus 100 according to a second modification.
  • FIG. 25 is a schematic cross-sectional view showing a radiation detection apparatus 200 according to a third modification.
  • FIG. 26 is a schematic cross-sectional view showing a radiation detection apparatus 100 according to a fourth modification.
  • FIG. 27 is a plan view showing a modification of the shape of the opening of the extension part 32.
  • FIGS. 1 to 22 are diagrams showing a radiation detection apparatus including a photomultiplier tube according to an embodiment of the present invention.
  • substantially the same parts are denoted by the same reference numerals and overlapped. Description is omitted.
  • terms such as “upper” and “lower” are used for convenience based on the state shown in the drawings.
  • FIG. 1 is a schematic cross-sectional view of the radiation detection apparatus 1 according to the present embodiment
  • FIG. 2 is a schematic cross-sectional view of the photomultiplier tube 10 on the II-II plane of FIG.
  • the radiation detector 1 includes a scintillator 3 that converts incident radiation into light and outputs it, and a photomultiplier that detects incident light by converting and multiplying it into electrons.
  • 10 is a device that detects incident radiation and outputs it as a signal.
  • the photomultiplier tube 10 has a tubular shape with a substantially rectangular cross section, the direction of the tube axis is the z axis, the axis perpendicular to the paper surface of FIG. 1 is the X axis, and the axis perpendicular to the z axis and the X axis The y axis.
  • the scintillator 3 includes an incident surface 5 on one end side in the z-axis direction and an output surface 7 on the other end side, and has a substantially rectangular cross section. Radiation enters the scintillator 3 from the incident surface 5 side, and the incident radiation is converted into light inside the scintillator 3 and propagates through the scintillator 3 and is output from the output surface 7 side.
  • the photomultiplier tube 10 is in contact with the output surface 7 side of the scintillator 3, and the central axis of the scintillator 3 and the tube axis of the photomultiplier tube 10 are provided substantially coaxially.
  • the photomultiplier tube 10 includes a light receiving face plate 13 that constitutes one end portion in the z-axis direction, a stem 29 that constitutes the other end portion, a tubular member 31 provided at the peripheral edge portion of the stem 29, and the stem 29
  • This is a vacuum vessel formed by connecting and fixing an exhaust pipe 40 and a side pipe 15 having a cylindrical shape, which are provided substantially at the center of the xy plane, in an airtight manner.
  • an electron detector equipped with a focus electrode 17, an electrode stack with a plurality of dynodes 0 1 to 0 12, and a plurality of anodes 25 that detect electrons and output them as signals.
  • an extraction electrode 19 provided between the electrode stack portion and the electron detection portion.
  • the light-receiving surface plate 13 has a substantially rectangular plate shape made of, for example, glass, and a photoelectric surface 14 that converts incident light into electrons is provided on the inner side, that is, the lower surface side in the z-axis direction. It is provided.
  • the photocathode 14 is formed, for example, by reacting alkali metal vapor with antimony deposited in advance.
  • the photocathode 14 is provided on almost the entire inner surface of the light-receiving face plate 13, and converts the light output from the scintillator 3 and incident through the light-receiving face plate 13 into electrons and emits it.
  • the side tube 15 is a cylindrical shape with a substantially rectangular cross section made of, for example, metal.
  • a light receiving face plate 13 is fixed to one end of the side tube 15 and a stem 29 is fixed to the other end via a tubular member 31 in an airtight manner.
  • the photocathode 14 is electrically connected to the side tube 15 and has the same potential.
  • FIG. 3 is a plan view showing the inner side surface 29 a of the stem 29, the tubular member 31, and the extending portion 32.
  • the stem 29 has a substantially rectangular plate shape made of, for example, Kovar glass, and includes an inner side surface 29a on the inner side of the photomultiplier tube 10 and an outer side surface 29b. And a peripheral edge portion 29c for connecting them.
  • a number of conductive stem pins 27 for supporting the anode 25 are hermetically inserted into the stem 29 in a number corresponding to the number of channels of the anode 25 (64 in this case).
  • a tubular member 31 surrounding the peripheral portion 29c is airtightly attached to the peripheral portion 29c of the stem 29.
  • the tubular member 31 has a tubular shape with a substantially rectangular cross section made of, for example, metal, and is also connected to the side tube 15 in an airtight manner.
  • An extending portion 32 extends from the tubular member 31 to the inner side of the photomultiplier tube 10 along the inner surface 29 a of the stem 29.
  • the extending portion 32 has an annular shape that is made of metal, for example, and has a substantially rectangular shape in plan view.
  • a plurality of through-hole portions 22 and 48 are formed at both edges in the X-axis direction of the extension portion 32, and the support pin 21 and the lead pin 47 are fixed through the respective portions. Further, a focus pin 51 is erected on the extension 32 at the left edge in the X direction in FIG.
  • the support pins 21 are formed of a conductive material, and in the present embodiment, three support pins 21 are provided in total at both edges in the X-axis direction.
  • FIG. 2 shows a cross section taken along the V-V plane of FIG. 3. As shown in FIG. 2, the support pin 21 extends through the stem 29 and extends upward in the z-axis direction. And at the same potential as the extraction electrode 19.
  • the support pin 21 passes through the stem 29 and extends in the z-axis direction, and the mounting portion on which the electrode stack portion is mounted on the upper end of the support portion 21a in the z-axis direction. It consists of part 21b.
  • the mounting portion 21b has a larger cross-sectional area in the xy plane than the support portion 21a, and the electrode stack portion is placed on the lower surface of the lowermost electrode (the extraction electrode 19 in this embodiment). It is mounted on the support pin 21 so that the upper surface (mounting surface) of the part 2 lb is in contact.
  • the mounting part 21b has a larger cross-sectional area in the xy plane than the support part 21a, the positional accuracy of the electrode stack in the z-axis direction is specified reliably.
  • the electrode stack can be stably placed on the placement surface of the placement portion 21b.
  • the lead pins 47 are made of a conductive material. In the present embodiment, a total of 35 lead pins 47 are provided at both edges in the X-axis direction.
  • FIG. 4 shows a cross-section in the IV-IV plane of FIG. 3. As shown in FIG. 4, the lead pin 47 extends upward in the z-axis direction through the stem 29, and each of the predetermined dynodes Dyl to Dyl2, A predetermined potential is supplied by being connected to the extraction electrode 19.
  • Each lead pin 47 is formed to have a length corresponding to the position of each dynode Dyl to Dyl2 to be connected.
  • the focus pin 51 is made of a conductive material, extends upward from the stem 29 in the z-axis direction, and is connected to the focus electrode 17.
  • the focus electrode 17 is electrically connected to the side tube 15 via a focus pin 51 welded to the tubular member 31 and has the same potential as the photocathode 14.
  • FIG. 5 is a partially enlarged view of the cross section taken along the plane V—V in FIG. 2, that is, FIG. 3.
  • FIG. 6 is a partial cross section taken along the plane IV—IV in FIG. It is an enlarged view.
  • the support pin 21 and the lead pin 47 in the through hole portions 22 and 48 are connected to the inner surface 29 a of the stem 29, and a raised portion 33 where the stem 29 is raised is formed.
  • point Pl is the contact point between scooping part 33 and support pin 21 or lead pin 47
  • point P2 is the virtual contact point between inner surface 29a and support pin 21 or lead pin 47 when scooping part 33 is not present.
  • the contact point between the scooping portion 33 and the extending portion 32 is point P3
  • the distance between point P1 and point P3 is longer than the distance between point P3 and point P2. Therefore, in the present embodiment, the creeping distance between the support pin 21 or the lead pin 47 and the tubular member 31 is ensured by the presence of the scooping portion 33.
  • the focus electrode 17 is disposed so as to face the photocathode 14 at a predetermined distance.
  • the focus electrode 17 is a substantially rectangular thin electrode having a plurality of focus pieces 17a extending in the X-axis direction and a plurality of slit-like openings 17b formed by the plurality of focus pieces 17a. This is for efficient convergence to the electron multiplier hole 18a (see Fig. 7).
  • the focus electrode 17 is electrically connected to the side tube 15 via a focus pin 51 (see FIG. 3) erected on the extending portion 32 and is set to the same potential as the photocathode 14.
  • the dynodes Dyl to Dyl2 are electrodes for multiplying electrons, and are stacked so as to face each other substantially parallel below the focus electrode 17 in the z-axis direction.
  • Fig. 7 is a partially enlarged view of Fig. 1.
  • the dynodes Dyl to Dyl2 are substantially rectangular thin plate electrodes in which electron multiplying pieces 18 whose cross sections in the yz plane are concave and convex are arranged parallel to each other. Therefore, in the dynodes Dyl to Dyl2, slit-like electron multiplying holes 18a extending in the x-axis direction are formed between the adjacent electron multiplying pieces 18.
  • a predetermined number of electron multiplying holes 18a correspond to the anodes, and partition walls 71 (see FIG. 15) extending in the y-axis direction are provided at positions corresponding to the X-axis direction boundary portions of the channels of the anode 25. Stipulates the y-axis direction boundary of multiple channels of dynodes Dyl to Dyl 2. Further, as shown in FIGS. 2 and 5, an insulating member 23 is disposed between the dynodes Dyl to Dyl2. High potentials are sequentially supplied to the dynodes Dyl to Dyl2 from the photocathode 14 side to the stem 29 side by lead pins 47.
  • the extraction electrode 19 is disposed on the stem 29 side of the dynode Dy 12 so as to be separated from the dynode Dy 12 via the insulating member 23 and to face each other substantially in parallel.
  • the extraction electrode 19 is a thin plate electrode in which the same material force as that of the dynodes Dyl to Dyl2 is formed.
  • the extraction electrode 19 includes a plurality of extraction pieces 19a extending in the X-axis direction and a plurality of slits formed by the plurality of extraction pieces 19a.
  • This opening 19b is for passing the electrons emitted from the dynode Dy 12 to the anode 25, and the electron multiplying holes 18a of the dynodes Dyl to Dyl2 Is different. Therefore, the opening 19b is designed so that electrons emitted from the dynode Dy 12 do not collide as much as possible.
  • the extraction electrode 19 is given a predetermined potential that is higher than the dynode Dyl 2 and lower than the anode 25, and makes the electric field strength on the secondary electron surface of the dynode Dyl 2 uniform.
  • the secondary electron surface refers to a portion that contributes to the multiplication of electrons formed in the electron multiplication hole 18a of each dynode Dy.
  • the electric field for extracting electrons from the dynode Dyl 2 depends on the potential difference and distance between the dynode Dyl 2 and the anode 25. Therefore, for example, when each anode 25 is arranged with a slight inclination with respect to the xy plane, the distance force between dynode Dyl2 and anode 25 varies depending on each position, so that the electric field strength against dynode Dyl2 is uniform. In other words, electrons cannot be extracted uniformly.
  • the extraction electrode 19 is arranged between the dynode Dyl2 and the anode 25, the electric field with respect to the dynode Dyl2 is determined by the potential difference and the distance between the dynode Dy12 and the extraction electrode 19 and the distance.
  • the potential difference and distance between the dynode Dyl2 and the extraction electrode 19 are constant, the electric field intensity on the secondary electron surface of the dynode Dyl2 is uniform, and the force for extracting electrons from the dynode Dy12 is also uniform. Therefore, even when the anodes 25 are arranged with a slight inclination with respect to the xy plane, electrons can be uniformly extracted from the dynode Dy 12.
  • the extraction electrode 19 is placed on the placement portion 21b of the support pin 21 formed of a conductor at the edge portion as described above. As shown in FIG. 5, since the support pin 21 and the plurality of insulating members 23 are arranged coaxially on the z-direction axis 35, the focus electrode 17, the dynodes Dyl to Dyl2 and the extraction electrode 19 are located below the z-axis. It can be fixed by applying high pressure in the direction.
  • the anode 25 is an electron detection unit that detects electrons and outputs a signal corresponding to the electrons detected via the stem pin 27 to the outside of the photomultiplier tube 10. It is provided on the side so as to face the extraction electrode 19 substantially in parallel. As shown in FIGS. 1 and 2, the anode 25 is a thin plate electrode provided corresponding to a plurality of channels of dynodes Dyl to Dyl2, and is welded to the stem pin 27, and is connected via the stem pin 27. A predetermined potential higher than that of the extraction electrode 19 is supplied. The anode 25 is provided with a plurality of slits for diffusing the alkali metal vapor introduced from the exhaust pipe 40 at the time of manufacture.
  • FIG. 8 is an overview of the electron multiplying portion as viewed from the z-axis upper side force
  • FIG. 9 is a partially enlarged view of FIG.
  • the electron multiplier section is configured by two-dimensionally arranging a plurality of (in this embodiment, 64) anodes 25, and each anode 25 is supported by a stem pin 27 and V In addition, it is electrically connected to a circuit (not shown) via the stem pin 27.
  • the unit anodes are assumed to be anodes 25 (1-1), 25 (1-2),..., 25 (8-8) from the upper left in FIG.
  • Recesses 28 are formed so as to face each other between the unit anodes, and the remaining pegs 26 remain in the recesses 28.
  • the anode 25 is formed in a state of an integral anode plate in which adjacent unit anodes are connected by a bridge at the time of manufacture, and each anode is welded and fixed to each stem pin 27 in the integral state. After that, the bridge is cut and the nodes 25 (1–1), 25 (1–2),... ⁇ 25 (8–8) are made independent of each other.
  • the remaining bridge 26 is the remaining part of the bridge.
  • FIG. 10 is a schematic view of the dynode Dy 12 in which the z-axis upward force is also seen
  • FIG. 11 is a partially enlarged view of FIG. 10 and 11, the electron multiplier piece 18 and the openings 18a and 19b of the extraction electrode 19 are omitted.
  • the dynode Dyl2 and the extraction electrode 19 have substantially the same outer shape as the anode 25 in the xy plane. That is, notches 49 that avoid the support pins 21, the lead pins 47, and the like are formed on both edges in the X-axis direction.
  • a protrusion 55 is formed in the cutout portion 49 of the extraction electrode 19, and the support pin 21 mounts the entire extraction electrode 19 by mounting the protrusion 55.
  • the dynode Dyl 2 has a protruding portion 55.
  • the protrusion 53 is formed around the lead pins 47A and 47B.
  • electrodes are formed up to the vicinity of the inner wall surface of the side tube 15, and corner portions 85 protrude particularly at the four corner portions.
  • the dynodes Dyl to Dyll have substantially the same configuration as the dynode Dyl2, and each lead pin 47 extends in the z-axis direction and is connected to a predetermined dynode Dy.
  • FIG. 12 is a schematic view of the focus electrode 17 as viewed from the upper side of the z axis
  • FIG. 13 is a partially enlarged view of FIG.
  • the focus piece 17a and the opening 17b shown in FIGS. 1 and 2 are omitted.
  • the focus electrode 17 is The notch 24 of the card 25, the dynodes Dyl to Dyl2 and the notch 49 of the extraction electrode 19 are provided up to the peripheral edge in the X-axis direction.
  • a portion covering the notch 24 or the notch 49 of the focus electrode 17 is formed with a slit to form a flat plate electrode portion 16, and the four corner portions are corner portions 87 having slits. ing.
  • Fig. 14 is a diagram showing the photoelectron 14 force projected onto the xy plane and the xz plane of the electron trajectory up to the dynode Dyl.
  • the electrons emitted from the peripheral edge of the photocathode 14 in the X-axis direction are caused by the plate electrode portion 16 provided so as to cover the notches 24 and 49 of the focus electrode 17 in the X-axis direction.
  • the beam is focused on the central electron multiplier aperture 89 and enters the dynode Dyl like the orbit 61.
  • the electrons from which the region force facing the corner portion 87 of the photocathode 14 is also emitted are focused by the corner portion 87 of the focus electrode 17 and enter the corner portion 85 of the dynode Dyl like the orbit 63. Since the focus electrode 17 and the dynode Dyl corner portions 87 and 85 are thus provided, electrons emitted from the peripheral portion of the photocathode 14 also efficiently enter the dynode Dyl.
  • the electrons that are also released from the region force facing the corner portion 87 of the photocathode 14 are incident on the X axis direction central side of the dynode Dy through the oblique orbit 63. Therefore, if the corners 83, 85, 87 are not provided on each electrode, that is, if the corner portion of each electrode is not an effective area, the area force facing the corner part 87 of the photocathode 14 is also released. Since the generated electrons need to be largely focused in order to enter the dynode Dyl, the difference in travel distance from the track 65 becomes larger than that of the track 61.
  • the dynodes Dyl to Dyl2 the extraction electrode 19 and the anode 25 are provided with notches 24 and 49, and the corners 83, 85 and 87 are used for electron multiplication and detection. Effective area for Therefore, the electrons emitted from the regions facing the corner portions 83, 85, 87 of the photocathode 14 are focused so as to reduce the travel time difference. Therefore, the temporal fluctuations of the electrons incident on the dynode Dyl can be minimized by the orbits 61, 63, and 65.
  • FIG. 15 is a diagram showing a partition wall provided in a normal dynode
  • FIG. 16 is a diagram showing a partition wall provided in a predetermined dynode
  • FIG. 17 is an overall view of a dynode provided with many partition walls
  • dynodes Dyl to Dyl2 have a structure having slits in the x-axis direction as described above, and in the y-axis direction, as shown in FIG. A partition wall 71 corresponding to the direction boundary is provided.
  • the photoelectrons emitted from the peripheral edge force of the photocathode 14 in response to the light incident near the peripheral edge of the light receiving surface plate 13 are located on the center side of the xy plane. Focus on. Since electrons from the peripheral portion are lost as they are focused, the uniformity of the electron multiplication factor at the peripheral portion tends to decrease as a result. Therefore, as shown in FIGS.
  • a partition wall 73 extending in the y-axis direction is provided in a region excluding the peripheral edge of the dynode Dy in the y-axis direction to adjust the electron multiplication factor.
  • the A-A cross section in FIG. 17 has the electron multiplier piece 18 in the entire electrode stack as shown in FIG. 7, but the BB cross section has the electron multiplier piece 18 as shown in FIG.
  • a portion of the dynode Dy 5 excluding the peripheral edge in the y direction is a partition wall 73.
  • the electron multiplying hole 18a is not formed in the partition wall 73, and the electrons incident on the partition wall 73 do not contribute to the multiplication. Therefore, the electron multiplication in the central part of the xy plane is suppressed, and the electron multiplication factor is made uniform.
  • FIG. 19 is a cross-sectional view showing a configuration near the exhaust pipe 40.
  • the exhaust pipe 40 is hermetically connected to the central portion of the stem 29.
  • the exhaust pipe 40 has a double structure of an inner pipe 43 and an outer pipe 41.
  • the outer tube 41 is made of, for example, Kovar metal, which has good adhesion to the glass and has the same thermal expansion coefficient so as to be in close contact with the stem 29.
  • the thickness is 0.5 mm, the outer diameter is 5 mm, and the length is 5 mm, for example. It is.
  • the thickness of the stem 29 can be 4 mm, for example, and in this case, the outer tube 41 protrudes 1 mm outside the outer surface 29 b of the stem 29.
  • the outer tube 41 protrudes outward from the outer surface 29b, so that the stem 29 can pass between the inner tube 43 and the outer tube 41 beyond the outer tube 41. It is preventing. Further, the exhaust pipe 40 is configured such that the inner pipe 43 protrudes from the lower end of the outer pipe 41 even after sealing in order to facilitate sealing (pressure contact).
  • the inner tube 43 is made of, for example, Kovar metal or copper, has an outer diameter of, for example, 3.8 mm, and has a length before cutting of, for example, 30 mm.
  • One end of the side surface 29a side is airtightly joined to the outer tube 41.
  • the other end portion of the inner tube 43 is hermetically sealed, so that the thickness is preferably as thin as possible, for example, 0.15 mm.
  • the connecting portion 41a with the stem 29, the connecting portion 41a is arranged so as to protrude, for example, 0.1 mm from the z-axis direction upper side so that the material of the stem 29 does not go around the inside of the exhaust pipe 40.
  • FIG. 20 to 22 are diagrams showing a method for manufacturing the exhaust pipe 40 and the system 29.
  • FIG. 20 first, an outer tube 41 and an inner tube 43 are prepared. Subsequently, the inner tube 43 is arranged inside the outer tube 41 so as to be coaxial. At this time, the positions of the ends of the inner tube 43 and the outer tube 41 are aligned, and the connecting portion 41a is joined by laser welding. After joining, an oxide film is formed on the outer surface of the outer tube 41 to facilitate fusion with the stem 29.
  • a tubular member 31 and an extending portion 32 are prepared, and an oxide film for facilitating fusion with the stem 29 is formed thereon.
  • the stem 29 is formed with a predetermined number of through-holes 38 for mounting the support pins 21, through-holes 30 for mounting the stem pins 27, and one through-hole 34 for mounting the exhaust pipe 40. To do.
  • an exhaust pipe 40, a tubular member 31, an extending part 32, a stem 29, a support pin 21, a stem pin 27, a lead pin 47, etc. are arranged at the positions shown in the figure, respectively.
  • Glass and each metal are hermetically fused by pressurizing the stem 29 with a jig so as to sandwich the inner side surface 29a and outer side surface 29b of the stem 29.
  • the material of the stem 29 is pushed out to the connecting portion between the support pin 21 inserted through the through-hole portions 22 and 48 of the extending portion 32 and the stem 29 of the lead pin 47, and the raised portion 33 is generated.
  • the jig is removed, and the oxide film is removed and washed. In this way, the stem part is completed.
  • the integrally formed anode 25 is placed on the stem pin 27 and fixed. After fixing, the bridge is cut and separated as anodes 25 (1—1), 25 (1—2), ..., 25 (8—8). Make it.
  • the extraction electrode 19 is placed so as to be separated from the anode 25 substantially in parallel. Further, on the extraction electrode 19, an electrode stacking portion is placed in which the dynodes Dyl 2 to Dyl and the focus electrode 17 are sequentially spaced apart from each other via the insulating member 23.
  • the lead pin 47 corresponding to each of the dynodes Dyl to Dyl2 is connected to the protruding portion 53 and the focus electrode 17 is connected to the focus pin 51, and fixed by applying pressure downward in the z axis. Thereafter, the end portion of the side tube 15 to which the light receiving face plate 13 is fixed is assembled with the tubular member 31 by welding.
  • the radiation detection apparatus 1 when radiation is incident on the incident surface 5 of the scintillator 3, light corresponding to the radiation incident on the output surface 7 side is output.
  • the photocathode 14 When light output from the scintillator 3 is incident on the light receiving surface plate 13 of the photomultiplier tube 10, the photocathode 14 emits electrons corresponding to the incident light.
  • the focus electrode 17 provided so as to face the photocathode 14 focuses the electrons emitted from the photocathode 14 force so as to enter the dynode Dy 1.
  • Dynode Dyl multiplies the incident electrons and emits them to the lower dynode Dy2.
  • the electrons sequentially multiplied by the dynodes Dyl to Dyl2 reach the anode 25 through the extraction electrode 19.
  • the anode 25 detects the reached electron and outputs it as a signal through the stem pin 27 to the outside.
  • the photomultiplier tube 10 includes a support pin 21 for mounting the electrode laminate.
  • a support pin 21 for mounting the electrode laminate.
  • the support pin 21 is made of a conductive material, it does not emit light even when electrons collide. Therefore, the generation of noise can be further prevented.
  • the focus electrode 17, the dynodes Dyl to Dyl 2, and the lead electrode 19 are opposed to each other and stacked with an insulating member 23 arranged coaxially with the support pin 21. Therefore, since the focus electrode 17, the dynodes Dyl to Dyl2 and the extraction electrode 19 can be fixed by applying a higher pressure in the z-axis direction, the earthquake resistance is further improved. Further, by stacking the focus electrode 17, the dynodes Dyl to Dyl2 and the extraction electrode 19 via the insulating member 23, the position of each electrode in the xy plane can be accurately defined.
  • the focus electrode 17 is provided on the photocathode 14 side of the dynodes Dyl to Dyl2, electrons emitted from the photocathode 14 can be efficiently incident on the dynode Dyl.
  • notches 49 and 24 are formed in the dynodes Dyl to Dyl2, the extraction electrode 19 and the anode 25, and supported by the notches 49 and 24.
  • Pin 21 and lead pin 47 are arranged. Therefore, it is possible to secure a sufficient effective area for each electrode, and it is possible to minimize signal fluctuations due to differences in the travel time of electrons.
  • the lead pin 47 extends in the z-axis direction, and the notches 49 and 24 formed in the dynodes Dyl to Dyl2, the extraction electrode 19 and the anode 25 overlap in the z-axis direction. Thus, it becomes possible to secure an effective area.
  • the focus electrode 17 is provided up to the periphery of the xy plane so as to cover the notch 49 of the dynodes Dyl to Dyl2. Region force corresponding to notches 49, 24 formed in Dyl2, extraction electrode 19 and anode 25 It is possible to focus the emitted electrons on the effective region of dynode Dyl, and photodetection in photomultiplier tube 10 In addition to securing a large effective area, it prevents the electrons from colliding with the lead pin 47 and lowering the multiplication factor.
  • the opening 17b of the focus electrode 17 is in the x-axis direction, that is, with respect to the edge where the lead-out electrode 19 and the notches 49 and 24 of the anode 25 are formed. Extending in the vertical direction. Although it is preferable to make as many electrons as possible enter the opening 17b, the electrons hitting the focus piece 17a do not enter the opening 17b. Therefore, it is preferable to control the electron trajectory so as to avoid the focus piece 17a. In particular, it is preferable to control the electron trajectory so as to avoid the flat electrode portion 16 with respect to electrons that also enter the partial force facing the flat electrode portion 16 of the photocathode 14.
  • the electrons entering from the portion facing the flat plate electrode portion 16 are the force that travels in the X-axis direction like the orbit 61, that is, the control in the X-axis direction, that is, the control in the direction in which the electrons originally travel This is difficult compared to y-axis control. Therefore, in the present embodiment, the opening 17b extends in the X-axis direction, that is, in a direction perpendicular to the edge where the extraction electrode 19 and the cutout portions 49 and 24 of the anode 25 are formed. Therefore, if the y-axis direction control is relatively easy, electrons can be efficiently incident on the opening 17b.
  • the extraction electrode 19 is provided between the final stage dynode Dyl2 and the anode 25, the electric field strength on the lower side in the z-axis direction of the dynode Dy 12 is made uniform. . Therefore, the electron emission characteristics of the dynode 12 are made uniform. For example, even if each unit anode is tilted after the bridge is cut and the distance between the anode 25 and the extraction electrode 19 varies, the dynode 12 is separated from the dynode Dyl 2 for each channel region. I can shoot electrons evenly
  • a partition 73 is provided in the dynode Dy at a predetermined stage, and the variation in the electron multiplication factor in the xy plane is reduced by adjusting the aperture ratio.
  • the anode 25 is integrally formed, and after each anode is fixed to the corresponding stem pin 27, the bridge is cut and the unit anode 25 is made independent, so that the process of placing on the stem pin 27 can be simplified.
  • the accuracy of the installation position of each anode 25 is increased.
  • the effective surface of the anode 25 can be sufficiently secured, and the remaining bridge portion 26 is disposed in the recess 28. Therefore, the discharge between the bridge remaining portions 26 can be prevented.
  • the multi-anodes arranged two-dimensionally in this way the incident position in the xy plane of the light to be detected can be detected.
  • the stem 29 is formed of glass, and a tubular member 31 is provided on the inner periphery of the peripheral portion 29c.
  • An extending portion 32 is provided on the surface 29a, and the support pin 21 and the lead pin 47 are passed through the extending portion 32, and the focus pin 51 is erected. Therefore, each pin can be provided near the side tube 15, and a sufficient effective surface of each electrode can be secured.
  • a crawling portion 33 is formed at the connection portion between the stem 29, the support pin 21, and the lead pin 47, so that the creeping distance between the tubular member 31 and each pin can be increased. This makes it possible to prevent creeping discharge and noise caused by light emission caused by the multiplied electrons colliding with the insulator. Further, since the through hole portions 22 and 28 are provided in the extension portion 32, it functions as a relief portion of the glass material when the stem 29 is manufactured, and the thickness adjustment of the stem 29 is facilitated.
  • the thickness of the stem 29 can be controlled in this way, the positional accuracy of the outer surface 29b of the stem 29 with respect to the light receiving face plate 13 is increased, and as a result, the dimensional accuracy of the entire length of the photomultiplier tube 10 is increased.
  • the distance between the light source and the light receiving face plate 13 of the photomultiplier tube 10 is constant, and light detection with less error is possible. It becomes.
  • the exhaust pipe 40 provided in the stem 29 has a double pipe structure, and the outer pipe 41 is made of a material having high adhesion to the stem 29 and is made thick.
  • the inner tube 43 is made of a soft material and is thin. By adopting such a double tube structure, pinholes and the like during laser welding can be prevented by the thickness of the outer tube 41.
  • the inner tube 43 can be connected to the outer tube 41 only at the end on the inner surface 29a side of the stem 29, and the outer tube 41 can secure adhesion to the stem 29 without damaging the connection portion.
  • the inner tube 43 can be cut short and sealed to the extent that it does not get in the way even if the length is placed on the circuit board.
  • the diameter of the exhaust pipe 40 can be increased, and when introducing the alkali metal vapor, the processing time can be shortened and the uniformity of the introduced vapor is improved.
  • the scintillator 3 is provided on the light receiving face plate 13 side of the photomultiplier tube 10, radiation can be detected and output as a signal.
  • FIG. 23 is a perspective view showing a modification of the electron detection unit.
  • the anode 25 constituting the electron detector is a multi-anode arranged two-dimensionally.
  • the linear anodes 125 are one-dimensionally arranged.
  • the boundary portion of the linear anode 125 is provided in a portion corresponding to the partition wall 71 of the dynodes Dyl to Dyl2.
  • Each linear anode 125 is connected to and supported by a stem pin 127 provided through the stem 29, and is supplied with a predetermined potential and outputs a signal corresponding to the detected electrons.
  • the linear anode 125 is also provided with a recess (not shown) provided with a bridge in a portion facing the adjacent unit anode, and the bridge is cut after fixing the entire anode 125 on the stem pin 127.
  • FIG. 24 is a schematic cross-sectional view showing a radiation detection apparatus 100 employing a modification of the scintillator.
  • a radiation detection apparatus 100 in which a plurality of scintillators 103 having a size corresponding to the channel region of the photomultiplier tube 10 are arranged one-dimensionally is used.
  • Other configurations are the same as those of the first modification. According to such a configuration, it is possible to detect the incident position of radiation in the xy plane.
  • FIG. 25 is a schematic cross-sectional view showing a radiation detection apparatus 200 employing another modification of the scintillator.
  • a radiation detection apparatus 200 in which a plurality of scintillators 203 smaller than the size of the anode 125, for example, corresponding to one half of the anode 125, is arranged in one dimension is used.
  • Other configurations are the same as those of the second modification. According to such a configuration, it is possible to more accurately detect the incident position of the radiation in the xy plane.
  • FIG. 26 is an explanatory diagram of a modified example of the shapes of the placement portion 21b and the extraction electrode 19.
  • a convex portion 21c is formed on the surface of the placement portion 21b on which the extraction electrode 19 is placed, and a concave portion 19c is formed on the surface of the extraction electrode 19 on which the placement portion 21b is placed.
  • the convex portion 21c and the concave portion 19c are fitted to each other. According to such a configuration, it is possible to improve the positional accuracy in the xy plane of the electrode stack portion including the focus electrode 17 and the plurality of dynodes Dyl to Dyl2.
  • a recess may be formed in the last stage dynode Dyl2. Further, a concave portion may be formed on the mounting portion 21b, and a convex portion may be formed on the extraction electrode 19. It should be noted that the photomultiplier tube and the radiation detection apparatus according to the present invention are not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. is there.
  • the tubular member 31 has the extending portion 32 extending on the inner side surface 29a side of the stem 29, but the extending portion 32 may be provided on the outer side surface 29b side.
  • the potential of the photocathode 14 is exposed around the extension 32 and between the lead pins 47 passing through the extension 32. Since the circuit board is often placed close to the outside of the stem 29, if the potential of the photocathode 14 with the largest potential difference with respect to the anode 25 is exposed, a problem may arise in terms of withstand voltage. There is sex. Therefore, it is preferable that the extension part 32 is on the inner side.
  • the exhaust pipe 40 is connected to the stem 29 after connecting the outer pipe 41 and the inner pipe 43, but first, only the outer pipe 41 is oxidized and connected to the stem 29 to form an oxide film.
  • the inner tube 43 is connected to the outer tube 41 after removing the pipe.
  • the photomultiplier tube and each electrode have substantially rectangular cross sections
  • the cross section may be circular or other shapes. In this case, it is preferable to change the shape of the scintillator according to the shape of the photomultiplier tube.
  • the partition wall 73 may be provided on the other stage of the force provided on the fifth stage dynode Dy5.
  • it may be provided in a plurality of dynodes.
  • the opening 19b of the extraction electrode 19 is not limited to a line shape but may be a mesh shape.
  • a plurality of openings 122, 148 may be formed in a comb-tooth shape in place of the through holes 22, 48 at both edges in the X-axis direction of the extension part 32.
  • the degree of improvement in the strength of the stem 29 by the extension 32 is slightly inferior, and the material of the stem 29 from the opening In this case, the effective area of the electron doubling portion and the electron beam detection portion can be efficiently secured.
  • the radiation detection apparatus of the present invention can be used for an image diagnosis apparatus in a medical machine.

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

 側管(15)の一側端部に受光面板(13)を、他側端部に管状部材(31)を介してステム(29)を気密に接合して構成された真空容器内に、光電面(14)、フォーカス電極(17)、ダイノード(Dy1~Dy12)、引き出し電極(19)、およびアノード(25)を配置する。ダイノード(Dy1~Dy12)とアノード(25)とは互いに対応した複数チャネルを有する。引き出し電極(19)は、ステム(29)を貫通した導電性の支持ピン(21)上に載置され、ダイノード(Dy1~Dy12)は互いに絶縁部材(23)を介して積層される。支持ピン(21)と絶縁部材(23)とは同一軸上にあり、z軸方向に圧力をかけて各電極を固定できるとともに、アノード(25)、引出し電極(19)間での発光を抑制し、ノイズ低減が可能になる。  

Description

明 細 書
光電子増倍管および放射線検出装置
技術分野
[0001] 本発明は、光電子増倍管および放射線検出装置に関する。
背景技術
[0002] 従来、真空容器の一側に設けられた光電面が放出した電子を、複数のチャンネル 領域が形成されたダイノードを積層した電極積層体よりなる電子増倍部により増幅し 、各チャンネル領域に対応して配列された複数のアノードからなる電子検出部で検 出する光電子増倍管が知られている。(例えば、特許文献 1、 2参照)。これらの光電 子増倍管にぉ 、ては、電極積層体は電極積層体を構成する各ダイノードから接続部 が突出しており、各接続部に個別に接続されたステムピンによって、電子検出部上に 電子検出部と電気的に絶縁された状態で支持されている。
[0003] また、光電子増倍管の製造時に光電子増倍管の管軸に平行に電子増倍部を摺動 させるための軸を設け、完成時にはその軸に電子増倍部を固定するように構成され た光電子増倍管がある(例えば、特許文献 3参照)。また、各ダイノードに個別に接続 されたステムピンに加え、電子検出部の周縁部上に配置された絶縁性のスぺーサ上 に電極積層体を配置することで電極積層体を支持するものも知られている。
特許文献 1:特開 2000— 149860号公報 (第 3頁、第 2図)
特許文献 2 :特開平 9 288992号公報 (第 4頁、第 2図)
特許文献 3:特開昭 62— 287560号公報 (第 4〜5頁、第 1図)
発明の開示
発明が解決しょうとする課題
[0004] 上記のような光電子増倍管では、複数のアノードが配列されてなる電子検出部上 に配置される電極積層部の固定強度を高めることにより、耐震性を十分高くし、信頼 性を向上させることが望まれて 、る。
[0005] そこで本発明は、このような課題を解決するために成されたものであり、耐震性に優 れ、光電面と電子増倍部との間の位置精度が高められ所定の検出特性が確保され る光電子増倍管および放射線検出装置を提供することを目的とする。
課題を解決するための手段
[0006] 上記目的を達成するため、本発明は、一側端部を構成する受光面板と、他側端部 を構成するステムとを有する真空容器内に、受光面板を通して入射した入射光を電 子に変換する光電面と、光電面が放出した電子を増倍させる電子増倍部と、電子増 倍部が増倍した電子に基づいて出力信号を送出する電子検出部とを備えた光電子 増倍管において、電子増倍部は、複数のチャネルを構成するダイノードを含む電極 が複数段に積層された電極積層部を有し、電子検出部は、電極積層部における最 終段の電極と離間して対向しチャネルに対応して配列された複数のアノードを有し、 ステムには、最終段の電極を載置するための支持手段が設けられて 、ることを特徴と する。
[0007] このような構成によれば、支持手段によって電子増倍部が安定して支持され、耐震 性が良好になる。また、電子増倍部の位置が精度良く規定されるので、光電面から 電子増倍部までの距離を正確に設定することが可能になる。さらに、アノードとダイノ ードとの間に絶縁物を介さないので、絶縁物の帯電によるリーク電流の発生や、増倍 された電子が絶縁物に衝突して発生する発光を防止することができる。
[0008] このとき複数段の電極は、互いに絶縁体を介して積層されており、絶縁体と、支持 手段とは同軸に配置されて 、ることが好ま 、。
[0009] このように支持手段と絶縁体とが同軸に配置されていると、積層方向に充分圧力を 力けて電子増倍部を固定することができ、更に耐震性が向上する。
[0010] 上記いずれかの光電子増倍管において、電極積層部の最終段の電極として、ダイ ノードから放出された電子をアノードに到達させる開口部を有する引き出し電極を設 けるようにしてもよい。
[0011] このような構成によれば、最終段ダイノードと電子検出部の間に最終段ダイノードよ りも高ぐ電子検出部よりも低い電位を与えられた引き出し電極を設けることで最終段 ダイノードと電子検出部の間の電界強度を均一に高め、電子検出部を構成する各ァ ノードの設置精度にばらつきがある場合にも、電子を最終段ダイノードから均一に引 き出すことができる。 [0012] 電子検出部は、複数のアノードが 2次元的に配置されたマルチアノード、または複 数のアノードが 1次元的に配置されたリニアアノードのいずれ力とすることが好ましい
[0013] このような構成によれば、複数のアノードで電子を検出することができ、光電子増倍 管に入射する入射光の入射位置を測定することができる。
[0014] さらに、支持手段は、導電性材料で形成されて!ヽることが好ま ヽ。
[0015] このような構成によれば、支持手段に電子が衝突しても発光することはなぐノイズ を防止することができる。
[0016] さらに、支持手段は、ステムから電極積層部の積層方向に延びる支持部と、最終段 の電極を載置する載置部とを備え、積層方向と直交する平面における載置部の断面 積は、積層方向と直交する平面における支持部の断面積よりも大きいことが好ましい
[0017] このような構成によれば、積層方向と直交する平面における載置部の断面積は、積 層方向と直交する平面における支持部の断面積よりも大きいため、積層方向におけ る電極積層体の位置精度を確実に規定するとともに、電極積層体を載置部の載置面 上に安定して載置することが可能となる。
[0018] さらに、載置部の最終段の電極を載置する面には第 1の嵌合部が形成され、最終 段の電極の載置部に載置される面には嵌合部が形成されており、最終段の電極が 支持手段に載置された際には、第 1の嵌合部と第 2の嵌合部とは互いに嵌合されて 、ることが好まし!/、。
[0019] このような構成によれば、電極積層部の積層方向と直交する平面方向における位 置精度を向上させることができる。
[0020] 上記いずれかの光電子増倍管の受光面板の外側に、放射線を光に変換して出力 するシンチレータを設置すれば、上記作用を奏する好適な放射線検出装置が得られ る。
発明の効果
[0021] 本発明によれば、耐震性が高ぐかつ光電面と電子増倍部との間の位置精度が高 められ所定の特性が確保される光電子増倍管および放射線検出器が提供される。 図面の簡単な説明
圆 1]本発明の一実施の形態による放射線検出装置 1の概略断面図である。
[図 2]図 1の II— II面における光電子増倍管 10の概略断面図である。
[図 3]ステム 29の内側面 29a、管状部材 31、および延出部 32を示す平面図である。
[図 4]図 3の IV— IV平面における断面図である。
[図 5]図 2の部分拡大図である。
[図 6]図 4の部分拡大図である。
[図 7]図 1の部分拡大図である。
圆 8]アノード 25およびその z軸下方側の構成を z軸上方側力も見た概観図である。
[図 9]図 8の部分拡大図である。
[図 10]ダイノード Dy 12およびその z軸下方側の構成を X軸上方力も見た概観図であ る。
[図 11]図 10の部分拡大図である。
[図 12]フォーカス電極 17およびその z軸下方側の構成を z軸上方側から見た概観図 である。
[図 13]図 12の部分拡大図である。
[図 14]光電面 14カゝらダイノード Dylまでの電子軌道を xy平面および xz平面に投影 して示す図である。
[図 15]通常のダイノードに設けられる隔壁を示す図である。
[図 16]所定のダイノードに設けられる隔壁を示す図である。
圆 17]隔壁を多く設けたダイノードの全体図である。
[図 18]図 17の断面図である。
圆 19]排気管 40付近の構成を示す断面図である。
[図 20]排気管 40およびステム 29の製造方法を示す図である。
[図 21]排気管 40およびステム 29の製造方法を示す図である。
[図 22]排気管 40およびステム 29の製造方法を示す図である。
圆 23]第 1の変形例によるアノード 125を示す斜視図である。
圆 24]第 2の変形例による放射線検出装置 100を示す概略断面図である。 [図 25]第 3の変形例による放射線検出装置 200を示す概略断面図である。
[図 26]第 4の変形例による放射線検出装置 100を示す概略断面図である。
[図 27]延出部 32の開口部の形状の変形例を示す平面図である。
符号の説明
[0023] 1:放射線検出装置
3:、:メンチレータ
5:入射面
7:出射面
10: :光電子増倍管
13: :受光面板
14: :光電面
15: :側管
17: :フォーカス電極
19: :引き出し電極
21: :支持ピン
23: :絶縁部材
25: :アノード
27: :ステムピン
29: :ステム
31: :管状部材
32: :延出部
33: :這い上がり部
35: :軸
47: :リードピン
発明を実施するための最良の形態
[0024] 以下、本発明の実施の形態を添付図面を参照して説明する。
[0025] 図 1〜図 22は、本発明の一実施の形態による光電子増倍管を含む放射線検出装 置を示す図である。各図において実質的に同一の部分には同一符号を付し、重複 説明を省略する。なお、以下の説明において「上」、「下」等の語を、図面に示す状態 に基づ!/、て便宜的に用いることとする。
[0026] 図 1は、本実施の形態による放射線検出装置 1の概略断面図、図 2は、図 1の II II 面における光電子増倍管 10の概略断面図である。図 1、 2に示すように、放射線検 出装置 1は、入射した放射線を光に変換して出力するシンチレータ 3、および入射し た光を電子に変換および増倍して検出する光電子増倍管 10を備え、入射した放射 線を検出して信号として出力する装置である。光電子増倍管 10は、断面が略矩形の 管状形状を有しており、管軸の方向を z軸、図 1の紙面に垂直な軸を X軸、 z軸及び X 軸に垂直な軸を y軸とする。
[0027] シンチレータ 3は、 z軸方向一端側に入射面 5、他端側に出力面 7を備え、断面が略 矩形状を有している。シンチレータ 3には、入射面 5側から放射線が入射し、入射した 放射線は、シンチレータ 3内部で光に変換されてシンチレータ 3内を伝搬し、出力面 7側から出力される。光電子増倍管 10は、シンチレータ 3の出力面 7側に接しており、 シンチレータ 3の中心軸と光電子増倍管 10の管軸とはほぼ同軸に設けられている。
[0028] 光電子増倍管 10は、 z軸方向一側端部を構成する受光面板 13、他側端部を構成 するステム 29、ステム 29の周縁部に設けられた管状部材 31、ステム 29の xy平面の ほぼ中央に設けられた排気管 40、および、筒型形状を有する側管 15が、気密に接 続および固定されることにより形成された真空容器である。光電子増倍管 10の真空 容器内部には、フォーカス電極 17、複数のダィノード0 1〜0 12を備ぇた電極積 層部、電子を検出し信号として出力する複数のアノード 25を備えた電子検出部、お よび、電極積層部と電子検出部との間に備えられた引き出し電極 19が配置されてい る。
[0029] 受光面板 13は、例えばガラスで形成された略矩形の板状形状を有しており、その 内部側、すなわち z軸方向下面側には、入射光を電子に変換する光電面 14が設け られている。光電面 14は、例えば予め蒸着したアンチモンにアルカリ金属蒸気を反 応させることにより形成される。光電面 14は、受光面板 13の内部側のほぼ全面に設 けられており、シンチレータ 3から出力され受光面板 13を通して入射した光を、電子 に変換し放出する。側管 15は、例えば金属で形成された断面が略矩形の筒型形状 を有しており、光電子増倍管 10の側面を構成している。側管 15の一端部には受光 面板 13が、他端部には管状部材 31を介してステム 29が、互いに気密に固定されて いる。ここで、光電面 14は側管 15に電気的に接続され、同電位とされている。
[0030] 図 3は、ステム 29の内側面 29a、管状部材 31、および延出部 32を示す平面図であ る。図 1〜図 3に示すように、ステム 29は、例えばコバールガラスで形成された略矩形 の板状を有しており、光電子増倍管 10内部側の内側面 29aと、外側面 29bと、それ らを接続する周縁部 29cとを有している。ステム 29には、アノード 25を支持するため の導電性のステムピン 27が、アノード 25のチャンネル数に対応した数(ここでは 64本 )だけ、気密に挿通されている。
[0031] ステム 29の周縁部 29cには、周縁部 29cを取り囲む管状部材 31が気密に装着され ている。管状部材 31は、例えば金属で形成された断面が略矩形の管形状を有して おり、側管 15とも気密に接続されている。管状部材 31からは、ステム 29の内側面 29 aに沿って光電子増倍管 10の内部側に延出部 32が延出している。延出部 32は、例 えば金属で形成された平面視が略矩形状の環形状を有している。
[0032] 延出部 32の X軸方向両縁部には、複数の貫通穴部 22、 48が形成されており、それ ぞれ支持ピン 21、リードピン 47が揷通固定されている。また図 3の X方向左側縁部に は、フォーカスピン 51が延出部 32に立設されている。
[0033] 支持ピン 21は、導電性材料で形成され、本実施の形態では、 X軸方向両縁部に 3 本ずつ合計 6本設けられている。なお、図 2は、図 3の V— V面における断面を示して おり、図 2に示すように、支持ピン 21は、ステム 29を貫通して z軸方向上方に延び、引 き出し電極 19を載置するとともに、引き出し電極 19と同電位とされている。
[0034] 図 5に示すように支持ピン 21はステム 29を揷通して z軸方向に延びる支持部 21a、 及び支持部 21aの z軸方向上端に設けられ電極積層部が載置される載置部 21bで 構成されている。ここで載置部 21bは支持部 21aに比較して xy平面における断面積 が大きく形成されており、電極積層部は最下段の電極 (本実施形態においては引き 出し電極 19)の下面と載置部 2 lbの上面 (載置面)が接する形で支持ピン 21上に載 置されている。ここで載置部 21bは支持部 21aに比較して xy平面における断面積が 大きく形成されているため、 z軸方向における電極積層体の位置精度を確実に規定 するとともに、電極積層体を載置部 21bの載置面上に安定して載置することが可能と なる。
[0035] リードピン 47は、導電性材料で形成され、本実施の形態では、 X軸方向両縁部に合 計 35本設けられている。図 4は、図 3の IV— IV面における断面を示しており、図 4に 示すように、リードピン 47は、ステム 29を貫通して z軸方向上方に延び、夫々所定の ダイノード Dyl〜Dyl2、及び引出し電極 19に接続されて所定の電位を供給してい る。なお、各リードピン 47は、夫々接続するダイノード Dyl〜Dyl2の位置に応じた 長さに形成されている。フォーカスピン 51は、導電性材料で形成され、ステム 29から z軸方向上方に延び、フォーカス電極 17に接続されている。フォーカス電極 17は管 状部材 31に溶接されたフォーカスピン 51を介して側管 15に電気的に接続され光電 面 14と同電位とされている。
[0036] 図 5は、図 2、すなわち、図 3の V— V面における断面の一部拡大図であり、図 6は、 図 4、すなわち、図 3の IV— IV面における断面の一部拡大図である。図 5、図 6に示す ように、貫通穴部 22、 48における支持ピン 21およびリードピン 47のステム 29の内側 面 29aとの接続部分には、ステム 29が盛り上がった這い上がり部 33が形成されてい る。ここで、這い上がり部 33と支持ピン 21またはリードピン 47との接点を点 Pl、這い 上がり部 33がないとした場合の内側面 29aと支持ピン 21またはリードピン 47との仮 想接点を点 P2、這い上がり部 33と延出部 32との接点を点 P3とすると、点 P1—点 P3 間の距離は、点 P3—点 P2間の距離と比べて長くなつている。従って、本実施の形態 では、這い上がり部 33があることにより、支持ピン 21またはリードピン 47と管状部材 3 1との沿面距離が長く確保されている。
[0037] 図 1、図 2に示すように、フォーカス電極 17は、光電面 14と所定の距離離間して対 向するように配置されている。フォーカス電極 17は、 X軸方向に延びる複数のフォー カス片 17aと、複数のフォーカス片 17aによって形成された複数のスリット状の開口部 17bを備えた略矩形薄型電極であり、電子をダイノード Dylの電子増倍孔 18a (図 7 参照)に効率よく収束させためのものである。フォーカス電極 17は、延出部 32に立設 されたフォーカスピン 51 (図 3参照)を介して側管 15に電気的に接続され光電面 14と 同電位とされている。 [0038] ダイノード Dyl〜Dyl2は、電子を増倍させるための電極であり、フォーカス電極 17 の z軸方向下方に、略平行に対向するように積層されている。図 7は、図 1の部分拡 大図である。図 7に示すように、ダイノード Dyl〜Dyl2は、 yz平面における断面が凹 凸を有する電子増倍片 18が互いに離間して平行に並んだ略矩形薄板型電極である 。従って、ダイノード Dyl〜Dyl2には、隣接する電子増倍片 18間に x軸方向に延び るスリット状の電子増倍孔 18aが形成されていることとなる。所定数の電子増倍孔 18a が各アノードに対応しており、アノード 25の各チャネルの X軸方向境界部に対応する 位置には、 y軸方向に延びる隔壁 71 (図 15参照)が設けられ、ダイノード Dyl〜Dyl 2の複数チャネルの y軸方向境界を規定している。また、各ダイノード Dyl〜Dyl2間 には、図 2および図 5に示すように、絶縁部材 23が配置されている。ダイノード Dyl〜 Dyl2には、リードピン 47により、光電面 14側からステム 29側に向力つて順次高い電 位が供給されている。
[0039] 引き出し電極 19は、ダイノード Dy 12のステム 29側に、ダイノード Dy 12と絶縁部材 23を介して離間し、略平行に対向するように配置されている。引き出し電極 19は、ダ ィノード Dyl〜Dyl2と同一の材料力も形成された薄板型電極であり、 X軸方向に延 びる複数の引き出し片 19aと、複数の引き出し片 19aによって形成された複数のスリ ット状の開口部 19bを備えている力 この開口部 19bは、ダイノード Dy 12から放出さ れた電子をアノード 25へ通過させるためのものであり、ダイノード Dyl〜Dyl2の電 子増倍孔 18aとは異なる。従って、開口部 19bは、ダイノード Dy 12から放出された電 子がなるべく衝突しないように設計されている。引き出し電極 19には、ダイノード Dyl 2よりも高くアノード 25より低い所定の電位が与えられており、ダイノード Dyl2の 2次 電子面上の電界強度を均一にする。ここで、 2次電子面とは、各ダイノード Dyの電子 増倍孔 18aに形成された電子の増倍に寄与する部分のことを指す。
[0040] 引き出し電極 19がない場合には、ダイノード Dyl2から電子を引き出すための電界 は、ダイノード Dyl2—アノード 25間の電位差及び距離に依存する。従って、例えば 、各アノード 25が xy平面に対して多少傾いて配置された場合には、ダイノード Dyl2 —アノード 25間の距離力 各位置によって異なってしまうため、ダイノード Dyl2に対 する電界強度が均一にならず、電子を均一に引き出すことができない。しかしながら 、本実施の形態では、ダイノード Dyl2—アノード 25間に引き出し電極 19が配置され ているため、ダイノード Dyl 2に対する電界は、ダイノード Dy 12—引き出し電極 19間 の電位差及び距離の電位差及び距離によって決定される。ダイノード Dyl2—引き 出し電極 19間の電位差及び距離は一定であるため、ダイノード Dyl2の 2次電子面 上の電界強度は均一になり、ダイノード Dy 12から電子を引き出す力も均一となる。従 つて、各アノード 25が xy平面に対して多少傾いて配置された場合であっても、ダイノ ード Dy 12から電子を均一に引き出すことができる。
[0041] 引き出し電極 19は、上述のように縁部において導電体で形成された支持ピン 21の 載置部 21b上に載置されている。図 5に示すように、支持ピン 21と複数の絶縁部材 2 3とは z方向軸 35上に同軸に配置されているため、フォーカス電極 17、ダイノード Dy l〜Dyl2および引き出し電極 19を z軸下方向に高い圧力をかけて固定することが可 能となる。
[0042] アノード 25は、電子を検出し、ステムピン 27を介して検出した電子に応じた信号を 光電子増倍管 10の外部に出力する電子検出部であり、弓 Iき出し電極 19のステム 29 側に、引き出し電極 19と略平行に対向するように設けられている。図 1、 2に示したよ うに、アノード 25は、ダイノード Dyl〜Dyl2の複数のチャネルに対応して複数設け られている薄板型電極であり、夫々ステムピン 27に溶接接続され、ステムピン 27を介 して引き出し電極 19よりも高い所定の電位を供給されている。また、アノード 25には 、製造時に排気管 40から導入されるアルカリ金属蒸気を拡散させるため、複数のスリ ットが設けられている。
[0043] 以下、フォーカス電極 17、ダイノード Dyl〜Dyl2、引き出し電極 19およびアノード 25の構成についてさらに詳しく説明する。
[0044] 図 8は、電子増倍部を z軸上方側力 見た概観図であり、図 9は、図 8の部分拡大図 である。図 8に示すように、電子増倍部は、複数 (本実施の形態では、 64個)のァノー ド 25を 2次元に配列して構成され、各アノード 25は夫々ステムピン 27に支持されて V、るとともにステムピン 27を介して図示しない回路に電気的に接続されて 、る。
[0045] ここで、便宜的に単位アノードを図 8の左上からアノード 25 (1— 1)、 25 (1— 2)、… 、 25 (8— 8)とする。各アノード 25 (1— 1)、 25 (1— 2)、…ゝ 25 (8— 8)には、隣接す る単位アノードとの間に凹部 28が互いに対向して形成されており、凹部 28には、プリ ッジ残部 26が残っている。アノード 25は、製造時には隣接する単位アノード同士が ブリッジによって接続された一体のアノード板の状態に形成されており、一体の状態 で各ステムピン 27に各アノードを溶接して固定する。その後にブリッジを切断し、ァノ ード 25 (1— 1)、 25 (1— 2)、…ゝ 25 (8— 8)を互いに独立させる。ブリッジ残部 26は 、ブリッジを切り離した残りの部分である。
[0046] また、 X軸方向両縁部に相当するアノード 25 (1— 1)、(2— 1)、 · ··、 25 (8— 1)およ びアノード 25 (1— 8)、 25 (2— 8) · ··、 25 (8— 8)のうち、アノード 25 (1— 1)、(1— 8) 、(8— 1)、(8— 8)のコーナ部 83を除いて、切り欠き部 24が形成されている。よって 、この切り欠き部 24により、アノード 25と支持ピン 21、リードピン 47、およびフォー力 スピン 51の接触を避けるとともに、電子検出部の有効面が側管 15の近傍にまで広げ られている。
[0047] 図 10は、ダイノード Dy 12を z軸上方力も見た概観図であり、図 11は、図 10の部分 拡大図である。なお、図 10、 11では電子増倍片 18、引き出し電極 19の開口部 18a , 19bは省略されている。図 11に示すように、ダイノード Dyl2と引き出し電極 19とは xy平面においてアノード 25とほぼ同一の外形を有している。すなわち、 X軸方向両 縁部に支持ピン 21、リードピン 47等を避ける切り欠き部 49が形成されている。引き出 し電極 19の切り欠き部 49には、突出部 55が形成されており、支持ピン 21は、突出部 55を載置することにより、引き出し電極 19全体を載置している。また、ダイノード Dyl 2も、同様に突出部 55を有している。ダイノード Dyl2の場合、リードピン 47A、 47Bと 接続されて所定の電位を供給されているため、リードピン 47A、 47B周辺に突出部 5 3が形成されている。また、 y軸方向両縁部においては側管 15の内壁面の近傍まで 電極が形成され、特に 4ケ所のコーナ部はコーナ部 85が突出している。なお、ダイノ ード Dyl〜Dyl lもダイノード Dyl2と実質的に同様の構成であり、各リードピン 47は z軸方向に延びて所定のダイノード Dyと接続されて 、る。
[0048] 図 12は、フォーカス電極 17を z軸上方側から見た概観図であり、図 13は、図 12の 部分拡大図である。なお、図 12、 13では、図 1及び図 2で示したフォーカス片 17a及 び開口部 17bは省略されている。図 12、 13に示すように、フォーカス電極 17は、ァノ ード 25の切り欠き部 24、ダイノード Dyl〜Dyl2および引き出し電極 19の切り欠き部 49を覆うように X軸方向周縁部まで設けられている。なお、フォーカス電極 17の切り 欠き部 24または切り欠き部 49を覆う部分は、スリットの形成されて 、な 、平板電極部 分 16を形成し、 4つのコーナ部はスリットを有するコーナ部 87となっている。
[0049] 以下、上記のようなフォーカス電極 17、ダイノード Dyl〜Dyl2、引き出し電極 19 およびアノード 25の xy平面外形が光電子増倍管 10内部での電子軌道に及ぼす作 用について説明する。図 14は、光電面 14力もダイノード Dylまでの電子軌道を xy平 面および xz平面に投影して示す図である。図 14に示すように、光電面 14の X軸方向 周縁部から放出された電子は、フォーカス電極 17の切り欠き部 24、 49を覆うように設 けられた平板電極部分 16により、 X軸方向中央側の電子増倍孔用開口部 89に集束 され、軌道 61のようにダイノード Dylに入射する。また、光電面 14のコーナ部 87に 対向する領域力も放出された電子は、フォーカス電極 17のコーナ部 87で集束され 軌道 63のようにダイノード Dylのコーナ部 85に入射する。このように、フォーカス電 極 17およびダイノード Dylのコーナ部 87、 85が設けられているため、光電面 14周 縁部から放出された電子も、効率よくダイノード Dylに入射する。
[0050] ところで、光電面 14からダイノード Dylまでの電子の走行距離に差が生じると、出 力される信号の時間的揺らぎを生じる。例えば、光電面 14のより中央部力も放出され た電子は、軌道 65のようにダイノード Dylに入射する。軌道 61と軌道 65とはダイノー ド Dylのほぼ同一部分に入射する力 光電面 14からダイノード Dylまでの電子の走 行距離に差が生じるため、出力される信号の時間的揺らぎを生じる。また、光電面 14 のコーナ部 87に対向する領域力も放出される電子は、斜め方向の軌道 63でダイノ ード Dyの X軸方向中央側に入射することとなる。従って、各電極にコーナ部 83、 85、 87が設けられていない場合、すなわち、各電極のコーナ部分が有効領域となってい ない場合には、光電面 14のコーナ部 87に対向する領域力も放出される電子は、ダイ ノード Dylに入射させるために大きく集束させる必要があるため、軌道 61よりも更に 軌道 65との走行距離の差が大きくなる。し力しながら、本実施の形態においては、ダ ィノード Dyl〜Dyl2、引き出し電極 19およびアノード 25には切り欠き部 24、 49が 設けられ、コーナ部 83、 85、 87は電子の増倍および検出に対して有効領域となって いるため、光電面 14のコーナ部 83、 85、 87に対向する領域から放出された電子の 走行時間差が小さくなるように集束される。従って、各軌道 61、 63、 65によってダイノ ード Dylに入射する電子の時間的揺らぎを最小限に抑制することができる。
[0051] 次に、ダイノード Dyl〜Dyl2に設けられる隔壁の構成について説明する。図 15は 、通常のダイノードに設けられる隔壁を示す図、図 16は、所定のダイノードに設けら れる隔壁を示す図、図 17は、隔壁を多く設けたダイノードの全体図、図 18は図 17の 断面図である。なお、図 15、 16では電子増倍片 18が省略されている。
[0052] ダイノード Dyl〜Dyl2は、本実施の形態では上述したように x軸方向にスリットを 有する構造であり、 y軸方向には図 15に示すように、アノード 25の複数のチャネルの y軸方向境界部と対応する隔壁 71が設けられている。光電子増倍管 10では受光面 板 13の有効領域を広くとるために、受光面板 13の周縁部付近に入射した光に応じ て光電面 14の周縁部力 放出される光電子を xy平面の中心側に集束させる。周縁 部からの電子は、集束に伴ってロスが生じるため、この結果、周縁部の電子増倍率の 均一性が低下する傾向がある。そこで、図 16、 17に示すようにダイノード Dyの y軸方 向周縁部を除く領域に y軸方向に延びる隔壁 73を設け、電子の増倍率を調整する。 このような構成においては、図 17の A— A断面では、図 7に示すように電極積層部全 体に電子増倍片 18が存在するが、 B— B断面では、図 18に示すようにダイノード Dy 5の y方向周縁部を除く部分が隔壁 73となっている。隔壁 73部分には電子増倍孔 1 8aが形成されず、隔壁 73に入射する電子は増倍に寄与しないため、 xy平面中央部 の電子増倍が抑制されて電子の増倍率が均一化される。
[0053] 次に排気管 40の構成について説明する。図 19は、排気管 40付近の構成を示す 断面図である。排気管 40は、ステム 29の中央部に気密に接続されている。排気管 4 0は、内側管 43と外側管 41との二重構造である。外側管 41は、ステム 29と密着させ るため、ガラスと密着性がよく熱膨張係数の等しい例えばコバール金属で形成し、厚 さは例えば 0. 5mm、外径は例えば 5mm、長さは例えば 5mmである。なお、ステム 2 9の厚さは例えば 4mmとすることができ、この場合、外側管 41はステム 29の外側面 2 9bより lmm外側に突出する。外側管 41が外側面 29bよりも外側に突出していること により、ステム 29が外側管 41を超えて内側管 43と外側管 41との間に入り込むことを 防止している。また、排気管 40は、封止 (圧接)を容易にするために、封止後であつ ても、内側管 43が外側管 41の下端よりも突出するように構成されている。
[0054] 内側管 43は、例えばコバール金属または銅で形成し、外径は例えば 3. 8mm,切 断前の長さは例えば 30mmであり、外側管 41と同軸に配置し、ステム 29の内側面 2 9a側の一端部が外側管 41と気密接合している。また、光電子増倍管 10の製造終了 時には内側管 43の他端部を気密に封止するため、なるべく厚さが薄いことが好ましく 、例えば 0. 15mmである。ステム 29との接続部 41aにおいては、ステム 29の材料が 排気管 40の内側に回りこまないように、接続部 41aを z軸方向上側に例えば 0. lmm 突出させるように配置されて 、る。
[0055] 次に、光電子増倍管 10の製造方法を説明する。図 20〜22は、排気管 40およびス テム 29の製造方法を示す図である。図 20に示すように、まず、外側管 41と内側管 4 3とを用意する。続いて、内側管 43を外側管 41の内部に同軸となるように配置する。 このとき、内側管 43と外側管 41との一端同士の位置を合わせ、接続部 41aをレーザ 溶接によって接合する。接合後、外側管 41の外面に、ステム 29と融着しやすくする ための酸化膜を形成する。また、管状部材 31および延出部 32を用意し、それらにス テム 29と融着しやすくするための酸化膜を形成する。図 21に示すように、ステム 29 には、支持ピン 21を装着する貫通孔 38、ステムピン 27を装着する貫通孔 30等を夫 々所定数、排気管 40を装着する貫通孔 34を一箇所形成する。
[0056] 図 22に示すように、排気管 40、管状部材 31、延出部 32、ステム 29、支持ピン 21、 ステムピン 27、リードピン 47等を夫々図示の位置に配置してカーボン治具(図示せ ず)に組み入れ、治具によりステム 29をステム 29の内側面 29a、外側面 29b側を挟 むように加圧しながら本焼成することで、ガラスと各金属とが気密融着する。このとき、 ステム 29の材料が延出部 32の貫通穴部 22、 48を挿通する支持ピン 21、リードピン 47のステム 29との接続部分に押し出されることで這 、上がり部 33が生ずる。融着後 、治具を取り外し、酸化膜の除去および洗浄を行う。このようにしてステム部分が完成 する。
[0057] 続いて、一体に形成されたアノード 25をステムピン 27上に載置し固定する。固定し た後、ブリッジを切断しアノード 25 (1— 1)、 25 (1— 2)、 · · ·、 25 (8— 8)として独立さ せる。支持ピン 21上には、引き出し電極 19をアノード 25と略平行に離間して載置す る。さらに引き出し電極 19上に、絶縁部材 23を介してダイノード Dyl2〜Dylおよび フォーカス電極 17を順次離間して対向させた電極積層部を載置する。このとき、ダイ ノード Dyl〜Dyl2の夫々対応するリードピン 47を突出部 53に、フォーカス電極 17 を、フォーカスピン 51と接続し、 z軸下方向に圧力をかけて固定する。その後、受光 面板 13が固定された側管 15端部を管状部材 31と溶接固定して組み立てる。
[0058] 続いて、排気管 40から光電子増倍管 10内部を真空ポンプなどにより排気した後、 アルカリ蒸気を導入し、光電面 14と 2次電子面を活性化させる。再び、光電子増倍管 10内部を真空に排気した後、排気管 40を構成する内側管 43を所定の長さに切断し 、先端を封止する。このとき、放射線検出装置 1を回路基板上に載置する際に障害に ならないように、ステム 29との接続部 41aの密着度が損なわれない程度に内側管 43 を短くすることが好ましい。以上の工程により、光電子増倍管 10が得られる。
[0059] 以上のように構成された本実施の形態による放射線検出装置 1では、シンチレータ 3の入射面 5に放射線が入射すると、出力面 7側に入射した放射線に応じた光を出 力する。光電子増倍管 10の受光面板 13に、シンチレータ 3が出力した光が入射する と、光電面 14は、入射した光に応じた電子を放出する。光電面 14に対向して備えら れたフォーカス電極 17は、光電面 14力も放出された電子を集束して、ダイノード Dy 1に入射させる。ダイノード Dylは入射した電子を増倍し、下段ダイノード Dy2側に放 出する。このようにダイノード Dyl〜Dyl2によって順次増倍された電子は、引き出し 電極 19を介してアノード 25に達する。アノード 25は到達した電子を検出し、ステムピ ン 27を介して信号として外部に出力する。
[0060] 図 5に示すように、光電子増倍管 10においては、電極積層体を載置するための支 持ピン 21を備える。支持ピン 21を構成する載置部 2 lbの載置面上に電極積層部を 載置する構成とすることで電極積層部を z軸方向上側力 大きな圧力をかけて固定 することが可能となり、電極積層部の固定強度が高まり耐震性が向上するとともに、 電極積層部(電極積層部を構成する各電極)の z軸方向の位置精度が高められる。 また、電極積層部の最下段の電極である引き出し電極 19が支持ピン 21の載置部 21 b上に載置されて支持されており、アノード 25との間に絶縁物を介していない。よって 、電子が絶縁物に衝突して発光し、アノード 25から出力される信号にノイズを発生さ せることを防止することができる。さらに、支持ピン 21は導電性材料で形成されている ため、電子が衝突しても発光しない。従って、一層、ノイズの発生を防止することがで きる。
[0061] フォーカス電極 17、ダイノード Dyl〜Dyl2および引き出し電極 19は、支持ピン 21 と同軸に配置された絶縁部材 23を介して互いに離間した状態で対向し積層されて いる。よって、 z軸方向により高い圧力をかけてフォーカス電極 17、ダイノード Dyl〜 Dyl2および引き出し電極 19を固定することができるため更に耐震性が向上する。ま た、フォーカス電極 17、ダイノード Dyl〜Dyl2および引き出し電極 19を絶縁部材 2 3を介して積層することにより、各電極の xy平面内の位置を正確に規定することがで きる。
[0062] ダイノード Dyl〜Dyl2の光電面 14側にフォーカス電極 17が設けられているので、 光電面 14が放出した電子を効率よくダイノード Dylに入射させることができる。
[0063] 図 8及び図 10〖こ示すよう〖こ、ダイノード Dyl〜Dyl2、引き出し電極 19およびァノ ード 25には切り欠き部 49、 24が形成され、切り欠き部 49、 24に、支持ピン 21、リード ピン 47が配置されている。よって、各電極の有効面積を充分確保することが可能に なるとともに、電子の走行時間差による信号の揺らぎなどを最小限に低減できる。ま た、リードピン 47が z軸方向に向かって延びており、ダイノード Dyl〜Dyl2、引き出 し電極 19およびアノード 25に形成された切り欠き部 49、 24が z軸方向において重な つて 、ることで、さらに有効面積を確保することが可能になって 、る。
[0064] また、図 12に示すように、フォーカス電極 17は、ダイノード Dyl〜Dyl2の切り欠き 部 49を覆うように xy平面周縁部まで設けられているので、光電面 14におけるダイノ ード Dyl〜Dyl2、引き出し電極 19およびアノード 25に形成された切り欠き部 49, 2 4に対応する領域力 放出された電子をダイノード Dylの有効領域に集束させること が可能となり、光電子増倍管 10における光検出の有効面積を大きく確保できるととも に、リードピン 47に電子が衝突して増倍率を低下させるのを防止している。
[0065] また、図 14に示すように、フォーカス電極 17の開口部 17bは、 x軸方向、すなわち、 引き出し電極 19およびアノード 25の切り欠き部 49、 24が形成されている縁部に対し て垂直な方向に延びている。開口部 17bには、できるだけ多くの電子を入射させるこ とが好ましいが、フォーカス片 17aに当たった電子は開口部 17bには入射しない。従 つて、フォーカス片 17aを避けるように電子の軌道を制御することが好ましい。特に、 光電面 14の平板状電極部分 16に対向する部分力も入射してくる電子については、 平板状電極部分 16も避けるように電子の軌道を制御するのが好ましい。その際、平 板状電極部分 16に対向する部分から入射してくる電子は、軌道 61のように X軸方向 に進む力 X軸方向の制御、すなわち、電子が本来進んでいる方向の制御は、 y軸方 向の制御に比べて難しい。そこで、本実施の形態では、開口部 17bが、 X軸方向、す なわち、引き出し電極 19およびアノード 25の切り欠き部 49、 24が形成されている縁 部に対して垂直な方向に延びているため、比較的容易な y軸方向の制御を行えば、 電子を効率良く開口部 17bに入射させることができる。
[0066] また、図 5に示すように、最終段ダイノード Dyl2とアノード 25との間に引き出し電極 19が設けられているため、ダイノード Dy 12の z軸方向下側の電界強度が均一化され る。従って、ダイノード 12の電子放出特性が均一化され、例えば各単位アノードがブ リッジ切断後に傾き、アノード 25—引き出し電極 19間の距離にばらつきを生じたとし ても、ダイノード Dyl 2から各チャンネル領域毎に均一に電子を弓 Iき出すことができる
[0067] また、図 16及び図 18に示すように、所定段のダイノード Dyには隔壁 73が設けられ 、開口率を調整して xy平面内における電子増倍率のばらつきを低減している。
[0068] アノード 25は、一体に形成され、各アノードが対応するステムピン 27に固定された 後にブリッジを切断して単位アノード 25を独立させるので、ステムピン 27に載置する 工程が簡略ィ匕できるとともに、各アノード 25の設置位置の精度が高まる。また、図 8及 び図 9に示すように、ブリッジが凹部 28内に設けられているので、アノード 25の有効 面を充分確保することができるとともに、ブリッジ残部 26が凹部 28内に配置されるの で、ブリッジ残部 26間の放電を防止することができる。また、このように 2次元に配列 されたマルチアノードを用いることで、検出する光の xy平面内の入射位置を検出する ことができる。
[0069] 図 3に示すように、ステム 29はガラスで形成され、周縁部 29cに管状部材 31、内側 面 29a上には延出部 32が設けられ、延出部 32には、支持ピン 21、リードピン 47が貫 通し、フォーカスピン 51が立設している。よって、各ピンを側管 15近くに備えることが でき、各電極の有効面を充分確保することが可能になって 、る。
[0070] また、図 6に示すように、ステム 29と支持ピン 21、リードピン 47との接続部分には這 い上がり部 33が形成され、管状部材 31と各ピンとの沿面距離を大きくとることが可能 になり、沿面放電の発生および増倍された電子が絶縁物に衝突して発生する発光に よるノイズを防止する効果がある。また、延出部 32に貫通穴部 22、 28が設けられて いるので、ステム 29製造時にガラス材の逃げ部分として機能することになり、ステム 2 9の厚さ調整を容易にしている。さらに、このようにステム 29の厚さを制御することがで きるので、受光面板 13に対するステム 29の外側面 29bの位置精度が高まり、結果と して光電子増倍管 10の全長の寸法精度が向上するため、例えば光電子増倍管 10 を回路基板等に表面実装して使用する際に、光源と光電子増倍管 10の受光面板 1 3との距離が一定となり、誤差の少ない光検出が可能となる。
[0071] また、図 19に示すように、ステム 29に設けられている排気管 40は二重管構造とな つており、外側管 41は、ステム 29との密着性が高い材料で厚く形成され、内側管 43 は、柔らかい材料で薄く形成されている。このような二重管構造としたことによって、外 側管 41の厚さによりレーザ溶接時のピンホールなどを防止できる。また内側管 43は 、ステム 29の内側面 29a側の端部でのみ外側管 41と接続すればよぐ外側管 41で ステム 29との密着性を確保しながら、接続部に損傷を与えることなく長さも回路基板 上に載置しても邪魔にならない程度に内側管 43を短く切断して封止することが可能 になる。また、内側管 43を封止しやすいシール性の優れた材料とすることもできる。さ らに、排気管 40の管径を大きくとることもでき、アルカリ金属蒸気を導入する際に、処 理時間を短縮できるとともに導入した蒸気の均一性も向上する。
[0072] さらに、図 1に示すように、光電子増倍管 10の受光面板 13側にシンチレータ 3を設 けたので、放射線を検出して信号として出力することが可能である。
[0073] 次に、第 1の変形例について図 23を参照しながら説明する。図 23は、電子検出部 の変形例を示す斜視図である。上記実施の形態においては、電子検出部を構成す るアノード 25は 2次元に配列されたマルチアノードであった力 第 1の変形例におい ては、一次元に配列されたリニアアノード 125である。リニアアノード 125の境界部は 、ダイノード Dyl〜Dyl2の隔壁 71に相当する部分に設けられる。各リニアアノード 1 25は、ステム 29に貫通して設けられるステムピン 127に接続されて支持され、所定の 電位を供給されるとともに検出した電子に応じた信号を出力する。リニアアノード 125 にも隣接する単位アノードと対向する部分にブリッジを備えた凹部(図示せず)を設け 、アノード 125全体をステムピン 127上に固定した後にブリッジを切断することが好ま しい。
[0074] 続いて第 2の変形例について、図 24を参照しながら説明する。図 24は、シンチレ一 タの変形例を採用した放射線検出装置 100を示す概略断面図である。上記実施の 形態によるシンチレータ 3に変えて、光電子増倍管 10のチャンネル領域に対応した サイズのシンチレータ 103を一次元に複数個配置した放射線検出装置 100とする。 他の構成は、第 1の変形例と同一である。このような構成によれば、放射線の xy平面 内における入射位置の検出が可能となる。
[0075] さらに図 25を参照して、第 3の変形例について説明する。図 25は、シンチレータの 他の変形例を採用した放射線検出装置 200示す概略断面図である。第 2の変形例 によるシンチレータ 103に変えて、アノード 125の大きさよりも小さい、例えばアノード 125の 2分の 1に相当するシンチレータ 203を一次元に複数個配列した放射線検出 装置 200とする。他の構成は、第 2の変形例と同一である。このような構成によれば、 放射線の xy平面内における入射位置を、より正確に検出することが可能となる。
[0076] さらに図 26を参照して、第 4の変形例について説明する。図 26は、載置部 21b及 び引き出し電極 19の形状の変形例の説明図である。載置部 21bの引き出し電極 19 を載置する面には凸部 21cが形成され、引き出し電極 19の載置部 21bに載置される 面には凹部 19cが形成されており、支持ピン 21が引き出し電極 19を載置した際には 、凸部 21cと凹部 19cとは互いに嵌合される。このような構成によれば、フォーカス電 極 17、複数のダイノード Dyl〜Dyl 2を備えた電極積層部の xy平面内における位置 精度を向上させることができる。なお、引き出し電極 19が配置されていない場合には 、最終段のダイノード Dyl2に凹部を形成すればよい。また、載置部 21bに凹部を形 成し、引き出し電極 19に凸部を形成してもよい。 [0077] 尚、本発明による光電子増倍管および放射線検出装置は、上記した実施の形態に 限定されるものではなぐ本発明の要旨を逸脱しない範囲内において種々変更を加 え得ることは勿論である。
[0078] 例えば、管状部材 31はステム 29の内側面 29a側に延出部 32が延出しているが、 外側面 29b側に延出部 32を設けるようにしてもよい。その場合には、延出部 32の周 囲や、延出部 32を挿通しているリードピン 47間に光電面 14の電位が露出することと なる。ステム 29の外側には、回路基板を密接して配置することが多いため、アノード 2 5に対する電位差が最も大きい光電面 14の電位が露出していると、耐電圧の点で問 題が生じる可能性がある。従って、延出部 32は、内側にある方が好ましい。
[0079] 製造方法において、排気管 40は外側管 41と内側管 43とを接続した後にステム 29 と接続させたが、まず外側管 41のみを酸ィ匕してステム 29と接続し、酸化膜を除去し た後に内側管 43を外側管 41と接続する方法もある。
[0080] 光電子増倍管および各電極の断面は略矩形としたが、断面が円形、またはその他 の形状でもよい。この場合、光電子増倍管の形状に応じてシンチレータの形状も変 更することが好ましい。
[0081] 隔壁 73は、上記例では 5段目のダイノード Dy5に設けた力 他の段に設けてもよく
、また、複数段のダイノードに設けるようにしてもよい。
[0082] 引き出し電極 19の開口部 19bは、ライン状に限らず、メッシュ状であっても良い。
[0083] 図 27に示すように、延出部 32の X軸方向両縁部に、貫通孔 22、 48に替えて複数 の開口 122、 148を櫛歯状に形成してもよい。貫通孔 22、 48の場合と比較して、櫛 歯状に開放されているため、延出部 32によるステム 29の強度向上の程度が若干劣 ること、及び、開放部からのステム 29の材料の逃げが大きいことにより這い上がり部 3 3が若干形成しづらいことが挙げられる力 この場合においても、電子倍増部及び電 子線検出部の有効面積を効率よく確保することができる。
産業上の利用可能性
[0084] 本発明の放射線検出装置は、医療用機械における画像診断装置などに利用が可 能である。

Claims

請求の範囲
[1] 一側端部を構成する受光面板(13)と、他側端部を構成するステム (29)とを有する 真空容器内に、前記受光面板(13)を通して入射した入射光を電子に変換する光電 面(14)と、前記光電面(14)が放出した電子を増倍させる電子増倍部と、前記電子 増倍部が増倍した電子に基づいて出力信号を送出する電子検出部とを備えた光電 子増倍管(10)において、
前記電子増倍部は、複数のチャネルを構成するダイノード (Dyl〜Dyl2)を含む 電極が複数段に積層された電極積層部を有し、
前記電子検出部は、前記電極積層部の最終段の電極(19)と離間して対向し前記 チャネルに対応して配列された複数のアノード(25)を有し、
前記ステム(29)には、前記最終段の電極(19)を載置するための支持手段(21)が 設けられていることを特徴とする光電子増倍管(10)。
[2] 前記複数段の電極(17, Dyl〜Dyl2, 19)は、互いに絶縁体(23)を介して積層 されており、
前記絶縁体 (23)と、前記支持手段 (21)とは同軸に配置されていることを特徴とす る請求項 1に記載の光電子増倍管( 10)。
[3] 前記最終段の電極(19)として、前記ダイノード (Dyl〜Dyl2)から放出された電子 を前記アノード(25)に到達させる開口部( 19b)を有する弓 Iき出し電極 ( 19)が設けら れて 、ることを特徴とする請求項 1に記載の光電子増倍管( 10)。
[4] 前記電子検出部は、複数のアノードが 2次元的に配置されたマルチアノード(25)、 または複数のアノードが 1次元的に配置されたリニアアノード( 125)の 、ずれかであ ることを特徴とする請求項 1に記載の光電子増倍管(10)。
[5] 前記支持手段 (21)は、導電性材料で形成されて!ヽることを特徴とする請求項 1に 記載の光電子増倍管(10)。
[6] 前記支持手段(21)は、前記ステム(29)力も前記電極積層部の積層方向(z)に延 びる支持部(21a)と、前記最終段の電極(19)を載置する載置部(21b)とを備え、前 記積層方向(z)と直交する平面における前記載置部(21b)の断面積は、前記積層 方向(z)と直交する平面における前記支持部(21a)の断面積よりも大き!/、ことを特徴 とする請求項 1に記載の光電子増倍管( 10)。
[7] 前記載置部(21b)の前記最終段の電極(19)を載置する面には第 1の嵌合部(21 c)が形成され、前記最終段の電極(19)の前記載置部(21b)に載置される面には第 2の嵌合部(19c)が形成されており、前記最終段の電極(19)が前記支持手段(21) に載置された際には、前記第 1の嵌合部(21c)と前記第 2の嵌合部(19c)とは互い に嵌合されていることを特徴とする請求項 6に記載の光電子増倍管(10)。
[8] 請求項 1から請求項 7のいずれか一項に記載の光電子増倍管(10)の前記受光面 板(13)の外側に、放射線を光に変換して出力するシンチレータ(3)を設置してなる ことを特徴とする放射線検出装置(1)。
PCT/JP2007/053643 2006-02-28 2007-02-27 光電子増倍管および放射線検出装置 WO2007099956A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/224,367 US7902509B2 (en) 2006-02-28 2007-02-27 Photomultiplier tube and radiation detecting device
EP07737445.2A EP1998357B1 (en) 2006-02-28 2007-02-27 Photomultiplier and radiation sensor
CN2007800070604A CN101395692B (zh) 2006-02-28 2007-02-27 光电倍增管和放射线检测装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006053805A JP4849521B2 (ja) 2006-02-28 2006-02-28 光電子増倍管および放射線検出装置
JP2006-053805 2006-02-28

Publications (1)

Publication Number Publication Date
WO2007099956A1 true WO2007099956A1 (ja) 2007-09-07

Family

ID=38459061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053643 WO2007099956A1 (ja) 2006-02-28 2007-02-27 光電子増倍管および放射線検出装置

Country Status (5)

Country Link
US (1) US7902509B2 (ja)
EP (1) EP1998357B1 (ja)
JP (1) JP4849521B2 (ja)
CN (1) CN101395692B (ja)
WO (1) WO2007099956A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4711420B2 (ja) * 2006-02-28 2011-06-29 浜松ホトニクス株式会社 光電子増倍管および放射線検出装置
JP4804172B2 (ja) 2006-02-28 2011-11-02 浜松ホトニクス株式会社 光電子増倍管、放射線検出装置および光電子増倍管の製造方法
JP4804173B2 (ja) * 2006-02-28 2011-11-02 浜松ホトニクス株式会社 光電子増倍管および放射線検出装置
CN105044764B (zh) * 2015-08-31 2017-11-10 中广核达胜加速器技术有限公司 一种电子加速器束流动态采集装置
CN105428198B (zh) * 2015-11-13 2017-07-25 中国电子科技集团公司第五十五研究所 采用高温共烧多层陶瓷工艺制作矩阵阳极及方法
CN108732418B (zh) * 2018-06-26 2020-05-29 合肥中科离子医学技术装备有限公司 真空馈口电子倍增电流检测装置
CN108899263B (zh) * 2018-07-10 2019-12-27 陈艳 二维平面多点阵吸收阳极光电效应管及其光电效应试验装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287560A (ja) 1986-06-03 1987-12-14 エヌ・ベ−・フィリップス・フル−イランペンファブリケン 光電子増倍管の製造方法
JPH087825A (ja) * 1994-06-20 1996-01-12 Hamamatsu Photonics Kk 電子増倍管
JPH09288992A (ja) 1996-04-24 1997-11-04 Hamamatsu Photonics Kk 電子増倍器及び光電子増倍管
JPH09306416A (ja) * 1996-05-15 1997-11-28 Hamamatsu Photonics Kk 電子増倍器及び光電子増倍管
JPH10106482A (ja) * 1996-09-26 1998-04-24 Hamamatsu Photonics Kk 光電子増倍管
JP2000067801A (ja) * 1998-08-26 2000-03-03 Hamamatsu Photonics Kk 光電子増倍管ユニット及び放射線検出装置
JP2000149860A (ja) 1998-11-10 2000-05-30 Hamamatsu Photonics Kk 光電子増倍管
JP2000149862A (ja) * 1998-11-10 2000-05-30 Hamamatsu Photonics Kk 光電子増倍管及びその製造方法
JP2006127990A (ja) * 2004-10-29 2006-05-18 Hamamatsu Photonics Kk 光電子増倍管及び放射線検出装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US586465A (en) 1897-07-13 Machine
JPS59221957A (ja) 1983-05-31 1984-12-13 Hamamatsu Photonics Kk 光電子増倍管
JPS60215585A (ja) 1984-04-12 1985-10-28 日本電気株式会社 気密封止方法
FR2566175B1 (fr) * 1984-05-09 1986-10-10 Anvar Dispositif multiplicateur d'electrons, a localisation par le champ electrique
JPS612253A (ja) 1984-06-14 1986-01-08 Hamamatsu Photonics Kk 入射位置検出装置
CN1009311B (zh) 1986-11-13 1990-08-22 西安交通大学 铁电体电滞回线计算机测试方法
JP3215486B2 (ja) 1992-04-09 2001-10-09 浜松ホトニクス株式会社 光電子増倍管
JP2662346B2 (ja) * 1992-08-27 1997-10-08 浜松ホトニクス株式会社 光電子増倍管
US5841231A (en) * 1995-05-19 1998-11-24 Hamamatsu Photonics K.K. Photomultiplier having lamination structure of fine mesh dynodes
DE69726222T2 (de) 1996-06-19 2004-08-19 Hamamatsu Photonics K.K., Hamamatsu Photovervielfacher
JP3620925B2 (ja) 1996-06-19 2005-02-16 浜松ホトニクス株式会社 光電子増倍管
JP3614255B2 (ja) 1996-09-26 2005-01-26 浜松ホトニクス株式会社 光電子増倍管
US5886465A (en) * 1996-09-26 1999-03-23 Hamamatsu Photonics K.K. Photomultiplier tube with multi-layer anode and final stage dynode
US5990483A (en) 1997-10-06 1999-11-23 El-Mul Technologies Ltd. Particle detection and particle detector devices
EP1077470A4 (en) * 1998-06-01 2007-01-17 Hamamatsu Photonics Kk PHOTOMULTIPLIER UNIT AND RADIATION SENSOR
JP4231123B2 (ja) 1998-06-15 2009-02-25 浜松ホトニクス株式会社 電子管及び光電子増倍管
JP4230606B2 (ja) 1999-04-23 2009-02-25 浜松ホトニクス株式会社 光電子増倍管
JP2001196023A (ja) 2000-01-06 2001-07-19 Hamamatsu Photonics Kk 光電子増倍管
JP4246879B2 (ja) 2000-04-03 2009-04-02 浜松ホトニクス株式会社 電子増倍管及び光電子増倍管
JP2001357803A (ja) 2000-06-15 2001-12-26 Toshiba Corp 画像表示装置およびその製造方法
JP3786251B2 (ja) 2000-06-30 2006-06-14 日本アルミット株式会社 無鉛半田合金
JP4640881B2 (ja) 2000-07-27 2011-03-02 浜松ホトニクス株式会社 光電子増倍管
JP4573407B2 (ja) 2000-07-27 2010-11-04 浜松ホトニクス株式会社 光電子増倍管
DE60234996D1 (en) 2001-02-23 2010-02-25 Hamamatsu Photonics Kk Photovervielfacher
AU2003231505A1 (en) 2002-05-15 2003-12-02 Hamamatsu Photonics K.K. Photomultiplier tube and its using method
JP3954478B2 (ja) 2002-11-06 2007-08-08 浜松ホトニクス株式会社 半導体光電陰極、及びそれを用いた光電管
JP2005011592A (ja) 2003-06-17 2005-01-13 Hamamatsu Photonics Kk 電子増倍管
JP4249548B2 (ja) * 2003-06-17 2009-04-02 浜松ホトニクス株式会社 電子増倍管
US7064485B2 (en) 2004-03-24 2006-06-20 Hamamatsu Photonics K.K. Photomultiplier tube having focusing electrodes with apertures and screens
JP4647955B2 (ja) 2004-08-17 2011-03-09 浜松ホトニクス株式会社 光電陰極板及び電子管
JP4804173B2 (ja) 2006-02-28 2011-11-02 浜松ホトニクス株式会社 光電子増倍管および放射線検出装置
JP4804172B2 (ja) 2006-02-28 2011-11-02 浜松ホトニクス株式会社 光電子増倍管、放射線検出装置および光電子増倍管の製造方法
JP4711420B2 (ja) 2006-02-28 2011-06-29 浜松ホトニクス株式会社 光電子増倍管および放射線検出装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287560A (ja) 1986-06-03 1987-12-14 エヌ・ベ−・フィリップス・フル−イランペンファブリケン 光電子増倍管の製造方法
JPH087825A (ja) * 1994-06-20 1996-01-12 Hamamatsu Photonics Kk 電子増倍管
JPH09288992A (ja) 1996-04-24 1997-11-04 Hamamatsu Photonics Kk 電子増倍器及び光電子増倍管
JPH09306416A (ja) * 1996-05-15 1997-11-28 Hamamatsu Photonics Kk 電子増倍器及び光電子増倍管
JPH10106482A (ja) * 1996-09-26 1998-04-24 Hamamatsu Photonics Kk 光電子増倍管
JP2000067801A (ja) * 1998-08-26 2000-03-03 Hamamatsu Photonics Kk 光電子増倍管ユニット及び放射線検出装置
JP2000149860A (ja) 1998-11-10 2000-05-30 Hamamatsu Photonics Kk 光電子増倍管
JP2000149862A (ja) * 1998-11-10 2000-05-30 Hamamatsu Photonics Kk 光電子増倍管及びその製造方法
JP2006127990A (ja) * 2004-10-29 2006-05-18 Hamamatsu Photonics Kk 光電子増倍管及び放射線検出装置

Also Published As

Publication number Publication date
US7902509B2 (en) 2011-03-08
JP4849521B2 (ja) 2012-01-11
EP1998357A4 (en) 2015-11-18
US20090140151A1 (en) 2009-06-04
EP1998357B1 (en) 2021-03-31
CN101395692B (zh) 2011-11-23
JP2007234363A (ja) 2007-09-13
EP1998357A1 (en) 2008-12-03
CN101395692A (zh) 2009-03-25

Similar Documents

Publication Publication Date Title
JP4804172B2 (ja) 光電子増倍管、放射線検出装置および光電子増倍管の製造方法
WO2007099956A1 (ja) 光電子増倍管および放射線検出装置
JP5290804B2 (ja) 光電子増倍管
JP6462526B2 (ja) 荷電粒子検出器およびその制御方法
WO2007017984A1 (ja) 光電子増倍管
JP4711420B2 (ja) 光電子増倍管および放射線検出装置
WO2007099959A1 (ja) 光電子増倍管および放射線検出装置
JP5290805B2 (ja) 光電子増倍管
US8330364B2 (en) Photomultiplier
JP4753303B2 (ja) 光電子増倍管およびこれを用いた放射線検出装置
WO2006046617A1 (ja) 光電子増倍管及びそれを含む放射線検出装置
JP2005197112A (ja) 光電子増倍管
JP5789021B2 (ja) 光電子増倍管
JP5518364B2 (ja) 光電子増倍管
JP2001167723A (ja) X線イメージ管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12224367

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780007060.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007737445

Country of ref document: EP