WO2007094185A1 - 高分子電解質膜、膜-電極接合体及び固体高分子型燃料電池 - Google Patents

高分子電解質膜、膜-電極接合体及び固体高分子型燃料電池 Download PDF

Info

Publication number
WO2007094185A1
WO2007094185A1 PCT/JP2007/051909 JP2007051909W WO2007094185A1 WO 2007094185 A1 WO2007094185 A1 WO 2007094185A1 JP 2007051909 W JP2007051909 W JP 2007051909W WO 2007094185 A1 WO2007094185 A1 WO 2007094185A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer block
polymer
carbon atoms
electrolyte membrane
group
Prior art date
Application number
PCT/JP2007/051909
Other languages
English (en)
French (fr)
Inventor
Tomohiro Ono
Shinji Nakai
Hiroyuki Ogi
Takeshi Nakano
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006034682A external-priority patent/JP5188025B2/ja
Priority claimed from JP2006080930A external-priority patent/JP2007258003A/ja
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to EP07708027A priority Critical patent/EP1986257B1/en
Priority to CN2007800053098A priority patent/CN101385173B/zh
Priority to KR1020087019918A priority patent/KR101353211B1/ko
Priority to US12/278,794 priority patent/US8349513B2/en
Publication of WO2007094185A1 publication Critical patent/WO2007094185A1/ja
Priority to HK09105637.9A priority patent/HK1128064A1/xx

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/005Modified block copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a polymer electrolyte membrane used in a polymer electrolyte fuel cell, preferably a polymer electrolyte direct methanol fuel cell, and a membrane / electrode assembly and a fuel cell using the polymer electrolyte membrane.
  • PEFCs polymer electrolyte fuel cells
  • a polymer electrolyte fuel cell is generally configured as follows. First, on both sides of a polymer electrolyte membrane having ion conductivity, a catalyst layer containing carbon powder carrying a white metal catalyst and an ion conductive binder made of a polymer electrolyte is formed. A gas diffusion layer, which is a porous material through which fuel gas and oxidant gas are passed, is formed outside each catalyst layer. Carbon paper, carbon cloth, etc. are used as the gas diffusion layer. A structure in which a catalyst layer and a gas diffusion layer are integrated is called a gas diffusion electrode. A structure in which a pair of gas diffusion electrodes is bonded to an electrolyte membrane so that the catalyst layer faces the electrolyte membrane is a membrane electrode assembly (MEA).
  • MEA membrane electrode assembly
  • a gas flow path for supplying fuel gas or oxidant gas (for example, air) to the electrode surface is formed in the contact portion of the membrane-electrode assembly and the separator or in the separator.
  • Power is generated by supplying a fuel gas such as hydrogen or methanol to one electrode (fuel electrode) and an oxidant gas containing oxygen such as air to the other electrode (oxygen electrode). That is, at the fuel electrode, the fuel is ionized to produce protons and electrons, and the protons pass through the electrolyte membrane. Electrons move through an external electric circuit formed by connecting both electrodes and are sent to the oxygen electrode, and react with an oxidant to produce water. In this way, the chemical energy of the fuel can be directly converted into electric energy and extracted.
  • a polymer electrolyte fuel cell In order for a polymer electrolyte fuel cell to be put into practical use and to be widely used !, it is important in terms of performance that not only high power generation performance but also stable operation for a long time can be achieved.
  • a polymer electrolyte fuel cell in particular, a polymer electrolyte fuel cell using methanol as a fuel, it is formed by aggregation of an electrolyte membrane structure, particularly sulfonic acid groups that are ion conductive groups, during operation. As soon as the structure of the ion-conducting channel changes, the power generation characteristics tend to change.
  • electrolyte membranes that have high power generation performance but are not easily affected by methanol, such as electrolyte membranes with low methanol permeability and characteristics before and after power generation (in electrolyte membranes, equivalent to before and after immersion in methanol solution)
  • electrolyte membranes with low methanol permeability and characteristics before and after power generation
  • changes in properties such as methanol permeability and ionic conductivity are small, and electrolyte membranes are desired.
  • a polymer electrolyte fuel cell repeatedly starts, operates, and stops rather than performing steady operation.
  • the polymer electrolyte membrane is wet, but when it stops, the humidity tends to drop.
  • an electrolyte membrane is desired in which the dimensional change and mechanical property change are small under low humidity (when dry) and when wet.
  • an electrolyte membrane with excellent startability that can exhibit certain characteristics immediately even when the operating environment changes, such as stable operation immediately after startup.
  • naphthion Nafi on, manufactured by DuPont
  • methanol perfluorocarbon sulfonic acid polymer because it is chemically stable. Registered trademark, the same applies hereinafter).
  • methanol permeates the electrolyte membrane from one electrode side to the other electrode side. The phenomenon (methanol crossover) occurs and it is difficult to obtain sufficient performance immediately.
  • naphthion has a large change in mechanical properties (tensile properties, etc.) between dry and wet, and therefore tends to deteriorate in performance during a long-term power generation test. Power!
  • naphthion is a fluorine-based polymer, so environmental considerations are necessary during synthesis and disposal, and it is expensive. Therefore, development of a novel electrolyte membrane is desired. [0007] Therefore, non-perfluorocarbon sulfonic acid polymer electrolyte membranes having low methanol permeability have been studied (Patent Documents 1 to 4 and Non-Patent Documents 1 to 3).
  • a polystyrene block of a rubber component is used as a matrix by sulfonating a polystyrene block of a block copolymer that is powerful with styrene and a rubber component.
  • An electrolyte membrane having an ion conductive channel has been proposed (Non-patent Documents 2 and 3 and Patent Document 4).
  • Non-Patent Document 2 as a cheap, mechanically and chemically stable polymer electrolyte membrane, a sulfonated product of SEBS (polystyrene-poly (ethylene-butylene) polystyrene triblock copolymer) is used. A polymer electrolyte membrane is proposed! RU A polymer electrolyte membrane having SEBS's sulphonic strength is also described in Patent Document 4 as an inexpensive, mechanically and chemically stable polymer electrolyte membrane.
  • SEBS polystyrene-poly (ethylene-butylene) polystyrene triblock copolymer
  • Non-patent Document 2 Non-patent Document 2
  • characteristics such as methanol permeability and ionic conductivity change greatly when the obtained electrolyte membrane is immersed in a methanol solution.
  • these polymer electrolyte membranes show significant changes in properties such as methanol permeability and ionic conductivity before and after immersion in methanol solution. Etc.
  • the sulfonated polystyrene b polyisobutylene b polystyrene triblock copolymer (sulfonated SiBuS) is also a methanol barrier compared to the perfluorocarbon sulfonic acid polymer electrolyte membrane.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-288916
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-331868
  • Patent Document 3 JP-A-6-93114
  • Patent Document 4 Japanese Patent Publication No. 10-503788
  • Non-Patent Document 1 J. Membrane Science 197 (2003) 231
  • Non-Patent Document 2 J. Membrane Science 217 (2003) 227
  • Non-Patent Document 3 J. Membrane Science 214 (2003) 245
  • An object of the present invention is to provide a polymer electrolyte membrane that has high ion conductivity and good bondability with an electrode and is hardly affected by methanol, and a membrane-electrode assembly using the electrolyte membrane and The object is to provide a polymer electrolyte fuel cell.
  • the present invention provides: a a hydrogen atom bonded to a carbon atom is unsubstituted, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 6 to 14 carbon atoms that may have 1 to 3 substituents; Polymer block having, as a main repeating unit, an aromatic vinyl compound unit substituted with a reel group and having at least one hydrogen atom directly bonded to an aromatic ring substituted with an alkyl group having 1 to 8 carbon atoms ( The present invention relates to a polymer electrolyte membrane comprising A) and a polymer block (B) forming a flexible phase as constituent components, and the polymer block (A) containing a block copolymer having an ion conductive group as a main component.
  • the above aspect of the present invention is referred to as a basic aspect.
  • the most characteristic part of the basic embodiment is that the aromatic vinyl compound unit as a repeating unit in the polymer block (A) has at least one hydrogen atom bonded directly to the aromatic ring. It is substituted with 1 to 8 alkyl groups.
  • the polymer block (A) and the polymer block (B) undergo microphase separation, and the polymer block (A) and the polymer block (B) Since the polymer block (A) has an ion conductive group, an ion channel is formed by the assembly of the polymer blocks (A) and becomes a passage for protons.
  • the presence of the polymer block (B) makes the block copolymer elastic and flexible as a whole, and formability (assembly property, bondability) in the production of membrane electrode assemblies and polymer electrolyte fuel cells. , Tightenability, etc.) are improved.
  • the polymer block (B) forming the flexible phase is also composed of forces such as alkene units and conjugated gen units.
  • the ion conductive group includes a sulfonic acid group and a phosphonic acid group and salts thereof, and is bonded to the polymer block (A).
  • the present invention includes the following three more specific embodiments.
  • the three specific embodiments share the features of the basic embodiment described above.
  • polymer block (A) is represented by the following general formula (I)
  • Ar 1 represents an aryl group having 6 to 14 carbon atoms which may be substituted with one alkyl group having 1 to 8 carbon atoms and further having 1 or 2 substituents.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 14 carbon atoms which may have 1 to 3 substituents).
  • the polymer block (A1) has a compound unit as a main repeating unit.
  • this aspect may be expressed as aspect 1 (alkyl substitution) by capturing features of this aspect.
  • the polymer block (A) has a polymer block (A2a) having an ion conductive group and does not have an ion conductive group and forms a constrained phase.
  • the polymer block (A2) is composed of the block (A2b). Both the polymer block (A2a) and the polymer block (A2b) have aromatic bur compound units as the main repeating units.
  • polymer block (A) is represented by the following general formula (II):
  • Ar 2 represents an aryl group having 6 to 14 carbon atoms which may have 1 to 3 substituents
  • R 1 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or
  • a polymer block having an aromatic vinyl compound unit represented by V which may have 1 to 3 substituents, V, an aryl group having 6 to 14 carbon atoms
  • a polymer block (A2b) that forms a constrained phase and the polymer block (A2b) is represented by the following general formula (III)
  • R 2 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, at least one of which is an alkyl group having 1 to 8 carbon atoms
  • R 5 represents hydrogen
  • this aspect will be described in terms of characteristics of this aspect. (Bunch phase).
  • the polymer blocks (A) having an ion conductive group are crosslinked.
  • Crosslinking is performed by a crosslinking method using a polyvalent amine or a radical crosslinking method. Radical crosslinking proceeds through hydrogen nuclear heating bonded to the carbon atom at the 1-position of the alkyl group bonded to the aromatic ring of the aromatic bur-based compound unit, or through the bonding of radicals generated by radical extraction. To do. Therefore, in this embodiment, the carbon atom at the 1-position of the alkyl group bonded to the aromatic ring of the aromatic vinyl compound unit must have at least one hydrogen atom bonded thereto.
  • this aspect may be expressed as aspect 3 (crosslinking) by capturing the characteristics of this aspect.
  • the polymer block (B) comprises an alkene unit, a cycloalkene unit, a bullcycloalkene unit, a conjugated gen unit and a cycloalkadiene unit, and It is preferably a polymer block in which the main repeating unit is a unit selected from a group force consisting of a bullcycloalkene unit, a conjugation unit and a cycloalkadiene unit in which some or all of the carbon-carbon double bonds are hydrogenated.
  • the ion conductive group a sulfonic acid group or a phosphonic acid group or a salt thereof is preferably used.
  • the present invention also relates to a membrane electrode assembly and a fuel cell using the above electrolyte membrane.
  • the invention's effect is to a membrane electrode assembly and a fuel cell using the above electrolyte membrane. The invention's effect
  • the polymer electrolyte membrane of the present invention is a polymer electrolyte membrane having high ionic conductivity that is friendly to the environment and good bondability with the electrode, excellent moldability, and hardly affected by methanol. Excellent performance in solid polymer fuel cells, especially direct methanol fuel cells.
  • the polymer electrolyte membrane according to the embodiment (1) is particularly characterized by low methanol permeability and excellent methanol barrier properties.
  • the polymer electrolyte membrane of the aspect (2) has particularly small changes in dimensions and mechanical properties (such as tensile properties) during drying and wetting, and characteristics such as methanol permeability before and after immersion in methanol solution. Because of the small change in the characteristics, it can exhibit stable performance for a long time. In addition, even if the operating environment changes between dry and wet, it has the feature that certain characteristics can be expressed immediately, so it has excellent startability. ing.
  • the polymer electrolyte membrane of the aspect (3) has a small change in characteristics such as methanol permeability and ionic conductivity before and after immersion in a methanol solution. Stable performance can be demonstrated.
  • the polymer electrolyte membrane of the present invention as described above is characterized by the block copolymer that is the main component, and the block copolymer is composed of a polymer block (A) and a polymer block (B). .
  • the polymer block (B) used in common in any embodiment is different in the force polymer block (A) in each embodiment.
  • at least one of the hydrogen atoms directly bonded to the aromatic ring of the aromatic vinyl compound unit constituting the main repeating unit of the polymer block (A) is substituted with an alkyl group having 1 to 8 carbon atoms, , Have common features!
  • the polymer block (A) constituting the block copolymer used in the present invention is a force in which the hydrogen atom bonded to the oc carbon atom is unsubstituted.
  • an aromatic bur compound substituted with an aryl group having 6 to 14 carbon atoms and having at least one hydrogen atom directly bonded to the aromatic ring substituted with an alkyl group having 1 to 8 carbon atoms A polymer block having a unit as a main repeating unit.
  • the polymer block (A) also has an ion conductive group.
  • the aromatic ring is preferably a carbocyclic aromatic ring, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring, and a pyrene ring.
  • the alkyl group having 1 to 8 carbon atoms directly bonded to the aromatic ring is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms. It may be chained or branched.
  • the number of the alkyl group is preferably 1 to 3.
  • a Alkyl group having 1 to 4 carbon atoms that can be bonded to a carbon atom may be linear or branched a a aryl group having 6 to 14 carbon atoms that can be bonded to a carbon atom is a phenyl group, a naphthyl group, A phenanthryl group, an anthryl group, an indenyl group, a bifuryl-yl group, a pyrenyl group, and the like are listed, and examples of the substituent include a linear or branched alkyl group having 1 to 4 carbon atoms and a halogenated alkyl group having 1 to 4 carbon atoms. An alkyl group etc. are mentioned.
  • the above definition of the polymer block (A) is a superordinate of the following three embodiments of the polymer block (A): Become a concept.
  • the polymer electrolyte membrane mainly composed of the block copolymer containing the polymer block (A) of embodiment 1 is particularly characterized by low methanol permeability and excellent methanol barrier properties.
  • polymer block (A) has the following general formula (I)
  • Ar 1 represents an aryl group having 6 to 14 carbon atoms which may be substituted with one alkyl group having 1 to 8 carbon atoms and further having 1 or 2 substituents.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 14 carbon atoms which may have 1 to 3 substituents).
  • It can be defined as a polymer block (A1) having a compound unit as the main repeating unit.
  • the polymer block (A1) may contain only one kind of the above-mentioned aromatic vinyl compound unit, or may contain two or more kinds.
  • the aryl group having 6 to 14 carbon atoms includes a phenyl group, a naphthyl group, a phenanthryl group, an anthryl group, an indur group, a biphenyl group, a pyrenyl group, and the like. And more preferred are phenyl groups which are preferably naphthyl groups.
  • the alkyl group having 1 to 8 carbon atoms directly bonded to the aromatic ring of the aryl group is more preferably an alkyl group having 1 to 4 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group may be linear or branched, and may be methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, neopentyl, hexyl, heptyl, 2-ethylhexyl. Groups and the like.
  • an additional optional 1 that directly binds to the aromatic ring of this aryl group each independently, a linear or branched alkyl group having 1 to 4 carbon atoms (methyl group, ethyl group, propyl group, isopropyl group, butyl group, etc.), carbon number 1 to 4 halogenated alkyl groups (chloromethyl group, 2-chloroethyl group, 3-chloropropyl group, etc.) and the like.
  • examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, and the like. More preferred are methyl groups where the group is preferred.
  • the aryl group having 6 to 14 carbon atoms is the same as that in the definition of Ar 1 , and a phenyl group in which a phenyl group and a naphthyl group are preferred is more preferable.
  • Substituents that can be substituted for this aryl group are each independently a linear or branched alkyl group having 1 to 4 carbon atoms (methyl group, ethyl group, propyl group, isopropyl group, butyl group, etc.), carbon Examples thereof include halogenated alkyl groups of 1 to 4 (such as chloromethyl group, 2-chloroethyl group, and 3-chloropropyl group).
  • R 1 is particularly preferably a hydrogen atom or a methyl group.
  • aromatic vinyl compound unit represented by the general formula (I) is represented by the following general formula (la):
  • R 6 to R 8 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, at least one of which is an alkyl group having 1 to 4 carbon atoms, and R 9 is a hydrogen atom
  • It is preferably an aromatic vinyl compound unit represented by an atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group.
  • the alkyl group in R 6 to R 8 and the alkyl group in R 9 may be linear or branched, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and a tert-butyl group.
  • aromatic vinyl compound giving the unit represented by the general formula (la) include a methyl group, an ethyl group, a propyl group, an n-butyl group, an isobutyl group at the o, m or p position, tert-alkyl-substituted styrene with an alkyl group having 1 to 4 carbon atoms such as butyl group bonded, methyl, ethyl, propyl, n-butyl, isobutyl, tert-butyl at the o, m or p position Alkyl substitution in which an alkyl group having 1 to 4 carbon atoms such as a til group is bonded (X-methylstyrene, etc.
  • aromatic vinyl compounds may be used alone or in combination of two or more, and the form in which two or more are copolymerized may be random copolymerization or block copolymerization. Even polymerization Raft copolymerization or taper copolymerization may be used.
  • the polymer block (A1) may contain another aromatic bur compound unit in addition to the aromatic vinyl compound unit represented by the general formula (I).
  • aromatic bur compounds that give other aromatic vinyl compounds include styrene, ⁇ -methylstyrene, vinylenonaphthalene, a-methinolevinenonaphthalene, vinylenoanthracene, and vinylolylene.
  • the polymer block (A1) may contain one or more monomer units other than the aromatic bur compound unit within a range not impairing the effects of the present invention.
  • monomer that gives such other monomer unit include conjugation atoms having 4 to 8 carbon atoms (specific examples are the same as those in the description of the polymer block (B) described later), and alkenes having 2 to 8 carbon atoms.
  • (meth) acrylic acid esters (methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate), Examples include burester (vinyl acetate, vinyl propionate, vinyl butyrate, vinyl pivalate, etc.) and vinyl ether (methyl vinyl ether, isobutyl vinyl ether, etc.).
  • the copolymerization form of aromatic vinyl compounds and other monomers other than aromatic vinyl compounds is It must be a random copolymerization.
  • the aromatic vinyl compound unit represented by the general formula (I) in the polymer block (A1) contains a polymer block (A1) in order to form an ion channel and to suppress methanol crossover. It is more preferable that it occupies 10% by mass or more, more preferably 15% by mass or more, and even more preferably 20% by mass or more.
  • the content of the monomer units other than the aromatic bur compound unit in the polymer block (A1) is preferably 50% by mass or less, more preferably 30% by mass or less. More preferably, it is 10% by mass or less.
  • the molecular weight of the polymer block (A1) is appropriately selected depending on the properties of the polymer electrolyte membrane, the required performance, other polymer components, and the like. When the molecular weight is large, the mechanical properties such as tensile strength of the polymer electrolyte membrane tend to be high.When the molecular weight is small, the electric resistance of the polymer electrolyte membrane tends to be small, and the molecular weight is appropriately adjusted according to the required performance. It is important to choose.
  • the molecular weight of the polymer block (A1) is usually selected from 100 to 1,000,000 as the number average molecular weight in terms of polystyrene when no ion conductive group is introduced. It is more preferred that the force be selected between 1,000-100,000.
  • the polymer block (A) is a polymer block (A2bl) having an aromatic bur compound unit as a main repeating unit in addition to the polymer block (A2a) having an ion conductive group. It is a crystalline polyolefin block having a polymer block (A2b) that forms a constrained phase (phase that functions to maintain the phase separation structure of the block copolymer).
  • A2bl polymer block having an aromatic bur compound unit as a main repeating unit in addition to the polymer block (A2a) having an ion conductive group.
  • It is a crystalline polyolefin block having a polymer block (A2b) that forms a constrained phase (phase that functions to maintain the phase separation structure of the block copolymer).
  • constrained phase phase that functions to maintain the phase separation structure of the block copolymer.
  • the polymer block (A) is represented by the following general formula (II):
  • Ar 2 represents an aryl group having 6 to 14 carbon atoms which may have 1 to 3 substituents
  • R 1 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or
  • a polymer block having an aromatic vinyl compound unit represented by V which may have 1 to 3 substituents, V, an aryl group having 6 to 14 carbon atoms
  • a polymer block (A2b) that forms a constrained phase and the polymer block (A2b) is represented by the following general formula (III)
  • R 2 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, at least one of which is an alkyl group having 1 to 8 carbon atoms
  • R 5 represents hydrogen
  • a polymer block (A2bl) or a polymer block (A2) which is a crystalline polyolefin block having an aromatic vinyl compound unit represented by (Atom or an alkyl group having 1 to 4 carbon atoms) as a main repeating unit can be defined as
  • the ion conductive group is introduced or present in the polymer block (A2a).
  • the polymer block (A2bl) may contain only one type of aromatic vinyl compound unit represented by the above general formula ( ⁇ ) or two or more types of polymer block (A2bl). It may contain only one type of aromatic vinyl compound represented by the general formula ( ⁇ )! /, Or may contain two or more types.
  • examples of the aryl group having 6 to 14 carbon atoms include a phenyl group, a naphthyl group, a phenanthryl group, an anthryl group, an indur group, a biphthyl group, and a pyrenyl group. More preferred are those having a phenyl group and a naphthyl group being preferred.
  • the optional 1 to 3 substituents that can be directly bonded to the aromatic ring of the aryl group are each independently a linear or branched alkyl group having 1 to 4 carbon atoms (methyl group, ethyl group, Propyl group, isopropyl group, butyl group, etc.) and halogenated alkyl groups having 1 to 4 carbon atoms (chloromethyl group, 2-chloroethyl group, 3-chloropropyl group, etc.).
  • R 1 in the general formula ([pi) has the same meaning as R 1 in formula (I), examples of the group is also preferred examples are also the same.
  • R 1 in the general formula ( ⁇ ) is an alkyl group having 1 to 4 carbon atoms
  • Ar 2 most preferably has no substituent, but when it has a substituent, The number is preferably one or two, more preferably one.
  • R 1 is an aryl group having 6 to 14 carbon atoms, it is most preferred that either or both of this aryl group and Ar 2 have no substituent, but when both have a substituent, The number of substituents is preferably 1 or 2, and more preferably 1.
  • aromatic vinyl compound unit represented by the general formula ( ⁇ ) is represented by the following general formula (Ila):
  • R 1U to R each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 9 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group).
  • the alkyl group in R 1G to R 12 and the alkyl group in R 9 can be linear or branched, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and a tert butyl group.
  • R 9 in the general formula (Ila) is an alkyl group having 1 to 4 carbon atoms
  • in least one of preferable equipment at least two hydrogen atoms that a hydrogen atom of R 1G to R 12 More preferably, all are more preferably hydrogen atoms.
  • examples thereof include styrene, 1-methyl-1-naphthylethylene, 1-methyl-1-biphenylethylene, and styrene and a-methylstyrene are particularly preferable.
  • aromatic vinyl compounds giving the aromatic vinyl compound unit represented by the general formula ( ⁇ ) may be used alone or in combination of two or more.
  • the form in the case of copolymerizing two or more types may be random copolymerization, block copolymerization, graft copolymerization, or tapered copolymerization.
  • the polymer block (A2a) does not impair the effects of the present invention! /, Within the scope, contains one or more other monomer units in addition to the aromatic vinyl compound unit. May be.
  • the monomer that gives such other monomer unit include conjugation atoms having 4 to 8 carbon atoms (specific examples are the same as those in the description of the polymer block (B) described later), and alkenes having 2 to 8 carbon atoms.
  • (meth) acrylic acid esters methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate
  • examples include burester (vinyl acetate, vinyl propionate, vinyl butyrate, vinyl pivalate, etc.) and vinyl ether (methyl vinyl ether, isobutyl vinyl ether, etc.).
  • the copolymerization form of the aromatic vinyl compound and the other monomer must be random copolymerization.
  • Aromatic vinyl compound represented by the general formula ( ⁇ ) contained in the polymer block (A2a) The ratio of the position is preferably 50 mol% or more, more preferably 60 mol% or more, and even more preferably 80 mol% or more, from the viewpoint of imparting sufficient ion conductivity.
  • the molecular weight in the state is appropriately selected depending on the properties of the polymer electrolyte, required performance, other polymer components, etc.
  • the number average molecular weight in terms of styrene it is usually preferable to select a force between 100 and 1,000,000, more preferably between 500 and 100,000.
  • the polymer block (A2b) is a polymer block (A2b1) having an aromatic vinyl compound unit represented by the general formula (III) as a main repeating unit, or a crystalline polyolefin block.
  • an alkyl group having 1 to 8 carbon atoms may be linear or branched, and may be a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isoptiyl group.
  • an alkyl group having 1 to 4 carbon atoms which may be linear or branched, is a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert —Examples include butyl group.
  • Preferable specific examples of the aromatic bur compound unit represented by the general formula (III) include p-methylstyrene unit, 4-tert-butylstyrene unit, p-methyl-ex-methylstyrene unit, 4-tert-butyl-a-methyl. Examples include styrene units.
  • aromatic vinyl compounds that give aromatic vinyl compound units may be used alone or in combination of two or more.
  • the form of copolymerization of two or more types may be random copolymerization, block copolymerization, draft copolymerization, or tapered copolymerization.
  • the polymer block (A2b l) may contain other monomer units other than the aromatic vinyl compound unit, as long as they do not interfere with the function as the binding phase.
  • the monomer that gives the unit include conjugation atoms having 4 to 8 carbon atoms (specific examples are the same as in the description of the polymer block (B) described above), (meth) acrylic acid esters ((meth) Methyl acrylate, (me ) Ethyl acrylate, butyl (meth) acrylate, etc.), butyl esters (eg, acetic acid, propionate, butyrate, pivalate), butyl ether (eg, methyl vinyl ether, isobutyl vinyl ether). .
  • the copolymerization form of the aromatic bur compound and other monomers needs to be random copolymerization.
  • the aromatic vinyl compound unit described above preferably accounts for 50% by mass or more of the polymer block (A2bl), and preferably accounts for 70% by mass or more. Even more preferably 90% by mass or more.
  • the polymer block (A2b) is constituted by a crystalline polyolefin block
  • examples of a strong crystalline polyolefin block include a crystalline polyethylene block, a crystalline polypropylene block, a crystalline hydrogenated 1, 4 polybutadiene Blocks, etc., and hydrogenated 1,4 polybutadiene blocks are the most preferred among these!
  • the polymer block (A2b) is particularly suitable as the polymer block (A2b).
  • Examples include poly-p-methylstyrene blocks, poly-p- (tert-butyl) styrene blocks, poly- ⁇ -methyl-ex-methylstyrene units, poly-4-tert-butyl- ⁇ -methylstyrene units and other polystyrene blocks; A copolymer block comprising two or more alkyl-substituted styrenes such as ⁇ -methylstyrene, ⁇ - (tert-butyl) styrene, p-methyl-ex-methylstyrene, 4-tert-butyl-a-methylstyrene; Appendix 1, 4 Polybutadiene; Crystalline polyethylene block; Crystalline polypropylene block and the like.
  • the polymer block (A2b) may be crosslinked by a known method within the range without impairing the effects of the present invention.
  • cross-linking the binding force is further increased, and dimensional change and mechanical property (tensile property) change between drying and wetting, and property change such as methanol permeability before and after methanol solution treatment tend to be further reduced. It is in.
  • the molecular weight of the polymer block (A2b) is appropriately selected depending on the properties of the polymer electrolyte, the required performance, other polymer components, and the like. When the molecular weight is large, the mechanical properties of the polymer electrolyte tend to be high, but when it is too large, it becomes difficult to mold the block copolymer, and when the molecular weight is high, the mechanical properties tend to be low. Depending on the molecular weight It is important to choose. As the number average molecular weight in terms of polystyrene, it is usually preferred that the force selected from the forces of 100 to 1,000,000 is selected from the forces of S, preferably less than 1,000,000 to 100,000.
  • the polymer blocks (A1) in Embodiment 1 or the polymer blocks (A2a) in Embodiment 2 are crosslinked. This cross-linking occurs between molecules and Z or molecules.
  • the polymer electrolyte membrane comprising the block copolymer as a main component in this embodiment is particularly characterized by small changes in properties such as methanol permeability and ionic conductivity before and after immersion in a methanol solution. Can exhibit stable performance for a long time.
  • crosslinking means there are a crosslinking method with a polyvalent amine, a radical crosslinking method, etc., and any of them can be used.
  • crosslinking is usually performed with or after the preparation of the polymer electrolyte membrane, Crosslinking will be described later in the description of the preparation of the polymer electrolyte membrane.
  • the polymer block (A1) and the polymer block (A2a) may remain in the above-described structure upon crosslinking with a polyvalent amine, but in the case of radical crosslinking, the conditions are weighted.
  • radical crosslinking is caused by hydrogen radicals bonded to the 1st carbon atom of the alkyl group bonded to the aromatic ring of the aromatic vinyl compound unit as described above, radicals generated by heating or radical extraction. It progresses through joining. Therefore, in this embodiment, at least one carbon atom at the 1-position of the alkyl group bonded to the aromatic ring of the aromatic bur compound unit of the polymer block (A1) or the polymer block (A2a) is at least one. It is necessary to combine hydrogen atoms!
  • the polymer block (A1) in the embodiment 1 is represented by the following general formula ( ⁇ ) included in the general formula (I).
  • Ar 1 ' is substituted with one alkyl group having 1 to 8 carbon atoms, and may further have 1 or 2 carbon atoms having 1 to 4 carbon atoms.
  • a polymer block having an aromatic bur compound unit represented by an alkyl group or an aryl group having 6 to 14 carbon atoms which may have 1 to 3 substituents as a main repeating unit ( A1 ′) and the following general formula (la ′) included in the general formula (la)
  • R u to T each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. At least one is an alkyl group having 1 to 4 carbon atoms, and at least one of the alkyl groups
  • One is formed by bonding at least one hydrogen atom to the carbon atom at position 1, and R 9 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group.
  • a polymer block having the aromatic vinyl compound unit as a main repeating unit is preferable.
  • R 1 and R 9 are as defined in general formulas (I) and (la), respectively.
  • examples and preferred examples of Ar 1 ′ and its substituents, and examples and preferred examples of alkyl groups in R 6 ′ to R 8 ′ are also related to an alkyl group: “at least one of the alkyl groups is at least a carbon atom at the 1-position. If one hydrogen atom is bonded, it is the same as those for Ar 1 and its substituents and alkyl groups in R 6 to R 8 as long as the conditions are met.
  • the polymer block ( ⁇ ′) is an aromatic vinyl compound unit other than the aromatic vinyl compound unit represented by the general formula (I ′), just like the polymer block (A1) in the embodiment 1.
  • a monomer unit other than the aromatic bur compound unit may be contained, and the aromatic bur compound unit represented by the general formula (! ') In the polymer block (A1').
  • the ratio may be the same as the ratio of the aromatic vinyl compound unit represented by the general formula (I) in the polymer block (A1).
  • the molecular weight of the polymer block ( ⁇ ') is also determined by the polymer block (A
  • the polymer block (A2a) in the embodiment 2 is represented by the following general formula ( ⁇ ′) included in the general formula ( ⁇ ).
  • Ar 2 ′ represents a C 6-14 aryl group which may have 1 to 3 substituents, and at least one of the substituents is a carbon atom at the 1-position.
  • R 1U to R ′′ each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, at least one of R 1G ′ to R 12 ′ is at least a carbon atom at the 1-position
  • Main repeating unit of vinyl group The polymer block is preferably a unit.
  • R 1 and R 9 are as defined in general formulas ( ⁇ ) and (Ila), respectively.
  • examples and preferred examples of Ar 2 ′ and its substituents, and examples and preferred examples of alkyl groups in R 1G ′ to R 12 ′ are also related to the alkyl group with “at least one at least one carbon atom at the 1-position. As long as the condition that it is an alkyl group having 1 to 4 carbon atoms to which a hydrogen atom is bonded is the same as those for Ar 2 and its substituents and R 1C) to R 12 .
  • the polymer block (A2a ′) may contain other monomer units other than the aromatic vinyl compound unit, just like the polymer block (A2a) in the embodiment 2.
  • the proportion of the aromatic vinyl compound unit represented by the general formula (II ') in the block (A2a') is also the aromatic vinyl compound unit represented by the general formula (II) in the polymer block (A2a).
  • the ratio may be the same.
  • the molecular weight of the polymer block (A2a ′) may be the same as that of the polymer block (A2a).
  • the block copolymer used in the polymer electrolyte membrane of the present invention has a polymer block (B) that forms a flexible phase in addition to the polymer block (A).
  • the polymer block (A) and the polymer block (B) undergo microphase separation, and the polymer block (A) and the polymer block (B) are aggregated together. Since (A) has an ion-conducting group, an ion channel is formed by the assembly of the polymer blocks (A) and becomes a path for protons.
  • the block copolymer becomes elastic and flexible as a whole, and the moldability (assembly property, Bondability, tightenability, etc.) are improved.
  • the polymer block (B) forming the soft phase here is a so-called rubber-like polymer having a glass transition point or soft melting point of 50 ° C or lower, preferably 20 ° C or lower, more preferably 10 ° C or lower. It is a block.
  • Monomers that can constitute the repeating unit constituting the polymer block (B) forming the flexible phase include alkenes having 2 to 8 carbon atoms, cycloalkenes having 5 to 8 carbon atoms, and carbon numbers 7-10 butylcycloalkene, 4-8 carbon conjugated diene and 5-8 carbon conjugated cycloalkadiene, carbon-carbon double bond hydrogenated 7-: LO -Lucycloalkene, a carbon-carbon co-carbon with one to four hydrogen atoms hydrogenated Cage, carbon Conjugated cycloalkadiene of 5 to 8 carbon atoms, one of the carbon double bonds is hydrogenated, (meth) acrylate (methyl (meth) acrylate, ethyl (meth) acrylate, (meth) Butyl acrylate, etc.), butyl esters (eg, acetate acetate, vinyl propionate, butyl butyrate and pivalate), butyl ethers (eg, methyl butyl
  • the form may be random copolymer, block copolymer, graft copolymer or tapered copolymer.
  • the monomer to be used for (co) polymerization has two carbon-carbon double bonds, any of them may be used for polymerization. There are no particular restrictions on the ratio of 1, 2 bonds to 1, 4 bonds as long as the glass transition point or soft melting point is 50 ° C or less, as long as it is 1, 4 bonds.
  • the repeating unit constituting the polymer block (B) has a carbon-carbon double bond as in the case of a bullcycloalkene unit, a conjugated diene unit, or a conjugated cycloalkadiene unit.
  • more than 30 mol% of the energetically carbon-carbon double bond is hydrogenated. More preferably, 50% by mole or more is hydrogenated. More preferably, 80% by mole or more is hydrogenated.
  • the hydrogenation rate of the carbon-carbon double bond can be calculated by a commonly used method, for example, iodine value measurement method, 1 H-NMR measurement or the like.
  • the polymer block (B) is carbon from the viewpoint of giving the resulting block copolymer an excellent elasticity and, in addition, good moldability in the production of a membrane electrode assembly and a polymer electrolyte fuel cell.
  • the alkene unit having 2 to 8 carbon atoms, the conjugation unit having 4 to 8 carbon atoms, and the conjugated diene unit having 4 to 8 carbon atoms in which some or all of the carbon-carbon double bonds are hydrogenated are selected. It is more preferable that the polymer block has at least one kind of repeating unit force. Alkene unit having 2 to 6 carbon atoms, conjugation unit having 4 to 8 carbon atoms, and part or all of carbon-carbon double bond. It is even more preferable that the polymer block has at least one repeating unit force selected from hydrogenated conjugation units having 4 to 8 carbon atoms. In the above, isobutene units are most preferable as alkene units, and 1,3-butadiene units and / or isoprene units are most preferable as conjugation units.
  • the alkene having 2 to 8 carbon atoms is ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, 1-heptene. , 2 heptene, 1-octene, 2-octene and the like.
  • Examples of the cycloalkene having 5 to 8 carbon atoms include cyclopentene, cyclohexene, cycloheptene, and cyclootaten.
  • Examples of the burecycloalkene having 7 to 10 carbon atoms include Examples include bulucyclopentene, bicyclohexene, burcycloheptene, and bulucyclootaten.
  • Conjugation atoms with 4 to 8 carbon atoms include 1,3 butadiene, 1,3 pentagen, isoprene, 1,3 hexagen. 2, 4, one hexagen, 2, 3 dimethyl-1,3 butadiene, 2-ethanolet 1,3 butadiene, 1,3 butadiene, 1,4 Tajien, 3, 5-butadiene and the like to, Shikuropen Tajen as conjugated cycloalkadiene having 5 to 8 carbon atoms, 1, 3 Kisajen etc. cyclohexylene.
  • the polymer block (B) in addition to the above-mentioned monomers, imparts elasticity to the block copolymer, so long as the purpose of the polymer block (B) is not impaired.
  • aromatic bur compounds such as styrene and urnaphthalene
  • halogen-containing beer compounds such as chlor chloride! /.
  • the copolymerization form of the above monomer with another monomer needs to be random copolymerization.
  • the amount of such other monomer used is preferably less than 50% by mass, more preferably less than 30% by mass, based on the total of the above monomer and other monomer. More preferably, it is less than 10% by mass.
  • each polymer block is one and plural Moreover, each structure and molecular weight may be the same or different.
  • Each polymer block does not necessarily have to be linearly connected, and a certain polymer block may be grafted. In this sense, the block copolymer used in the present invention includes a graft copolymer.
  • the arrangement of the polymer block (A1) and the polymer block (B) in the block copolymer is not particularly limited.
  • examples include Al—B—A1 type triblock copolymer, B—Al—B type triblock copolymer, Al—B—A1 type triblock copolymer, or B—Al—B type triblock copolymer Mixtures of A1—B type diblock copolymer, Al—B—Al—B type tetrablock copolymer, A1—B—A1—B—A1 type pentablock copolymer, B—A1—B — Al—B type pentablock copolymer, (A1— B) nX type star copolymer (X represents a coupling agent residue), (B— Al) nX type star copolymer (X is Represents a coupling agent residue).
  • These block copolymers may be used alone or in combination of two or
  • the arrangement of the polymer block (A2a), the polymer block (A2b) and the polymer block (B) is particularly limited.
  • the polymer block (A2a) and the polymer block (A2b) are not necessarily connected to each other! It is not necessary to insert the polymer block (B) immediately.
  • the structure of the block copolymer composed of the polymer block (A2a), the polymer block (A2b) and the polymer block (B) is not particularly limited, but as an example, an A2a-B-A2b type Block copolymer, A2a— B— A2b— A2a type tetrablock copolymer, A2a— B— A2a— A2b type tetrablock copolymer, B— A2a— B— A2b type tetrablock copolymer, A2a— B — A2b— B type tetrablock copolymer, A2b— B— A2b— A2a type tetrablock copolymer, A2b— A2a type tetrablock copolymer, A2b— A2a— B— A2a— A2a— A2b type pentablock copolymer, A2b— B — A2a— B— A2b type pentablock copoly
  • the mass ratio of the polymer block (A2b) to the polymer block (B) is dimensional stability and shape stability. From the viewpoint of durability and durability, 95: 5 to 5:95 is preferable, 90:10 to: LO: 90 is preferable to force S, 85:15 to 15:85 is more preferable Even more preferred.
  • the polymer block (A1), and in the case of crosslinking in Embodiment 2 or Embodiment 2 (Aspect 3), the polymer block ( The mass ratio of A2a) to the polymer block (A2b)) to the polymer block (B) is flexible and elastic, and therefore has good moldability in the production of membrane-electrode assemblies and polymer electrolyte fuel cells. From the viewpoint of giving 90, the force of 90:10 to: L0: 90 is preferable, 85:15 to 15:85 is preferable, and 80:20 to 20:80 is even more preferable Better!/,.
  • the number average molecular weight of the block copolymer constituting the polymer electrolyte of the present invention in a state where the ion conductive group is not introduced is not particularly limited, but the number average molecular weight in terms of polystyrene is usually 10, 000 to 2,000,000 force S preferred, 15,000 to 1,000,000 force S preferred ⁇ , 20,000 to 500,000 force preferred! / ⁇ .
  • the block copolymer constituting the polyelectrolyte of the present invention is preferably contained in the polymer block (A), and in an embodiment, in the embodiment 1 and embodiment 3 of the present invention, the polymer block ( In A1), in Embodiment 2 in the form of Embodiment 2 and Embodiment 2, it is necessary to have an ion conductive group in the polymer block (A2a).
  • ions in the present invention when referring to ionic conductivity include protons.
  • the polymer Membrane produced using electrolyte membrane is not particularly limited as long as the electrode assembly is a group capable of expressing sufficient ionic conductivity, but SO M or PO HM (where M is water)
  • a sulfonic acid group, a phosphonic acid group, or a salt thereof represented by an elementary atom, an ammonium ion, or an alkali metal ion is preferably used.
  • the ion conductive group a carboxyl group or a salt thereof can also be used. The reason why the ion conductive group is introduced into the polymer block (A) is that the introduction of the ion conductive group is easy and the formation of the ion channel is facilitated.
  • the ion-conducting group introduced into the polymer block (A) (preferably U, in the embodiment, the polymer block (A1) or the polymer block (A2a)). It may be introduced into the aromatic vinyl compound unit, which is the main repeating unit, or into the other monomer units described above.
  • the aromatic vinyl compound unit which is the main repeating unit, or into the other monomer units described above.
  • it is preferably introduced into the aromatic ring of the aromatic vinyl compound unit.
  • the ion conductive group is substantially contained only in the polymer block (A) (preferably, in the embodiment, the polymer block (A1) or the polymer block (A2a)). Exists. This is for facilitating the formation of the ion channel.
  • the ion channel formation is further set to a substantially upper limit on the polymer block (A2a). This is because the combined block (A2b) is made to function substantially as a constraining layer, thereby greatly suppressing the structural change of the ion channel after long-time power generation.
  • the fact that the ion conductive group is substantially present only in the polymer block (A) means that the basic Z comprehensive aspect, aspect 1 and aspect 3 in the form of aspect 1 are used.
  • the embodiment 3 in the form of the embodiment 2 or the embodiment 2 95 mol% or more of the ion conductive group present in the block copolymer is present on the polymer block (A) or (A 1).
  • the polymer block (A2b) has the aromatic repeating unit represented by the general formula ( ⁇ ) as the main repeating unit and the total carbon number of R 2 to R 4 is 1 to 3, Ionic conductivity present in polymers.
  • the polymer block (A2b) is a repeating unit mainly composed of an aromatic vinyl compound unit represented by the general formula (III)
  • the total carbon number of R 2 to R 4 is equal to or greater than 75 mol%, preferably 90 mol% or more of the ion conductive groups present in the block copolymer are polymer blocks (A2a)
  • the polymer block (A2b) is a crystalline polyolefin block, it means that 95 mol% or more is present in the polymer block (A2a).
  • the amount of ion-conductive group introduced is important in determining the performance of the polymer electrolyte.
  • the ion exchange capacity of the polymer electrolyte of the present invention is 0. It is preferable that the amount is 30 meqZg or more. More preferably, the amount is 35 meqZg or more.
  • the upper limit of the ion exchange capacity is preferably 3. Ome qZg or less, because if the ion exchange capacity becomes too large, the hydrophilicity increases and the swelling tends to be blocked.
  • the block copolymer used in the present invention can be obtained mainly by the following two production methods. That is, (1) a method in which a block copolymer having no ion conductive group is produced and then the ion conductive group is bonded, and (2) a block copolymer using a monomer having an ion conductive group. It is a method of manufacturing.
  • the polymer block (A1) or (B) is appropriately selected from radical polymerization method, ion polymerization method, cationic polymerization method, coordination polymerization method and the like.
  • On-polymerization or cationic polymerization is preferably selected.
  • the polymerization method, living-on polymerization method, and living cationic polymerization method are preferred.
  • a carbon such as p-methylstyrene unit is a tertiary carbon.
  • Production of a block copolymer comprising as a component a polymer block (A1) comprising an aromatic bur compound unit as the main repeating unit and a polymer block (B) comprising a conjugated-gen unit such as a butadiene unit; p—
  • the polymer block (A1) which consists mainly of aromatic vinyl compound units whose X carbon is tertiary carbon, such as methylstyrene units (A1), and polymer blocks (B), which are alkene unit forces such as isobutene units, are used as components.
  • Block copolymer production method ⁇ , ⁇ Polymer block (A1) and butadiene units, etc., whose main repeating unit is an aromatic vinyl compound unit in which ⁇ carbon is quaternary carbon such as dimethylstyrene unit
  • a method for producing a block copolymer comprising as a component a polymer block (A1) having a repeating unit as a component and a polymer block ( ⁇ ⁇ ) having an alkene unit force such as an isobutene unit will be described.
  • an aromatic vinyl compound such as p-methylstyrene, which is a tertiary carbon such as p-methylstyrene, is polymerized under a temperature condition of 20 to 100 ° C. And then conjugating the conjugation polymer, and then adding a coupling agent such as phenyl benzoate to obtain an A1-B-A1-type block copolymer,
  • the block copolymer constituting the polymer electrolyte membrane of the present invention is produced by cation polymerization.
  • ⁇ -carbon is a quaternary carbon such as a, p dimethylstyrene unit as a repeating unit of the polymer block (A1)
  • the block copolymer constituting the polymer electrolyte membrane of the present invention is produced by cationic polymerization, aromatic vinyl compound units such as ⁇ -methylstyrene in which a carbon is a tertiary carbon are overlapped.
  • aromatic vinyl compound units such as ⁇ -methylstyrene in which a carbon is a tertiary carbon are overlapped.
  • it is a repeating unit of a combined block (A1)
  • the block copolymer constituting the polymer electrolyte membrane of the present invention is produced by cationic polymerization, a, p dimethylstyrene or the like, an aromatic vinyl compound unit in which ⁇ -carbon is a quaternary carbon Is the repeating unit of the polymer block (A1),
  • the production method of the polymer block (A2a), (A2b) or (B) is appropriately selected. Therefore, a radical polymerization method, a cation polymerization method or a cationic polymerization method is preferably selected.
  • the living radical polymerization method is preferred because the molecular weight, molecular weight distribution, polymer structure, ease of bonding of the polymer blocks (A2a), (A2b), and (B) are preferred. Or, living-on polymerization or living cationic polymerization is preferred.
  • a polymer block (A2b) comprising an aromatic bur compound such as 4 tert-butyl styrene as a main repeating unit, a polymer block (A2a) comprising styrene or ⁇ -methylstyrene, and A method for producing a block copolymer comprising a polymer block (B) made of conjugated genka as a component will be described.
  • industrial ease, molecular weight, molecular weight distribution, ease of bonding of polymer blocks (A2a), (B) and (A2b), etc. can also be produced by living ion polymerization or living cationic polymerization. The following specific synthesis examples are shown.
  • a cation polymerization initiator in a cyclohexane solvent 10 to: under a temperature condition of LOO ° C, an aromatic bur compound such as 4 tert-butylstyrene, conjugated diene, 4 tert-butylstyrene, etc.
  • A2b—B—A2b block copolymer was prepared by sequential polymerization of aromatic bur type compounds, and a key-on polymerization initiator system (key-on polymerization initiator ZN, N, ⁇ ', ,, monotetra A method to obtain A2b-B (-g-A2a) -A2b type block 'graft copolymer by polymerizing styrene after adding conjugation units and adding methylethylenediamine)
  • [0104] (4) A concentration of 0.1 to 10% by mass using an organolithium compound in a nonpolar solvent as an initiator In the presence of a polar compound, ⁇ -methylstyrene having a concentration of 5 to 50% by mass is polymerized at a temperature of 30 ° C to 30 ° C, and the resulting living polymer is conjugated with a conjugated diene, 4-tertbutyl styrene or the like.
  • Isobutene was cationically polymerized in the presence of Lewis acid in a halogenated Z hydrocarbon mixed solvent at 78 ° C using a bifunctional halogenated initiator, and then styrene, 4-tert-butylstyrene
  • styrene, 4-tert-butylstyrene A method of sequentially polymerizing styrene derivatives such as A2b- A2a- B- A2a- A2b type block copolymer,
  • Sulfonation can be performed by a known sulfonation method.
  • examples of such a method include a method of preparing an organic solvent solution or suspension of a block copolymer, adding a sulfonating agent and mixing, a method of adding a gaseous sulfonating agent directly to the block copolymer, etc. Is exemplified.
  • the sulfonating agent to be used sulfuric acid, a mixture system of sulfuric acid and aliphatic acid anhydride, a chlorosulfonic acid, a mixture system of chlorosulfonic acid and trimethylsilyl chloride, sulfur trioxide, sulfur trioxide, Examples thereof include mixtures with triethyl phosphate, and aromatic organic sulfonic acids such as 2, 4, 6 trimethylbenzene sulfonic acid. Also use organic Examples of the solvent include halogenated hydrocarbons such as methylene chloride, linear aliphatic hydrocarbons such as hexane, cyclic aliphatic hydrocarbons such as cyclohexane, and the like. You may use it, selecting suitably from a combination.
  • a method for introducing a phosphonic acid group into the obtained block copolymer will be described.
  • Phosphonation can be performed by a known phosphonic acid method. Specifically, for example, an organic solvent solution or suspension of a block copolymer is prepared, and the copolymer is reacted with chloromethyl ether or the like in the presence of anhydrous aluminum chloride to introduce a halomethyl group into the aromatic ring. Thereafter, a method of introducing triphosphoryl phosphorus and anhydrous salt aluminum and reacting them and then carrying out a hydrolysis reaction to introduce a phosphonic acid group can be mentioned.
  • Another example is a method in which phosphorus trichloride and anhydrous aluminum chloride are added to the copolymer and reacted to introduce a phosphinic acid group into the aromatic ring, and then the phosphinic acid group is oxidized with nitric acid to form a phosphonic acid group. it can.
  • the degree of sulfone or phosphonin is such that the ion exchange capacity of the polymer electrolyte membrane of the present invention is preferably 0.30 meqZg or more, more preferably 0.35 meqZg or more. 3. Sulfonated or phosphonated so that it is below OmeqZg. Thereby, practical ion conduction performance is obtained.
  • Final ion exchange capacity of polymer electrolyte membrane, ion exchange capacity of sulfonated or phosphonized block copolymer, or polymer block in block copolymer (A) is It can be calculated using analytical means such as acid titration method, infrared spectroscopic spectrum measurement, nuclear magnetic resonance spectrum (NMR spectrum) measurement.
  • the second production method of the block copolymer used in the present invention is a method of producing a block copolymer using at least one monomer having an ion conductive group.
  • a monomer in which an ion conductive group is bonded to an aromatic bull compound is preferable.
  • a monomer in which an ion conductive group is bonded to an aromatic bull compound is preferable.
  • the monomer containing an ion conductive group a monomer in which an ion conductive group is bonded to a conjugated diene compound can also be used.
  • Specific examples include 1,3-butadiene-1-sulphonic acid, 1,3-butadiene-1-sulphonic acid, isoprene-1-sulphonic acid, isoprene-2-sulphonic acid, 1,3-butadiene-1-sulphonic acid, 1,3 Butadiene-2-phosphonic acid, Isoprene-1-1-phosphonic acid, Isoprene-2-phosphonic acid and the like.
  • Monomers containing an ion-conducting group also include butyl sulfonic acid, ⁇ -alkyl-vinyl sulfonic acid, buralkyl sulfonic acid, a-alkyl- buralkyl sulphonic acid, vinyl phosphophosphonic acid, a-anolequinole.
  • Monobinolephosphonic acid, vinylenorenolequinophosphonic acid, a-alkyl-bulualkylphosphonic acid and the like can also be used.
  • a (meth) acrylic monomer having an ion conductive group bonded can also be used.
  • Specific examples include methacrylic acid, acrylic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, and the like.
  • the ion conductive group may be introduced in the form of a salt neutralized with a suitable metal ion (for example, alkali metal ion) or a counter ion (for example, ammonium ion).
  • a suitable metal ion for example, alkali metal ion
  • a counter ion for example, ammonium ion
  • a desired ion-conducting group can be introduced by producing a polymer using sodium o, m or p alkyl styrene sulfonate, or ⁇ -methyl-o, m or ⁇ sodium alkyl styrene sulfonate.
  • a block copolymer having a sulfonic acid group in a salt form can be obtained by ion exchange by an appropriate method.
  • the polymer electrolyte membrane of the present invention may contain a softening agent as necessary within a range not impairing the effects of the present invention.
  • Softeners include petroleum-based softeners such as paraffinic, naphthenic or aromatic process oils, There are nophine, vegetable oil-based softeners, plasticizers, etc., and these can be used alone or in combination of two or more.
  • the polymer electrolyte membrane of the present invention may further include various additives such as a phenol-based stabilizer, a phenol-based stabilizer, a phosphorus-based stabilizer, as long as the effects of the present invention are not impaired, as necessary. It may contain a light stabilizer, an antistatic agent, a release agent, a flame retardant, a foaming agent, a pigment, a dye, a whitening agent, carbon fiber, etc. alone or in combination of two or more.
  • various additives such as a phenol-based stabilizer, a phenol-based stabilizer, a phosphorus-based stabilizer, as long as the effects of the present invention are not impaired, as necessary. It may contain a light stabilizer, an antistatic agent, a release agent, a flame retardant, a foaming agent, a pigment, a dye, a whitening agent, carbon fiber, etc. alone or in combination of two or more.
  • stabilizers include 2,6 di-t-butyl-p-cresol, pentaerythrityltetrakis [3- (3,5 di-t-butyl 4-hydroxyphenol) propionate], 1, 3, 5 trimethyl 2, 4, 6 tris (3,5 di-tert-butyl-4-hydroxybenzyl) benzene, octadecyl- 3— (3,5-di-tert-butyl 4-hydroxyphenol) propionate, triethylene glycol-bis [3 — (3—t-butyl—5-methyl—4-hydroxyphenol) propionate], 2, 4 bis- (n-octylthio) -one 6— (4-hydroxy-1,3,5-di-tert-butyl-lino) 1 , 3, 5 triazine, 2, 2, thiodiethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenol) propionate], N, N, -hexamethylenebis (3, 5-di-
  • an inorganic filler can be further added as needed within a range not impairing the effects of the present invention.
  • examples include talc, calcium carbonate, silica, glass fiber, my strength, kaolin, titanium oxide, montmorillonite, and alumina.
  • the content of the block copolymer in the polymer electrolyte membrane of the present invention is preferably 50% by mass or more, more preferably 70% by mass or more. More preferably, it is 90% by mass or more.
  • the polymer electrolyte membrane of the present invention preferably has a thickness of about 5 to 500 m from the viewpoints of performance required as an electrolyte membrane for fuel cells, membrane strength, handling properties, and the like.
  • the film thickness is less than zm, the mechanical strength of the film and the barrier properties of fuel such as gas and methanol tend to be insufficient.
  • the film thickness exceeds 500 m, the electric resistance of the film increases and sufficient proton conductivity does not appear, so the power generation characteristics of the battery tend to be low.
  • the film thickness is more preferably 10 to 300 m.
  • any method can be adopted as a method for preparing the polymer electrolyte membrane of the present invention as long as it is a normal method for such preparation.
  • the block copolymer constituting the polymer electrolyte membrane of the present invention or the block copolymer and the above-mentioned additive are mixed with an appropriate solvent to dissolve or suspend the block copolymer,
  • a method of obtaining an electrolyte membrane having a desired thickness by casting on a plate-like body such as PET or glass, or applying using a coater or applicator and removing the solvent under appropriate conditions, hot press molding It is possible to use a method of forming a film using a known method such as roll molding or extrusion molding.
  • Embodiment 3 of the present invention it is necessary to crosslink the polymer block (A1) or the polymer block (A2a) in the block copolymer, and this crosslinking is usually performed by a polymer electrolyte membrane. It will be done with or after the preparation.
  • Preparation of the polymer electrolyte membrane of the present invention includes, for example, a block copolymer having an ion conductive group constituting the polymer electrolyte membrane of the present invention, and, if necessary, a radical initiator described below, A cross-linking agent such as a polyfunctional monomer and Z or various additives as described above are mixed with an appropriate solvent to dissolve or suspend the block copolymer, and a plate-like body such as PET or glass. Or apply with a coater or applicator and remove the solvent under appropriate conditions After melting or kneading the koji or the above mixture, the film can be formed by a known molding method such as hot press molding, roll molding or extrusion molding.
  • the obtained electrolyte membrane layer may be laminated by newly applying the same or different block copolymer solution and drying. Further, the same or different electrolyte membranes obtained as described above may be laminated by being pressure-bonded by hot roll molding or the like.
  • the solvent used in the preparation of the polymer electrolyte membrane is particularly suitable as long as it can prepare a solution having a viscosity that can be cast or coated without destroying the structure of the block copolymer. It is not limited. Specific examples include halogenated hydrocarbons such as methylene chloride, aromatic hydrocarbons such as toluene, xylene and benzene, linear aliphatic hydrocarbons such as hexane and heptane, and rings such as cyclohexane.
  • halogenated hydrocarbons such as methylene chloride
  • aromatic hydrocarbons such as toluene, xylene and benzene
  • linear aliphatic hydrocarbons such as hexane and heptane
  • rings such as cyclohexane.
  • Examples thereof include ethers such as formula aliphatic hydrocarbons and tetrahydrofuran, alcohols such as methanol, ethanol, propanol, isopropanol, butanol and isobutyl alcohol, and mixed solvents thereof.
  • ethers such as formula aliphatic hydrocarbons and tetrahydrofuran
  • alcohols such as methanol, ethanol, propanol, isopropanol, butanol and isobutyl alcohol
  • mixed solvents thereof Depending on the configuration of the block copolymer, the molecular weight, the ion exchange capacity, etc., one or a combination of two or more can be appropriately selected from the solvents exemplified above and used.
  • the solvent removal conditions are such that the solvent can be completely removed below the temperature at which ion conductive groups such as sulfonic acid groups of the block copolymer constituting the polymer electrolyte membrane of the present invention are removed. Any selection can be made.
  • a plurality of temperatures may be arbitrarily combined, or a combination of ventilation and vacuum may be arbitrarily combined. Specifically, after preliminary drying for several hours under vacuum conditions of room temperature to 60 ° C, the solvent is removed under vacuum conditions of 100 ° C or higher, preferably 100-120 ° C for about 12 hours.
  • the ability to exemplify the method of removing the method of removing the solvent under a drying condition of about several minutes to several hours under ventilation of 60 to 140 ° C., but not limited thereto.
  • the polymer block (A1) or (A2a) having an ion conductive group, which is a constituent component of the block copolymer constituting the polymer electrolyte membrane of the present invention is crosslinked. is necessary. This crosslinking is performed between polymer blocks (A1) or (A2a).
  • the crosslinking is performed between polymer blocks (A1) or (A2a).
  • Examples of means for crosslinking include a crosslinking method using a polyvalent amine and a radical crosslinking method.
  • the degree of crosslinking is such that the changes in methanol permeability and ionic conductivity of the polymer electrolyte membrane before and after the methanol solution treatment are significantly reduced.
  • the polyvalent amine is not particularly limited as long as it has two or more primary to tertiary amino groups in one molecule, and includes ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, and the like. Examples include diamines such as xamethylenediamine, and triamines such as iminobispropylamine and diethylenetriamine.
  • Crosslinking with a polyvalent amine is carried out by the reaction of an ion conductive group with the polyvalent amine. Therefore, when cross-linking is performed with polyvalent amine, it is necessary to ensure that the ion exchange capacity of the polymer electrolyte membrane after crosslinking satisfies the requirements described. This crosslinking usually proceeds at room temperature.
  • Crosslinking with a polyvalent amine is not performed or only partially performed when the polymer electrolyte membrane is prepared, and is performed after the membrane is prepared. In that case, after the obtained film is immersed in a polyvalent amine solution and subjected to a crosslinking reaction, a method such as washing with a solvent or water used for the preparation of the film and drying may be employed.
  • Radical crosslinking is a unit represented by the general formula (I) or a general formula ( ⁇ ) as an aromatic vinyl compound unit that is a main repeating unit of the polymer block (A1) or (A2a).
  • the radical bridge is an alkyl group having 1 to 8 carbon atoms in which at least one hydrogen atom is bonded to the 1-position carbon atom substituted with Ar 1 in the general formula (I), or a general formula ( ⁇ ).
  • the hydrogen of the alkyl group having 1 to 4 carbon atoms substituted with Ar 2 in which at least one hydrogen atom is bonded to the carbon atom at the 1-position It progresses through the bonding of radicals that are drawn out by the radicals generated by nuclear power, heating and by the decomposition of Z or radical initiators.
  • Radical initiators include persulfates such as sodium persulfate and potassium persulfate, azo compounds such as azobisisobutyoxy-tolyl; benzoyl peroxide, 1, 1-bis (tert-butylperoxy) cyclo Peracids such as hexane can be used in an amount of 5 equivalents or less, preferably 0.01-1 equivalent, per mole of the unit represented by the general formula (I) or ( ⁇ ). Further, as the polyfunctional monomer, triallyl isocyanurate or the like can be used. This bridge can be performed by hot pressing or the like at a temperature of about 60 to 220 ° C, preferably about 80 to 180 ° C.
  • a membrane-electrode assembly using the polymer electrolyte membrane of the present invention will be described.
  • a known method can be used without any particular limitation.
  • a catalyst paste containing an ion conductive binder is applied onto the gas diffusion layer by a printing method or a spray method and dried.
  • the catalyst layer and the gas diffusion layer are then formed, and then the catalyst layers of the two pairs of assemblies are placed inside, and bonded to both sides of the polymer electrolyte membrane by a hot press, etc.
  • a solution or suspension containing an ion conductive binder is applied to both surfaces of the polymer electrolyte membrane and the catalyst layer surfaces of the Z or two pairs of gas diffusion electrodes.
  • the solution or suspension may be applied to either the electrolyte membrane or the catalyst layer surface, or may be applied to both.
  • the catalyst paste is applied to a base film made of polytetrafluoroethylene (PTFE) and dried to form a catalyst layer, and then two pairs of the base materials are formed.
  • PTFE polytetrafluoroethylene
  • the catalyst layer on the film is transferred to both sides of the polymer electrolyte membrane by thermocompression bonding, and the base film is peeled off to obtain a joined body of the electrolyte membrane and the catalyst layer.
  • Gas diffusion is performed on each catalyst layer by hot pressing.
  • ion conductive binder constituting the membrane-electrode assembly
  • examples of the ion conductive binder constituting the membrane-electrode assembly include “Nafi onj (registered trademark, manufactured by DuPont)” and “Gor e — selects (registered trademark, manufactured by Gore)”.
  • Ion conductive binder made of existing perfluorocarbon sulfonic acid polymer ionic conductive binder made of sulfonated polyether sulfone sulfonated polyether ketone, polybenzimidazole impregnated with phosphoric acid or sulfuric acid.
  • An ion conductive binder or the like can be used, and an ion conductive binder may be prepared from the block copolymer constituting the polymer electrolyte membrane of the present invention.
  • the conductive material Z catalyst carrier is not particularly limited, and examples thereof include a carbon material.
  • the carbon material include carbon black such as furnace black, channel black, and acetylene black, activated carbon, graphite, and the like. These may be used alone or in combination of two or more.
  • the catalyst metal may be any metal that promotes the oxidation reaction of fuel such as hydrogen or methanol and the reduction reaction of oxygen.
  • the catalyst layer may contain a water repellent as necessary.
  • the water repellent include various thermoplastic resins such as polytetrafluoroethylene, polyvinylidene fluoride, styrene-butadiene copolymer, and polyetheretherketone.
  • the gas diffusion layer of the membrane-electrode assembly is made of a material having conductivity and gas permeability, and a porous material made of carbon fiber such as carbon paper or carbon cloth is used as a strong material. Can be mentioned. In addition, in order to improve the water repellency, the strong material may be subjected to a water repellency treatment.
  • the membrane / electrode assembly obtained by the above method is inserted between a conductive separator material that also serves as a function of gas supply flow path to the electrode and separation of the polar chambers. Type fuel cell is obtained.
  • the membrane-electrode assembly of the present invention includes a pure hydrogen type using hydrogen as a fuel gas, a methanol reforming type using hydrogen obtained by reforming methanol, and hydrogen obtained by reforming natural gas. It can be used as a membrane electrode assembly for solid polymer fuel cells such as the natural gas reforming type used, the gasoline reforming type using hydrogen obtained by reforming gasoline, and the direct methanol type using methanol directly. is there.
  • the fuel cell using the polymer electrolyte membrane of the present invention is economical, has a high ionic conductivity that is friendly to the environment, and has a characteristic that it is not easily affected by methanol. Excellent power generation performance as a polymer fuel cell, especially a direct methanol fuel cell.
  • the fuel cell using the polymer electrolyte membrane of the aspect (1) is particularly excellent in methanol barrier properties.
  • the polymer electrolyte membrane of aspect (2) has particularly small changes in dimensional stability and mechanical properties (such as tensile properties) when dried and wet, and methanol permeability before and after immersion in methanol solution.
  • the fuel cell using the membrane is particularly excellent in durability and can be driven stably for a long time because it has a feature that the change in characteristics such as ion conductivity is small.
  • it has excellent startability because it has certain characteristics that it can immediately exhibit certain characteristics even when the operating environment changes between dry and wet.
  • the polymer electrolyte membrane of aspect (3) is particularly excellent in durability because it has the characteristics that the change in characteristics such as methanol permeability and ionic conductivity before and after immersion in methanol solution is small. Examples that can drive stably for a long time
  • pmSBpmS Poly (p-methylstyrene) b-polybutadiene-b poly (p-methylstyrene)
  • pmSEBpm S poly (p-methylstyrene) -b hydrogenated polybutadiene-b poly (p-methylstyrene) triblock copolymer
  • block copolymers consisting of poly (styrene Z4-tert-butylstyrene) (polymer block (A)) and hydrogenated polyisoprene (polymer block (B))
  • the number average molecular weight of the obtained (SZtBS) I (S ZtBS) is 51800. 1 was determined from NMR measurements, 4 bond content 94.0%, content of styrene unit content of 15. 6 mass 0/0, 4 tert-butylstyrene unit was 6% by weight 15..
  • the synthesized (SZtBS) I (S / tBS) was used in the same manner as in Reference Example 1 except that the hydrogenation reaction was conducted for 9 hours.
  • the precipitated solid was washed with 90 ° C distilled water for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water. Finally, the polymer collected by filtration was vacuum-dried to obtain sulfonated pmSE BpmS.
  • the sulfonation rate of the benzene ring of the p-methylstyrene unit in the resulting sulfonated pmSEBpmS was 29 mol% from 1 H-NMR analysis.
  • a sulfonating reagent was prepared by reacting 17.1 ml of acetic anhydride and 7.64 ml of sulfuric acid at 0 ° C in 34.2 ml of methylene chloride.
  • 100 g of SEBS (styrene one (ethylene one butylene) one styrene) block copolymer [Kuraray Co., Ltd. “Septon 8007”] was vacuum-dried for 1 hour in a glass reaction vessel equipped with a stirrer. After purging with nitrogen, 1000 ml of methylene chloride was added and dissolved by stirring at 35 ° C for 4 hours. After dissolution, the sulfone reagent was gradually added dropwise over 5 minutes.
  • the polymer solution was poured into 2 L of distilled water while stirring to coagulate and precipitate the polymer.
  • the precipitated solid was washed with 90 ° C distilled water for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and finally the polymer collected by filtration was vacuum-dried to obtain sulfonated SEBS.
  • the sulfonation rate of the benzene ring of the styrene unit of the obtained sulfonated SEBS was 29.0 mol% from 1 H—NMR analysis.
  • a DuPont Nafion film (Nafionl 17) was selected as the perfluorocarbon sulfonic acid polymer electrolyte membrane.
  • the sample was weighed (a (g)) in a glass container that could be sealed, and an excessive amount of saturated aqueous sodium chloride solution was added thereto and stirred overnight.
  • the sodium chloride hydrogen generated in the system was titrated (b (ml)) with a 0.01 N NaOH standard aqueous solution (fever f) using phenolphthalein solution as an indicator.
  • the ion exchange capacity was calculated using the following equation.
  • a lcm x 4 cm sample was sandwiched between a pair of platinum electrodes and mounted in an open cell.
  • the measurement cell was installed in a constant temperature and humidity chamber adjusted to a temperature of 60 ° C and a relative humidity of 90%, and the electrical resistance of the membrane was measured by the AC impedance method.
  • the methanol permeation rate is as follows: the electrolyte membrane is sandwiched between H-type cells, 55 ml of 10M (mol Z liter) aqueous methanol solution is injected into one side of the cell, and 55 ml of pure water is injected into the other cell, and stirred at 25 ° C. However, the amount of methanol diffusing into the pure water through the electrolyte membrane was calculated using gas chromatography (the area of the electrolyte membrane is 4.5 cm 2 ) o
  • Table 1 shows the measurement results of the electrical resistance of the membranes prepared in Examples 1 1 and 1 2 and Comparative Examples 1 1 and 12 and the naphthion membrane of Comparative Example 1 3 and the methanol permeation rate of a 10M aqueous methanol solution.
  • the polymer electrolyte membrane of aspect 1 of the present invention is compared with the naphthion membrane which is a representative example of an electrolyte membrane for a fuel cell. It became clear that the electrical resistance of the membrane and the methanol permeability were greatly reduced.
  • the polymer electrolyte membrane of Embodiment 1 of the present invention is very useful as a polymer electrolyte membrane for a solid polymer fuel cell, particularly as a polymer electrolyte membrane for a direct methanol fuel cell.
  • Polystyrene (polymer block (A2a)), hydrogenated polyisoprene (polymer block (B)) and Poly (4-tert-butylstyrene) (Polymer block (A2b)) Production of powerful block copolymer
  • the number average molecular weight (GPC measurement, polystyrene conversion) of the obtained tBSSIStBS is 56600
  • the 1,4 bond content determined from H-NMR measurement is 94.2%
  • the styrene unit content is 13% by mass
  • 4 the content of tert-butylstyrene unit was 28 mass 0/0.
  • poly (4 tert butylstyrene) b-polystyrene b polyisoprene 1 b polystyrene 1 b poly ( 4-tert-butylstyrene) (tBSSIStBS) Synthesized.
  • the number average molecular weight (GPC measurement, polystyrene conversion) of the obtained tBSSIStBS is 80750, the 1,4 bond amount determined from H-NMR measurement is 94.2%, and the styrene unit content is 15.0% by mass.
  • the content of 4 tert butylstyrene units is 15.0% by mass.
  • tBSSIStBS poly (4 tert-butylstyrene) -b-polystyrene b hydrogenated polyisoprene b-polystyrene b-poly (4 tert-butylstyrene) (tBSSEPStBS).
  • the hydrogenation rate of the obtained tBSSEPStBS was calculated by 1 H-NMR spectrum measurement and found to be 99.3%.
  • poly (4 tert butyl styrene) b-polystyrene b polyisoprene 1 b polystyrene 1 b poly ( 4-tert-butylstyrene (tBSSIStBS) was synthesized.
  • the number average molecular weight (GPC measurement, polystyrene conversion) of the obtained tBSSIStBS is 7 1560
  • the 1,4 bond amount determined from H-NMR measurement is 94.0%
  • the styrene unit content is 19.0% by mass
  • the content of 4 tert butylstyrene units is 21.0% by mass.
  • tBSSIStBS After preparing a synthesized cyclohexane solution of tBSSIStBS and placing it in a pressure-resistant vessel that has been fully purged with nitrogen, use a NiZAl-based Ziegler-based hydrogenation catalyst for 8 hours at 50 ° C in a hydrogen atmosphere.
  • Poly (4 tert-butylstyrene) b polystyrene b Hydrogenated polyisoprene b Polystyrene b Poly (4 tert Til styrene) (tBSSEPStBS) was obtained.
  • the hydrogenation rate of the obtained tBSSEPStBS was calculated by 1 H-NMR spectrum measurement and found to be 99.0%.
  • SEBS block copolymer
  • polystyrene polystyrene
  • polybutadiene polymer block (B)
  • polystyrene b-polybutadiene b-polystyrene (hereinafter abbreviated as SBS) was synthesized.
  • the number average molecular weight of the obtained SBS was 69700, the 1,4 bond amount determined from 1H-NMR measurement was 60.4%, and the styrene unit content was 39.6% by mass.
  • mSEBmS block copolymer that has the power of poly-a-methylstyrene (polymer block (A2a)) and hydrogenated polybutadiene (polymer block (B))
  • mSBmS Poly ⁇ -methylstyrene mono-b-polybutadiene-b-poly (X-methylstyrene-type triblock copolymer (hereinafter abbreviated as mSBmS) was synthesized in the same manner as previously reported (WO 02Z40611).
  • the number average molecular weight (GPC measurement, polystyrene conversion) of mSBmS is 80590
  • 1,4 bond amount determined from 1 H-NMR measurement is 58.9%
  • ⁇ -methylstyrene unit content is 28.7 mass 0
  • the polybutadiene block was found not to be substantially copolymerized with a-methylstyrene, and it was revealed by composition analysis by force H-NMR spectrum measurement.
  • block copolymer consisting of polystyrene (polymer block (A2a)), hydrogenated polyisoprene (polymer block (B)) and poly (4-tert-butylstyrene) (polymer block (A2b))
  • tBSSIStBS 4-tert-butynolestyrene) b-polystyrene b-polyisoprene-1 b polystyrene-1b poly (4-tert-butylstyrene) (tBSSIStBS) was synthesized.
  • the number average molecular weight (GPC measurement, polystyrene conversion) of the obtained tBSSIStBS is 65 700, the 1,4 bond content determined from iH-NMR measurement is 94.0%, and the styrene unit content is 13.4 mass. %, 4 tert butylstyrene unit content was 43.5% by mass o
  • tBSSIStBS After preparing a synthesized cyclohexane solution of tBSSIStBS and placing it in a pressure-resistant vessel that has been fully purged with nitrogen, use a NiZAl-based Ziegler-based hydrogenation catalyst for 12 hours at 50 ° C in a hydrogen atmosphere. The addition reaction was performed to obtain poly (4 tert-butylstyrene) -b-polystyrene b hydrogenated polyisoprene b-polystyrene b-poly (4 tert-butylstyrene) (tBSSEPStBS). The hydrogenation rate of the obtained tBSSEPStBS was calculated by 1 H-NMR spectrum measurement and found to be 99.9%.
  • poly (4 tert-butinostyrene) b-polystyrene b-polyisoprene 1 b polystyrene 1 b poly (4-tert-butylstyrene) (tBSSIStBS) was synthesized.
  • the number average molecular weight (GPC measurement, polystyrene conversion) of the obtained tBSSIStBS is 47 800
  • the 1,4 bond amount determined from 1 H-NMR measurement is 94.1%
  • the styrene unit content is 18.1.
  • tBSSIStBS After preparing a synthesized cyclohexane solution of tBSSIStBS and placing it in a pressure-resistant vessel that has been fully purged with nitrogen, use a NiZAl-based Ziegler-based hydrogenation catalyst for 12 hours at 50 ° C in a hydrogen atmosphere. The addition reaction was performed to obtain poly (4 tert-butylstyrene) -b-polystyrene b hydrogenated polyisoprene b-polystyrene b-poly (4 tert-butylstyrene) (tBSSEPStBS). The hydrogenation rate of the obtained tBSSEPStBS was calculated by 1 H-NMR spectrum measurement and found to be 99.9%.
  • tBSSIStBS polyisoprene b-polystyrene b-poly (4 tert-butylstyrene)
  • the number average molecular weight (GPC measurement, polystyrene conversion) of the obtained tBSSIStBS is 103900
  • the 1,4 bond content determined from H-NMR measurement is 94.0%
  • the styrene unit content is 12.3 mass%.
  • the content of 4 tert-butylstyrene units was 40.5% by mass.
  • tBSSIStBS poly (4-tert-butylstyrene) -b-polystyrene b-hydrogenated polyisoprene b-polystyrene b-poly (4-tert-butylstyrene) (tBSSEPStBS) was obtained. .
  • the hydrogenation rate of the obtained tBSSEPStBS was calculated by 1 H-NMRR vector measurement and found to be 99.9%.
  • the precipitated solid was washed with distilled water at 90 ° C. for 30 minutes, and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the polymer collected at the end was vacuum dried to obtain sulfone tBSSEPStBS.
  • the 4-tert-butylstyrene unit of the resulting sulfone tBSSEPStBS was not sulfonated, and only the styrene unit was sulfonated.
  • the sulfonation rate of the benzene ring in the styrene unit is 63.9 mol% from 1 H—NMR analysis, and the ion exchange capacity is 0.76 meq / g.
  • An electrode for a polymer electrolyte fuel cell was produced by the following procedure.
  • This paste was applied to a transfer sheet and dried for 24 hours to produce an anode side catalyst sheet.
  • Ma a 5% by mass solution of Nafion in a mixed solvent of lower alcohol and water was added to and mixed with Pt catalyst-supported carbon so that the mass ratio of Pt catalyst to Nafion was 2: 1.
  • a dispersed paste was prepared, and a power sword side catalyst sheet was prepared in the same manner as the anode side.
  • the fuel cell electrolyte membrane prepared in (2) is sandwiched between the above two types of catalyst sheets so that the membrane and the catalyst surface face each other, and the outside is covered with two heat-resistant films and two sheets.
  • the membrane and the catalyst sheet were joined by hot pressing (150 ° C, lOOkg / cm 2 , lOmin).
  • the stainless steel plate and the heat resistant film were removed, and the transfer sheet was peeled off to produce a membrane-electrode assembly.
  • the membrane-electrode assembly produced was sandwiched between two sheets of carbon paper, the outside was sandwiched between two conductive separators that also served as gas supply channels, and the outside was further joined to two current collector plates.
  • an evaluation cell for a solid polymer type fuel cell was produced by sandwiching it between two clamping plates.
  • the precipitated solid was washed with distilled water at 90 ° C. for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water. Finally, the polymer collected by filtration was vacuum dried to obtain sulfone tBS SEPStBS.
  • the 4-tert-butylstyrene unit of the obtained sulfone tBSSEPStBS was not sulfonated, and only the styrene unit was sulfonated.
  • the sulfonation rate of the benzene ring in the styrene unit was 99.5 mol% from 1 H-NMR analysis, and the ion exchange capacity was 1.15 meqZ g.
  • a film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 2-1 (2).
  • the precipitated solid was washed with 90 ° C distilled water for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water. Finally, the polymer collected by filtration was vacuum-dried to obtain sulfone tBSSE PStBS.
  • the 4-tert-butylstyrene unit of the obtained sulfone tBSSEPStBS was not sulfonated, and only the styrene unit was sulfonated.
  • the sulfonation rate of the benzene ring in the styrene unit was 57.0 mol% from 1 H-NMR analysis, and the ion exchange capacity was 0.97 meqZ g o
  • the precipitated solid was washed with 90 ° C distilled water for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water. Finally, the polymer collected by filtration was vacuum-dried to obtain sulfone tBSSE PStBS.
  • the resulting sulfone salt tBSSEPStBS is only 4-tert-butylstyrene. The position was not sulfonated and only the styrene unit was sulfonated. The sulfonation rate of the benzene ring in the styrene unit was 87.2 mol% from 1 H-NMR analysis, and the ion exchange capacity was 1.12 meqZ g o
  • a membrane having a thickness of 50 m was obtained in the same manner as in (2) of Example 2-3, except that the sulfonated tBSSEPStBS obtained in (1) was used.
  • the precipitated solid was washed with distilled water at 90 ° C. for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water. Finally, the polymer collected by filtration was vacuum dried to obtain sulfone tBS SEPStBS.
  • the 4-tert-butylstyrene unit of the obtained sulfone tBSSEPStBS was not sulfonated, and only the styrene unit was sulfonated.
  • the sulfonation rate of the benzene ring in the styrene unit was 99.1 mol% from 1 H-NMR analysis, and the ion exchange capacity was 1.6 OmeqZ g.
  • a membrane having a thickness of 50 m was obtained in the same manner as in (2) of Example 2-3, except that the sulfonated tBSSEPStBS obtained in (1) was used.
  • Example 2-5 Similar to (2) of Example 2-3, except that a 5% by weight toluene Z isobutyl alcohol (mass ratio 8Z2) solution of the sulfone tBSSEPStBS obtained in (1) was used. As a result, a film having a thickness of 50 m was obtained. [0162] Examples 2-7>
  • the precipitated solid was washed with 90 ° C distilled water for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water. Finally, the polymer collected by filtration was vacuum-dried to obtain sulfone tBSSE PStBS.
  • the 4-tert-butylstyrene unit of the obtained sulfone tBSSEPStBS was not sulfonated, and only the styrene unit was sulfonated.
  • the sulfonation rate of the benzene ring in the styrene unit was 91. Omol% from 1 H-NMR analysis, and the ion exchange capacity was 1.05 meqZ g o
  • the precipitated solid was washed with distilled water at 90 ° C for 30 minutes and then filtered. This washing and filtration operation changes to pH of washing water
  • the polymer collected by filtration was dried under vacuum to obtain sulfone tBSSEP StBS.
  • the 4-tert-butylstyrene unit of the obtained sulfone tBSSEPStBS was not sulfonated, and only the styrene unit was sulfonated.
  • the precipitated solid was washed with 90 ° C distilled water for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water. Finally, the polymer collected by filtration was vacuum-dried to obtain sulfone tBSSE PStBS.
  • the 4-tert-butylstyrene unit of the obtained sulfone tBSSEPStBS was not sulfonated, and only the styrene unit was sulfonated.
  • the sulfonation rate of the benzene ring in the styrene unit was 100 mol% from 1 H-NMR analysis, and the ion exchange capacity was 1.52 meqZ g o
  • the polymer solution was poured into 1 L of distilled water while stirring to coagulate and precipitate the polymer.
  • the precipitated solid was washed with distilled water at 90 ° C for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the polymer collected at the end was vacuum dried to obtain sulfone tBSSEP StBS.
  • the 4-tert-butylstyrene unit of the obtained sulfone tBSSEPStBS was not sulfonated, and only the styrene unit was sulfonated.
  • the sulfonation rate of the benzene ring in the styrene unit is 30 Omol% from 1 H—NMR analysis, and the ion exchange capacity is 0.50 meq, g.
  • the precipitated solid was washed with distilled water at 90 ° C for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the polymer collected at the end was vacuum dried to obtain sulfone tBSSEP StBS.
  • the 4-tert-butylstyrene unit of the obtained sulfone tBSSEPStBS was not sulfonated, and only the styrene unit was sulfonated.
  • the sulfonation rate of the benzene ring in the styrene unit is 49.6 mol% from 1 H—NMR analysis, and the ion exchange capacity is 0.55 meq, g.
  • a sulfonating reagent was prepared by reacting 17.5 ml of acetic anhydride and 7.6 ml of sulfuric acid at 0 ° C in 34.9 ml of methylene chloride.
  • 100 g of SEBS (styrene one (ethylene one butylene) one styrene) block copolymer [Kuraray Co., Ltd. “Septon 8007”] was vacuum-dried for 1 hour in a glass reaction vessel equipped with a stirrer. After purging with nitrogen, 1000 ml of methylene chloride was added and dissolved by stirring at 35 ° C for 4 hours. After dissolution, the sulfone reagent was gradually added dropwise over 5 minutes.
  • the polymer solution was poured into 2 L of distilled water while stirring to coagulate and precipitate the polymer.
  • the precipitated solid was washed with 90 ° C distilled water for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and finally the polymer collected by filtration was vacuum-dried to obtain sulfonated SEBS.
  • the sulfonation rate of the benzene ring of the styrene unit of the obtained sulfonated SEBS was 26.lmol% from 1 H-NMR analysis, and the ion exchange capacity was 0.68 meqZg.
  • a membrane having a thickness of 50 m was obtained by the same method as in Example 2-3 (2) except that the sulfonated SEBS obtained in (1) was used.
  • a membrane having a thickness of 50 m was obtained by the same method as in Example 2-3 (2) except that the sulfonated SEBS obtained in (1) was used.
  • a membrane having a thickness of 50 m was obtained by the same method as in Example 2-3 (2) except that the sulfonated SEBS obtained in (1) was used.
  • the block copolymer (mSEBmS) lOOg obtained in Reference Example 2-5 was vacuum-dried for 1 hour in a glass reactor equipped with a stirrer and then purged with nitrogen, and then 1000 ml of methylene chloride was obtained. The solution was stirred at 35 ° C for 2 hours to dissolve. After dissolution, the sulfonation reagent obtained by reacting 21.0 ml of acetic anhydride and 9.34 ml of sulfuric acid at 0 ° C in 41.8 ml of methylene chloride was gradually added dropwise over 5 minutes. After stirring at 35 ° C. for 1 hour, the polymer solution was poured into 2 L of distilled water without stirring to coagulate and precipitate the polymer.
  • the precipitated solid was washed with 90 ° C distilled water for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water. Finally, the polymer collected by filtration was vacuum-dried to obtain sulfone mSEB mS.
  • the sulfonation rate of the sulfonated mSEBmS of the benzene ring of the ⁇ -methylstyrene unit was 31.4 mol% from 1 H-NMR analysis, and the ion exchange capacity was 0.70 meq / g.
  • Example 2 1 A 50 ⁇ m thick film was obtained in the same manner as in 1).
  • a DuPont Nafion film (Nafionl 17) was selected.
  • the precipitated solid was washed with distilled water at 90 ° C for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the polymer collected at the end was vacuum-dried to obtain sulfone mSEBm S.
  • the sulfonation rate of the benzene ring of the ⁇ -methylstyrene unit of the obtained sulfonated mSEBmS was 22.5 mol% from 1 H-NMR analysis, and the ion exchange capacity was 0.49 meq / g.
  • the precipitated solid was washed with 90 ° C distilled water for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water. Finally, the polymer collected by filtration was vacuum-dried to obtain sulfone mSEB mS.
  • the sulfonation rate of the sulfonated mSEBmS of the benzene ring of the ⁇ -methylstyrene unit was 15.5-% from 1 H-NMR analysis, and the ion exchange capacity was 1.06 meq / g.
  • a lcm x 4 cm sample was sandwiched between a pair of platinum electrodes and mounted in an open cell.
  • the measurement cell was placed in a constant temperature and humidity chamber adjusted to a temperature of 60 ° C and a relative humidity of 90%, or in water at a temperature of 40 ° C, and the ionic conductivity of the membrane was measured by the AC impedance method.
  • a lcm x 4 cm sample was sandwiched between a pair of platinum electrodes and mounted in an open cell.
  • the measurement cell was installed in a constant temperature and humidity chamber adjusted to a temperature of 40 ° C and a relative humidity of 50%, the ionic conductivity of the membrane was measured by the AC impedance method.
  • the measurement cell was placed in water at a temperature of 40 ° C, and the electrical resistance and ionic conductivity of the membrane were measured over time by the AC impedance method. The rate of change in ionic conductivity per minute was 1% or less.
  • the stage was set as the stable time.
  • the methanol permeation rate is as follows: the sample electrolyte membrane is sandwiched between H-type cells, 55 ml of 3M (mol Z liter) aqueous methanol solution is injected into one side of the cell, and 55 ml of pure water is injected into the other cell at 25 ° C. While stirring, the amount of methanol diffusing into the pure water through the electrolyte membrane was measured using gas chromatography (the area of the electrolyte membrane was 4.5 cm).
  • Example 2-1 The output performance of the single cell for polymer electrolyte fuel cell prepared in (2-1) of Example 2-1 was evaluated.
  • a 1M-MeOH aqueous solution was used as the fuel, and air was used as the oxidant. Tested at a cell temperature of 60 ° C. under conditions of MeOH: l. 8 cc Zmin, air: 250 cc Zmin.
  • Table 2 shows the linear expansion coefficient and breaking strength.
  • Table 3 shows the ionic conductivity (in water), linear expansion coefficient, and breaking strength of the membranes prepared in Examples 2-7 to 2-12.
  • the retention ratio (%) was calculated as [(wet breaking strength (MPa) / wet breaking strength (MPa)] for wet samples] ⁇ 100.
  • Table 4 shows a linear expansion coefficient and 10M methanol for an electrolyte membrane made from a block copolymer having no constrained phase of Comparative Examples 2-1, 1, 2-5, 2-7, and 2-8. While it is difficult to keep the rate of change of the methanol permeation rate of the membrane after aqueous solution treatment at the same time low, the polymer blocks that form the constrained phases of Examples 2-1 and 2-7 to 2-12 ( In the case of an electrolyte membrane made of a block copolymer containing A2b), if the ionic conductivity and Z or ion exchange capacity are the same, the rate of change of the linear expansion coefficient and the methanol permeation rate of the membrane after the treatment It can be seen that both can be kept low at the same time.
  • the polymer electrolyte membrane of aspect 2 of the present invention is excellent in durability as a polymer electrolyte membrane for a solid polymer fuel cell, can be used stably during long-time operation, and can be started. It was clear that it was excellent in performance.
  • the precipitated solid was washed with distilled water at 90 ° C for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water. Finally, the polymer collected by filtration was vacuum dried to obtain sulfonated pmSEBp mS.
  • the resulting sulfonated pmSEBpmS has a sulfonation rate of p-methylstyrene unit benzene ring of 33 mol% from 1 H-NMR analysis and an ion exchange capacity of 0.75 meq / g.
  • Example 3-1 (1) 18 mass obtained sulfonated pmSEBpmS 0/0 Toluene Z isobutyl alcohol (mass ratio 8Z2) was prepared and 1, 1-bis (tert Buchiruperuoki Shi) cyclohexane ( A membrane was prepared in the same manner as (2) of Example 3-1 except that 0.1 mole equivalent of trade name: Parhexa C; manufactured by Nippon Oil & Fats Co., Ltd.) was added to 4 methyl groups. Got. For the film before hot pressing, the force that was able to make a 3 wt% solution in THF, a good solvent for sulfonated pmSEBpmS, for the film after hot pressing, the film swelled but dissolved. It ’s nasty.
  • a film having a thickness of 50 / zm was obtained by the same operation as (2) of Example 3-1 except that hot pressing was not performed.
  • the membrane was dissolved in THF at 3% by mass and dissolved.
  • a membrane having a thickness of 50 m was obtained in the same manner as in (2) of Comparative Example 3-1 except that the sulfonated SEBS obtained in (1) of Comparative Example 11 was used.
  • the obtained membrane was dissolved in THF.
  • the membrane was used for the performance test shown below.
  • the membrane obtained by heat-pressing the membrane in the same manner as in Example 3-1 (2) was dissolved in THF at 3 mass%.
  • Comparative Example 3-1 the film not subjected to the heat press treatment was dissolved in THF, whereas in the heat press treated film of Example 3-1, the film was not dissolved in THF and swelled. It was confirmed that it was progressing.
  • Comparative Example 3-2 when the film in which the polymer block (A1) is also composed of styrene unit force was hot-pressed and dissolved in THF, in Example 3-1, p-methylstyrene unit force was also increased. It was confirmed that the constituted polymer block (A1) was crosslinked.
  • Example 3-1 (1) or Comparative Example 3-2 (1) was used as a sample.
  • test 2 and 3 As a sample, a membrane prepared from the sulfone block copolymer obtained in (2) of each example or comparative example, and the membrane in a 10M (mol Z liter) aqueous methanol solution at room temperature for 12 hours. After immersing, a membrane thoroughly washed with pure water was used.
  • a lcm x 4 cm sample was sandwiched between a pair of platinum electrodes and mounted in an open cell.
  • the measurement cell was installed in a constant temperature and humidity chamber adjusted to a temperature of 60 ° C and a relative humidity of 90%, and the ionic conductivity was measured by the AC impedance method.
  • the polymer electrolyte membrane according to aspect 3 of the present invention can be used stably during a long time operation in a solid polymer fuel cell using methanol as a fuel, and thus has excellent durability. It became clear that it was very useful as a polymer electrolyte membrane for polymer electrolyte fuel cells.
  • FIG. 1 is a graph showing current density vs. output voltage of a single cell for a polymer electrolyte fuel cell (Example 2-1 (3)).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 α-炭素原子に結合した水素原子がアルキル基もしくは置換基を有していてもよいアリール基で置換されていてもよく、かつ、芳香環に直接結合した水素原子の少なくとも1つがアルキル基で置換された芳香族ビニル系化合物単位を主たる繰返し単位として有する重合体ブロック(A)及び柔軟相を形成する重合体ブロック(B)を構成成分とし、重合体ブロック(A)にイオン伝導性基を有するブロック共重合体を主成分として含有する高分子電解質膜、並びにそれを使用する膜-電極接合体及び固体高分子型燃料電池。重合体ブロック(A)はさらに拘束相を有していてもよく、また、架橋されていてもよい。該電解質膜は、環境に優しく、高いイオン伝導度及び電極との良好な接合性を有し、成形性に優れ、メタノールによる影響を受けにくい高分子電解質膜であり、固体高分子型燃料電池、特に直接型メタノール燃料電池において優れた性能を発揮する。  

Description

明 細 書
高分子電解質膜、膜一電極接合体及び固体高分子型燃料電池 技術分野
[0001] 本発明は、固体高分子型燃料電池好ましくは固体高分子型直接型メタノール燃料 電池に用いられる高分子電解質膜、並びに該高分子電解質膜を使用した膜 電極 接合体及び燃料電池に関する。
背景技術
[0002] 近年、エネルギー及び Z又は環境問題の抜本的解決策として、さらには将来の水 素エネルギー時代の中心的エネルギー変換システムとして、燃料電池技術が注目さ れている。特に固体高分子型燃料電池(PEFC ; Polymer Electrolyte Fuel Cell)は、 小型軽量ィ匕が可能であるなどの理由から、電気自動車用の駆動電源や携帯機器用 の電源としての利用、さらに電気と熱を同時利用する家庭据置き用の電源機器など への適用が検討されて 、る。
[0003] 固体高分子型燃料電池は、一般に次のように構成される。まず、イオン伝導性を有 する高分子電解質膜の両側に、白金属の金属触媒を担持したカーボン粉末と高分 子電解質からなるイオン伝導性バインダーとを含む触媒層がそれぞれ形成される。 各触媒層の外側には、燃料ガス及び酸化剤ガスをそれぞれ通気する多孔性材料で あるガス拡散層がそれぞれ形成される。ガス拡散層としてはカーボンペーパー、カー ボンクロスなどが用いられる。触媒層とガス拡散層を一体化したものはガス拡散電極 と呼ばれ、また一対のガス拡散電極をそれぞれ触媒層が電解質膜と向かい合うよう に電解質膜に接合した構造体は膜 電極接合体(MEA; Membrane Electrode Asse mbly)と呼ばれている。この膜—電極接合体の両側には、導電性と気密性を備えたセ パレータが配置される。電極面に燃料ガス又は酸化剤ガス (例えば空気)を供給する ガス流路が膜一電極接合体とセパレータの接触部分又はセパレータ内に形成されて いる。一方の電極 (燃料極)に水素やメタノールなどの燃料ガスを供給し、他方の電 極 (酸素極)に空気などの酸素を含有する酸化剤ガスを供給して発電する。すなわち 、燃料極では燃料がイオン化されてプロトンと電子が生じ、プロトンは電解質膜を通り 、電子は両電極をつなぐことによって形成される外部電気回路を移動して酸素極へ 送られ、酸化剤と反応することで水が生成する。このようにして、燃料の化学エネルギ 一を電気エネルギーに直接変換して取り出すことができる。
[0004] 固体高分子型燃料電池が実用化され普及して!/、くためには、性能面では、高 、発 電性能のみならず、長時間安定して運転できることが重要である。固体高分子型燃 料電池、特に、燃料としてメタノールを用いる固体高分子型燃料電池では、運転中に 電解質膜の構造、特にイオン伝導性基であるスルホン酸基などが凝集することにより 形成されるイオン伝導性チャンネルの構造が変化しやすぐそのため発電特性も変 化しやすい。それ故、高い発電性能を有する一方、メタノールの影響を受けにくい電 解質膜、例えば、メタノール透過性が低い電解質膜や発電前後 (電解質膜において は、メタノール溶液浸漬処理前後に相当)の特性、特にメタノール透過性やイオン伝 導度等の特性の変化が小さ 、電解質膜が望まれて 、る。
[0005] 固体高分子型燃料電池は、一般的には、定常運転しているのではなぐ起動、運 転、停止を繰り返し行うものである。運転時、高分子電解質膜は湿潤下にあるものの 、停止した際には湿度低下がおきやすい。そのため、低湿度下(乾燥時)と湿潤時の 寸法変化や力学特性変化が小さい電解質膜が望まれている。また、起動後すぐに安 定運転できる等、動作環境が変化した場合にもすぐに一定の特性を発現できるような 、始動性に優れた電解質膜が望まれている。
[0006] 一般的に、固体高分子型燃料電池用高分子電解質膜としては、化学的に安定で あるという理由力もパーフルォロカーボンスルホン酸系高分子であるナフイオン(Nafi on、デュポン社の登録商標。以下同様)が用いられている。し力しながら、ナフイオン はメタノールを透過しやすぐ燃料としてメタノールを用いる固体高分子型燃料電池 にお ヽては、メタノールが一方の電極側から他方の電極側へ電解質膜を透過してし まう現象 (メタノールクロスオーバー)が生じやすぐ十分な性能が得られにくい。また 、ナフイオンは乾燥時と湿潤時の力学特性 (引張特性等)の変化が大きいため、長期 発電試験中に性能が低下しやすい傾向にある。力!]えて、ナフイオンはフッ素系のポリ マーであるため、合成及び廃棄時に環境への配慮が必要であり、かつ高価である。 そのため、新規な電解質膜の開発が望まれている。 [0007] そこで、メタノールの透過性の小さい非パーフルォロカーボンスルホン酸系の高分 子電解質膜が検討されて 、る (特許文献 1〜4及び非特許文献 1〜3)。
特許文献 1〜3及び非特許文献 1に記載されて 、る、エンジニアリングプラスチック 系高分子電解質膜は、パーフルォロカーボンスルホン酸系高分子電解質膜と異なり 、イオンチャンネルを形成しにくいため、メタノール透過性を低減することが可能であ る。し力しながら、膜の電気抵抗が高い傾向にあるという欠点を有しており、またィォ ン基導入量を高くして膜の電気抵抗を小さくすると膨潤しゃすくなる傾向にある。また 、電極との接合不良がおきやすいという欠点も知られている。したがって、エンジニア リングプラスチック系高分子電解質膜は直接型メタノール燃料電池に使用する電解 質膜として十分な性能を発現できて 、な 、のが現状である。
[0008] 非フッ素系ポリマーをベースとした高分子電解質膜としては、また、スチレンとゴム 成分と力 なるブロック共重合体のポリスチレンブロックをスルホン化することにより、 ゴム成分をマトリックスに、ポリスチレンブロックをイオン伝導性チャンネルとした電解 質膜が提案されている (非特許文献 2及び 3及び特許文献 4)。例えば、非特許文献 2において、安価で、機械的、化学的に安定な高分子電解質膜として、 SEBS (ポリス チレン ポリ(エチレンーブチレン) ポリスチレントリブロック共重合体の略)のスルホ ン化体からなる高分子電解質膜が提案されて!、る。 SEBSのスルホンィ匕体力もなる 高分子電解質膜はまた、特許文献 4において、安価で、機械的、化学的に安定な高 分子電解質膜として記載されて ヽる。
しカゝしながら、これらの電解質膜は、メタノール溶液中で構造が大きく変化すると記 載されている(非特許文献 2)。このことは、得られた電解質膜をメタノール溶液に浸 漬して処理することにより、メタノール透過性、イオン伝導度等の特性が大きく変化す ることを示唆している。我々が実際に試験した結果、これらの高分子電解質膜は、メ タノール溶液浸漬処理前後で、メタノール透過性、イオン伝導度等の特性変化が大 きぐまた乾燥時と湿潤時の力学特性 (引張特性等)の変化も大きいことが明らかとな つた o
これらの特性の変化が大きいことは、この膜を燃料電池に使用した際に、長時間安 定して運転することが難し 、ことを示して 、る。 [0009] 非特許文献 3に記載されて 、るスルホン化したポリスチレン b ポリイソブチレン b ポリスチレントリブロック共重合体(スルホン化 SiBuS)もパーフルォロカーボン スルホン酸系高分子電解質膜に比べてメタノールバリア性が高 、ことが記載されて!ヽ るが、直接型メタノール燃料電池用として満足できる性能を有する電解質膜は未だ 得られて 、な 、のが現状である。
特許文献 1:特開 2003— 288916号公報
特許文献 2:特開 2003 - 331868号公報
特許文献 3:特開平 6— 93114号公報
特許文献 4:特表平 10— 503788号公報
非特許文献 1 :J. Membrane Science 197(2003)231
非特許文献 2 : J. Membrane Science 217(2003)227
非特許文献 3 : J. Membrane Science 214(2003)245
発明の開示
発明が解決しょうとする課題
[0010] 本発明の目的は、高 、イオン伝導度及び電極との良好な接合性を有し、メタノール による影響を受けにくい高分子電解質膜、並びに該電解質膜を用いた膜—電極接 合体及び固体高分子型燃料電池を提供することにある。
課題を解決するための手段
[0011] 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、特定のブロック共 重合体カゝらなるカゝもしくはこれを主成分として含有する電解質膜が上記課題を解決し 得るものであることを見出し、本発明を完成した。
すなわち本発明は、 a 炭素原子に結合した水素原子が非置換であるか、炭素数 1〜4のアルキル基もしくは 1〜3個の置換基を有していてもよい炭素数 6〜14のァリ ール基で置換され、かつ、芳香環に直接結合した水素原子の少なくとも 1つが炭素 数 1〜8のアルキル基で置換された芳香族ビニル系化合物単位を主たる繰返し単位 として有する重合体ブロック (A)及び柔軟相を形成する重合体ブロック (B)を構成成 分とし、重合体ブロック (A)にイオン伝導性基を有するブロック共重合体を主成分とし て含有する高分子電解質膜に関する。上記本発明の態様を基本的態様と称する。 基本的態様のもっとも特徴的な部分は、重合体ブロック (A)における繰返し単位とし ての芳香族ビニル系化合物単位にぉ 、て、芳香環に直接結合した水素原子の少な くとも 1つが炭素数 1〜8のアルキル基で置換されていることである。
[0012] 上記ブロック共重合体にお!、て、重合体ブロック (A)と重合体ブロック(B)とはミクロ 相分離を起こし、重合体ブロック (A)同士と重合体ブロック (B)同士とがそれぞれ集 合する性質があり、重合体ブロック (A)はイオン伝導性基を有するので重合体ブロッ ク (A)同士の集合によりイオンチャンネルが形成され、プロトンの通り道となる。また、 重合体ブロック (B)の存在により、ブロック共重合体が全体として弾力性を帯びかつ 柔軟になり、膜 電極接合体や固体高分子型燃料電池の作製に当たって成形性( 組立性、接合性、締付性など)が改善される。柔軟相を形成する重合体ブロック (B) はアルケン単位や共役ジェン単位など力も構成される。また、イオン伝導性基はスル ホン酸基及びホスホン酸基並びにそれらの塩を包含し、重合体ブロック (A)に結合し ている。
[0013] 本発明は次の 3つのより具体的な態様を含む。 3つの具体的態様は上記した基本 的態様の特徴を共有する。
(1)上記した基本的態様をより具体的にしたもので、重合体ブロック (A)が下記一般 式 (I)
[0014] [化 1]
R1
—— C—— CH2—— (I) Ar1
[0015] (式中、 Ar1は 1個の炭素数 1〜8のアルキル基で置換され、さらに 1もしくは 2個の置 換基を有していてもよい炭素数 6〜 14のァリール基を表し、 R1は水素原子、炭素数 1 〜4のアルキル基又は 1〜3個の置換基を有していてもよい炭素数 6〜14のァリール 基を表す)で表される芳香族ビニル系化合物単位を主たる繰返し単位として有する 重合体ブロック (A1)である態様である。この態様を、以下、この態様の特徴を捉えて 態様 1 (アルキル置換)のように表現する場合がある。 [0016] (2)基本的態様にぉ 、て、重合体ブロック (A)がイオン伝導性基を有する重合体ブ ロック (A2a)とイオン伝導性基を有さず拘束相を形成する重合体ブロック (A2b)から 構成される重合体ブロック (A2)である態様である。重合体ブロック (A2a)も重合体ブ ロック (A2b)も芳香族ビュル系化合物単位を主たる繰返し単位として有する。
より具体的には、基本的態様において、重合体ブロック (A)が下記一般式 (II)
[0017] [化 2]
R1
—— C—— CH2—— (II) Ar2
[0018] (式中、 Ar2は 1〜3個の置換基を有していてもよい炭素数 6〜14のァリール基を表し 、 R1は水素原子、炭素数 1〜4のアルキル基又は 1〜3個の置換基を有していてもよ V、炭素数 6〜 14のァリール基を表す)で表される芳香族ビニル系化合物単位を主た る繰返し単位として有する重合体ブロック (A2a)及び拘束相を形成する重合体プロ ック (A2b)から構成され、重合体ブロック (A2b)が下記一般式 (III)
[0019] [化 3]
Figure imgf000007_0001
[0020] (式中、 R2〜R4はそれぞれ独立に水素原子又は炭素数 1〜8のアルキル基を表すが 、少なくとも 1つは炭素数 1〜8のアルキル基であり、 R5は水素原子又は炭素数 1〜4 のアルキル基を表す)で表される芳香族ビニル系化合物単位を主たる繰返し単位と して有する重合体ブロック (A2bl)又は結晶性ポリオレフインブロックである重合体ブ ロック (A2)である態様である。この態様を、以下、この態様の特徴を捉えて態様 2 (拘 束相)のように表現する場合がある。
[0021] (3) (1)の態様又は(2)の態様において、イオン伝導性基を有する重合体ブロック (A )同士が架橋されている態様である。架橋は多価ァミンによる架橋法やラジカル架橋 法等によって行われる。ラジカル架橋は、芳香族ビュル系化合物単位の芳香環に結 合したアルキル基の 1位の炭素原子に結合した水素原子力 加熱やラジカルによつ て引抜かれて生じるラジカル同士が結合することなどを通じて進行する。したがって、 この態様にぉ 、ては、芳香族ビニル系化合物単位の芳香環に結合したアルキル基 の 1位の炭素原子は少なくとも 1個の水素原子を結合している必要がある。この態様 を、以下、この態様の特徴を捉えて態様 3 (架橋)のように表現する場合がある。
[0022] 上記(1)、(2)及び(3)のいずれの態様においても、重合体ブロック(B)はアルケン 単位、シクロアルケン単位、ビュルシクロアルケン単位、共役ジェン単位及びシクロア ルカジエン単位、並びに炭素 炭素二重結合の一部もしくは全部が水素添加された ビュルシクロアルケン単位、共役ジェン単位及びシクロアルカジエン単位よりなる群 力も選ばれる単位を主たる繰返し単位とする重合体ブロックであるのが好ましい。 イオン伝導性基としてはスルホン酸基もしくはホスホン酸基又はこれらの塩が好適 に用いられる。
本発明はまた、上記電解質膜を用いた膜 電極接合体及び燃料電池に関する。 発明の効果
[0023] 本発明の高分子電解質膜は、環境に優しぐ高いイオン伝導度及び電極との良好 な接合性を有し、成形性に優れ、メタノールによる影響を受けにくい高分子電解質膜 であり、固体高分子型燃料電池、特に直接型メタノール燃料電池において優れた性 能を発揮する。
(1)の態様の高分子電解質膜は、特に、メタノール透過性が低ぐメタノールバリア性 に優れるという特徴を有する。(2)の態様の高分子電解質膜は、特に、乾燥時と湿潤 時の寸法変化や力学特性 (引張特性等)の変化が小さぐまたメタノール溶液浸漬処 理前後でのメタノール透過性等の特性の変化が小さ 、と ヽぅ特徴を有することから、 長時間安定した性能を発揮できる。また、乾燥、湿潤という動作環境が変化した場合 にもすぐに一定の特性を発現できるという特徴も有していることから、始動性にも優れ ている。(3)の態様の高分子電解質膜は、特に、メタノール溶液浸漬処理前後でのメ タノール透過性、イオン伝導度等の特性の変化が小さ!/ヽと ヽぅ特徴を有することから 、長時間安定した性能を発揮できる。
発明を実施するための最良の形態
[0024] 以下、本発明を詳細に説明する。上述の如ぐ本発明の高分子電解質膜はその主 成分であるブロック共重合体に特徴を有し、該ブロック共重合体は重合体ブロック (A )と重合体ブロック (B)から構成される。本発明の上述の 3つの態様において、重合 体ブロック(B)はいずれの態様においても共通して用いられる力 重合体ブロック (A )は各態様によって異なる。ただし、重合体ブロック (A)の主たる繰返し単位を構成す る芳香族ビニル系化合物単位の芳香環に直接結合した水素原子の少なくとも 1つが 炭素数 1〜8のアルキル基で置換されて 、ると 、う共通した特徴を有して!/、る。
[0025] 重合体ブロック(A)
本発明で使用されるブロック共重合体を構成する重合体ブロック (A)は oc 炭素 原子に結合した水素原子が非置換である力 炭素数 1〜4のアルキル基もしくは 1〜 3個の置換基を有していてもよい炭素数 6〜14のァリール基で置換され、かつ、芳香 環に直接結合した水素原子の少なくとも 1つが炭素数 1〜8のアルキル基で置換され た芳香族ビュル系化合物単位を主たる繰返し単位として有する重合体ブロックであ る。重合体ブロック (A)は、また、イオン伝導性基を有する。上記で芳香環は炭素環 式芳香環であるのが好ましぐベンゼン環、ナフタレン環、アントラセン環、ピレン環等 が挙げられる。この芳香環に直接結合する炭素数 1〜8のアルキル基は炭素数 1〜6 のアルキル基であるのが好ましぐ炭素数 1〜6のアルキル基であるのがより好ましぐ また、直鎖状でも分岐状でもよい。該アルキル基の数は 1〜3であるのが好ましい。 a 炭素原子に結合し得る炭素数 1〜4のアルキル基は直鎖状でも分岐状でもよぐ a 炭素原子に結合し得る炭素数 6〜14のァリール基としてはフエ-ル基、ナフチル 基、フエナントリル基、アントリル基、インデニル基、ビフヱ-リル基、ピレニル基等が挙 げられ、その置換基としては炭素数 1〜4の直鎖状もしくは分岐状アルキル基や炭素 数 1〜4のハロゲンィ匕アルキル基等が挙げられる。
[0026] 重合体ブロック (A)の上記定義は重合体ブロック (A)の以下の 3つの態様の上位 概念となる。
餱様 1 (アルキル置換)
上述の本発明の基本的態様をより具体ィ匕したもので、そのもっとも特徴的な部分は
、重合体ブロック (A)における繰返し単位としての芳香族ビュル系化合物単位にお いて、芳香環に直接結合した水素原子の少なくとも 1つが炭素数 1〜8のアルキル基 で置換されて ヽることである。態様 1の重合体ブロック (A)を含むブロック共重合体を 主成分とする高分子電解質膜は、特に、メタノール透過性が低ぐメタノールバリア性 に優れるという特徴を有する。
この態様においては、重合体ブロック (A)は下記一般式 (I)
[0027] [化 4]
R1
—— C—— CH2― (0
Ar1
[0028] (式中、 Ar1は 1個の炭素数 1〜8のアルキル基で置換され、さらに 1もしくは 2個の置 換基を有していてもよい炭素数 6〜 14のァリール基を表し、 R1は水素原子、炭素数 1 〜4のアルキル基又は 1〜3個の置換基を有していてもよい炭素数 6〜14のァリール 基を表す)で表される芳香族ビニル系化合物単位を主たる繰返し単位として有する 重合体ブロック (A1)として定義し得る。重合体ブロック (A1)は上記芳香族ビニル系 化合物単位を 1種のみ含んで 、ても、 2種以上含んで 、てもよ 、。
[0029] Ar1の定義において、炭素数 6〜14のァリール基としてはフエ-ル基、ナフチル基、 フエナントリル基、アントリル基、インデュル基、ビフヱ-リル基、ピレニル基等が挙げ られ、フエニル基及びナフチル基が好ましぐフエニル基がより好ましい。このァリール 基の芳香環に直接結合する炭素数 1〜8のアルキル基としては、炭素数 1〜6のアル キル基が好ましぐ炭素数 1〜4のアルキル基がより好ましい。また該アルキル基は直 鎖状でも分岐状でもよぐメチル基、ェチル基、プロピル基、イソプロピル基、ブチル 基、 tert—ブチル基、ネオペンチル基、へキシル基、ヘプチル基、 2—ェチルへキシ ル基等が挙げられる。このァリール基の芳香環に直接結合するさらなる任意的な 1も しくは 2個の置換基としては、それぞれ独立に、炭素数 1〜4の直鎖状もしくは分岐状 アルキル基 (メチル基、ェチル基、プロピル基、イソプロピル基、ブチル基等)、炭素 数 1〜4のハロゲン化アルキル基(クロロメチル基、 2—クロ口ェチル基、 3—クロ口プロ ピル基等)などが挙げられる。
[0030] R1の定義において、炭素数 1〜4のアルキル基としては、メチル基、ェチル基、プロ ピル基、イソプロピル基、ブチル基、 tert—ブチル基等が挙げられ、メチル基及びェ チル基が好ましぐメチル基がより好ましい。 R1の定義において、炭素数 6〜14のァリ ール基としては Ar1の定義におけると同様なものが挙げられ、フエ-ル基及びナフチ ル基が好ましぐフエニル基がより好ましい。このァリール基に置換し得る置換基とし ては、それぞれ独立に、炭素数 1〜4の直鎖状もしくは分岐状アルキル基 (メチル基、 ェチル基、プロピル基、イソプロピル基、ブチル基等)、炭素数 1〜4のハロゲン化ァ ルキル基 (クロロメチル基、 2—クロ口ェチル基、 3—クロ口プロピル基等)などが挙げら れる。 R1としては水素原子又はメチル基が特に好ま 、。
[0031] 一般式 (I)で表される芳香族ビニル系化合物単位は下記一般式 (la)
[0032] [化 5]
Figure imgf000011_0001
[0033] (式中、 R6〜R8はそれぞれ独立に水素原子又は炭素数 1〜4のアルキル基を表すが 、少なくとも 1つは炭素数 1〜4のアルキル基であり、 R9は水素原子、炭素数 1〜4の アルキル基又はフエ-ル基を表す)で表される芳香族ビニル系化合物単位であること が好ましい。
R6〜R8におけるアルキル基及び R9におけるアルキル基は直鎖状でも分岐状でもよ く、メチル基、ェチル基、プロピル基、イソプロピル基、ブチル基、 tert—ブチル基等 が挙げられる。 [0034] 一般式 (la)で表される単位を与える芳香族ビニル系化合物の具体例としては、o, m もしくは p位にメチル基、ェチル基、プロピル基、 n—ブチル基、イソブチル基、 tert— ブチル基等の炭素数 1〜4のアルキル基が結合したアルキル置換スチレン、 o, mもし くは p位にメチル基、ェチル基、プロピル基、 n—ブチル基、イソブチル基、 tert—ブ チル基等の炭素数 1〜4のアルキル基が結合したアルキル置換 (Xーメチルスチレン 等が挙げられ、中でも p—メチルスチレン、 4— tert—ブチルスチレン、 at , p—ジメチ ルスチレン、 o, p—ジメチルスチレン等が好ましく用いられる。これらの芳香族ビニル 系化合物は各単独で用いても 2種以上組み合わせて用いてもよ 、。 2種以上を共重 合させる場合の形態はランダム共重合でもブロック共重合でもグラフト共重合でもテ 一パード共重合でもよい。
[0035] 重合体ブロック (A1)は一般式 (I)で表される芳香族ビニル系化合物単位以外に他 の芳香族ビュル系化合物単位を含んで 、てもよ 、。他の芳香族ビニル系化合物単 位を与える芳香族ビュル系化合物としては、例えばスチレン、 α—メチルスチレン、ビ ニノレナフタレン、 aーメチノレビニノレナフタレン、ビニノレアントラセン、ビニノレビレン等が 挙げられる。
[0036] 一般式 (I)で表される芳香族ビニル系化合物単位を与える芳香族ビニル系化合物 を 2種以上共重合させる場合ゃ該芳香族ビニル系化合物と他の芳香族ビニル系化 合物とを共重合させる場合の形態はランダム共重合でもブロック共重合でもグラフト 共重合でもテーパード共重合でもよ 、。
[0037] 重合体ブロック (A1)は、本発明の効果を損わない範囲内で、 1種もしくは複数の、 芳香族ビュル系化合物単位以外の他の単量体単位を含んで 、てもよ 、。かかる他 の単量体単位を与える単量体としては、例えば炭素数 4〜8の共役ジェン (具体例は 後述の重合体ブロック (B)の説明におけると同様)、炭素数 2〜8のアルケン (具体例 は後述の重合体ブロック (B)の説明におけると同様)、(メタ)アクリル酸エステル ( (メ タ)アクリル酸メチル、 (メタ)アクリル酸ェチル、 (メタ)アクリル酸ブチル等)、ビュルェ ステル(酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル等)、ビニル エーテル (メチルビ-ルエーテル、イソブチルビ-ルエーテル等)等が挙げられる。芳 香族ビニル系化合物と芳香族ビニル系化合物以外の他の単量体との共重合形態は ランダム共重合である必要がある。
[0038] 重合体ブロック (A1)中の一般式 (I)で表される芳香族ビニル系化合物単位は、ィ オンチャンネルを形成させるため及びメタノールクロスオーバーを抑制するために、 重合体ブロック (A1)の 10質量%以上を占めることが好ましぐ 15質量%以上を占め ることがより好ましぐ 20質量%以上を占めることがより一層好ましい。また、重合体ブ ロック(A1)中の芳香族ビュル系化合物単位以外の他の単量体単位の含有量は 50 質量%以下であるのが好ましぐ 30質量%以下であるのがより好ましぐ 10質量%以 下であるのがより一層好ましい。
[0039] 重合体ブロック (A1)の分子量は、高分子電解質膜の性状、要求性能、他の重合 体成分等によって適宜選択される。分子量が大きい場合、高分子電解質膜の引張 強度等の力学特性が高くなる傾向にあり、分子量が小さい場合、高分子電解質膜の 電気抵抗が小さくなる傾向にあり、必要性能に応じて分子量を適宜選択することが重 要である。重合体ブロック (A1)の分子量は、イオン伝導性基を導入していない状態 において、ポリスチレン換算の数平均分子量として、通常、 100〜1, 000, 000の間 力 選択されるのが好ましぐ 1, 000-100, 000の間力 選択されるのがより好まし い。
[0040] 餱様 2 (枸亩相)
本発明の態様 2においては、重合体ブロック (A)はイオン伝導性基を有する重合体 ブロック (A2a)以外に、芳香族ビュル系化合物単位を主たる繰返し単位とする重合 体ブロック (A2bl)であるか結晶性ポリオレフインブロックであって、拘束相(ブロック 共重合体の相分離構造を保持するよう機能する相)を形成する重合体ブロック (A2b )を有する。背景技術の項で述べたように、固体高分子型燃料電池は運転時と停止 時とで湿度変化を生じやすいので、その間の寸法変化や力学的特性 (引張強度等) の変化が小さい高分子電解質膜が求められており、また、発電前後(直接メタノール 型固体高分子型燃料電池ではメタノール溶液浸漬処理前後に相当)の特性、特にメ タノール透過性やイオン伝導度等の特性の変化の小さい高分子電解質膜が求めら れているが、これらの特性は、一般に、長時間運転の間に低下する。態様 2では、こ れらの特性を拘束相を形成する重合体ブロック (A2b)を設けることによって、維持し ようとするものである。
[0041] 態様 2にお 、ては、重合体ブロック (A)は下記一般式 (II)
[0042] [化 5]
Figure imgf000014_0001
[0043] (式中、 Ar2は 1〜3個の置換基を有していてもよい炭素数 6〜14のァリール基を表し 、 R1は水素原子、炭素数 1〜4のアルキル基又は 1〜3個の置換基を有していてもよ V、炭素数 6〜 14のァリール基を表す)で表される芳香族ビニル系化合物単位を主た る繰返し単位として有する重合体ブロック (A2a)及び拘束相を形成する重合体プロ ック (A2b)から構成され、重合体ブロック (A2b)が下記一般式 (III)
[0044] [化 6]
Figure imgf000014_0002
[0045] (式中、 R2〜R4はそれぞれ独立に水素原子又は炭素数 1〜8のアルキル基を表すが 、少なくとも 1つは炭素数 1〜8のアルキル基であり、 R5は水素原子又は炭素数 1〜4 のアルキル基を表す)で表される芳香族ビニル系化合物単位を主たる繰返し単位と して有する重合体ブロック (A2bl)もしくは結晶性ポリオレフインブロックである重合体 ブロック (A2)として定義し得る。
態様 2にお ヽてはイオン伝導性基は重合体ブロック (A2a)に導入しもしくは存在さ せる。重合体ブロック (A2a)は上記一般式 (Π)で表される芳香族ビニル系化合物単 位を 1種のみ含んでいても、 2種以上含んでいてもよぐ重合体ブロック (A2bl)は上 記一般式 (ΠΙ)で表される芳香族ビニル系化合物単位を 1種のみ含んで!/、ても、 2種 以上含んでいてもよい。
[0046] 餱様 2における重合体ブロック (A2a)
一般式 (Π)における Ar2の定義において、炭素数 6〜14のァリール基としてはフエ -ル基、ナフチル基、フヱナントリル基、アントリル基、インデュル基、ビフヱ-リル基、 ピレニル基等が挙げられ、フエ-ル基及びナフチル基が好ましぐフエ-ル基がより 好ま 、。このァリール基の芳香環に直接結合し得る任意的な 1〜 3個の置換基とし ては、それぞれ独立に、炭素数 1〜4の直鎖状もしくは分岐状アルキル基 (メチル基、 ェチル基、プロピル基、イソプロピル基、ブチル基等)、炭素数 1〜4のハロゲン化ァ ルキル基 (クロロメチル基、 2—クロ口ェチル基、 3—クロ口プロピル基等)などが挙げら れる。
一般式 (Π)における R1は一般式 (I)における R1と同義であり、該基の例示も好適 例も同様である。
[0047] 一般式 (Π)における R1が炭素数 1〜4のアルキル基である場合、 Ar2は置換基を有 さないのが最も好ましいが、置換基を有する場合には、置換基の数は 1もしくは 2個で あるのが好ましぐ 1個であるのがより好ましい。 R1が炭素数 6〜14のァリール基であ る場合、このァリール基及び Ar2の両方もしくは一方が置換基を有さないのが最も好 ましいが、両方とも置換基を有する場合には、置換基の数は 1もしくは 2個であるのが 好ましぐ 1個であるのがより好ましい。
[0048] 一般式 (Π)で表される芳香族ビニル系化合物単位は下記一般式 (Ila)
[0049] [化 7]
Figure imgf000015_0001
[0050] (式中、 R1U〜R"はそれぞれ独立に水素原子又は炭素数 1〜4のアルキル基を表し 、 R9は水素原子、炭素数 1〜4のアルキル基又はフエ-ル基を表す)で表される芳香 族ビュル系化合物単位であることが好まし 、。
R1G〜R12におけるアルキル基及び R9〖こおけるアルキル基は直鎖状でも分岐状でも よぐメチル基、ェチル基、プロピル基、イソプロピル基、ブチル基、 tert ブチル基 等が挙げられる。
[0051] 一般式 (Ila)における R9が炭素数 1〜4のアルキル基である場合、 R1G〜R12の少な くとも 1つが水素原子であるのが好ましぐ少なくとも 2つが水素原子であるのがより好 ましぐ全てが水素原子であるのが最も好ましい。
[0052] 一般式 (Π)で表される芳香族ビニル系化合物単位を与える芳香族ビニル系化合物 の具体例としてはスチレン、ビュルナフタレン、ビ-ルアントラセン、ビュルフエナント レン、ビニルビフエニル、 α—メチルスチレン、 1ーメチルー 1 ナフチルエチレン、 1 —メチルー 1—ビフエ-リルエチレン等が挙げられ、特にスチレン、 a—メチルスチレ ンが好ましい。
一般式 (Π)で表される芳香族ビニル系化合物単位を与える芳香族ビニル系化合物 は各単独で用いても 2種以上組み合わせて用いてもよ 、。 2種以上を共重合させる 場合の形態はランダム共重合でもブロック共重合でもグラフト共重合でもテーパード 共重合でもよい。
[0053] 重合体ブロック (A2a)は、本発明の効果を損わな!/、範囲内で、芳香族ビニル系化 合物単位以外に、 1種もしくは複数の他の単量体単位を含んでいてもよい。かかる他 の単量体単位を与える単量体としては、例えば炭素数 4〜8の共役ジェン (具体例は 後述の重合体ブロック (B)の説明におけると同様)、炭素数 2〜8のアルケン (具体例 は後述の重合体ブロック (B)の説明におけると同様)、(メタ)アクリル酸エステル ( (メ タ)アクリル酸メチル、 (メタ)アクリル酸ェチル、 (メタ)アクリル酸ブチル等)、ビュルェ ステル(酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル等)、ビニル エーテル (メチルビ-ルエーテル、イソブチルビ-ルエーテル等)等が挙げられる。芳 香族ビニル系化合物と上記他の単量体との共重合形態はランダム共重合である必 要がある。
[0054] 重合体ブロック (A2a)に含まれる一般式 (Π)で表される芳香族ビニル系化合物単 位の割合は、十分なイオン伝導性を付与する観点から 50モル%以上であることが好 ましぐ 60モル%以上であることがより好ましぐ 80モル%以上であることがより一層 好ましい。
[0055] 重合体ブロック (A2a)のイオン伝導性基が導入されて 、な 、状態での分子量は、 高分子電解質の性状、要求性能、他の重合体成分等によって適宜選択されるが、ポ リスチレン換算の数平均分子量として、通常、 100〜1 , 000, 000の間力も選択され るのが好ましぐ 500- 100, 000の間力 選択されるのがより好ましい。
[0056] 餱様 2における重合体ブロック (A2b)
重合体ブロック (A2b)は前記一般式 (III)で表される芳香族ビニル系化合物単位 を主たる繰返し単位として有する重合体ブロック (A2b l)であるか、結晶性ポリオレフ インブロックである。
一般式 (III)の R2〜R4の定義において炭素数 1〜8のアルキル基は、直鎖状でも分 岐状でもよぐメチル基、ェチル基、プロピル基、イソプロピル基、ブチル基、イソプチ ル基、 sec—ブチル基、 tert—ブチル基、ペンチル基、イソペンチル基、ネオペンチ ル基、 tert—ペンチル基、へキシル基、 1ーメチルペンチル基、ヘプチル基、ォクチ ル基などが挙げられる。一般式 (III)の R5の定義において炭素数 1〜4のアルキル基 は、直鎖状でも分岐状でもよぐメチル基、ェチル基、プロピル基、イソプロピル基、ブ チル基、イソブチル基、 tert—ブチル基などが挙げられる。一般式 (III)で表される芳 香族ビュル系化合物単位の好適な具体例としては p—メチルスチレン単位、 4 - tert ーブチルスチレン単位、 p—メチルー exーメチルスチレン単位、 4—tert—ブチルー a—メチルスチレン単位等が挙げられる。これらの芳香族ビニル系化合物単位を与 える芳香族ビニル系化合物は各単独で用いても 2種以上組み合わせて用いてもょ ヽ 。 2種以上を共重合させる場合の形態はランダム共重合でもブロック共重合でもダラ フト共重合でもテーパード共重合でもよ 、。
[0057] 重合体ブロック (A2b l)は芳香族ビニル系化合物単位以外の他の単量体単位を、 拘束相としての機能を妨げない範囲内で、含んでいてもよぐ他の単量体単位を与え る単量体としては、例えば炭素数 4〜8の共役ジェン (具体例は既述の重合体ブロッ ク(B)の説明におけると同様)、(メタ)アクリル酸エステル((メタ)アクリル酸メチル、(メ タ)アクリル酸ェチル、 (メタ)アクリル酸ブチル等)、ビュルエステル(酢酸ビュル、プロ ピオン酸ビュル、酪酸ビュル、ピバリン酸ビュル等)、ビュルエーテル(メチルビ-ル エーテル、イソブチルビニルエーテル等)が挙げられる。この際、芳香族ビュル系化 合物と他の単量体との共重合形態はランダム共重合である必要がある。
[0058] 拘束相としての機能を果たす観点から、上記した芳香族ビニル系化合物単位は、 重合体ブロック (A2b l)の 50質量%以上を占めることが好ましぐ 70質量%以上を 占めることがより好ましぐ 90質量%以上を占めることがより一層好ましい。
[0059] 重合体ブロック (A2b)が結晶性ポリオレフインブロックによって構成されて 、る場合 、力かる結晶性ポリオレフインブロックとしては結晶性ポリエチレンブロック、結晶性ポ リプロピレンブロック、結晶性水添 1 , 4 ポリブタジエンブロック等が挙げられ、これら の中で水素添加 1 , 4 ポリブタジエンブロックが最も好まし!/、。
[0060] 重合体ブロック (A2b)を重合体ブロック(A2a)及び重合体ブロック(B)とミクロ相分 離させ、かつ拘束相として機能させる観点から、重合体ブロック (A2b)として特に好 適な例としては、ポリ p—メチルスチレンブロック、ポリ p— (tert—ブチル)スチレンブ ロック、ポリ ρ—メチルー exーメチルスチレン単位、ポリ 4—tert—ブチルー α メチル スチレン単位等のポリスチレン系ブロック;任意の相互割合の、 ρ—メチルスチレン、 ρ - (tert—ブチル)スチレン、 p—メチルー ex—メチルスチレン、 4— tert—ブチルー aーメチルスチレン等のアルキル置換スチレンの 2種以上からなる共重合体ブロック; 結晶性水添 1 , 4 ポリブタジエン;結晶性ポリエチレンブロック;結晶性ポリプロピレ ンブロック等が挙げられる。
[0061] また、重合体ブロック (A2b)は、本発明の効果を損なわな!/、範囲内で公知の方法 により架橋させてもよい。架橋を導入することにより、拘束力が更に高くなり、乾燥時と 湿潤時の寸法変化及び力学特性(引張特性)変化や、メタノール溶液処理前後での メタノール透過性等の特性変化が更に小さくなる傾向にある。
[0062] 重合体ブロック (A2b)の分子量は、高分子電解質の性状、要求性能、他の重合体 成分等によって適宜選択される。分子量が大きい場合、高分子電解質の力学特性が 高くなる傾向にあるが、大きすぎるとブロック共重合体の成形が困難になり、分子量 力 、さい場合、力学特性が低くなる傾向にあり、必要性能に応じて分子量を適宜選 択することが重要である。ポリスチレン換算の数平均分子量として、通常、 100〜1, 0 00, 000の 力ら選択されるの力 S好まし <、 1, 000〜100, 000の 力ら選択される のがより好ましい。
[0063] 體 3醜)
本発明のこの態様では、態様 1における重合体ブロック (A1)同士、又は態様 2に おける重合体ブロック (A2a)同士が架橋される。この架橋は分子間及び Z又は分子 内で行われる。この態様のブロック共重合体を主成分とする高分子電解質膜は、特 に、メタノール溶液浸漬処理前後でのメタノール透過性、イオン伝導度等の特性の変 ィ匕が小さいという特徴を有することから、長期間安定した性能を発揮できる。
[0064] 架橋手段としては、多価ァミンによる架橋法、ラジカル架橋法等があり、いずれも使 用可能であるが、架橋は、通常、高分子電解質膜の調製と共に又は調製後に行うの で、架橋については後で高分子電解質膜の調製の説明のところで説明する。ただ、 多価ァミンによる架橋に際しては重合体ブロック (A1)や重合体ブロック (A2a)は前 述した構造のままでよいが、ラジカル架橋の場合には、条件が加重される。すなわち 、ラジカル架橋は、既述の如ぐ芳香族ビニル系化合物単位の芳香環に結合したァ ルキル基の 1位の炭素原子に結合した水素原子力、加熱やラジカルによって引抜か れて生じるラジカル同士が結合することなどを通じて進行する。したがって、この態様 にお 、ては、重合体ブロック (A1)又は重合体ブロック (A2a)の芳香族ビュル系化合 物単位の芳香環に結合したアルキル基の 1位の炭素原子は少なくとも 1個の水素原 子を結合して!/、る必要がある。
[0065] 熊様 1との関係における餱様 3
より具体的には、ラジカル架橋の場合には、態様 1における重合体ブロック (A1)は 前記一般式 (I)に含まれる下記一般式 (Γ )
[0066] [化 8]
Figure imgf000019_0001
[0067] (式中、 Ar1'は 1個の炭素数 1〜8のアルキル基で置換され、さらに 1もしくは 2個の炭 素数 1〜4個のアルキル基を有していてもよい炭素数 6〜14のァリール基を表すが、 アルキル基の少なくとも 1つは 1位の炭素原子に少なくとも 1個の水素原子が結合し ているものであり、 R1は水素原子、炭素数 1〜4のアルキル基又は 1〜3個の置換基 を有していてもよい炭素数 6〜 14のァリール基を表す)で表される芳香族ビュル系化 合物単位を主たる繰返し単位として有する重合体ブロック (A1 ' )であることが必要で あり、前記一般式 (la)に含まれる下記一般式 (la' )
[0068] [化 9]
Figure imgf000020_0001
[0069] (式中、 Ru〜! Tはそれぞれ独立に水素原子又は炭素数 1〜4のアルキル基を表す 力 少なくとも 1つは炭素数 1〜4のアルキル基であり、またアルキル基の少なくとも 1 つは 1位の炭素原子に少なくとも 1個の水素原子が結合して 、るものであり、 R9は水 素原子、炭素数 1〜4のアルキル基又はフエ二ル基を表す)で表される芳香族ビニル 系化合物単位を主たる繰返し単位として有する重合体ブロックであることが好ましい。
[0070] 上記で R1及び R9はそれぞれ一般式 (I)及び (la)におけると同義である。また、 Ar1' 及びその置換基の例示や好適例並びに R6'〜R8'におけるアルキル基の例示や好適 例も、アルキル基に関し「アルキル基の少なくとも 1つは 1位の炭素原子に少なくとも 1 個の水素原子が結合して 、るもの」であると 、う条件を満たす限り、 Ar1及びその置換 基並びに R6〜R8におけるアルキル基のそれらと同様である。
さらに、重合体ブロック (ΑΙ ' )は、態様 1における重合体ブロック (A1)と全く同様に 、一般式 (I ' )で表される芳香族ビニル系化合物単位以外の芳香族ビニル系化合物 単位や芳香族ビュル系化合物単位以外の他の単量体単位を含んで 、てもよく、また 、重合体ブロック (A1 ' )に占める一般式 (!' )で表される芳香族ビュル系化合物単位 の割合も重合体ブロック (A1)に占める一般式 (I)で表される芳香族ビニル系化合物 単位の割合と同様でよい。また、重合体ブロック (ΑΙ ' )の分子量も重合体ブロック (A
1)と同様でよい。
[0071] 熊様 2との関係における餱様 3
また、態様 2との関係では、ラジカル架橋の場合には、態様 2における重合体ブロッ ク ( A2a)は前記一般式 (Π)に含まれる下記一般式 (Π ' )
[0072] [化 10]
R 1
—— C—— CH2 ( )
Ar2'
[0073] (式中、 Ar2'は 1〜3個の置換基を有していてもよい炭素数 6〜14のァリール基を表 す力 該置換基の少なくとも 1つは 1位の炭素原子に少なくとも 1個の水素原子が結 合している炭素数 1〜4のアルキル基であり、 R1は水素原子、炭素数 1〜4のアルキ ル基又は 1〜3個の置換基を有していてもよい炭素数 6〜14のァリール基を表す)で 表される芳香族ビニル系化合物単位を主たる繰返し単位として有する重合体ブロッ ク (A2a' )であることが必要であり、前記一般式 (Ila)に含まれる下記一般式 (Ila' )
[0074] [化 11]
Figure imgf000021_0001
[0075] (式中、 R1U〜R"はそれぞれ独立に水素原子又は炭素数 1〜4のアルキル基を表 す力 R1G'〜R12'の少なくとも 1つは 1位の炭素原子に少なくとも 1個の水素原子が結 合している炭素数 1〜4のアルキル基であり、 R9は水素原子、炭素数 1〜4のアルキ ル基又はフ 二ル基を表す)で表される芳香族ビニル系化合物単位を主たる繰返し 単位として有する重合体ブロックであることが好ましい。
[0076] 上記で R1及び R9はそれぞれ一般式 (Π)及び (Ila)におけると同義である。また、 Ar 2'及びその置換基の例示や好適例並びに R1G'〜R12'におけるアルキル基の例示や 好適例も、アルキル基に関し「少なくとも 1つは 1位の炭素原子に少なくとも 1個の水 素原子が結合している炭素数 1〜4のアルキル基」であるという条件を満たす限り、 A r2及びその置換基並びに R1C)〜R12におけるそれらと同様である。
さらに、重合体ブロック (A2a' )は、態様 2における重合体ブロック (A2a)と全く同様 に、芳香族ビニル系化合物単位以外の他の単量体単位を含んでいてもよぐまた、 重合体ブロック (A2a' )に占める一般式 (II ' )で表される芳香族ビニル系化合物単位 の割合も重合体ブロック (A2a)に占める一般式 (II)で表される芳香族ビニル系化合 物単位の割合と同様でよい。また、重合体ブロック (A2a' )の分子量も重合体ブロッ ク (A2a)と同様でよい。
[0077] 重合体ブロック(B)
本発明の高分子電解質膜で使用するブロック共重合体は、重合体ブロック (A)以 外に柔軟相を形成する重合体ブロック (B)を有する。重合体ブロック (A)と重合体ブ ロック(B)とはミクロ相分離を起こし、重合体ブロック (A)同士と重合体ブロック (B)同 士とがそれぞれ集合する性質があり、重合体ブロック (A)はイオン伝導性基を有する ので重合体ブロック(A)同士の集合によりイオンチャンネルが形成され、プロトンの通 り道となる。かかる重合体ブロック (B)を有することによってブロック共重合体が全体と して弾力性を帯びかつ柔軟になり、膜 電極接合体や固体高分子型燃料電池の作 製に当たって成形性 (組立性、接合性、締付性など)等が改善される。ここでいう柔軟 相を形成する重合体ブロック (B)はガラス転移点あるいは軟ィ匕点が 50°C以下、好ま しくは 20°C以下、より好ましくは 10°C以下のいわゆるゴム状重合体ブロックである。
[0078] 柔軟相を形成する重合体ブロック(B)を構成する繰返し単位を構成することかでき る単量体としては炭素数 2〜8のアルケン、炭素数 5〜8のシクロアルケン、炭素数 7 〜 10のビュルシクロアルケン、炭素数 4〜8の共役ジェン及び炭素数 5〜8の共役シ クロアルカジエン、炭素—炭素二重結合の 1つが水素添加された炭素数 7〜: LOのビ -ルシクロアルケン、炭素—炭素二重結合の 1つが水素添加された炭素数 4〜8の共 役ジェン、炭素 炭素二重結合の 1つが水素添加された炭素数 5〜8の共役シクロ アルカジエン、 (メタ)アクリル酸エステル((メタ)アクリル酸メチル、 (メタ)アクリル酸ェ チル、 (メタ)アクリル酸ブチル等)、ビュルエステル類(酢酸ビュル、プロピオン酸ビ二 ル、酪酸ビュル、ピバリン酸ビュル等)、ビュルエーテル類(メチルビ-ルエーテル、ィ ソブチルビ-ルエーテル等)等が挙げられ、これらは単独で又は 2種以上組み合わ せて用いることができる。 2種以上を重合 (共重合)させる場合の形態はランダム共重 合でもブロック共重合でもグラフト共重合でもテーパード共重合でもよい。また、(共) 重合に供する単量体が炭素 炭素二重結合を 2つ有する場合にはそのいずれが重 合に用いられてもよぐ共役ジェンの場合には 1, 2 結合であっても 1, 4 結合であ つてもよぐまたガラス転移点あるいは軟ィ匕点が 50°C以下であれば、 1, 2 結合と 1 , 4 結合との割合にも特に制限はない。
[0079] 重合体ブロック(B)を構成する繰返し単位が、ビュルシクロアルケン単位や共役ジ ェン単位や共役シクロアルカジエン単位である場合のように炭素 炭素二重結合を 有している場合には、本発明の高分子電解質膜を用いた膜 電極接合体の発電性 能、耐熱劣化性の向上などの観点から、力かる炭素 炭素二重結合はその 30モル %以上が水素添加されているのが好ましぐ 50モル%以上が水素添加されているの 力 り好ましぐ 80モル%以上が水素添加されているのがより一層好ましい。炭素— 炭素二重結合の水素添加率は、一般に用いられている方法、例えば、ヨウ素価測定 法、 H—NMR測定等によって算出することができる。
[0080] 重合体ブロック (B)は、得られるブロック共重合体に、弾力性ひ!、ては膜 電極接 合体や固体高分子型燃料電池の作製に当たって良好な成形性を与える観点から、 炭素数 2〜8のアルケン単位、炭素数 5〜8のシクロアルケン単位、炭素数 7〜 10の ビュルシクロアルケン単位、炭素数 4〜8の共役ジェン単位、炭素数 5〜8の共役シク 口アルカジエン単位、炭素 炭素二重結合の一部もしくは全部が水素添加された炭 素数 7〜: L0のビニルシクロアルケン単位、炭素 炭素二重結合の一部もしくは全部 が水素添加された炭素数 4〜8の共役ジェン単位、及び炭素 炭素二重結合の一 部もしくは全部が水素添加された炭素数 5〜8の共役シクロアルカジエン単位力ゝら選 ばれる少なくとも 1種の繰返し単位力 なる重合体ブロックであることが好ましぐ炭素 数 2〜8のアルケン単位、炭素数 4〜8の共役ジェン単位、及び炭素 炭素二重結 合の一部もしくは全部が水素添加された炭素数 4〜8の共役ジェン単位カゝら選ばれ る少なくとも 1種の繰返し単位力もなる重合体ブロックであることがより好ましぐ炭素 数 2〜6のアルケン単位、炭素数 4〜8の共役ジェン単位、及び炭素 炭素二重結 合の一部もしくは全部が水素添加された炭素数 4〜8の共役ジェン単位カゝら選ばれ る少なくとも 1種の繰返し単位力もなる重合体ブロックであることがより一層好ましい。 上記で、アルケン単位として最も好ましいのは、イソブテン単位であり、共役ジェン単 位として最も好まし 、のは 1 , 3 ブタジエン単位及び/又はイソプレン単位である。
[0081] 上記で炭素数 2〜8のアルケンとしてはエチレン、プロピレン、 1ーブテン、 2 ブテ ン、イソブテン、 1—ペンテン、 2—ペンテン、 1—へキセン、 2—へキセン、 1—ヘプテ ン、 2 ヘプテン、 1—オタテン、 2—オタテン等が挙げられ、炭素数 5〜8のシクロア ルケンとしてはシクロペンテン、シクロへキセン、シクロヘプテン及びシクロオタテンが 挙げられ、炭素数 7〜10のビュルシクロアルケンとしてはビュルシクロペンテン、ビ- ルシクロへキセン、ビュルシクロヘプテン、ビュルシクロオタテンなどが挙げられ、炭 素数 4〜8の共役ジェンとしては 1, 3 ブタジエン、 1, 3 ペンタジェン、イソプレン 、 1, 3 へキサジェン、 2, 4一へキサジェン、 2, 3 ジメチルー 1, 3 ブタジエン、 2 ーェチノレー 1, 3 ブタジエン、 1, 3 へブタジエン、 1, 4一へブタジエン、 3, 5 へ ブタジエン等が挙げられ、炭素数 5〜8の共役シクロアルカジエンとしてはシクロペン タジェン、 1, 3 シクロへキサジェン等が挙げられる。
[0082] また、重合体ブロック (B)は、上記単量体以外に、ブロック共重合体に弾力性を与 えると 、う重合体ブロック(B)の目的を損なわな 、範囲で他の単量体、例えばスチレ ン、ビュルナフタレン等の芳香族ビュル系化合物;塩化ビュル等のハロゲン含有ビ- ル化合物等を含んで!/、てもよ!ヽ。この場合上記単量体と他の単量体との共重合形態 はランダム共重合であることが必要である。かかる他の単量体の使用量は、上記単量 体と他の単量体との合計に対して、 50質量%未満であるのが好ましぐ 30質量%未 満であるのがより好ましぐ 10質量%未満であるのがより一層好ましい。
[0083] ブロック共重合体における各重合体ブロックの配列や比率及びブロック共重合体の 7 本発明で使用するブロック共重合体における重合体ブロック (A) (A1又は A2a及 び A2bを含む)や重合体ブロック(B)の配列に関しては、それぞれの重合体ブロック は 1つであって複数であってもよぐまた、それぞれの構造や分子量も同じであっても 異なっていてもよい。なお、各重合体ブロックは必ずしも直線状に連なっている必要 はなぐある重合体ブロックがグラフト結合する形態であってもよい。この意味で本発 明で使用するブロック共重合体はグラフト共重合体を包含する。
本発明の基本的態様もしくは態様 1や態様 1での架橋 (態様 3)の場合において、ブ ロック共重合体における重合体ブロック (A1)及び重合体ブロック(B)の配列は特に 制限されないが、例として Al— B— A1型トリブロック共重合体、 B— Al— B型トリブ ロック共重合体、 Al—B— A1型トリブロック共重合体あるいは B— Al—B型トリブ口 ック共重合体と A1— B型ジブロック共重合体との混合物、 Al—B— Al—B型テトラ ブロック共重合体、 A1— B—A1—B—A1型ペンタブロック共重合体、 B—A1— B— Al—B型ペンタブロック共重合体、(A1— B) nX型星形共重合体 (Xはカップリング 剤残基を表す)、(B— Al) nX型星形共重合体 (Xはカップリング剤残基を表す)等が 挙げられる。これらのブロック共重合体は、各単独で用いても 2種以上組み合わせて 用いてもよい。
[0084] 本発明の態様 2や態様 2での架橋 (態様 3)の場合にぉ 、て、重合体ブロック (A2a) 、重合体ブロック (A2b)及び重合体ブロック(B)の配列は特に限定されず、また、重 合体ブロック (A2a)と重合体ブロック (A2b)とは必ずしも連結されて!、る必要はなぐ 間に重合体ブロック(B)が入ってもょ 、。
[0085] 重合体ブロック (A2a)、重合体ブロック(A2b)及び重合体ブロック(B)から構成さ れるブロック共重合体の構造は、特に限定されないが、例として、 A2a— B—A2b型 トリブロック共重合体、 A2a— B— A2b— A2a型テトラブロック共重合体、 A2a— B— A2a— A2b型テトラブロック共重合体、 B— A2a— B— A2b型テトラブロック共重合体 、 A2a— B— A2b— B型テトラブロック共重合体、 A2b— B— A2b— A2a型テトラブロ ック共重合体、 A2b— A2a— B— A2a— A2b型ペンタブロック共重合体、 A2b— B — A2a— B— A2b型ペンタブロック共重合体、 A2a— A2b - B— A2b— A2a型ペン タブロック共重合体、 A2a—A2b— B—A2a—A2b型ペンタブロック共重合体、 A2a — B— A2b - A2a - B型ペンタブロック共重合体、 A2a— B— A2b - A2a— A2b型 ペンタブロック共重合体、 A2a— B— A2b— B— A2b型ペンタブロック共重合体、 A2 a - B-A2a— B— A2b型ペンタブロック共重合体、 A2a— B— A2a— A2b - B型ぺ ンタブロック共重合体、 B—A2a—B—A2a—A2b型ペンタブロック共重合体、 B—A 2a-B- A2b - A2a型ペンタブロック共重合体、 B - A2a— B— A2b - B型ペンタ ブロック共重合体、 A2b—A2a—A2b— B—A2b型テトラブロック共重合体等が挙げ られる。
[0086] 本発明の態様 2や態様 2での架橋 (態様 3)の場合にぉ 、て、重合体ブロック (A2b )と重合体ブロック (B)との質量比は、寸法安定性、形態安定性、耐久性の観点から 、 95 : 5〜5 : 95でぁるのカ好ましく、 90 : 10〜: LO : 90であるの力 Sより好ましく、 85 : 15 〜15: 85であるのがより一層好ましい。
[0087] 本発明の高分子電解質を構成するブロック共重合体にお!、て、重合体ブロック (A)
(態様 1や態様 1での架橋 (態様 3)の場合にぉ 、ては重合体ブロック (A1)、態様 2や 態様 2での架橋 (態様 3)の場合にぉ 、ては重合体ブロック (A2a)と重合体ブロック( A2b)の和)と重合体ブロック(B)との質量比は、柔軟性、弾力性ひいては膜-電極 接合体や固体高分子型燃料電池の作製に当たって良好な成形性を与える観点から 、 90 : 10〜: L0 : 90であるの力 S好ましく、 85 : 15〜15 : 85でぁるのカょり好ましく、 80 : 20〜20: 80であるのがより一層好まし!/、。
[0088] 本発明の高分子電解質を構成するブロック共重合体のイオン伝導性基が導入され ていない状態での数平均分子量は特に制限されないが、ポリスチレン換算の数平均 分子量として、通常、 10, 000〜2, 000, 000力 S好ましく、 15, 000〜1, 000, 000 力 Sより好まし <、 20, 000〜500, 000力より一層好まし!/ヽ。
[0089] イオン伝導性某及びその導入位置
本発明の高分子電解質を構成するブロック共重合体は重合体ブロック (A)中に、 好ま 、態様にあっては、本発明の態様 1及び態様 1の形態での態様 3では重合体 ブロック (A1)中に、態様 2及び態様 2の形態での態様 3では重合体ブロック (A2a) 中に、イオン伝導性基を有することが必要である。本発明でイオン伝導性に言及する 場合のイオンとしてはプロトンなどが挙げられる。イオン伝導性基としては、該高分子 電解質膜を用いて作製される膜 電極接合体が十分なイオン伝導度を発現できるよ うな基であれば特に限定されないが、中でも SO M又は PO HM (式中、 Mは水
3 3
素原子、アンモ-ゥムイオン又はアルカリ金属イオンを表す)で表されるスルホン酸基 、ホスホン酸基又はそれらの塩が好適に用いられる。イオン伝導性基としては、また、 カルボキシル基又はその塩も用いることができる。イオン伝導性基の導入位置を重合 体ブロック (A)にするのは、イオン伝導性基の導入が容易なため及びイオンチャンネ ル形成を容易にするためである。
[0090] 重合体ブロック (A) (好ま U、態様にあっては、重合体ブロック (A1)又は重合体ブ ロック (A2a) )中へのイオン伝導性基の導入位置については特に制限はなぐ主たる 繰返し単位である芳香族ビニル系化合物単位に導入しても既述の他の単量体単位 に導入してもよい。しかし、イオンチャンネル形成を容易にする観点や直接メタノール 型固体高分子型燃料電池におけるメタノールクロスオーバー (燃料であるメタノール がー方の電極側から他方の電極側へ電解質膜を透過してしまう現象)の抑制の観点 から、芳香族ビニル系化合物単位の芳香環に導入するのが好ましい。
[0091] 本発明にお 、て、イオン伝導性基は、実質上、重合体ブロック (A) (好ま 、態様 にあっては、重合体ブロック (A1)又は重合体ブロック (A2a) )のみに存在する。これ はイオンチャンネルの形成を容易にするためであり、態様 2及び態様 2の形態での態 様 3にあっては、さらに、イオンチャンネル形成を重合体ブロック (A2a)に実質上限 定し、重合体ブロック (A2b)を実質上拘束層として機能させることにより、長時間発電 後のイオンチャンネルの構造変化を大幅に抑制するためである。構造変化によりィォ ンチャンネルが大きくなると、メタノールが透過しやすくなり、発電効率も悪くなる傾向 にある。
[0092] 本発明にお 、て、イオン伝導性基が実質上重合体ブロック (A)のみに存在すると は、基本的 Z包括的態様や態様 1や態様 1の形態での態様 3にあっては、ブロック共 重合体中に存在するイオン伝導性基の 95モル%以上が重合体ブロック (A)又は (A 1)上に存在し、態様 2や態様 2の形態での態様 3にあっては、重合体ブロック (A2b) が一般式 (ΠΙ)で表される芳香族ビュル系化合物単位を主たる繰返し単位とし、 R2〜 R4の合計炭素数が 1〜3の場合には、ブロック共重合体中に存在するイオン伝導性 基の 60モル%以上、好ましくは 70モル%以上が重合体ブロック (A2a)に存在し、重 合体ブロック (A2b)が一般式 (III)で表される芳香族ビニル系化合物単位を主たる 繰返し単位とし、 R2〜R4の合計炭素数力 以上の場合には、ブロック共重合体中に 存在するイオン伝導性基の 75モル%以上、好ましくは 90モル%以上が重合体ブロッ ク (A2a)に存在し、重合体ブロック (A2b)が結晶性ポリオレフインブロックである場合 には 95モル%以上が重合体ブロック (A2a)に存在することを意味するものとする。
[0093] イオン伝導性基の導入量は、高分子電解質の性能を決める上で重要である。本発 明の高分子電解質を固体高分子型燃料電池における高分子電解質膜として使用す るのに十分なイオン伝導性を発現するためには、本発明の高分子電解質のイオン交 換容量は 0. 30meqZg以上となるような量であることが好ましぐ 0. 35meqZg以上 となるような量であることがより好ましい。イオン交換容量の上限については、イオン交 換容量が大きくなりすぎると親水性が高まり、膨潤しゃすい傾向にあるので、 3. Ome qZg以下であるのが好まし 、。
[0094] ブロック 合体の ¾告方法
本発明で用いられるブロック共重合体は主として次の 2つの製造方法によって得る ことができる。すなわち、(1)イオン伝導性基を有さないブロック共重合体を製造した 後、イオン伝導性基を結合させる方法、(2)イオン伝導性基を有する単量体を用いて ブロック共重合体を製造する方法である。
[0095] イオン伝導件 後から結合させる製法
<ブロック共重合体の製法 (態様 1及び態様 1の形態での態様 3の場合) > 重合体ブロック (A1)又は(B)を構成する単量体の種類、分子量等によって、重合 体ブロック (A1)又は(B)の製造法は、ラジカル重合法、ァ-オン重合法、カチオン 重合法、配位重合法等力 適宜選択されるが、工業的な容易さから、ラジカル重合 法、ァ-オン重合あるいはカチオン重合法が好ましく選択される。特に、分子量、分 子量分布、重合体の構造、重合体ブロック (B)又は (A)との結合の容易さ等から!/、わ ゆるリビング重合法が好ましぐ具体的にはリビングラジカル重合法あるいはリビング ァ-オン重合法、リビングカチオン重合法が好ま 、。
[0096] 製造法の具体例として、 p—メチルスチレン単位等の a 炭素が 3級炭素である芳 香族ビュル系化合物単位を主たる繰返し単位とする重合体ブロック (A1)及びブタジ ェン単位等の共役ジェン単位からなる重合体ブロック (B)を成分とするブロック共重 合体の製造法; p—メチルスチレン単位等の (X 炭素が 3級炭素である芳香族ビニ ル系化合物単位を主たる繰返し単位とする重合体ブロック (A1)及びイソブテン単位 等のアルケン単位力 なる重合体ブロック(B)を成分とするブロック共重合体の製造 法; α , ρ ジメチルスチレン単位等の α 炭素が 4級炭素である芳香族ビニル系化 合物単位を主たる繰返し単位とする重合体ブロック (A1)及びブタジエン単位等の共 役ジェン単位力 なる重合体ブロック(Β)を成分とするブロック共重合体の製造法; 及び α , ρ ジメチルスチレン単位等の α 炭素が 4級炭素である芳香族ビニル系 化合物単位を繰返し単位とする重合体ブロック (A1)及びイソブテン単位等のアルケ ン単位力 なる重合体ブロック (Β)を成分とするブロック共重合体の製造法につ!、て 述べる。この場合、工業的容易さ、分子量、分子量分布、重合体ブロック (A1)と重合 体ブロック (Β)との結合の容易さ等力 リビングァ-オン重合法、リビングカチオン重 合法で製造するのが好ましぐ次のような具体的な合成例が示される。
[0097] 本発明の高分子電解質膜を構成するブロック共重合体をァ-オン重合によって製 造するに際し、 ρ—メチルスチレン等の a 炭素が 3級炭素である芳香族ビニル系化 合物単位を重合体ブロック (A1)の繰返し単位とする場合には、
(1)シクロへキサン溶媒中でァ-オン重合開始剤を用いて、 20〜: LOO°Cの温度条件 下で、 p—メチルスチレン等の ex 炭素が 3級炭素である芳香族ビニル系化合物を 重合し、その後共役ジェンを重合させた後、 p—メチルスチレン等の a 炭素が 3級 炭素である芳香族ビニル系化合物を逐次重合させ A1— B— A1型ブロック共重合体 を得る方法、
(2)シクロへキサン溶媒中でァ-オン重合開始剤を用いて、 20〜100°Cの温度条件 下で p—メチルスチレン等の a 炭素が 3級炭素である芳香族ビニル系化合物を重 合し、その後共役ジェンを重合させた後、安息香酸フエニル等のカップリング剤を添 加して A1— B— A1型ブロック共重合体を得る方法、
などの公知の方法を採用 Z応用することができる。
[0098] 本発明の高分子電解質膜を構成するブロック共重合体をァ-オン重合によって製 造するに際し、 a , p ジメチルスチレン単位等の α—炭素が 4級炭素である芳香族 ビュル系化合物単位を重合体ブロック (A1)の繰返し単位とする場合には、
(3)非極性溶媒中有機リチウム化合物を開始剤として用い、 0. 1〜10質量%の濃度 の極性化合物の存在下、 30°C〜30°Cの温度にて、 5〜50質量%の濃度の α—メ チルスチレンを重合させ、得られるリビングポリマーに共役ジェンを重合させた後、安 息香酸フエニル等のカップリング剤を添加して、 Al—B— A1型ブロック共重合体を 得る方法、
などの公知の方法に準じて製造することができる。
[0099] 本発明の高分子電解質膜を構成するブロック共重合体をカチオン重合によって製 造するに際し、 ρ—メチルスチレン等の a 炭素が 3級炭素である芳香族ビニル系化 合物単位を重合体ブロック (A1)の繰返し単位とする場合には、
(4)ハロゲン系 Ζ炭化水素系混合溶媒中、 78°Cで、 2官能性ハロゲンィ匕開始剤を 用いて、ルイス酸の存在下、イソブテンをカチオン重合させた後、スチレンを重合させ 、 A1— B—A1型ブロック共重合体を得る方法(Makromol.Chem. .Macromol. S ymp. 32, 119 ( 1990) )などのスチレンを用いた公知の方法に準じて製造すること ができる。
[0100] 本発明の高分子電解質膜を構成するブロック共重合体をカチオン重合によって製 造するに際し、 a , p ジメチルスチレン等の α—炭素が 4級炭素である芳香族ビ- ル系化合物単位を重合体ブロック (A1)の繰返し単位とする場合には、
(5)ハロゲン系 Ζ炭化水素系混合溶媒中、 78°Cで、 2官能性ハロゲンィ匕開始剤を 用いて、ルイス酸の存在下、イソブテンをカチオン重合させた後、ジフエ-ルエチレン を付加させ、さらにルイス酸を後添加後、 exーメチルスチレンを重合させ、 A—B—A 型ブロック共重合体を得る方法(Macromolecules, ( 1995) , 28, 4893—4898) などの公知の方法に準じて製造することができる。
[0101] <ブロック共重合体の製法 (態様 2及び態様 2の形態での態様 3の場合) >
重合体ブロック (A2a)、 (A2b)又は(B)を構成する単量体の種類、分子量等によ つて、重合体ブロック (A2a)、 (A2b)又は(B)の製造法は、ラジカル重合法、ァ-ォ ン重合法、カチオン重合法、配位重合法等力も適宜選択されるが、工業的な容易さ から、ラジカル重合法、ァ-オン重合あるいはカチオン重合法が好ましく選択される。 特に、分子量、分子量分布、重合体の構造、重合体ブロック (A2a)、 (A2b)及び (B )の結合の容易さ等力もいわゆるリビング重合法が好ましぐ具体的にはリビングラジ カル重合法あるいはリビングァ-オン重合法、リビングカチオン重合法が好まし 、。
[0102] 製造法の具体例として、 4 tert プチルスチレン等の芳香族ビュル系化合物を 主たる繰返し単位とする重合体ブロック (A2b)、スチレン又は α—メチルスチレンか らなる重合体ブロック (A2a)及び共役ジェンカゝらなる重合体ブロック (B)を成分とす るブロック共重合体の製造法について述べる。この場合、工業的容易さ、分子量、分 子量分布、重合体ブロック (A2a)、 (B)及び (A2b)の結合の容易さ等力もリビングァ ユオン重合法、リビングカチオン重合法で製造するのが好ましぐ次のような具体的な 合成例が示される。
[0103] 本発明の高分子電解質を構成するブロック共重合体あるいはグラフト共重合体をァ 二オン重合によって製造するに当たっては、
(1)シクロへキサン溶媒中でァ-オン重合開始剤を用いて、 10〜: LOO°Cの温度条件 下で、 4 tert—プチルスチレン等の芳香族ビュル系化合物を重合し、その後共役 ジェン、スチレンを逐次重合させ A2a— B— A2b型ブロック共重合体を得る方法、
(2)シクロへキサン溶媒中でァ-オン重合開始剤を用いて、 10〜: LOO°Cの温度条件 下で、 4 tert—ブチルスチレン等の芳香族ビュル系化合物を重合し、その後スチレ ン、共役ジェンを逐次重合させた後、安息香酸フエニル等のカップリング剤を添加し て A2b— A2a— B— A2a— A2b型ブロック共重合体を得る方法、
シクロへキサン溶媒中でァ-オン重合開始剤を用いて、 10〜: LOO°Cの温度条件下 で、 4 tert—ブチルスチレン等の芳香族ビュル系化合物、共役ジェン、 4 tert— ブチルスチレン等の芳香族ビュル系化合物を逐次重合させ A2b— B— A2b型ブロッ ク共重合体を作成し、ァ-オン重合開始剤系(ァ-オン重合開始剤 ZN, N, Ν' , Ν ,一テトラメチルエチレンジァミン)を添加し共役ジェン単位をリチオイ匕した後、スチレ ンを重合させ、 A2b-B (-g-A2a)—A2b型ブロック 'グラフト共重合体を得る方法
[0104] (4)非極性溶媒中有機リチウム化合物を開始剤として用い、 0. 1〜10質量%の濃度 の極性化合物の存在下、 30°C〜30°Cの温度にて、 5〜50質量%の濃度の α—メ チルスチレンを重合させ、得られるリビングポリマーに共役ジェン、 4—tert ブチル スチレン等の芳香族ビュル系化合物を逐次重合させ A2a— B— A2b型ブロック共重 合体を得る方法、
(5)非極性溶媒中有機リチウム化合物を開始剤として用い、 0. 1〜10質量%の濃度 の極性化合物の存在下、 30°C〜30°Cの温度にて、 5〜50質量%の濃度の α—メ チルスチレンを重合させ、得られるリビングポリマーに 4 - tert -ブチルスチレン等の 芳香族ビュル系化合物、共役ジェンを重合させた後、安息香酸フエニル等のカツプリ ング剤を添カ卩して A2a— A2b— B— A2b— A2a型ブロック共重合体を得る方法、 などを採用 Z応用することができる。
[0105] 本発明の高分子電解質を構成するブロック共重合体をカチオン重合によって製造 するに当たっては、
(6)ハロゲン系 Z炭化水素系混合溶媒中、 78°Cで、 2官能性ハロゲンィ匕開始剤を 用いて、ルイス酸存在下、イソブテンをカチオン重合させた後、スチレン、 4- tert - ブチルスチレン等のスチレン誘導体を逐次重合させ、 A2b— A2a— B— A2a— A2b 型ブロック共重合体を得る方法、
などを採用 Z応用することができる。
[0106] <イオン伝導性基の導入 >
次に、得られるブロック共重合体にイオン伝導性基を結合させる方法にっ 、て述べ る。
まず、得られたブロック共重合体にスルホン酸基を導入する方法にっ ヽて述べる。 スルホン化は、公知のスルホン化の方法で行える。このような方法としては、ブロック 共重合体の有機溶媒溶液や縣濁液を調製し、スルホン化剤を添加し混合する方法 やブロック共重合体に直接ガス状のスルホン化剤を添加する方法等が例示される。
[0107] 使用するスルホン化剤としては、硫酸、硫酸と脂肪族酸無水物との混合物系、クロ ロスルホン酸、クロロスルホン酸と塩化トリメチルシリルとの混合物系、三酸化硫黄、三 酸ィ匕硫黄とトリェチルホスフェートとの混合物系、さらに 2, 4, 6 トリメチルベンゼン スルホン酸に代表される芳香族有機スルホン酸等が例示される。また、使用する有機 溶媒としては、塩化メチレン等のハロゲンィ匕炭化水素類、へキサン等の直鎖式脂肪 族炭化水素類、シクロへキサン等の環式脂肪族炭化水素類等が例示でき、必要に 応じて複数の組合せから、適宜選択して使用してもよい。
[0108] 得られたブロック共重合体にホスホン酸基を導入する方法について述べる。ホスホ ン化は、公知のホスホンィ匕の方法で行える。具体的には、例えば、ブロック共重合体 の有機溶媒溶液や懸濁液を調製し、無水塩化アルミニウムの存在下、該共重合体を クロロメチルエーテル等と反応させ、芳香環にハロメチル基を導入後、これに三塩ィ匕 リンと無水塩ィ匕アルミニウムをカ卩えて反応させ、さらに加水分解反応を行ってホスホン 酸基を導入する方法などが挙げられる。あるいは、該共重合体に三塩化リンと無水塩 化アルミニウムを加えて反応させ、芳香環にホスフィン酸基を導入後、硝酸によりホス フィン酸基を酸化してホスホン酸基とする方法等が例示できる。
[0109] スルホンィ匕又はホスホンィ匕の程度としては、すでに述べたごとぐ本発明の高分子 電解質膜のイオン交換容量が好ましくは 0. 30meqZg以上、より好ましくは 0. 35m eqZg以上に、し力し、 3. OmeqZg以下であるようにスルホン化またはホスホン化す る。これにより実用的なイオン伝導性能が得られる。最終的に得られる高分子電解質 膜のイオン交換容量ゃスルホン化もしくはホスホンィ匕されたブロック共重合体のィォ ン交換容量、又はブロック共重合体における重合体ブロック (A) (態様 1や態様 1の 形態での態様 3にあっては重合体ブロック (A1)、態様 2や態様 2の形態での態様 3 にあっては重合体ブロック (A2a) )中のスルホン化率又はホスホン化率は、酸価滴定 法、赤外分光スペクトル測定、核磁気共鳴スペクトル( NMRスペクトル)測定等 の分析手段を用いて算出することができる。
[0110] イオン伝導性某を有する単量体を用いるブロック共重合体の製法
本発明で用いられるブロック共重合体の、第 2の製造法は、イオン伝導性基を有す る少なくとも 1つの単量体を用 、てブロック共重合体を製造する方法である。
イオン伝導性基を有する単量体としては、芳香族系ビュル系化合物にイオン伝導 性基が結合した単量体が好ましい。具体的には、 o、 mもしくは p アルキルスチレン スルホン酸、 a—アルキル— o、 mもしくは p アルキル—スチレンスルホン酸、スチレ ンスノレホン酸、 aーァノレキノレースチレンスノレホン酸、 aーァノレキノレービ二ノレナフタレ ンスルホン酸、 a—アルキル—ビ-ルアントラセンスルホン酸、 a—アルキル—ビ- ルピレンスルホン酸、 o、 mもしくは p アルキルスチレンホスホン酸、 α—アルキル一 o、 mもしくは ρ アルキル一スチレンホスホン酸、スチレンホスホン酸、 a—アルキル スチレンホスホン酸、 aーァノレキノレービニノレナフタレンホスホン酸、 aーァノレキノレ —ビュルアントラセンホスホン酸、 a—アルキル一ビュルピレンホスホン酸等が挙げら れる。
[0111] イオン伝導性基を含有する単量体としては、共役ジェンィ匕合物にイオン伝導性基 が結合した単量体も用いることができる。具体的には、 1, 3 ブタジエン一 1—スルホ ン酸、 1, 3 ブタジエン一 2—スルホン酸、イソプレン一 1—スルホン酸、イソプレン一 2—スルホン酸、 1, 3 ブタジエン一 1—ホスホン酸、 1, 3 ブタジエン一 2 ホスホ ン酸、イソプレン一 1—ホスホン酸、イソプレン一 2—ホスホン酸等が挙げられる。
[0112] イオン伝導性基を含有する単量体としてはまた、ビュルスルホン酸、 α—アルキル —ビニルスルホン酸、ビュルアルキルスルホン酸、 a—アルキル—ビュルアルキルス ノレホン酸、ビニノレホスホン酸、 a—ァノレキノレ一ビ-ノレホスホン酸、ビニノレアノレキノレホ スホン酸、 a—アルキル—ビュルアルキルホスホン酸等も用いることができる。
イオン伝導性を含有する単量体としては、さらに、イオン伝導性基が結合した (メタ) アクリル系単量体も用いることができる。具体的には、メタクリル酸、アクリル酸、 2—ァ クリルアミド― 2—メチル— 1—プロパンスルホン酸等が挙げられる。
[0113] イオン伝導性基は、適当な金属イオン (例えばアルカリ金属イオン)あるいは対ィォ ン(例えばアンモ-ゥムイオン)で中和されて 、る塩の形で導入されて 、てもよ 、。例 えば、 o、 mもしくは p アルキルスチレンスルホン酸ナトリウム、あるいは α メチルー o、mもしくは ρ アルキルスチレンスルホン酸ナトリウムを用いて重合体を製造するこ とで、所望のイオン伝導性基を導入できる。又は、適当な方法でイオン交換すること により、スルホン酸基を塩型にしたブロック共重合体を得ることができる。
[0114] 雷解 を構 し得るィモ 分
本発明の高分子電解質膜は、本発明用いるブロック共重合体に加え、必要に応じ て、本発明の効果を損なわない範囲で、軟化剤を含有していてもよい。軟化剤として は、パラフィン系、ナフテン系もしくはァロマ系のプロセスオイル等の石油系軟化剤、 ノ フィン、植物油系軟化剤、可塑剤等があり、これらは各単独で又は 2種以上組み 合わせて用いることができる。
[0115] 本発明の高分子電解質膜は、さらに、必要に応じて、本発明の効果を損なわない 範囲で、各種添加剤、例えば、フエノール系安定剤、ィォゥ系安定剤、リン系安定剤 、光安定剤、帯電防止剤、離型剤、難燃剤、発泡剤、顔料、染料、増白剤、カーボン 繊維等を各単独で又は 2種以上組み合わせて含有して 、てもよ 、。安定剤の具体例 としては、 2, 6 ジ tーブチルー p クレゾール、ペンタエリスチリルーテトラキス [3 - (3, 5 ジ一 t—ブチル 4 ヒドロキシフエ-ル)プロピオネート]、 1, 3, 5 トリメ チルー 2, 4, 6 トリス(3, 5 ジ tーブチルー 4ーヒドロキシベンジル)ベンゼン、ォ クタデシルー 3— (3, 5—ジ一 t—ブチル 4—ヒドロキシフエ-ル)プロピオネート、ト リエチレングリコール—ビス [ 3— ( 3— t ブチル— 5—メチル— 4—ヒドロキシフエ- ル)プロピオネート]、 2, 4 ビス一(n—ォクチルチオ)一 6— (4 ヒドロキシ一 3, 5 ージ—tーブチルァ-リノ) 1, 3, 5 トリアジン、 2, 2, ーチォージエチレンビス [3 - (3, 5—ジ— t—ブチル—4—ヒドロキシフエ-ル)プロピオネート]、 N, N,—へキサ メチレンビス(3, 5—ジ tーブチルー 4ーヒドロキシーヒドロジナマミド)、 3, 5—ジ t —ブチルー 4—ヒドロキシ—ベンジルホスホネート—ジェチルエステル、トリス—(3, 5 —ジ一 t—ブチル 4 ヒドロキシベンジル)一イソシァヌレート、 3, 9 ビス {2— [3 一(3— t ブチルー 4ーヒドロキシー5 メチルフエ-ル)プロピオ-ルォキシ ]ー1, 1 ジメチルェチル} 2, 4, 8, 10—テトラオキサスピロ [5, 5]ゥンデカン等のフエノ ール系安定剤;ペンタエリスリチルテトラキス(3—ラウリルチオプロピオネート)、ジス テアリル 3, 3,一チォジプロピオネート、ジラウリル 3, 3,一チォジプロピオネート、ジミ リスチル 3, 3,一チォジプロピオネート等のィォゥ系安定剤;トリスノユルフェ-ルホス ファイト、トリス(2, 4 ジ一 t—ブチルフエ-ル)ホスファイト、ジアステリルペンタエリス リトールジホスフアイト、ビス(2, 6 ジ—tーブチルー 4 メチルフエ-ル)ペンタエリ スリトールジホスファイト等のリン系安定剤等が挙げられる。これら安定剤は各単独で 用いても、 2種以上組み合わせても用いてもよい。
[0116] 本発明の高分子電解質膜は、さらに、必要に応じて、本発明の効果を損なわない 範囲で、無機充填剤を添加することができる。カゝかる無機充填剤の具体例としては、 タルク、炭酸カルシウム、シリカ、ガラス繊維、マイ力、カオリン、酸化チタン、モンモリ ロナイト、アルミナ等が挙げられる。
[0117] 本発明の高分子電解質膜における上記ブロック共重合体の含有量は、イオン伝導 性の観点から、 50質量%以上であるのが好ましぐ 70質量%以上であるのがより好 ましぐ 90質量%以上であるのがより一層好ましい。
[0118] 本発明の高分子電解質膜は、燃料電池用電解質膜として必要な性能、膜強度、ハ ンドリング性等の観点から、その膜厚が 5〜500 m程度であることが好ましい。膜厚 力 / z m未満である場合には、膜の機械的強度やガス及びメタノール等の燃料の遮 断性が不充分となる傾向がある。逆に、膜厚が 500 mを超えて厚い場合には、膜 の電気抵抗が大きくなり、充分なプロトン伝導性が発現しないため、電池の発電特性 が低くなる傾向がある。該膜厚はより好ましくは 10〜300 mである。
[0119] 高分早雷解 膽の調製 法 本発明の高分子電解質膜の調製方法については、かかる調製のための通常の方 法であればいずれの方法も採用できる。例えば、本発明の高分子電解質膜を構成 するブロック共重合体又は該ブロック共重合体及び上記したような添加剤を適当な溶 媒と混合して該ブロック共重合体を溶解もしくは懸濁せしめ、 PET、ガラス等の板状 体にキャストするか又はコーターやアプリケーター等を用いて塗布し、適切な条件で 溶媒を除去することによって、所望の厚みを有する電解質膜を得る方法や、熱プレス 成形、ロール成形、押し出し成形等の公知の方法を用いて製膜する方法などを用い ることがでさる。
[0120] ただ、本発明の態様 3ではブロック共重合体における重合体ブロック (A1)又は重 合体ブロック (A2a)の架橋を行うことが必要であり、この架橋は、通常、高分子電解 質膜の調製と共に又は調製後に行うことになる。本発明の高分子電解質膜の調製は 、例えば、本発明の高分子電解質膜を構成する、イオン伝導性基を有するブロック共 重合体、並びに、必要に応じて、下記に説明するラジカル開始剤、多官能性単量体 などの架橋剤、及び Z又は上記したような各種添加剤を適当な溶媒と混合して該ブ ロック共重合体を溶解もしくは懸濁せしめ、 PET、ガラス等の板状体にキャストするか もしくはコーターやアプリケーター等を用いて塗布し、適切な条件で溶媒を除去する カゝ、又は上記混合物を溶融、混練した後、熱プレス成形、ロール成形、押出成形等 の公知の成形方法により製膜することにより行うことができる。
[0121] また、得られた電解質膜層の上に、新たに、同じもしくは異なるブロック共重合体溶 液を塗布して乾燥することにより積層化させてもよい。また、上記のようにして得られ た、同じもしくは異なる電解質膜同士を熱ロール成形等で圧着させて積層化させても よい。
[0122] 高分子電解質膜の調製に際し使用する溶媒は、ブロック共重合体の構造を破壊す ることなぐキャストもしくはコートが可能な程度の粘度の溶液を調製することが可能な ものであれば特に限定されない。具体的には、塩化メチレン等のハロゲンィ匕炭化水 素類、トルエン、キシレン、ベンゼン等の芳香族炭化水素類、へキサン、ヘプタン等 の直鎖式脂肪族炭化水素類、シクロへキサン等の環式脂肪族炭化水素類、テトラヒ ドロフラン等のエーテル類、メタノール、エタノール、プロパノール、イソプロパノール、 ブタノール、イソブチルアルコール等のアルコール類、あるいはこれらの混合溶媒等 が例示できる。ブロック共重合体の構成、分子量、イオン交換容量等に応じて、上記 に例示した溶媒の中から、 1種又は 2種以上の組合せを適宜選択し、使用することが できる。
[0123] また、溶媒除去の条件は、本発明の高分子電解質膜を構成するブロック共重合体 のスルホン酸基等のイオン伝導性基が脱落する温度以下で、溶媒を完全に除去でき る条件であれば任意に選択することが可能である。所望の物性を発現させるため、複 数の温度を任意に組み合わせたり、通風気下と真空下等を任意に組み合わせてもよ い。具体的には、室温〜 60°C程度の真空条件下で、数時間予備乾燥した後、 100 °C以上の真空条件下、好ましくは 100〜 120°Cで 12時間程度の乾燥条件で溶媒を 除去する方法、 60〜140°Cの通風下、数分〜数時間程度の乾燥条件で溶媒を除去 する方法等を例示できる力 これらに限定されるものではない。
[0124] 通
本発明の態様 3では、本発明の高分子電解質膜を構成するブロック共重合体の構 成成分であるイオン伝導性基を有する重合体ブロック (A1)又は (A2a)は架橋され ていることが必要である。この架橋は重合体ブロック (A1)間又は (A2a)間で行われ る。重合体ブロック (Al)又は (A2a)に架橋を導入することにより、形成されるイオン チャンネルの構造変化が抑制され、膜の形態安定性が向上する。また、メタノール溶 液浸漬処理前後でのイオンチャンネルの構造変化が抑制され、メタノール透過性、ィ オン伝導度等の特性の変化を大幅に抑制することができる。そのため、固体高分子 型燃料電池にぉ 、て、長時間安定した性能を発揮することができる。
[0125] 架橋させる手段としては、多価ァミンによる架橋法、ラジカル架橋法等が挙げられる 。いずれの方法による場合でも架橋の程度は、メタノール溶液処理前後での高分子 電解質膜のメタノール透過性及びイオン伝導度の変化を有意に小さくするような程度 である。
多価ァミンとしては、 1分子中に 2個以上の 1〜3級アミノ基を有するものであれば特 に制限されず、エチレンジァミン、トリメチレンジァミン、テトラメチレンジァミン、ペンタ メチレンジァミン、へキサメチレンジァミン等のジァミン類、イミノビスプロピルァミン、ジ エチレントリァミン等のトリアミン類等が例示される。多価ァミンによる架橋はイオン伝 導性基と多価ァミンとが反応することにより行われる。したがって、多価ァミンにより架 橋を行う場合には、架橋後の高分子電解質膜のイオン交換容量が記述の要件を満 たすようにする必要がある。この架橋は通常常温で進行する。
多価ァミンによる架橋は、高分子電解質膜の調製時には行わないか部分的にしか 行わず、膜の調製後に行う。その場合には、得られる膜を多価アミン溶液に浸漬して 架橋反応に付した後、膜の調製に使用したような溶媒や水で洗浄し、乾燥させる方 法などを採用し得る。
[0126] また、ラジカル架橋は、重合体ブロック (A1)又は (A2a)の主たる繰返し単位である 芳香族ビニル系化合物単位として、一般式 (I)で表される単位や一般式 (Π)で表さ れる単位を有し、イオン伝導性基を有するブロック共重合体を製造し、そのブロック共 重合体及び必要に応じてラジカル開始剤等を用いて上述のように高分子電解質膜 を調製する際に、又は調製した後に、加熱することにより行うことができる。ラジカル架 橋は、一般式 (I)の Ar1に置換した、 1位の炭素原子に少なくとも 1個の水素原子が結 合している炭素数 1〜8のアルキル基や、一般式 (Π)の Ar2に置換した、 1位の炭素 原子に少なくとも 1個の水素原子が結合している炭素数 1〜4のアルキル基の該水素 原子力、加熱によって及び Z又はラジカル開始剤の分解によって生ずるラジカルに よって、引き抜かれて生ずるラジカル同士が結合することなどを通じて進行する。ラジ カル開始剤としては、過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩、ァゾビスイソ ブチ口-トリル等のァゾ系化合物;ベンゾィルパーォキシド、 1, 1—ビス(tert—ブチ ルペルォキシ)シクロへキサン等の過酸ィ匕物などを、一般式 (I)又は (Π)で表される 単位 1モル当たり 5当量以下、好ましくは 0. 01〜1当量で用いることができる。また、 多官能性単量体としてはトリアリルイソシァヌレートなどを用いることができる。この架 橋は 60〜220°C程度、好ましくは 80〜180°C程度の温度下、熱プレス等により行う ことができる。
蹬—雷纖合体
次に、本発明の高分子電解質膜を用いた膜-電極接合体について述べる。膜— 電極接合体の製造については特に制限はなぐ公知の方法を利用することができ、 例えば、イオン伝導性バインダーを含む触媒ペーストを印刷法やスプレー法により、 ガス拡散層上に塗布し乾燥することで触媒層とガス拡散層との接合体を形成させ、 ついで 2対の接合体それぞれの触媒層を内側にして、高分子電解質膜の両側にホッ トプレスなどにより接合させる方法や、上記触媒ペーストを印刷法やスプレー法により 高分子電解質膜の両側に塗布し、乾燥して触媒層を形成させ、それぞれの触媒層 に、ホットプレスなどによりガス拡散層を圧着させる方法がある。さらに別の製造法とし て、イオン伝導性バインダーを含む溶液又は懸濁液を、高分子電解質膜の両面及 び Z又は 2対のガス拡散電極の触媒層面に塗布し、電解質膜と触媒層面とを張り合 わせ、熱圧着などにより接合させる方法がある。この場合、該溶液又は懸濁液は電解 質膜及び触媒層面のいずれか一方に塗付してもよいし、両方に塗付してもよい。さら に他の製造法として、まず、上記触媒ペーストをポリテトラフルォロエチレン (PTFE) 製などの基材フィルムに塗布し、乾燥して触媒層を形成させ、ついで、 2対のこの基 材フィルム上の触媒層を高分子電解質膜の両側に加熱圧着により転写し、基材フィ ルムを剥離することで電解質膜と触媒層との接合体を得、それぞれの触媒層にホット プレスによりガス拡散層を圧着する方法がある。これらの方法においては、イオン伝 導性基を Naなどの金属との塩にした状態で行 、、接合後の酸処理によってプロトン 型に戻す処理を行ってもょ ヽ。
[0128] 上記膜—電極接合体を構成するイオン伝導性バインダーとしては、例えば、「Nafi onj (登録商標、デュポン社製)や「Gore— selects (登録商標、ゴァ社製)などの既 存のパーフルォロカーボンスルホン酸系ポリマーからなるイオン伝導性バインダー、 スルホン化ポリエーテルスルホンゃスルホン化ポリエーテルケトンからなるイオン伝導 性バインダー、リン酸や硫酸を含浸したポリべンズイミダゾールカもなるイオン伝導性 ノインダ一等を用いることができる。また、本発明の高分子電解質膜を構成するプロ ック共重合体からイオン伝導性バインダーを作製してもよい。なお、高分子電解質膜 とガス拡散電極との密着性を一層高めるためには、高分子電解質と同一もしくは類 似の材料力も形成したイオン伝導性バインダーを用いることが好まし 、。
[0129] 上記膜 電極接合体の触媒層の構成材料について、導電材 Z触媒担体としては 特に制限はなぐ例えば炭素材料が挙げられる。炭素材料としては、例えば、ファー ネスブラック、チャンネルブラック、アセチレンブラック等のカーボンブラック、活性炭、 黒鉛などが挙げられ、これら単独であるいは 2種以上混合して使用される。触媒金属 としては、水素やメタノールなどの燃料の酸化反応及び酸素の還元反応を促進する 金属であればいずれのものでもよぐ例えば、白金、金、銀、パラジウム、イリジウム、 ロジウム、ルテニウム、鉄、コバルト、ニッケル、クロム、タングステン、マンガン、パラジ ゥム等、あるいはそれらの合金、例えば白金一ルテニウム合金が挙げられる。中でも 白金や白金合金が多くの場合用いられる。触媒となる金属の粒径は、通常は、 10〜 300オングストロームである。これら触媒はカーボン等の導電材 Z触媒担体に担持さ せた方が触媒使用量は少なくコスト的に有利である。また、触媒層には、必要に応じ て撥水剤が含まれていてもよい。撥水剤としては例えばポリテトラフルォロエチレン、 ポリフッ化ビ-リデン、スチレン-ブタジエン共重合体、ポリエーテルエーテルケトン等 の各種熱可塑性榭脂が挙げられる。
[0130] 上記膜—電極接合体のガス拡散層は、導電性及びガス透過性を備えた材料から 構成され、力かる材料として例えばカーボンペーパーやカーボンクロス等の炭素繊 維よりなる多孔性材料が挙げられる。また、力かる材料には、撥水性を向上させるた めに、撥水化処理を施してもよい。 [0131] 上記のような方法で得られた膜 電極接合体を、極室分離と電極へのガス供給流 路の役割を兼ねた導電性のセパレータ材の間に挿入することにより、固体高分子型 燃料電池が得られる。本発明の膜—電極接合体は、燃料ガスとして水素を使用した 純水素型、メタノールを改質して得られる水素を使用したメタノール改質型、天然ガ スを改質して得られる水素を使用した天然ガス改質型、ガソリンを改質して得られる 水素を使用したガソリン改質型、メタノールを直接使用する直接メタノール型等の固 体高分子型燃料電池用膜 電極接合体として使用可能である。
[0132] 本発明の高分子電解質膜を用いた燃料電池は、経済的で、環境に優しぐ高いィ オン伝導度を有すると共に、メタノールによる影響を受けにくいという特性を有してお り、固体高分子型燃料電池、特に直接型メタノール燃料電池として優れた発電性能 を発揮する。
(1)の態様の高分子電解質膜を用いた燃料電池は、特に、メタノールバリア性に優 れる。(2)の態様の高分子電解質膜は、特に、乾燥時と湿潤時の寸法安定性及び力 学特性 (引張特性等)の変化が小さぐまたメタノール溶液浸漬処理前後でのメタノー ル透過性、イオン伝導度等の特性の変化が小さいという特徴を有することから、該膜 を用いた燃料電池は、特に、耐久性に優れ、長時間安定して駆動できる。また、乾燥 、湿潤と!/、う動作環境が変化した場合にもすぐに一定の特性を発現できると!、う特徴 も有していることから、始動性にも優れる。(3)の態様の高分子電解質膜は、特に、メ タノール溶液浸漬処理前後でのメタノール透過性、イオン伝導度等の特性の変化が 小さいという特徴を有することから、特に、耐久性に優れ、長時間安定して駆動できる 実施例
[0133] 以下、参考例、実施例及び比較例、並びに固体高分子型燃料電池用電解質膜と しての性能試験 (イオン交換容量、膜強度、膜のイオン伝導度、膜の電気抵抗及び 膜のメタノール透過速度並びに燃料電池用単セルの出力性能)及びその結果を示し て本発明をさらに具体的に説明するが、本発明はこれらにより限定されるものではな い。
[0134] 餱様 1 (アルキル置椽) <参考例 1 1 >
ポリ(p メチルスチレン)(重合体ブロック (A) )と水添ポリブタジエン(重合体ブロック (B) )とからなるブロック共重合体の製造
重合体ブロック (A)を合成する際に、芳香族ビュル系化合物(a)として、 p—メチル スチレンを用い、重合体ブロック(B)を合成する際にブタジエンを用いて、既報の方 法 (特開 2005— 281373号公報)と同様の方法で、ポリ(p—メチルスチレン) b— ポリブタジエン— b ポリ(p—メチルスチレン)(以下、 pmSBpmSと略記する)を合成 した。得られた pmSBpmSの数平均分子量は 78000であり、 NMR測定から求 めた 1, 4 結合量は 58. 5%、 p—メチルスチレン単位の含有量は 30質量%であつ た。
合成した pmSBpmSのシクロへキサン溶液を調製し、十分に窒素置換を行った耐 圧容器に仕込んだ後、 NiZAl系の Ziegler系水素添加触媒を用いて、水素雰囲気 下において 50°Cで 7時間水素添加反応を行い、ポリ(p—メチルスチレン)—b 水添 ポリブタジエン— b ポリ(p—メチルスチレン)トリブロック共重合体(以下 pmSEBpm Sと略記する)を得た。得られた pmSEBpmSの水素添カ卩率を1 H—NMR ^ベクトル 測定により算出したところ、 99. 7%であった。
<参考例 1 2 >
ポリ(スチレン Z4— tert—ブチルスチレン)(重合体ブロック(A) )と水添ポリイソプレ ン (重合体ブロック (B) )とからなるブロック共重合体の製造
重合体ブロック (A)を合成する際に、芳香族ビニル系化合物(a)として 4— tert ブ チルスチレン及び他の芳香族ビュル系化合物としてスチレンを質量比が 50Z50に なるように混合して用い、重合体ブロック (B)を合成する際にイソプレンを用いて、既 報の方法 (特開 2005 - 281373号公報)と同様の方法で、ポリ (スチレン 4 - tert ーブチノレスチレン) b ポリイソプレン b ポリ(スチレン Z4— tert—ブチノレスチ レン)(以下(SZtBS) I (SZtBS)と略記する)を合成した。得られた (SZtBS) I (S ZtBS)の数平均分子量は 51800であり、ェ!! NMR測定から求めた 1, 4 結合量 は 94. 0%、スチレン単位の含有量は 15. 6質量0 /0、 4 tert—ブチルスチレン単位 の含有量は 15. 6質量%であった。 合成した (SZtBS) I (S/tBS)を用いて、水素添加反応を 9時間行ったことを除 、 て参考例 1と同様にして、水素添加率 99. 9%のポリ(スチレン Z4—tert—ブチルス チレン) b 水添ポリイソプレン b—ポリ(スチレン Z4—tert—ブチノレスチレン)ト リブロック共重合体 (以下(SZtBS) EP (S/tBS)と略記する)を得た。
[0136] く実施例 1 1 >
(1)スルホン化 pmSEBpmSの合成
参考例 1— 1で得られたブロック共重合体 (pmSEBpmS) 51gを、攪拌機付きのガ ラス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 658 mlをカ卩え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 18. 9ml中、 0°Cにて無水酢酸 9. 40mlと硫酸 4. 20mlとを反応させて得られたスルホン化試薬を 、 5分かけて徐々に滴下した。 35°Cにて 6時間攪拌後、 2Lの蒸留水の中に攪拌しな 力 重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留 水で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変 化がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホン化 pmSE BpmSを得た。得られたスルホン化 pmSEBpmSの p メチルスチレン単位のベンゼ ン環のスルホン化率は1 H—NMR分析から 29mol%であった。
(2)燃料電池用電解質膜の作製
(1)で得られたスルホン化 pmSEBpmSの 5質量%の1¾ 溶液を調製し、ポリテト ラフルォロエチレンシート上に約 1000 μ mの厚みでキャストし、室温で十分乾燥させ たのち、十分真空乾燥させることで、厚さ 52 mの膜を得た。
[0137] く実施例 1 2 >
(1)スルホンィヒ(SZtBS) EP (S/tBS)の合成
参考例 1― 2で得られたブロック共重合体( (SZtBS) EP (S/tBS) ) 30gを、攪拌 機付きのガラス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩ィ匕 メチレン 30mlを加え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 1 1. 1ml中、 0°Cにて無水酢酸 5. 53mlと硫酸 2. 47mlとを反応させて得られたスルホ ン化試薬を、 5分かけて徐々に滴下した。 35°Cにて 6時間攪拌後、 1Lの蒸留水の中 に攪拌しながら重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90 °Cの蒸留水で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水 の pHに変化がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホン ィ匕(SZtBS) EP (S/tBS)を得た。得られたスルホン化 (S/tBS) EP (S/tBS)の ベンゼン環のスルホン化率は1 H— NMR分析から 31. Omol%であった。
(2)燃料電池用電解質膜の作製
(1)で得られたスルホン化(SZtBS) EP (S/tBS)の 23質量0 /0のトルエン Zイソブ チルアルコール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東 洋紡製「東洋紡エステルフィルム K1504」]上に約 450 μ mの厚みでコートし、室温 で十分乾燥させたのち、十分真空乾燥させることで、厚さ 49 mの膜を得た。
[0138] <比較例 1 1 >
(1)スルホン化 SEBSの合成
塩化メチレン 34. 2ml中、 0°Cにて無水酢酸 17. 1mlと硫酸 7. 64mlとを反応させ てスルホン化試薬を調製した。一方、 SEBS (スチレン一(エチレン一ブチレン)一ス チレン)ブロック共重合体 [ (株)クラレ製「セプトン 8007」 ] 100gを、攪拌機付きのガラ ス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 1000 mlを加え、 35°Cにて 4時間攪拌して溶解させた。溶解後、スルホンィ匕試薬を 5分かけ て徐々に滴下した。 35°Cにて 5時間攪拌後、 2Lの蒸留水の中に攪拌しながら重合 体溶液を注ぎ、重合体を凝固析出させた。析出した固形分は、 90°Cの蒸留水で 30 分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化がなく なるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホン化 SEBSを得た。 得られたスルホン化 SEBSのスチレン単位のベンゼン環のスルホン化率は1 H— NM R分析から 29. 0mol%であった。
(2)燃料電池用電解質膜の作製
(1)で得られたスルホンィ匕 SEBSの 5質量0 /0の THF溶液を調製し、ポリテトラフルォ 口エチレンシート上に約 1000 μ mの厚みでキャストし、室温で十分乾燥させたのち、 十分真空乾燥させることで、厚さ 52 mの膜を得た。
[0139] <比較例 1 2 >
(2)燃料電池用電解質膜の作製 比較例 1 1の(1)で得られたスルホン化 SEBSの 18質量%のトルエン Zイソブチ ルアルコール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋 紡製「東洋紡エステルフィルム K 1504」 ] 上に約 550 mの厚みでコートし、室温で 十分乾燥させたのち、十分真空乾燥させることで、厚さ 50 mの膜を得た。
[0140] <比較例 1 3 >
パーフルォロカーボンスルホン酸系高分子電解質膜
パーフルォロカーボンスルホン酸系高分子電解質膜として、 DuPont社ナフイオン フィルム(Nafionl 17)を選択した。
[0141] <実施例 1 1及び 1 2並びに比較例 1 1〜1 3の高分子膜の固体高分子型燃 料電池用電解質膜としての性能試験 >
以下の 1)〜3)の試験にぉ 、て試料としては各実施例又は比較例で得られたスル ホンィ匕ブロック共重合体力も調製した膜又はナフイオン膜を使用した。
1)イオン交換容量の測定
試料を密閉できるガラス容器中に秤量 (a (g) )し、そこに過剰量の塩ィ匕ナトリウム飽 和水溶液を添加して一晩攪拌した。系内に発生した塩ィ匕水素を、フ ノールフタレイ ン液を指示薬とし、 0. 01NのNaOH標準水溶液(カ価f)にて滴定(b (ml) )した。ィ オン交換容量は、次式により求めた。
イオン交換容量 (meq/g) = (0. 01 X b X f) /a
[0142] 2)膜の電気抵抗の測定
lcm X 4cmの試料を一対の白金電極で挟み、開放系セルに装着した。測定セル を温度 60°C、相対湿度 90%に調節した恒温恒湿器内に設置し、交流インピーダン ス法により膜の電気抵抗を測定した。
3)メタノール透過速度
メタノール透過速度は、電解質膜を H型セルに挟み込み、セルの片側に 55mlの 1 0M (モル Zリットル)のメタノール水溶液を、他方のセルに 55mlの純水を注入し、 25 °Cで攪拌しながら、電解質膜を通って純水中に拡散してくるメタノール量をガスクロマ トグラフィーを用いて測定することで算出した (電解質膜の面積は、 4. 5cm2) o
[0143] <高分子電解質膜としての性能試験の結果 > 実施例 1 1及び 1 2並びに比較例 1 1及び 1 2で作製した膜、及び比較例 1 3のナフイオン膜の電気抵抗及び 10Mメタノール水溶液のメタノール透過速度を 測定した結果を表 1に示す。
[表 1]
表 1
Figure imgf000046_0001
[0145] 実施例 1 1及び 1 2と比較例 1 1及び 1 2との比較から、ベンゼン環に直接 結合した水素原子がアルキル基で置換された場合、置換されて ヽな 、場合に比し、 膜の電気抵抗は大きく変わらないものの、メタノール透過性は大幅に抑制されること が明らかとなった。アルキル基で置換されたスチレン誘導体の場合、スチレンに比べ 疎水性が高いため、重合体ブロック (A)が形成するイオンチャンネル内の疎水性が 高くなり、メタノール透過速度が小さくなつたものと考えられる。
また、実施例 1—1及び 1—2と比較例 1—3との比較から、本発明の態様 1の高分 子電解質膜は、燃料電池用の電解質膜の代表例であるナフイオン膜に比べ、膜の 電気抵抗もメタノール透過性も大幅に低下していることが明ら力となった。
したがって、本発明の態様 1の高分子電解質膜は固体高分子型燃料電池用高分 子電解質膜として、特に直接型メタノール燃料電池用高分子電解質膜として、非常 に有用であると言える。
[0146] 讀 2陽木目)
<参考例 2— 1 >
ポリスチレン(重合体ブロック(A2a) )、水添ポリイソプレン(重合体ブロック(B) )及び ポリ(4—tert—ブチルスチレン)(重合体ブロック(A2b) )力 なるブロック共重合体 の製造
lOOOmLナスフラスコに、脱水シクロへキサン 456ml及び sec -ブチルリチウム( 1. 3M シクロへキサン溶液) 4. 6mlを仕込んだ後、 4—tert—ブチルスチレン 24. 7m 1、スチレン 15. 8ml及びイソプレン 79. 4mlを逐次添カ卩し、 30°Cで重合させ、ついで 安息香酸フエ-ルの 3質量%シクロへキサン溶液 27. 3mlを添カ卩してカップリングさ せることにより、ポリ(4—tert ブチルスチレン) b—ポリスチレン b—ポリイソプレ ン b—ポリスチレン b—ポリ(4—tert—ブチルスチレン)(以下、 tBSSIStBSと略 記する)を合成した。得られた tBSSIStBSの数平均分子量(GPC測定、ポリスチレン 換算)は 56600であり、 H—NMR測定から求めた 1, 4 結合量は 94. 2%、スチレ ン単位の含有量は 13質量%、 4 tert ブチルスチレン単位の含有量は 28質量0 /0 であった。
合成した tBSSIStBSのシクロへキサン溶液を調製し、十分に窒素置換を行った耐 圧容器に仕込んだ後、 NiZAl系の Ziegler系水素添加触媒を用いて、水素雰囲気 下において 50°Cで 12時間水素添加反応を行い、ポリ(4 tert—ブチルスチレン) —b—ポリスチレン b 水添ポリイソプレン b—ポリスチレン b—ポリ(4 tert ブチルスチレン)(以下、 tBSSEPStBSと略記する)を得た。得られた tBSSEPStBS の水素添カ卩率を1 H— NMR ^ベクトル測定により算出したところ、 99. 9%であった。 <参考例 2— 2 >
ポリスチレン(重合体ブロック(A2a) )、水添ポリイソプレン(重合体ブロック(B) )及び ポリ(4 tert—ブチルスチレン)(重合体ブロック(A2b) )力 なるブロック共重合体 の製造
lOOOmLナスフラスコに、脱水シクロへキサン 152ml及び sec ブチルリチウム(1. 3M シクロへキサン溶液) 1. OOmlを仕込んだ後、 4 tert—ブチルスチレン 5. 14 ml、スチレン 4. 95ml及びイソプレン 30. 9mlを逐次添カ卩し、 30°Cで逐次重合させ、 つ!、で安息香酸フエ-ルの 3質量%シクロへキサン溶液 6. 00mlを添カ卩してカツプリ ングさせることにより、ポリ(4 tert ブチルスチレン) b—ポリスチレン b ポリイ ソプレン一 b ポリスチレン一 b ポリ(4— tert—ブチルスチレン)(tBSSIStBS)を 合成した。得られた tBSSIStBSの数平均分子量 (GPC測定、ポリスチレン換算)は 8 0750であり、 H—NMR測定から求めた 1, 4 結合量は 94. 2%、スチレン単位の 含有量は 15. 0質量%、 4 tert ブチルスチレン単位の含有量は 15. 0質量%で めつに。
合成した tBSSIStBSのシクロへキサン溶液を調製し、十分に窒素置換を行った耐 圧容器に仕込んだ後、 NiZAl系の Ziegler系水素添加触媒を用いて、水素雰囲気 下において 50°Cで 10時間水素添加反応を行い、ポリ(4 tert—ブチルスチレン) —b—ポリスチレン b 水添ポリイソプレン b—ポリスチレン b—ポリ(4 tert ブチルスチレン)(tBSSEPStBS)を得た。得られた tBSSEPStBSの水素添カ卩率を1 H— NMRスペクトル測定により算出したところ、 99. 3%であった。
<参考例 2— 3 >
ポリスチレン(重合体ブロック(A2a) )、水添ポリイソプレン(重合体ブロック(B) )及び ポリ(4 tert—ブチルスチレン)(重合体ブロック(A2b) )力 なるブロック共重合体 の製造
2000mLナスフラスコに、脱水シクロへキサン 1010ml及び sec ブチルリチウム(1 . 3M シクロへキサン溶液) 6. 8mlを仕込んだ後、 4 tert—ブチルスチレン 45. 7 ml、スチレン 44. 0ml及びイソプレン 177mlを逐次添カ卩し、 30°Cで逐次重合させ、 つ!、で安息香酸フエ-ルの 3質量%シクロへキサン溶液 39. 5mlを添カ卩してカツプリ ングさせることにより、ポリ(4 tert ブチルスチレン) b—ポリスチレン b ポリイ ソプレン一 b ポリスチレン一 b ポリ(4— tert—ブチルスチレン)(tBSSIStBS)を 合成した。得られた tBSSIStBSの数平均分子量 (GPC測定、ポリスチレン換算)は 7 1560であり、 H—NMR測定から求めた 1, 4 結合量は 94. 0%、スチレン単位の 含有量は 19. 0質量%、 4 tert ブチルスチレン単位の含有量は 21. 0質量%で めつに。
合成した tBSSIStBSのシクロへキサン溶液を調製し、十分に窒素置換を行った耐 圧容器に仕込んだ後、 NiZAl系の Ziegler系水素添加触媒を用いて、水素雰囲気 下において 50°Cで 8時間水素添加反応を行い、ポリ(4 tert—ブチルスチレン) b ポリスチレン b 水添ポリイソプレン b ポリスチレン b ポリ(4 tert ブ チルスチレン) (tBSSEPStBS)を得た。得られた tBSSEPStBSの水素添カ卩率を1 H — NMRスペクトル測定により算出したところ、 99. 0%であった。
[0149] <参考例 2— 4 >
ポリスチレン (重合体ブロック (A2a) )と水添ポリブタジエン (重合体ブロック(B) )から なるブロック共重合体 (SEBS)の製造
重合体ブロック (A2a)を重合する際に、芳香族ビニル系化合物としてスチレンを用 い、重合体ブロック (B)を重合する際にブタジエンを用いて、既報の方法 (特開平 20 05— 281373)と同様の方法で、ポリスチレン b—ポリブタジエン b—ポリスチレン (以下 SBSと略記する)を合成した。得られた SBSの数平均分子量は 69700であり、 1H—NMR測定から求めた 1, 4 結合量は 60. 4%、スチレン単位の含有量は 39. 6質量%であった。
合成した SBSを用いて、水素添加反応を 50°Cで 7時間行ったことを除 、て参考例 2—1と同様にして水素添カ卩率 99. 7%のポリスチレン b 水添ポリブタジエン b —ポリスチレン (以下 SEBSと略記する)を得た。
[0150] <参考例 2— 5 >
ポリ aーメチルスチレン(重合体ブロック(A2a) )と水添ポリブタジエン(重合体ブロッ ク(B) )力もなるブロック共重合体 (mSEBmS)の製造
既報の方法 (WO 02Z40611号)と同様の方法で、ポリ α—メチルスチレン一 b— ポリブタジエン—b—ポリ (Xーメチルスチレン型トリブロック共重合体(以下 mSBmSと 略記する)を合成した。得られた mSBmSの数平均分子量 (GPC測定、ポリスチレン 換算)は 80590であり、1 H—NMR測定から求めた 1, 4 結合量は 58. 9%、 α—メ チルスチレン単位の含有量は 28. 7質量0 /。であった。また、ポリブタジエンブロック中 には、 aーメチルスチレンが実質的に共重合されていないこと力 H— NMR^ぺク トル測定による組成分析により判明した。
合成した mSBmSを用いて、水素添加反応を 80°Cで 5時間行ったことを除いて参考 例 2—1と同様にして水素添カ卩率 99. 7%のポリ α—メチルスチレン—b 水添ポリブ タジェン—b—ポリ aーメチルスチレン型トリブロック共重合体(以下 mSEBmSと略記 する)を得た。 [0151] <参考例 2— 6 >
ポリスチレン(重合体ブロック(A2a) )、水添ポリイソプレン(重合体ブロック(B) )及び ポリ(4—tert—ブチルスチレン)(重合体ブロック(A2b) )力 なるブロック共重合体 の製造
lOOOmLナスフラスコに、脱水シクロへキサン 479ml及び sec -ブチルリチウム( 1. 3M シクロへキサン溶液) 3. 3mlを仕込んだ後、 4—tert—ブチルスチレン 47. lm 1、スチレン 12. 9ml及びイソプレン 60. 6mlを逐次添カ卩し、 30°Cで逐次重合させ、つ いで安息香酸フエ-ルの 3質量%シクロへキサン溶液 19. 1mlを添カ卩してカップリン グさせることにより、ポリ(4—tert—ブチノレスチレン) b—ポリスチレン b—ポリイソ プレン一 b ポリスチレン一 b ポリ(4—tert—ブチルスチレン)(tBSSIStBS)を合 成した。得られた tBSSIStBSの数平均分子量(GPC測定、ポリスチレン換算)は 65 700であり、 iH—NMR測定から求めた 1, 4 結合量は 94. 0%、スチレン単位の含 有量は 13. 4質量%、 4 tert ブチルスチレン単位の含有量は 43. 5質量%であ つた o
合成した tBSSIStBSのシクロへキサン溶液を調製し、十分に窒素置換を行った耐 圧容器に仕込んだ後、 NiZAl系の Ziegler系水素添加触媒を用いて、水素雰囲気 下において 50°Cで 12時間水素添加反応を行い、ポリ(4 tert—ブチルスチレン) —b—ポリスチレン b 水添ポリイソプレン b—ポリスチレン b—ポリ(4 tert ブチルスチレン)(tBSSEPStBS)を得た。得られた tBSSEPStBSの水素添カ卩率を1 H— NMRスペクトル測定により算出したところ、 99. 9%であった。
[0152] <参考例 2— 7 >
ポリスチレン(重合体ブロック(A2a) )、水添ポリイソプレン(重合体ブロック(B) )及び ポリ(4 tert—ブチルスチレン)(重合体ブロック(A2b) )力 なるブロック共重合体 の製造
lOOOmLナスフラスコに、脱水シクロへキサン 480ml及び sec -ブチルリチウム( 1. 3M シクロへキサン溶液) 4. 8mlを仕込んだ後、 4 tert—ブチルスチレン 43. 9m 1、スチレン 18. 6ml及びイソプレン 56. 4mlを逐次添カ卩し、 30°Cで逐次重合させ、つ V、で安息香酸フエ-ルの 3質量%シクロへキサン溶液 24. 8mlを添カ卩してカップリン グさせることにより、ポリ(4 tert—ブチノレスチレン) b—ポリスチレン b—ポリイソ プレン一 b ポリスチレン一 b ポリ(4— tert—ブチルスチレン)(tBSSIStBS)を合 成した。得られた tBSSIStBSの数平均分子量(GPC測定、ポリスチレン換算)は 47 800であり、1 H—NMR測定から求めた 1, 4 結合量は 94. 1%、スチレン単位の含 有量は 18. 1質量%、 4 tert ブチルスチレン単位の含有量は 41. 3質量%であ つた o
合成した tBSSIStBSのシクロへキサン溶液を調製し、十分に窒素置換を行った耐 圧容器に仕込んだ後、 NiZAl系の Ziegler系水素添加触媒を用いて、水素雰囲気 下において 50°Cで 12時間水素添加反応を行い、ポリ(4 tert—ブチルスチレン) —b—ポリスチレン b 水添ポリイソプレン b—ポリスチレン b—ポリ(4 tert ブチルスチレン)(tBSSEPStBS)を得た。得られた tBSSEPStBSの水素添カ卩率を1 H— NMRスペクトル測定により算出したところ、 99. 9%であった。
<参考例 2— 8 >
ポリスチレン(重合体ブロック(A2a) )、水添ポリイソプレン(重合体ブロック(B) )及び ポリ(4 tert—ブチルスチレン)(重合体ブロック(A2b) )力 なるブロック共重合体 の製造
1400mLオートクレーブに、脱水シクロへキサン 512ml及び sec ブチルリチウム( 0. 8M シクロへキサン溶液) 3. 25mlを仕込んだ後、 4—tert—ブチルスチレン 39 . 1ml、スチレン 12. 1ml及びイソプレン 57. 1mlを逐次添カ卩し、 30°Cで逐次重合さ せ、ついで安息香酸フエ-ルの 3質量%シクロへキサン溶液 10. 4mlを添カ卩してカツ プリングさせることにより、ポリ(4 tert—ブチルスチレン) b—ポリスチレン b ポ リイソプレン b—ポリスチレン b—ポリ(4 tert—ブチルスチレン)(tBSSIStBS) を合成した。得られた tBSSIStBSの数平均分子量 (GPC測定、ポリスチレン換算) は 103900であり、 H—NMR測定から求めた 1, 4 結合量は 94. 0%、スチレン単 位の含有量は 12. 3質量%、 4 tert—ブチルスチレン単位の含有量は 40. 5質量 %であった。
合成した tBSSIStBSのシクロへキサン溶液を調製し、十分に窒素置換を行った耐 圧容器に仕込んだ後、 NiZAl系の Ziegler系水素添加触媒を用いて、水素雰囲気 下において 50°Cで 12時間水素添加反応を行い、ポリ(4—tert—ブチルスチレン) —b—ポリスチレン b 水添ポリイソプレン b—ポリスチレン b—ポリ(4 tert ブチルスチレン)(tBSSEPStBS)を得た。得られた tBSSEPStBSの水素添カ卩率を1 H— NMRR ^ベクトル測定により算出したところ、 99. 9%であった。
[0154] く実施例 2— 1 >
(1)スルホンィ匕 tBSSEPStBSの合成
参考例 2—1で得られたブロック共重合体 (tBSSEPStBS) 15gを、攪拌機付きの ガラス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 1 50mlをカ卩え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 6. 4ml中 、 0°Cにて無水酢酸 3. 2mlと硫酸 1. 4mlとを反応させて得られたスルホン化試薬を 5 分かけて徐々に滴下した。 35°Cにて 12時間攪拌後、 1Lの蒸留水中に攪拌しながら 重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水で 3 0分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化がな くなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 tBSSEPStB Sを得た。得られたスルホンィ匕 tBSSEPStBSの 4— tert—ブチルスチレン単位はス ルホン化されず、スチレン単位のみスルホン化された。スチレン単位中のベンゼン環 のスルホン化率は1 H— NMR分析から 63. 9mol%、イオン交換容量は 0. 76meq/ gであつ 7こ o
[0155] (2)燃料電池用電解質膜の作製
(1)で得られたスルホンィ匕 tBSSEPStBSの 25質量0 /0トルエン Zイソブチルアルコ ール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「東 洋紡エステルフィルム K 1504」]上〖こ約 350 μ mの厚みでコートし、室温で十分乾燥 させたのち、十分真空乾燥させることで、厚さ 50 mの膜を得た。
[0156] (3)固体高分子型燃料電池用単セルの作製
固体高分子型燃料電池用の電極を以下の手順で作製した。 Pt Ru合金触媒担 持カーボンに、 Nafionの 5質量0 /0メタノール溶液を、 Pt—Ru合金と Nafionとの質量 比が 2 : 1になるように添加混合し、均一に分散されたペーストを調製した。このペース トを転写シートに塗布し、 24時間乾燥させて、アノード側の触媒シートを作製した。ま た、 Pt触媒担持カーボンに、低級アルコールと水との混合溶媒中への Nafionの 5質 量%溶液を、 Pt触媒と Nafionとの質量比が 2 : 1になるように添加混合し、均一に分 散されたペーストを調製し、アノード側と同様の方法にて力ソード側の触媒シートを作 製した。(2)で作製した燃料電池用電解質膜を、上記 2種類の触媒シートでそれぞ れ膜と触媒面とが向カゝ ヽ合うように挟み、その外側を 2枚の耐熱性フィルム及び 2枚 のステンレス板で順に挟み、ホットプレス(150°C、 lOOkg/cm2, lOmin)により膜と 触媒シートとを接合させた。最後にステンレス板及び耐熱性フィルムを外し、転写シ ートを剥離して膜—電極接合体を作製した。ついで作製した膜—電極接合体を、 2 枚のカーボンペーパーで挟み、その外側を 2枚のガス供給流路の役割を兼ねた導電 性のセパレータで挟み、さらにその外側を 2枚の集電板及び 2枚の締付板で挟み固 体高分子型燃料電池用の評価セルを作製した。
[0157] く実施例 2— 2 >
(1)スルホンィ匕 tBSSEPStBSの合成
参考例 2— 1で得られたブロック共重合体 (tBSSEPStBS) 15gを、攪拌機付きの ガラス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 1 50mlをカ卩え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 12. 8ml 中、 0°Cにて無水酢酸 6. 4mlと硫酸 2. 8mlとを反応させて得られたスルホン化試薬 を、 5分かけて徐々に滴下した。 35°Cにて 24時間攪拌後、 1Lの蒸留水の中に攪拌 しながら重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸 留水で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに 変化がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 tBS SEPStBSを得た。得られたスルホンィ匕 tBSSEPStBSの 4— tert—ブチルスチレン 単位はスルホン化されず、スチレン単位のみスルホン化された。スチレン単位中のベ ンゼン環のスルホン化率は1 H—NMR分析から 99. 5mol%、イオン交換容量は 1. 15meqZ gであった。
(2)燃料電池用電解質膜の作製
実施例 2— 1の(2)と同様の操作により、厚さ 50 μ mの膜を得た。
[0158] く実施例 2— 3 > (1)スルホンィ匕 tBSSEPStBSの合成
参考例 2— 3で得られたブロック共重合体 (tBSSEPStBS) 15gを、攪拌機付きの ガラス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 1 50mlをカ卩え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 7. 6ml中 、 0°Cにて無水酢酸 3. 8mlと硫酸 1. 6mlとを反応させて得られたスルホン化試薬を、 5分かけて徐々に滴下した。 35°Cにて 12時間攪拌後、 1Lの蒸留水の中に攪拌しな 力 重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留 水で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変 化がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 tBSSE PStBSを得た。得られたスルホンィ匕 tBSSEPStBSの 4— tert—ブチルスチレン単 位はスルホン化されず、スチレン単位のみスルホン化された。スチレン単位中のベン ゼン環のスルホン化率は1 H—NMR分析から 57.0mol%、イオン交換容量は 0. 97 meqZ gであった o
(2)燃料電池用電解質膜の作製
(1)で得られたスルホン化 tBSSEPStBSの 5質量%THF溶液を調製し、ポリテトラ フルォロエチレンシート上に約 1000 μ mの厚みでキャストし、室温で十分乾燥させ たのち、十分真空乾燥させることで、厚さ 50 mの膜を得た。
く実施例 2— 4 >
(1)スルホンィ匕 tBSSEPStBSの合成
参考例 2— 2で得られたブロック共重合体 (tBSSEPStBS) 15gを、攪拌機付きの ガラス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 1 50mlをカ卩え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 6. 1ml中 、 0°Cにて無水酢酸 3. Omlと硫酸 1. 3mlとを反応させて得られたスルホン化試薬を、 5分かけて徐々に滴下した。 35°Cにて 20時間攪拌後、 1Lの蒸留水の中に攪拌しな 力 重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留 水で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変 化がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 tBSSE PStBSを得た。得られたスルホンィ匕 tBSSEPStBSの 4— tert—ブチルスチレン単 位はスルホン化されず、スチレン単位のみスルホン化された。スチレン単位中のベン ゼン環のスルホン化率は1 H—NMR分析から 87.2mol%、イオン交換容量は 1. 12 meqZ gであった o
(2)燃料電池用電解質膜の作製
(1)で得られたスルホン化 tBSSEPStBSを用いた以外は、実施例 2— 3の(2)と同 様の操作により、厚さ 50 mの膜を得た。
[0160] く実施例 2— 5 >
(1)スルホンィ匕 tBSSEPStBSの合成
参考例 2— 3で得られたブロック共重合体 (tBSSEPStBS) 15gを、攪拌機付きの ガラス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 1 50mlをカ卩え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 18. lml 中、 0°Cにて無水酢酸 9. Omlと硫酸 3. 9mlとを反応させて得られたスルホン化試薬 を、 5分かけて徐々に滴下した。 35°Cにて 24時間攪拌後、 1Lの蒸留水の中に攪拌 しながら重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸 留水で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに 変化がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 tBS SEPStBSを得た。得られたスルホンィ匕 tBSSEPStBSの 4— tert—ブチルスチレン 単位はスルホン化されず、スチレン単位のみスルホン化された。スチレン単位中のベ ンゼン環のスルホン化率は1 H—NMR分析から 99.1mol%、イオン交換容量は 1. 6 OmeqZ gでめった。
(2)燃料電池用電解質膜の作製
(1)で得られたスルホン化 tBSSEPStBSを用いた以外は、実施例 2— 3の(2)と同 様の操作により、厚さ 50 mの膜を得た。
[0161] <実施例 2— 6 >
(2)燃料電池用電解質膜の作製
実施例 2— 5の(1)で得られたスルホンィ匕 tBSSEPStBSの 5質量%のトルエン Zィ ソブチルアルコール (質量比 8Z2)溶液を用いた以外は、実施例 2— 3の(2)と同様 の操作により、厚さ 50 mの膜を得た。 [0162] く実施例 2— 7 >
(1)スルホンィ匕 tBSSEPStBSの合成
参考例 2— 6で得られたブロック共重合体 (tBSSEPStBS) 50gを、攪拌機付きの ガラス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 5 OOmlをカ卩え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 49. 5ml 中、 0°Cにて無水酢酸 24. 8mlと硫酸 10. 7mlとを反応させて得られたスルホンィ匕試 薬を 5分かけて徐々に滴下した。 35°Cにて 72時間攪拌後、 1Lの蒸留水中に攪拌し ながら重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留 水で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変 化がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 tBSSE PStBSを得た。得られたスルホンィ匕 tBSSEPStBSの 4— tert—ブチルスチレン単 位はスルホン化されず、スチレン単位のみスルホン化された。スチレン単位中のベン ゼン環のスルホン化率は1 H— NMR分析から 91. Omol%、イオン交換容量は 1. 05 meqZ gであった o
(2)燃料電池用電解質膜の作製
(1)で得られたスルホンィ匕 tBSSEPStBSの 25質量0 /0トルエン Ζイソブチルアルコ ール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「東 洋紡エステルフィルム K 1504」]上〖こ約 200 μ mの厚みでコートし、熱風乾燥機にて 、 80°C、 3分間乾燥させることで、厚さ 31 μ mの膜を得た。
[0163] く実施例 2— 8 >
(1)スルホンィ匕 tBSSEPStBSの合成
参考例 2— 6で得られたブロック共重合体 (tBSSEPStBS) 50gを、攪拌機付きの ガラス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 5 00mlをカ卩え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 16. 9ml 中、 0°Cにて無水酢酸 8. 4mlと硫酸 3. 7mlとを反応させて得られたスルホン化試薬 を 5分かけて徐々に滴下した。 35°Cにて 4時間攪拌後、 1Lの蒸留水中に攪拌しなが ら重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水 で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化 がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 tBSSEP StBSを得た。得られたスルホンィ匕 tBSSEPStBSの 4— tert—ブチルスチレン単位 はスルホン化されず、スチレン単位のみスルホン化された。スチレン単位中のベンゼ ン環のスルホン化率は1 H— NMR分析から 46. Omol%、イオン交換容量は 0. 56m eq, gであつ 7こ o
(2)燃料電池用電解質膜の作製
(1)で得られたスルホンィ匕 tBSSEPStBSの 30質量0 /0トルエン Zイソブチルアルコ ール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「東 洋紡エステルフィルム K 1504」]上に約 150 μ mの厚みでコートし、熱風乾燥機にて 、 80°C、 3分間乾燥させることで、厚さ 29 mの膜を得た。
く実施例 2— 9 >
(1)スルホンィ匕 tBSSEPStBSの合成
参考例 2— 7で得られたブロック共重合体 (tBSSEPStBS) 50gを、攪拌機付きの ガラス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 5 00mlをカ卩え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 67. 0ml 中、 0°Cにて無水酢酸 33. 5mlと硫酸 14. 5mlとを反応させて得られたスルホンィ匕試 薬を 5分かけて徐々に滴下した。 35°Cにて 72時間攪拌後、 1Lの蒸留水中に攪拌し ながら重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留 水で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変 化がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 tBSSE PStBSを得た。得られたスルホンィ匕 tBSSEPStBSの 4— tert—ブチルスチレン単 位はスルホン化されず、スチレン単位のみスルホン化された。スチレン単位中のベン ゼン環のスルホン化率は1 H—NMR分析から 100mol%、イオン交換容量は 1. 52 meqZ gであった o
(2)燃料電池用電解質膜の作製
(1)で得られたスルホンィ匕 tBSSEPStBSの 28質量0 /0トルエン Ζイソブチルアルコ ール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「東 洋紡エステルフィルム K 1504」]上に約 150 μ mの厚みでコートし、熱風乾燥機にて 、 80°C、 3分間乾燥させることで、厚さ 27 mの膜を得た。
[0165] く実施例 2— 10>
(1)スルホンィ匕 tBSSEPStBSの合成
参考例 2— 7で得られたブロック共重合体 (tBSSEPStBS) 50gを、攪拌機付きの ガラス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 5 OOmlをカ卩え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 13. 4ml 中、 0°Cにて無水酢酸 6. 7mlと硫酸 2. 9mlとを反応させて得られたスルホン化試薬 を 5分かけて徐々に滴下した。 35°Cにて 4時間攪拌後、 1Lの蒸留水中に攪拌しなが ら重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水 で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化 がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 tBSSEP StBSを得た。得られたスルホンィ匕 tBSSEPStBSの 4— tert—ブチルスチレン単位 はスルホン化されず、スチレン単位のみスルホン化された。スチレン単位中のベンゼ ン環のスルホン化率は1 H— NMR分析から 30. Omol%、イオン交換容量は 0. 50m eq, gであつ 7こ o
(2)燃料電池用電解質膜の作製
(1)で得られたスルホンィ匕 tBSSEPStBSの 35質量0 /0トルエン Zイソブチルアルコ ール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「東 洋紡エステルフィルム K 1504」]上に約 100 μ mの厚みでコートし、熱風乾燥機にて 、 80°C、 3分間乾燥させることで、厚さ 31 μ mの膜を得た。
[0166] く実施例 2—11 >
(1)スルホンィ匕 tBSSEPStBSの合成
参考例 2— 8で得られたブロック共重合体 (tBSSEPStBS) 50gを、攪拌機付きの ガラス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 5 00mlをカ卩え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 44. 8ml 中、 0°Cにて無水酢酸 22. 4mlと硫酸 9. 7mlとを反応させて得られたスルホンィ匕試 薬を 5分かけて徐々に滴下した。 35°Cにて 72時間攪拌後、 1Lの蒸留水中に攪拌し ながら重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留 水で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変 化がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 tBSSE PStBSを得た。得られたスルホンィ匕 tBSSEPStBSの 4— tert—ブチルスチレン単 位はスルホン化されず、スチレン単位のみスルホン化された。スチレン単位中のベン ゼン環のスルホン化率は1 H—NMR分析から 100mol%、イオン交換容量は 1. 09 meqZ gであった o
(2)燃料電池用電解質膜の作製
(1)で得られたスルホンィ匕 tBSSEPStBSの 15質量0 /0トルエン Ζイソブチルアルコ ール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「東 洋紡エステルフィルム K 1504」]上〖こ約 350 μ mの厚みでコートし、熱風乾燥機にて 、 80°C、 3分間乾燥させることで、厚さ 29 mの膜を得た。
く実施例 2— 12>
(1)スルホンィ匕 tBSSEPStBSの合成
参考例 2— 8で得られたブロック共重合体 (tBSSEPStBS) 50gを、攪拌機付きの ガラス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 5 00mlをカ卩え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 15. 7ml 中、 0°Cにて無水酢酸 7. 9mlと硫酸 3. 4mlとを反応させて得られたスルホン化試薬 を 5分かけて徐々に滴下した。 35°Cにて 4時間攪拌後、 1Lの蒸留水中に攪拌しなが ら重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水 で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化 がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 tBSSEP StBSを得た。得られたスルホンィ匕 tBSSEPStBSの 4— tert—ブチルスチレン単位 はスルホン化されず、スチレン単位のみスルホン化された。スチレン単位中のベンゼ ン環のスルホン化率は1 H— NMR分析から 49. 6mol%、イオン交換容量は 0. 55m eq, gであつ 7こ o
(2)燃料電池用電解質膜の作製
(1)で得られたスルホンィ匕 tBSSEPStBSの 17. 5質量0 /0のトルエン Zイソブチルァ ルコール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「 東洋紡エステルフィルム K1504」]上に約 300 /z mの厚みでコートし、熱風乾燥機に て、 80°C、 3分間乾燥させることで、厚さ 32 mの膜を得た。
[0168] <比較例 2— 1 >
(1)スルホン化 SEBSの合成
塩化メチレン 34. 9ml中、 0°Cにて無水酢酸 17. 5mlと硫酸 7. 6mlとを反応させて スルホン化試薬を調製した。一方、 SEBS (スチレン一(エチレン一ブチレン)一スチ レン)ブロック共重合体 [ (株)クラレ製「セプトン 8007」 ] 100gを、攪拌機付きのガラス 製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 1000m 1を加え、 35°Cにて 4時間攪拌して溶解させた。溶解後、スルホンィ匕試薬を 5分かけて 徐々に滴下した。 35°Cにて 4. 5時間攪拌後、 2Lの蒸留水の中に攪拌しながら重合 体溶液を注ぎ、重合体を凝固析出させた。析出した固形分は、 90°Cの蒸留水で 30 分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化がなく なるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホン化 SEBSを得た。 得られたスルホン化 SEBSのスチレン単位のベンゼン環のスルホン化率は1 H— NM R分析から 26. lmol%、イオン交換容量は 0. 68meqZgであった。
(2)燃料電池用電解質膜の作製
(1)で得られたスルホン化 SEBSを用いる以外実施例 2— 3の(2)と同様の方法に て厚さ 50 mの膜を得た。
[0169] <比較例 2— 2 >
(1)スルホン化 SEPSの合成
SEPS (スチレン一(エチレン一プロピレン)一スチレン)ブロック共重合体 [ (株)クラ レ製「セプトン 2002」]を用い、反応時間を 6時間にした以外は、比較例 2—1の(1)と 同様の条件にてスルホン化 SEPSを得た。得られたスルホン化 SEPSのスチレン単位 のベンゼン環のスルホン化率は1 H—NMR分析から 32. 5mol%、イオン交換容量 は 0. 84meqZgであった。
(2)燃料電池用電解質膜の作製
(1)で得られたスルホン化 SEPSの 22質量0 /0トルエン Zイソブチルアルコール(質 量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「東洋紡エス テルフィルム K1504」]上〖こ約 450 μ mの厚みでコートし、室温で十分乾燥させたの ち、十分真空乾燥させることで、厚さ 50 mの膜を得た。
[0170] <比較例 2— 3 >
(1)スルホン化 SEBSの合成
参考例 2— 4で得られた SEBS30gを、攪拌機付きのガラス製反応容器中にて 1時 間真空乾燥し、ついで窒素置換した後、塩化メチレン 300mlを加え、 35°Cにて 4時 間攪拌して溶解させた。塩化メチレン 13. 4ml中、 0°Cにて無水酢酸 6. 7mlと硫酸 2 . 9mlとを反応させて得られたスルホン化試薬を、 5分かけて徐々に滴下した。 35°C にて 5時間攪拌後、 2Lの蒸留水の中に攪拌しながら重合体溶液を注ぎ、重合体を凝 固析出させた。析出した固形分は、 90°Cの蒸留水で 30分間洗浄し、ついでろ過した 。この洗浄及びろ過の操作を洗浄水の pHに変化がなくなるまで繰り返し、最後にろ 集した重合体を真空乾燥してスルホン化 SEBSを得た。得られたスルホン化 SEBSの スチレン単位のベンゼン環のスルホン化率は1 H— NMR分析から 27. 4mol%、ィォ ン交換容量は 0. 94meqZgであった。
(2)燃料電池用電解質膜の作製
(1)で得られたスルホン化 SEBSを用いる以外実施例 2— 3の(2)と同様の方法に て厚さ 50 mの膜を得た。
[0171] <比較例 2— 4 >
(1)スルホン化 SEBSの合成
参考例 2— 4で得られた SEBS30gを、攪拌機付きのガラス製反応容器中にて 1時 間真空乾燥し、ついで窒素置換した後、塩化メチレン 300mlを加え、 35°Cにて 4時 間攪拌して溶解させた。塩化メチレン 29. 1ml中、 0°Cにて無水酢酸 14. 6mlと硫酸 6. 3mlとを反応させて得られたスルホン化試薬を、 5分かけて徐々に滴下した。 35°C にて 5時間攪拌後、 2Lの蒸留水の中に攪拌しながら重合体溶液を注ぎ、重合体を凝 固析出させた。析出した固形分は、 90°Cの蒸留水で 30分間洗浄し、ついでろ過した 。この洗浄及びろ過の操作を洗浄水の pHに変化がなくなるまで繰り返し、最後にろ 集した重合体を真空乾燥してスルホン化 SEBSを得た。得られたスルホン化 SEBSの スチレン単位のベンゼン環のスルホン化率は1 H— NMR分析から 50. Omol%、ィォ ン交換容量は 1. 61meqZgであった。
(2)燃料電池用電解質膜の作製
(1)で得られたスルホン化 SEBSを用いる以外実施例 2— 3の(2)と同様の方法に て厚さ 50 mの膜を得た。
[0172] <比較例 2— 5 >
( 1 )スルホン化 mSEBmSの合成
参考例 2— 5で得られたブロック共重合体 (mSEBmS) lOOgを、攪拌機付きのガラ ス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 1000 mlをカ卩え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 41. 8ml中、 0°Cにて無水酢酸 21. 0mlと硫酸 9. 34mlとを反応させて得られたスルホン化試薬を 、 5分かけて徐々に滴下した。 35°Cにて 1時間攪拌後、 2Lの蒸留水の中に攪拌しな 力 重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留 水で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変 化がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 mSEB mSを得た。得られたスルホン化 mSEBmSの α—メチルスチレン単位のベンゼン環 のスルホン化率は1 H— NMR分析から 31. 4mol%、イオン交換容量は 0. 70meq/ gであつ 7こ o
(2)燃料電池用電解質膜の作製
(1)で得られたスルホン化 mSEBmSの 18質量0 /0シクロへキサン Zイソプロピルァ ルコール (質量比 7Z3)溶液を用い、約 550 mの厚みでコートした以外は、実施例 2— 1の(1)と同様の方法にて厚さ 50 μ mの膜を得た。
[0173] <比較例 2— 6 >
パーフルォロカーボンスルホン酸系高分子電解質膜として、 DuPont社ナフイオン フィルム(Nafionl 17)を選択した。
[0174] <比較例 2— 7 >
スルホン化 mSEBmSの合成
参考例 2— 5で得られたブロック共重合体 (mSEBmS) 90gを攪拌機付きのガラス 製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 816ml を加え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 18. 9ml中、 0 °Cにて無水酢酸 9. 40mlと硫酸 4. 20mlとを反応させて得られたスルホン化試薬を、 5分かけて徐々に滴下した。 35°Cにて 4時間攪拌後、 2Lの蒸留水の中に攪拌しなが ら重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水 で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化 がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 mSEBm Sを得た。得られたスルホン化 mSEBmSの α—メチルスチレン単位のベンゼン環の スルホン化率は1 H— NMR分析から 22. 5mol%、イオン交換容量は 0. 49meq/g であった。
(2)燃料電池用電解質膜の作製
(1)で得られたスルホン化 mSEBmSの 17. 5質量0 /0トルエン Zイソブチルアルコー ル (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「東洋 紡エステルフィルム K 1504」]上〖こ約 300 μ mの厚みでコートし、熱風乾燥機にて、 8 0°C、 3分間乾燥することで、厚さ 30 mの膜を得た。
<比較例 2— 8 >
スルホン化 mSEBmSの合成
参考例 2— 5で得られたブロック共重合体 (mSEBmS) 35. 5gを、攪拌機付きのガ ラス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 300 mlをカ卩え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 14. 7ml中、 0°Cにて無水酢酸 7. 30mlと硫酸 3. 30mlとを反応させて得られたスルホン化試薬を 、 5分かけて徐々に滴下した。 35°Cにて 7時間攪拌後、 2Lの蒸留水の中に攪拌しな 力 重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留 水で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変 化がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 mSEB mSを得た。得られたスルホン化 mSEBmSの α—メチルスチレン単位のベンゼン環 のスルホン化率は1 H— NMR分析から 50. 5mol%、イオン交換容量は 1. 06meq/ gであつ 7こ o
(2)燃料電池用電解質膜の作製 (1)で得られたスルホン化 mSEBmSの 16. 5質量0 /0トルエン Zイソブチルアルコー ル (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「東洋 紡エステルフィルム K 1504」]上〖こ約 300 μ mの厚みでコートし、熱風乾燥機にて、 8 0°C、 3分間乾燥することで、厚さ 30 mの膜を得た。
[0176] <実施例 2— 1〜2— 12及び比較例 2— 1〜2— 8の高分子電解質膜の固体高分子 型燃料電池用電解質膜としての性能試験〉
以下の 2)〜7)の試験にぉ 、て試料としては各実施例又は比較例で得られたスル ホンィ匕ブロック共重合体力も調製した膜又はナフイオン膜を使用した。 1)の試験にお ける試料としては各実施例又は比較例で得られたスルホンィ匕ブロック共重合体又は ナフイオン膜を使用した。
1)イオン交換容量の測定
態様 1 (アルキル置換)におけると同様
[0177] 2)膜強度の測定
試料をダンベル状に成形して、 23°C、相対湿度 50%下に 24時間以上保管した試 料 (ドライ試料)、及び 23°C、水中に 24時間以上保管した試料 (ウエット試料)につい て、引張速度 500mmZminの条件での破断強度を測定した。
3)膜のイオン伝導度の測定
lcm X 4cmの試料を一対の白金電極で挟み、開放系セルに装着した。測定セル を温度 60°C、相対湿度 90%に調節した恒温恒湿器内、又は温度 40°Cの水中に設 置し、交流インピーダンス法により膜のイオン伝導度を測定した。
[0178] 4)膜のイオン伝導度の安定性試験
lcm X 4cmの試料を一対の白金電極で挟み、開放系セルに装着した。測定セル を温度 40°C、相対湿度 50%に調節した恒温恒湿器内に設置した後、交流インピー ダンス法により膜のイオン伝導度を測定した。ついで、測定セルを温度 40°Cの水中 に設置し、交流インピーダンス法により膜の電気抵抗及びイオン伝導度を経時的に 測定し、 1分間のイオン伝導度の変化率が 1%以下になった段階を安定ィ匕時間とし た。
5)線膨張率の測定 試料を 23°C、相対湿度 50%下に 12時間以上保管した後、 1cm X 4cm片に切り取 り、 10M— MeOH水溶液中に 4時間浸漬した後、試験片の長辺方向の長さ(b (cm) を計測し、次式により線膨張率を求めた。
線膨張率 (%) = (b-4) /4 X 100
[0179] 6)メタノール透過速度の測定
メタノール透過速度は、試料である電解質膜を H型セルに挟み込み、セルの片側 に 55mlの 3M (モル Zリットル)のメタノール水溶液を、他方のセルに 55mlの純水を 注入し、 25°Cで攪拌しながら、電解質膜を通って純水中に拡散してくるメタノール量 をガスクロマトグラフィーを用いて測定することで算出した (電解質膜の面積は、 4. 5c m )。
7)燃料電池用単セルの出力性能の評価
実施例 2— 1の(3)で作成した固体高分子型燃料電池用単セルについて、出力性 能を評価した。燃料には 1M— MeOH水溶液を用い、酸化剤には空気を用いた。 M eOH : l. 8ccZmin、空気: 250ccZminの条件下、セル温度 60°Cにて試験した。
[0180] <高分子電解質膜としての性能試験の結果 >
実施例 2— 1〜 2— 6、及び比較例 2— 1〜 2— 4及び 2— 7〜 2— 8で作製した膜、 及び比較例 2— 6のナフイオン膜のイオン伝導度 (恒温恒湿器内)、線膨張率及び破 断強度を表 2に示す。また、実施例 2— 7〜2— 12で作製した膜のイオン伝導度 (水 中)、線膨張率及び破断強度を表 3に示す。表 2及び表 3において保持率 (%)は [ ( ウエット試料にっ 、ての破断強度 (MPa) / (ドライ試料にっ 、ての破断強度 (MPa) ] X 100として算出した。
[0181] [表 2] 表 2
Figure imgf000066_0001
[ε挲] [28 TO]
606TS0/.00Zdf/X3d 99 S8 60/ 00Z OAV 表 3
Figure imgf000068_0001
[0183] 表 2から、比較例 2— 1〜2—4の拘束相を有さないブロック共重合体力も作成され た膜、及び比較例 2— 6の燃料電池用の電解質膜の代表例であるナフイオン膜に比 ベ、拘束相を形成する重合体ブロック (A2b)が存在する実施例 2— 1〜2— 6の高分 子電解質膜は、イオン伝導度及び Z又はイオン交換容量が同等である場合には、ド ライ時に対するウエット時の破断強度の保持率が大幅に改善され、寸法変化の指標 になる線膨張率も大幅に低減できることが明らかである。
また、表 3の実施例 2— 7〜2— 12のように拘束相の重量分率を大きくした高分子電 解質膜においては、比較例 2— 7及び 2— 8との比較から、イオン伝導度及び Z又は イオン交換容量が同等である場合には、破断強度の保持率及び線膨張率ともに、更 に改善されて 、ることが明らかである。
[0184] 実施例 2—1及び 2— 7〜2— 12並びに比較例 2— 1、 2— 5、 2— 7及び 2— 8で作 製した膜のイオン伝導度及び線膨張率、並びに該膜につ 、て及び該膜を 10M (モ ル Zリットル)のメタノール水溶液に室温下、 68時間浸漬し、ついで純水で十分洗浄 した後の該膜につ 、て、 3Mメタノール水溶液のメタノール透過速度を測定した結果 を表 4に示す。表 4においてメタノール透過速度の変化率(%)は [ (10Mメタノール水 溶液処理後の 3Mメタノール水溶液のメタノール透過速度)( mol'cm_2'min_1) Z (10Mメタノール水溶液処理前の 3Mメタノール水溶液のメタノール透過速度)( μ mol'cm_2'min_1) ] X IOOとして算出した。
[0185] [表 4]
表 4
Figure imgf000070_0001
[0186] 表 4力ら、比較例 2— 1、 2— 5、 2— 7及び 2— 8の拘束相を有さないブロック共重合 体から作製された電解質膜では、線膨張率と 10Mメタノール水溶液処理後の膜のメ タノール透過速度の変化率とを同時に低く保つことが困難であるのに対し、実施例 2 - 1及び 2— 7〜2— 12の拘束相を形成する重合体ブロック (A2b)を有するブロック 共重合体カゝら作製された電解質膜では、イオン伝導度及び Z又はイオン交換容量 が同等である場合には、線膨張率と処理後の膜のメタノール透過速度の変化率とを 同時に低く保つことができることが明らかとなった。
[0187] 実施例 2— 7、 2— 9及び 2— 10及び比較例 2— 7及び 2— 8で作製した膜の環境が 乾燥状態 (40°C、相対湿度 50%)から湿潤状態 (40°C、水中)に変化した場合につ いて、膜のイオン伝導度の安定化時間を測定した結果を表 5に示す。
[0188] [表 5]
5
Figure imgf000071_0001
[0189] 表 5から、比較例 2— 7及び 2— 8に比べ、実施例 2— 7、 2— 9及び 2— 10の拘束相 を形成する重合体ブロック (A2b)を有するブロック共重合体から作成された電解質 膜では、イオン伝導度が安定するのに要する時間を大幅に短縮化できることが明ら カゝとなった。
[0190] これらの結果から、本発明の態様 2の高分子電解質膜は、固体高分子型燃料電池 用高分子電解質膜として、耐久性に優れ、長時間運転時に安定して使用でき、かつ 始動性にも優れていることが明ら力となった。
[0191] 実施例 2— 1の(3)で作製した固体高分子型燃料電池用単セルの発電特性として 、電流密度に対する電圧の変化を測定した。結果を図 1に示す。単セルの開放電圧 は 0. 68V,最高出力密度は 50mWZcm2であり、固体高分子型燃料電池用高分子 電解質膜として、特に直接型メタノール燃料電池用高分子電解質膜として有用であ ることが明ら力となった。
また、発電試験後の単セルを解体したところ、その膜-電極接合体には剥離等全く 見られず、接合性にも優れていることが明らかとなった。
[0192] 體 3醜)
<実施例 3 - 1 >
(1)スルホン化 pmSEBpmSの合成
参考例 1で得られたブロック共重合体 (pmSEBpmS) 51gを、攪拌機付きのガラス 製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 658ml を加え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 18. 9ml中、 0 °Cにて無水酢酸 9. 40mlと硫酸 4. 20mlとを反応させて得られたスルホン化試薬を、 5分かけて徐々に滴下した。 35°Cにて 7時間攪拌後、 2Lの蒸留水の中に攪拌しなが ら重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水 で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化 がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホン化 pmSEBp mSを得た。得られたスルホン化 pmSEBpmSの p—メチルスチレン単位のベンゼン 環のスルホン化率は1 H— NMR分析から 33mol%、イオン交換容量は 0. 75meq/ gであつ 7こ o
(2)燃料電池用電解質膜の作製
( 1 )で得られたスルホン化 pmSEBpmSの 18質量0 /0トルエン Zイソブチルアルコ一 ル (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「東洋 紡エステルフィルム K 1504」]上〖こ約 550 μ mの厚みでコートし、室温で十分乾燥さ せたのち、十分真空乾燥させることで、厚さ 50 mの膜を得た。得られた膜を、 130 。C、 IMPaの圧力下で 5分間熱プレスすることにより膜を得た。この膜をスルホン化 p mSEBpmSの良溶媒である THFに 3質量%となるように加えたところ、膜は膨潤した 力 溶解しな力つた。
[0193] く実施例 3— 2 > (2)燃料電池用電解質膜の作製
実施例 3— 1の(1)で得られたスルホン化 pmSEBpmSの 18質量0 /0トルエン Zイソ ブチルアルコール(質量比 8Z2)溶液を調製し、 1, 1 ビス(tert ブチルペルォキ シ)シクロへキサン (商品名:パーへキサ C ; (株)日本油脂製)を 4 メチル基に対し 0 . 1モル当量添加して溶液を調製した以外は、実施例 3—1の(2)と同様にして膜を 得た。熱プレス処理前の膜については、スルホン化 pmSEBpmSの良溶媒である TH Fへの 3質量%溶液を作成することができた力 熱プレス処理後の膜については、膜 は膨潤したが、溶解しなカゝつた。
[0194] <比較例 3— 1 >
(2)燃料電池用電解質膜の作製
熱プレスを行わない以外は、実施例 3—1の(2)と同様の操作により、厚さ 50 /z mの 膜を得た。該膜を THFに 3質量%となるように加えたところ溶解した。
[0195] <比較例 3— 2 >
(2)燃料電池用電解質膜の作製
比較例 1 1の(1)で得られたスルホン化 SEBSを用いる以外は、比較例 3— 1の( 2)と同様の方法にて厚さ 50 mの膜を得た。得られた膜は THFに溶解した。下記 に示す性能試験には該膜を用いた。また、該膜を実施例 3—1の(2)と同様に熱プレ ス処理した膜は THFに 3質量%となるようにカ卩えたところ溶解した。
[0196] 比較例 3—1では熱プレス処理を行っていない膜が THFに溶解したのに対し、実 施例 3— 1の熱プレス処理膜では THFに溶解せず、膨潤したことから架橋が進行し ていることが確認された。また、比較例 3— 2では重合体ブロック (A1)がスチレン単 位力も構成されている膜を熱プレス処理した場合、 THFに溶解したことから、実施例 3— 1では、 p メチルスチレン単位力も構成されている重合体ブロック (A1)が架橋さ れて 、ることが確認された。
[0197] <実施例 3— 1及び 3— 2並びに比較例 3— 1及び 3— 2の高分子電解質膜の固体高 分子型燃料電池用電解質膜としての性能試験 >
以下の 1)の試験において、試料としては実施例 3—1の(1)もしくは比較例 3— 2の (1)で得られたスルホンィ匕ブロック共重合体を用いた。以下の 2)及び 3)の試験にお いて、試料としては各実施例又は比較例の(2)で得られた、スルホンィ匕ブロック共重 合体から調製した膜、及び該膜を 10M (モル Zリットル)のメタノール水溶液に室温 下、 12時間浸潰した後、純水で十分洗浄した膜を使用した。
1)イオン交換容量
態様 1 (アルキル置換)におけると同様
2)イオン伝導度
lcm X 4cmの試料を一対の白金電極で挟み、開放系セルに装着した。測定セル を温度 60°C、相対湿度 90%に調節した恒温恒湿器内に設置し、交流インピーダン ス法によりイオン伝導度を測定した。
3)メタノール透過速度
態様 2 (拘束相)におけると同様
[0198] <高分子電解質膜としての性能試験の結果 >
結果を表 6に示す。
[0199] [表 6]
表 6
Figure imgf000074_0001
表 6から明らかなごとぐ 10Mメタノール水溶液による膜処理前後の特性に関して、 特に 3Mメタノール透過速度は変化しやすぐ比較例 3— 1及び 3— 2の重合体ブロッ ク (A1)が架橋されて!、な 、膜では、処理後の膜のメタノール透過速度が大幅に大き くなつたのに対し、実施例 3—1及び 3— 2の重合体ブロック (A1)が架橋された膜で は、膜処理後のメタノール透過速度の変化が大幅に抑制された。架橋により重合体 ブロック (Al)が形成するイオンチャンネルの構造変化が抑制され、メタノール透過速 度等の特性の変化が大幅に抑制されたものと考えられる。
これらの結果から、本発明の態様 3の高分子電解質膜は、メタノールを燃料とする 固体高分子型燃料電池において、長時間運転時に安定して使用可能であり、ひい ては耐久性に優れ、固体高分子型燃料電池用高分子電解質膜として非常に有用で あることが明ら力となった。
図面の簡単な説明
[図 1]固体高分子型燃料電池用単セルの電流密度一出力電圧を示す図である (実 施例 2— 1 (3) )。

Claims

請求の範囲
[1] a 炭素原子に結合した水素原子が非置換であるか、炭素数 1〜4のアルキル基 もしくは 1〜3個の置換基を有していてもよい炭素数 6〜14のァリール基で置換され、 かつ、芳香環に直接結合した水素原子の少なくとも 1つが炭素数 1〜8のアルキル基 で置換された芳香族ビュル系化合物単位を主たる繰返し単位として有する重合体ブ ロック (A)及び柔軟相を形成する重合体ブロック (B)を構成成分とし、重合体ブロック (A)にイオン伝導性基を有するブロック共重合体を主成分として含有する高分子電 解質膜。
[2] 重合体ブロック (A)が
(1)下記一般式 (I)
R1
― C― CH2― (0 Ar1
(式中、 Ar1は 1個の炭素数 1〜8のアルキル基で置換され、さらに 1もしくは 2個の置 換基を有していてもよい炭素数 6〜 14のァリール基を表し、 R1は水素原子、炭素数 1 〜4のアルキル基又は 1〜3個の置換基を有していてもよい炭素数 6〜14のァリール 基を表す)で表される芳香族ビニル系化合物単位を主たる繰返し単位として有する 重合体ブロック (A1)である力、又は
(2)下記一般式 (II)
R1
—— C—— CH2—— (II) Ar2
(式中、 Ar2は 1〜3個の置換基を有していてもよい炭素数 6〜14のァリール基を表し 、 R1は水素原子、炭素数 1〜4のアルキル基又は 1〜3個の置換基を有していてもよ V、炭素数 6〜 14のァリール基を表す)で表される芳香族ビニル系化合物単位を主た る繰返し単位として有する重合体ブロック (A2a)及び拘束相を形成する重合体プロ ック (A2b)から構成され、重合体ブロック (A2b)が下記一般式 (III)
Figure imgf000077_0001
(式中、 R2〜R4はそれぞれ独立に水素原子又は炭素数 1〜8のアルキル基を表すが 、少なくとも 1つは炭素数 1〜8のアルキル基であり、 R5は水素原子又は炭素数 1〜4 のアルキル基を表す)で表される芳香族ビニル系化合物単位を主たる繰返し単位と して有する重合体ブロック (A2bl)もしくは結晶性ポリオレフインブロックである重合体 ブロック (A2)であり、かつ、イオン伝導性基は、(1)の場合には、重合体ブロック (A1 )上に存在し、(2)の場合には、重合体ブロック (A2a)上に存在する請求項 1記載の 電解質膜。
一般式 (I)で表される芳香族ビニル系化合物単位が下記一般式 (la)
Figure imgf000077_0002
(式中、 R6〜R8はそれぞれ独立に水素原子又は炭素数 1〜4のアルキル基を表すが 、少なくとも 1つは炭素数 1〜4のアルキル基であり、 R9は水素原子、炭素数 1〜4の アルキル基又はフエ-ル基を表す)で表される芳香族ビニル系化合物単位であり、 一般式 (Π)で表される芳香族ビニル系化合物単位が下記一般式 (Ila)
Figure imgf000078_0001
(式中、 R1U〜R "はそれぞれ独立に水素原子又は炭素数 1〜4のアルキル基を表し
、 R9は水素原子、炭素数 1〜4のアルキル基又はフエ-ル基を表す)で表される芳香 族ビニル系化合物単位である請求項 2記載の電解質膜。
[4] ブロック共重合体が重合体ブロック (A1)と重合体ブロック (B)から構成される請求 項 2又は 3記載の電解質膜。
[5] 重合体ブロック (A1)と重合体ブロック(B)との質量比が 95: 5〜5: 95である請求項 請求項 4記載の電解質膜。
[6] ブロック共重合体が重合体ブロック (A2a)と重合体ブロック(A2b)と重合体ブロック
(B)から構成される請求項 2又は 3記載の電解質膜。
[7] 重合体ブロック (A2b)と重合体ブロック(B)との質量比が 95: 5〜5: 95である請求 項 6記載の電解質膜。
[8] 重合体ブロック (A2a)及び重合体ブロック(A2b)の和と重合体ブロック(B)との質 量比が 90: 10〜: LO: 90である請求項 6又は 7記載の電解質膜。
[9] (1)の場合は重合体ブロック (A1)が架橋され、 (2)の場合は重合体ブロック (A2a) が架橋されて 、る請求項 2〜8の 、ずれか 1項に記載の電解質膜。
[10] 架橋が熱架橋であって、(1)の場合は上記一般式 (I)における Ar1が 1個の 1位の 炭素原子に少なくとも 1個の水素原子が結合している炭素数 1〜8のアルキル基で置 換され、さらに 1もしくは 2個の置換基を有していてもよい炭素数 6〜14のァリール基 であり、(2)の場合は上記一般式 (Π)における Ar2が 1個の 1位の炭素原子に少なくと も 1個の水素原子が結合している炭素数 1〜8のアルキル基で置換され、さらに 1もし くは 2個の置換基を有して 、てもよ 、炭素数 6〜 14のァリール基である請求項 9記載 の電解質膜。 [11] 重合体ブロック(B)が炭素数 2〜8のアルケン単位、炭素数 5〜8のシクロアルケン 単位、炭素数 7〜 10のビュルシクロアルケン単位、炭素数 4〜8の共役ジェン単位及 び炭素数 5〜8の共役シクロアルカジエン単位、並びに炭素 炭素二重結合の一部 もしくは全部が水素添加された炭素数 7〜: L0のビニルシクロアルケン単位、炭素数 4 〜8の共役ジェン単位及び炭素数 5〜8の共役シクロアルカジエン単位よりなる群か ら選ばれる少なくとも 1種を主たる繰返し単位として有する重合体ブロックである請求 項 1〜12のいずれか 1項に記載の電解質膜。
[12] 重合体ブロック(B)が炭素数 2〜8のアルケン単位、炭素数 4〜8の共役ジェン単位 及び炭素 炭素二重結合の一部もしくは全部が水素添加された炭素数 4〜8の共役 ジェン単位力 選ばれる少なくとも 1種を主たる繰返し単位として有する重合体ブロッ クである請求項 11記載の電解質膜。
[13] 一般式 (I)もしくは (la)又は一般式 (ΠΙ)における該芳香族ビニル系化合物単位が p—メチルスチレン単位又は 4—tert—ブチルスチレン単位であり、重合体ブロック( B)が炭素数 4〜8の共役ジェン単位及び炭素 炭素二重結合の一部もしくは全部 が水素添加された炭素数 4〜8の共役ジェン単位カゝら選ばれる少なくとも 1種を主た る繰返し単位として有する重合体ブロックである請求項 2〜 12のいずれ力 1項に記載 の電解質膜。
[14] イオン伝導性基が SO M基又は PO HM (式中、 Mは水素原子、アンモ-ゥム
3 3
イオン又はアルカリ金属イオンを表す)で表される基である請求項 1〜13のいずれか 1項に記載の電解質膜。
[15] イオン交換容量が、 0. 30meqZg以上である請求項 1〜14のいずれ力 1項に記載 の電解質膜。
[16] 請求項 1〜15のいずれか 1項に記載の電解質膜を使用した膜 電極接合体。
[17] 請求項 1〜15のいずれか 1項に記載の電解質層膜を使用した固体高分子型燃料 電池。
PCT/JP2007/051909 2006-02-13 2007-02-05 高分子電解質膜、膜-電極接合体及び固体高分子型燃料電池 WO2007094185A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07708027A EP1986257B1 (en) 2006-02-13 2007-02-05 Polyelectrolyte film, film-electrode assembly, and solid-polymer-type fuel cell
CN2007800053098A CN101385173B (zh) 2006-02-13 2007-02-05 聚合物电解质膜、膜电极组件和聚合物电解质燃料电池
KR1020087019918A KR101353211B1 (ko) 2006-02-13 2007-02-05 고분자 전해질막, 막-전극 접합체 및 고체 고분자형 전해질연료 전지
US12/278,794 US8349513B2 (en) 2006-02-13 2007-02-05 Polymer electrolyte membrane, membrane-electrode assembly and polymer electrolyte fuel cell
HK09105637.9A HK1128064A1 (en) 2006-02-13 2009-06-23 Polymer electrolyte membrane, membrane-electrode assembly and polymer electrolyte fuel cell

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-034682 2006-02-13
JP2006034682A JP5188025B2 (ja) 2006-02-13 2006-02-13 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JP2006-049002 2006-02-24
JP2006049002 2006-02-24
JP2006-080930 2006-03-23
JP2006080930A JP2007258003A (ja) 2006-03-23 2006-03-23 高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池

Publications (1)

Publication Number Publication Date
WO2007094185A1 true WO2007094185A1 (ja) 2007-08-23

Family

ID=38371371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051909 WO2007094185A1 (ja) 2006-02-13 2007-02-05 高分子電解質膜、膜-電極接合体及び固体高分子型燃料電池

Country Status (6)

Country Link
US (1) US8349513B2 (ja)
EP (1) EP1986257B1 (ja)
KR (1) KR101353211B1 (ja)
HK (1) HK1128064A1 (ja)
TW (1) TWI451623B (ja)
WO (1) WO2007094185A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090148744A1 (en) * 2007-12-11 2009-06-11 Bose Corporation Fuel cell polymer electrolyte membrane
WO2010047329A1 (ja) * 2008-10-24 2010-04-29 株式会社クラレ 有機―無機複合電解質、電解質膜、膜―電極接合体及び燃料電池
WO2011065460A1 (ja) * 2009-11-30 2011-06-03 株式会社クラレ 高分子電解質、高分子電解質膜、膜-電極接合体及び固体高分子型燃料電池
WO2011145588A1 (ja) * 2010-05-21 2011-11-24 株式会社クラレ 高分子電解質及びそれからなる高分子電解質膜
US8216740B2 (en) 2006-12-12 2012-07-10 Bose Corporation Fuel cell

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI326691B (en) 2005-07-22 2010-07-01 Kraton Polymers Res Bv Sulfonated block copolymers, method for making same, and various uses for such block copolymers
EP2157646A4 (en) * 2007-06-04 2011-12-28 Kuraray Co POLYMER ELECTROLYTE, POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE ARRAY AND SOLIDS POLYMER FUEL CELL
WO2009098982A1 (ja) 2008-02-06 2009-08-13 Kuraray Co., Ltd. 膜-電極接合体及び固体高分子型燃料電池
US8012539B2 (en) 2008-05-09 2011-09-06 Kraton Polymers U.S. Llc Method for making sulfonated block copolymers, method for making membranes from such block copolymers and membrane structures
US8445631B2 (en) 2009-10-13 2013-05-21 Kraton Polymers U.S. Llc Metal-neutralized sulfonated block copolymers, process for making them and their use
US8263713B2 (en) 2009-10-13 2012-09-11 Kraton Polymers U.S. Llc Amine neutralized sulfonated block copolymers and method for making same
JP2012064429A (ja) * 2010-09-16 2012-03-29 Toyota Motor Corp 膜電極接合体、燃料電池、および、膜電極接合体の製造方法
US9429366B2 (en) 2010-09-29 2016-08-30 Kraton Polymers U.S. Llc Energy recovery ventilation sulfonated block copolymer laminate membrane
US9394414B2 (en) 2010-09-29 2016-07-19 Kraton Polymers U.S. Llc Elastic, moisture-vapor permeable films, their preparation and their use
CN103201298B (zh) 2010-10-18 2015-06-24 科腾聚合物美国有限责任公司 生产磺化的嵌段共聚物组合物的方法
WO2012066773A1 (ja) * 2010-11-16 2012-05-24 日東電工株式会社 耐酸化性に優れたプロトン伝導性高分子電解質膜およびその製造方法
US9861941B2 (en) 2011-07-12 2018-01-09 Kraton Polymers U.S. Llc Modified sulfonated block copolymers and the preparation thereof
JP5792018B2 (ja) * 2011-10-03 2015-10-07 株式会社クラレ 高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
WO2015052860A1 (ja) * 2013-10-11 2015-04-16 日東電工株式会社 薄層転写用シート、電極触媒層付薄層転写用シート、薄層転写用シートの製造方法、および膜電極接合体の製造方法
US10950882B2 (en) * 2018-02-05 2021-03-16 Toyota Jidosha Kabushiki Kaisha Proton-conductive membrane and fuel cell
JP7103912B2 (ja) * 2018-10-24 2022-07-20 トヨタ自動車株式会社 橋架け構造を有するプロトン伝導膜及び燃料電池

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10503788A (ja) * 1994-05-23 1998-04-07 デイイス コーポレーション 新規なイオン伝導膜を組込んでいる燃料電池
JPH10101731A (ja) * 1996-09-27 1998-04-21 Sony Corp 高分子電解質およびその製造方法
JPH11203936A (ja) * 1998-01-19 1999-07-30 Matsushita Electric Ind Co Ltd プロトン伝導体および該プロトン伝導体を用いた電気化学素子
JP2001210336A (ja) * 2000-01-28 2001-08-03 Kanegafuchi Chem Ind Co Ltd 燃料電池用膜及びそれを使用した燃料電池
JP2002294088A (ja) * 2001-03-30 2002-10-09 Jsr Corp スルホン化ポリマー組成物、その製造方法、およびプロトン伝導材料
JP2003142125A (ja) * 2001-11-01 2003-05-16 Ube Ind Ltd イオン伝導膜
JP2004504928A (ja) * 2000-07-28 2004-02-19 ダイス アナリティック コーポレーション 水及びイオン伝導性膜並びにその使用
WO2004045014A2 (en) * 2002-11-07 2004-05-27 Gas Technology Institute High stability membrane for proton exchange membrane fuel cells
JP2004247185A (ja) * 2003-02-14 2004-09-02 Kuraray Co Ltd 固体高分子型燃料電池用シール材
JP2005509243A (ja) * 2001-04-23 2005-04-07 モトローラ・インコーポレイテッド 高分子電解質膜
JP2005322491A (ja) * 2004-05-07 2005-11-17 Uni-Chemical Co Ltd リン酸基及び共役ジエン系液状オリゴマー部を有する固体高分子電解質膜並びにその用途
JP2006210326A (ja) * 2004-12-27 2006-08-10 Kuraray Co Ltd 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JP2006286521A (ja) * 2005-04-04 2006-10-19 Kaneka Corp 固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池に使用する、樹脂組成物
JP2007042573A (ja) * 2005-06-29 2007-02-15 Kuraray Co Ltd 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG73410A1 (en) 1992-06-13 2000-06-20 Hoechst Ag Polymer electrolyte membrane and process for the production thereof
EP0818474B1 (en) 1996-07-08 2005-01-12 Sony Corporation Method of manufacture polyelectrolyte
FI107932B (fi) * 1999-02-16 2001-10-31 Mikael Paronen Polymeerikalvo ja menetelmä sen valmistamiseksi
JP2003288916A (ja) 2002-03-27 2003-10-10 Kanegafuchi Chem Ind Co Ltd 直接アルコール形燃料電池膜およびその製法
JP3937912B2 (ja) 2002-05-10 2007-06-27 Jsr株式会社 直接メタノール型燃料電池用電解質膜及びそれを使用した直接メタノール型燃料電池
US20040005490A1 (en) 2002-07-05 2004-01-08 Qinbai Fan High stability membrane for proton exchange membrane fuel cells
JP2004191734A (ja) 2002-12-12 2004-07-08 Sharp Corp プラスチック基板およびそれを備える液晶表示装置
KR100696460B1 (ko) * 2003-06-05 2007-03-19 삼성에스디아이 주식회사 수소이온 전도성 폴리머
EP1852928B1 (en) 2004-12-20 2011-11-16 Kuraray Co., Ltd., Kurashiki Plant Ion-conductive binder, membrane-electrode assembly and fuel cell
TWI326691B (en) 2005-07-22 2010-07-01 Kraton Polymers Res Bv Sulfonated block copolymers, method for making same, and various uses for such block copolymers
JP2007336790A (ja) 2006-06-19 2007-12-27 Kuraray Co Ltd 高分子電気化学素子
EP2157646A4 (en) 2007-06-04 2011-12-28 Kuraray Co POLYMER ELECTROLYTE, POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE ARRAY AND SOLIDS POLYMER FUEL CELL

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10503788A (ja) * 1994-05-23 1998-04-07 デイイス コーポレーション 新規なイオン伝導膜を組込んでいる燃料電池
JPH10101731A (ja) * 1996-09-27 1998-04-21 Sony Corp 高分子電解質およびその製造方法
JPH11203936A (ja) * 1998-01-19 1999-07-30 Matsushita Electric Ind Co Ltd プロトン伝導体および該プロトン伝導体を用いた電気化学素子
JP2001210336A (ja) * 2000-01-28 2001-08-03 Kanegafuchi Chem Ind Co Ltd 燃料電池用膜及びそれを使用した燃料電池
JP2004504928A (ja) * 2000-07-28 2004-02-19 ダイス アナリティック コーポレーション 水及びイオン伝導性膜並びにその使用
JP2002294088A (ja) * 2001-03-30 2002-10-09 Jsr Corp スルホン化ポリマー組成物、その製造方法、およびプロトン伝導材料
JP2005509243A (ja) * 2001-04-23 2005-04-07 モトローラ・インコーポレイテッド 高分子電解質膜
JP2003142125A (ja) * 2001-11-01 2003-05-16 Ube Ind Ltd イオン伝導膜
WO2004045014A2 (en) * 2002-11-07 2004-05-27 Gas Technology Institute High stability membrane for proton exchange membrane fuel cells
JP2004247185A (ja) * 2003-02-14 2004-09-02 Kuraray Co Ltd 固体高分子型燃料電池用シール材
JP2005322491A (ja) * 2004-05-07 2005-11-17 Uni-Chemical Co Ltd リン酸基及び共役ジエン系液状オリゴマー部を有する固体高分子電解質膜並びにその用途
JP2006210326A (ja) * 2004-12-27 2006-08-10 Kuraray Co Ltd 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JP2006286521A (ja) * 2005-04-04 2006-10-19 Kaneka Corp 固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池に使用する、樹脂組成物
JP2007042573A (ja) * 2005-06-29 2007-02-15 Kuraray Co Ltd 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1986257A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216740B2 (en) 2006-12-12 2012-07-10 Bose Corporation Fuel cell
US20090148744A1 (en) * 2007-12-11 2009-06-11 Bose Corporation Fuel cell polymer electrolyte membrane
JP2011506675A (ja) * 2007-12-11 2011-03-03 ボーズ・コーポレーション 燃料電池高分子電解質膜
US8557473B2 (en) * 2007-12-11 2013-10-15 Bose Corporation Fuel cell polymer electrolyte membrane
WO2010047329A1 (ja) * 2008-10-24 2010-04-29 株式会社クラレ 有機―無機複合電解質、電解質膜、膜―電極接合体及び燃料電池
JP5555636B2 (ja) * 2008-10-24 2014-07-23 株式会社クラレ 有機―無機複合電解質、電解質膜、膜―電極接合体及び燃料電池
WO2011065460A1 (ja) * 2009-11-30 2011-06-03 株式会社クラレ 高分子電解質、高分子電解質膜、膜-電極接合体及び固体高分子型燃料電池
JP5629692B2 (ja) * 2009-11-30 2014-11-26 株式会社クラレ 高分子電解質、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
WO2011145588A1 (ja) * 2010-05-21 2011-11-24 株式会社クラレ 高分子電解質及びそれからなる高分子電解質膜
JPWO2011145588A1 (ja) * 2010-05-21 2013-07-22 株式会社クラレ 高分子電解質及びそれからなる高分子電解質膜

Also Published As

Publication number Publication date
EP1986257A1 (en) 2008-10-29
HK1128064A1 (en) 2009-10-16
KR20080093052A (ko) 2008-10-17
EP1986257B1 (en) 2012-05-23
KR101353211B1 (ko) 2014-01-17
TWI451623B (zh) 2014-09-01
EP1986257A4 (en) 2011-01-26
US20100167159A1 (en) 2010-07-01
TW200805771A (en) 2008-01-16
US8349513B2 (en) 2013-01-08

Similar Documents

Publication Publication Date Title
WO2007094185A1 (ja) 高分子電解質膜、膜-電極接合体及び固体高分子型燃料電池
JP5118484B2 (ja) 固体高分子型燃料電池用電解質積層膜、膜−電極接合体及び燃料電池
JP5276442B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JP5191139B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
WO2006068279A1 (ja) イオン伝導性バインダー、膜−電極接合体及び燃料電池
JP2006210326A (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
WO2006070929A1 (ja) 固体高分子型燃料電池用高分子電解質膜、膜-電極接合体及び燃料電池
JP5629692B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JP5188025B2 (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JP2007258003A (ja) 高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JP2010232121A (ja) 電解質複合膜、膜−電極接合体、および固体高分子型燃料電池
JP5555636B2 (ja) 有機―無機複合電解質、電解質膜、膜―電極接合体及び燃料電池
JPWO2013031634A1 (ja) ブロック共重合体、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JP2010135130A (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JP5706906B2 (ja) 高分子電解質膜、膜−電極接合体、及び固体高分子型燃料電池
JPWO2010067743A1 (ja) 電解質積層膜、膜−電極接合体及び燃料電池
JP5629761B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体、および固体高分子型燃料電池
JP2011103176A (ja) 電解質積層膜、膜−電極接合体及び固体高分子型燃料電池
JP2010067526A (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JP2010061914A (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007708027

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12278794

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780005309.8

Country of ref document: CN

Ref document number: 1020087019918

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE