WO2007043706A1 - ハイブリッド車両の動力出力装置 - Google Patents

ハイブリッド車両の動力出力装置 Download PDF

Info

Publication number
WO2007043706A1
WO2007043706A1 PCT/JP2006/320805 JP2006320805W WO2007043706A1 WO 2007043706 A1 WO2007043706 A1 WO 2007043706A1 JP 2006320805 W JP2006320805 W JP 2006320805W WO 2007043706 A1 WO2007043706 A1 WO 2007043706A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
engine
vibration
reactor
hybrid vehicle
Prior art date
Application number
PCT/JP2006/320805
Other languages
English (en)
French (fr)
Inventor
Kazutaka Tatematsu
Ryoji Mizutani
Yasuhiro Endo
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2006800381308A priority Critical patent/CN101300148B/zh
Priority to EP06811994A priority patent/EP1935695A4/en
Priority to US12/083,615 priority patent/US7963353B2/en
Priority to AU2006300211A priority patent/AU2006300211B2/en
Priority to BRPI0617235-0A priority patent/BRPI0617235A2/pt
Publication of WO2007043706A1 publication Critical patent/WO2007043706A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • B60K5/1208Resilient supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • B60K6/405Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like
    • B62M9/16Tensioning or adjusting equipment for chains, belts or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power output device for a hybrid vehicle, and more particularly, to a power output device for a hybrid vehicle in which a power control unit for driving and controlling a motor and a motor are housed in one case.
  • Hybrid Vehicle is drawing attention.
  • a hybrid vehicle is a vehicle that uses a motor driven by a DC power source via an inverter in addition to a conventional engine as a power source.
  • a power source is obtained by driving the engine, a DC voltage from a DC power source is converted into an AC voltage by an inverter, and a motor is rotated by the converted AC voltage to obtain a power source.
  • the power output device that generates vehicle driving force has a structure in which a box-type case with a large inverter is fixed to the chassis, and a motor case (transaxle) is placed under it There are many.
  • a box-type case with a large inverter is fixed to the chassis, and a motor case (transaxle) is placed under it.
  • Japanese Laid-Open Patent Publication No. 2 0 4-3 4 3 8 4 5 discloses a hybrid vehicle drive device in which a motor and an inverter are integrated.
  • a DC voltage from a DC power source is boosted by a boost converter and the boosted DC voltage is supplied to an inverter. This is intended to increase motor output and improve energy efficiency. It is.
  • the boost converter is more effective for common parts and miniaturized equipment if it can be integrated with the motor in the same way as the inverter.
  • the hybrid vehicle drive device disclosed in the above Japanese Patent Application Laid-Open No. 2004-343845 has a structure in which an inverter is simply mounted on a motor, and a structure in which a boost converter is further integrated is completely disclosed. There is no suggestion.
  • a boost converter is generally composed of a combination of a rear titler and a tipper circuit composed of switching elements. Specifically, in the reactor, the current switched from the DC power source flows according to the on / off state of the switching element, and electric power is accumulated. Then, the reactor supplies the stored power to the inverter side according to whether the switching element is on or off. The boost converter repeats such an operation to perform a boost operation.
  • the object of the present invention is to provide power for a hybrid vehicle in which the motor drive system is integrated and the vibration of the reactor of the motor drive system can be absorbed.
  • An output device is provided. Disclosure of the invention
  • a power output device for a hybrid vehicle that outputs power to the drive shaft
  • An engine that generates power from fuel combustion energy
  • a power transmission device that combines the power generated by the engine with the power generated by the rotating electrical machine and transmits the power to the drive shaft
  • a switching element and a reactor a power control unit that converts power between the DC power from the power supply and the AC power that drives and controls the rotating electrical machine by the switching operation of the switching element, and is connected to the engine so that vibration can be transmitted.
  • the reactor is integrated with the motor case, so that the reactor vibration generated when the switched current is supplied is not only the engine vibration but also the engine vibration isolator. Is absorbed by. Therefore, since the reactor vibration is suppressed from propagating to the vehicle body, the noise in the passenger compartment can be reduced. In addition, it is not necessary to install a new reactor vibration absorption means, which helps to reduce the size of the equipment.
  • the power transmission device mechanically distributes the output of the engine to the first rotating electric machine and the drive shaft, and the first and second rotating electric machines that are driven by the power source to generate power.
  • Power split mechanism The power control unit includes first and second inverters provided corresponding to the first and second rotations of the rotating electrical machine, a switching element and a reactor element, respectively, and is controlled by a switching operation of the switching element. And a voltage converter that converts voltage between the power source and the first and second inverters.
  • the vibration of the rear tuttle generated during the voltage conversion operation is absorbed by the vibration isolator of the engine.
  • the reactor vibration is suppressed from propagating to the vehicle body, so that the noise in the passenger compartment is reduced.
  • a current switched by the switching element flows through the reactor.
  • the vibration isolator has an elastic body that is connected so as to be able to vibrate between the engine and the case and the vehicle body, and the vibration direction of the elastic body is substantially the same as the direction in which the reactor vibrates when energized. Provided.
  • the vibration of the reactor generated during energization is efficiently absorbed by the vibration isolator of the engine.
  • the vibration isolator is provided so that the elastic body and the rear tuttle vibrate on substantially the same straight line.
  • the vibration of the reactor generated when the power is supplied is efficiently absorbed by the vibration isolator of the engine.
  • the vibration isolator is provided such that the vibration direction of the elastic body is substantially the same as the direction in which the reactor vibrates and the direction in which the engine vibrates when energized.
  • the vibration damping force of the vibration isolator can be utilized to the maximum.
  • the reactor vibration generated when the switched current is supplied is absorbed by the engine vibration isolator together with the engine vibration. Therefore, since the vibration of the rear turtle is suppressed from propagating to the vehicle body, the noise in the passenger compartment can be reduced. In addition, the installation of a new reactor vibration absorption means is not required, which facilitates downsizing of the equipment.
  • FIG. 1 is a block diagram showing an overall configuration of a hybrid power output apparatus according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration relating to motor generator control in a vehicle equipped with the hybrid power output device of FIG.
  • FIG. 3 is a schematic diagram for explaining details of the power split mechanism and the speed reducer in FIG.
  • FIG. 4 is a perspective view showing an appearance of transaxle 20 of the hybrid vehicle according to the embodiment of the present invention.
  • FIG. 5 is a plan view of the transaxle.
  • FIG. 6 is a side view of the transaxle viewed from the X1 direction in FIG.
  • FIG. 7 is a perspective view of the rear titler shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 7 is a perspective view of the rear titler shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a power output device for a hybrid vehicle according to an embodiment of the present invention (hereinafter referred to as “power output device”).
  • hybrid vehicle is described as a series / parallel hybrid vehicle, but the hybrid vehicle may be a series hybrid vehicle or a parallel hybrid vehicle.
  • the hybrid power output device 100 includes an engine ENG, a battery B, an inverter INV, a boost converter 12, a wheel WH, a transaxle 20 and an ECU (Electric Control Unit). ) 90.
  • the engine E N G generates driving force from the combustion energy of fuel such as gasoline.
  • Notter B supplies DC power to the power line.
  • Battery B is a secondary battery such as nickel hydrogen or lithium ion, or a fuel cell. Further, as a power storage device replacing battery B, a large-capacity capacitor such as an electric double layer capacitor may be used.
  • 'Inverter I N V converts DC power supplied from battery B to power line 8 1 through boost converter 12 2 into AC power and outputs it to power line 83. Alternatively, the inverter I N V converts the AC power supplied to the power line 8 1 into DC power and outputs it to the power line 8 2.
  • the transaxle 20 includes a transmission and an axle (axle) as an integral structure.
  • the power control unit 21 that has been conventionally accommodated in a case independent of the transaxle 20 is integrated with the transaxle 20 and accommodated in the same case.
  • the power split mechanism P S D can be divided into a path for transmitting the driving force generated by the engine E N G to the drive shaft for driving the wheels via the reduction gear R D and a path for transmitting to the motor generator MG 1.
  • Each of the motor generators MG 1 and MG 2 is both a generator and an electric motor. Can function.
  • the motor generator MG 1 is generally called a “generator” because it often operates as a generator, and the motor generator MG 2 is sometimes called a “motor” because it mainly operates as an electric motor.
  • Motor generator MG 1 is rotated by the driving force from engine E N G transmitted through power split mechanism P S D to generate electric power.
  • the electric power generated by motor generator MG 1 is supplied to inverter INV via electric power line 83 and used as charging power for battery B or as driving power for motor generator MG 2.
  • the motor generator MG 2 is rotationally driven by AC power supplied from the inverter I N V to the power line 83, and the driving force generated by the motor generator MG 2 is transmitted to the drive shaft via the reduction gear R D.
  • wheels (not shown) other than the wheel WH driven by the drive shaft may be simply driven wheels, but may be configured to be driven by another motor generator (not shown). You may make it comprise a four-wheel drive system.
  • the electromotive force (AC power) generated in the motor generator MG2 is supplied to the power line 8 3.
  • battery B is charged by the inverter INV converting the power supplied to the power line 83 to DC power and outputting it to the power line 81.
  • the ECU 90 controls the overall operation of a device group mounted on the vehicle in order to drive the vehicle on which the hybrid power output device 100 is mounted according to the driver's instructions.
  • the ECU 90 is typically configured by a microcomputer and a memory (RAM, ROM, etc.) for executing a predetermined sequence programmed in advance and a predetermined operation.
  • FIG. 2 is a circuit diagram showing a configuration related to motor generator control in a vehicle equipped with hybrid power output device 100 of FIG.
  • vehicle 100 includes a battery unit 40, a transaxle 20, a control device 30, and an engine and wheels (not shown).
  • Transaxle 20 consists of motor generators MG 1 and MG 2 and a power split machine Structure PSD, reduction gear RD, and power control unit 21 for controlling motor generators MG 1 and MG 2 are provided.
  • the power split mechanism PSD is basically a mechanism that is coupled to the engine ENG and the motor generators M G l and MG 2 and distributes power between them.
  • a planetary gear mechanism having three rotation shafts of a sun gear, a planetary carrier, and a ring gear can be used.
  • Two rotary shafts (planetary carrier, sun gear) of power split mechanism PSD are connected to the rotary shafts of engine ENG and motor generator MG 1 respectively, and the other rotary shaft (ring gear) is connected to reduction gear RD.
  • a configuration is conceivable in which the motor generator MG 2 is connected directly or directly.
  • rotation shaft of the reduction gear RD is coupled to the wheel by a reduction gear or a differential gear (not shown) as will be described later.
  • the battery unit 40 is provided with terminals 41 and 42.
  • the transaxle 20 is provided with terminals 43 and 44.
  • Vehicle 1000 further includes a power cable 6 that connects terminal 41 and terminal 43, and a cap / lay 8 that connects terminal 42 and terminal 44.
  • the battery unit 40 includes a battery B, a system main relay S MR 3 connected between the negative electrode of the battery B and the terminal 42, and a system main connected between the positive electrode of the battery B and the terminal 41.
  • a system main relay S MR 3 connected between the negative electrode of the battery B and the terminal 42, and a system main connected between the positive electrode of the battery B and the terminal 41.
  • Including relay SMR2, system main relay SMR1 and limiting resistor R connected in series between the positive terminal of battery B and terminal 41.
  • the system main relays SMR 1 to SMR 3 are controlled to be in a conductive / non-conductive state in accordance with a control signal S E given from the control device 30.
  • the battery unit 40 further includes a voltage sensor 10 that measures a voltage VB between terminals of the battery B, and a current sensor 11 that detects a current IB flowing through the battery B.
  • Power control unit 21 includes inverters 22 and 14 provided corresponding to motor generators MG 1 and MG 2, and boost converter 12 provided in common with inverters 22 and 14, respectively.
  • the inverters 22 and 14 constitute the inverter I NV in Fig. 1.
  • Boost converter 12 boosts the voltage between terminals 43 and 44.
  • Inverter 14 Converts the DC voltage supplied from boost converter 12 into three-phase AC and outputs it to motor generator MG2.
  • Boost converter 12 is connected in series between a reactor 1 whose one end is connected to terminal 43 and an output terminal of boost converter 12 that outputs boosted voltage VH 108 elements 01, Q2 And diodes D 1 and D 2 connected in parallel to 108 elements 01 and Q 2, respectively, and a smoothing capacitor C 2.
  • the smoothing capacitor C 2 smoothes the voltage boosted by the boost converter 12.
  • reactor 1 The other end of reactor 1 is connected to the emitter of I GBT element Q 1 and the collector of I GB T element Q 2.
  • Diode D 1's force sword is connected to I 08 element (31 collectors, diode D 1's anode is connected to I GBT element Q 1's emitter.
  • Diode D 2's force sword is I GB T It is connected to the collector of element Q 2 and the anode of diode D 2 is connected to the emitter of I GBT element Q 2.
  • Inverter 14 is the output of step-up converter 1 2 after motor generator MG 2 that drives the wheels. Inverter 14 returns the electric power generated in motor generator MG2 to boost converter 12 in response to regenerative braking. It is controlled by the control device 30 so as to operate as a circuit.
  • Inverter 14 includes a U-phase arm 15, a V-phase arm 16, and a W-phase arm 17.
  • U-phase arm 15, V-phase arm 16, and W-phase arm 17 are connected in parallel between the output lines of boost converter 12.
  • U-phase arm 15 includes I GBT elements Q 3 and Q 4 connected in series, and diodes D 3 and D 4 connected in parallel with I GBT elements Q 3 and Q 4, respectively.
  • Diode D 3's force sword is connected to the collector of I GB T element Q 3
  • diode D 3 's anode is connected to the I 08 element 03 emitter.
  • the cathode of diode D 4 is connected to the collector of I GBT element Q4, and the anode of diode D 4 is connected to the emitter of I 08 element ⁇ 34.
  • V-phase arm 16 includes I GBT elements Q 5 and Q 6 connected in series, and diodes D 5 and D 6 connected in parallel with I GBT elements Q 5 and Q 6, respectively.
  • the power sword of diode D 5 is connected to the collector of I GB T element Q 5 and diode D 5
  • the anode of is connected to the emitter of I08 8-element 05.
  • the cathode of diode D 6 is connected to the collector of I GBT element Q 6, and the anode of diode D 6 is connected to the emitter of I GBT element Q 6.
  • W-phase arm 17 includes I GBT elements Q 7 and Q 8 connected in series and diodes D 7 and D 8 connected in parallel with I GBT elements Q 7 and Q 8, respectively.
  • the cathode of diode D 7 is connected to the collector of I GBT element Q 7, and the diode of diode D 7 is connected to the emitter of I GBT element Q 7.
  • the cathode of diode D 8 is connected to the collector of I GBT element Q 8, and the anode of diode D 8 is connected to the emitter of I GBT element Q 8.
  • each phase arm is connected to each phase end of each phase coil of motor generator MG2. That is, the motor generator MG 2 is a three-phase permanent magnet synchronous motor, and one end of each of the three coils of the U, V, and W phases is connected to the neutral point.
  • the other end of the U-phase coil is connected to the I GBT element Q 3 and Q 4 connection node.
  • the other end of the V-phase coil is connected to the connection node of IGBT elements Q5 and Q6.
  • the other end of the W-phase coil is connected to the connection node of the I GBT elements Q7 and Q8.
  • the current sensor 24 detects the current flowing through the motor generator MG 2 as the motor current M CRT 2 and outputs the motor current value MCRT 2 to the control device 30.
  • Inverter 22 is connected to boost converter 12 in parallel with inverter 14 '. Inverter 22 converts the DC voltage output from boost converter 12 to three-phase AC and outputs the same to motor generator MG1. Inverter 22 receives the boosted voltage from boost converter 12 and drives motor generator MG 1 to start the engine, for example.
  • Inverter 22 supplies electric power generated by motor generator MG 1 to motor generator MG 2 or battery B by the rotational torque transmitted from the crankshaft of the engine. At this time, boost converter 12 is controlled by control device 30 so as to operate as a step-down circuit.
  • the controller 30 has torque command values TR 1 and TR 2, motor speed MRN 1 and MR N2, voltages VB, VL and VH, current IB values, motor current values MCRT 1 and MC RT 2, and start signal I GON Receive.
  • torque command value TR 1 motor speed MR N 1 and motor current value MC RT 1 are related to motor generator MG 1
  • torque command value TR 2 motor speed MRN 2 and motor current value MCRT 2 are It relates to the motor generator MG 2.
  • the voltage VB is the voltage of the battery B
  • the current IB is the current flowing through the battery B.
  • Voltage VL is a voltage before boost of boost converter 12
  • voltage VH is a voltage after boost of boost converter 12.
  • control device 30 outputs step-up: control signal PWU for instructing step-up to inverter 12, control signal PWD for instructing step-down, and signal CS DN instructing prohibition of operation.
  • control device 30 provides a drive instruction PWMI 2 ′ for converting the DC voltage output from boost converter 12 to inverter 14 to an AC voltage for driving motor generator MG 2, and motor generator MG 2.
  • the regenerative instruction PWMC 2 that directly converts the AC voltage generated in step 1 into a flow voltage and returns it to the boost converter 12 side is output.
  • control device 30 converts the AC voltage generated by the motor generator MG 1 into the DC voltage and the drive instruction PWM I 1 for converting the DC voltage into the AC voltage for driving the motor generator MG 1 with respect to the inverter 22.
  • Regenerative instruction PWMC 1 that is converted to and returned to the boost converter 1 2 side is output.
  • FIG. 3 is a schematic diagram for explaining details of the power split mechanism PSD and the reduction gear RD in FIG.
  • the hybrid power output device is configured to rotate motor generator MG 2, reduction gear RD connected to the rotation shaft of motor generator MG 2, and rotation of the rotation shaft decelerated by reduction gear RD.
  • the vehicle includes an axle that rotates in response, an engine ENG, a motor generator MG 1, and a power split mechanism PSD that distributes power between the reduction gear RD, the engine ENG, and the motor generator MG 1.
  • Reducer RD has a reduction ratio from motor generator MG 2 to power split mechanism PSD. For example, it is more than twice.
  • the power split mechanism PSD is a planetary gear in the example shown in FIG. 3, and is rotatable on the same axis as the sun gear 51 connected to the hollow sun gear shaft penetrating the crankshaft 50 through the shaft center. Is connected to the ring gear 5 2 supported by the shaft, the pinion gear 5 3 which is arranged between the sun gear 5 1 and the link gear 5 2 and revolves while rotating on the outer periphery of the sun gear 51, and the end of the crankshaft 50 And a planetary carrier 5 4 that supports the rotation shaft of each pinion gear 5 3.
  • the power split mechanism PSD consists of a sun gear shaft coupled to the sun gear 51, a link gear case coupled to the ring gear 52 and a crankshaft 50 coupled to the planetary carrier 54. It is said. When the power input / output to / from any two of these three axes is determined, the power input / output to / from the remaining one axis is determined based on the power input / output to the other two axes.
  • a counter drive gear 70 for taking out the power is provided outside the ring gear case, and rotates integrally with the link gear 52.
  • the counter drive gear 70 is connected to the power transmission reduction gear RG. Power is transmitted between the counter drive gear 70 and the power transmission reduction gear RG.
  • the power transmission reduction gear R G drives the differential gear D E F. On the downhill, the wheel rotation is transmitted to the differential gear D E F, and the power transmission reduction gear R G is driven by the differential gear D E F.
  • Motor generator MG 1 includes a stator 31 that forms a rotating magnetic field, and a rotor 3 2 that is disposed inside stator 31 and has a plurality of permanent magnets embedded therein.
  • the stator 31 includes a stator core 33 and a three-phase coil 34 wound around the stator core 33.
  • Rotor 32 is coupled to a sun gear shaft that rotates integrally with sun gear 51 of power split mechanism PSD.
  • the stator core 33 is formed by laminating thin magnetic steel plates and is fixed to a case (not shown).
  • the motor generator MG 1 rotates the rotor 3 2 by the interaction between the magnetic field generated by the permanent magnet embedded in the rotor 3 2 and the magnetic field formed by the three-phase coil 3 4. Operates as a driving motor. Motor generator MG 1 also operates as a generator that generates electromotive force at both ends of three-phase coil 34 due to the interaction between the magnetic field generated by the permanent magnet and the rotation of rotor 32.
  • Motor generator MG 2 includes a stator 36 that forms a rotating magnetic field, and a rotor 37 that is disposed inside stator 31 and has a plurality of permanent magnets embedded therein.
  • the stator 3 6 includes a stator core 3 8 and a three-phase coil 39 wound around the stator core 3 8.
  • the rotor 37 is coupled to a link gear case that rotates integrally with the ring gear 52 of the power split mechanism PSD by a reduction gear R D.
  • the stator core 38 is formed, for example, by laminating thin magnetic steel plates, and is fixed to a case (not shown).
  • Motor generator MG 2 also operates with a generator U that generates an electromotive force at both ends of three-phase coil 39 by the interaction between the magnetic field generated by the permanent magnet and the rotation of rotor 37.
  • Motor generator MG 2 operates as an electric motor that rotates rotor 37 by the interaction between the magnetic field generated by the permanent magnet and the magnetic field formed by three-phase coil 39.
  • the reduction gear R D reduces the speed by a structure in which a planetary carrier 66, which is one of the rotating elements of the planetary gear, is fixed to the transaxle case. That is, the reduction gear RD is in mesh with the sun gear 6 2 coupled to the shaft of the rotor 3 7, the ring gear 6 8 that rotates integrally with the ring gear 52, the ring gear 6 8, and the sun gear 6 2. Including pi-on gears 6 4 for transmitting the rotation of the gears to the ring gear 6 8.
  • the reduction ratio can be increased more than twice.
  • FIG. 4 is a perspective view showing an appearance of transaxle 20 of the hybrid vehicle according to the embodiment of the present invention.
  • FIG. 5 is a plan view of the transaxle 20.
  • case of transaxle 20 is the same as case 1 0 4 It is possible to divide it into a source 1 0 2.
  • Case 10 04 is a part mainly accommodating motor generator MG 1
  • case 10 02 is a part mainly accommodating motor generator MG 2 and the power control unit.
  • Case 1 0 4 is formed with flange 1 0 6
  • Case 1 0 2 is formed with flange 1 0 5
  • flange 1 0 6 and flange 1 0 5 are fixed with bolts etc.
  • 0 4 and case 1 0 2 are integrated.
  • Case 1 0 2 is provided with an opening 10 8 for assembling the power control unit 2 1.
  • Capacitor C 2 is accommodated in the left inner portion (vehicle traveling direction side) of opening 10 8, and power element substrate 1 2 0 and terminal blocks 1 1 6 and 1 1 8 are accommodated in the central portion.
  • the right part contains the reactor L1.
  • the opening 10 8 is closed by a lid when the vehicle is mounted.
  • the capacitor C 2 may be replaced on the right side and the reactor L 1 may be stored on the left side. That is, reactor L 1 is arranged on one side of the rotation shafts of motor generators MG 1 and MG 2, and capacitor C 2 is arranged on the other side of the rotation shaft.
  • a power element substrate 12 2 ° is arranged in a region between the capacitor C 2 and the reactor L 1.
  • a motor generator MG 2 is disposed under the power element substrate 1 2 0.
  • Inverter 2 2 for controlling motor generator MG 1, inverter 14 for controlling motor generator MG 2, and arm portion 13 of the boost converter are mounted on power element substrate 120.
  • a water passage is provided under the power element substrate 1 2 0 to cool the power element substrate 1 2 0.
  • the cooling water inlet 1 1 4 and the cooling water outlet 1 to the water passage 1 2 is provided in the case 1 0 2.
  • this entrance and exit For example, the case 10 2 is configured by driving a flange 10 6, 1 0 5 through a union nut or the like.
  • the voltage applied from the battery unit 40 in FIG. 3 to the terminals 4 3 and 4 4 via the power cable is boosted by the boost converter 12 including the reactor L 1 and the arm portion 13.
  • the boosted voltage is smoothed by the capacitor C 2 and supplied to the inverters 14 and 2 2.
  • the motor generator can be driven at a high voltage exceeding 500 V while reducing the battery voltage to approximately 200 V. It becomes possible. As a result, electric loss can be suppressed by supplying power with a small current, and high output of the motor can be realized.
  • FIG. 6 is a side view of the transaxle 20 viewed from the X1 direction in Fig. 5.
  • case 1 0 2 is provided with an opening 1 0 9 for motor generator assembly and maintenance, and this opening 1 0 9 is closed by a lid when mounted on the vehicle. ing. '
  • a motor generator MG 2 is arranged inside the opening 1 0 9.
  • a rotor 37 is disposed inside a stator 36 to which a W-phase bus bar is connected.
  • a hollow shaft 60 can be seen in the central part of the rotor 37.
  • the motor generator MG 2 bites into the housing chamber that houses the power control unit 2 1 of the case 100 2, the motor generator MG 2 has one side on the side. Reactor L 1 is placed and capacitor C 2 is placed on the other side to accommodate large parts efficiently. This achieves a compact hybrid axle transaxle.
  • the power control unit 2 1 is integrated with the transaxle 20, so that it is generated in the rear tuttle L 1 as described below. It is possible to suppress vibration from propagating to the body of the hybrid vehicle.
  • the reactor L 1 includes a core 221 and a coil 22 2 as shown in FIG.
  • the core 221 includes straight portions 2210 and 221 2 and curved portions 221 1 and 2 21 3.
  • the curved portion 221 1 has a gap 223 between the curved portion 221 1 and the straight portion 210.
  • the curved portion 2213 has a gap 225 between the straight portion 2212 and a gap 226 between the straight portion 2210.
  • the coin 222 is wound around the straight portions 2210 and 2212.
  • the IGBT element Q2 of the boost converter 12 is turned on and off as described above. Then, 108 elements (32 is turned on, NO., DC cable 6, reactor L l, I GBT element Q 2, 'power cap nore 8 and DC current flows through the closed circuit consisting of battery B Then, magnetic flux is generated in the core 221 of the reactor L 1 and the curved portions 22 1 1 and 22 1 3 are drawn in the direction of the straight portions 221 0 and 2212. Also, the I GBT element Q2 is turned off. Then, since the magnetic flux is not generated in the core 221, the curved portions 221 1 and 221 3 do not receive an attractive force from the linear portions 2210 and 221 2.
  • the curved portions 22 1 1 and 22 13 of 221 move in the direction of the straight portions 2210 and 221, or return to their original positions and vibrate.
  • the reactor L 1 Since the reactor L 1 is fixed to the opening 1 ⁇ 8 of the case 102, the vibration generated in the rear tuttle L 1 propagates to the case 102. In addition, this The vibration is transmitted to the body through a fixing member for fixing the case 100 to the body. As a result, noise based on the vibration of reactor L 1 is generated in the passenger compartment.
  • the engine in order to prevent the engine vibration from propagating to the body and generating noise in the vehicle interior, the engine is used with a vibration isolator called an engine mount. A method of hanging on the body is adopted. At this time, the transaxle that is directly connected to the engine also vibrates in response to engine vibration, so it is integrated with the engine and suspended from the body by the engine mount.
  • the engine mount is formed of an elastic body such as a liquid-filled comb bush.
  • the engine mount absorbs the relative vibration of the engine with respect to the body, as the liquid moves inside the comb to compensate for its inherent elasticity.
  • the reactor L 1 as a vibration source is integrated with the transaxle 20, so that the above-described vibration of the reactor L 1 is absorbed by the engine mount that is an anti-vibration device for the engine. It becomes possible to make it.
  • the vibration of the reactor L 1 can be absorbed more efficiently by optimizing the positional relationship between the reactor L 1 as the vibration source and the engine mount.
  • the engine mount EM may be arranged in the vicinity of the rear tuttle L1. According to this configuration, the vibration of the reactor L 1 is efficiently absorbed by the nearby engine mount EM and is prevented from propagating to the body. At this time, as long as the engine mount EM and the reactor L 1 can be arranged so as to vibrate on substantially the same straight line, it is more effective in absorbing the vibration of the reaction L 1 as long as it is allowed. It is clear.
  • the elastic body in the engine mount EM is arranged so as to substantially match the vibration direction of the 1S reactor L 1.
  • the engine mount is designed so that the vibration direction of the elastic body inside the engine mount EM (corresponding to the direction of the arrow LN 2) substantially matches the vibration direction of the reactor L 1. If the EM is installed, the vibration of the reactor L 1 can be absorbed efficiently. Furthermore, in this configuration, if the vibration direction of the elastic body inside the engine mount EM is arranged so as to substantially match the vibration direction of the engine ENG, the vibration damping force of the engine mount EM can be used to the maximum. Is possible. In this case, the engine mount EM is arranged so that the vibration direction of the elastic body inside the engine mount EM substantially matches the vibration direction of the reactor 1 and the reciprocating motion of the piston inside the engine ENG. .
  • the power control unit including the inverter and the step-up converter is made compact by using the free space of the motor generator MG 2 of the transaxle and the power split mechanism. Can be placed.
  • the shape of the transaxle portion of a conventional gasoline vehicle can be approximated, so that a power output device for a hybrid vehicle that can be mounted on more types of vehicles can be realized.
  • the vibration generated in the reactor of the boost converter of the power control unit can be absorbed by an existing vibration isolator that absorbs engine vibration.
  • the vibration of the reactor is prevented from propagating to the body, and the occurrence of noise in the passenger compartment can be prevented.
  • the present invention can be applied to a power output apparatus mounted on a hybrid vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)

Abstract

 トランスアクスルは、同軸上に各ロータの回転中心軸が配置されるモータジェネレータ(MG2,MG1(MG1はMG2の奥に配置))と、クランクシャフトの回転中心軸と同軸上にかつモータジェネレータ(MG1,MG2)の間に配置される動力分割機構と、モータジェネレータ(MG1,MG2)の制御を行なうパワー制御ユニットとを備える。パワー制御ユニットは、モータジェネレータ(MG2)の回転中心軸に対し、少なくとも一方側にリアクトル(L1)が他方側に平滑用コンデンサ(C2)が分割配置される。モータジェネレータ(MG1,MG2)、動力分割機構、およびパワー制御ユニットは、金属製のケースに収容されて一体化され、エンジンマウント(EM)により車両(1000)のボディに固定される。

Description

明細書 ハイプリッド車両の動力出力装置 技術分野
この発明は、 ハイブリッド車両の動力出力装置に関し、 特に、 モータを駆動制 御するパワー制御ュニットとモータとを 1つのケースに収めたハイブリッド車両 の動力出力装置に関する。 背景技術
最近、 環境性能と走行性能とを兼ね備えた自動車として、 ハイブリッド自動車
(Hybrid Vehicle) が注目されている。 ハイブリッド自動車は、 従来のエンジン に加え、 インバータを介して直流電源によって駆動されるモータを動力源とする 自動車である。 つまり、 エンジンを駆動することにより動力源を得るとともに、 直流電源からの直流電圧をインバータによって交流電圧に変換し、 その変換した 交流電圧によりモータを回転することによって動力源を得るものである。
, 現状のハイブリッド自動車において、 車両駆動力を発生する動力出力装置は、 ィンバータの大きな箱型ケースがシャーシに固定され、 その下にモータケース (トランスアクスル) が配置されるという構成を採っているものが多い。 なるベ く多くの車種に搭載することができるハイプリッド自動車の動力出力装置につい て考慮すると、 ケースが 2個の構成であると車種ごとにその配置が最適化される ことになるため、 部品の共通化が図りにくレ、。
本来、 組合せて動作することが必要なュニットは 1つのケースに収めて一体化 してしまうことが望ましい。 力かる観点から、 特開 2 0 0 4— 3 4 3 8 4 5号公 報は、 モータとインバータとを一体化したハイブリッド車両の駆動装置を開示す る。
ここで、 ハイブリッド自動車においては、 直流電源からの直流電圧を昇圧コン バータによって昇圧し、 その昇圧した直流電圧をインバータに供給されることも 検討されている。 これは、 モータの高出力化とエネルギー効率の向上とを図るも のである。
したがって、 昇圧コンバータについても、 協働動作の観点から、 インバータと 同様にモータと一体化できれば、 部品の共通化および装置の小型化に一層効果的 であることは明らかである。
しかしながら、 上記の特開 2004-343845号公報に開示されるハイブ リッド車両の駆動装置は、 モータの上にインバータを載せただけの構造であり、 昇圧コンバータをさらに一体化させた構造については全く開示も示唆もされてい ない。
昇圧コンバータは、 一般的に、 リアタ トルとスイッチング素子からなるチヨッ パ回路との組合せにより構成される。 詳細には、 リアクトルには、 スイッチング 素子のオン オフに応じて、 直流電源からスィツチングされた電流が流れて電力 が蓄積される。 そして、 リアク トルは、 その蓄積された電力をスイッチング素子 のオン/オフに応じてインバータ側へ供給する。 昇圧コンバータは、 このような 動作を繰り返して、 昇圧動作を行なう。
そして、 この昇圧動作において、 リアクトルのコイルにスイッチングされた電, 流が流れると、 コアを循環する磁束に起因して振動が発生する。 この振動は、 ボ ディに伝搬して車室内に騒音をもたらす可能性がある。 そのため、 従来の動力出 力装置では、 リアタ トルの振動を吸収するための手段が別途設置されていた (た とえば特開 2005— 32830号公報および特開 2005— 73392号公報 参照) 。
以上のことから、 昇圧コンバータをモータと一体化させるにあたっては、 装置 の小型化に加えて、 リアクトルの振動吸収手段の設置についても、 十分な配慮が 必要とされる。
それゆえ、 この発明は、 かかる問題を解決するためになされたものであり、 そ の目的は、 モータ駆動系が一体化され、 かつモータ駆動系のリアク トルの振動を 吸収可能なハイプリッド車両の動力出力装置を提供することである。 発明の開示
この発明によれば、 駆動軸に動力を出力するハイブリッド車両の動力出力装置 は、 燃料の燃焼エネルギーを源に動力を発生するエンジンと、 エンジンの発生し た動力に回転電機の発生した動力を合成して駆動軸に伝達する動力伝達装置と、 スイッチング素子とリアク トルとを含み、 スイッチング素子のスイッチング動作 により電源からの直流電力と、 回転電機を駆動制御する交流電力との間の電力変 換を行なうパワー制御ユニットと、 エンジンに振動伝達可能に連結され、 動力伝 達装置とパワー制御ュニットとを収容するケースと、 エンジンと車体との相対振 動を吸収可能にエンジンを車体に懸架する防振装置とを備える。
上記のハイプリッド車両の動力出力装置によれば、 リアク トルをモータケース と一体化したことにより、 スイッチングされた電流の通電時に発生するリアク ト ルの振動は、 エンジンの振動とともに、 エンジンの防振装置によって吸収される。 したがって、 リアク トルの振動が車体に伝搬するのが抑制されるため、 車室内の 騒音低減を図ることができる。 さらに、 新たにリアク トルの振動吸収手段の設置 が不要となるため、 装置の小型化が促進される。
好ましくは、 動力伝達装置は、 電源によ,つて駆動されて動力を発生する第 1お よび第 2の回転電機と、 エンジンの出力を第 1の回転電機および駆動軸に機械的' に分配する動力分割機構とを含む。 パワー制御ユニットは、 第 1および第 2の回 ,転電機にそれぞれ対応して設けられる第 1および第 2のインバータと、 スィッチ ング素子とリアク トル素子とを有し、 スイッチング素子のスイッチング動作によ り、 電源と第 1および第 2のインバータとの間で電圧変換する電圧変換器とを含 む。
上記のハイプリッド車両の動力出力装置によれば、 電圧変換動作時に発生する リアタ トルの振動がエンジンの防振装置により吸収される。 これにより、 リアク トルの振動が車体に伝搬するのが抑制されるため、 車室内の騒音が低減される。 好ましくは、 リアク トルには、 スイッチング素子によってスイッチングされた 電流が流れる。 防振装置は、 エンジンおよびケースと車体との間に振動可能に連 結された弾性体を有し、 弾性体の振動方向が、 通電時にリアク トルが振動する方 向と略同じとなるように設けられる。
上記のハイプリッド車両の動力出力装置によれば、 通電時に発生するリアクト ルの振動がエンジンの防振装置によって効率良く吸収される。 好ましくは、 防振装置は、 弾性体とリアタ トルとが略同一直線上を振動するよ うに設けられる。
上記のハイプリッド車両の動力出力装置によれば、 通電時に発生するリアク ト ルの振動がエンジンの防振装置によって効率良く吸収される。
好ましくは、 防振装置は、 弾性体の振動方向が、 通電時に前記リアク トルが振 動する方向およびエンジンが振動する方向と略同じとなるように設けられる。 上記のハイプリッド自動車の動力出力装置によれば、 防振装置の振動減衰力を 最大限に利用することが可能となる。
この発明によれば、 リアクトルをモータケースと一体化したことにより、 スィ ツチングされた電流の通電時に発生するリアク トルの振動は、 エンジンの振動と ともに、 エンジンの防振装置によって吸収される。 したがって、 リアタ トルの振 動が車体に伝搬するのが抑制されるため、 車室内の騒音低減を図ることができる。 さらに、 新たにリアク トルの振動吸収手段の設置が不要となるため、 装置の小型 化が促進される。 図面の簡単な説明 '
図 1は、 この発明の実施の形態によるハイプリッド動力出力装置の全体構成を 示すブロック図である。
図 2は、 図 1のハイプリッド動力出力装置を搭載した車両におけるモータジェ ネレータ制御に関する構成を示す回路図である。
図 3は、 図 2における動力分割機構および減速機の詳細を説明するための模式 図である。
図 4は、 本発明の実施の形態に係るハイプリッド車両のトランスアクスノレ 2 0 の外観を示す斜視図である。
図 5は、 トランスアクスルの平面図である。
図 6は、 トランスアクスルを図 5の X 1方向から見た側面図である。
図 7は、 図 6に示されたリアタ トルの斜視図である。 発明を実施するための最良の形態 以下、 この発明の実施の形態について図面を参照して詳しく説明する。 なお、 図中同一符号は同一または相当部分を示す。
図 1は、 この発明の実施の形態によるハイブリッド車両の動力出力装置 (以下、
「ハイブリッド動力出力装置」 と称する) の全体構成を示すブロック図である。 なお、 本実施の形態において、 ハイブリッド車両は、 シリーズ/パラレルハイブ リッド車両として説明するが、 ハイプリッド車両は、 シリーズハイブリッド車両 やパラレルハイブリッド車両であってもよい。
図 1を参照して、 ハイブリッド動力出力装置 1 0 0は、 エンジン E N Gと、 パ ッテリ Bと、 ィンバータ I N Vと、 昇圧コンバータ 1 2と、 車輪 WHと、 トラン スアクスル 2 0と、 E C U (Electric Control Unit) 9 0とを備える。
エンジン E N Gは、 ガソリン等の燃料の燃焼エネルギーを源として駆動力を発 生する。 ノ ッテリ Bは、 電力ラインへ直流電力を供給する。 バッテリ Bは、 ニッ ケル水素、 リチウムイオン等の二次電池や燃料電池などが適用される。 また、 バ ッテリ Bに代わる蓄電装置として、 電気二重層コンデンサ等の大容量キャパシタ などを用いても良い。 ' インバータ I N Vば、 バッテリ Bから昇圧コンバータ 1 2を介して電力ライン , 8 1に供給された直流電力を交流電力に変換して電力ライン 8 3へ出力する。 あ るいは、 インバータ I N Vは、 電力ライン 8 1に供給された交流電力を直流電力 に変換して電力ライン 8 2へ出力する。 ,
トランスアクスル 2 0は、 トランスミッションとアクスル (車軸) とを一体構 造として備えており、 動力分割機構 P S Dと、 減速機 R Dと、 モータジエネレー タ MG 1と、 モータジェネレータ MG 2と、 モータジェネレータ MG 1, MG 2 の制御を行なうパワー制御ュニット 2 1とを有する。 この発明において、 従来、 トランスアクスノレ 2 0とは独立したケースに収容されていたパワー制御ュニット 2 1は、 トランスアクスル 2 0に一体化され、 同一ケース内に収容される。
動力分割機構 P S Dは、 エンジン E N Gによって生じた駆動力を、 減速機 R D を介して車輪駆動用の駆動軸へ伝達する経路と、 モータジェネレータ MG 1へ伝 達する経路とに分割可能である。
モータジェネレータ MG 1 , MG 2の各々は、 発電機としても電動機としても 機能し得る。 モータジェネレータ MG 1は、 概ね発電機として動作することが多 いため 「発電機」 と呼ばれることがあり、 モータジェネレータ MG 2は主として 電動機として動作するため 「電動機」 と呼ばれることがある。
モータジェネレータ MG 1は、 動力分割機構 P S Dを介して伝達されたェンジ ン E N Gからの駆動力によって回転されて発電する。 モータジェネレータ MG 1 が発電した電力は、 電力ライン 8 3を介してインバータ I N Vに供給され、 バッ テリ Bの充電電力として、 あるいはモータジェネレータ MG 2の駆動電力として 用いられる。
モータジェネレータ MG 2は、 ィンバータ I N Vから電力ライン 8 3に供給さ れた交流電力によって回転駆動される、 モータジェネレータ MG 2によって生じ た駆動力は、 減速機 R Dを介して駆動軸へ伝達される。 なお、 駆動軸にて駆動さ れる車輪 WH以外の車輪 (図示せず) については、 単なる従動輪としても良いが、 さらに図示しない別のモータジェネレータにて駆動されるように構成して、 いわ ゆる四輪駆動システムを構成するようにしても良い。
また、 回生制動動作時にモータジェネレータ MG 2が車輪の減速に伴なつて回' 転される場合には、 モ'ータジェネレータ MG 2に生じた起電力 (交流電力) が電 ,カライン 8 3へ供給される、 この場合には、 インバータ I N Vが電力ライン 8 3 へ供給された電力を直流電力に変換して電力ライン 8 1へ出力することによりバ ッテリ Bが充電される。 ,
E C U 9 0は、 ハイブリッド動力出力装置 1 0 0が搭載された自動車を運転者 の指示に応じて運転させるために、 自動車に搭載された機器'回路群の全体動作 を制御する。 E C U 9 0は、 代表的には、 予めプログラムされた所定シーケンス および所定演算を実行するためのマイクロコンピュータおよびメモリ (R AM, R OM等) で構成される。
図 2は、 図 1のハイブリッド動力出力装置 1 0 0を搭載した車両におけるモー タジェネレータ制御に関する構成を示す回路図である。
図 2を参照して、 車両 1 0 0 0は、 電池ユニット 4 0と、 トランスアクスル 2 0と、 制御装置 3 0と、 図示しないエンジンおよび車輪とを含む。
トランスアクスル 2 0は、 モータジェネレータ MG 1 , MG 2と、 動力分割機 構 P SDと、 減速機 RDと、 モータジェネレータ MG 1, MG 2の制御を行なう パワー制御ュニット 21とを備える。
動力分割機構 P SDは、 基本的には、 エンジン ENGとモータジェネレータ M G l, MG 2に結合されてこれらの間で動力を分配する機構である。 たとえば動 力分割機構 P SDとしては、 サンギヤ、 プラネタリキヤリャ、 リングギヤの 3つ の回転軸を有する遊星歯車機構を用いることができる。
動力分割機構 P SDの 2つの回転軸 (プラネタリキヤリャ, サンギヤ) がェン ジン ENG、 モータジェネレータ MG 1の各回転軸にそれぞれ接続され、 他の 1 つの回転軸 (リングギヤ) は減速機 RDを介して、 もしくは直接的にモータジェ ネレータ MG 2に接続されるような構成が考えられる。
なお減速機 RDの回転軸は、 後に説明するように図示しない減速ギヤやディフ ァレンシャルギヤによって車輪に結合されている。
電池ユニット 40には端子 41, 42が設けられている。 また、 トランスァク スル 20には端子 43, 44が設けられている。 車両 1000は、 さらに、 端子 41と端子 43とを結ぶパワーケーブル 6と、 端子 42と端子 44とを結ぶパヮ' 一ケープ/レ 8とを含む。
電池ユニット 40は、 バッテリ Bと、 ノくッテリ Bの負極と端子 42との間に接 続されるシステムメインリレー S MR 3と、 バッテリ Bの正極と端子 41との間 に接続されるシステムメインリレー S MR 2と、 パッテリ Bの正極と端子 41と の間に直列に接続される、 システムメインリ レー SMR 1および制限抵抗 Rとを 含む。 システムメインリ レー SMR 1〜SMR 3は、 制御装置 30から与えられ る制御信号 S Eに応じて導通/非導通状態が制御される。
電池ユニット 40は、 さらに、 バッテリ Bの端子間の電圧 VBを測定する電圧 センサ 10と、 バッテリ Bに流れる電流 I Bを検知する電流センサ 1 1とを含む。 パワー制御ユニット 21は、 モータジェネレータ MG 1, MG2にそれぞれ対 応して設けられるインバータ 22, 14と、 インバータ 22, 14に共通して設 けられる昇圧コンバータ 12とを含む。 なお、 インバータ 22, 14は、 図 1に おけるインバータ I NVを構成する。
昇圧コンバータ 1 2は、 端子 43, 44間の電圧を昇圧する。 インバータ 14 は、 昇圧コンバータ 1 2から与えられる直流電圧を三相交流に変換してモータジ エネレータ MG 2に出力する。
昇圧コンバータ 12は、 一方端が端子 43に接続されるリアク トルし 1と、 昇 圧後の電圧 VHを出力する昇圧コンバータ 12の出力端子間に直列に接続される 1〇8丁素子01, Q2と、 1〇8丁素子01, Q 2にそれぞれ並列に接続され るダイオード D l, D 2と、 平滑用コンデンサ C 2とを含む。 平滑用コンデンサ C 2は、 昇圧コンバータ 1 2によって昇圧された電圧を平滑化する。
リアク トルし 1の他方端は I GBT素子 Q 1のエミッタおよび I GB T素子 Q 2のコレクタに接続される。 ダイォード D 1の力ソ一ドは I 08丁素子(31のコ レクタと接続され、 ダイオード D 1のアノードは I GBT素子 Q 1のェミッタと 接続される。 ダイォード D 2の力ソードは I GB T素子 Q 2のコレクタと接続さ れ、 ダイォード D 2のアノードは I GBT素子 Q 2のエミッタと接続される。 インバータ 14は車輪を駆動するモータジェネレータ MG 2に ¾して昇圧コン バータ 1 2の出力する直流電圧を三相交流に変換して出力する。 またインバ一タ 14は、 回生制動に伴い、 モータジェネレータ MG2において発電された電力を 昇圧コンバータ 1 2に戻す。 このとき昇圧コンバータ 1 2は降圧回路として動作 , するように制御装置 30によって制御される。
インバータ 14は、 U相アーム 15と、 V相アーム 16と、 W相アーム 1 7と を含む。 U相アーム 1 5, V相アーム 16, および W相アーム 1 7は、 昇圧コン バータ 12の出力ライン間に並列に接続される。
U相アーム 1 5は、 直列接続された I GBT素子 Q 3, Q4と、 I GBT素子 Q 3, Q 4とそれぞれ並列に接続されるダイオード D 3, D4とを含む。 ダイォ 一ド D 3の力ソ一ドは I GB T素子 Q 3のコレクタと接続され、 ダイォード D 3 のアノードは I〇8丁素子03のェミッタと接続される。 ダイオード D 4のカソ ードは I GBT素子 Q4のコレクタと接続され、 ダイオード D 4のアノードは I 08丁素子<34のェミッタと接続される。
V相アーム 16は、 直列接続された I GBT素子 Q 5, Q6と、 I GBT素子 Q5, Q 6とそれぞれ並列に接続されるダイオード D 5, D 6とを含む。 ダイォ 一ド D 5の力ソードは I GB T素子 Q 5のコレクタと接続され、 ダイォード D 5 のアノードは I〇8丁素子05のェミッタと接続される。 ダイオード D 6のカソ 一ドは I GBT素子 Q 6のコレクタと接続され、 ダイォード D 6のアノードは I GBT素子 Q 6のエミッタと接続される。
W相アーム 1 7は、 直列接続された I GBT素子 Q 7, Q8と、 I GBT素子 Q 7, Q 8とそれぞれ並列に接続されるダイオード D 7, D 8とを含む。 ダイォ 一ド D 7のカソードは I GBT素子 Q 7のコレクタと接続され、 ダイォード D 7 のァノ一ドは I GBT素子 Q 7のエミッタと接続される。 ダイォード D 8のカソ ードは I GBT素子 Q 8のコレクタと接続され、 ダイオード D 8のアノードは I GBT素子 Q 8のエミッタと接続される。
各相アームの中間点は、 モータジヱネレ一タ MG 2の各相コイルの各相端に接 続されている。 すなわち、 モータジェネレータ MG 2は、 三相の永久磁石同期モ ータであり、 U, V, W相の 3つのコイルは各々一方端が中性点に共に接続され ている。 そして、 U相コイルの他方端が I GBT素子 Q 3, Q 4 接続ノードに 接続される。 また V相コイルの他方端が I GBT素子 Q 5, Q 6の接続ノードに 接続される。 また W相コイルの他方端が I GBT素子 Q 7, Q 8の接続ノードに' 接続される。 '
, 電流センサ 24は、 モータジェネレータ MG 2に流れる電流をモータ電流ィ直 M CRT 2として検出し、 モータ電流値 MCRT 2を制御装置 30へ出力する。 インバ一タ 22は、 昇圧コンバータ 1 2に対してインバータ 14'と並列的に接 続される。 インバ一タ 22は、 モータジェネレータ MG 1に対して昇圧コンバー タ 12の出力する直流電圧を三相交流に変換して出力する。 インバータ 22は、 昇圧コンバータ 1 2から昇圧された電圧を受けてたとえばエンジンを始動させる ためにモータジェネレータ MG 1を駆動する。
また、 インバータ 22は、 エンジンのクランクシャフ トから伝達される回転ト ルクによってモータジェネレータ MG 1で発電された電力をモータジェネレータ MG 2またはバッテリ Bへ供給する。 このとき昇圧コンバータ 1 2は降圧回路と して動作するように制御装置 30によって制御される。
インバータ 22の内部の構成は、 図示しないがインバータ 14と同様であり、 詳細な説明は繰返さない。 制御装置 30は、 トルク指令値 TR 1, TR 2、 モータ回転数 MRN 1, MR N2、 電圧 VB, VL, VH、 電流 I Bの各値、 モータ電流値 MCRT 1, MC RT 2および起動信号 I GONを受ける。
ここで、 トルク指令値 TR 1, モータ回転数 MR N 1およびモータ電流値 MC RT 1はモータジェネレータ MG 1に関するものであり、 トルク指令値 TR 2, モータ回転数 MRN 2およびモータ電流値 MCRT 2はモータジェネレータ MG 2に関するものである。
また、 電圧 VBはバッテリ Bの電圧であり、 電流 I Bは、 バッテリ Bに流れる 電流である。 電圧 VLは昇圧コンバータ 1 2の昇圧前電圧であり、 電圧 VHは昇 圧コンバータ 12の昇圧後電圧である。
そして制御装置 30は、 昇圧:^ンバータ 12に対して昇圧指示を行なう制御信 号 PWU, 降圧指示を行なう制御信号 PWDおよび動作禁止を指示する信号 CS DNを出力する。
さらに、 制御装置 30は、 インバータ 14に対して昇圧コンバータ 1 2の出力 である直流電圧をモータジェネレータ MG 2を駆動するための交流電圧に変換す' る駆動指示 PWMI 2'と、 モータジェネレータ MG 2で発電された交流電圧を直 ,流電圧に変換して昇圧コンバータ 1 2側に戻す回生指示 PWMC 2とを出力する。
同様に制御装置 30は、 インバータ 22に対して直流電圧をモータジエネレー タ MG 1を駆動するための交流電圧に変換する駆動指示 PWM I 1,と、 モータジ エネレータ MG 1で発電された交流電圧を直流電圧に変換して昇圧コンバータ 1 2側に戻す回生指示 PWMC 1とを出力する。
図 3は、 図 2における動力分割機構 P SDおよひ減速機 RDの詳細を説明する ための模式図である。
図 3を参照して、 この発明によるハイブリッド動力出力装置は、 モータジエネ レータ MG 2と、 モータジェネレータ MG 2の回転軸に接続される減速機 RDと、 減速機 R Dで減速された回転軸の回転に応じて回転する車軸と、 エンジン ENG と、 モータジェネレータ MG 1と、 減速機 RDとエンジン ENGとモータジエネ レータ MG 1との間で動力分配を行なう動力分割機構 P SDとを備える。 減速機 RDは、 モータジェネレータ MG 2から動力分割機構 P SDへの減速比が、 たと えば 2倍以上である。
エンジン E N Gのクランクシャフト 5 0とモータジェネレータ MG 1のロータ 3 2とモータジェネレータ MG 2のロータ 3 7とは同じ軸を中心に回転する。 動力分割機構 P S Dは、 図 3に示す例ではプラネタリギヤであり、 クランクシ ャフト 5 0に軸中心を貫通された中空のサンギヤ軸に結合されたサンギヤ 5 1と、 クランクシャフト 5 0と同軸上を回転可能に支持されているリングギヤ 5 2と、 サンギヤ 5 1とリンクギヤ 5 2との間に配置され、 サンギヤ 5 1の外周を自転し ながら公転するピニオンギヤ 5 3と、 クランクシャフト 5 0の端部に結合され各 ピニオンギヤ 5 3の回転軸を支持するブラネタリキヤリャ 5 4とを含む。
動力分割機構 P S Dは、 サンギヤ 5 1に結合されたサンギヤ軸と、 リングギヤ 5 2に結合されたリンクギヤケースおよびブラネタリキヤリャ 5 4に結合された クランクシャフト 5 0の 3軸が動力の入出力軸とされる。 そしてこの 3軸のうち いずれか 2軸へ入出力される動力が決定されると、 残りの 1軸に入出力される動 力は他の 2軸へ入出力される動力に基づいて定まる。
動力の取出用のカウンタドライブギヤ 7 0がリングギヤケースの外側に設けら' れ、 リンクギヤ 5 2と一体的に回転する。 カウンタドライブギヤ 7 0は、 動力伝 達減速ギヤ R Gに接続されている。 そしてカウンタドライブギヤ 7 0と動力伝達 減速ギヤ R Gとの間で動力の伝達がなされる。 動力伝達減速ギヤ R Gはディファ レンシャルギヤ D E Fを駆動する。 また、 下り坂等では車輪の回転がディファレ ンシャルギヤ D E Fに伝達され、 動力伝達減速ギヤ R Gはディファレンシャルギ ャ D E Fによって駆動される。
モータジェネレータ MG 1は、 回転磁界を形成するステータ 3 1と、 ステータ 3 1内部に配置され複数個の永久磁石が埋め込まれているロータ 3 2とを含む。 ステータ 3 1は、 ステータコア 3 3と、 ステータコア 3 3に卷回される三相コィ ル 3 4とを含む。 ロータ 3 2は、 動力分割機構 P S Dのサンギヤ 5 1と一体的に 回転するサンギヤ軸に結合されている。 ステータコア 3 3は、 電磁鋼板の薄板を 積層して形成されており、 図示しないケースに固定されている。
モータジェネレータ MG 1は、 ロータ 3 2に埋め込まれた永久磁石による磁界 と三相コイル 3 4によって形成される磁界との相互作用によりロータ 3 2を回転 駆動する電動機として動作する。 またモータジェネレータ MG 1は、 永久磁石に よる磁界とロータ 3 2の回転との相互作用により三相コイル 3 4の両端に起電力 を生じさせる発電機としても動作する。
モータジェネレータ MG 2は、 回転磁界を形成するステータ 3 6と、 ステ一タ 3 1内部に配置され複数個の永久磁石が埋め込まれたロータ 3 7とを含む。 ステ ータ 3 6は、 ステータコア 3 8と、 ステータコア 3 8に卷回される三相コイル 3 9とを含む。
ロータ 3 7は、 動力分割機構 P S Dのリングギヤ 5 2と一体的に回転するリン クギヤケースに減速機 R Dによって結合されている。 ステータコア 3 8は、 たと えば電磁鋼板の薄板を積層して形成されており、 図示しないケースに固定されて いる。
モータジェネレータ MG 2は、 永久磁石による磁界とロータ 3 7の回転との相 互作用により三相コイル 3 9の両端に起電力を生じさせる発電機と Uても動作す る。 またモータジェネレータ MG 2は、 永久磁石による磁界と三相コイル 3 9に よって形成される磁界との相互作用によりロータ 3 7を回転駆動する電動機とし' て動作する。 '
, 減速機 R Dは、 プラネタリギヤの回転要素の一つであるプラネタリキヤリャ 6 6がトランスアクスルのケースに固定された構造により減速を行なう。 すなわち、 減速機 R Dは、 ロータ 3 7のシャフトに結合されたサンギヤ 6 2と,、 リングギヤ 5 2と一体的に回転するリングギヤ 6 8と、 リングギヤ 6 8およびサンギヤ 6 2 に嚙み合いサンギヤ 6 2の回転をリングギヤ 6 8に伝達するピ-オンギヤ 6 4と を含む。
たとえば、 サンギヤ 6 2の歯数に対しリンクギヤ 6 8の歯数を 2倍以上にする ことにより、 減速比を 2倍以上にすることができる。
[構成要素の配置説明]
図 4は、 本発明の実施の形態に係るハイブリッド車両のトランスアクスル 2 0 の外観を示す斜視図である。
図 5は、 トランスアクスル 2 0の平面図である。
図 4、 図 5を参照して、 トランスアクスノレ 2 0のケースは、 ケース 1 0 4とケ ース 1 0 2とに分割可能に構成されている。 ケース 1 0 4は主としてモータジェ ネレータ MG 1を収容する部分であり、 ケース 1 0 2は、 主としてモータジエネ レータ MG 2およびパワー制御ュニットを収容する部分である。
ケース 1 0 4にはフランジ 1 0 6が形成され、 ケース 1 0 2にはフランジ 1 0 5が形成され、 フランジ 1 0 6とフランジ 1 0 5とがボルト等で固定されること により、 ケース 1 0 4とケース 1 0 2とが一体化される。
ケース 1 0 2にはパワー制御ュニット 2 1を組付けるための開口部 1 0 8が設 けられている。 この開口部 1 0 8の内部左側部分 (車両進行方向側) にはコンデ ンサ C 2が収容され、 中央部分にはパワー素子基板 1 2 0と端子台 1 1 6, 1 1 8とが収容され、 右側部分にはリアクトル L 1とが収容されている。 なお、 この 開口部 1 0 8は車両搭載状態においては蓋により閉じられている。 また、 コンデ ンサ C 2を右側に、 リアク トル L 1を左側に収容するように入れ換えても良い。 つまり、 リアク トル L 1はモータジェネレータ MG 1および MG 2の回転軸の 一方側に配置され、 コンデンサ C 2は回転軸の他方側に配置されている。 そして コンデンサ C 2とリアクトル L 1との間の領域にパワー素子基板 1 2◦が配置さ れている。 パワー素子基板 1 2 0の下方にはモータジェネレータ MG 2が配置さ ■れている。
パワー素子基板 1 2 0にはモータジェネレータ MG 1を制御するィンバータ 2 2と、 モータジェネレータ MG 2を制御するインバータ 1 4と、 昇圧コンバータ のアーム部 1 3とが搭載されている。
インバータ 1 4とインバ一タ 2 2との間の領域には上下に重ねて配置された電 源用バスバ一が設けられている。 インバータ 1 4の U相アーム 1 5、 V相アーム 1 6、 W相アーム 1 7からはそれぞれ 1本ずつのバスバーがモータジェネレータ MG 2のステータコイルにつながる端子台 1 1 6に向けて設けられている。 同様 にィンバータ 2 2からも 3本のバスバーがモータジェネレータ MG 1のステータ コイルにつながる端子台 1 1 8に向けて設けられている。
パワー素子基板 1 2 0は高温になるためこれを冷却するためにパワー素子基板 1 2 0の下には通水路が設けられており、 通水路への冷却水入口 1 1 4と冷却水 出口 1 1 2とがケース 1 0 2に設けられている。 なお、 この入口や出口などは、 たとえば、 ケース 1 0 2に対し、 フランジ 1 0 6 , 1 0 5を貫通させてユニオン ナツト等を打ち込んで構成される。
図 3の電池ュニット 4 0から端子 4 3 , 4 4にパワーケーブルを介して与えら れた電圧は、 リアク トル L 1およびアーム部 1 3を含む昇圧コンバータ 1 2によ つて昇圧される。 そして、 その昇圧された電圧は、 コンデンサ C 2によって平滑 化されてインバータ 1 4および 2 2に供給される。
このように昇圧コンバータ 1 2を用いて電池電圧を昇圧して用いることにより、 バッテリ電圧を 2 0 0 V程度に低減しつつ、 かつモータジェネレータを 5 0 0 V を超える高電圧で駆動することが可能となる。 これにより、 電力供給を小電流で 行なうことにより電気損失を抑制し、 かつモータの高出力を実現することができ る。 '
トランスアクスル 2 0として、 インバータ 1 4, 2 2およびモータジエネレー タ MG 1, MG 2に加えて、 昇圧コンバータ 1 2も含めて一体化する場合には、 比較的大きな部品であるリアク トル L 1およびコンデンサ C 2の配置場所が問題 となる。 ' 図 6は、 トランスアクスル 2 0を図 5の X 1方向から見た側面図である。
' 図 6を参照して、 ケース 1 0 2にはモータジェネレータ組付け用および保守用 の開口部 1 0 9が設けられており、 この開口部 1 0 9は車両搭載状態においては 蓋により閉じられている。 '
開口部 1 0 9の内部にはモータジェネレータ MG 2が配置されている。 U, V ,
W相のバスバーが接続されるステ一タ 3 6の内部にロータ 3 7が配置されている。 ロータ 3 7の中央部分には中空のシャフト 6 0が見えている。
図 5に示すように、 ケース 1 0 2のパワー制御ュニット 2 1を収容する収容室 にはモータジェネレータ MG 2のステータ 3 6が大きく食い込んでいるので、 モ ータジェネレータ MG 2の一方側にはリアク トル L 1が配置され他方側にはコン デンサ C 2が配置され、 大型部品を効率よく収容している。 これにより、 コンパ ク トなハイブリッド車両のトランスアクスルが実現される。
さらに、 この発明によれば、 トランスアクスル 2 0にパワー制御ユニッ ト 2 1 を一体化させたことによって、 以下に述べるように、 リアタ トル L 1に発生する 振動がハイプリッド車両のボディに伝搬するのを抑制することができる。
詳細には、 リアク トル L 1は、 図 7に示すように、 コア 221と、 コイル 22 2とを含む。 コア 221は、 直線部 2210, 221 2と、 湾曲部 221 1, 2 21 3とからなる。
湾曲部 221 1は、 直線部 2210との間にギャップ 223を有し、 直線部 2
21 2との間にギャップ 224を有する。 湾曲部 221 3は、 直線部 221 2と の間にギヤップ 225を有し、 直線部 2210との間にギヤップ 226を有する。 コィノレ 222は、 直線部 2210, 2212に巻回される。
直流電流が矢印で示す方向にコイル 222を流れると、 磁束がコア 221中で 発生し、 その発生した磁束は、 ギャップ 223を矢印 227の方向に通過して湾 曲部 221 1を伝搬する。 そして、 磁束は、 ギャップ 224を矢印 228の方向 に通過して直線部 221 2を伝搬し、 ギャップ 225を矢印 228の方向に通過 する。 磁束は、 さらに、 湾曲部 22 1 3を伝搬し、 ギャップ 226を矢印 227 の方向に通過する。 このように、 直流電流がコイル 222を流れると、 磁束は、 コア 221中を循環する。 ' そして、 再び図 2および図 5を参照して、 パワー制御ユニット 21がモータジ ' エネレータ MG 1, MG 2を駆動するとき、 昇圧コンバータ 12の I GBT素子 Q2は、 上述したようにオンノオフされる。 そして、 108丁素子(32はォンさ れると、 ノ、。ヮ一ケーブル 6、 リアク トル L l、 I GBT素子 Q 2、'パワーケープ ノレ 8およびバッテリ Bからなる閉回路に直流電流が流れる。 そして、 磁束がリア ク トル L 1のコア 221に発生し、 湾曲部 22 1 1, 22 1 3は、 直線部 221 0, 2212の方向へ引かれる。 また、 I GBT素子 Q2がオフされると、 磁束 がコア 221に発生しないので、 湾曲部 221 1, 221 3は、 直線部 2210, 221 2から引力を受けない。
したがって、 I GBT素子 Q 2がオン オフされると、 リアク トル L 1のコア
221の湾曲部 22 1 1, 22 13は、 直線部 2210, 221 2の方向へ移動 したり、 元の位置に戻ったりして振動する。
そして、 リアク トル L 1は、 ケース 102の開口部 1◦ 8に固定されているた め、 リアタ トル L 1で発生した振動は、 ケース 102に伝搬する。 さらに、 この 振動は、 ケース 1 0 2をボディに固定するための固定部材を介して、 ボディに伝 搬する。 その結果、 車室内には、 リアク トル L 1の振動に基づく騒音が発生する。 ところで、 一般に、 エンジンを搭載した車両においては、 エンジン振動がボデ ィに伝搬して車室内に騒音を発生させるのを抑制するために、 エンジンを、 ェン ジンマウントと呼ばれる防振装置を用いてボディに懸架させる方法が採られてい る。 このとき、 エンジンと直結される トランスアクスルについても、 エンジン振 動を受けて振動することから、 エンジンと一体化されてエンジンマウントにより ボディに懸架される。
エンジンマウントは、 たとえば液体封入式のコ'ムブッシュなどの弾性体により 形成される。 エンジンマウントは、 コ'ム内部を液体が移動することによってコ'ム 本来の伸縮性が補われて、 ボディに対するエンジンの相対振動を吸収する。
この発明によれば、 振動源となるリァク トル L 1をトランスアクスル 2 0と一 体化させたことによって、 上述したリアク トル L 1の振動を、 エンジンの防振装 置であるエンジンマウントにより吸収させることが可能となる。
そして、 このとき、 振動源であるリアク トル L 1とエンジンマウントとの位置' 関係を最適化すること'により、 より効率良く リアクトル L 1の振動を吸収するこ とができる。
具体的には、 図 5に示すように、 リアタ トル L 1の近傍にエンジンマウント E Mを配置する構成とすれば良い。 本構成によれば、 リアク トル L 1の振動は、 近 傍のエンジンマウント E Mによって効率的に吸収され、 ボディに伝搬するのが抑 制される。 このとき、 許容される限りにおいて、 エンジンマウント E Mとリアク トノレ L 1とが略同一直線上を振動するように配置することが出来れば、 リアク ト ル L 1の振動の吸収に一層効果的であることは明らかである。
さらには、 図 6に示すように、 エンジンマウント E M内部の弾性体の振動方向 1S リアク トル L 1の振動方向に略一致するように配置する構成とする。
リアク トノレ L 1は、 図 7で述べたように、 コア 2 2 1を循環する磁束により湾 曲部と直線部との間に引力が作用することによって、 矢印 L N 1の方向に振動す る。 そこで、 エンジンマウント E M内部の弾性体の振動方向 (矢印 L N 2の方向 に相当) を、 このリアク トル L 1の振動方向と略一致させるようにエンジンマウ ント E Mを配置すれば、 リアク トル L 1の振動を効率的に吸収することができる。 さらに、 本構成において、 エンジンマウント E M内部の弾性体の振動方向を、 エンジン E N Gの振動方向に略一致するように配置する構成とすれば、 エンジン マウント E Mの振動減衰力を最大限に利用することが可能となる。 この場合、 ェ ンジンマウント E Mは、 エンジンマウント E M内部の弾性体の振動方向が、 リア ク トルし 1の振動方向およびエンジン E N G内部のビス トンの往復運動の方向に 略一致するように配置される。
以上のように、 本発明の実施の形態によれば、 トランスアクスルのモータジェ ネレータ MG 2および動力分割機構の空きスペースを利用して、 インバータおよ ぴ昇圧コンバータを含むパワー制御ユニットを、 コンパク トに配置することがで きる。 これにより、 従来のガソリン車のトランスアクスル部分の形状に近づける ことができるため、 より多くの車種に搭載可能なハイプリッド車両の動力出力装 置を実現することができる。
また、 パワー制御ュニットの昇圧コンバータのリアク トルに発生する振動を、 エンジン振動を吸収する既存の防振装置によって吸収することができる。 その結' 果、 リアク トルの振動がボディに伝搬するのが抑制され、 車室内の騷音の発生を 防止することができる。
さらに、 防振装置を、 振動源となるリアク トルの近傍であって、 かつ互いの振 動方向が略一致するように設置することにより、 リアク トルの振動をより効率良 く吸収することが可能となる。 このとき、 防振装置を、 リアク トルおよびェンジ ンに対して、 互いの振動方向が略一致するように配置すれば、 エンジンマウント E Mの振動減衰力を最大限に引出すことが可能となる。
今回開示された実施の形態はすべての点で例示であって制限的なものではない と考えられるべきである。 本発明の範囲は上記した説明ではなく、 請求の範囲に よって示され、 請求の範囲と均等の意味および範囲内でのすべての変更が含まれ ることが意図される。 産業上の利用可能性
この発明は、 ハイプリッド自動車に搭載される動力出力装置に適用することが できる。

Claims

請求の範囲
1. 駆動軸に動力を出力するハイブリッド車両の動力出力装置であって、
燃料の燃焼エネルギーを源に動力を発生するエンジン (ENG) と、
前記エンジン (ENG) の発生した動力に回転電機 (MG2) の発生した動力 を合成して前記駆動軸に伝達する動力伝達装置 (20) と、
スイッチング素子とリアク トル (L 1) とを含み、 前記スイッチング素子のス イッチンク動作により、 電源 (B) からの直流電力と前記回転電機 (MG2) を 駆動制御する交流電力との間の電力変換を行なうパワー制御ユニット (21) と、 前記エンジン (ENG) に振動伝達可能に連結され、 前記動力伝達装置 (2
0) と前記パワー制御ユニット '(21) とを収容するケース (102, 104) と、
前記エンジン (ENG) と車体との相対振動を吸収可能に前記エンジン (EN G) および前記ケース ( 102, 104) を前記車体に懸架する防振装置 (E M) とを備える、 ハイブリッド車両の動力出力装置。
2 前記動力伝達装置 (20) は、
, 前記電源 (B) によって駆動されて動力を発生する第 1および第 2の回転電機 (MG 1 , MG 2) と、
前記エンジン (ENG) の出力を前記第 1の回転電機 (MG 1) ,および前記駆 動軸に機械的に分配する動力分割機構 (P SD) とを含み、
前記パヮ一制御ュニット (20) は、
前記第 1および第 2の回転電機 (MG 1, MG2) にそれぞれ対応して設けら れる第 1および第 2のインバータ (22, 14) と、
前記スイッチング素子と前記リアタ トル (L 1) とを有し、 前記スイッチング 素子のスイッチング動作により、 前記電源 (B) と前記第 1および第 2のインバ ータ (22, 14) との間で電圧変換する電圧変換器 (1 2) とを含む、 請求の 範囲 1に記載のハイプリッド車両の動力出力装置。
3. 前記リアタ トル (L 1) には、 前記スイッチング素子によってスイッチング された電流が流れ、 前記防振装置 (EM) は、 前記エンジン (ENG) および前記ケース (102, 104) と前記車体との間に振動可能に連結された弾性体を有し、 前記弾性体の 振動方向が、 通電時に前記リアク トル (L 1) が振動する方向と略同じとなるよ うに設けられる、 請求の範囲 2に記載のハイプリッド車両の動力出力装置。
4. 前記防振装置 (EM) は、 前記弾性体と前記リアタ トル (L 1) とが略同一 直線上を振動するように設けられる、 請求の範囲 3に記載のハイプリ ッド自動車 の動力出力装置。
5. 前記防振装置 (EM) は、 前記弾性体の振動方向が、 通電時に前記リアク ト ノレ (L 1) が振動する方向および前記エンジン (ENG) が振動する方向と略同 じとなるように設けられる、 請求の範囲 3に記載のハイプリッド自動車の動力出 力装置。 '
PCT/JP2006/320805 2005-10-13 2006-10-12 ハイブリッド車両の動力出力装置 WO2007043706A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2006800381308A CN101300148B (zh) 2005-10-13 2006-10-12 混合动力车辆的动力装置
EP06811994A EP1935695A4 (en) 2005-10-13 2006-10-12 POWER OUTPUT DEVICE OF HYBRID VEHICLE
US12/083,615 US7963353B2 (en) 2005-10-13 2006-10-12 Power output device of hybrid vehicle
AU2006300211A AU2006300211B2 (en) 2005-10-13 2006-10-12 Power output device of hybrid vehicle
BRPI0617235-0A BRPI0617235A2 (pt) 2005-10-13 2006-10-12 dispositivo da saìda de potência de veìculo hìbrido

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-299094 2005-10-13
JP2005299094A JP4218671B2 (ja) 2005-10-13 2005-10-13 ハイブリッド車両の動力出力装置

Publications (1)

Publication Number Publication Date
WO2007043706A1 true WO2007043706A1 (ja) 2007-04-19

Family

ID=37942918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320805 WO2007043706A1 (ja) 2005-10-13 2006-10-12 ハイブリッド車両の動力出力装置

Country Status (9)

Country Link
US (1) US7963353B2 (ja)
EP (1) EP1935695A4 (ja)
JP (1) JP4218671B2 (ja)
KR (1) KR100940582B1 (ja)
CN (1) CN101300148B (ja)
AU (1) AU2006300211B2 (ja)
BR (1) BRPI0617235A2 (ja)
RU (1) RU2381917C2 (ja)
WO (1) WO2007043706A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679891B2 (ja) * 2004-11-30 2011-05-11 トヨタ自動車株式会社 交流電圧発生装置および動力出力装置
JP4337803B2 (ja) * 2005-10-28 2009-09-30 トヨタ自動車株式会社 ハイブリッド車両の駆動装置
JP4248565B2 (ja) 2006-06-13 2009-04-02 トヨタ自動車株式会社 車両駆動機構
JP2009232652A (ja) * 2008-03-25 2009-10-08 Aisin Aw Co Ltd 回転電機制御システム及び当該回転電機制御システムを備えた車両駆動システム
DE102010009832A1 (de) * 2010-03-02 2011-09-08 Ivd Prof. Hohenberg Gmbh Kraftfahrzeug mit kombiniertem Antrieb
US8446024B2 (en) * 2010-03-16 2013-05-21 Hamilton Sundstrand Corporation Electrical machines with integrated power and control and including a current source inverter
CN103847530B (zh) 2012-12-03 2017-04-12 通用电气公司 电驱动系统及其能量管理方法
JP6318657B2 (ja) * 2014-01-31 2018-05-09 トヨタ自動車株式会社 電力制御装置
US9448135B2 (en) 2014-07-16 2016-09-20 Ford Global Technologies, Llc Torque error detection and torque estimation system
US9988036B2 (en) * 2014-09-05 2018-06-05 Ford Global Technologies, Llc Clutch and electric machine control for driveline damping
RU2644819C1 (ru) * 2017-02-09 2018-02-14 Игорь Владимирович Леонов Способ управления дизель-электрическим агрегатом с маховичным аккумулятором и устройство для его реализации
JP2019077218A (ja) * 2017-10-20 2019-05-23 トヨタ自動車株式会社 ハイブリッド車両の駆動装置
US11362016B2 (en) 2018-05-02 2022-06-14 Ford Global Technologies, Llc Transaxle with semiconductor device cooling arrangement
JP7205410B2 (ja) * 2019-07-26 2023-01-17 株式会社デンソー 電池監視装置
EP3815944B1 (en) * 2019-10-31 2022-06-15 BRUSA Elektronik AG Compact powertrain with an electric motor
CN110949145A (zh) * 2019-11-29 2020-04-03 东风柳州汽车有限公司 发动机集成电机的增程器系统
EP4112350A1 (en) * 2021-07-02 2023-01-04 MAHLE Powertrain, LLC Hybrid power train for vehicles with a low-voltage motor-generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1034956A2 (en) 1999-03-05 2000-09-13 Nissan Motor Co., Ltd. Mounting structure for electric motor control unit in a hybrid vehicle
JP2004215355A (ja) * 2002-12-27 2004-07-29 Aisin Aw Co Ltd 電動駆動装置制御ユニットの防振装置
JP2004343845A (ja) * 2003-05-13 2004-12-02 Aisin Aw Co Ltd 電動機内蔵駆動装置
JP2005032830A (ja) * 2003-07-08 2005-02-03 Toyota Motor Corp 制御装置およびそれを搭載した自動車
JP2005073392A (ja) * 2003-08-25 2005-03-17 Toyota Motor Corp 電源装置およびそれを搭載した自動車

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3362808D1 (en) 1982-10-27 1986-05-07 Peugeot Anti-pivoting arrangement for a motor vehicle's power unit
US5293947A (en) 1991-09-03 1994-03-15 Wagner Mining And Construction Equipment Co. Variable speed AC electric drive vehicle
JP3236344B2 (ja) 1992-05-13 2001-12-10 本田技研工業株式会社 車両の動力源出力制御装置
JPH1042407A (ja) 1996-03-11 1998-02-13 Yukio Ota 気動車両の動力装置
JP3613088B2 (ja) 1999-09-10 2005-01-26 日産自動車株式会社 車両用駆動ユニット支持装置
JP2001119961A (ja) 1999-10-18 2001-04-27 Aisin Aw Co Ltd インバータ一体型車両駆動装置
JP4345241B2 (ja) 2001-04-24 2009-10-14 日産自動車株式会社 ハイブリッド自動車のパワーユニット
JP3784011B2 (ja) * 2001-07-18 2006-06-07 本田技研工業株式会社 電気車両用パワーコントロールユニット
US7164253B2 (en) * 2001-08-02 2007-01-16 Toyota Jidosha Kabushiki Kaisha Motor drive control apparatus
ATE393046T1 (de) * 2001-12-26 2008-05-15 Toyota Motor Co Ltd Antriebsvorrichtung eines hybridfahrzeugs
EP1363026A3 (en) * 2002-04-26 2004-09-01 Denso Corporation Invertor integrated motor for an automotive vehicle
JP3858841B2 (ja) 2003-03-20 2006-12-20 トヨタ自動車株式会社 ハイブリッド車両
DE10319880A1 (de) * 2003-05-03 2004-11-18 Daimlerchrysler Ag Antriebsstrang mit einer Brennkraftmaschine und zwei elektrischen Antriebsaggregaten
CN100358743C (zh) * 2003-06-30 2008-01-02 丰田自动车株式会社 复合驱动装置及搭载该装置的汽车
JP3934093B2 (ja) * 2003-08-12 2007-06-20 本田技研工業株式会社 ハイブリット車両の制御装置
JP2005150517A (ja) 2003-11-18 2005-06-09 Toyota Motor Corp 電圧変換装置ならびにそれを備えた負荷駆動装置および車両
JP3933125B2 (ja) 2003-12-17 2007-06-20 トヨタ自動車株式会社 車両の動力出力装置
JP4176662B2 (ja) * 2004-03-11 2008-11-05 本田技研工業株式会社 ハイブリッド車両の制振方法
JP4059877B2 (ja) * 2004-10-14 2008-03-12 トヨタ自動車株式会社 ハイブリッド駆動装置
JP2006278210A (ja) * 2005-03-30 2006-10-12 Toyota Motor Corp 故障診断装置および故障診断方法
JP4539531B2 (ja) * 2005-10-26 2010-09-08 トヨタ自動車株式会社 車両の駆動装置
JP4591312B2 (ja) * 2005-11-01 2010-12-01 トヨタ自動車株式会社 車両の駆動装置
JP2007126073A (ja) * 2005-11-07 2007-05-24 Nissan Motor Co Ltd エンジンの振動抑制装置
JP4274188B2 (ja) * 2006-02-08 2009-06-03 トヨタ自動車株式会社 ハイブリッド車両の駆動装置
JP4307455B2 (ja) * 2006-02-21 2009-08-05 株式会社豊田中央研究所 ハイブリッド車両の制御装置
JP4850564B2 (ja) * 2006-04-06 2012-01-11 日立オートモティブシステムズ株式会社 電力変換装置
US7722498B2 (en) * 2006-06-21 2010-05-25 Denso Corporation Control device and method for hybrid electric vehicle
JP4875534B2 (ja) * 2007-04-18 2012-02-15 トヨタ自動車株式会社 車両用駆動装置
KR100946491B1 (ko) * 2007-08-24 2010-03-10 현대자동차주식회사 하이브리드 차량용 동력전달장치
JP4483976B2 (ja) * 2008-05-12 2010-06-16 トヨタ自動車株式会社 ハイブリッド車両およびハイブリッド車両の制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1034956A2 (en) 1999-03-05 2000-09-13 Nissan Motor Co., Ltd. Mounting structure for electric motor control unit in a hybrid vehicle
JP2004215355A (ja) * 2002-12-27 2004-07-29 Aisin Aw Co Ltd 電動駆動装置制御ユニットの防振装置
JP2004343845A (ja) * 2003-05-13 2004-12-02 Aisin Aw Co Ltd 電動機内蔵駆動装置
JP2005032830A (ja) * 2003-07-08 2005-02-03 Toyota Motor Corp 制御装置およびそれを搭載した自動車
JP2005073392A (ja) * 2003-08-25 2005-03-17 Toyota Motor Corp 電源装置およびそれを搭載した自動車

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1935695A4

Also Published As

Publication number Publication date
JP2007106256A (ja) 2007-04-26
EP1935695A1 (en) 2008-06-25
KR100940582B1 (ko) 2010-02-03
RU2008118505A (ru) 2009-11-20
US7963353B2 (en) 2011-06-21
CN101300148A (zh) 2008-11-05
AU2006300211A1 (en) 2007-04-19
CN101300148B (zh) 2011-05-11
US20090242286A1 (en) 2009-10-01
BRPI0617235A2 (pt) 2011-07-19
JP4218671B2 (ja) 2009-02-04
EP1935695A4 (en) 2008-12-10
KR20080056766A (ko) 2008-06-23
AU2006300211B2 (en) 2012-02-16
RU2381917C2 (ru) 2010-02-20

Similar Documents

Publication Publication Date Title
JP4218671B2 (ja) ハイブリッド車両の動力出力装置
JP4337803B2 (ja) ハイブリッド車両の駆動装置
US8397845B2 (en) Drive apparatus for vehicle
JP5227323B2 (ja) 車両およびハイブリッド車両
JP4289340B2 (ja) ハイブリッド車両の駆動装置
CN101678755A (zh) 车辆的驱动系统
JP4253684B1 (ja) 車両用駆動装置
WO2008041761A1 (fr) Dispositif d&#39;entraînement de véhicule
JP2007166803A (ja) 車両の駆動装置
WO2007145266A1 (ja) 車両駆動機構
JP2011168166A (ja) ハイブリッド車両用駆動装置
JP2007103196A (ja) パワーケーブルおよびそれを用いるモータ駆動システム
JP2007131235A (ja) ハイブリッド車両の駆動装置
JP2005176569A (ja) 電気自動車

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680038130.8

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006811994

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2941/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12083615

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006300211

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2006300211

Country of ref document: AU

Date of ref document: 20061012

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087011179

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008118505

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0617235

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080410