WO2007043116A9 - 半導体装置とその製造方法 - Google Patents

半導体装置とその製造方法

Info

Publication number
WO2007043116A9
WO2007043116A9 PCT/JP2005/018173 JP2005018173W WO2007043116A9 WO 2007043116 A9 WO2007043116 A9 WO 2007043116A9 JP 2005018173 W JP2005018173 W JP 2005018173W WO 2007043116 A9 WO2007043116 A9 WO 2007043116A9
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
film
capacitor
metal wiring
forming
Prior art date
Application number
PCT/JP2005/018173
Other languages
English (en)
French (fr)
Other versions
WO2007043116A1 (ja
Inventor
Hideaki Kikuchi
Kouichi Nagai
Original Assignee
Fujitsu Ltd
Hideaki Kikuchi
Kouichi Nagai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Hideaki Kikuchi, Kouichi Nagai filed Critical Fujitsu Ltd
Priority to CNB2005800517407A priority Critical patent/CN100555606C/zh
Priority to PCT/JP2005/018173 priority patent/WO2007043116A1/ja
Priority to JP2007539739A priority patent/JP5024046B2/ja
Priority to KR1020087008536A priority patent/KR100977486B1/ko
Publication of WO2007043116A1 publication Critical patent/WO2007043116A1/ja
Publication of WO2007043116A9 publication Critical patent/WO2007043116A9/ja
Priority to US12/059,754 priority patent/US8343830B2/en
Priority to US13/691,897 priority patent/US8680596B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76814Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics post-treatment or after-treatment, e.g. cleaning or removal of oxides on underlying conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76832Multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/65Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the same.
  • Flash memories and ferroelectric memories are known as nonvolatile memories that can store information even when the power is turned off.
  • the flash memory has a floating gate embedded in the gate insulating film of an insulated gate field effect transistor (IGFET), and information is stored by storing charges representing stored information in the floating gate.
  • IGFET insulated gate field effect transistor
  • the ferroelectric memory is also called FeRAM (Ferroelectric Random Access Memory), and stores information using the hysteresis characteristic of the ferroelectric film provided in the ferroelectric capacitor.
  • FeRAM Feroelectric Random Access Memory
  • the ferroelectric film generates polarization according to the voltage applied between the upper electrode and the lower electrode of the capacitor, and the spontaneous polarization remains even if the voltage is removed.
  • this spontaneous polarization is also reversed, and information is written to the ferroelectric film by making the direction of the spontaneous polarization correspond to “1” and “0”.
  • FeRAM has the advantage that the voltage required for this writing is lower than that in flash memory and that writing can be performed at a higher speed than in flash memory.
  • metal wiring for applying a voltage to the upper electrode and lower electrode of the capacitor is formed on the interlayer insulating film, and examples of the structure of the metal wiring are disclosed in Patent Documents 1 to 9 listed below. Is disclosed.
  • Patent Documents 1 to 7 increase the alignment margin between the contact hole and the wiring by forming a side wall next to the wiring.
  • Patent Documents 8 and 9 by forming an insulating sidewall next to the wiring, even if the conductive plug on the wiring is displaced, the contact resistance of the conductive plug increases. Preventing the ascent.
  • Patent Document 1 JP-A-8-330417
  • Patent Document 2 Japanese Patent Laid-Open No. 11-274297
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-343857
  • Patent Document 4 Japanese Patent Laid-Open No. 11-8299
  • Patent Document 5 JP-A-10-209277
  • Patent Document 6 JP-A-8-293549
  • Patent Document 7 JP-A-8-250589
  • Patent Document 8 Japanese Patent Laid-Open No. 11-186382
  • Patent Document 9 JP-A-8-330422
  • An object of the present invention is to provide a semiconductor device capable of electrically connecting a metal wiring and a conductive plug thereon, and a method for manufacturing the same.
  • a step of forming a first insulating film on a semiconductor substrate, and a capacitor dielectric film comprising a lower electrode and a ferroelectric material on the first insulating film And forming a capacitor having an upper electrode, forming a second insulating film covering the capacitor, forming a metal wiring on the second insulating film, the metal wiring, and the second insulating film Forming a first capacitor protective insulating film covering the film; forming an insulating sidewall on the first capacitor protective insulating film next to the metal wiring; and a third on the insulating sidewall.
  • a method for manufacturing a semiconductor device is provided.
  • the present invention after covering the metal wiring with the first capacitor protective insulating film, the insulating side wall and the third insulating film are formed, so that the plasma contained in the film forming atmosphere when these are formed Metal wiring is not exposed to Therefore, plasma damage is caused through metal wiring. Thus, deterioration of the capacitor dielectric film due to plasma damage can be prevented without being transmitted to the capacitor dielectric film.
  • the third insulating film is etched under the etching conditions to form a hole. Even if the metal wiring force is removed, no groove is formed at the bottom of the removed hole. Therefore, during etching of the hole, the etching product coming out of the first capacitor protection insulating film does not collect in the groove, and the etching product hardly remains in the hole. Therefore, even when the semiconductor substrate is heated when forming the conductive plug in the hole, there is almost no degassing due to the heated etching product, so that the conductive plug is not formed by degassing. Therefore, it is possible to electrically connect the conductive plug and the metal wiring well.
  • the insulating sidewall can be formed by etching back the sidewall insulating film
  • the insulating film can be formed by plasma CVD or the like by forming the sidewall insulating film by a sputtering method.
  • the plasma damage received by the capacitor dielectric film can be reduced as compared with the case where the film is formed.
  • a metal laminated film including an aluminum film As the metal wiring.
  • the metal wiring is covered with the first capacitor protective insulating film, moisture contained in the film formation atmosphere of the insulating sidewall and the third insulating film does not directly touch the aluminum film. Therefore, the above-mentioned moisture is prevented from being reduced to hydrogen by the reducing action of aluminum, and the capacitor dielectric film can be prevented from being deteriorated by the hydrogen.
  • a semiconductor substrate, a first insulating film formed on the semiconductor substrate, a lower electrode formed on the first insulating film, and a ferroelectric A capacitor dielectric film composed of a body material, a capacitor composed of an upper electrode, a second insulating film formed on the capacitor, a metal wiring formed on the second insulating film, and at least Both the first capacitor protective insulating film formed on the side surface of the metal wiring, the insulating sidewall formed on the first capacitor protective insulating film next to the metal wiring, the metal wiring and the insulating side
  • a semiconductor device having a third insulating film formed on each of the walls and having a hole on the metal wiring, and a conductive plug formed in the hole and connected to the metal wiring.
  • FIGS. 1 (a) and 1 (b) are cross-sectional views (part 1) in the middle of manufacturing a virtual semiconductor device.
  • FIGS. 2 (a) and 2 (b) are cross-sectional views (part 2) in the process of manufacturing a virtual semiconductor device.
  • FIGS. 3 (a) and 3 (b) are cross-sectional views (part 3) in the process of manufacturing a virtual semiconductor device.
  • FIGS. 4 (a) and 4 (b) are enlarged cross-sectional views of the virtual semiconductor device when the fifth hole loses the first-layer metal wiring force.
  • FIGS. 5A and 5B are cross-sectional views (part 1) of the semiconductor device according to the first embodiment of the present invention in the middle of manufacture.
  • 6 (a) and 6 (b) are cross-sectional views (part 2) of the semiconductor device according to the first embodiment of the present invention in the middle of manufacture.
  • FIGS. 7A and 7B are cross-sectional views (part 3) of the semiconductor device according to the first embodiment of the present invention in the middle of manufacture.
  • FIGS. 8A and 8B are cross-sectional views (part 4) of the semiconductor device according to the first embodiment of the present invention during manufacture.
  • FIGS. 9 (a) and 9 (b) are cross-sectional views (part 5) of the semiconductor device according to the first embodiment of the present invention in the middle of manufacture.
  • FIGS. 10 (a) and 10 (b) are cross-sectional views (part 6) of the semiconductor device according to the first embodiment of the present invention during manufacture.
  • FIGS. 11 (a) and 11 (b) are cross-sectional views (part 7) of the semiconductor device according to the first embodiment of the present invention during manufacture.
  • FIG. 12 is a cross-sectional view (part 8) of the semiconductor device according to the first embodiment of the present invention in the middle of manufacture.
  • FIG. 13 is a cross-sectional view of the semiconductor device according to the first embodiment of the present invention in the middle of manufacture. 9).
  • FIG. 14 is a cross-sectional view (part 10) of the semiconductor device according to the first embodiment of the present invention which is being manufactured.
  • FIG. 15 is a cross-sectional view (part 11) of the semiconductor device according to the first embodiment of the present invention which is being manufactured.
  • FIG. 16 is a cross-sectional view (part 12) of the semiconductor device according to the first embodiment of the present invention in the middle of manufacture.
  • FIG. 17 is a cross-sectional view (part 13) of the semiconductor device according to the first embodiment of the present invention during manufacturing.
  • FIG. 18 is a cross-sectional view (part 14) of the semiconductor device according to the first embodiment of the present invention in the middle of manufacture.
  • FIG. 19 is a cross-sectional view (part 15) of the semiconductor device according to the first embodiment of the present invention in the middle of manufacture.
  • FIG. 20 is a cross-sectional view (No. 16) of the semiconductor device according to the first embodiment of the present invention during manufacturing.
  • FIG. 21 is a sectional view (No. 17) in the middle of manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 22 is a sectional view (No. 18) in the middle of manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 23 is an enlarged cross-sectional view when a part of the third hole 74 a is further removed from the eye metal wiring 65 in the first embodiment of the present invention.
  • FIG. 24 is an enlarged cross-sectional view when the first capacitor protection insulating film 66 is removed from the upper surface of the first-layer metal wiring 65 in the first embodiment of the present invention.
  • FIGS. 25 (a) to 25 (c) are cross-sectional views (part 1) of the semiconductor device according to the second embodiment of the present invention during manufacture.
  • FIGS. 26 (a) to 26 (c) are sectional views (part 2) of the semiconductor device according to the second embodiment of the present invention in the middle of manufacture.
  • FIGS. 27 (a) to (c) are cross-sectional views in the middle of manufacturing a semiconductor device according to the second embodiment of the present invention. It is a side view (part 3).
  • FIGS. 28A and 28B are cross-sectional views (part 4) of the semiconductor device according to the second embodiment of the present invention during manufacture.
  • FIGS. 29 (a) and 29 (b) are sectional views (part 5) of the semiconductor device according to the second embodiment of the present invention in the middle of manufacture.
  • 30 (a) and 30 (b) are cross-sectional views (part 6) of the semiconductor device according to the second embodiment of the present invention during manufacture.
  • FIGS. 31 (a) and 31 (b) are cross-sectional views (part 7) of the semiconductor device according to the second embodiment of the present invention during manufacture.
  • FIGS. 28 (a) and 28 (b) are cross-sectional views (part 8) of the semiconductor device according to the second embodiment of the present invention in the middle of manufacture.
  • a metal oxide film such as a PZT (Pb (Zr, Ti) 0) film is used as the capacitor dielectric film.
  • Metal oxide film reduces hydrogen, moisture, etc. 1 3
  • a capacitor protective insulating film such as an alumina film is formed in order to protect the ferroelectric film such as the reducing material force described above.
  • the capacitor protection insulating film has a function of preventing the reducing substance from reaching the ferroelectric film, and is formed, for example, between the upper and lower wirings.
  • FIG. 1 to FIG. 3 are cross-sectional views in the middle of manufacturing a virtual semiconductor device.
  • a MOS transistor TR composed of the gate electrode 4 and the like is formed on the silicon substrate 1.
  • the upper surface of the first insulating film 7 is polished and planarized by a CMP (Chemical Mechanical Polishing) method.
  • a capacitor Q is formed by laminating the lower electrode 8, the capacitor dielectric film 9, and the upper electrode 10 in this order on the flattened upper surface of the first insulating film 7.
  • an oxide silicon film is formed as the second insulating film 11 on the entire upper surface of the silicon substrate 1.
  • the irregularities formed on the upper surface of the second insulating film 11 reflecting the shape of the capacitor Q are flattened by polishing by the CMP method.
  • first and second holes having a depth from the second insulating film 11 to the cover insulating film 6 by photolithography to reach the source Z drain region of the MOS transistor TR described above are patterned.
  • L ib is formed on each of the above insulating films.
  • first conductive plugs lla and 1 lb are formed in the holes lla and lib, respectively.
  • an SiON film is formed on each upper surface of the conductive plugs and the second insulating film 11 as an anti-oxidation insulating film (not shown). Form.
  • the second insulating film 11 is patterned again to form the third and fourth holes l lc and l id on the upper electrode 10 and the lower electrode 8 respectively.
  • the first metal wiring 13 is formed on the inner surfaces of these holes l lc and l id and the upper surface of the second insulating film 11.
  • the alumina film is formed on the first metal wiring 13 by sputtering. This alumina film is used as the first capacitor protective insulating film 14.
  • a silicon oxide film is formed as a third insulating film 15 on the first capacitor protective insulating film 14 by a plasma CVD method
  • the upper surface of the third insulating film 15 is polished by a CMP method. Flat To be tanned.
  • an alumina film is formed by sputtering as the second capacitor protective insulating film 16 on the third insulating film 15 which should prevent the capacitor dielectric film 9 from being deteriorated more effectively.
  • an oxide silicon film is formed on the second capacitor protection insulating film 16, and this oxide silicon film is used as a cap insulating film 17.
  • the fifth holes 15 a are formed on the first-layer metal wiring 13 by patterning each of the insulating films 14 to 17 described above.
  • a titanium nitride film is formed as a glue film 19 on the inner surface of the fifth hole 15a and the upper surface of the cap insulating film 17 by a sputtering method.
  • a tungsten film having a thickness filling the fifth hole 15a is formed on the glue film 19, and then the excess tungsten film on the cap insulating film 17 is polished and removed by the CMP method. Then, the tungsten film is left as the third conductive plug 20 only in the fifth hole 15a.
  • a metal laminated film including an aluminum film is formed on the glue film 19 by sputtering, and the metal laminated film and the glue film 19 are patterned. Second layer metal wiring 21 is formed.
  • the fifth hole 15 a is formed on the first layer metal wiring 13.
  • the fifth hole 15a is not particularly problematic as long as it is aligned with the first layer metal wiring 13 as designed as shown.
  • the fifth hole 15a becomes the first metal wiring. May drop out of 13.
  • 4 (a) and 4 (b) are enlarged cross-sectional views for explaining a problem that occurs when the fifth hole 15a is dropped from the first-layer metal wiring 13 in this manner.
  • the first-layer metal wiring 13 includes a titanium nitride film 13a, an aluminum film 13b, a titanium film 13c, and a titanium nitride film 13d in this order. Become.
  • the fifth hole 15a is removed from the first layer metal wiring 13
  • the side of the first layer metal wiring 13 is removed.
  • a groove 15b is formed in the third insulating film 15, and the surface of the aluminum film 13b is exposed on the side surface of the groove 15b.
  • etching products generated by etching the first and second capacitor protective insulating films 14 and 16 made of alumina when the hole 15a is formed accumulate in the groove 15b. Since alumina is difficult to etch chemically, etching products resulting from alumina are difficult to remove. Further, after forming the hole 15a, cleaning water for cleaning the inner surface of the hole 15a is also accumulated in the groove 15b.
  • the third conductive plug 20 cannot be formed in the fifth hole 15a, and the first-layer metal wiring 13 and the second-layer metal wiring 21 are not formed. It is difficult to connect the two in an electrically good manner.
  • the first capacitor protective insulating film 14 is omitted, and the third insulating film 15 is directly formed on the first-layer metal wiring 13 by the plasma CVD method. It is conceivable that the reducing substance is blocked only by the pasita protective insulating film 16.
  • the first-layer metal wiring 13 includes an aluminum film, it is not appropriate to omit the first capacitor protection insulating film 14.
  • the force for forming the titanium nitride film 13d on the uppermost layer of the first-layer metal wiring 13 is the etching rate of the titanium nitride film 13d and the third insulating film 15 made of silicon oxide silicon.
  • the degree ratio is relatively small. Therefore, when the fifth hole 15a is formed by etching, the titanium nitride film 13d is also etched to some extent, and an etching product derived from the titanium nitride film 13d is generated, which also promotes the degassing described above. It is thought that it is done.
  • the inventors of the present application have come up with an embodiment of the present invention as described below.
  • 5 to 22 are cross-sectional views of the semiconductor device according to the first embodiment of the present invention during manufacture.
  • This semiconductor device is a planar type FeRAM in which a contact region is provided in a lower electrode of a capacitor, and a voltage is applied to the lower electrode from a metal wiring above the contact region.
  • an element isolation insulating film 31 is formed by thermally oxidizing the surface of an n-type or p-type silicon (semiconductor) substrate 30, and an active region of the transistor is defined by the element isolation insulating film 31.
  • Such an element isolation structure may employ a force called LOCOS (Local Oxidation of Silicon) instead of STI (Shallow Trench Isolation).
  • LOCOS Local Oxidation of Silicon
  • STI Shallow Trench Isolation
  • a thermal oxide film to be the gate insulating film 34 is formed to a thickness of about 6 to 7 mm.
  • an amorphous silicon film having a thickness of about 50 mm and a thickness of about 1 are formed on the entire upper surface of the silicon substrate 30.
  • a 50 tungsten tungsten silicide film is formed in order. Note that a polycrystalline silicon film may be formed instead of the amorphous silicon film. Thereafter, these films are patterned by photolithography to form a gate electrode 35 on the silicon substrate 30 and a wiring 36 on the element isolation insulating film 31.
  • phosphorus is introduced as an n-type impurity into the silicon substrate 30 beside the gate electrode 35 by ion implantation using the gate electrode 35 as a mask, and the first to third source / drain extensions are introduced.
  • an insulating film is formed on the entire upper surface of the silicon substrate 30, and the insulating film is etched back to leave an insulating spacer 38 beside the gate electrode 35 and the wiring 36.
  • an oxide silicon film is formed by, for example, a CVD method.
  • first to third source Z drain regions 39a to 39c are formed in the silicon substrate 30 on the side of the gate electrode 35.
  • a refractory metal film such as a cobalt film is formed on the entire upper surface of the silicon substrate 30 by sputtering.
  • the refractory metal film is heated to react with silicon, thereby forming a refractory silicide layer 40 such as a cobalt silicide layer on the silicon substrate 30 in the first to third source / drain regions 39a to 39c. Then, the resistance of each of the source Z drain regions 39a to 39c is reduced.
  • a refractory metal silicide layer is also formed on the surface layer of the gate electrode 35 and the wiring 36.
  • the refractory metal layer which has not reacted on the element isolation insulating film 31 and the like is removed by wet etching.
  • the active region of the silicon substrate 30 includes the first to second sources including the gate insulating film 34, the gate electrode 35, the first to third source Z drain regions 39a to 39c, and the like. 3MOS transistors TR to TR are formed.
  • the first and second MOS transistors TR and TR are formed in the cell region.
  • These gate electrodes 35 are formed in parallel to each other and constitute a part of the word line.
  • the third MOS transistor TR is formed in the peripheral circuit region.
  • a silicon oxynitride (SiON) film is formed on the entire upper surface of the silicon substrate 30 to a thickness of about 200 by plasma CVD, and this is covered.
  • the film is 44.
  • a silicon oxide (SiO) film having a thickness of about 600 nm is formed as a first insulating film 45 on the cover insulating film 44 by plasma CVD using TEOS gas, and then CMP (Chemical Mechanical Polishing) is performed.
  • the first insulating film 45 is polished by about 200 nm by the) method, and the upper surface of the first insulating film 45 is planarized.
  • a silicon oxide film is again formed on the first insulating film 45 to a thickness of about 100 by plasma CVD using TEOS gas. Cap insulating film 46.
  • annealing is performed for about 30 minutes in a nitrogen atmosphere at a substrate temperature of about 650 ° C.
  • a first alumina film 40 is formed on the first cap insulating film 46 to a thickness of about 20 nm by sputtering.
  • a platinum film is formed as the first conductive film 47 on the first alumina film 40 by sputtering.
  • This first conductive film 47 is later patterned to become a capacitor lower electrode, and its film thickness is about 155 nm.
  • a PZT film having a thickness of 150 to 200 nm is formed on the first insulating film 47 by sputtering, and this PZT film is used as the ferroelectric film 48.
  • the ferroelectric film 48 As a method for forming the ferroelectric film 48, there is a MOCVD (Metal Organic CVD) method or a sol-gel method in addition to the sputtering method. Further, the material of the ferroelectric film 48 is not limited to the above-mentioned PZT, but it is not limited to the Bi layer structure compound such as SrBi TaO, SrBi (TaNb) O, BiTiO,
  • the ferroelectric film 48 may be composed of the body.
  • RTA Rapid Thermal Anneal
  • PZT formed by sputtering is hardly crystallized immediately after film formation, and has poor strong dielectric properties. Therefore, RTA (Rapid Thermal Anneal) with a substrate temperature of about 585 ° C. is performed in an oxygen-containing atmosphere for about 90 seconds as a crystallization anneal for crystallization of PZT constituting the ferroelectric film 48. Note that this crystallization annealing is not necessary when the ferroelectric film 48 is formed by the MOCVD method.
  • a first iridium oxide (IrO) film is formed on the ferroelectric film 48 by sputtering.
  • the RTA conditions are not particularly limited, but in this embodiment, the substrate temperature is 725 ° C. and the processing time is 20 seconds in an oxygen-containing atmosphere.
  • a second iridium oxide film is formed on the first iridium oxide film by sputtering to a thickness of about 200 mm, and the laminated film composed of the first and second iridium oxide films is formed as the second conductive film. 49.
  • the second conductive film 49 is patterned by photolithography to form the upper electrode 49a.
  • the first recovery annealing for the ferroelectric film 48 is performed in a vertical furnace. This time The recovery annealing is performed in an oxygen-containing atmosphere, and the conditions are, for example, a substrate temperature of 650 ° C. and a processing time of 60 minutes.
  • a capacitor dielectric film 48a made of a ferroelectric material such as PZT is formed. Damage caused to the capacitor dielectric film 48a by this patterning is recovered by the second recovery annealing.
  • This second recovery annealing is performed in an oxygen-containing atmosphere using a vertical furnace as in the first, and the substrate temperature is 350 ° C. and the processing time is 60 minutes.
  • a second alumina film 51 for protecting the reducing material force capacitor dielectric film 48a such as hydrogen and moisture is formed on the entire upper surface of the silicon substrate 30. It is formed to a thickness of about 50 nm by sputtering. Then, in order to recover the damage received by the capacitor dielectric film 48a by sputtering, a third recovery annealing at a substrate temperature of 550 ° C. is performed for about 60 minutes in an oxygen-containing atmosphere. This recovery annealing is performed using a vertical furnace, as in the first and second rounds.
  • the first conductive film 47 and the second alumina film 51 are patterned by photolithography to thereby form the first conductive film under the capacitor dielectric film 48a.
  • the film 47 is used as the lower electrode 47a, and the second alumina film 51 is left so as to cover the lower electrode 47a.
  • the capacitor dielectric film 48a was subjected to four depositions in an oxygen-containing atmosphere at a substrate temperature of 550 ° C and a processing time of 60 minutes. Apply the second recovery annealing.
  • the recovery annealing is performed using, for example, a vertical furnace.
  • the capacitor Q formed by laminating the lower electrode 47a, the capacitor dielectric film 48a, and the upper electrode 49a in this order is formed in the cell region of the silicon substrate 30.
  • a third alumina film 53 for protecting the capacitor dielectric film 48a is formed on the entire upper surface of the silicon substrate 30 to a thickness of about 20 nm by sputtering. To do.
  • This third alumina film 53 cooperates with the second alumina film 51 below to prevent a reducing substance such as hydrogen and moisture from reaching the capacitor dielectric film 48a. It functions to suppress degradation of its ferroelectric properties due to reduction.
  • a fifth recovery annealing is performed on the capacitor dielectric film 48a in the vertical furnace in an oxygen-containing atmosphere under the conditions of the substrate temperature of 550 ° C. and the processing time of 60 minutes.
  • an oxide silicon film is formed on the third alumina film 53 to a thickness of about 1500 by the plasma CVD method using TEOS gas, and the oxide silicon film is formed as the second insulating film. 55. Thereafter, the upper surface of the second insulating film 55 is polished and flattened by the CMP method.
  • a photoresist is applied on the second insulating film 55, and is exposed and developed to form a first resist pattern 57.
  • this first resist pattern 57 has hole-shaped first to third windows 57a to 57c on the first to third source Z drain regions 39a to 39c, and also on the wiring 36.
  • This dry etching is performed in a three-step etching using a parallel plate type plasma etching apparatus (not shown).
  • a parallel plate type plasma etching apparatus (not shown).
  • a mixed gas of Ar is used as an etching gas, and the second insulating film 55 to the first insulating film 45 are etched while using the cover insulating film 44 as an etching stopper film.
  • a mixed gas of 0 and Ar is used as an etching gas, and these gases are used.
  • Etching products generated in the hole in the first step are removed by the sputtering effect of the gas.
  • a mixed gas of C F, CF, 0, and Ar is etched.
  • the cover insulating film 44 is etched by using a gas.
  • the first resist pattern 57 is removed.
  • a titanium (Ti) film and a titanium nitride (TiN) film are formed on the inner surfaces of the first to fourth contact holes 58a to 58d and the upper surface of the second insulating film 55 by a sputtering method, respectively.
  • the film is formed as a glue film.
  • a tungsten film is formed on the glue film by a CVD method using tungsten hexafluoride gas, and the first to fourth components are formed with the tungsten film. Tact holes 58a to 58d are completely embedded.
  • the excessive glue film and tungsten film on the second insulating film 55 are removed by polishing by the CMP method, and these films are respectively provided in the first to fourth contact holes 58a to 58d. No.
  • the first to third conductive plugs 58a to 58c are the first ones.
  • the fourth conductive plug 39d is electrically connected to the wiring 36 below it.
  • first to third conductive plugs 58a to 58c are mainly composed of tungsten which is very easily oxidized, it is easily oxidized in an oxygen-containing atmosphere to cause a contact failure. May cause it.
  • an oxidation preventing insulating film is formed on the upper surfaces of these plugs and the second insulating film 55, respectively.
  • a silicon oxynitride film is formed to a thickness of about 100 by CVD.
  • a photoresist is applied on the oxidation prevention insulating film 61, which is exposed and developed to form a second resist pattern 63.
  • the second resist pattern 63 on each of the upper electrode 49a and the lower electrode 47a is formed with fifth and sixth windows 63a and 63b having a hole shape.
  • the silicon substrate 30 is placed in a vertical furnace having an oxygen-containing atmosphere, and the substrate temperature is 500 ° C. Then, the sixth recovery annealing is performed on the capacitor dielectric film 48a under the processing time of 60 minutes.
  • the oxidation prevention insulating film 61 is removed by etching back.
  • a metal laminated film is formed by sputtering on the upper surfaces of the second insulating film 55 and the first to fourth conductive plugs 60a to 60d and the inner surfaces of the first and second holes 55a and 55b.
  • the metal laminated film includes a titanium nitride film 65a having a thickness of about 150, a copper-containing aluminum film 65b having a thickness of about 550 ⁇ m, a titanium film 65c having a thickness of about 5 nm, and a thickness of about 150 nm. Are formed in this order.
  • the first metal wiring 65 is formed on the second insulating film 55 by patterning the metal laminated film by photolithography.
  • the one formed on the capacitor Q is electrically connected to the upper electrode 49a and the lower electrode 47a through the first and second holes 55a and 55b, respectively. .
  • the second insulating film 55 is annealed and dehydrated under conditions of a substrate temperature of 350 ° C. and a processing time of 30 minutes in a nitrogen atmosphere.
  • an alumina film is formed by sputtering as the first capacitor protective insulating film 66 covering the first-layer metal wiring 65 and the second insulating film 55.
  • the first capacitor protective insulating film 66 has a function of blocking a reducing substance such as hydrogen and moisture to protect the capacitor dielectric film 48a, and in addition to the function of protecting the capacitor dielectric film 48a later on the first capacitor protective insulating film 66. It also has a function of reducing plasma damage to the capacitor dielectric film 48a when an insulating film is formed by a plasma CVD method or the like. Among these functions, the blocking function of the reducing substance can be sufficiently obtained even if the thickness of the first capacitor protective insulating film 66 is 100 ° or less. In order to reduce plasma damage, the thickness of the first capacitor protective insulating film 66 needs to be at least 20 mm. For these reasons, the thickness of the first capacitor protection insulating film 66 is about 20 nm in this embodiment, which is preferably 20 nm or more and lOOnm.
  • the substrate bias is set to zero. Capacitor Q almost did not deteriorate. Therefore, it is estimated that the above plasma damage becomes significant when a substrate bias is applied in the plasma CVD method.
  • the first capacitor protective insulating film 66 has a function of suppressing the dissociation of moisture into hydrogen on the surface of the aluminum film 65b in the subsequent film forming process, that is, as a surface reaction preventing film. There is also a function.
  • the first capacitor protection insulating film 66 in the present embodiment is not limited to the alumina film as long as it has the above functions! /.
  • the power of the high frequency power (RF power) with a frequency of 13.56 MHz is set to 2 kW, and the flow rates of sputtering gas Ar gas and 0 gas are 18 sccm, 2 sccm
  • the above silicon oxide film is formed by setting the pressure in the sputtering chamber to lPa.
  • the silicon oxide film formed by sputtering as described above has high hygroscopicity because of its low film density. Reducing substances such as moisture and hydrogen compared to the silicon oxide film formed by CVD or the like The block property is excellent.
  • the silicon-silicone film has an advantage that it has better caking properties than the alumina film.
  • a silicon oxynitride film is formed to a thickness of about 150 on the first capacitor protection insulating film 66 by a plasma CVD method, and this silicon oxynitride film is used as a first sidewall insulating film 67.
  • a silicon nitride (SiN) film may be formed as the first sidewall insulating film 67 instead of the silicon oxynitride film.
  • the first capacitor protective insulating film 66 therebelow absorbs the plasma damage as described above. Since it functions, the capacitor dielectric film 48a can be prevented from receiving plasma damage through the first-layer metal wiring 66.
  • the moisture contained in the film formation atmosphere of the first sidewall insulating film 67 is aluminum. Do not touch the membrane 65b. Thereby, it is possible to prevent hydrogen from being generated due to the reducing action of aluminum, and to suppress the reduction of the capacitor dielectric film 48 by this hydrogen.
  • the first sidewall insulating film 67 may be formed by sputtering instead of plasma CVD.
  • the first sidewall insulating film 67 is etched back, and the first insulating property is formed on the first capacitor protective insulating film next to the first-layer metal wiring 65. Sidewall 67a is formed.
  • the conditions of this etch back are not particularly limited, but in this embodiment, a parallel plate type plasma etching chamber (not shown) is used, and the frequency of the shower head facing the silicon substrate 30 is 13.56 MHz. Apply high frequency power with a power of 00W. Then, CHF, CF, and Ar as the etching gas flow rates of 40sccm, 80sccm, and lOOOsccm, respectively.
  • the inside of the chamber is depressurized to about 1700 mTorr with a pump (not shown), and the above etch back is performed.
  • the etching end point is monitored by an optical end point detector (EPD), and overetching of about 10 to 20% in terms of film thickness is performed.
  • EPD optical end point detector
  • overetching of about 10 to 20% in terms of film thickness is performed.
  • the etching time required to completely etch this thickness is about 30 seconds, and the over-etching time is about 5 seconds.
  • an oxide silicon film is formed on each of the first capacitor protective insulating film 66 and the first insulating side wall 67a by a plasma CVD method using TEOS gas. 3 Insulating film 68.
  • the thickness of the third insulating film 68 is not particularly limited. In this embodiment, the thickness of the third insulating film 68 on the first-layer metal wiring 65 is about 2600.
  • the upper surface of the third insulating film 68 is polished and flattened by the CMP method.
  • the thickness of the third insulating film 68 becomes about lOOOnm on the first-layer metal wiring 65.
  • the third insulating film 68 is N 0 brazed under conditions of a substrate temperature of about 350 ° C and a processing time of about 4 minutes.
  • the surface of the third insulating film 68 is nitrided by exposing to vona.
  • an oxide silicon film is formed on the third insulating film 68 as the second cap insulating film 69 to a thickness of about lOOnm.
  • N 0 plasma treatment is performed again to nitride the surface of the second cap insulating film 69.
  • N 0 plasma treatment for example, a substrate temperature of 350 ° C. and a treatment time of 2 minutes are employed.
  • an alumina film having excellent blocking properties against these substances is first formed by a notched method. 2 Form a thickness of about 50 on the cap insulating film 69, and use this alumina film as the second capacitor protective insulating film 70.
  • an oxide silicon film is formed on the second capacitor protective insulating film 70 by a plasma CVD method using TEOS gas, and this oxide silicon film is formed with the third cap insulating film 71.
  • the thickness of the third cap insulating film 71 is, for example, about lOOnm.
  • N 0 plasma treatment is performed on the third cap insulating film 71 under conditions of a substrate temperature of 350 ° C. and a processing time of 2 minutes, and the surface of the third cap insulating film 71 is nitrided.
  • a photoresist is applied on the third cap insulating film 71, and is exposed and developed to thereby form a third window 73 having a hole-shaped seventh window 73 a on the first-layer metal wiring 65.
  • a resist pattern 73 is formed.
  • the silicon substrate 30 is placed in a parallel plate type plasma etching chamber (not shown) provided with the lower electrode and the upper electrode facing each other, and the silicon substrate 30 is placed on the lower electrode. To do. Then, C F, Ar, and 0 are used as etching gases, 20 sccm, 5
  • the chamber While supplying the chamber at a flow rate of OOsccm and 12 sccm, the chamber is evacuated by a pump (not shown), and the pressure of the etching gas is set to about 50 mTorr.
  • high frequency power source power
  • a high frequency power bias power
  • a frequency of 800 kHz and a power of 900 W is applied to the lower electrode of the chamber to turn the etching gas into a plasma and make the inside of the chamber an etching atmosphere.
  • the first insulating sidewall made of silicon oxynitride
  • the etching rate of 67a is slower than that of the third insulating film 68 made of silicon oxide.
  • a third hole 74 a is formed on 5.
  • FIG. 13 shows a state in which the third hole 74a and the first-layer metal wiring 65 are aligned as desired.
  • a part of 3 hole 74a may come off the first layer metal wiring 65.
  • FIG. 23 is an enlarged cross-sectional view when a part of the third hole 74a is detached from the first layer metal wiring 65 in this way.
  • the first insulating sidewall 67a is formed beside the first-layer metal wiring 65, and the etching rate of the first insulating sidewall 67a is the second insulation.
  • the third hole 74a is formed under an etching condition that is slower than that of the film 68. Therefore, as shown in the figure, even if a part of the third hole 74a is detached from the first layer metal wiring 65 and overlaps the first insulating sidewall 67a, the etching is absorbed in the first insulating sidewall 67a.
  • the groove described in the preliminary matter is not formed in the third hole 74a.
  • the uppermost titanium nitride film 65d of the first-layer metal wiring 65 is used.
  • the etching selectivity between the first capacitor protective insulating film 66 and the first capacitor protective insulating film 66 decreases as the thickness of the first capacitor protective insulating film 66 or the second cap insulating film 69 made of alumina increases, and nitridation occurs in the etching product. Many of those derived from the titanium film 65d are included. Since the etching product containing titanium nitride remains in the third hole 74a and may cause a contact failure, it is preferably reduced as much as possible.
  • the thickness of the first capacitor protection insulating film 66 or the second cap insulating film 69 is thicker than that of the present embodiment (the first capacitor protective insulating film 66 is about 20 nm and the second cap insulating film 69 is about 50 nm).
  • the etching time be shorter than the above 185 seconds so that etching products are not generated as much as possible.
  • the first capacitor protective insulating film 66 is formed when the third hole 74a is formed.
  • the protective insulating film 66 can be easily opened by etching, and the processing accuracy of the third hole 74a can be improved.
  • the inner surface of the third hole 74a is nitrided.
  • the nitriding treatment is performed, for example, in a nitrogen atmosphere under conditions of a substrate temperature of 350 ° C., a nitrogen gas flow rate of 201 / min, and a processing time of 120 minutes.
  • the first layer metal wiring 65 under the third hole 74a is exposed to a plasma argon atmosphere and lightly etched to clean the surface of the first layer metal wiring 65.
  • the etching amount at this time is, for example, 50 nm.
  • a titanium nitride film is formed on the inner surface of the third hole 74 a and the upper surface of the third cap insulating film 71 to a thickness of about 150 by sputtering, and this is used as the first glue film 76.
  • CMP may be used instead of the force etch back of the tungsten film.
  • a metal laminated film is formed on the upper surfaces of the fifth conductive plug 77 and the first glue film 76 by sputtering.
  • the metal laminated film is, for example, a copper-containing aluminum film having a thickness of about 550, a titanium film having a thickness of about 5 and a titanium nitride film having a thickness of about 150.
  • the metal laminated film and the first glue film 76 are patterned by photolithography, and a second-layer metal wiring 78 constituted by these films is formed on the third cap insulating film 71. To do.
  • the first capacitor protective insulating film 66 was formed on the first-layer metal wiring 65 as described above to prevent the plasma damage from being transmitted to the capacitor Q through the first-layer metal wiring 65.
  • the second-layer metal wiring 78 is also far from the capacitor Q force, the capacitor Q hardly deteriorates due to the above plasma damage without forming a capacitor protective insulating film made of alumina on the second layer metal wiring 78. .
  • the second-layer metal wiring 45 Even if a film is formed on the second-layer metal wiring 65 by plasma CVD, and the water generated during the film formation dissociates on the side surface of the aluminum film to generate hydrogen, the second-layer metal wiring 45 In addition to being far from the capacitor Q, hydrogen is blocked by the first and second capacitor protection insulating films 66 and 70, so that the hydrogen hardly reaches the capacitor Q.
  • each of the second-layer metal wiring 78 and the third cap insulating film 71 is performed.
  • a silicon oxynitride film having a thickness of about 150 is formed as a second sidewall insulating film 79 by plasma CVD.
  • the second sidewall insulating film 79 is not limited to a silicon oxynitride film, and may be a silicon nitride film.
  • the second sidewall insulating film 79 is formed by sputtering to electrically connect with the capacitor Q. Plasma damage to the capacitor dielectric film 48a through the connected second-layer metal wiring 78 can be reduced.
  • the second sidewall insulating film 79 is etched back, leaving a second insulating sidewall 79 a beside the second-layer metal wiring 78.
  • the etch back conditions the same conditions as the etch back of the first sidewall insulating film 67 described in FIG. 11B are employed.
  • an oxide silicon film having a thickness of about 2200 is formed on the entire upper surface of the silicon substrate 30 by plasma CVD using TEOS gas.
  • the film is a fourth insulating film 82.
  • an oxide silicon film is further formed thereon as a third cap insulating film 83 to a thickness of about 100 °.
  • the third capacitor protective insulating film 84 for protecting the capacitor dielectric film 48a an alumina film is formed on the third cap insulating film 83 by sputtering to a thickness of about 50 ⁇ m. Form.
  • the third capacitor protective insulating film was formed by plasma CVD using TEOS gas.
  • An oxide silicon film is formed on 84 with a thickness of about 100 mm, and this oxide silicon film is used as a fourth cap insulating film 85.
  • a photoresist is applied on the fourth cap insulating film 85, and is exposed and developed to thereby form a hole-shaped eighth window 88a on the second-layer metal wiring 78. 4 Form resist pattern 88.
  • the insulating films 82 to 85 are etched using the fourth resist pattern 88 as a mask, so that these insulating films on the second-layer metal wiring 78 are formed on the insulating films 82 to 85.
  • a fourth hole 87a is formed.
  • the etching conditions at this time are not particularly limited, but in this embodiment, the frequency is 27.
  • C F ArO having a flow rate of 2 Osccm, 500 sccm, and 12 sccm, respectively, is supplied as an etching gas into the etching chamber.
  • the etching time is set to about 190 seconds.
  • the etching rate of the silicon oxynitride film is slower than that of the oxide silicon film.
  • the etching is absorbed in the second insulating sidewall 79a made of silicon oxynitride. Therefore, the groove as described in the preliminary matter is not formed at the bottom of the fourth hole 87a. For this reason, etching products that are difficult to remove when etching the third capacitor protective insulating film 84 made of alumina, and cleaning water for cleaning the inner surface of the fourth hole 87a are accumulated in the fourth hole 87a. Can be difficult.
  • a titanium nitride film having a thickness of about 150 is formed as a second glue film 90 on the inner surface of the fourth hole 87a and the upper surface of the fourth cap insulating film 85 by sputtering. .
  • a tungsten film is formed on the second glue film 90 by the CVD method, and the fourth hole 87a is completely filled with this tungsten film.
  • the excess tungsten film on the fourth cap insulating film 85 is removed by polishing by CMP, and the tundane film is left as the sixth conductive plug 91 only in the fourth hole 87a.
  • a copper-containing aluminum film having a thickness of about 550 nm, a titanium film having a thickness of about 5 nm, and a thickness of about 150 nm are formed on the upper surfaces of the second glue film 90 and the sixth conductive plug 91, respectively.
  • a titanium nitride film is formed in this order by sputtering.
  • the metal multilayer film and the second glue film 90 thereunder are patterned by photolithography to form a third-layer metal wiring 92 and a bonding pad 93 on the fourth cap insulating film 85.
  • an oxide silicon film having a thickness of about lOO nm is formed on each of the third-layer metal wiring 92 and the bonding pad 93 by the CVD method as the first cover film 95.
  • a silicon nitride film having a thickness of about 350 is formed on the first cover film 95 as the second cover film 96 by the CVD method.
  • the first and second cover films 95 and 96 are patterned by photolithography. As a result, openings 95a are formed in the insulating films 95 and 96 through which the bonding pads 93 are exposed.
  • the first-layer metal wiring 65 is covered with the first capacitor protective insulating film 66, and then the first insulating sidewall 67a and the third insulating film 68 are formed. Form.
  • the first layer metal wiring 65 is not directly exposed to the plasma contained in the deposition atmosphere of the first insulating sidewall 67a and the third insulating film 68, and therefore the capacitor dielectric film 48a (FIG.
  • the capacitor Q having the capacitor dielectric film 48a having excellent ferroelectric characteristics can be formed.
  • Patent Documents 1 to 6, 8, and 9 described above a film corresponding to the first capacitor protective insulating film 66 is not formed, and an insulating sidewall is formed on the side surface of the wiring. Is directly formed, plasma damage cannot be reduced as described above, and the capacitor dielectric film 48a deteriorates. Further, in Patent Document 7, since the sidewall is made of a conductive film, the interval between adjacent wirings is shortened by the amount of the sidewall, which increases the parasitic capacitance between the wirings, which is disadvantageous for the high-speed device. It becomes.
  • the first sidewall insulating film 67 is made of a silicon oxynitride film or a silicon nitride film that is easy to etch back, so that the sidewall is made of alumina that is difficult to etch back. As compared with Patent Document 2, the first insulating sidewall 67a can be easily formed.
  • the first-layer metal wiring 65 of the first metal wiring 65 is formed under the etching conditions in which the etching rate of the first insulating sidewall 67a is slower than that of the third insulating film 68.
  • the upper third insulating film 68 is etched to form a third hole 74a.
  • the etching for forming the third hole 74a is performed by the first insulating side wall. Since it is absorbed at 67a, no groove is formed at the bottom of the third hole 74a. For this reason, etching products containing alumina, which are difficult to remove chemically, and foreign substances such as cleaning water do not enter the groove, and the fifth conductive plug 77 is not formed due to these foreign substances. When the contact resistance of the fifth conductive plug 77 increases, it is possible to avoid inconvenience.
  • Table 1 is a table showing the results of an investigation conducted by the present inventor in order to confirm the effect of the first insulating sidewall 67a.
  • the first insulating sidewall 67a was not formed! Instead, by increasing the thickness of the first capacitor protective insulating film 66, the first capacitor protective insulating film 66 on the side surface of the first metal wiring 65 has a function as an etching stopper. Was held.
  • the third hole 74a was intentionally misaligned so that the average misalignment amount was 130 °, and optical defect detection was performed.
  • the apparatus it was investigated how many fifth conductive plugs 77 in the plane of the substrate 30 were not formed.
  • the first capacitor protection insulating film 66 is formed on the upper surface of the first-layer metal wiring 65, but the present invention is not limited to this.
  • the etching back time when forming the first insulating sidewall 67a is lengthened, or the etching of the first capacitor protection insulating film 66 and the second insulating film 55 in the etch back is performed.
  • the first capacitor protection insulating film 66 on the upper surface of the first-layer metal wiring 65 may be removed by etching by reducing the selection ratio.
  • the second insulating film 55 and the first-layer metal wiring 65 are respectively exposed from the upper surfaces. (1) Even if the capacitor protective insulating film 66 is removed, the first capacitor protective insulating film 66 remains on the side surface of the first layer metal wiring 65. The side surface is not exposed to the plasma, and the plasma damage is transmitted to the capacitor dielectric film 48a through the first metal wiring 65 to some extent.
  • the present invention is applied to the planar type FeRAM.
  • the present invention is applied to a stacked FeRAM in which the lower electrode of the capacitor is directly connected to the conductive plug therebelow.
  • 25 to 32 are cross-sectional views of the semiconductor device according to the second embodiment of the present invention in the middle of manufacture.
  • an STI trench is formed in the silicon substrate 100, and an oxide silicon film is buried in the trench as the element isolation insulating film 101, and the active region of the silicon substrate 100 is demarcated by the element isolation insulating film 101.
  • boron is ion-implanted as a p-type impurity into the active region of the silicon substrate 100 to form a p-well 102.
  • a thermal oxide film that becomes the gate insulating film 103 is formed, and an amorphous silicon film and a tungsten silicide film are further formed thereon. Form in this order. Thereafter, these amorphous silicon film and tandane silicide film are patterned by photolithography to form two gate electrodes 104 constituting a part of the word line.
  • n-type impurities are ion-implanted into the silicon substrate 100 while using these gate electrodes 104 as masks, and first and second source / drain extension tensions 105a and 105b are applied to the silicon substrate beside each gate electrode 104.
  • first and second source / drain extension tensions 105a and 105b are applied to the silicon substrate beside each gate electrode 104.
  • phosphorus is used as the n-type impurity.
  • an insulating film such as an oxide silicon film is formed on the entire upper surface of the silicon substrate, and the insulating film is etched back to be left as an insulating spacer 106 beside the gate electrode 104.
  • n-type impurity such as arsenic is introduced into the silicon substrate 100 to form first and second source Z drain regions 107a and 107b in the silicon substrate 100 on the side of the gate electrode 104.
  • a corona film is formed as a refractory metal film on the entire upper surface of the silicon substrate 100 by sputtering. Then, by heating the refractory metal film to react with silicon, a refractory silicide layer 108 such as a cobalt silicide layer is formed on the silicon substrate 100 in the first and second source / drain regions 107a and 107b. Each source Z drain region 107a, 107b is reduced in resistance.
  • the unreacted refractory metal layer on the element isolation insulating film 101 or the like is removed by wet etching.
  • the first and second MOS transistors each including the gate insulating film 103, the gate electrode 104, the first and second source Z drain regions 107a and 107b, and the like in the active region of the silicon substrate 100. TR will be.
  • a cover insulating film 111 made of a silicon oxynitride film and a first insulating film 112 made of an oxide silicon film are formed in this order on the entire upper surface of the silicon substrate 100 by a plasma CVD method. Thereafter, in order to eliminate the unevenness formed on the upper surface of the first insulating film 112 reflecting the shape of the gate electrode 104, the upper surface of the first insulating film 112 is polished and flattened by a CMP method.
  • the cover insulating film 111 and the first insulating film 112 are patterned by photolithography to form the first contact hole 112a on the first source Z drain region 107a.
  • a first contact hole 112a of the first conductive plug 114a mainly composed of tungsten is formed.
  • a plasma CVD method is applied to each upper surface of the first conductive plug 114a and the first insulating film 112. Therefore, a silicon oxynitride film or a silicon nitride film is used as the first antioxidation insulating film 113 to a thickness of 100 to 5
  • this first oxidation prevention insulating film 113 to the cover insulating film 111 are patterned, and a second contact hole 112b is formed in these insulating films on the second source / drain region 107b. To do.
  • a titanium film with a thickness of about 30 and a titanium nitride film with a thickness of about 50 are formed on the inner surface of the second contact hole 112b and the upper surface of the first oxidation prevention insulating film 113 by a sputtering method. Are formed in this order, and these are used as glue films. Then, a tungsten film is formed on the glue film by the CVD method, and the second contact hole 112b is completely buried with the tungsten film. After that, the excess glue film and tungsten film on the first anti-oxidation insulating film 113 are removed by polishing by the CMP method, and the second conductive film is removed only in the second contact hole 112b. Leave as plug 114b.
  • an iridium film is formed by DC sputtering on the upper surfaces of the second conductive plug 114b and the first oxidation prevention insulating film 113, and the iridium film is used as the first conductive film 117.
  • the conditions for forming the iridium film are not particularly limited, but in this embodiment, the power of the DC power applied to the sputtering target is 0.5 kW, the pressure of the argon gas that is the sputtering gas is 0.1 lPa, and the substrate temperature is Set the temperature to 500 ° C and the deposition time to 335 seconds.
  • a PZT film is formed as a ferroelectric film 118 on the first conductive film 117 by the MOCVD method.
  • the organic materials used in this MOCVD method and their flow rates are not particularly limited.
  • the flow rate of THF Tetra-Hydroxy-Furan
  • the flow rate of a solution obtained by dissolving Pb (DPM) as a Pb raw material in THF at a concentration of 0.3 molZl is 0.326 mlZ
  • the volume is 0.2 mlZ. Then, these solutions vaporized by the vaporizer are supplied into the reactor, and the ferroelectric film 118 is formed under the conditions of a film forming pressure of about 5 Torr and a substrate temperature of 620 ° C.
  • an iridium oxide film having a thickness of about 200 nm is formed on the ferroelectric film 118 by sputtering, and this is used as the second conductive film 119.
  • the substrate temperature was measured using a vertical furnace having an oxygen-containing atmosphere inside. Recovery annealing is performed on the ferroelectric film 118 under conditions of 500 ° C. and a processing time of 60 minutes.
  • the first conductive film 117, the ferroelectric film 118, and the second conductive film 119 are collectively dry etched using the hard mask 120 as an etching mask. Then, the capacitor Q is formed by sequentially laminating the lower electrode 117a, the capacitor dielectric film 118a, and the upper electrode 119a.
  • TMA trimethylalminium
  • the first alumina film 121 is formed on the upper surface of the first anti-oxidation insulating film 113 and the surface of the capacitor Q by approximately 20 degrees by the ALD (Atomic Layer Deposition) method.
  • the first alumina film 121 functions to protect the reducing material force capacitor dielectric film 118a such as hydrogen and moisture.
  • the capacitor Q can be used even if the distance between adjacent capacitors Q becomes narrower due to progress in miniaturization.
  • the first alumina film 121 can be formed on the side surface with a sufficient thickness.
  • recovery annealing is performed in which the substrate temperature is set to 650 ° C in an oxygen-containing atmosphere.
  • the recovery annealing is performed using, for example, a vertical furnace.
  • an oxide silicon film is formed as a second insulating film 122 on the first alumina film 121 by plasma CVD using TEOS gas, A space between adjacent capacitors Q is filled with the second insulating film 12 2. Thereafter, the upper surface of the second insulating film 122 is polished and planarized by CMP, and the thickness of the second insulating film 122 on the upper electrode 119a is set to about 300 nm.
  • a second atmosphere is formed by sputtering on the flattened second insulating film 122 in order to protect the capacitor dielectric film 118a also by reducing atmosphere force.
  • Alumina membrane 123 It is formed to a thickness of about 50 nm.
  • an oxide silicon film is formed on the second alumina film 123 to a thickness of about 100 by the plasma CVD method using TEOS gas.
  • the first cap insulating film 124 is used.
  • the insulating films 113, 121 to 124 are patterned by photolithography, and the first holes 122a are formed in these insulating films on the first conductive plug 114a.
  • a glue film on the inner surface of the first hole 122a and the upper surface of the first cap insulating film 124, as a glue film, a titanium film and a titanium nitride film are formed in this order with a thickness of about 50 mm. Further, a tungsten film is formed on this glue film by the CVD method, and the first hole 122a is completely buried with this tungsten film. Thereafter, excess glue film and tungsten film on the first cap insulating film 124 are removed by polishing by CMP, and these films are left as the third conductive plug 125 only in the first hole 122a.
  • a silicon oxynitride film having a thickness of about lOOnm is formed on the upper surfaces of the first cap insulating film 124 and the third conductive plug 125 by the CVD method. This is referred to as an oxidation-preventing insulating film 130.
  • the oxidization preventing insulating film 130 to the first alumina film 121 are patterned by photolithography to form the second hole 131 in the second insulating film 22 on the upper electrode 119a.
  • Capacitor Q damaged by the formation of second hole 131 is recovered by annealing. The annealing is performed, for example, in an oxygen-containing atmosphere at a substrate temperature of 550 ° C. for about 60 minutes.
  • the oxidation-preventing insulating film 130 in advance before this annealing, it is possible to prevent the third conductive plug 125 from oxidizing in the annealing and causing a contact failure. it can.
  • the oxidation prevention film 130 is removed by etch back.
  • a multilayer metal film is formed.
  • the multilayer metal film include a titanium film having a thickness of about 60 nm, a titanium nitride film having a thickness of about 30 nm, a copper-containing aluminum film having a thickness of about 400 nm, a titanium film having a thickness of about 5 nm, and a film having a thickness of about 70 nm.
  • a titanium nitride film is formed in this order.
  • an alumina film is formed to a thickness of about 20 nm on each of the first cap insulating film 124 and the first-layer metal wiring 133 by sputtering, and this alumina film Is a first capacitor protective insulating film 134.
  • This first capacitor protective insulating film 134 has excellent blocking properties against reducing substances such as hydrogen and moisture, and functions to prevent these substances from entering from the outside and degrading the capacitor dielectric film 118a.
  • a silicon oxynitride film having a thickness of about 150 is formed on the first capacitor protective insulating film 134 by plasma CVD as the side-insulating insulating film 136.
  • the sidewall insulating film 136 is not limited to a silicon oxynitride film, and a silicon nitride film formed by a plasma CVD method may be employed as the sidewall insulating film 136.
  • the capacitor dielectric film 118a can be formed through the first-layer metal wiring 133 as described in the first embodiment. It is possible to reduce plasma damage.
  • the sidewall insulating film 136 is etched back by plasma etching, and the sidewall insulating film 136 is insulated beside the first layer metal wiring 133. Leave as sex sidewall 136a.
  • This etch back is performed in, for example, a parallel plate type plasma etching chamber.
  • high-frequency power having a frequency of 13.56 MHz and a power of 400 W is applied to the shower head provided in the chamber so as to face the silicon substrate 100.
  • CHF, CF, and Ar are used as etching gases, 40sccm each.
  • the force that leaves the first capacitor protective insulating film 134 on the upper surface of the first-layer metal wiring 133 even after the etch back is performed.
  • the first capacitor protective insulating film 134 may also remove the upper surface force of the first-layer metal wiring 133 when the insulating sidewall 136a is formed.
  • an oxide silicon film is formed on each of the first capacitor protective insulating film 134 and the insulating sidewall 136a by plasma CVD using TEOS gas. Then, the silicon oxide film is used as the third insulating film 141.
  • the upper surface of the third insulating film 141 is polished by the CMP method, so that the first layer metal wiring 1
  • the unevenness formed on the upper surface of the third insulating film 141 reflecting the shape of 33 is flattened.
  • an alumina film is formed on the third insulating film 141 to a thickness of about 50 by sputtering. To do.
  • an oxide silicon film is formed on the second capacitor protective insulating film 142 by plasma CVD using TEOS gas, and this oxide silicon film is used as the second cap insulating film 143.
  • the thickness of the second cap insulating film 143 is, for example, about lOOnm.
  • a photoresist is coated on the second cap insulating film 143, and is exposed to light and developed, whereby a resist pattern having a hole-shaped window 145a on the first-layer metal wiring 133 is obtained. 145 is formed.
  • each of the insulating films 134 and 141 to 143 is dry-etched through the window 145a, thereby forming the second hole 141a in these insulating films on the first-layer metal wiring 133.
  • the etching conditions are not particularly limited.
  • a parallel plate type plasma etching channel (not shown) is used, and C F,
  • Ar and 0 are supplied at a flow rate of 20 sccm, 500 sccm, and 12 sccm, respectively. And not shown
  • high-frequency power source power
  • bias power bias power
  • the etching rate of the insulating sidewall 136a made of silicon oxynitride is slower than that of the third insulating film 141 made of silicon oxide silicon. Therefore, even if the second hole 141a is displaced and a part of the second hole 141a is removed from the first layer metal wiring 133, the insulating sidewall 136a serves as an etching stopper, so that a groove is formed at the bottom of the second hole 141a. Not formed!
  • the etching product with poor reactivity generated from the first and second capacitor protection insulating films 134 and 142 made of alumina is difficult to accumulate in the second hole 141a.
  • water hardly remains in the second hole 141a.
  • a titanium nitride film is formed as a glue film on the inner surface of the second hole 141a and the upper surface of the second cap insulating film 143 by sputtering. Then, a tungsten film is formed on this glue film by the CVD method, and the second hole 141a is completely filled with this tungsten film. Further, excess glue film and tungsten film on the second cap insulating film 143 are removed by polishing by CMP, and these films are left as the second conductive plug 150 only in the second hole 141a.
  • the second conductive plug 150 is electrically connected to the first-layer metal wiring 133 on the second source Z drain region 107b and constitutes a part of the bit line.
  • the second cap insulating film 143 and the second conductive plug 150 After a multilayer metal film is formed on each, this multilayer metal film is patterned to form a second-layer metal wiring 151.
  • the insulating side wall 136a is formed beside the first-layer metal wiring 133, and this insulating side wall 136a is formed.
  • the second hole 141a was formed under the etching conditions such that the etching rate was slower than that of the third insulating film 141.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】 金属配線と導電性プラグとを電気的に良好に接続することが可能な半導体装置とその製造方法を提供すること。 【解決手段】 シリコン基板30上に第1絶縁膜45を形成する工程と、第1絶縁膜45上にキャパシタQを形成する工程と、キャパシタQを覆う第2絶縁膜55を形成する工程と、第2絶縁膜55上に金属配線65を形成する工程と、金属配線65と第2絶縁膜55とを覆う第1キャパシタ保護絶縁膜66を形成する工程と、金属配線65の横に絶縁性サイドウォール67aを形成する工程と、絶縁性サイドウォール67a上に第3絶縁膜68を形成する工程と、絶縁性サイドウォール67aのエッチング速度が第3絶縁膜68のそれよりも遅くなる条件で第3絶縁膜68をエッチングし、ホール74aを形成する工程と、ホール74a内に導電性プラグ77を形成する工程とを有する半導体装置の製造方法による。                                                                                 

Description

半導体装置とその製造方法
技術分野
[0001] 本発明は、半導体装置とその製造方法に関する。
背景技術
[0002] 電源を切っても情報を記憶することができる不揮発性メモリとして、フラッシュメモリ や強誘電体メモリが知られている。
[0003] このうち、フラッシュメモリは、絶縁ゲート型電界効果トランジスタ(IGFET)のゲート 絶縁膜中に埋め込んだフローティングゲートを有し、記憶情報を表す電荷をこのフロ 一ティングゲートに蓄積することによって情報を記憶する。しかし、このようなフラッシ ュメモリでは、情報の書き込みや消去の際に、ゲート絶縁膜にトンネル電流を流す必 要があり、比較的高 、電圧が必要であると 、う欠点がある。
[0004] これに対し、強誘電体メモリは、 FeRAM(Ferroelectric Random Access Memory)とも 呼ばれ、強誘電体キャパシタが備える強誘電体膜のヒステリシス特性を利用して情報 を記憶する。その強誘電体膜は、キャパシタの上部電極と下部電極の間に印加され る電圧に応じて分極を生じ、その電圧を取り去っても自発分極が残留する。印加電 圧の極性を反転すると、この自発分極も反転し、その自発分極の向きを「1」と「0」に 対応させることで、強誘電体膜に情報が書き込まれる。この書き込みに必要な電圧は フラッシュメモリにおけるよりも低ぐまた、フラッシュメモリよりも高速で書き込みができ るという利点が FeRAMにはある。
[0005] 上記の FeRAMでは、キャパシタの上部電極や下部電極に電圧を印加するための 金属配線が層間絶縁膜上に形成されるが、その金属配線の構造の例が下記の特許 文献 1〜9に開示されている。
[0006] そのうち、特許文献 1〜7では、配線の横にサイドウォールを形成することで、コンタ タトホールと配線との位置合わせ余裕を大きくして 、る。
[0007] また、特許文献 8、 9では、配線の横に絶縁性のサイドウォールを形成することにより 、配線上の導電性プラグが位置ずれしても、その導電性プラグのコンタクト抵抗が上 昇するのを防止している。
特許文献 1:特開平 8— 330417号公報
特許文献 2:特開平 11― 274297号公報
特許文献 3:特開 2002— 343857号公報
特許文献 4:特開平 11— 8299号公報
特許文献 5:特開平 10— 209277号公報
特許文献 6:特開平 8 - 293549号公報
特許文献 7:特開平 8 - 250589号公報
特許文献 8:特開平 11― 186382号公報
特許文献 9:特開平 8— 330422号公報
発明の開示
[0008] 本発明の目的は、金属配線とその上の導電性プラグとを電気的に良好に接続する ことが可能な半導体装置とその製造方法を提供することにある。
[0009] 本発明の一観点によれば、半導体基板の上に第 1絶縁膜を形成する工程と、前記 第 1絶縁膜上に、下部電極、強誘電体材料で構成されるキャパシタ誘電体膜、及び 上部電極を有するキャパシタを形成する工程と、前記キャパシタを覆う第 2絶縁膜を 形成する工程と、前記第 2絶縁膜上に金属配線を形成する工程と、前記金属配線と 前記第 2絶縁膜とを覆う第 1キャパシタ保護絶縁膜を形成する工程と、前記金属配線 の横の前記第 1キャパシタ保護絶縁膜上に絶縁性サイドウォールを形成する工程と、 前記絶縁性サイドウォール上に第 3絶縁膜を形成し、該第 3絶縁膜で前記金属配線 を覆う工程と、前記絶縁性サイドウォールのエッチング速度が前記第 3絶縁膜のエツ チング速度よりも遅くなるエッチング条件で前記第 1キャパシタ保護絶縁膜と前記第 3 絶縁膜とを選択的にエッチングし、前記金属配線の上にホールを形成する工程と、 前記ホール内に、前記金属配線に接続された導電性プラグを形成する工程と、を有 する半導体装置の製造方法が提供される。
[0010] 本発明によれば、第 1キャパシタ保護絶縁膜で金属配線を覆った後に、絶縁性サイ ドウオールや第 3絶縁膜を形成するので、これらを形成する際の成膜雰囲気に含ま れるプラズマに金属配線が曝されない。よって、プラズマダメージが金属配線を通じ てキャパシタ誘電体膜に伝わらず、プラズマダメージに起因するキャパシタ誘電体膜 の劣化を防止することが可能となる。
[0011] し力も、絶縁性サイドウォールのエッチング速度が第 3絶縁膜のそれよりも遅くなる エッチング条件で第 3絶縁膜をエッチングしてホールを形成するので、ホールが位置 ずれしてその一部が金属配線力も外れても、外れた部分のホールの底部に溝が形 成されない。従って、ホールのエッチング時に、第 1キャパシタ保護絶縁膜から出るェ ツチング生成物が上記の溝に溜まらず、エッチング生成物がホール内に残留し難く なる。そのため、ホール内に導電性プラグを形成するときに半導体基板が加熱されて も、加熱されたエッチング生成物に起因する脱ガスが殆ど無いため、脱ガスによって 導電性プラグが未形成になるのを防止でき、導電性プラグと金属配線とを電気的に 良好に接続することが可能となる。
[0012] なお、上記の絶縁性サイドウォールは、サイドウォール用絶縁膜をエッチバックして 形成され得るが、そのサイドウォール用絶縁膜をスパッタ法で形成することにより、プ ラズマ CVD等で絶縁膜を形成する場合よりもキャパシタ誘電体膜が受けるプラズマダ メージを低減することがでさる。
[0013] また、上記のようにホールの底部に溝が形成されないので、ホール内を洗浄しても 、洗浄水がホールに残留し難くなり、残留した洗浄水によって導電性プラグが形成さ れな 、と 、つた不都合を回避することができる。
[0014] なお、上記の金属配線としては、アルミニウム膜を含む金属積層膜を形成するのが 好ましい。その場合、金属配線が第 1キャパシタ保護絶縁膜で覆われているので、絶 縁性サイドウォールや第 3絶縁膜の成膜雰囲気中に含まれる水分がアルミニウム膜 に直接触れることは無い。よって、アルミニウムの還元作用によって上記の水分が水 素に還元されるのが防止され、その水素によってキャパシタ誘電体膜が劣化してしま うのを防ぐことができる。
[0015] また、本発明の別の観点によれば、半導体基板と、前記半導体基板の上に形成さ れた第 1絶縁膜と、前記第 1絶縁膜上に形成され、下部電極、強誘電体材料で構成 されるキャパシタ誘電体膜、及び上部電極で構成されるキャパシタと、前記キャパシ タ上に形成された第 2絶縁膜と、前記第 2絶縁膜上に形成された金属配線と、少なく とも前記金属配線の側面に形成された第 1キャパシタ保護絶縁膜と、前記金属配線 の横の前記第 1キャパシタ保護絶縁膜上に形成された絶縁性サイドウォールと、前記 金属配線と前記絶縁性サイドウォールのそれぞれの上に形成され、前記金属配線の 上にホールを有する第 3絶縁膜と、前記ホール内に形成され、前記金属配線と接続 された導電性プラグと、を有する半導体装置が提供される。
図面の簡単な説明
[図 1]図 l (a)、(b)は、仮想的な半導体装置の製造途中の断面図 (その 1)である。
[図 2]図 2 (a)、(b)は、仮想的な半導体装置の製造途中の断面図 (その 2)である。
[図 3]図 3 (a)、(b)は、仮想的な半導体装置の製造途中の断面図 (その 3)である。
[図 4]図 4 (a)、 (b)は、仮想的な半導体装置において、第 5ホールが一層目金属配 線力 脱落した場合の拡大断面図である。
[図 5]図 5 (a)、(b)は、本発明の第 1実施形態に係る半導体装置の製造途中の断面 図(その 1)である。
[図 6]図 6 (a)、(b)は、本発明の第 1実施形態に係る半導体装置の製造途中の断面 図(その 2)である。
[図 7]図 7 (a)、(b)は、本発明の第 1実施形態に係る半導体装置の製造途中の断面 図(その 3)である。
[図 8]図 8 (a)、(b)は、本発明の第 1実施形態に係る半導体装置の製造途中の断面 図(その 4)である。
[図 9]図 9 (a)、(b)は、本発明の第 1実施形態に係る半導体装置の製造途中の断面 図(その 5)である。
[図 10]図 10 (a)、(b)は、本発明の第 1実施形態に係る半導体装置の製造途中の断 面図(その 6)である。
[図 11]図 11 (a)、(b)は、本発明の第 1実施形態に係る半導体装置の製造途中の断 面図(その 7)である。
[図 12]図 12は、本発明の第 1実施形態に係る半導体装置の製造途中の断面図 (そ の 8)である。
[図 13]図 13は、本発明の第 1実施形態に係る半導体装置の製造途中の断面図 (そ の 9)である。
[図 14]図 14は、本発明の第 1実施形態に係る半導体装置の製造途中の断面図 (そ の 10)である。
[図 15]図 15は、本発明の第 1実施形態に係る半導体装置の製造途中の断面図 (そ の 11)である。
[図 16]図 16は、本発明の第 1実施形態に係る半導体装置の製造途中の断面図 (そ の 12)である。
[図 17]図 17は、本発明の第 1実施形態に係る半導体装置の製造途中の断面図 (そ の 13)である。
[図 18]図 18は、本発明の第 1実施形態に係る半導体装置の製造途中の断面図 (そ の 14)である。
[図 19]図 19は、本発明の第 1実施形態に係る半導体装置の製造途中の断面図 (そ の 15)である。
[図 20]図 20は、本発明の第 1実施形態に係る半導体装置の製造途中の断面図 (そ の 16)である。
[図 21]図 21は、本発明の第 1実施形態に係る半導体装置の製造途中の断面図 (そ の 17)である。
[図 22]図 22は、本発明の第 1実施形態に係る半導体装置の製造途中の断面図 (そ の 18)である。
[図 23]図 23は、本発明の第 1実施形態において、第 3ホール 74aの一部が一層目金 属配線 65から外れた場合の拡大断面図である。
[図 24]図 24は、本発明の第 1実施形態において、一層目金属配線 65の上面から第 1キャパシタ保護絶縁膜 66を除去した場合の拡大断面図である。
[図 25]図 25 (a)〜 (c)は、本発明の第 2実施形態に係る半導体装置の製造途中の断 面図(その 1)である。
[図 26]図 26 (a)〜 (c)は、本発明の第 2実施形態に係る半導体装置の製造途中の断 面図(その 2)である。
[図 27]図 27 (a)〜 (c)は、本発明の第 2実施形態に係る半導体装置の製造途中の断 面図(その 3)である。
[図 28]図 28 (a)、(b)は、本発明の第 2実施形態に係る半導体装置の製造途中の断 面図(その 4)である。
[図 29]図 29 (a)、(b)は、本発明の第 2実施形態に係る半導体装置の製造途中の断 面図(その 5)である。
[図 30]図 30 (a)、(b)は、本発明の第 2実施形態に係る半導体装置の製造途中の断 面図(その 6)である。
[図 31]図 31 (a)、 (b)は、本発明の第 2実施形態に係る半導体装置の製造途中の断 面図(その 7)である。
[図 32]図 28 (a)、(b)は、本発明の第 2実施形態に係る半導体装置の製造途中の断 面図(その 8)である。
発明を実施するための最良の形態
[0017] 以下に、本発明の実施の形態について、添付図面を参照しながら詳細に説明する
[0018] (1)予備的事項の説明
本発明の実施の形態について説明する前に、本発明の基礎となる予備的事項に ついて説明する。
[0019] FeRAMが備える強誘電体キャパシタでは、そのキャパシタ誘電体膜として PZT(Pb(Z r ,Ti )0 )膜等の酸化金属膜が使用される。酸化金属膜は、水素や水分等の還元 1 3
性物質に曝されると、膜中の酸素が還元されて酸素欠乏の状態となり、残留分極電 荷量等の強誘電体特性が劣化してしまう。そのため、 FeRAMでは、上記した還元性 物質力ゝら強誘電体膜を保護するため、アルミナ膜等のキャパシタ保護絶縁膜が形成 される。そのキャパシタ保護絶縁膜は、還元性物質が強誘電体膜に至るのを阻止す る機能を有し、例えば上下の配線間に形成される。
[0020] 以下に、そのようなアルミナよりなるキャパシタ保護絶縁膜を備えた仮想的な半導体 装置について、その製造工程を追いながら説明する。
[0021] 図 1〜図 3は仮想的な半導体装置の製造途中の断面図である。
[0022] まず、図 1 (a)に示す断面構造を得るまでの工程にっ 、て説明する。 [0023] 最初に、ゲート電極 4等によって構成される MOSトランジスタ TRをシリコン基板 1に 形成する。
[0024] そして、窒化シリコン膜等のカバー絶縁膜 6でその MOSトランジスタ TRを覆った後、 カバー絶縁膜 6上に酸ィ匕シリコン膜を形成し、その酸ィ匕シリコン膜を第 1絶縁膜 7とす る。
[0025] 次に、 CMP(Chemical Mechanical Polishing)法で第 1絶縁膜 7の上面を研磨して平 坦化する。
[0026] その後、平坦ィ匕された第 1絶縁膜 7の上面に、下部電極 8、キャパシタ誘電体膜 9、 及び上部電極 10をこの順に積層してなるキャパシタ Qを形成する。
[0027] 次いで、図 1 (b)に示すように、シリコン基板 1の上側全面に、第 2絶縁膜 11として 酸ィ匕シリコン膜を形成する。キャパシタ Qの形状を反映して第 2絶縁膜 11の上面に形 成された凹凸は、 CMP法による研磨で平坦化される。
[0028] 更に、フォトリソグラフィにより第 2絶縁膜 11からカバー絶縁膜 6までをパターユング して、上記した MOSトランジスタ TRのソース Zドレイン領域に至る深さの第 1、第 2ホ ール l la、 l ibを上記の各絶縁膜に形成する。
[0029] その後に、これらのホール l la、 l ibのそれぞれの中に、第 1導電性プラグ l la、 1 lbを形成する。その後、第 1導電性プラグ l la、 l ibの酸ィ匕を防ぐために、これらの 導電性プラグと第 2絶縁膜 11のそれぞれの上面に酸ィ匕防止絶縁膜 (不図示)として S iON膜を形成する。
そして、第 2絶縁膜 11を再度パターユングして、上部電極 10と下部電極 8のそれぞ れの上に第 3、第 4ホール l lc、 l idを形成した後、上記の酸化防止絶縁膜を除去し 、これらのホール l lc、 l idの内面と第 2絶縁膜 11の上面に一層目金属配線 13を形 成する。
[0030] 続、て、図 2 (a)に示すように、水素や水分等の還元性物質力もキャパシタ誘電体 膜 9を保護するために、一層目金属配線 13の上にスパッタ法でアルミナ膜を形成し、 このアルミナ膜を第 1キャパシタ保護絶縁膜 14とする。
[0031] 更に、第 1キャパシタ保護絶縁膜 14の上に、第 3絶縁膜 15としてプラズマ CVD法に より酸ィ匕シリコン膜を形成した後、 CMP法による研磨でこの第 3絶縁膜 15の上面を平 坦化する。
[0032] ここで、キャパシタ誘電体膜 9の劣化を更に効果的に防止すベぐ第 3絶縁膜 15の 上に第 2キャパシタ保護絶縁膜 16としてアルミナ膜をスパッタ法で形成する。
[0033] その後に、この第 2キャパシタ保護絶縁膜 16の上に酸ィ匕シリコン膜を形成し、この 酸ィ匕シリコン膜をキャップ絶縁膜 17とする。
[0034] 次いで、図 2 (b)に示すように、上記した各絶縁膜 14〜 17をパターユングすること により、一層目金属配線 13の上に第 5ホール 15aを形成する。
[0035] 次に、図 3 (a)に示す断面構造を得るまでの工程について説明する。
[0036] まず、第 5ホール 15aの内面とキャップ絶縁膜 17の上面に、グルー膜 19としてスパ ッタ法により窒化チタン膜を形成する。
[0037] そして、このグルー膜 19の上に、第 5ホール 15aを埋める厚さのタングステン膜を形 成した後、キャップ絶縁膜 17の上の余分なタングステン膜を CMP法により研磨して除 去し、第 5ホール 15a内にのみタングステン膜を第 3導電性プラグ 20として残す。
[0038] 次に、図 3 (b)に示すように、アルミニウム膜を含む金属積層膜をグルー膜 19の上 にスパッタ法で形成し、この金属積層膜とグルー膜 19とをパターユングして二層目金 属配線 21を形成する。
[0039] 以上により、この FeRAMの基本構造が完成した。
[0040] 上記した半導体装置の製造方法によれば、図 2 (b)で説明したように、一層目金属 配線 13上に第 5ホール 15aを形成する。その第 5ホール 15aは、図示のように一層目 金属配線 13と設計通り位置合わせされていれば特に問題は無い。しかし、第 5ホー ル 15aを形成するためのフォトリソグラフィにおいて、例えばエッチングのマスクとなる レジストパターン (不図示)とシリコン基板 1とが位置ずれしていると、第 5ホール 15aが 一層目金属配線 13から脱落することがある。
[0041] 図 4 (a)、(b)は、このように第 5ホール 15aが一層目金属配線 13から脱落した場合 に発生する問題について説明するための拡大断面図である。
[0042] 図 4 (a)に示されるように、一層目金属配線 13は、下力も窒化チタン膜 13a、アルミ -ゥム膜 13b、チタン膜 13c、及び窒化チタン膜 13dをこの順に積層してなる。そして 、この一層目金属配線 13から第 5ホール 15aが脱落すると、一層目金属配線 13の横 の第 3絶縁膜 15に溝 15bが形成され、この溝 15bの側面にアルミニウム膜 13bの表 面が露出する。
[0043] このように溝 15bが形成されると、ホール 15aの形成時にアルミナよりなる第 1、第 2 キャパシタ保護絶縁膜 14、 16をエッチングしたことで発生したエッチング生成物が溝 15bに溜まる。アルミナは化学的にエッチングされ難くいので、アルミナに起因するェ ツチング生成物は除去するのが困難である。また、ホール 15aを形成した後に、その 内面を洗浄するための洗浄水も溝 15bに溜まる。
[0044] エッチング生成物や洗浄水等の異物が溝 15bに存在する状態で、タングステンより なる第 3導電性プラグ 20 (図 3 (a)参照)を形成しょうとしても、タングステン膜を成膜 する際の熱によって上記の異物力 脱ガスが発生するので、タングステン膜でホール 15aを埋め込むことができない。
[0045] その結果、図 4 (b)に示されるように、第 5ホール 15a内に第 3導電性プラグ 20を形 成することができず、一層目金属配線 13と二層目金属配線 21とを電気的に良好に 接続するのが困難となる。
[0046] このような不都合を回避すベぐ例えば、第 1キャパシタ保護絶縁膜 14を省いて、 一層目金属配線 13の上にプラズマ CVD法で第 3絶縁膜 15を直接形成し、第 2キヤ パシタ保護絶縁膜 16だけで還元性物質を阻止することも考えられる。
[0047] しかし、このようにすると、一層目金属配線 13の側面に露出するアルミニウム膜 13b が第 3絶縁膜 15の成膜雰囲気に触れるので、その成膜雰囲気中に含まれる水分が アルミニウムの還元作用によって水素となり、その水素によってキャパシタ誘電体膜 9 (図 3 (b)参照)の強誘電体特性が大幅に劣化する。
[0048] 従って、一層目金属配線 13がアルミニウム膜を含む場合には、第 1キャパシタ保護 絶縁膜 14を省略するのは適切ではな 、。
[0049] 更に、上記のように、一層目金属配線 13の最上層には窒化チタン膜 13dが形成さ れる力 この窒化チタン膜 13dと酸ィ匕シリコンよりなる第 3絶縁膜 15とのエッチング速 度比は比較的小さい。よって、エッチングにより第 5ホール 15aを形成する際、窒化チ タン膜 13dもある程度エッチングされ、この窒化チタン膜 13dに由来するエッチング生 成物が発生し、これによつても上記した脱ガスが助長されると考えられる。 [0050] 本願発明者はこのような問題点に鑑み、以下に説明するような本発明の実施の形 態に想到した。
[0051] (2)第 1実施形態
図 5〜図 22は、本発明の第 1実施形態に係る半導体装置の製造途中の断面図で ある。
[0052] この半導体装置は、キャパシタの下部電極にコンタクト領域を設け、そのコンタクト 領域の上方の金属配線から下部電極に電圧が印加されるプレーナ型の FeRAMであ り、以下のようにして作成される。
[0053] 最初に、図 5 (a)に示す断面構造を得るまでの工程について説明する。
[0054] まず、 n型又は p型のシリコン(半導体)基板 30の表面を熱酸化することにより素子分 離絶縁膜 31を形成し、この素子分離絶縁膜 31でトランジスタの活性領域を画定する
。このような素子分離構造は LOCOS(Local Oxidation of Silicon)と呼ばれる力 これ に代えて STI(Shallow Trench Isolation)を採用してもよい。
[0055] 次いで、シリコン基板 30の活性領域に p型不純物、例えばボロンを導入して第 1、 第 2pゥエル 32、 33を形成した後、その活性領域の表面を熱酸ィ匕することにより、ゲー ト絶縁膜 34となる熱酸ィ匕膜を約 6〜7應の厚さに形成する。
[0056] 続いて、シリコン基板 30の上側全面に、厚さ約 50應の非晶質シリコン膜と厚さ約 1
50應のタングステンシリサイド膜を順に形成する。なお、非晶質シリコン膜に代えて 多結晶シリコン膜を形成してもよい。その後に、フォトリソグラフィによりこれらの膜をパ ターニングして、シリコン基板 30上にゲート電極 35を形成すると共に、素子分離絶縁 膜 31上に配線 36を形成する。
[0057] 更に、ゲート電極 35をマスクにするイオン注入により、ゲート電極 35の横のシリコン 基板 30に n型不純物としてリンを導入し、第 1〜第 3ソース/ドレインエクステンション
37a〜37cを形成する。
[0058] その後に、シリコン基板 30の上側全面に絶縁膜を形成し、その絶縁膜をエッチバッ クしてゲート電極 35と配線 36の横に絶縁性スぺーサ 38として残す。その絶縁膜とし て、例えば CVD法により酸ィ匕シリコン膜を形成する。
[0059] 続いて、この絶縁性スぺーサ 38とゲート電極 35をマスクにしながら、シリコン基板 3 0に砒素等の n型不純物を再びイオン注入することにより、ゲート電極 35の側方のシリ コン基板 30に第 1〜第 3ソース Zドレイン領域 39a〜 39cを形成する。
[0060] 更に、シリコン基板 30の上側全面に、スパッタ法によりコバルト膜等の高融点金属 膜を形成する。そして、その高融点金属膜を加熱させてシリコンと反応させることによ り、第 1〜第 3ソース/ドレイン領域 39a〜39cにおけるシリコン基板 30上にコバルト シリサイド層等の高融点シリサイド層 40を形成し、各ソース Zドレイン領域 39a〜39c を低抵抗化する。なお、このような高融点金属シリサイド層は、ゲート電極 35や配線 3 6の表層にも形成される。
[0061] その後に、素子分離絶縁膜 31の上等で未反応となっている高融点金属層をゥエツ トエッチングして除去する。
[0062] ここまでの工程により、シリコン基板 30の活性領域には、ゲート絶縁膜 34、ゲート電 極 35、及び第 1〜第 3ソース Zドレイン領域 39a〜39c等によって構成される第 1〜 第 3MOSトランジスタ TR 〜TRが形成されたことになる。
1 3
[0063] これらのトランジスタのうち、第 1、第 2MOSトランジスタ TR 、 TRはセル領域に形成さ
1 2
れ、それらのゲート電極 35は互いに平行に形成されてワード線の一部を構成する。 一方、第 3MOSトランジスタ TRは周辺回路領域に形成される。
3
[0064] 次に、図 5 (b)に示すように、シリコン基板 30の上側全面に、プラズマ CVD法で酸窒 化シリコン (SiON)膜を厚さ約 200應に形成し、それをカバー絶縁膜 44とする。
[0065] 更に、 TEOSガスを使用するプラズマ CVD法により、このカバー絶縁膜 44の上に第 1絶縁膜 45として酸化シリコン (SiO)膜を厚さ約 600nmに形成した後、 CMP(Chemical Mechanical Polishing)法で第 1絶縁膜 45を約 200nm程度研磨し、第 1絶縁膜 45の上 面を平坦化する。
[0066] 次いで、 TEOSガスを使用するプラズマ CVD法により、この第 1絶縁膜 45の上に再 びシリコン酸ィ匕膜を厚さ約 100應に形成し、このシリコン酸ィ匕膜を第 1キャップ絶縁膜 46とする。
[0067] その後に、これらの絶縁膜 45、 46の脱水処理として、窒素雰囲気中において基板 温度を約 650°Cとするァニールを約 30分間行う。
[0068] 次に、図 6 (a)に示す断面構造を得るまでの工程について説明する。 [0069] まず、第 1キャップ絶縁膜 46上にスパッタ法により第 1アルミナ膜 40を厚さ約 20nm に形成する。
[0070] そして、第 1アルミナ膜 40の上に、スパッタ法により第 1導電膜 47としてプラチナ膜 を形成する。この第 1導電膜 47は、後でパターユングされてキャパシタ下部電極にな り、その膜厚は約 155nmである。
[0071] 更に、第 1絶縁膜 47の上に、スパッタ法により PZT膜を 150〜200nmの厚さに形成 して、この PZT膜を強誘電体膜 48とする。
[0072] なお、強誘電体膜 48の成膜方法としては、スパッタ法の他に、 MOCVD(Metal Orga nic CVD)法ゃゾル ·ゲル法もある。更に、強誘電体膜 48の材料は上記の PZTに限定 されず、 SrBi Ta O 、 SrBi (Ta Nb ) O 、 Bi Ti O 等の Bi層状構造化合物や、 PZTに
2 2 9 2 x 1-x 2 9 4 2 12
ランタンをドープした PLZT(Pb La Zr Ti O )、或いはその他の金属酸化物強誘電
1 1 3
体で強誘電体膜 48を構成してもよ ヽ。
[0073] ここで、スパッタ法で形成された PZTは、成膜直後では殆ど結晶化しておらず、強誘 電体特性に乏しい。そこで、強誘電体膜 48を構成する PZTを結晶化させるための結 晶化ァニールとして、酸素含有雰囲気中で基板温度を約 585°Cとする RTA(Rapid Th ermal Anneal)を約 90秒間行う。なお、 MOCVD法で強誘電体膜 48を形成する場合 は、この結晶化ァニールは不要である。
[0074] 次に、上記の強誘電体膜 48の上に、スパッタ法で第 1酸化イリジウム (IrO )膜を厚さ
2 約 50應に形成し、この第 1酸化イリジウム膜に対して RTAを施す。その RTAの条件は 特に限定されないが、本実施形態では、酸素含有雰囲気中で基板温度を 725°C、 処理時間を 20秒とする。
[0075] その後に、第 1酸化イリジウム膜の上にスパッタ法により第 2酸化イリジウム膜を厚さ 約 200應に形成し、これら第 1、第 2酸化イリジウム膜よりなる積層膜を第 2導電膜 49 とする。
[0076] 次に、図 6 (b)に示す断面構造を得るまでの工程について説明する。
[0077] まず、フォトリソグラフィにより第 2導電膜 49をパターユングして上部電極 49aを形成 する。そして、このパターユングにより強誘電体膜 48が受けたダメージを回復させる ために、強誘電体膜 48に対する一回目の回復ァニールを縦型炉内で行う。この回 復ァニールは酸素含有雰囲気において行われ、その条件は、例えば、基板温度 65 0°C、処理時間 60分である。
[0078] 次いで、フォトリソグラフィで強誘電体膜 48をパターユングすることにより、 PZT等の 強誘電体材料で構成されるキャパシタ誘電体膜 48aを形成する。このパターユングで キャパシタ誘電体膜 48aが受けたダメージは二回目の回復ァニールによって回復さ れる。この二回目の回復ァニールは、一回目と同様に縦型炉を用いて酸素含有雰囲 気中で行われ、その条件として基板温度 350°C、処理時間 60分が採用される。
[0079] 続いて、図 7 (a)に示すように、シリコン基板 30の上側全面に、水素や水分等の還 元性物質力 キャパシタ誘電体膜 48aを保護するための第 2アルミナ膜 51をスパッタ 法で厚さ約 50nmに形成する。そして、スパッタによりキャパシタ誘電体膜 48aが受け たダメージを回復させるために、酸素含有雰囲気中で基板温度を 550°Cとする三回 目の回復ァニールを約 60分間行う。この回復ァニールは、一回目及び二回目と同様 に、縦型炉を用いて行われる。
[0080] 次に、図 7 (b)に示すように、フォトリソグラフィで第 1導電膜 47と第 2アルミナ膜 51と をパター-ングすることにより、キャパシタ誘電体膜 48aの下の第 1導電膜 47を下部 電極 47aにすると共に、この下部電極 47aを覆うように第 2アルミナ膜 51を残す。
[0081] その後に、プロセス中にキャパシタ誘電体 48aが受けたダメージを回復させるため に、基板温度 550°C、処理時間 60分の条件で、酸素含有雰囲気中においてキャパ シタ誘電体膜 48aに四回目の回復ァニールを施す。その回復ァニールは、例えば縦 型炉を用いて行われる。
[0082] ここまでの工程により、シリコン基板 30のセル領域には、下部電極 47a、キャパシタ 誘電体膜 48a、及び上部電極 49aをこの順に積層してなるキャパシタ Qが形成された ことになる。
[0083] 続いて、図 8 (a)に示すように、シリコン基板 30の上側全面に、キャパシタ誘電体膜 48aを保護するための第 3アルミナ膜 53をスパッタ法で約 20nmの厚さに形成する。こ の第 3アルミナ膜 53は、その下の第 2アルミナ膜 51と協同して、水素や水分等の還 元性物質がキャパシタ誘電体膜 48aに至るのを防止し、キャパシタ誘電体膜 48aが 還元されてその強誘電体特性が劣化するのを抑えるように機能する。 [0084] そして、基板温度 550°C、処理時間 60分の条件で、酸素含有雰囲気となって!/、る 縦型炉内においてキャパシタ誘電体膜 48aに対して五回目の回復ァニールを施す。
[0085] 次いで、 TEOSガスを使用するプラズマ CVD法により、上記の第 3アルミナ膜 53上に 酸ィ匕シリコン膜を厚さ約 1500應に形成し、その酸ィ匕シリコン膜を第 2絶縁膜 55とす る。この後に、第 2絶縁膜 55の上面を CMP法で研磨して平坦ィ匕する。
[0086] 次に、図 8 (b)に示す断面構造を得るまでの工程について説明する。
[0087] まず、第 2絶縁膜 55上にフォトレジストを塗布し、それを露光、現像して第 1レジスト パターン 57を形成する。図示のように、この第 1レジストパターン 57は、第 1〜第 3ソ ース Zドレイン領域 39a〜39cの上にホール形状の第 1〜第 3窓 57a〜57cを有する と共に、配線 36の上に第 4窓 57dを有する。
[0088] 次いで、第 1レジストパターン 57をマスクに用いながら、第 2絶縁膜 55からカバー絶 縁膜 44までをドライエッチングすることにより、第 1〜第 4窓 57a〜 57dの下のこれら の絶縁膜に第 1〜第 4コンタクトホール 58a〜58dを形成する。
[0089] このドライエッチングは、平行平板型プラズマエッチング装置(不図示)にお 、て 3ス テツプのエッチングで行われる。その第 1ステップのエッチングでは、 C F 、 0、及び
4 8 2
Arの混合ガスがエッチングガスとして用いられ、カバー絶縁膜 44をエッチングストツ パ膜にしながら、第 2絶縁膜 55から第 1絶縁膜 45までがエッチングされる。
[0090] 次の第 2ステップでは、エッチングガスとして 0と Arとの混合ガスを用い、これらのガ
2
スのスパッタ作用により、第 1ステップでホール内に生じたエッチング生成物を除去す る。
[0091] そして、第 3ステップのエッチングでは、 C F 、 CF 、 0、及び Arの混合ガスをエッチ
4 8 4 2
ングガスにしてカバー絶縁膜 44がエッチングされる。
[0092] 上記のエッチングが終了後、第 1レジストパターン 57は除去される。
[0093] 次に、図 9 (a)に示す断面構造を得るまでの工程について説明する。
[0094] まず、第 1〜第 4コンタクトホール 58a〜58dの内面と第 2絶縁膜 55の上面に、スパ ッタ法によりチタン (Ti)膜と窒化チタン (TiN)膜をそれぞれ厚さ 20應、 50應に形成し、 これらの膜をグルー膜とする。そして、このグルー膜の上に、六フッ化タングステンガ スを使用する CVD法でタングステン膜を形成し、このタングステン膜で第 1〜第 4コン タクトホール 58a〜58dを完全に埋め込む。
[0095] その後に、第 2絶縁膜 55上の余分なグルー膜とタングステン膜とを CMP法で研磨し て除去し、これらの膜を第 1〜第 4コンタクトホール 58a〜58d内にそれぞれ第 1〜第
4導電性プラグ 60a〜60dとして残す。
[0096] これらの導電性プラグのうち、第 1〜第 3導電性プラグ 58a〜58cは、それぞれ第 1
〜第 3ソース Zドレイン領域 39a〜39cと電気的に接続される。そして、第 4導電性プ ラグ 39dは、その下の配線 36と電気的に接続される。
[0097] また、第 1〜第 3導電性プラグ 58a〜58cは、非常に酸ィ匕され易いタングステンを主 に構成されているため、酸素含有雰囲気中で容易に酸ィ匕してコンタクト不良を引き起 こす恐れがある。
[0098] そこで、これら第 1〜第 4導電性プラグ 60a〜60dが酸ィ匕するのを防止するために、 これらのプラグと第 2絶縁膜 55のそれぞれの上面に、酸ィ匕防止絶縁膜 61として CVD 法により酸窒化シリコン膜を厚さ約 100應に形成する。
[0099] 次に、図 9 (b)に示す断面構造を得るまでの工程について説明する。
[0100] まず、酸ィ匕防止絶縁膜 61上にフォトレジストを塗布し、それを露光、現像して第 2レ ジストパターン 63とする。図示のように、上部電極 49aと下部電極 47aのそれぞれの 上の第 2レジストパターン 63には、ホール形状の第 5、第 6窓 63a、 63bが形成される
[0101] 次いで、第 2レジストパターン 63をマスクにしながら、酸化防止絶縁膜 61、第 2絶縁 膜 55、及び第 2、第 3アルミナ膜 51、 53をエッチングすることにより、上部電極 49aと 下部電極 47aのそれぞれの上に第 1、第 2ホール 55a、 55bを形成する。
[0102] その後に、ここまでの工程でキャパシタ誘電体膜 48aが受けたダメージを回復させ るために、酸素含有雰囲気となっている縦型炉にシリコン基板 30を入れ、基板温度 5 00°C、処理時間 60分の条件で、キャパシタ誘電体膜 48aに対して六回目の回復ァ ニールを施す。
[0103] そして、第 2レジストパターン 63を除去した後、酸ィ匕防止絶縁膜 61をエッチバックし て除去する。
[0104] 次に、図 10 (a)に示す断面構造を得るまでの工程について説明する。 [0105] まず、第 2絶縁膜 55と第 1〜第 4導電性プラグ 60a〜60dのそれぞれの上面、及び 第 1、第 2ホール 55a、 55bの内面に、スパッタ法により金属積層膜を形成する。本実 施形態では、その金属積層膜として、約 150應の厚さの窒化チタン膜 65a、約 550η mの厚さの銅含有アルミニウム膜 65b、約 5nmの厚さのチタン膜 65c、及び約 150nm の厚さの窒化チタン膜 65dをこの順に形成する。
[0106] そして、フォトリソグラフィによりこの金属積層膜をパターユングすることにより、第 2絶 縁膜 55の上に一層目金属配線 65を形成する。その一層目金属配線 65のうち、キヤ パシタ Qの上に形成されたものは、上記の第 1、第 2ホール 55a、 55bを通じてそれぞ れ上部電極 49a、下部電極 47aと電気的に接続される。
[0107] その後、窒素雰囲気において基板温度 350°C、処理時間 30分の条件で第 2絶縁 膜 55をァニールして脱水する。
[0108] 続いて、図 10 (b)に示すように、一層目金属配線 65と第 2絶縁膜 55とを覆う第 1キ ャパシタ保護絶縁膜 66として、スパッタ法によりアルミナ膜を形成する。
[0109] この第 1キャパシタ保護絶縁膜 66は、水素や水分等の還元性物質をブロックしてキ ャパシタ誘電体膜 48aを保護する機能の他に、第 1キャパシタ保護絶縁膜 66上に後 でプラズマ CVD法等により絶縁膜を形成する際に、キャパシタ誘電体膜 48aが受ける プラズマダメージを低減させる機能もある。これらの機能のうち、還元性物質のブロッ ク機能は、第 1キャパシタ保護絶縁膜 66の厚さが 100應以下であっても十分に得ら れる。また、プラズマダメージの低減には、第 1キャパシタ保護絶縁膜 66の厚さは最 低でも 20應必要である。これらの理由により、第 1キャパシタ保護絶縁膜 66の厚さは 、 20nm以上 lOOnmであるのが好ましぐ本実施形態では約 20nmとする。
[0110] なお、本願発明者が行った調査によると、一層目金属配線 65上に HDPCVD(High Density Plasma CVD)法で酸ィ匕シリコン膜を直接形成するときに、基板バイアスをゼロ にすると、キャパシタ Qが殆ど劣化しな力つた。よって、上記のプラズマダメージは、プ ラズマ CVD法において基板バイアスを加える場合に顕著になると推測される。
[0111] また、第 1キャパシタ保護絶縁膜 66には、この後の成膜プロセスにおいて、アルミ- ゥム膜 65bの表面において水分が水素に解離するのを抑制する機能、すなわち表面 反応防止膜としての機能もある。 [0112] 本実施形態における第 1キャパシタ保護絶縁膜 66は、上記した各機能を有するも のであれば、アルミナ膜に限定されるものではな!/、。
[0113] なお、アルミナ膜と同等の機能を有する膜として、 RFスパッタ法により形成された酸 化シリコン膜があり、この酸ィ匕シリコン膜を第 1キャパシタ保護絶縁膜 66として形成し てもよい。その場合、周波数が 13. 56MHzの高周波電力(RF電力)のパワーを 2kW にすると共に、スパッタガスである Arガスと 0ガスの流量をそれぞれ 18sccm、 2sccm、
2
スパッタチャンバ内の圧力を lPaとして、上記の酸化シリコン膜を形成する。
[0114] このようにスパッタ法で形成された酸ィ匕シリコン膜は、膜密度が低いため吸湿性が 高ぐ CVD法等で形成された酸ィヒシリコン膜と比べて水分や水素等の還元性物質の ブロック性に優れている。更に、アルミナ膜と比べてカ卩ェ性が良いという利点も酸ィ匕シ リコン膜にはある。
[0115] 次に、図 11 (a)に示すように、反応ガスとしてシラン (SiH )ガスと N 0ガスを用いるプ
4 2
ラズマ CVD法により、第 1キャパシタ保護絶縁膜 66の上に酸窒化シリコン膜を厚さ約 150應に形成し、この酸窒化シリコン膜を第 1のサイドウォール用絶縁膜 67とする。 なお、酸窒化シリコン膜に代えて、窒化シリコン (SiN)膜を第 1のサイドウォール用絶縁 膜 67として形成してもよい。
[0116] このように、プラズマ CVD法で第 1のサイドウォール用絶縁膜 67を形成しても、既述 のように、その下の第 1キャパシタ保護絶縁膜 66がプラズマダメージを吸収するように 機能するので、一層目金属配線 66を通じてキャパシタ誘電体膜 48aがプラズマダメ ージを受けるのを抑止することができる。
[0117] し力も、一層目金属配線 65の側面が第 1キャパシタ保護絶縁膜 66で覆われている ので、第 1のサイドウォール用絶縁膜 67の成膜雰囲気中に含まれる水分がアルミ- ゥム膜 65bに触れない。これにより、アルミニウムの還元作用によって水分力も水素が 発生するのを防止でき、この水素によってキャパシタ誘電体膜 48が還元されるのを 抑止できる。
[0118] また、プラズマ CVD法に代えて、スパッタ法で第 1のサイドウォール用絶縁膜 67を 形成してちょい。
[0119] プラズマ CVD法では、シリコン基板 30を加熱しながら、反応ガスに SiH等の水素を 含むガスを使用し、更にシリコン基板 30にバイアス電圧が力かり易いため、シリコン基 板 30にプラズマダメージが入り易い。しかし、スパッタ法では、基板を加熱する必要 が無いと共に、ターゲットゃスパッタ雰囲気中に水素が含まれず、シリコン基板 30に バイアス電圧が力かりにく!/、構造をスパッタ装置が有して 、るため、プラズマ CVD法 に比べてシリコン基板 30がプラズマダメージを受け難い。
[0120] よって、スパッタ法で第 1のサイドウォール用絶縁膜 67を形成することで、キャパシ タ Qと電気的に接続された一層目金属配線 66を通じてキャパシタ誘電体膜 48aにプ ラズマダメージが入るのを防ぐことができ、プロセス中にキャパシタ誘電体 48aが劣化 するのを抑止することが可能となる。
[0121] 次に、図 11 (b)に示すように、第 1のサイドウォール用絶縁膜 67をエッチバックし、 一層目金属配線 65の横の第 1キャパシタ保護絶縁膜上に第 1絶縁性サイドウォール 67aを形成する。
[0122] このエッチバックの条件は特に限定されな 、が、本実施形態では、平行平板型ブラ ズマエッチングチャンバ(不図示)を用い、シリコン基板 30に対向するシャワーヘッド に周波数が 13. 56MHzでパワー力 00Wの高周波電力を印加する。そして、エッチ ングガスとして CHF、 CF、及び Arをそれぞれ 40sccm、 80sccm、 lOOOsccmの流量
3 4
でチャンバに供給すると共に、不図示のポンプでチャンバ内を約 1700mTorr程度に 減圧し、上記のエッチバックを行う。
[0123] なお、このエッチバックでは、光学的な終点検出器 (EPD: End Point Detector)でェ ツチングの終点を監視し、膜厚換算で約 10〜20%程度のオーバーエッチングが行 われる。例えば、サイドウォール用絶縁膜 67の厚さが lOOnmの場合には、この厚さを 丁度エッチングし切るのに必要なエッチング時間は約 30秒となり、オーバーエツチン グ時間は約 5秒となる。
[0124] 次に、図 12に示す断面構造を得るまでの工程について説明する。
[0125] まず、第 1キャパシタ保護絶縁膜 66と第 1絶縁性サイドウォール 67aのそれぞれの 上に、 TEOSガスを用いるプラズマ CVD法により酸ィ匕シリコン膜を形成し、この酸化シ リコン膜を第 3絶縁膜 68とする。なお、この第 3絶縁膜 68の膜厚は特に限定されない 力 本実施形態では、一層目金属配線 65上での第 3絶縁膜 68の膜厚を約 2600應 とする。
[0126] その後に、 CMP法により第 3絶縁膜 68の上面を研磨して平坦ィ匕する。この CMPによ り、第 3絶縁膜 68の厚さは、一層目金属配線 65上で約 lOOOnmとなる。
[0127] 次 、で、基板温度約 350°C、処理時間約 4分の条件で、第 3絶縁膜 68を N 0ブラ
2 ズマに曝すことにより、第 3絶縁膜 68の表面を窒化する。
[0128] そして、 TEOSガスを使用するプラズマ CVD法を再び用いて、第 3絶縁膜 68の上に 第 2キャップ絶縁膜 69として酸ィ匕シリコン膜を厚さ約 lOOnmに形成する。
[0129] その後、 N 0プラズマ処理を再び行い、第 2キャップ絶縁膜 69の表面を窒化する。
2
この N 0プラズマ処理として、例えば基板温度 350°C、処理時間 2分を採用する。
2
[0130] 次に、外部雰囲気に含まれる水素や水分等の還元性物質がキャパシタ誘電体膜 4 8aに至るのを防ぐために、これらの物質に対するブロック性に優れたアルミナ膜をス ノッタ法で第 2キャップ絶縁膜 69上に約 50應の厚さに形成し、このアルミナ膜を第 2 キャパシタ保護絶縁膜 70とする。
[0131] 続いて、 TEOSガスを使用するプラズマ CVD法により、第 2キャパシタ保護絶縁膜 70 の上に酸ィ匕シリコン膜を形成して、この酸ィ匕シリコン膜を第 3キャップ絶縁膜 71とする 。この第 3キャップ絶縁膜 71の厚さは、例えば約 lOOnmである。
[0132] その後に、基板温度 350°C、処理時間 2分の条件で第 3キャップ絶縁膜 71に対し て N 0プラズマ処理を行い、この第 3キャップ絶縁膜 71の表面を窒化する。
2
[0133] 次に、図 13に示す断面構造を得るまでの工程について説明する。
[0134] まず、第 3キャップ絶縁膜 71の上にフォトレジストを塗布し、それを露光、現像するこ とにより、一層目金属配線 65の上にホール形状の第 7窓 73aを備えた第 3レジストパ ターン 73を形成する。
[0135] 次いで、下部電極と上部電極とが対向して設けられた平行平板型プラズマエツチン グチャンバ(不図示)内にシリコン基板 30を入れ、上記の下部電極上にそのシリコン 基板 30を載置する。そして、エッチングガスとして C F、 Ar、 0をそれぞれ 20sccm、 5
4 8 2
OOsccm、 12sccmの流量でチャンバに供給しながら、不図示のポンプでチャンバ内を 排気し、上記のエッチングガスの圧力を約 50mTorrとする。この状態で、周波数が 27 . 12MHzでパワーが 2000Wの高周波電力(ソースパワー)をチャンバの上部電極に 印加すると共に、周波数が 800kHzでパワーが 900Wの高周波電力(バイアスパワー )をチャンバの下部電極に印加して、エッチングガスをプラズマ化し、チャンバ内をェ ツチング雰囲気にする。
[0136] そのようなエッチング雰囲気では、酸窒化シリコンよりなる第 1絶縁性サイドウォール
67aのエッチング速度が、酸ィ匕シリコンよりなる第 3絶縁膜 68のそれよりも遅くなる。
[0137] そして、このような状態を約 185秒間保持することにより、第 7窓 73aの下の各絶縁 膜 66、 68〜71が上記のエッチング雰囲気によりエッチングされ、一層目金属配線 6
5の上に第 3ホール 74aが形成されることになる。
[0138] このエッチングが終了後、第 3のレジストパターン 73aを除去し、洗浄水で第 3ホー ル 74aの内面を洗浄する。
[0139] ところで、図 13では、第 3ホール 74aと一層目金属配線 65とが所望に位置合わせさ れた状態が示されているが、例えば第 1レジストパターン 73の位置ずれによって、第
3ホール 74aの一部が一層目金属配線 65から外れる場合がある。
[0140] 図 23は、このように第 3ホール 74aの一部が一層目金属配線 65から外れた場合の 拡大断面図である。
[0141] 上記のように、本実施形態では、一層目金属配線 65の横に第 1絶縁性サイドゥォ ール 67aを形成し、且つ、第 1絶縁性サイドウォール 67aのエッチング速度が第 2絶 縁膜 68のそれよりも遅くなるエッチング条件で上記の第 3ホール 74aを形成する。従 つて、図示のように第 3ホール 74aの一部が一層目金属配線 65から外れて第 1絶縁 性サイドウォール 67aに重なっても、第 1絶縁性サイドウォール 67aにおいてエツチン グが吸収されるので、予備的事項で説明したような溝が第 3ホール 74aに形成されな い。
[0142] よって、上記のエッチングを終了した後でも、アルミナよりなる第 1、第 2キャパシタ保 護絶縁膜 66、 70から発生した反応性に乏しく除去が困難なエッチング生成物が第 3 ホーノレ 74a内【こ溜まり難!ヽ。
[0143] 更に、エッチングの後に第 3ホール 74aの内面を洗浄水で洗浄しても、水が第 3ホ ール 74a内に溜まり難くなる。
[0144] なお、このエッチングにおいて、一層目金属配線 65の最上層の窒化チタン膜 65d と第 1キャパシタ保護絶縁膜 66とのエッチング選択比は、アルミナよりなる第 1キャパ シタ保護絶縁膜 66又は第 2キャップ絶縁膜 69の膜厚が厚くなるほど低下し、エッチ ング生成物の中に窒化チタン膜 65dに由来するものが多く含まれるようになる。窒化 チタンを含むエッチング生成物は、第 3ホール 74aの中に残存し、コンタクト不良を招 く恐れがあるので、なるべく低減するのが好ましい。そのため、第 1キャパシタ保護絶 縁膜 66又は第 2キャップ絶縁膜 69の厚さを、本実施形態 (第 1キャパシタ保護絶縁 膜 66は約 20nm、第 2キャップ絶縁膜 69は約 50nm)よりも厚くする場合は、このエツ チング時間を上記の 185秒よりも短くし、エッチング生成物がなるべく発生しないよう にするのが好ましい。
[0145] また、アルミナ膜よりも加工性に優れた酸ィ匕シリコン膜をスパッタ法で第 1キャパシタ 保護絶縁膜 66として形成する場合には、第 3ホール 74aを形成する際に第 1キャパ シタ保護絶縁膜 66をエッチングで開口するのが容易となり、第 3ホール 74aの加工精 度が高められるという利点も得られる。
[0146] 次に、図 14に示す断面構造を得るまでの工程について説明する。
[0147] まず、第 3絶縁膜 68から第 3ホール 74aの中に脱ガスが出てくるのを防止するため に、第 3ホール 74aの内面を窒化する。その窒化処理は、例えば、基板温度 350°C、 窒素ガス流量 201/分、及び処理時間 120分の条件で窒素雰囲気中にお 、て行われ る。
[0148] 次!、で、第 3ホール 74aの下の一層目金属配線 65をプラズマ化したアルゴン雰囲 気に曝して軽くエッチングし、一層目金属配線 65の表面を清浄ィ匕する。この時のエツ チング量は例えば 50nmである。
[0149] そして、第 3ホール 74aの内面と第 3キャップ絶縁膜 71の上面にスパッタ法により窒 化チタン膜を厚さ約 150應に形成し、それを第 1グルー膜 76とする。
[0150] 続いて、六フッ化タングステンガスを使用するプラズマ CVD法により、この第 1ダル 一膜 76の上に、第 3ホール 74aを完全に埋め込む厚さ、例えば 650nmの厚さのタン ダステン膜を形成する。その後に、このタングステン膜をエツチノックして第 3キャップ 絶縁膜 71の上面から除去し、第 3ホール 74a内のみに残す。これにより、第 3ホール 74a内には、一層目金属配線 65と電気的に接続され且つタングステンで構成される 第 5導電性プラグ 77が形成されたことになる。
[0151] なお、この例ではタングステン膜をエッチバックした力 エッチバックに変えて CMP を採用してもよい。
[0152] ここで、図 23で説明したように、第 3ホール 74a内にはエッチング生成物や洗浄水 等の異物が溜まっていない。従って、上記のタングステン膜を第 3ホール 74a内に形 成するとき、シリコン基板 30が加熱されても、異物に起因する脱ガスが発生せず、タ ングステン膜で第 3ホール 74aを良好に埋め込むことができる。その結果、予備的事 項で説明したような第 5導電性プラグ 77が形成されな 、と 、つた不都合が発生しな!ヽ と共に、第 5導電性プラグ 77のコンタクト抵抗が低下せず、第 5導電性プラグ 77と一 層目金属配線 65とを電気的に確実に接続することができる。
[0153] 次に、図 15に示す断面構造を得るまでの工程について説明する。
[0154] まず、上記の第 5導電性プラグ 77と第 1グルー膜 76のそれぞれの上面に、スパッタ 法により金属積層膜を形成する。その金属積層膜は、例えば、下カゝら厚さ約 550應 の銅含有アルミニウム膜、厚さ約 5應のチタン膜、そして厚さ約 150應の窒化チタン 膜である。
[0155] その後に、フォトリソグラフィによりこの金属積層膜と第 1グルー膜 76とをパターニン グして、これらの膜で構成される二層目金属配線 78を第 3キャップ絶縁膜 71上に形 成する。
[0156] なお、一層目金属配線 65上には、既述のように第 1キャパシタ保護絶縁膜 66を形 成し、プラズマダメージが一層目金属配線 65を通じてキャパシタ Qに伝わるのを防止 した。これに対し、二層目金属配線 78はキャパシタ Q力も遠いため、その上にアルミ ナよりなるキャパシタ保護絶縁膜を形成しなくても、上記のプラズマダメージでキャパ シタ Qが劣化することは殆ど無い。また、二層目金属配線 65上にプラズマ CVDにより 成膜を行 、、成膜時に生成される水分が上記のアルミニウム膜の側面で解離し水素 を生成したとしても、二層目金属配線 45がキャパシタ Qから遠いうえに、水素が第 1、 第 2キャパシタ保護絶縁膜 66、 70でブロックされるため、その水素はキャパシタ Qに 殆ど届かない。
[0157] 続いて、図 16に示すように、二層目金属配線 78と第 3キャップ絶縁膜 71のそれぞ れの上に、第 2のサイドウォール用絶縁膜 79としてプラズマ CVD法で酸窒化シリコン 膜を厚さ約 150應に形成する。なお、第 2のサイドウォール用絶縁膜 79は酸窒化シ リコン膜に限定されず、窒化シリコン膜であってもよい。
[0158] また、第 1のサイドウォール用絶縁膜 67 (図 11 (a) )と同様に、スパッタ法で第 2のサ イドウォール用絶縁膜 79を形成することにより、キャパシタ Qと電気的に接続された二 層目金属配線 78を通じてキャパシタ誘電体膜 48aが受けるプラズマダメージを低減 することができる。
[0159] 次いで、図 17に示すように、第 2のサイドウォール用絶縁膜 79をエッチバックして、 二層目金属配線 78の横に第 2絶縁性サイドウォール 79aとして残す。なお、このエツ チバックの条件としては、図 11 (b)で説明した第 1のサイドウォール用絶縁膜 67のェ ツチバックと同じ条件が採用される。
[0160] 次に、図 18に示すように、シリコン基板 30の上側全面に TEOSガスを使用するプラ ズマ CVD法で酸ィ匕シリコン膜を厚さ約 2200應に形成し、この酸ィ匕シリコン膜を第 4 絶縁膜 82とする。そして、 CMP法で第 4絶縁膜 82の上面を平坦ィ匕した後、更にその 上に第 3キャップ絶縁膜 83として酸ィ匕シリコン膜を約 100應の厚さに形成する。
[0161] そして、還元性物質力もキャパシタ誘電体膜 48aを保護するための第 3キャパシタ 保護絶縁膜 84として、第 3キャップ絶縁膜 83の上にスパッタ法でアルミナ膜を約 50η mの厚さに形成する。
[0162] その後に、 TEOSガスを使用するプラズマ CVD法により、第 3キャパシタ保護絶縁膜
84の上に酸ィ匕シリコン膜を厚さ約 100應に形成し、この酸ィ匕シリコン膜を第 4キヤッ プ絶縁膜 85とする。
[0163] 次に、図 19に示す断面構造を得るまでの工程について説明する。
[0164] まず、第 4キャップ絶縁膜 85の上にフォトレジストを塗布し、それを露光、現像するこ とにより、二層目金属配線 78の上にホール形状の第 8窓 88aを備えた第 4レジストパ ターン 88を形成する。
[0165] そして、平行平板型プラズマエッチングチャンバ内において、第 4レジストパターン 8 8をマスクにしながら各絶縁膜 82〜85をエッチングすることにより、二層目金属配線 7 8上のこれらの絶縁膜に第 4ホール 87aを形成する。 [0166] このときのエッチング条件は特に限定されないが、本実施形態では、周波数が 27.
12MHzでパワーが 2000Wの高周波電力(ソースパワー)をチャンバの上部電極に印 加すると共に、周波数が 800kHzでパワーが 900Wの高周波電力(バイアスパワー) をチャンバの下部電極に印加する。そして、エッチングガスとして、流量がそれぞれ 2 Osccm 500sccm 12sccmの C F Ar Oをエッチングチャンバ内に供給し、チャン
4 8 2
バ内の圧力を約 50mTorrに安定させる。そして、エッチング時間は約 190秒に設定さ れる。
[0167] このようなエッチング条件によれば、酸窒化シリコン膜のエッチング速度が酸ィ匕シリ コン膜のそれよりも遅くなる。
[0168] 従って、第 4ホール 87aが位置ずれを起こし、その一部が第 2絶縁性サイドウォール 79aに重なっても、酸窒化シリコンよりなる第 2絶縁性サイドウォール 79aにおいてェ ツチングが吸収されるので、予備的事項で説明したような溝が第 4ホール 87aの底部 に形成されない。そのため、アルミナよりなる第 3キャパシタ保護絶縁膜 84をエツチン グした際に発生した除去が困難なエッチング生成物や、第 4ホール 87aの内面を洗 浄するときの洗浄水が第 4ホール 87aに溜まり難くすることができる。
[0169] このエッチングが終了後、第 4レジストパターン 88は除去される。
[0170] 続いて、図 20に示すように、第 4ホール 87aの内面と第 4キャップ絶縁膜 85の上面 に、第 2グルー膜 90としてスパッタ法により窒化チタン膜を厚さ約 150 に形成する 。そして、第 2グルー膜 90の上に CVD法でタングステン膜を形成し、このタングステン 膜で第 4ホール 87aを完全に埋め込む。その後に、第 4キャップ絶縁膜 85の上の余 分なタングステン膜を CMP法で研磨して除去し、第 4ホール 87a内にのみタンダステ ン膜を第 6導電性プラグ 91として残す。
[0171] 上記したように、第 4ホール 87aの中には、アルミナを含むエッチング生成物や洗浄 水等の異物が存在しないので、上記のタングステン膜を形成するときにシリコン基板 30を加熱しても、異物に起因する脱ガスが第 4ホール 87a内に発生しない。そのため 、第 4ホール 87a内にタングステン膜を良好に形成することができ、第 6導電性プラグ 91の未形成等の不具合を防止できる。
[0172] 次に、図 21に示す断面構造を得るまでの工程について説明する。 [0173] まず、第 2グルー膜 90と第 6導電性プラグ 91のそれぞれの上面に、下から厚さ約 5 50nmの銅含有アルミニウム膜、厚さ約 5nmのチタン膜、及び厚さ約 150nmの窒化チ タン膜をこの順にスパッタ法に形成する。そして、フォトリソグラフィによりこの金属積 層膜とその下の第 2グルー膜 90とをパターユングして、第 4キャップ絶縁膜 85の上に 三層目金属配線 92とボンディングパッド 93とを形成する。
[0174] 続いて、図 22に示すように、三層目金属配線 92とボンディングパッド 93のそれぞ れの上に、第 1カバー膜 95として CVD法で酸ィ匕シリコン膜を約 lOOnmの厚さに形成 する。更に、この第 1カバー膜 95上に、第 2カバー膜 96として厚さが約 350應の窒化 シリコン膜を CVD法で形成する。
[0175] 次に、フォトリソグラフィにより上記の第 1、第 2カバー膜 95、 96をパターユングする 。これにより、各絶縁膜 95、 96には、ボンディングパッド 93が露出する開口 95aが形 成される。
[0176] この後は、シリコン基板 30の上側全面にスピンコート法によりポリイミドを塗布し、ポ リイミドよりなる保護層を形成する工程に移る力 その詳細については省略する。
[0177] 以上により、本実施形態に係る半導体装置の基本構造が完成した。
[0178] 本実施形態によれば、図 23に示したように、第 1キャパシタ保護絶縁膜 66で一層 目金属配線 65を覆い、その後に第 1絶縁性サイドウォール 67aと第 3絶縁膜 68を形 成する。これにより、第 1絶縁性サイドウォール 67aや第 3絶縁膜 68の成膜雰囲気に 含まれるプラズマに一層目金属配線 65が直接曝されないので、一層目金属配線 65 を通じてキャパシタ誘電体膜 48a (図 12参照)が受けるプラズマダメージを低減でき、 強誘電体特性に優れたキャパシタ誘電体膜 48aを備えたキャパシタ Qを形成すること ができる。
[0179] これに対し、既述の特許文献 1〜6、 8、 9では、上記の第 1キャパシタ保護絶縁膜 6 6に相当する膜を形成しておらず、配線の側面に絶縁性サイドウォールを直接形成し ているので、上記のようにプラズマダメージを低減することができず、キャパシタ誘電 体膜 48aが劣化してしまう。また、特許文献 7では、サイドウォールが導電膜で構成さ れているため、隣接する配線同士の間隔がサイドウォールの分だけ短くなり、配線間 の寄生容量が増えてデバイスの高速ィ匕に不利となる。 [0180] し力も、本実施形態では、エッチバックが容易な酸窒化シリコン膜ゃ窒化シリコン膜 で第 1のサイドウォール用絶縁膜 67を構成したので、エッチバックが困難なアルミナ でサイドウォールを構成する特許文献 2と比較して、第 1絶縁性サイドウォール 67aを 容易に形成することが可能となる。
[0181] 更に、本実施形態では、図 23で説明したように、第 1絶縁性サイドウォール 67aの エッチング速度が第 3絶縁膜 68のそれよりも遅くなるエッチング条件で、一層目金属 配線 65の上の第 3絶縁膜 68をエッチングして第 3ホール 74aを形成する。
[0182] これにより、たとえ第 3ホール 74aが位置ずれしてその一部が第 1絶縁性サイドゥォ ール 67aに重なっても、第 3ホール 74aを形成する際のエッチングが第 1絶縁性サイ ドウオール 67aにおいて吸収されるため、第 3ホール 74aの底部に溝が形成されない 。そのため、化学的に除去するのが困難なアルミナを含むエッチング生成物や、洗浄 水等の異物がその溝に入らないので、これらの異物に起因して第 5導電性プラグ 77 が未形成となったり、第 5導電性プラグ 77のコンタクト抵抗が上昇したりするといつた 不都合を回避することが可能となる。
[0183] 次の表 1は、第 1絶縁性サイドウォール 67aの効果を確かめるために本願発明者が 行った調査結果を示す表である。
[0184] [表 1]
Figure imgf000028_0001
この調査に使用されたサンプルでは、第 1絶縁性サイドウォール 67aを形成して!/ヽ ない。その代わりに、第 1キャパシタ保護絶縁膜 66の厚さを厚くすることで、一層目金 属配線 65の側面の第 1キャパシタ保護絶縁膜 66に、エッチングストツバとしての機能 を持たせた。
[0186] また、この調査では、 6インチのシリコン基板 30において、平均の位置ずれ量が 13 0應になるように第 3ホール 74aの位置ずれを意図的に発生させ、光学的な欠陥検 查装置を用いることにより、未形成となっている第 5導電性プラグ 77が基板 30の面内 に幾つあるのかが調査された。
[0187] 表 1に示されるように、第 1キャパシタ保護絶縁膜 60の厚さが 20應の場合は (条件 1)、シリコン基板 30の面内で 67個も欠陥が発生した。
[0188] しかし、第 1キャパシタ保護絶縁膜 60の厚さを増加させて 50應とすると (条件 4)、 欠陥の数は 1個にまで減少した。更に、上記の厚さを 60應とすると (条件 5)、欠陥は 2個となった。
[0189] これらの結果より、第 1キャパシタ保護絶縁膜 66を厚くするほど欠陥数が減ることが 明らかになった。
[0190] これは、第 1キャパシタ保護絶縁膜 66を厚くすると、一層目金属配線 65の側面に おける第 1キャパシタ保護絶縁膜 66が、第 1絶縁性サイドウォール 67aと同様のエツ チンダストツバとしての機能を有するようになり、一層目金属配線 65から脱落した部 分の第 3ホール 74aに溝が形成されないためであると考えられる。よって、本実施形 態のように第 1絶縁性サイドウォール 67aを形成する場合であっても、未形成となる第 5導電性プラグ 77が減ると推定される。
[0191] なお、上記した図 23では、一層目金属配線 65の上面に第 1キャパシタ保護絶縁膜 66が形成されているが、本発明はこれに限定されない。例えば、図 24に示すように、 第 1絶縁性サイドウォール 67aを形成するときのエッチバックの時間を長くしたり、その エッチバックにおける第 1キャパシタ保護絶縁膜 66と第 2絶縁膜 55とのエッチング選 択比を小さくしたりして、一層目金属配線 65の上面の第 1キャパシタ保護絶縁膜 66 をエッチングして除去してもよ 、。
[0192] 図 24のような構造を採用しても、既述したのと同様に、第 3ホール 74aと一層目金 属配線 65とが位置ずれした場合に第 3ホール 74aに溝が形成されるのを防ぐことが できる。
[0193] また、図 24のように、第 2絶縁膜 55と一層目金属配線 65のそれぞれの上面から第 1キャパシタ保護絶縁膜 66が除去されても、一層目金属配線 65の側面に第 1キャパ シタ保護絶縁膜 66が残存しているので、第 3絶縁膜 68の成膜時に一層目金属配線 65の側面がプラズマに曝されず、一層目金属配線 65を通じてキャパシタ誘電体膜 4 8aにプラズマダメージが伝わるのをある程度低減することができる。
[0194] (3)第 2実施形態
上記した第 1実施形態では、プレーナ型の FeRAMに本発明を適用する場合につい て説明した。これに対し、本実施形態では、キャパシタの下部電極がその下の導電 性プラグと直接接続されるスタック型の FeRAMに本発明を適用する。
[0195] 図 25〜図 32は、本発明の第 2実施形態に係る半導体装置の製造途中の断面図で ある。
[0196] 最初に、図 25 (a)に示す断面構造を得るまでの工程について説明する。
[0197] まず、シリコン基板 100に STI用の溝を形成し、この溝に素子分離絶縁膜 101として 酸ィ匕シリコン膜を埋め込み、素子分離絶縁膜 101でシリコン基板 100の活性領域を 画定する。
[0198] 次いで、シリコン基板 100の活性領域に p型不純物としてボロンをイオン注入し、 pゥ エル 102を形成する。
[0199] 次に、シリコン基板 100の表面を熱酸ィ匕することにより、ゲート絶縁膜 103となる熱 酸ィ匕膜を形成し、更にその上に非晶質シリコン膜とタングステンシリサイド膜とをこの 順に形成する。その後に、フォトリソグラフィによりこれら非晶質シリコン膜とタンダステ ンシリサイド膜とをパターユングして、ワード線の一部を構成する二つのゲート電極 10 4を形成する。
[0200] そして、これらのゲート電極 104をマスクにしながらシリコン基板 100に n型不純物を イオン注入し、各ゲート電極 104の横のシリコン基板に第 1、第 2ソース/ドレインエタ ステンション 105a、 105bを形成する。その n型不純物として、本実施形態ではリンを 採用する。
[0201] 更に、シリコン基板の上側全面に酸ィ匕シリコン膜等の絶縁膜を形成し、その絶縁膜 をエッチバックしてゲート電極 104の横に絶縁性スぺーサ 106として残す。
[0202] 続いて、この絶縁性スぺーサ 106とゲート電極 104とをマスクにするイオン注入によ り、シリコン基板 100に砒素等の n型不純物を導入し、ゲート電極 104の側方のシリコ ン基板 100に第 1、第 2ソース Zドレイン領域 107a、 107bを形成する。
[0203] 更に、シリコン基板 100の上側全面に、高融点金属膜としてスパッタ法でコノ レト膜 を形成する。そして、その高融点金属膜を加熱させてシリコンと反応させることにより、 第 1、第 2ソース/ドレイン領域 107a、 107bにおけるシリコン基板 100にコバルトシリ サイド層等の高融点シリサイド層 108を形成し、各ソース Zドレイン領域 107a、 107b を低抵抗化する。
[0204] その後に、素子分離絶縁膜 101の上等で未反応となっている高融点金属層をゥェ ットエッチングして除去する。
[0205] ここまでの工程により、シリコン基板 100の活性領域に、ゲート絶縁膜 103、ゲート 電極 104、及び第 1、第 2ソース Zドレイン領域 107a、 107b等によって構成される第 1、第 2MOSトランジスタ TR ことになる。
1、 TRが形成された
2
[0206] 次に、図 25 (b)に示す断面構造を得るまでの工程について説明する。
[0207] まず、シリコン基板 100の上側全面に、プラズマ CVD法により酸窒化シリコン膜より なるカバー絶縁膜 111と酸ィ匕シリコン膜よりなる第 1絶縁膜 112とをこの順に形成する 。その後、ゲート電極 104の形状を反映して第 1絶縁膜 112の上面に形成された凹 凸を無くすため、 CMP法により第 1絶縁膜 112の上面を研磨して平坦ィ匕する。
[0208] 次いで、フォトリソグラフィによりこれらカバー絶縁膜 111と第 1絶縁膜 112とをバタ 一ユングして、第 1ソース Zドレイン領域 107aの上に第 1コンタクトホール 112aを形 成する。
[0209] その後に、タングステンを主に構成される第 1導電性プラグ 114aをその第 1コンタク トホール 112aを形成する。
[0210] 続いて、この第 1導電性プラグ 114aがプロセス中に酸ィ匕するのを防止するために、 第 1導電性プラグ 114aと第 1絶縁膜 112のそれぞれの上面に、プラズマ CVD法によ り第 1酸ィ匕防止絶縁膜 113として酸窒化シリコン膜又は窒化シリコン膜を厚さ 100〜5
OOnmに形成する。
[0211] 更に、この第 1酸ィ匕防止絶縁膜 113からカバー絶縁膜 111までをパターユングし、 第 2ソース/ドレイン領域 107b上のこれらの絶縁膜に第 2コンタクトホール 112bを形 成する。
[0212] 次に、図 25 (c)に示す断面構造を得るまでの工程について説明する。
[0213] まず、第 2コンタクトホール 112bの内面と第 1酸ィ匕防止絶縁膜 113の上面に、スパ ッタ法により厚さ約 30應のチタン膜と厚さ約 50應の窒化チタン膜とをこの順に形成 し、これらをグルー膜とする。そして、このグルー膜の上に、 CVD法によりタングステン 膜を形成し、そのタングステン膜で第 2コンタクトホール 112bを完全に埋め込む。そ の後に、第 1酸ィ匕防止絶縁膜 113上の余分なグルー膜とタングステン膜とを CMP法 で研磨して除去し、これらの絶縁膜を第 2コンタクトホール 112b内にのみ第 2導電性 プラグ 114bとして残す。
[0214] 次に、図 26 (a)に示す断面構造を得るまでの工程について説明する。
[0215] まず、第 2導電性プラグ 114bと第 1酸ィ匕防止絶縁膜 113のそれぞれの上面に、 DC スパッタ法によりイリジウム膜を形成し、そのイリジウム膜を第 1導電膜 117とする。この イリジウム膜の成膜条件は特に限定されないが、本実施形態では、スパッタターゲット に印加される DC電力のパワーを 0. 5kW、スパッタガスであるアルゴンガスの圧力を 0 . l lPa、基板温度を 500°C、そして成膜時間を 335秒とする。
[0216] 更に、この第 1導電膜 117の上に、強誘電体膜 118として MOCVD法により PZT膜を 形成する。この MOCVD法で使用される有機材料とその流量は特に限定されな 、。 本実施形態では、 THF(Tetra- Hydro- Furan)の流量を 0. 474mlZ分、 Pb原料である Pb(DPM)を 0. 3molZlの濃度で THF中に溶解した溶液の流量を 0. 326mlZ分、 Zr
2
原料である Zr(dmhd)を 0. 3molZlの濃度で THFに溶解した溶液の流量を 0. 2ml/
4
分、 Ti原料である Ti(0- iPr) (DPM)を 0. 3molZlの濃度で THFに溶解した溶液の流
2 2
量を 0. 2mlZ分とする。そして、気化器で気化されたこれらの溶液をリアクター内に 供給し、成膜圧力約 5Torr、基板温度 620°Cの条件で上記の強誘電体膜 118を形 成する。
[0217] 次いで、スパッタ法により強誘電体膜 118上に酸化イリジウム膜を厚さ約 200nmに 形成し、それを第 2導電膜 119とする。
[0218] 次いで、この第 2導電膜 119を形成したときに強誘電体膜 118が受けたダメージを 回復させるために、内部が酸素含有雰囲気となっている縦型炉を用いて、基板温度 500°C、処理時間 60分の条件で、強誘電体膜 118に対して回復ァニールを施す。
[0219] その後に、第 2導電膜 119上に窒化チタン膜と酸ィ匕シリコン膜とをこの順に形成した 後、これらの膜をパターユングしてキャパシタ平面形状のハードマスク 120を形成す る。
[0220] 次に、図 26 (b)に示すように、ハードマスク 120をエッチングマスクにしながら第 1導 電膜 117、強誘電体膜 118、及び第 2導電膜 119を一括してドライエッチングし、下 部電極 117a、キャパシタ誘電体膜 118a、及び上部電極 119aを順に積層してなるキ ャパシタ Qを形成する。
[0221] この後に、ハードマスク 120は除去される。
[0222] 続 、て、図 26 (c)に示すように、例えば TMA(trimethylalminium)と 0とを原料に用
3
いる ALD(Atomic Layer Deposition)法により、第 1酸化防止絶縁膜 113の上面とキヤ パシタ Qの表面に第 1アルミナ膜 121を約 20應に形成する。その第 1アルミナ膜 121 は、水素や水分等の還元性物質力 キャパシタ誘電体膜 118aを保護するように機 能する。また、キャパシタ誘電体膜 118aの成膜方法としてステップカバレッジ特性に 優れた膜が形成可能な ALD法を採用したので、微細化が進んで隣接するキャパシタ Q同士の間隔が狭くなつても、キャパシタ Qの側面に十分な厚さで第 1アルミナ膜 121 を形成できる。
[0223] その後、キャパシタ誘電体膜 118aが受けたダメージを回復させるために、酸素含 有雰囲気中で基板温度を 650°Cとする回復ァニールを行う。その回復ァニールは、 例えば縦型炉を用いて行われる。
[0224] 次に、図 27 (a)に示すように、 TEOSガスを使用するプラズマ CVD法により、第 1ァ ルミナ膜 121上に第 2絶縁膜 122として酸ィ匕シリコン膜を形成し、その第 2絶縁膜 12 2で隣接するキャパシタ Qの間のスペースを埋め込む。その後に、 CMP法により第 2 絶縁膜 122の上面を研磨して平坦ィ匕すると共に、上部電極 119a上での第 2絶縁膜 122の厚さを約 300nmにする。
[0225] その後に、第 2絶縁膜 122に対してァニールを行い、第 2絶縁膜 122を脱水する。
[0226] 続 、て、図 27 (b)に示すように、還元性雰囲気力もキャパシタ誘電体膜 118aを保 護するために、平坦ィ匕された第 2絶縁膜 122上にスパッタ法で第 2アルミナ膜 123を 厚さ約 50nmに形成する。
[0227] 更に、図 27 (c)に示すように、 TEOSガスを使用するプラズマ CVD法により、この第 2 アルミナ膜 123上に酸ィ匕シリコン膜を厚さ約 100應に形成し、それを第 1キャップ絶 縁膜 124とする。
[0228] 次に、図 28 (a)に示す断面構造を得るまでの工程について説明する。
[0229] まず、フォトリソグラフィにより各絶縁膜 113、 121〜124をパターユングし、第 1導電 性プラグ 114a上のこれらの絶縁膜に第 1ホール 122aを形成する。
[0230] そして、この第 1ホール 122aの内面と、第 1キャップ絶縁膜 124の上面に、グルー 膜としてスパッタ法でチタン膜と窒化チタン膜をこの順に約 50應の厚さに形成する。 更に、このグルー膜上に CVD法でタングステン膜を形成し、このタングステン膜で第 1 ホール 122aを完全に埋め込む。その後、第 1キャップ絶縁膜 124上の余分なグルー 膜とタングステン膜とを CMP法で研磨して除去し、これらの膜を第 1ホール 122a内に のみ第 3導電性プラグ 125として残す。
[0231] 続いて、図 28 (b)に示すように、第 1キャップ絶縁膜 124と第 3導電性プラグ 125の それぞれの上面に、 CVD法で酸窒化シリコン膜を厚さ約 lOOnmに形成し、これを酸 化防止絶縁膜 130とする。
[0232] そして、フォトリソグラフィにより酸ィ匕防止絶縁膜 130から第 1アルミナ膜 121までを パター-ングし、上部電極 119a上の第 2絶縁膜 22に第 2ホール 131を形成する。第 2ホール 131を形成したことによってダメージを受けたキャパシタ Qはァニールによつ て回復される。そのァニールは、例えば酸素含有雰囲気中で基板温度を 550°Cとし て約 60分間行われる。
[0233] また、このァニールの前に上記のように酸化防止絶縁膜 130を予め形成したことで 、ァニール中に第 3導電性プラグ 125が酸ィ匕してコンタクト不良を起こすのを防ぐこと ができる。
[0234] そして、このァニールを終了した後に、酸ィ匕防止膜 130はエッチバックにより除去さ れる。
[0235] 次に、図 29 (a)に示す断面構造を得るまでの工程について説明する。
[0236] まず、第 2ホール 131の内面と第 1キャップ絶縁膜 124の上面に、スパッタ法により 多層金属膜を形成する。その多層金属膜として、例えば、厚さ約 60應のチタン膜、 厚さ約 30nmの窒化チタン膜、厚さ約 400nmの銅含有アルミニウム膜、厚さ約 5nmの チタン膜、及び厚さ約 70nmの窒化チタン膜をこの順に形成する。
[0237] その後に、フォトリソグラフィにより多層金属膜をパターユングすることにより、第 2ホ ール 131を通じて上部電極 119aと電気的に接続された一層目金属配線 133を形成 する。
[0238] 次いで、図 29 (b)に示すように、第 1キャップ絶縁膜 124と一層目金属配線 133の それぞれの上に、スパッタ法によりアルミナ膜を厚さ約 20nmに形成し、このアルミナ 膜を第 1キャパシタ保護絶縁膜 134とする。この第 1キャパシタ保護絶縁膜 134は、 還元性物質、例えば水素や水分に対するブロック性に優れており、これらの物質が 外部から侵入してキャパシタ誘電体膜 118aを劣化させるのを防止するように機能す る。
[0239] 続いて、図 30 (a)に示すように、第 1キャパシタ保護絶縁膜 134の上に、サイドゥォ ール用絶縁膜 136としてプラズマ CVD法により酸窒化シリコン膜を厚さ約 150應に 形成する。なお、サイドウォール用絶縁膜 136は酸窒化シリコン膜に限定されず、プ ラズマ CVD法で形成された窒化シリコン膜をサイドウォール用絶縁膜 136として採用 してちよい。
[0240] 更に、プラズマ CVD法に代えてスパッタ法でサイドウォール用絶縁膜 136を形成す ることで、第 1実施形態で説明したように、一層目金属配線 133を通じてキャパシタ誘 電体膜 118aが受けるプラズマダメージを低減することが可能となる。
[0241] 次に、図 30 (b)に示すように、プラズマエッチングにより上記のサイドウォール用絶 縁膜 136をエッチバックし、そのサイドウォール用絶縁膜 136を一層目金属配線 133 の横に絶縁性サイドウォール 136aとして残す。
[0242] このエッチバックは、例えば平行平板型プラズマエッチングチャンバ内にお!、て行 われる。そして、本実施形態では、シリコン基板 100に対向するようにしてそのチャン バ内に設けられたシャワーヘッドに周波数が 13. 56MHzでパワーが 400Wの高周波 電力を印加する。更に、エッチングガスとして CHF 、 CF、及び Arをそれぞれ 40sccm
3 4
、 80sccm、 lOOOsccmの流量でチャンバに供給すると共に、不図示のポンプでチャン バ内を約 1700mTorr程度に減圧し、上記のエッチバックを行う。
[0243] なお、この例では、エッチバックの後でも一層目金属配線 133の上面に第 1キャパ シタ保護絶縁膜 134を残すようにしている力 上記のエッチバックをオーバーエッチ ング気味にすることにより、絶縁性サイドウォール 136aの形成時に第 1キャパシタ保 護絶縁膜 134を一層目金属配線 133の上面力も除去するようにしてもよい。
[0244] 次に、図 31 (a)に示すように、 TEOSガスを使用するプラズマ CVD法により、第 1キヤ パシタ保護絶縁膜 134と絶縁性サイドウォール 136aのそれぞれの上に酸ィ匕シリコン 膜を形成し、その酸ィ匕シリコン膜を第 3絶縁膜 141とする。
[0245] その後、第 3絶縁膜 141の上面を CMP法で研磨することにより、一層目金属配線 1
33の形状を反映して第 3絶縁膜 141の上面に形成された凹凸を平坦ィ匕する。
[0246] 次 、で、還元性物質力もキャパシタ誘電体膜 118aを保護する第 2キャパシタ保護 絶縁膜 142として、第 3絶縁膜 141の上にスパッタ法でアルミナ膜を約 50應の厚さに 形成する。
[0247] 更に、 TEOSガスを使用するプラズマ CVD法により、第 2キャパシタ保護絶縁膜 142 の上に酸ィ匕シリコン膜を形成して、この酸ィ匕シリコン膜を第 2キャップ絶縁膜 143とす る。この第 2キャップ絶縁膜 143の厚さは、例えば約 lOOnmである。
[0248] 次に、図 31 (b)に示す断面構造を得るまでの工程について説明する。
[0249] まず、第 2キャップ絶縁膜 143の上に、フォトレジストを塗布し、それを露光、現像す ることにより、一層目金属配線 133の上にホール形状の窓 145aを備えたレジストパタ ーン 145を形成する。
[0250] そして、上記の窓 145aを通じて各絶縁膜 134、 141〜143をドライエッチングする ことにより、一層目金属配線 133の上のこれらの絶縁膜に第 2ホール 141aを形成す る。
[0251] そのエッチングの条件は特に限定されないが、本実施形態では、平行平板型ブラ ズマエッチングチャンノ (不図示)を用い、そのチャンバにエッチングガスとして C F 、
4 8
Ar、 0をそれぞれ 20sccm、 500sccm、 12sccmの流量で供給する。そして、不図示の
2
ポンプでチャンバ内を排気してエッチングガスの圧力を約 50mTorr程度に減圧した 後、周波数が 27. 12MHzでパワーが 2000Wの高周波電力(ソースパワー)をチャン バの上部電極に印加すると共に、周波数が 800kHzでパワーが 900Wの高周波電力 (バイアスパワー)をチャンバの下部電極に印加して、エッチングガスをプラズマ化す る。
[0252] このようなエッチング条件によれば、酸窒化シリコンよりなる絶縁性サイドウォール 1 36aのエッチング速度が酸ィ匕シリコンよりなる第 3絶縁膜 141のそれよりも遅くなる。よ つて、たとえ第 2ホール 141aが位置ずれしてその一部が一層目金属配線 133から外 れても、絶縁性サイドウォール 136aがエッチングストッパとなるため、第 2ホール 141 aの底部に溝は形成されな!、。
[0253] 従って、第 2ホール 141aを形成する際、アルミナよりなる第 1、第 2キャパシタ保護 絶縁膜 134、 142から発生した反応性に乏しいエッチング生成物が第 2ホール 141a に溜まり難くなる。同様に、このエッチングの後に第 2ホール 141a内を洗浄水で洗浄 しても、水が第 2ホール 141aに残留し難くなる。
[0254] この後に、レジストパターン 145は除去される。
[0255] 次に、図 32 (a)に示す断面構造を得るまでの工程について説明する。
[0256] まず、第 2ホール 141aの内面と第 2キャップ絶縁膜 143の上面に、グルー膜として スパッタ法で窒化チタン膜を形成する。そして、このグルー膜上に、 CVD法でタンダ ステン膜を形成し、このタングステン膜で第 2ホール 141aを完全に埋める。更に、第 2キャップ絶縁膜 143上の余分なグルー膜とタングステン膜とを CMP法により研磨し て除去し、これらの膜を第 2ホール 141a内にのみ第 2導電性プラグ 150として残す。
[0257] この第 2導電性プラグ 150は、第 2ソース Zドレイン領域 107bの上の一層目金属配 線 133と電気的に接続され、ビット線の一部を構成する。
[0258] ここで、既述のように、第 2ホール 141aと一層目金属配線 133とが位置ずれしてい ても、一層目金属配線 133から外れた部分の第 2ホール 141aには、アルミナを含む エッチング生成物等の異物が溜まり易い溝が形成されていない。よって、上記のタン ダステン膜を形成する際、加熱された異物から発生する脱ガスが低減するので、その 脱ガスに起因して第 2導電性プラグ 150が未形成になるという不都合を回避すること ができる。
[0259] 続いて、図 32 (b)に示すように、第 2キャップ絶縁膜 143と第 2導電性プラグ 150の それぞれの上に多層金属膜を形成した後、この多層金属膜をパターユングして二層 目金属配線 151とする。
[0260] 以上により、本実施形態に係る半導体装置の基本構造が完成したことになる。
[0261] 上記した本実施形態によれば、図 31 (b)を参照して説明したように、一層目金属配 線 133の横に絶縁性サイドウォール 136aを形成し、この絶縁性サイドウォール 136a のエッチング速度が第 3絶縁膜 141のそれよりも遅くなるようなエッチング条件で第 2 ホール 141aを形成した。
[0262] これによれば、第 1実施形態と同様に、第 2ホール 141aが位置ずれしてその一部 が絶縁性サイドウォール 136aに重なっても、位置ずれした部分の第 2ホール 141aの 下に細い溝が形成されない。これにより、除去が困難なアルミナを含むエッチング生 成物や洗浄水等の異物がその溝に入り込まない。その結果、第 2ホール 141a内に 第 2導電性プラグ 150 (図 32 (a)参照)を形成する際、加熱された異物に起因する脱 ガスがほとんど発生しないので、脱ガスによって第 2導電性プラグ 150が未形成とな つたり、第 2導電性プラグ 150と一層目金属配線 133とのコンタクト抵抗が低下したり するといつた不都合を招くことが無ぐ信頼性の高い FeRAMを提供することが可能と なる。

Claims

請求の範囲
[1] 半導体基板の上に第 1絶縁膜を形成する工程と、
前記第 1絶縁膜上に、下部電極、強誘電体材料で構成されるキャパシタ誘電体膜
、及び上部電極を有するキャパシタを形成する工程と、
前記キャパシタを覆う第 2絶縁膜を形成する工程と、
前記第 2絶縁膜上に金属配線を形成する工程と、
前記金属配線と前記第 2絶縁膜とを覆う第 1キャパシタ保護絶縁膜を形成する工程 と、
前記金属配線の横の前記第 1キャパシタ保護絶縁膜上に絶縁性サイドウォールを 形成する工程と、
前記絶縁性サイドウォール上に第 3絶縁膜を形成し、該第 3絶縁膜で前記金属配 線を覆う工程と、
前記絶縁性サイドウォールのエッチング速度が前記第 3絶縁膜のエッチング速度よ りも遅くなるエッチング条件で前記第 3絶縁膜を選択的にエッチングし、前記金属配 線の上の前記第 3絶縁膜にホールを形成する工程と、
前記ホール内に、前記金属配線に接続された導電性プラグを形成する工程と、 を有することを特徴とする半導体装置の製造方法。
[2] 前記絶縁性サイドウォールとして、窒化シリコン又は酸窒化シリコンよりなるサイドウ オールを形成することを特徴とする請求項 1に記載の半導体装置の製造方法。
[3] 前記絶縁性サイドウォールを形成する工程は、前記第 1キャパシタ保護絶縁膜上に サイドウォール用絶縁膜を形成する工程と、前記サイドウォール用絶縁膜をエッチバ ックして前記金属配線の横に前記絶縁性サイドウォールとして残す工程とを有するこ とを特徴とする請求項 1に記載の半導体装置の製造方法。
[4] 前記サイドウォール用絶縁膜を形成する工程において、スパッタ法により該サイドウ オール用絶縁膜を形成することを特徴とする請求項 3に記載の半導体装置の製造方 法。
[5] 前記サイドウォール用絶縁膜をエッチバックする工程において、前記金属配線の上 面の前記第 1キャパシタ保護絶縁膜をエッチングして除去し、前記金属配線の前記 上面を露出させることを特徴とする請求項 3に記載の半導体装置の製造方法。
[6] 前記第 1キャパシタ保護絶縁膜を形成する工程において、該第 1キャパシタ保護絶 縁膜としてアルミナ膜を形成することを特徴とする請求項 1に記載の半導体装置の製 造方法。
[7] 前記アルミナ膜の厚さを 20應以上 100應以下とすることを特徴とする請求項 6に 記載の半導体装置の製造方法。
[8] 前記第 1キャパシタ保護絶縁膜を形成する工程において、該第 1キャパシタ保護絶 縁膜としてスパッタ法により酸ィ匕シリコン膜を形成することを特徴とする請求項 1に記 載の半導体装置の製造方法。
[9] 前記ホールを形成する工程の後に、該ホールの内面を洗浄する工程を有すること を特徴とする請求項 1に記載の半導体装置の製造方法。
[10] 前記導電性プラグを形成する工程において、タングステンを含むプラグを形成する ことを特徴とする請求項 1に記載の半導体装置の製造方法。
[11] 前記導電性プラグを形成する工程は、前記ホールの内面にグルー膜を形成するェ 程と、前記ホールを埋める厚さのタングステン膜を前記グルー膜に形成する工程とを 有することを有することを特徴とする請求項 10に記載の半導体装置の製造方法。
[12] 前記金属配線として、アルミニウム膜を含む金属積層膜を形成することを特徴とす る請求項 1に記載の半導体装置の製造方法。
[13] 前記金属積層膜の最上層の膜として、窒化チタン膜を形成することを特徴とする請 求項 12に記載の半導体装置の製造方法。
[14] 前記第 3絶縁膜上に第 2キャパシタ保護絶縁膜を形成する工程を有し、前記ホー ルを形成する工程にぉ 、て、前記第 2キャパシタ保護絶縁膜を貫 、て該ホールを形 成することを特徴とする請求項 1に記載の半導体装置の製造方法。
[15] 前記第 2キャパシタ保護絶縁膜を形成する工程にぉ 、て、該第 2キャパシタ保護絶 縁膜としてアルミナ膜を形成することを特徴とする請求項 14に記載の半導体装置の 製造方法。
[16] 半導体基板と、
前記半導体基板の上に形成された第 1絶縁膜と、 前記第 1絶縁膜上に形成され、下部電極、強誘電体材料で構成されるキャパシタ 誘電体膜、及び上部電極で構成されるキャパシタと、
前記キャパシタ上に形成された第 2絶縁膜と、
前記第 2絶縁膜上に形成された金属配線と、
少なくとも前記金属配線の側面に形成された第 1キャパシタ保護絶縁膜と、 前記金属配線の横の前記第 1キャパシタ保護絶縁膜上に形成された絶縁性サイド ウォーノレと、
前記金属配線と前記絶縁性サイドウォールのそれぞれの上に形成され、前記金属 配線の上にホールを有する第 3絶縁膜と、
前記ホール内に形成され、前記金属配線と接続された導電性プラグと、 を有することを特徴とする半導体装置。
[17] 前記絶縁性サイドウォールは窒化シリコン又は酸窒化シリコンで構成され、
前記第 3絶縁膜は酸ィ匕シリコンで構成されることを特徴とする請求項 16に記載の半 導体装置。
[18] 前記第 1キャパシタ保護絶縁膜が、前記第 2絶縁膜と前記金属配線のそれぞれの 上面にも形成されたことを特徴とする請求項 16に記載の半導体装置。
[19] 前記第 1キャパシタ保護絶縁膜はアルミナ膜で構成されることを特徴とする請求項 16 に記載の半導体装置。
[20] 前記第 3絶縁膜上に第 2キャパシタ保護絶縁膜が形成されたことを特徴とする請求 項 16に記載の半導体装置。
PCT/JP2005/018173 2005-09-30 2005-09-30 半導体装置とその製造方法 WO2007043116A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CNB2005800517407A CN100555606C (zh) 2005-09-30 2005-09-30 半导体器件及其制造方法
PCT/JP2005/018173 WO2007043116A1 (ja) 2005-09-30 2005-09-30 半導体装置とその製造方法
JP2007539739A JP5024046B2 (ja) 2005-09-30 2005-09-30 半導体装置とその製造方法
KR1020087008536A KR100977486B1 (ko) 2005-09-30 2005-09-30 반도체 장치와 그 제조 방법
US12/059,754 US8343830B2 (en) 2005-09-30 2008-03-31 Semiconductor device and method for manufacturing the same
US13/691,897 US8680596B2 (en) 2005-09-30 2012-12-03 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/018173 WO2007043116A1 (ja) 2005-09-30 2005-09-30 半導体装置とその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/059,754 Continuation US8343830B2 (en) 2005-09-30 2008-03-31 Semiconductor device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
WO2007043116A1 WO2007043116A1 (ja) 2007-04-19
WO2007043116A9 true WO2007043116A9 (ja) 2007-05-31

Family

ID=37942386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018173 WO2007043116A1 (ja) 2005-09-30 2005-09-30 半導体装置とその製造方法

Country Status (5)

Country Link
US (2) US8343830B2 (ja)
JP (1) JP5024046B2 (ja)
KR (1) KR100977486B1 (ja)
CN (1) CN100555606C (ja)
WO (1) WO2007043116A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9123563B2 (en) * 2014-01-17 2015-09-01 Taiwan Semiconductor Manufacturing Company Limited Method of forming contact structure of gate structure
KR20150092581A (ko) * 2014-02-05 2015-08-13 삼성전자주식회사 배선 구조물 및 그 형성 방법
CN104835728B (zh) * 2014-02-12 2017-12-12 北大方正集团有限公司 在多晶硅上形成金属硅化物的方法和半导体器件
US9793106B2 (en) * 2014-11-06 2017-10-17 Texas Instruments Incorporated Reliability improvement of polymer-based capacitors by moisture barrier
JP6492681B2 (ja) * 2015-01-20 2019-04-03 富士通セミコンダクター株式会社 半導体装置とその製造方法
KR102341726B1 (ko) 2015-02-06 2021-12-23 삼성전자주식회사 반도체 소자
US10403572B2 (en) * 2016-11-02 2019-09-03 Samsung Electronics Co., Ltd. Semiconductor device and semiconductor package including the same
US11476261B2 (en) * 2019-02-27 2022-10-18 Kepler Computing Inc. High-density low voltage non-volatile memory with unidirectional plate-line and bit-line and pillar capacitor
US11552103B2 (en) * 2020-06-26 2023-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Three-dimensional stackable ferroelectric random access memory devices and methods of forming

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250589A (ja) 1995-03-14 1996-09-27 Sony Corp 半導体装置の製造方法
JPH08293549A (ja) 1995-04-25 1996-11-05 Sony Corp 多層配線コンタクト構造およびその形成方法
JP3381117B2 (ja) 1995-05-29 2003-02-24 ソニー株式会社 半導体装置の製造方法
JPH08330422A (ja) 1995-05-31 1996-12-13 Nec Corp 半導体装置およびその製造方法
JP3402022B2 (ja) * 1995-11-07 2003-04-28 三菱電機株式会社 半導体装置の製造方法
JPH10209277A (ja) 1997-01-21 1998-08-07 Sony Corp 半導体装置及びその製造方法
JPH118299A (ja) 1997-04-22 1999-01-12 Sanyo Electric Co Ltd 半導体装置の製造方法
JP4114215B2 (ja) * 1997-04-25 2008-07-09 沖電気工業株式会社 コンタクトホールの形成方法
JPH11186382A (ja) 1997-12-19 1999-07-09 Mitsubishi Electric Corp 半導体装置及びその製造方法
US6727170B2 (en) * 1998-02-16 2004-04-27 Renesas Technology Corp. Semiconductor device having an improved interlayer conductor connections and a manufacturing method thereof
JPH11274297A (ja) 1998-03-24 1999-10-08 Sharp Corp 多層配線層の形成方法及び多層配線層
JP4006929B2 (ja) 2000-07-10 2007-11-14 富士通株式会社 半導体装置の製造方法
JP2002343857A (ja) 2001-05-11 2002-11-29 Toshiba Corp 半導体装置及びその製造方法
JP2003060164A (ja) 2001-08-09 2003-02-28 Sharp Corp 半導体メモリ装置およびその製造方法
JP2003197878A (ja) * 2001-10-15 2003-07-11 Hitachi Ltd メモリ半導体装置およびその製造方法
JP2003273325A (ja) * 2002-03-15 2003-09-26 Oki Electric Ind Co Ltd 半導体装置およびその製造方法
JP2003273217A (ja) * 2002-03-19 2003-09-26 Fujitsu Ltd 半導体装置及びその製造方法
JP2004235287A (ja) * 2003-01-29 2004-08-19 Fujitsu Ltd 半導体装置及びその製造方法

Also Published As

Publication number Publication date
US8343830B2 (en) 2013-01-01
KR20080042183A (ko) 2008-05-14
CN101278390A (zh) 2008-10-01
US20080191253A1 (en) 2008-08-14
CN100555606C (zh) 2009-10-28
KR100977486B1 (ko) 2010-08-23
US20130087888A1 (en) 2013-04-11
WO2007043116A1 (ja) 2007-04-19
US8680596B2 (en) 2014-03-25
JPWO2007043116A1 (ja) 2009-04-16
JP5024046B2 (ja) 2012-09-12

Similar Documents

Publication Publication Date Title
US8367428B2 (en) Semiconductor device and manufacturing method thereof
JP5109341B2 (ja) 半導体装置とその製造方法
US8680596B2 (en) Semiconductor device and method for manufacturing the same
US8349679B2 (en) Semiconductor device and method of manufacturing the same
US20130052753A1 (en) Semiconductor device and method of manufacturing the same
US7550302B2 (en) Method of manufacturing semiconductor device
JP2007115972A (ja) 半導体装置とその製造方法
JP4887802B2 (ja) 半導体装置とその製造方法
US8004030B2 (en) Semiconductor device and method for manufacturing the same
JP2008124330A (ja) 半導体装置の製造方法
JP4252537B2 (ja) 半導体装置の製造方法
US6900062B2 (en) Method of manufacturing a semiconductor device utilizing active oxygen
JP2006332538A (ja) 半導体装置の製造方法
JP5239294B2 (ja) 半導体装置の製造方法
JP5412754B2 (ja) 半導体装置及び半導体装置の製造方法
JP2004023086A (ja) 半導体装置の製造方法
JP4809367B2 (ja) 半導体装置とその製造方法
JP5304810B2 (ja) 半導体装置の製造方法
JP2010087350A (ja) 半導体装置とその製造方法
JP2008159951A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580051740.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007539739

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087008536

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 05787597

Country of ref document: EP

Kind code of ref document: A1