JP2004235287A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2004235287A
JP2004235287A JP2003019741A JP2003019741A JP2004235287A JP 2004235287 A JP2004235287 A JP 2004235287A JP 2003019741 A JP2003019741 A JP 2003019741A JP 2003019741 A JP2003019741 A JP 2003019741A JP 2004235287 A JP2004235287 A JP 2004235287A
Authority
JP
Japan
Prior art keywords
layer
ferroelectric
capacitor
silicon
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003019741A
Other languages
English (en)
Inventor
Kazuaki Kondo
和昭 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003019741A priority Critical patent/JP2004235287A/ja
Publication of JP2004235287A publication Critical patent/JP2004235287A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】強誘電体キャパシタの電気的特性を向上させることが可能な、従来例とは異なる新規な半導体装置とその製造方法を提供すること。
【解決手段】シリコン基板1の上方に層間絶縁層10を形成する工程と、層間絶縁層10上に第1導電層11を形成する工程と、第1導電層11上にシリケート層(シリコン含有層)12bを形成する工程と、シリコン含有層12b上に強誘電体材料層12cを形成する工程と、強誘電体材料層12cを結晶化し、シリケート層12bと一体化した強誘電体層12dにする工程と、強誘電体層12d上に第2導電層13を形成する工程と、第1導電層11、強誘電体層12d、及び第2導電層13をパターニングして、下部電極11a、キャパシタ強誘電体膜12a、及び上部電極13aが順に積層されたキャパシタQを形成する工程と、を有することを特徴とする半導体装置の製造方法による。
【選択図】 図13

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置及びその製造方法に関する。より詳細には、本発明は、強誘電体キャパシタを有する半導体装置及びその製造方法に関する。
【0002】
【従来の技術】
電源を切っても情報を記憶することができる不揮発性メモリとして、フラッシュメモリや強誘電体メモリ(FeRAM)が知られている。
【0003】
このうち、フラッシュメモリは、絶縁ゲート型電界効果トランジスタ(IGFET)のフローティングゲートに電荷を蓄積することで情報を記憶するものであり、情報の書き込みの際には、ゲート絶縁膜にトンネル電流を流す必要があり、比較的高い電圧を必要とする。
【0004】
一方、FeRAMは強誘電体キャパシタを備え、そのキャパシタ誘電体膜として強誘電体層を使用し、上部電極と下部電極との間に書き込み電圧を印加することでキャパシタ誘電体膜に自発分極を生じさせる。その自発分極は、強誘電体のヒステリシス特性により電源を切っても残存し、その大きさと極性を検出することで情報が読み出される。このようなFeRAMは、フラッシュメモリに比べて低電圧で動作し、また、省電力で高速の書き込みができる。
【0005】
強誘電体キャパシタの特性は、強誘電体層の結晶性に大きく依存し、その結晶性が良いほど特性が向上する。ところが、強誘電体層は、下部電極の表面形状や材料によってその性質に差が生じることがあり、結果として強誘電体層の電気的特性の低下につながることがある。特許文献1においては、in−situで結晶化された強誘電体層にこのような下地依存性が見られることが開示されている。
【0006】
また、公知ではないが、特願2002−173135には、強誘電体層の電気的特性がその上面の凹凸に依存すること、及び、その上面に焼結促進剤を塗布してから強誘電体層を熱処理することにより強誘電体層の電気的特性が向上することが開示されている。
【0007】
更に、特許文献2においては、ゾル−ゲル法やMOD法等の塗布法により形成された強誘電体層の問題点を挙げ、それを解決すべく、下部電極上に金属酸化物バッファ層と第1の強誘電体薄膜とを順次形成し、その上にメインの強誘電体層となる第2の強誘電体薄膜をMOCVD法により形成することが開示されている。
【0008】
なお、そのようなゾル−ゲル法の一例が非特許文献1に開示されている。
【0009】
【特許文献1】
特開2002−57301号公報(段落番号0011)
【特許文献2】
特開平8−339715号公報
【非特許文献1】
T.Kijima and H.Ishikawa,”Si−Substituted Ultrathin Ferroelectric Films”, Jpn.J.Phys.Vol.41(2002)L716
【0010】
【発明が解決しようとする課題】
しかしながら、特許文献2の方法では、強誘電体膜を第1、第2の強誘電体膜の二層に分けて成膜しているため、プロセスが煩雑になるという新たな不都合を招いてしまう。
【0011】
本発明は係る従来例の問題点に鑑みて創作されたものであり、強誘電体キャパシタの電気的特性を向上させることが可能な、従来例とは異なる新規な半導体装置とその製造方法を提供することである。
【0012】
【課題を解決するための手段】
上記した課題は、半導体基板の上方に絶縁層を形成する工程と、前記絶縁層上に第1導電層を形成する工程と、前記第1導電層上にシリコン含有層を形成する工程と、前記シリコン含有層上に強誘電体材料層を形成する工程と、前記強誘電体材料層を結晶化し、前記シリコン含有層と一体化した強誘電体層にする工程と、前記強誘電体層上に第2導電層を形成する工程と、前記第1導電層、前記強誘電体層、及び前記第2導電層をパターニングしてキャパシタを形成する工程と、を有することを特徴とする半導体装置の製造方法により解決する。
【0013】
次に、本発明の作用について説明する。
【0014】
本発明によれば、第1導電層の上に強誘電体材料層を直接形成するのではなく、第1導電層上にシリコン含有層を形成し、その上に強誘電体材料層を形成して、該強誘電体層を結晶化することによりシリコン含有層と一体化した強誘電体層を形成する。このような方法を採用することで、強誘電体層の結晶性を劣化させること無しに、強誘電体キャパシタのリーク電流が低減されることが明らかとなった。
【0015】
また、シリコン含有層と強誘電体材料層とを共に塗布法により形成することで、それらを同一の塗布装置で成膜することができ、各膜を別々の方法で成膜する場合のように異種の成膜装置間を移動する必要が無くなり、成膜時間が短縮される。
【0016】
更に、スパッタ法、MOCVD法等の塗布法以外の方法で強誘電体材料層を形成すると、一回の成膜のみで強誘電体層を形成できるので、強誘電体層を二回に分けて成膜する特許文献2と比較してプロセスの簡略化を図ることが可能となる。
【0017】
【発明の実施の形態】
次に、本発明の実施の形態について、添付図面を参照しながら詳細に説明する。
【0018】
(第1実施形態)
図1〜図2は、本発明の第1の実施の形態に係る半導体装置の製造方法について示す断面図である。
【0019】
まず、図1(a)に示すように、シリコン(半導体)基板101の表面を酸素雰囲気中で熱酸化することにより、厚さ約100nmの熱酸化膜102を形成する。
【0020】
次いで、図1(b)に示すように、熱酸化膜102上にプラチナ(Pt)をスパッタ法により厚さ約200nmに形成し、それを下部電極103とする。
【0021】
次に、図1(c)に示す構造を得るまでの工程について説明する。まず、約3wt%のPbSiOゾルゲル溶液を下部電極103上に回転塗布してPbSiO塗布膜を形成し、それを酸素雰囲気中、基板温度150℃で加熱し、溶媒成分を乾燥させる。なお、PbSiOゾルゲル溶液の溶媒としては、例えばブタノール等が使用される。その後に、酸素雰囲気中、基板温度400〜450℃でPbSiO塗布膜を加熱して焼結させ、厚さが約2〜3nmと薄いPb系のシリケート層(シリコン含有層)104とする。シリケート層104の厚さは上記に限定されないが、後述する本実施形態の利点を得やすくするには、10nm以下が好ましい。
【0022】
なお、上記ではPbSiO塗布膜の乾燥と焼結とを二回の加熱により行ったが、それらを一回の加熱で同時に行ってもよい。また、PbSiOゾルゲル溶液の濃度も上記に限定されず、事情に応じて種々に最適化してよい。更に、上記したPbSiOゾルゲル溶液に代えて、ZrSiOを含有したゾルゲル溶液を使用し、Zr系のシリケート層をシリケート層104として形成してもよい。
【0023】
次に、図1(d)に示す構造を得るまでの工程について説明する。まず、10wt%の濃度のゾルゲルPZT(Pb(Zr,Ti)O)溶液をシリケート層104上に回転塗布し、それを酸素雰囲気中、基板温度200〜300℃で加熱することにより、溶媒成分を蒸発させると共に結晶化を僅かに行い、PZT塗布膜とする。そして、上記の工程を所要回数繰り返してPZT塗布膜を積層し、所望の厚さ、例えば30〜40nmの厚さの強誘電体材料層105とする。
【0024】
なお、強誘電体材料層105を構成する材料としては、PZTの他に、PLZT((Pb,La)(Zr,Ti)O)、(Sr,Ti)O、(Ba,Sr)TiO等の材料や、BiTi12等のBi層状構造化合物を用いてもよい。そして、場合によっては、PZTやPLZTにカルシウム(Ca)やストロンチウム(Sr)を微量にドープしてもよい。
【0025】
次に、図2(a)に示す構造を得るまでの工程について説明する。
【0026】
まず、基板温度約700℃、時間約1分のRTA(急速熱処理)を酸素雰囲気中で行うことにより、シリケート層104と強誘電体材料層105とを一括してアニールする。このアニールにより、強誘電体材料層105を構成するPZTが結晶化する一方、シリケート層104はその膜厚の薄さから強誘電体層105に取り込まれ、シリケート層104と結晶化した強誘電体材料層105とが一体化した強誘電体層106が形成される。
【0027】
この強誘電体層106の下面付近は、シリケート層104が元々形成された部位であったから、他の部位よりもシリコンの濃度が高くなり、強誘電体層106中のシリコン濃度はその下面に近づくほど高くなる傾向となる。
【0028】
なお、上記のように回転塗布とそれに引き続いて行われる熱処理とにより強誘電体層106を形成する方法はゾル−ゲル法と称される。但し、本発明はこれに限定されず、スパッタ法、MOCVD法、MOD法等により強誘電体層106を形成してよい。
【0029】
その後に、図2(b)に示すように、上部電極形状の窓108aを有する金属薄板108を強誘電体層106の上方に置き、それをマスクとして使用しながらスパッタ法によりPt層を厚さ約100nm程度に強誘電体層106上に形成し、それを上部電極107として使用する。
【0030】
ここまでの工程により、下部電極103、強誘電体層106、及び上部電極107を順に積層してなる強誘電体キャパシタQが熱酸化膜102上に形成されたことなる。
【0031】
以上説明した本実施形態によれば、下部電極103の上に直に強誘電体材料層105を形成するのではなく、下部電極103上にシリケート層104を形成し、その上に強誘電体材料層105を形成する。このような方法を採用することで、以下に説明するような利点が得られることが明らかとなった。
【0032】
図3(a)は、シリケート層104を形成しない強誘電体キャパシタQのX線回折強度を示す図であり、図中Aで示される部分が強誘電体層106中のPZTの(111)面のピークを示す。
【0033】
一方、図3(b)は、図3(a)と同様のことを本実施形態に係る強誘電体キャパシタQに対して行ったものである。なお、図3(a)、(b)において、横軸は試料に対するX線の入射角(deg)を表し、縦軸はX線強度(任意単位)を表す。
【0034】
図3(a)と図3(b)のそれぞれのA部を見ると、双方ともそのピークの現れ方に変化はない。このことは、たとえシリケート層104を形成しても、それがPZT強誘電体層106の結晶性を劣化させることが無いことを意味する。
【0035】
図4(a)は、シリケート層104を形成しない強誘電体キャパシタQの残留分極電荷量(P)のヒステリシス曲線を示す。そして、図4(b)は、本実施形態に係る強誘電体キャパシタQの残留分極電荷量(P)のヒステリシス曲線を示す。
【0036】
図4(a)におけるヒステリシス曲線の端部C、Dに着目すると、その形状がやや丸みを帯びていることが理解される。これは、強誘電体キャパシタQの上部電極と下部電極との間にリーク電流が発生していることを意味し、これにより、シリケート層104を形成しなかった強誘電体キャパシタQはその電気的特性があまり良好ではないことが理解される。
【0037】
一方、図4(b)に示される本実施形態では、ヒステリシス曲線の端部C、Dの形状が図4(a)よりも明らかにシャープとなっており、強誘電体キャパシタQにリーク電流が殆ど発生していないことが理解される。
【0038】
これらの結果より、シリケート層104を形成することで、強誘電体層106の結晶性を劣化させること無しに、リーク電流の低減された強誘電体キャパシタQを形成できることが理解できる。このような利点が得られる理由は、シリケート層104が強誘電体層106の結晶化を助ける役割を果たしているためであると推測される。
【0039】
しかも、シリケート層104と強誘電体材料層105とを共に塗布法で形成するので、それらの膜を同じ塗布装置内で成膜することができ、各膜を別々の方法で成膜する場合のように異種の成膜装置間を移動する必要が無くなり、成膜時間を短縮することができる。
【0040】
更に、スパッタ法、MOCVD法等の塗布法以外の方法で強誘電体材料層105を形成すると、一回の成膜のみで強誘電体層105を形成できるので、強誘電体層を二回に分けて成膜する特許文献2と比較してプロセスの簡略化を図ることが可能となる。
【0041】
(第2実施形態)
次に、本発明の第2の実施の形態について説明する。
【0042】
本実施形態では、実際に量産されるFeRAMに対し、上記した第1実施形態を適用する。以下では、プレーナ型のFeRAMについて説明するが、本発明はこれに限定されず、スタック型のFeRAMにも本発明を適用し得る。
【0043】
図5〜図29は本発明の一実施形態の半導体装置の製造方法を工程順に示す断面図である。
【0044】
まず、図5に示す断面構造を得るまでの工程を説明する。
【0045】
図5に示すように、n型又はp型のシリコン(半導体)基板1表面に、素子分離絶縁膜2をLOCOS(Local Oxidation of Silicon)法により形成する。素子分離絶縁膜2としてはLOCOS法の他、STI(Shallow Trench Isolation)法を採用してもよい。
【0046】
そのような素子分離絶縁膜2を形成した後に、シリコン基板1のメモリセル領域Aと周辺回路領域Bにおける所定の活性領域(トランジスタ形成領域)にp型不純物及びn型不純物を選択的に導入して、pウェル3a及びnウェル3bを形成する。なお、図5には示していないが、周辺回路領域BではCMOSを形成するためにpウェル(不図示)も形成される。
【0047】
その後、シリコン基板1の活性領域表面を熱酸化して、ゲート絶縁膜4としてシリコン酸化層を形成する。
【0048】
次に、シリコン基板1の上側全面に非晶質又は多結晶のシリコン層を形成し、pウェル3a上ではn型不純物、nウェル3b上ではp型不純物をシリコン層内にイオン注入してシリコン膜を低抵抗化する。その後に、シリコン層をフォトリソグラフィ法により所定の形状にパターニングして、ゲート電極5a〜5cを形成する。
【0049】
メモリセル領域Aにおける1つのpウェル3a上には2つのゲート電極5a,5bがほぼ平行に配置され、それらのゲート電極5a,5bはワード線WLの一部を構成している。
【0050】
次に、メモリセル領域Aにおいて、ゲート電極5a,5bの両側のpウェル3a内にn型不純物をイオン注入して、nチャネルMOSトランジスタのソース/ドレインとなるn型不純物拡散領域6aを形成する。これと同時に、周辺回路領域Bのpウェル(不図示)にもn型不純物拡散領域を形成する。続いて、周辺回路領域Bにおいて、ゲート電極5cの両側のnウェル3bにp型不純物をイオン注入して、pチャネルMOSトランジスタのソース/ドレインとなるp型不純物拡散領域6bを形成する。
【0051】
続いて、シリコン基板1の全面に絶縁層を形成した後、その絶縁層をエッチバックしてゲート電極5a〜5cの両側部分にのみ側壁絶縁層7として残す。その絶縁層として、例えばCVD法により酸化シリコン(SiO)を形成する。
【0052】
さらに、ゲート電極5a〜5cと側壁絶縁層7をマスクに使用して、pウェル3a内に再びn型不純物イオンを注入することによりn型不拡散領域6aをLDD(Lightly Doped Drain)構造にし、さらに、nウェル3b内に再びp型不純物イオンを注入することによりp型不純物拡散領域6bもLDD構造とする。
【0053】
なお、n型不純物とp型不純物の打ち分けは、レジストパターンを使用して行われる。
【0054】
以上のように、メモリセル領域Aでは、pウェル3aとゲート電極5a,5bとその両側のn型不純物拡散領域6a等によってn型MOSFETが構成され、また、周辺回路領域Bでは、nウェル3bとゲート電極5cとその両側のp型不純物拡散領域6b等によってp型MOSFETが構成される。
【0055】
次に、全面に高融点金属膜、例えば、Ti、Coの膜を形成した後に、この高融点金属膜を加熱してn型不純物拡散領域6a,p型不純物拡散領域6bの表面にそれぞれ高融点金属シリサイド層8a,8bを形成する。その後、ウエットエッチングにより未反応の高融点金属膜を除去する。
【0056】
次に、プラズマCVD法により、シリコン基板1の全面にカバー層9として酸窒化シリコン(SiON)層を約200nmの厚さに形成する。さらに、TEOSガスを用いるプラズマCVD法により、第1層間絶縁層10として二酸化シリコン(SiO)をカバー層9上に約1.0μmの厚さに成長する。
【0057】
続いて、第1層間絶縁層10を化学的機械研磨(CMP:Chemical Mechanical Polishing)法により研磨してその表面を平坦化する。
【0058】
その後に、図6に示すように、第1層間絶縁層10上にPt層をスパッタ法により約100〜300nmの厚さに形成し、それを第1導電層11とする。第1導電層11としては、Pt層の他に、Ir(イリジウム)層やRu(ルテニウム)層を形成してもよい。
【0059】
次に、図7に示す構造を得るまでの工程について説明する。
【0060】
まず、約3wt%のPbSiOゾルゲル溶液を第1導電層11上に回転塗布してPbSiO塗布膜を形成し、それを酸素雰囲気中、基板温度150℃で加熱し、溶媒成分を乾燥させる。なお、PbSiOゾルゲル溶液の溶媒としては、例えばブタノール等が使用される。その後に、酸素雰囲気中、基板温度400〜450℃でPbSiO塗布膜を加熱することによりPbSiO塗布膜を焼結させ、厚さが10nm以下、例えば約2〜3nmと薄いシリケート層(シリコン含有層)12bとする。
【0061】
次に、図8に示す構造を得るまでの工程について説明する。
【0062】
まず、約10wt%の濃度のゾルゲルPZT溶液をシリケート層12b上に回転塗布し、それを酸素雰囲気中、基板温度200〜300℃で加熱することにより、溶媒成分を蒸発させると共に膜中で結晶化を僅かに行い、PZT塗布膜を形成する。なお、ゾルゲルPZT溶液の溶媒としては、例えばブタノール等が使用される。そして、上記の工程を所要回数繰り返してPZT塗布膜を積層し、所望の厚さ、例えば100〜300nmの厚さの強誘電体材料層12cとする。
【0063】
次に、図9に示す構造を得るまでの工程について説明する。
【0064】
まず、基板温度約700℃、時間約1分のRTA(急速熱処理)を酸素雰囲気中で行うことにより、シリケート層12bと強誘電体材料層12cとを一括してアニールする。このアニールにより、強誘電体材料層12cを構成するPZTが結晶化する一方、シリケート層12bはその膜厚の薄さ(10nm以下)から強誘電体層12cに取り込まれ、シリケート層12bと結晶化した強誘電体材料層12cとが一体化してなる強誘電体層12dが形成される。
【0065】
続いて、図10に示すように、強誘電体層12cの上にPt層をスパッタ法により約100〜300nmの厚さに形成し、それを第2導電層13とする。なお、Pt層に代えて、酸化イリジウム(IrO)層、酸化ルテニウムストロンチウム(SRO)層等を形成してもよい。
【0066】
次に、図11に示す構造を得るまでの工程を説明する。
【0067】
まず、上部電極形状のレジストパターン(不図示)を第2導電層13上に形成した後に、そのレジストパターンをマスクに使用して第2導電層13をエッチングし、これにより残った第2導電層13をキャパシタの上部電極13aとして使用する。
【0068】
そして、そのレジストパターンを除去した後に、温度650℃、60分間の条件で、強誘電体層12dを酸素雰囲気中でアニールする。このアニールは、第2導電層13のスパッタリング及びエッチングの際に強誘電体層12dに入ったダメージを回復させるために行われる。
【0069】
続いて、メモリセル領域Aにおいて、キャパシタ上部電極13a及びその周辺にレジストパターン(不図示)を形成した状態で強誘電体層12をエッチングし、これにより残った強誘電体層12をキャパシタ強誘電体層12aとして使用する。そして、そのレジストパターンを除去した後に、温度650℃、60分間でキャパシタ強誘電体層12aを酸素雰囲気中でアニールする。このアニールは、上部電極13aの形成時のダメージを除去するために行われる。
【0070】
次に、図12に示すように、上部電極13a、キャパシタ強誘電体層12a及び第1導電層11の上に、エンキャップ層14としてPLZT層をスパッタリング法により50nmの厚さに常温下で形成する。このエンキャップ層14は、還元され易いキャパシタ強誘電体層12aを水素から保護して、水素がその内部に入ることをブロックするために形成される。なお、エンキャップ層14として、PZT膜、アルミナ膜、又は酸化チタン層を形成してもよい。
【0071】
その後に、酸素雰囲気中で、700℃、60秒間、昇温速度125℃/secの条件で、エンキャップ層14の下のキャパシタ強誘電体層12aを急速熱処理してその膜質を改善する。
【0072】
次に、エンキャップ層14の上にレジストを塗布し、これを露光、現像して上部電極13a及び誘電体膜12aの上とその周辺に残す。そして、レジストをマスクに使用して、エンキャップ層14、第1導電層11をエッチングし、これにより残った第1導電層11を図13に示すキャパシタの下部電極11aとして使用する。エンキャップ層14、第1導電層11のエッチングは、塩素を用いたドライエッチングにより行われる。
【0073】
そのレジストパターンを除去した後に、酸素雰囲気中で温度650℃、60分間の条件で、キャパシタ強誘電体層12aをアニールしてダメージから回復させる。
【0074】
これにより、図13に示すように、第1層間絶縁層10の上には、下部電極11a、キャパシタ強誘電体層12a、上部電極13aからなるキャパシタQが形成されることになる。
【0075】
メモリセル領域Aにおける絶縁層を除いた平面構成を示すと図30のようになり、矩形状の1つのキャパシタ強誘電体層12aの上には複数の上部電極13aが形成され、また、キャパシタ強誘電体層12aの下の下部電極11aはキャパシタ誘電体層12aの側方に延在する大きさとなっている。なお、図30には、後述するコンタクトホール、ビット線等も描かれている。
【0076】
次に、図14に示すように、キャパシタQ及び第1層間絶縁層10を覆う第2層間絶縁層15として膜厚1200nmのSiO層をCVD法により形成した後に、第2層間絶縁層15の表面をCMP法により平坦化する。第2層間絶縁層15の成長は、反応ガスとしてシラン(SiH)を用いてもよいし、TEOSを用いて行ってもよい。第2層間絶縁層15の表面の平坦化は、上部電極13aの上面から200nmの厚さとなるまで行われる。
【0077】
次に、図15に示すように、第2層間絶縁層15の上にレジスト16を塗布し、これを露光、現像して、メモリセル領域Aの不純物拡散層6aの上とキャパシタ下部電極11aの上と周辺回路領域Bの不純物拡散層6bの上にそれぞれホール形成用窓16a〜16eを形成する。
【0078】
続いて、第1及び第2層間絶縁層10,15、カバー層9をドライエッチングして、メモリセル領域Aの不純物拡散層6a、キャパシタ下部電極11aの上にコンタクトホール15a〜15eを形成するとともに、周辺回路領域Bの不純物拡散層6bの上にもコンタクトホール15d、15eを形成する。第1及び第2層間絶縁層10,15とカバー膜9は、CF系ガス、例えばCHFにCF、Arを加えた混合ガスを用いてエッチングされる。
【0079】
このエッチングの際には、キャパシタQの下部電極11aを覆っているPLZTエンキャップ層14のエッチングレートが他の絶縁層よりも小さいので、下部電極11aの上に形成される浅いコンタクトホール15cと他のコンタクトホール15a,15b,15d,15eのエッチング深さの違いはエンキャップ層14によって吸収される。
【0080】
なお、コンタクトホール15a〜15eは、上が広くて下が狭いテーパ状となり、不純物拡散層6a、6bの上のコンタクトホール15a,15b,15d,15eの深さ方向中央での直径は約0.5μmとなる。
【0081】
次に、レジスト16を除去した後に、図16に示すように、第2層間絶縁層15の上とコンタクトホール15a〜15eの内面にRF前処理エッチングを行った後、それらの上にスパッタリング法によりチタン(Ti)層を20nm、窒化チタン(TiN)層を50nmの厚さに形成し、これらの膜をグルー層17とする。さらに、フッ化タングステンガス(WF)、アルゴン、水素の混合ガスを使用するCVD法により、グルー層17の上にタングステン層18を形成する。なお、タングステン層18の成長初期にはシラン(SiH)ガスも使用する。タングステン層18は、各コンタクトホール15a〜15eを完全に埋め込む厚さ、例えば第2層間絶縁層15上で500nm程度とする。
【0082】
なお、コンタクトホール15a〜15eはそれぞれテーパ形状となっているので、それらの中に埋め込まれたタングステン層18には空洞(す、ボイドともいう)が形成され難い。
【0083】
次に、図17に示すように、第2層間絶縁層15上のタングステン層18とグルー層17をCMP法により除去し、各コンタクトホール15a〜15e内にのみ残す。これにより、コンタクトホール15a〜15e内のタングステン層18とグルー層17をプラグ18a〜18eとして使用する。
【0084】
なお、メモリセル領域Aの1つのpウェル3aにおいて、2つのゲート電極5a,5bに挟まれるn型不純物拡散領域6a上の第1のプラグ18aは、後述するビット線に接続され、さらに、残り2つの第2のプラグ18bは、後述する配線を介してキャパシタQの上部電極13aに接続される。さらに、下部電極11aの上のコンタクトホール15cとその中のプラグ18cは、図30に示したように、キャパシタ強誘電体層12aからはみ出した部分に形成されるものであるが、図17以降の図面では、理解を容易にするために、メモリセル領域Aの不純物拡散層6a上の複数のプラグ18a,18bの延長上にあるように便宜的に描かれている。
【0085】
その後に、コンタクトホール15a〜15e形成後の洗浄処理、CMP後の洗浄処理等の工程で第2層間絶縁層15表面に付着したり内部に浸透した水分を除去するために、再び、真空チャンバ中で390℃の温度で第2層間絶縁層15を加熱して水を外部に放出させる。このような脱水処理の後に、第2層間絶縁層15を加熱しながらNプラズマに曝して膜質を改善するアニールを例えば2分間行う。
【0086】
続いて、図18に示すように、第2層間絶縁層15とプラグ18a〜18eの上に、プラズマCVD法によりSiON層を例えば100nmの厚さに形成する。このSiON層は、シラン(SiH)とNOの混合ガスを用いて形成され、プラグ18a〜18eの酸化を防止するための酸化防止層19として使用される。
【0087】
次に、図19に示すように、フォトリソグラフィー法によりエンキャップ層14と第2層間絶縁層15をパターニングして、キャパシタQの上部電極13a上にコンタクトホール15fを形成する。
【0088】
この後に、550℃、60分間の条件で、キャパシタQの強誘電体層12aを酸素雰囲気中でアニールして、キャパシタ強誘電体層12aの膜質を改善する。この場合、プラグ18a〜18eは酸化防止層19によって酸化が防止される。
【0089】
その後に、図20に示すように、CF系のガスを用いてSiON酸化防止層19をドライエッチングする。そして、RFエッチング法によりプラグ18a〜18e、上部電極13aの各表面を約10nmエッチングして清浄面を露出させる。
【0090】
次いで、図21に示すように、第2層間絶縁層15、プラグ18a〜18e、キャパシタQのコンタクトホール15fの上に、アルミニウムを含む4層構造の導電層をスパッタ法により形成する。その導電層は、下から順に、膜厚50nmの窒化チタン層、膜厚500nmの銅含有(0.5%)アルミニウム層、膜厚5nmのチタン層、膜厚100nmの窒化チタン層である。
【0091】
そして、その導電層をフォトリソグラフィー法によりパターニングして、図21に示すように、コンタクトパッド20a、20cと一層目の配線20b、20d〜20fを形成する。
【0092】
ここで、メモリセル領域Aにおいて、pウェル3aの上の2つのゲート電極5a,5bの間にあるプラグ18aの上にはコンタクトパッド20aが形成されている。また、素子分離絶縁層2とゲート電極5a,5bの間にあるプラグ18bとキャパシタQの上部電極13aはコンタクトホール15fを通して配線20bによって接続される。さらに、キャパシタQの下部電極11a上のプラグ18c上には、図30に示す配置で、別のコンタクトパッド20cが形成されている。
【0093】
なお、フォトリソグラフィー法に使用されるレジストパターンは、コンタクトパッド20a、配線20b等を形成した後に除去される。
【0094】
次に、図22に示すように、TEOSをソースに用いたプラズマCVD法によりSiO層を第3層間絶縁層21として2300nmの厚さに形成し、この層間絶縁層21により第2層間絶縁層15、コンタクトパッド20a,20c及び配線20b等を覆う。続いて、第3層間絶縁層21の表面をCMP法により平坦化する。
【0095】
この後に、真空チャンバ中で390℃の温度で第3層間絶縁層21を加熱して水を外部に放出させる。このような脱水処理の後に、第3層間絶縁層21を加熱しながらNOプラズマに曝して脱水と膜質改善を行う。
続いて、図23に示すように、TEOSを用いてプラズマCVD法によりSiOよりなる保護絶縁層22を第3層間絶縁層21の上に100nm以上の厚さに形成する。第3層間絶縁層21にす(ボイド)が生じている場合は、この保護絶縁層22によりそのボイドが塞がれる。この後に、真空チャンバ中で390℃の温度で保護絶縁層22の脱水処理をし、加熱しながらNOプラズマに曝して脱水と膜質改善を行う。
【0096】
次に、図24に示すような構造となるまでの工程を説明する。
【0097】
まず、フォトリソグラフィー法により第3層間絶縁層21と保護絶縁層22をパターニングして、メモリセル領域Aのpウェル3aの真ん中にあるコンタクトパッド20aの上と、キャパシタQの下部電極11aの上の配線20cと、周辺回路領域Bの配線20fの上にホール22a〜22cを形成する。
【0098】
次に、保護絶縁層22の上面とホール22a〜22cの内面の上に、RF前処理エッチングを行った後、膜厚90nm〜150nmの窒化チタン(TiN) よりなるグルー層23をスパッタ法により形成し、その後、ホール22a〜22cを埋め込むようにブランケットタングステン層24をCVD法により例えば800nmの厚さに形成する。このブランケットタングステン層24の成長には、WF、Hを含むソースガスを使用する。
【0099】
次に、図25に示すように、タングステン層24をエッチバックしてホール22a〜22cの中にのみ残し、ホール22a〜22c内のタングステン層24を二層目のプラグ25a〜25cとして使用する。これにより、保護絶縁層22の上にはTiNグルー層23が残った状態となる。
【0100】
次に、図26に示すように、TiNグルー層23、プラグ25a〜25cの上に3層構造の導電層26をスパッタ法により形成する。その導電層26は、下から順に、膜厚500nmの銅含有(0.5%)アルミニウム層、膜厚5nmのチタン層、膜厚100nmの窒化チタン層である。
【0101】
そして、導電層26をフォトリソグラフィー法により図27に示すようにパターニングして、二層目のコンタクトパッド、二層目のアルミニウム配線を形成する。例えば、メモリセル領域Aにおいて、pウェル3aの中央の不純物拡散層6aの上方にはプラグ18a,25a、コンタクトパッド20aを介して接続されるビット線26aが形成され、また、キャパシタQの下部電極11aの上方には、プラグ18c,25b、コンタクトパッド20cを介して接続される二層目の配線26bが形成され、さらに周辺回路領域Bの一層目のアルミニウム配線20fの上にはプラグ25cを介して接続される二層目のアルミニウム配線26cが形成されている。この状態の平面図を示すと、図30のようになる。
【0102】
次に、図23〜図27に示したような工程を繰り返して、図28に示すような構造を形成する。その工程は次のようになる。
【0103】
まず、TEOSをソースに用いたプラズマCVD法によりSiO層を第4層間絶縁層27として2300nmの厚さに形成し、この層間絶縁層27により下側の保護絶縁層22、配線26a〜26cを覆う。続いて、第4層間絶縁層27の表面をCMP法により平坦化する。この後に、真空チャンバ中で390℃の温度で第4層間絶縁層27を加熱して水を外部に放出させる。このような脱水処理の後に、第4層間絶縁層27をNOプラズマに曝して膜質を改善する。
【0104】
続いて、TEOSを用いてプラズマCVD法によりSiOよりなる上側の保護絶縁層28を第4層間絶縁層27の上に100nm以上の厚さに形成する。この後に、真空チャンバ中で390℃の温度で保護絶縁層28の脱水処理をし、加熱しながらNOプラズマに曝して膜質を改善する。さらに、フォトリソグラフィー法により第4層間絶縁層27と保護絶縁層28をパターニングして、キャパシタQの下部電極11aに電気的に接続される二層目のアルミニウム配線26bの上にホール27aを形成する。フォトリソグラフィー法にはレジストマスクを用いるがホール27aを形成した後に除去される。
【0105】
次に、保護絶縁層28の上面とホール27aの内面の上に、膜厚90nm〜150nmの窒化チタン(TiN)よりなるグルー層29をスパッタ法により形成し、その後、ホール27aを埋め込むようにブランケットタングステン膜をCVD法により800nmの厚さに形成する。さらにに、ブラケットタングステン膜をエッチバックしてホール27aの中にのみ残し、ホール27a内のブラケットタングステン層を三層目のプラグ30として使用する。
【0106】
これにより、保護絶縁層28の上にはTiNグルー層29が残った状態となる。
【0107】
その後、グルー層29、プラグ30の上に2層構造の導電層をスパッタ法により形成する。その導電層は、下から順に、膜厚500nmの銅含有(0.5%)アルミニウム層、膜厚100nmの窒化チタン層である。そして、導電層をフォトリソグラフィー法によりパターニングして、三層目のアルミニウム配線31a〜31cを形成する。
【0108】
次に、図29に示すように、TEOSをソースに用いたプラズマCVD法によってSiOよりなる保護絶縁層32を100nmの厚さに形成する。その後に、真空チャンバ中で390℃の温度で保護絶縁層32を加熱して水を外部に放出させる。このような脱水処理の後に、保護絶縁層32をNOプラズマに曝して脱水とともに膜質を改善する。
【0109】
続いて、保護絶縁層32上にシリコン窒化層33をCVD法により350nmの厚さに形成して保護絶縁層32への水の侵入を阻止する。
【0110】
その後に、シリコン窒化層33の上にポリイミド層を3μmの厚さに塗布し、これを230℃で30分間のベークを施して、カバー層34とする。
【0111】
ここまでの工程により、FeRAMが完成する。
【0112】
以上説明した本実施形態によれば、第1導電層11上にシリケート層12bを形成し、その上に強誘電体材料層12cを形成して、強誘電体層12cを結晶化してシリケート層12bと一体化した強誘電体層12dを形成する。これにより、第1実施形態と同様に、キャパシタ強誘電体層12aの結晶性を劣化させること無しに、リーク電流の低減された強誘電体キャパシタQを形成することができ、FeRAMの電気的な特性を従来よりも向上させることができる。
【0113】
以下に、本発明の特徴を付記する。
【0114】
(付記1) 半導体基板と、
前記半導体基板の上方に形成された絶縁層と、
下部電極、キャパシタ強誘電体層、及び上部電極を前記絶縁層上に順に形成してなるキャパシタと、
を備え、
前記キャパシタ強誘電体層に含まれるシリコンの濃度が、該キャパシタ強誘電体層の下面に近づくほど高くなることを特徴とする半導体装置。
【0115】
(付記2) 半導体基板の上方に絶縁層を形成する工程と、
前記絶縁層上に第1導電層を形成する工程と、
前記第1導電層上にシリコン含有層を形成する工程と、
前記シリコン含有層上に強誘電体材料層を形成する工程と、
前記強誘電体材料層を結晶化し、前記シリコン含有層と一体化した強誘電体層にする工程と、
前記強誘電体層上に第2導電層を形成する工程と、
前記第1導電層、前記強誘電体層、及び前記第2導電層をパターニングしてキャパシタを形成する工程と、
を有することを特徴とする半導体装置の製造方法。
【0116】
(付記3) 前記シリコン含有層と前記強誘電体材料層とは共に塗布法により形成されることを特徴とする付記2に記載の半導体装置の製造方法。
【0117】
(付記4) 前記シリコン含有層は、シリケート用の塗布液を前記第1導電層上に形成し、前記塗布液を加熱して焼結させることにより形成されることを特徴とする付記2又は付記3に記載の半導体装置の製造方法。
【0118】
(付記5) 前記シリケート用の塗布液として、PbSiO溶液又はZrSiO溶液を使用することを特徴とする付記4に記載の半導体装置の製造方法。
【0119】
(付記6) 前記シリコン含有層の厚さは10nm以下であることを特徴とする付記2乃至付記5のいずれかに記載の半導体装置の製造方法。
【0120】
(付記7) 前記強誘電体材料層は、スパッタ法又はMOCVD法のいずれかの方法を一回のみ行うことにより形成されることを特徴とする付記2に記載の半導体装置の製造方法。
【0121】
(付記8) 前記強誘電体材料層の結晶化は、該強誘電体材料層を加熱することにより行われることを特徴とする付記2乃至付記7のいずれかに記載の半導体装置の製造方法。
【0122】
【発明の効果】
以上説明したように、本発明によれば、シリコン含有層を形成してからその上に強誘電体材料層を形成し、該強誘電体材料層を結晶化してシリコン含有層と一体化した強誘電体層とするので、強誘電体層の結晶性を劣化させること無しに、強誘電体キャパシタのリーク電流を低減することができる。
【0123】
また、シリコン含有層と強誘電体材料層とを共に塗布法により形成するので、それらを同一の塗布装置内で形成することができ、成膜時間を短縮することができる。
【0124】
しかも、スパッタ法、MOCVD法等の塗布法以外の方法で強誘電体材料層を一回で形成すると、強誘電体層を二回に分けて成膜する従来礼と比較してプロセスの簡略化を図ることが可能となる。
【図面の簡単な説明】
【図1】図1(a)〜(d)は、本発明の第1の実施の形態に係る半導体装置の製造工程について示す断面図(その1)である。
【図2】図2(a)、(b)は、本発明の第1の実施の形態に係る半導体装置の製造工程について示す断面図(その2)である。
【図3】図3(a)は、シリケート層を形成しない場合における強誘電体キャパシタのX線回折強度を示すグラフであり、図3(b)は、シリケート層を形成した場合の強誘電体キャパシタのX線回折強度を示すグラフである。
【図4】図4(a)は、シリケート層を形成しない強誘電体キャパシタQの残留分極電荷量(P)のヒステリシス曲線であり、図4(b)は、シリケート層を形成する強誘電体キャパシタの残留分極電荷量(P)のヒステリシス曲線である。
【図5】図5は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その1)である。
【図6】図6は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その2)である。
【図7】図7は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その3)である。
【図8】図8は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その4)である。
【図9】図9は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その5)である。
【図10】図10は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その6)である。
【図11】図11は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その7)である。
【図12】図12は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その8)である。
【図13】図13は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その9)である。
【図14】図14は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その10)である。
【図15】図15は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その11)である。
【図16】図16は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その12)である。
【図17】図17は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その13)である。
【図18】図18は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その14)である。
【図19】図19は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その15)である。
【図20】図20は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その16)である。
【図21】図21は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その17)である。
【図22】図22は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その18)である。
【図23】図23は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その19)である。
【図24】図24は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その20)である。
【図25】図25は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その21)である。
【図26】図26は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その22)である。
【図27】図27は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その23)である。
【図28】図28は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その24)である。
【図29】図29は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す断面図(その25)である。
【図30】図30は、本発明の第2の実施の形態に係る半導体装置の製造工程について示す平面図である。
【符号の説明】
1、101…シリコン基板(半導体基板)、2…素子分離絶縁層、3a、3b…ウェル、4…ゲート絶縁膜、5a〜5c…ゲート電極、6a,6b…不純物拡散層、7…側壁絶縁層、8a,8b…高融点金属シリサイド層、9…カバー層、10…層間絶縁層、11…第1導電層、11a、103…下部電極、12a…キャパシタ強誘電体層、12b、104…シリケート層、12c、105…強誘電体材料層、12d、106…強誘電体層、13…第2導電層、13a、107…上部電極、14…エンキャップ層、15…層間絶縁層、15a〜15f…コンタクトホール、16…レジスト、17…グルー層、18…タングステン層、18a〜18e…プラグ、19…酸化防止層、20a,20c…コンタクトパッド、20b,20c〜20f…配線、21…層間絶縁層、22…保護絶縁層、23…グルー層、24…タングステン層、25a〜25c…プラグ、26…導電層、27…層間絶縁層、28…保護絶縁層、29…密着層、30…プラグ、31a〜31f…配線、32…保護絶縁層、33…シリコン窒化層、34…カバー層、102…熱酸化膜、108…金属薄板、108a…窓。

Claims (5)

  1. 半導体基板と、
    前記半導体基板の上方に形成された絶縁層と、
    下部電極、キャパシタ強誘電体層、及び上部電極を前記絶縁層上に順に形成してなるキャパシタと、
    を備え、
    前記キャパシタ強誘電体層に含まれるシリコンの濃度が、該キャパシタ強誘電体層の下面に近づくほど高くなることを特徴とする半導体装置。
  2. 半導体基板の上方に絶縁層を形成する工程と、
    前記絶縁層上に第1導電層を形成する工程と、
    前記第1導電層上にシリコン含有層を形成する工程と、
    前記シリコン含有層上に強誘電体材料層を形成する工程と、
    前記強誘電体材料層を結晶化し、前記シリコン含有層と一体化した強誘電体層にする工程と、
    前記強誘電体層上に第2導電層を形成する工程と、
    前記第1導電層、前記強誘電体層、及び前記第2導電層をパターニングしてキャパシタを形成する工程と、
    を有することを特徴とする半導体装置の製造方法。
  3. 前記シリコン含有層と前記強誘電体材料層とは共に塗布法により形成されることを特徴とする請求項2に記載の半導体装置の製造方法。
  4. 前記シリコン含有層は、シリケート用の塗布液を前記第1導電層上に形成し、前記塗布液を加熱して焼結させることにより形成されることを特徴とする請求項2又は請求項3に記載の半導体装置の製造方法。
  5. 前記シリケート用の塗布液として、PbSiO溶液又はZrSiO溶液を使用することを特徴とする請求項4に記載の半導体装置の製造方法。
JP2003019741A 2003-01-29 2003-01-29 半導体装置及びその製造方法 Pending JP2004235287A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003019741A JP2004235287A (ja) 2003-01-29 2003-01-29 半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019741A JP2004235287A (ja) 2003-01-29 2003-01-29 半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2004235287A true JP2004235287A (ja) 2004-08-19

Family

ID=32949540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019741A Pending JP2004235287A (ja) 2003-01-29 2003-01-29 半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP2004235287A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344748A (ja) * 2005-06-08 2006-12-21 Fujitsu Ltd 半導体装置の製造方法
WO2007043116A1 (ja) * 2005-09-30 2007-04-19 Fujitsu Limited 半導体装置とその製造方法
US7553677B2 (en) 2006-07-24 2009-06-30 Seiko Epson Corporation Method for manufacturing ferroelectric memory
US8153891B2 (en) 2006-01-31 2012-04-10 Sanyo Electric Co., Ltd. Solar cell and solar cell module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344748A (ja) * 2005-06-08 2006-12-21 Fujitsu Ltd 半導体装置の製造方法
WO2007043116A1 (ja) * 2005-09-30 2007-04-19 Fujitsu Limited 半導体装置とその製造方法
JP5024046B2 (ja) * 2005-09-30 2012-09-12 富士通セミコンダクター株式会社 半導体装置とその製造方法
US8343830B2 (en) 2005-09-30 2013-01-01 Fujitsu Semiconductor Limited Semiconductor device and method for manufacturing the same
US8680596B2 (en) 2005-09-30 2014-03-25 Fujitsu Semiconductor Limited Semiconductor device and method for manufacturing the same
US8153891B2 (en) 2006-01-31 2012-04-10 Sanyo Electric Co., Ltd. Solar cell and solar cell module
US7553677B2 (en) 2006-07-24 2009-06-30 Seiko Epson Corporation Method for manufacturing ferroelectric memory

Similar Documents

Publication Publication Date Title
JP3907921B2 (ja) 半導体装置の製造方法
JP2004153031A (ja) 半導体装置の製造方法
JP2004095861A (ja) 半導体装置及びその製造方法
JP2001036026A (ja) 半導体装置及びその製造方法
JP3847645B2 (ja) 半導体装置及びその製造方法
JP4050004B2 (ja) 半導体装置及びその製造方法
US20100193851A1 (en) Semiconductor device and method of manufacturing the same
JP4252537B2 (ja) 半導体装置の製造方法
KR100785837B1 (ko) 반도체 장치 및 그 제조 방법
JP2004087978A (ja) 半導体装置の製造方法
JP5168273B2 (ja) 半導体装置とその製造方法
JP2005183841A (ja) 半導体装置の製造方法
KR100405146B1 (ko) 구조화된 금속 산화물 함유 층의 제조 방법
JP3833580B2 (ja) 半導体装置の製造方法
JP5018772B2 (ja) 半導体装置の製造方法
JP2004039699A (ja) 半導体装置及びその製造方法
JP4409163B2 (ja) 半導体装置の製造方法
JP4657545B2 (ja) 半導体装置の製造方法
JP2004095866A (ja) 半導体装置及びその製造方法
JP2004235287A (ja) 半導体装置及びその製造方法
JP5239294B2 (ja) 半導体装置の製造方法
JP4375561B2 (ja) 半導体記憶装置及びその製造方法
JP2005116546A (ja) 半導体装置およびその製造方法
WO2005081317A1 (ja) 半導体装置の製造方法
JPH09289291A (ja) 誘電体キャパシタ及び誘電体メモリ装置と、これらの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209