WO2007037209A1 - 熱伝導率測定方法および装置、並びにガス成分比率測定装置 - Google Patents

熱伝導率測定方法および装置、並びにガス成分比率測定装置 Download PDF

Info

Publication number
WO2007037209A1
WO2007037209A1 PCT/JP2006/318987 JP2006318987W WO2007037209A1 WO 2007037209 A1 WO2007037209 A1 WO 2007037209A1 JP 2006318987 W JP2006318987 W JP 2006318987W WO 2007037209 A1 WO2007037209 A1 WO 2007037209A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
gas
thermal conductivity
microheater
heater
Prior art date
Application number
PCT/JP2006/318987
Other languages
English (en)
French (fr)
Inventor
Yasuharu Ooishi
Shigeru Aoshima
Nobuyoshi Shingyouji
Yasue Hayashi
Shuji Morio
Original Assignee
Yamatake Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamatake Corporation filed Critical Yamatake Corporation
Priority to US12/088,225 priority Critical patent/US7926323B2/en
Priority to EP06798312.2A priority patent/EP1947450A4/en
Priority to JP2007537612A priority patent/JP4868604B2/ja
Priority to CN2006800351552A priority patent/CN101273265B/zh
Publication of WO2007037209A1 publication Critical patent/WO2007037209A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels, explosives
    • G01N33/225Gaseous fuels, e.g. natural gas

Definitions

  • the present invention relates to a thermal conductivity measuring method and apparatus capable of easily measuring the thermal conductivity of a gas whose type ratio (composition ratio) is unknown but whose component ratio (composition ratio) is unknown, such as natural gas, and heat transfer.
  • the present invention relates to a gas component ratio measuring device using a conductivity measuring device.
  • JP 2001-221758 A As shown in FIG. 12, there is provided a cavity for retaining the fluid facing the flow path for guiding the fluid, and the boundary between the cavity and the flow path. It is disclosed that the thermal conductivity of the fluid can be accurately detected from the calorific value of a sensor (heater) incorporated in the cavity by providing a porous body.
  • the porous body is designed so that the fluid in the flow path and the fluid in the cavity are exchanged only by molecular diffusion.
  • the thermal conductivity of a gas has an inherent temperature change characteristic according to its type. Therefore, even if the amount of heat generated by a heater is simply measured, the thermal conductivity is accurately measured. There is an essential problem that it cannot be measured. In particular, when the mixed gas containing multiple types of gases such as natural gas is an atmospheric gas, it has been very difficult to measure its thermal conductivity.
  • the mixed gas is passed through a member called a column, and the composition ratio of the gas species is analyzed using the difference in flow velocity due to the difference in molecular weight, and then the thermal conductivity of the mixed gas is analyzed. It is also measured.
  • a column was used. The analysis of the composition ratio of the mixed gas took a lot of time, and there were problems such as the overall configuration of the analyzer being complicated and expensive.
  • An object of the present invention is to provide a thermal conductivity measuring method and apparatus capable of easily measuring the thermal conductivity of pure gas or mixed gas. Furthermore, it is intended to provide a gas component ratio measuring apparatus capable of obtaining the composition ratio of a known mixed gas, for example, natural gas, using the above-described thermal conductivity measuring method and apparatus, and evaluating the calorific value thereof. It is intended.
  • the present invention drives a heater called a microheater having a small heat radiation area, that is, a heater that can be regarded as a point heat source, and measures the thermal conductivity of the atmospheric gas from the amount of generated heat.
  • a heater that can be regarded as a point heat source
  • the atmospheric gas in the vicinity of the heater forms a local temperature distribution and balances without generating natural convection, and the average heat transfer coefficient h at this time is approximately equal to the thermal conductivity ⁇ of the ambient gas. It is made by paying attention to the fact that it is proportional to and inversely proportional to the thickness d of the temperature boundary layer. It is also noted that there is a high correlation between the thermal conductivity of the atmospheric gas and the heat dissipation coefficient C of the microheater power.
  • the thermal conductivity measurement method measures the thermal conductivity of the atmospheric gas from the calorific value using a microheater supported in the air and provided in the atmospheric gas (measurement target). It ’s what you do,
  • the thermal conductivity at the above measured temperature ⁇ of the ambient gas from the calculated heat dissipation coefficient C It is characterized by seeking.
  • the heater temperature detecting means for example, the resistance value Rstd of the microphone opening heater at a standard temperature, the driving power Ph and the energizing current Ih when the microheater is energized and heated by the power source, or The heater temperature Th may be calculated from the heater resistance value Rh obtained from the terminal voltage Vh and the energizing current Ih.
  • the thermal conductivity calculation means the thermal conductivity ⁇ of the ambient gas at the measured temperature T and the heat dissipation factor are used.
  • a measurement condition changing means for changing the heater temperature Th by changing the electric power Ph applied to the micro heater.
  • the gas component ratio measuring apparatus includes means for respectively obtaining the thermal conductivity ⁇ of the atmospheric gas at different heater temperatures using the measurement condition changing means described above, and heat at each heater temperature. It is characterized in that it is provided with an analysis means for analyzing the composition ratio of the atmospheric gas.
  • the analyzing means is configured such that the atmospheric gas is a mixed gas of n kinds of gases, and the thermal conductivity of each of the gases is the thermal conductivity ⁇ ,, ⁇ 2,.
  • the heater temperatures Th (l), Th (2) to Th set in the [ ⁇ -1] stage are considered to be added at a ratio determined according to the ratio and the coupling coefficient between the gases.
  • [n-1] thermal conductivities obtained in (nl) are analyzed, and ⁇ to ⁇ are analyzed to obtain the above-mentioned yarn composition ratio.
  • the above coupling coefficient is used, for example, in the equation of Wassiljewa for obtaining the thermal conductivity.
  • the coupling coefficient can be obtained, for example, by an approximate expression of Lindsay-Bromley as described later.
  • the gas component ratio measuring apparatus has a function of obtaining the amount of heat generated from the atmosphere gas from the composition ratio of the atmosphere gas obtained by the analyzing means.
  • the atmospheric gas is composed of natural gas mainly composed of methane, ethane, propane and butane, for example.
  • FIG. 1 is a diagram showing an element structure of a microheater used in the present invention.
  • FIG. 2 is a diagram showing a schematic cross-sectional structure of a microheater.
  • FIG. 3 is a diagram schematically showing the temperature distribution of the ambient gas in the vicinity of the micro heater when the micro heater is driven to generate heat.
  • FIG. 4 is a schematic configuration diagram of a main part of a thermal conductivity measurement method and apparatus according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing examples of mixed gases having different composition ratios.
  • FIG. 6 A graph showing the relationship between the heat dissipation coefficient C at the measured temperature T and the thermal conductivity ⁇ of the ambient gas.
  • FIG. 7 A graph showing the relationship between the heat dissipation coefficient C and the thermal conductivity ⁇ of the ambient gas when the measured temperature ⁇ is changed.
  • FIG. 8 A graph showing the thermal characteristics of multiple gases ⁇ , ⁇ , and ⁇ , and the temperature characteristics for ⁇ and ⁇ .
  • FIG. 9 is a diagram showing the relationship between gas density and calorific value.
  • FIG. 10 is a diagram showing a schematic configuration of a gas component ratio measuring apparatus.
  • FIG. 11 is a diagram showing a configuration example of a power source.
  • FIG. 12 is a diagram showing a configuration example of a conventional thermal conductivity measuring device.
  • the present invention uses, for example, a microheater 1 whose schematic configuration is shown in FIG. 1, and basically measures the thermal conductivity of an atmospheric gas (pure gas or mixed gas) from the calorific value of the microheater 1.
  • the microheater 1 forms a concave cavity lb on the surface of a silicon chip la having a thickness of 0.5 mm and vertical and horizontal dimensions of about 1.5 mm, respectively, and forms a thin film diaphragm lc by bridging the cavity lb.
  • a minute heating resistor (heater) Id made of platinum or the like is provided on the diaphragm lc.
  • a temperature sensor le for measuring the ambient temperature is provided at the periphery of the silicon chip la.
  • Such a structure of the microheater 1 is, for example, a pair of heater elements Rh corresponding to the heating resistor Id along the fluid flow direction F as shown in a schematic cross-sectional structure in FIG. It is well known as a thermal flow meter equipped with temperature sensors Ru and Rd.
  • the heating resistor (heater) ld, the upstream temperature sensor Ru, the downstream temperature sensor Rd, and the ambient temperature sensor le provided on the surface of the silicon chip la also have a platinum thin film body force.
  • These heating resistors (heaters) Id and temperature sensors Ru, Rd, etc. are made of, for example, a thin silicon oxide (SiO 2) film or a silicon nitride (SiN) film having a thickness of about 0.2 to 0.5 ⁇ m.
  • the heating resistor (heater) Id that forms the main part of the microheater 1 is substantially supported in the air by being sandwiched between the thin diaphragm lc and the electrical insulating film. Located in the atmosphere gas.
  • the surface of the heating resistor (heater) Id is in contact with the atmospheric gas through the electrical insulating film, and the back surface thereof is in contact with the atmospheric gas through the diaphragm lc.
  • the electrical insulating film and the thin film diaphragm are very thin, the front and back surfaces of the heating resistor (heater) Id are substantially It can be regarded as being in contact with atmospheric gas.
  • the microheater 1 having a heat generating resistance force such as platinum has a property that its resistance value changes with temperature.
  • the resistance value force is 3 ⁇ 4std at a standard temperature Tstd of 20 ° C
  • the primary heater When the temperature coefficient of resistance is ⁇ and the temperature coefficient of second-order resistance is
  • Rh Rstd- ⁇ 1 + a (Th-Tstd) + ⁇ (Th-Tstd) 2 ⁇ ...
  • the resistance value Rh of the microheater 1 is calculated from the electric power Ph for energizing the microheater 1 and the energization current Ih.
  • Rh Ph / Ih 2 --(2)
  • the temperature Th of the microheater 1 is stabilized when it is in thermal equilibrium with the atmospheric gas.
  • the driving power Ph of the micro heater 1 in this equilibrium state is between the heater temperature Th and the ambient temperature To when the heat dissipation coefficient from the micro heater 1 to the ambient gas is C.
  • the heater temperature Th is calculated from the driving power Ph of the microheater 1 and the energization current Ih at that time or the voltage Vh across the microheater 1 and the energization current Ih as described above.
  • the resistance value Rh of the heater 1 can be obtained, and the resistance value Rh can be obtained by calculating back the above-described equation (1).
  • the ambient temperature To, for example, as described for the structure of the microheater 1 with reference to FIG. It can be obtained by a temperature sensor le for detecting the ambient temperature.
  • the heat dissipation coefficient C from the microheater 1 to the ambient gas is calculated according to the above-described equation (4). It becomes possible.
  • the above-described heat dissipation coefficient C is an average heat transfer coefficient from the microheater 1 to the ambient gas (in the heat transfer from the object serving as the heat source to the ambient gas, a plurality of heat dissipation surfaces of the heat source are When divided into blocks, the heat transfer coefficient in each block is called the local heat transfer coefficient, and the heat transfer coefficient of the entire block (that is, the entire heat radiation surface of the heat source) obtained by averaging the local heat transfer coefficients of each block Is the average heat transfer coefficient) and h is the heat dissipation area of the microheater 1,
  • the average heat transfer coefficient h generally varies depending on the natural convection state of the atmospheric gas and the surface condition of the microheater 1.
  • the coefficient [2] is that heat transfer force from the microheater 1 to the ambient gas as described above is performed on each of the two surfaces of the microheater 1 as schematically shown in FIG. It is taken into consideration.
  • the element area (heat generation area) of the microheater 1 is small, the range of temperature change caused by the heat generation of the microheater 1 is very small, and only spot-like temperature displacement occurs. Assuming that no convection occurs, the temperature distribution around the microheater 1 gradually decreases as the distance from the microheater 1 increases as shown in FIG. In particular, the temperature of the atmospheric gas at the part in contact with the microheater 1 is increased to the heater temperature Th, and gradually decreases to the ambient temperature To as the distance from the microheater 1 increases.
  • the temperature force of the ambient gas in the vicinity of the micro heater 1 having such a temperature distribution is defined as the distance d from the above-mentioned heater temperature Th to the ambient temperature To defined as the thickness d of the temperature boundary layer.
  • the thermal conductivity of the atmospheric gas generally tends to increase as the temperature increases.
  • the thermal conductivity ⁇ of the ambient gas at the average temperature T of the temperature boundary layer is
  • ⁇ o is the thermal conductivity of the ambient gas at a reference temperature (eg, 0 ° C)
  • y is the first-order temperature coefficient.
  • the average temperature T of the temperature boundary layer is, for example,
  • the thickness d of the temperature boundary layer varies depending on the thermal conductivity ⁇ of the atmospheric gas, and the greater the thermal conductivity, the faster the heat transfer, so the thickness d becomes thinner. Conversely, when the thermal conductivity of the atmospheric gas is small, the temperature change gradient becomes gentle due to the slow heat transfer, and the temperature boundary layer thickness d increases. Then, if the thermal conductivity of the reference gas at the reference temperature Tstd is ⁇ std and the thickness of the temperature boundary layer at that time is given as dstd, the ambient gas having the thermal conductivity at the reference temperature Tstd is ⁇ Between the temperature boundary layer thickness do
  • the reference gas refers to an arbitrarily selected gas.
  • methane gas is selected as the reference gas.
  • the heat radiation area S of the microheater 1 generally indicates the entire area of the diaphragm lc on which the heating resistor (heater) Id is formed, and the atmospheric gas in the vicinity of the microheater 1 is often indicated.
  • the temperature distribution varies depending on the temperature distribution on the diaphragm lc. However, in the case of an atmospheric gas with a high thermal conductivity, the temperature distribution is sharp, so that the substantial heat dissipation area S of the microheater 1 is regarded as an area smaller than the area So of the diaphragm lc. be able to.
  • the heat dissipation area S of the microphone opening heater 1 is spot-like, and it can be regarded as a point heat source! it can.
  • the present invention is obtained from the driving power Ph of the microheater 1 based on such consideration.
  • the heat conductivity ⁇ of the ambient gas at the measurement temperature T is obtained from the proportional relationship between the heat dissipation coefficient C and the thermal conductivity described above according to the heat dissipation coefficient c!
  • FIG. 4 is a conceptual diagram showing an embodiment of the present invention.
  • 1 (Id) is a micro heater
  • 2 is a power source (for example, a constant current source) that drives the micro heater 1 to generate heat
  • 1 e is a micro heater.
  • the temperature sensor that detects the ambient temperature of 1 is shown.
  • the method and apparatus for measuring thermal conductivity according to the present invention includes a heater temperature detection for obtaining the heater temperature Th as described above according to the driving power Ph of the microheater 1 driven to generate heat by the power source 2 and the current Ih at that time.
  • Means 3 further includes a heat dissipation coefficient calculation means 4 for obtaining the heat dissipation coefficient C from the microheater 1 in accordance with the heater temperature Th and the ambient temperature To determined by the temperature sensor le and the driving power Ph of the microheater 1. Is provided.
  • the present inventors prepared beg methane, propane and nitrogen power to verify the reliability of the thermal conductivity ⁇ of the atmospheric gas required as described above, and prepared multiple types of mixed gases as shown in FIG. I examined the relationship between the thermal conductivity and the heat dissipation coefficient C.
  • the first mixed gas is methane; 80%, propane; 10%, nitrogen; 10%
  • the second mixed gas is methane; 90%, propane; 5%, nitrogen; 5% composition ratio. That is, these mixed gases are samples of gases whose types are known but whose component ratios (composition ratios) are unknown.
  • FIG. 7 shows the heat dissipation coefficient C when the current Ih flowing through the microheater 1 is increased to 3.5 mA and the measured temperature T is increased under the condition where each of the above-mentioned mixed gases is an atmospheric gas. The relationship with the thermal conductivity of the mixed gas is shown. From the experimental results shown in FIG. 7, it can be seen that even if the measured temperature T is changed, that is, even if the heater temperature is changed, the proportional relationship between the heat dissipation coefficient C and the thermal conductivity ⁇ of each of the above mixed gases. Is maintained
  • the above-mentioned mixture gas (atmosphere gas) is in accordance with the heat dissipation coefficient C obtained from the heater power Ph. It was confirmed that the thermal conductivity ⁇ at the measured temperature T can be obtained accurately.
  • the thermal conductivities ⁇ of these gases are shown in FIG. 8, for example.
  • the atmospheric gas is a mixed gas consisting of the above-described plural types of pure gas, if the composition ratio is the same, the thermal conductivity of the mixed gas changes depending on the temperature. Therefore, when obtaining the thermal conductivity of the atmospheric gas as described above, it is important to determine the measurement temperature ⁇ in advance, for example.
  • the thermal conductivity ⁇ of the mixed gas at the temperature T1 is roughly a mixture of the above gases.
  • the ratio (composition ratio of the mixed gas) is x, y, z,
  • ⁇ , ⁇ are the values at the temperature Tl of each gas ⁇ , ⁇ , ⁇ . Speak.
  • thermo conductivity ⁇ , ⁇ of the mixed gas at each of these temperatures ⁇ 1, ⁇ 2, ⁇ 3, for example, by changing the energization current Ih of the microheater 1 to change the heater temperature Th step by step.
  • T1, T2, and T3 they can be obtained from the above-described heat dissipation coefficients. Therefore, if the heat dissipation coefficient C is obtained for each measurement condition while changing the heater temperature Th step by step, the mixed gas at the reference temperature (temperature T) set according to each of the above measurement conditions according to each heat dissipation coefficient C. It is possible to obtain the thermal conductivity ⁇ of each.
  • the temperature characteristics of the plurality of pure gases ,, ⁇ , ⁇ , and the temperature characteristics of ⁇ , ⁇ constituting the mixed gas can be obtained in advance as shown in FIG. Therefore, if the temperatures ⁇ ⁇ ⁇ 1, ⁇ 2, and ⁇ 3 for determining the thermal conductivity of the mixed gas described above are determined, the thermal conductivity of each gas ⁇ ⁇ , ⁇ , and ⁇ ⁇ ⁇ ⁇ at these temperatures ⁇ 1, ⁇ 2, and ⁇ 3, ⁇ and ⁇ can be obtained respectively.
  • the thermal conductivity ⁇ of the mixed gas depends not only on the composition ratio of the pure gas forming the mixed gas but also on the coupling coefficient F between the pure gases. Specifically, when considering a mixed gas consisting of two types of pure gases ⁇ and ⁇ (for example, propane and nitrogen), the thermal conductivity of each of the pure gases X and ⁇ ⁇ is ⁇ X and ⁇ y, and the mixture When the ratio (composition ratio of the mixed gas) is x, y, the thermal conductivity of the mixed gas is
  • xy yx is the coupling coefficient of gas Y to pure gas X.
  • F is the coupling coefficient of pure gas X to pure gas Z
  • F is the purity of pure gas Y
  • the coupling coefficient for pure gas Z, F is the coupling coefficient for pure gas Z to pure gas X, and
  • F is the coupling coefficient of pure gas Z to pure gas Y.
  • the coupling coefficient F can be calculated, for example, as follows: Lindsay-Bromley approximate expression force
  • the equation (17a) is used to solve the simultaneous equations of thermal conductivity obtained at different temperatures T, and the unknown composition ratio y, z Can be obtained with high accuracy.
  • the component ratio of each gas ⁇ , ⁇ , ⁇ can be obtained by solving the ternary simultaneous equations, so at least different from each other. It is sufficient to obtain the thermal conductivity and ⁇ of the mixed gas at the two temperatures ⁇ 1 and ⁇ 2.
  • the temperature ⁇ of the [ ⁇ -1] stage is set, and the thermal conductivity of the mixed gas at each of these temperatures ⁇ is set respectively. If it is obtained, it becomes possible to obtain the composition ratio of each gas by the ⁇ -ary simultaneous equation force.
  • the calorific value of each gas is determined from the relationship between the gas density and the calorific value shown in FIG. Can be determined according to the total amount and the composition ratio. Therefore, it is possible to calculate the heat generation amount of the mixed gas. Specifically, the calorific value (energy amount) of the mixed gas per unit volume can be calculated simply and accurately with the component ratio force obtained as described above.
  • the gas component ratio measuring device that determines the component ratio of the mixed gas and further calculates the calorific value thereof, for example, in addition to the above-described thermal conductivity measuring device as shown in FIG.
  • the thermal conductivity ⁇ of the mixed gas at ⁇ and the thermal conductivity ⁇ at each of the above temperatures ⁇ ⁇ ⁇ ⁇ are stored in association with the plurality of gases that are supposed to form this mixed gas! / Memory 9 is provided. Further, the gas component ratio measuring device is provided with the mixed gas and each gas stored in the memory 9.
  • the above-mentioned simultaneous equations are established from the thermal conductivity ⁇ of the gas, and the simultaneous equations are analyzed and each gas equation is analyzed.
  • the component ratio calculating means 10 for obtaining the component ratio of the gas and the calorific value calculating means 11 for calculating the total calorific value of the mixed gas according to the component ratio calculated by the component ratio calculating means 10 are realized.
  • the calculation of the total calorific value is performed by referring to the relationship between the gas density and the calorific value according to the type of gas registered in advance in the calorific value table 12, for example, as shown in FIG.
  • the power source 2 described above is realized as a constant current source whose output current can be varied according to the measurement conditions for the atmospheric gas.
  • the power source 2 includes a plurality of constant current sources ⁇ 1, ⁇ 2, ⁇ 3 to ⁇ ⁇ ⁇ ⁇ as shown in Fig. 12, and these constant current sources ⁇ 1, ⁇ 2, ⁇ 3 to ⁇ are connected to the switches Sl, S2, S3. It is sufficient to realize it as a device that selectively connects to the microheater 1 via ⁇ Sn and drives the microheater 1 with constant current.
  • the component ratio measuring apparatus configured as described above, in the case where the gas components are divided in advance, such as natural gas, the component ratio can be easily obtained. It can. That is, in the case of natural gas, its gas component is mainly composed of methane, ethane, open bread, butane, etc., and nitrogen or carbon dioxide gas may be incidentally included. Therefore, assuming that all these gas components are contained, the thermal conductivity ⁇ at a plurality of temperatures T is obtained as described above, and if the ratio of each gas component is obtained, it is contained in the mixed gas. Since the content ratio of the gas component is determined as [0], only the mixing ratio of the gas component that is truly contained in the mixed gas can be accurately determined. As a result, there are significant practical effects such as evaluation of the quality of natural gas and the ability to easily monitor the total calorific value.
  • the thermal conductivity ⁇ of the atmospheric gas to be measured can be easily obtained without using a large force installation such as providing a constant temperature bath as in the prior art. Also, by changing the heater temperature Th and changing the atmospheric gas measurement conditions (measurement temperature T), the component ratio of the mixed gas is affected. It is possible to accurately evaluate the thermal conductivity ⁇ according to the measured temperature T.
  • each gas component is obtained by obtaining the thermal conductivity of the mixed gas when the heater temperature Th is changed.
  • the above component ratio can be obtained accurately.
  • the component ratio can be determined easily and the force can be determined accurately without using a complicated and heavy-duty apparatus such as gas chromatography. If the component ratio of the mixed gas is obtained, a great practical effect is obtained such that the total calorific value of the mixed gas can be easily evaluated according to the component ratio.
  • each of the aforementioned calculation functions in the heat transfer amount measuring device can be realized by software in a microcomputer.
  • the structure of the microheater is not particularly limited, and the heater element of an existing microflow sensor can be used as it is.
  • the heat generation driving means of the microheater 1 is not limited to the above-described example.
  • the present invention can also be applied to the method of measuring the gas thermal conductivity in a thermostatic chamber filled with the atmospheric gas mentioned as the background art.
  • the atmospheric gas surrounding the microheater 1 is not replaced with another gas, it can be said that the temperature Th of the microheater 1 is in thermal equilibrium with the atmospheric gas.
  • the present invention can also be applied to a thermal conductivity measuring apparatus using a cavity as shown in FIG. In this case, the atmospheric gas introduced into the cavity stays and is exchanged only by molecular diffusion with the atmospheric gas flowing through the flow path. When it becomes constant, it can be considered that the atmospheric gas and the heater in the cavity are in thermal equilibrium. Therefore, in this thermal equilibrium state, the thermal conductivity of the atmospheric gas can be measured with high accuracy.
  • the present invention can be implemented with various modifications without departing from the scope of the invention.

Abstract

 空中に支持されて雰囲気ガス中に設けられたマイクロヒータに加えた電力Phとそのときのヒータ温度Thおよび周囲温度Toとに従って前記マイクロヒータからの放熱係数C[=Ph/(Th-To)]を算出する。そして計測温度T[=(Th-To)/2]における前記雰囲気ガスの熱伝導率λ(T)と放熱係数Cとの比例関係[C=K・λ(T)]に基づいて、上記算出された放熱係数Cから前記雰囲気ガスの熱伝導率λ(T)を求める。

Description

熱伝導率測定方法および装置、並びにガス成分比率測定装置 技術分野
[0001] 本発明は、種類が既知であるがその成分比率 (組成比率)が不明なガス、例えば天 然ガスの熱伝導率を簡易に計測し得る熱伝導率測定方法および装置、並びに熱伝 導率測定装置を用いたガス成分比率測定装置に関する。
背景技術
[0002] ガスの熱伝導率を計測する手法として、ヒータを取り巻く雰囲気ガスを一定温度に 保った状態で前記ヒータを定温度で駆動し、その発熱量を計測することが知られて 、 る。この手法は、ヒータの発熱量とその雰囲気ガスの熱伝導率とが比例することを利 用したものである。しかしながらこの手法を採用して雰囲気ガスの熱伝導率を計測す る場合には、上記雰囲気ガスを一定温度に保っための恒温槽を必要とする等、その 構成が大掛かりとなることが否めない。
[0003] また日本国;特開 2001— 221758号公報には、図 12に示すように流体を導く流路 に面して上記流体を滞留させるキヤビティを設けると共に、このキヤビティと流路との 境界に多孔体を設けることで、前記キヤビティ内に組み込んだセンサ(ヒータ)の発熱 量から前記流体の熱伝導率を精度良く検出することが開示される。ちなみに上記多 孔体は、流路内の流体とキヤビティ内の流体とが分子拡散のみによって交換されるよ うに設計される。
[0004] し力しながら一般的にガスの熱伝導率は、その種類に応じた固有の温度変化特性 を有するので、単純にヒータの発熱量を計測しても、その熱伝導率を正確に計測す ることができな 、と言う本質的な問題がある。特に天然ガスのように複数種類のガスが 入り混じった混合ガスが雰囲気ガスの場合、その熱伝導率を計測することが非常に 困難であった。
[0005] ちなみに混合ガスをカラムと称される部材に通し、その分子量の違いに起因する流 速の違 、を利用してガス種の組成比率を分析し、その上で混合ガスの熱伝導率を計 測することも行われている。し力しながらこのような手法においては、カラムを用いた 混合ガスの組成比率の分析に多大な時間が掛かる上、分析装置の全体構成が複雑 で高価である等の問題もあった。
発明の開示
[0006] 本発明は、純粋ガスや混合ガスの熱伝導率を簡易に計測することのできる熱伝導 率測定方法および装置を提供することを目的として!、る。更には上記熱伝導率測定 方法および装置を用いて種類が既知の混合ガス、例えば天然ガスの組成比率を求 めて、その発熱量を評価することのできるガス成分比率測定装置を提供することを目 的としている。
[0007] 本発明はマイクロヒータと称される微小な放熱面積を有するヒータ、つまり点熱源と 看做し得るヒータを駆動し、その発熱量から雰囲気ガスの熱伝導率を計測するように した場合、これによつてヒータ近傍の雰囲気ガスが自然対流を生じることなく局所的 な温度分布を形成して平衡すること、そしてこのときの平均熱伝達係数 hが概ね雰囲 気ガスの熱伝導率 λに比例し、且つ温度境界層の厚み dに反比例することに着目し てなされている。また雰囲気ガスの熱伝導率えとマイクロヒータ力もの放熱係数 Cとが 高 ヽ相関性を有することに着目して 、る。
[0008] そこで本発明に係る熱伝導率測定方法は、空中に支持されて雰囲気ガス (計測対 象)中に設けられたマイクロヒータを用いてその発熱量から上記雰囲気ガスの熱伝導 率を計測するようにしたものであって、
特に上記マイクロヒータに加えた電力 Phとそのときのヒータ温度 Thおよび周囲温度 Toとに基づ 、て前記マイクロヒータ力もの放熱係数 C [ = Ph/(Th-To)]を算出し、 その計測温度における前記雰囲気ガスの熱伝導率 λ と前記放熱係数 Cとの比例 関係 [C=K, λ ]に従って、上記算出された放熱係数 Cから前記雰囲気ガスの上 記計測温度 Τにおける熱伝導率 λ を求めることを特徴として 、る。
(τ)
[0009] ちなみに前記計測温度 Τは、前記ヒータ温度 Thと周囲温度 Toとの平均温度 [ = (T h+To) /2]として求められる。また計測温度 Tにおける前記雰囲気ガスの熱伝導率 λ と放熱係数 Cとの比例関係 [C=K' ]は、前記マイクロヒータ力も雰囲気ガス への平均熱伝導率 hが該雰囲気ガスの熱伝導率 λに比例し、且つ雰囲気ガスにお ける温度境界層の厚み dに反比例すると看做して [h= Zd]、前記雰囲気ガスの上 記計測温度 Tにおける熱伝導率 λ 、基準ガスの熱伝導率とその温度境界層の厚
(τ)
みとを基準として求められる前記雰囲気ガスの温度境界層の厚み d、および前記マイ クロヒータの放熱面積 Sを用いて前記放熱係数 Cを表した関係式 [C = 2· ( λ /ά)
(τ)
•S]として求められる。
[0010] このような熱伝導率測定方法を実行する熱伝導率計測定置は、空中に支持されて 雰囲気ガス中に設けられるマイクロヒータと、このマイクロヒータの温度 Thを求めるヒ ータ温度検出手段と、前記マイクロヒータの周囲温度 Toを計測する温度センサと、前 記マイクロヒータを通電加熱する電源と、この電源による前記マイクロヒータの通電電 力 Ph、そのときのヒータ温度 Thおよび周囲温度 Toに基づいて前記マイクロヒータか らの放熱係数 Cを [C = PhZ (Th— To) ]として算出する放熱係数演算手段と、前記ヒ ータ温度 Thと周囲温度 Toとに従って前記雰囲気ガスの計測温度を求める計測温度 算出手段と、計測温度 Tにおける前記雰囲気ガスの熱伝導率 λ と放熱係数じとの 比例関係 [C=K, λ ]に基づいて、前記放熱係数演算手段にて算出された放熱 係数 Cから前記計測温度 Τにおける前記雰囲気ガスの熱伝導率 λ を求める熱伝 導率演算手段とを備えて実現される。
[0011] この際、前記ヒータ温度検出手段については、例えば標準温度における前記マイク 口ヒータの抵抗値 Rstdと、前記電源により前記マイクロヒータを通電加熱したときの駆 動電力 Phと通電電流 Ih、または端子電圧 Vhと通電電流 Ihから求められるヒータの抵 抗値 Rhとからヒータ温度 Thを算出するように構成すれば良い。また前記熱伝導率演 算手段につ 、ては、計測温度 Tにおける前記雰囲気ガスの熱伝導率 λ と放熱係
(τ) 数 Cとの比例関係を登録したテーブルを参照して、前記放熱係数演算手段にて求め られた放熱係数 Cに対応する熱伝導率 λ を求めるように構成すれば良!ヽ。
更に前記マイクロヒータに加える電力 Phを変化させてヒータ温度 Thを変化させる計 測条件変更手段を備えることも好まし 、。
[0012] また本発明に係るガス成分比率測定装置は、上述した計測条件変更手段を用いて 互いに異なるヒータ温度での雰囲気ガスの熱伝導率 λ をそれぞれ求める手段と、 上記各ヒータ温度での熱伝導率 λ の連立方程式力 前記雰囲気ガスの組成比を 解析する解析手段とを備えたことを特徴として ヽる。 具体的には上記解析手段は、前記雰囲気ガスが n種のガスの混合ガスであって、 その熱伝導率え が上記各ガスの熱伝導率 λ ΐ , λ 2 ,〜え η を、その組成比 率と各ガス間の結合係数とに応じて定まる割合で加算したものであると看做して、 [η —1]段階に設定されたヒータ温度 Th(l),Th(2)〜Th(n-l)においてそれぞれ求められ る [n— 1]個の熱伝導率え , λ 〜λ を解析して上記糸且成比率を求めるよう に構成される。
尚、上記結合係数は、例えば熱伝導率を求めるヮシリエワ [Wassiljewa]の式中で用 いられているものである。またこの結合係数については、例えば後述するようにリンゼ ィ ·ブロムレイ [Lindsay-Bromley]の近似式にて求めることができる。
[0013] 更には上記ガス成分比率測定装置に、前記解析手段により求められた前記雰囲気 ガスの組成比率から、該雰囲気ガスの発熱量を求める機能を持たせることも有用であ る。ちなみに前記雰囲気ガスは、例えばメタン、ェタン、プロパン、ブタンを主体とする 天然ガスからなる。 図面の簡単な説明
[0014] [図 1]本発明で用いられるマイクロヒータの素子構造を示す図。
[図 2]マイクロヒータの概略的な断面構造を示す図。
[図 3]マイクロヒータを発熱駆動したときのマイクロヒータ近傍における雰囲気ガスの温 度分布を模式的に示す図。
[図 4]本発明の実施形態に係る熱伝導率測定方法および装置の要部概略構成図。
[図 5]組成比率の異なる混合ガスの例を示す図。
[図 6]計測温度 Tにおける放熱係数 Cと雰囲気ガスの熱伝導率 λ との関係を示す 図。
[図 7]計測温度 Τを変更したときの放熱係数 Cと雰囲気ガスの熱伝導率 λ との関係 を示す図。
[図 8]複数のガス Χ,Υ,Ζの熱伝導率え , λ , λ についての温度特性を示す 図。
[図 9]ガス密度と発熱量との関係を示す図。 [図 10]ガス成分比率測定装置の概略構成を示す図。
[図 11]電源の構成例を示す図。
[図 12]従来の熱伝導率測定装置の構成例を示す図。
発明を実施するための最良の形態
[0015] 以下、図面を参照して本発明に係る熱伝導率測定方法および熱伝導率測定装置 、並びにガス成分比率測定装置につ!/、て説明する。
本発明は、例えば図 1にその概略構成を示すマイクロヒータ 1を用い、基本的には 上記マイクロヒータ 1の発熱量から雰囲気ガス (純粋ガスまたは混合ガス)の熱伝導率 を測定するものである。マイクロヒータ 1は、例えば厚み 0.5mmで縦横の寸法がそれ ぞれ 1.5mm程度のシリコンチップ laの表面に凹状のキヤビティ lbを形成すると共に 、このキヤビティ lbを架橋して薄膜のダイヤフラム lcを形成し、このダイヤフラム lc上 に白金等からなる微小な発熱抵抗体 (ヒータ) Idを設けたものである。また一般的に は上記シリコンチップ laの周辺部には、その周囲温度を計測する為の温度センサ le が設けられる。
[0016] このようなマイクロヒータ 1の構造は、例えば図 2に概略的な断面構造を示すように、 流体の通流方向 Fに沿って発熱抵抗体 Idに相当するヒータ素子 Rhを挟んで一対の 温度センサ Ru,Rdを設けた熱式流量計として良く知られたものである。ちなみにシリコ ンチップ laの表面に設けられる発熱抵抗体 (ヒータ) ld、上流側温度センサ Ru、下流 側温度センサ Rd、および周囲温度センサ leは白金の薄膜体等力もなる。またこれら の発熱抵抗体 (ヒータ) Idや温度センサ Ru,Rd等は、例えば厚さが 0.2〜0.5 μ m程 度の薄い酸ィ匕シリコン (SiO )膜、または窒化シリコン (SiN)膜からなる電気絶縁膜で
2
覆われて、その表面が保護される。
[0017] 特にマイクロヒータ 1の主体部をなす発熱抵抗体 (ヒータ) Idは、肉薄のダイヤフラム lcと上記電気絶縁膜との間に挟み込んで設けられることで実質的には空中に支持さ れて雰囲気ガス中に位置付けられる。この結果、上記発熱抵抗体 (ヒータ) Idの表面 は上記電気絶縁膜を介して雰囲気ガスに接し、またその裏面はダイヤフラム lcを介 して雰囲気ガスに接するようになつている。但し、上記電気絶縁膜および薄膜のダイ ャフラムはそれぞれ非常に薄いので、前記発熱抵抗体 (ヒータ) Idの表裏面は、実質 的に雰囲気ガスに接していると看做し得る。尚、以下の説明では発熱抵抗体 (ヒータ
) Idそのものをマイクロヒータ 1として説明する。
[0018] ところで白金等の発熱抵抗体力 なるマイクロヒータ 1は、温度によってその抵抗値 が変化する性質を有し、例えば 20°Cなる標準温度 Tstdでの抵抗値力 ¾stdである場 合、 1次の抵抗温度係数を α、 2次の抵抗温度係数を |8としたとき、温度 Thでの抵抗 値 Rhは
Rh = Rstd- { 1 + a (Th-Tstd)+ β (Th-Tstd)2} …ひ)
として与えられる。そしてマイクロヒータ 1の抵抗値 Rhは、マイクロヒータ 1を通電駆動 する電力 Phとその通電電流 Ihとから
Rh = Ph/Ih2 - --(2)
として、或いはマイクロヒータ 1の両端間電圧 Vhとそのときの通電電流 Ihとから
Rh = Vh/Ih … )
として求めることができる。
[0019] またマイクロヒータ 1の温度 Thは、雰囲気ガスとの間で熱的に平衡状態となったとき に安定する。そしてこの平衡状態でのマイクロヒータ 1の駆動電力 Phは、マイクロヒー タ 1から雰囲気ガスへの放熱係数を Cとしたとき、そのヒータ温度 Thと周囲温度を To との間で
C-(Th-To) = Ph · '·(4)
なる関係を有する。換言すれば上記の (4)式に満たす条件が成立したとき、マイクロヒ ータ 1と雰囲気ガスとが熱的に平衡状態となって安定する。従ってこの熱的平衡状態 の条件から、マイクロヒータ 1から雰囲気ガスへの放熱係数 Cを
C = Ph/(Th-To) 〜(4a)
として求めることが可能となる。
[0020] 具体的にはヒータ温度 Thは、前述したようにマイクロヒータ 1の駆動電力 Phとそのと きの通電電流 Ihから、或いはマイクロヒータ 1の両端間電圧 Vhとその通電電流 Ihとか らマイクロヒータ 1の抵抗値 Rhを求め、更にこの抵抗値 Rhカゝら前述した (1)式を逆算 することによって求めることができる。更に周囲温度 Toについては、例えば図 1を用 いてマイクロヒータ 1の構造を説明したように、マイクロヒータ 1の近傍に設けられる周 囲温度検出用の温度センサ leにて求めることができる。従ってマイクロヒータ 1の駆 動電力 Ph、マイクロヒータ 1のヒータ温度 Th、その周囲温度 Toをそれぞれ求めること で、前述した (4)式に従ってマイクロヒータ 1から雰囲気ガスへの放熱係数 Cを算出す ることが可能となる。
[0021] 一方、上述した放熱係数 Cは、マイクロヒータ 1から雰囲気ガスへの平均熱伝達係 数 (熱源となる物体から雰囲気ガスへの熱の移動にお 、て、熱源の放熱面を複数の ブロックに分割した時、それぞれのブロックにおける熱伝達係数を局所熱伝達係数と 言 、、各ブロックの局所熱伝達係数を平均化して求めた前記ブロック全体 (すなわち 熱源の放熱面全体)の熱伝達係数を平均熱伝達係数と言う)を hとし、マイクロヒータ 1の放熱面積を Sとしたとき、一般的には
C = 2-h- S … )
として表すことができる。尚、上記平均熱伝達係数 hは、一般的には雰囲気ガスの自 然対流の状況やマイクロヒータ 1の表面状態によって変化する。また上記係数 [2]は 、前述したようにマイクロヒータ 1から雰囲気ガスへの熱伝達力 図 3にその概念を模 式的に示すようにマイクロヒータ 1の表裏の 2面でそれぞれ行われることを考慮したも のである。
[0022] しかしマイクロヒータ 1の素子面積(発熱面積)が微小なので、このマイクロヒータ 1の 発熱によって生じる温度変化の範囲が微小であってスポット的な温度変位しか生じる ことがなぐまた雰囲気ガスの自然対流も生じないものとすると、マイクロヒータ 1の周 囲の温度分布は、専ら図 3に示すようにマイクロヒータ 1から離れるに従って次第に低 くなる。特にマイクロヒータ 1に接する部位での雰囲気ガスの温度はヒータ温度 Thま で高められ、マイクロヒータ 1から離れるに従って次第にその周囲温度 Toまで低下す る。
[0023] このような温度分布をなす前記マイクロヒータ 1の近傍の雰囲気ガスの温度力 上記 ヒータ温度 Thカゝら周囲温度 Toまで低下するまでの距離を温度境界層の厚み dとして 定義すると、前述した平均熱伝達係数 hは、雰囲気ガスの熱伝導率 λに比例し、且 つ温度境界層の厚み dに反比例すると考えられる。即ち、平均熱伝達係数 hは h = λ /d 〜(6) として決定される。
[0024] ちなみに雰囲気ガスの熱伝導率えは、一般的に温度が高くなるに従って大きくなる 傾向にある。例えば上記温度境界層の平均温度 Tにおける雰囲気ガスの熱伝導率 λ は
λ = λ ο (1 + γ ·Ύ) - -{7)
(τ)
として与えられる。但し、上記 λ οは、基準温度 (例えば 0°C)における雰囲気ガスの熱 伝導率であり、 yは 1次の温度係数である。また温度境界層の平均温度 Tは、例えば
T = (Th+To) /2
として与えられる。
[0025] また前記温度境界層の厚み dは雰囲気ガスの熱伝導率 λによって変化し、熱伝導 率えが大きくなる程、熱伝達が早いのでその厚み dが薄くなる。逆に雰囲気ガスの熱 伝導率えが小さい場合には、熱伝達が遅い分、温度変化の勾配が緩や力となって 温度境界層の厚み dが厚くなる。そして基準温度 Tstdにおける基準ガスの熱伝導率 が λ stdであり、そのときの温度境界層の厚みが dstdとして与えられるものとすれば、 上記基準温度 Tstdでの熱伝導率が λ の雰囲気ガスの温度境界層の厚み doとの間 には
do # λ = dstd' λ std - "(Sa)
なる関係が成立する。尚、上記基準ガスとは任意に選択されたガスを指し、この実施 例にお ヽては、例えばメタンガスが基準ガスとして選択される。
[0026] また上記基準温度 Tstdでの熱伝導率が λ である雰囲気ガスの温度境界層の厚 み doと、上記雰囲気ガスの温度 (計測温度) Tにおける熱伝導率え とそのときの温 度境界層の厚み d との間には、
(τ)
do - λ ο = d - λ - - -(8b)
(τ) (τ)
なる関係が成立する。つまり温度境界層の厚み dと雰囲気ガスの熱伝導率えとの積 は、ガスの種別に拘わりなく一定であると考えられる。
換言すれば計測温度 Tにおける雰囲気ガスの温度境界層の厚み d は、 d = dstd- λ std/ λ " '(8c)
(τ) (τ)
として与えられることになる。 [0027] またマイクロヒータ 1の放熱面積 Sは、一般的には前述した発熱抵抗体 (ヒータ) Id を形成したダイヤフラム lcの全体の面積を指すことが多ぐマイクロヒータ 1の近傍に おける雰囲気ガスの温度分布はダイヤフラム lc上での温度分布に依存して変化する 。しかし熱伝導率えの大きい雰囲気ガスの場合には、その温度分布がシャープな形 状となるので、その実質的なマイクロヒータ 1の放熱面積 Sをダイヤフラム lcの面積 So よりも小さ ヽ面積として捉えることができる。
[0028] 具体的にはマイクロヒータ 1の実質的な放熱面積 Sは、温度境界層における雰囲気 ガスの熱伝導率え に反比例して狭くなるので、
(T)
S c So/λ … )
(T)
として捉えることができる。そしてマイクロヒータ 1自体が微小であることと相俟って、マ イク口ヒータ 1の放熱面積 Sはスポット状であって、実質的に点熱源をなして!/ヽると看 做すことができる。
[0029] 以上の考察から前述した放熱係数 Cと雰囲気ガスの熱伝導率え との関係をまと
(T)
めると、前述した (5)〜(8)式から
C = 2-h-S
= 2·(λ /ά )-S
(τ) (τ)
= 2-S- λ /[dstd- lstd/l ]
(τ) (τ)
= 2-S- λ V[dstd- Istd] ---(10)
(τ)
なる関係を導くことができる。そして更にこの (10)式に前述した (9)式を代入することに よって
C oc 2'[_So/X ]·λ
(τ) (τ) V[dstd- Istd]
o 2-So- λ /d[dstd- Istd] 〜(11)
(T)
なる関係を導き出すことができる。
[0030] そして基準温度 Tstdにおける基準ガス(例えばメタンガス)の熱伝導率 λ std、およ び温度境界層の厚み dstdがそれぞれ既知であり、またダイヤフラム lcの面積 Soも既 知であるので、上記 (11)式力 前述した放熱係数 Cは、専ら、計測温度 Tにおける雰 囲気ガスの熱伝導率 λ に比例して 、ることを読み取ることができる。
(Τ)
そこで本発明はこのような考察に基づき、マイクロヒータ 1の駆動電力 Phから求めら れる放熱係数 cに従って、上述した放熱係数 Cと熱伝導率え との比例関係から、 計測温度 Tにおける前記雰囲気ガスの熱伝導率 λ を求めることを特徴として!/ヽる。
[0031] 図 4は本発明の実施形態を示す概念図で、 1 (Id)はマイクロヒータを、 2はマイクロ ヒータ 1を発熱駆動する電源(例えば定電流源)を、そして 1 eはマイクロヒータ 1の周 囲温度を検出する温度センサを示して 、る。本発明に係る熱伝導率測定方法および 装置は、電源 2により発熱駆動されるマイクロヒータ 1の駆動電力 Phと、そのときの通 電電流 Ihとに従って前述したようにヒータ温度 Thを求めるヒータ温度検出手段 3を備 え、更に上記ヒータ温度 Thと前記温度センサ leにて求められる周囲温度 To、および 前記マイクロヒータ 1の駆動電力 Phに従ってマイクロヒータ 1からの放熱係数 Cを求め る放熱係数算出手段 4を備える。この放熱係数算出手段 4による放熱係数 Cの算出 は、前述したように [C = PhZ(Th— To)]なる演算を実行することによってなされる。
[0032] また計測温度算出手段 5は、上記ヒータ温度 Thと前記温度センサ leにて求められ る周囲温度 Toとに従って、その計測温度 Tを前述した温度境界層の平均温度 T[= ( Th+To) Z2]として求めている。そして熱伝導率算出手段 6は、上記計測温度丁の 下で上述した放熱係数算出手段 4にて求められた放熱係数 Cに従ってテーブル 7を 参照し、該テーブル 7に予め登録された放熱係数 Cと熱伝導率え との関係から上 記放熱係数 Cに対応する熱伝導率え を求め、これを出力する如く構成される。
[0033] 本発明者らは上述した如く求められる雰囲気ガスの熱伝導率 λ の信頼性を検証 するベぐメタン、プロパンおよび窒素力 なる図 5に示す如き複数種の混合ガスを準 備し、その熱伝導率えと放熱係数 Cとの関係について調べてみた。尚、図 5において 、例えば第 1の混合ガスはメタン; 80%、プロパン; 10%、窒素; 10%の糸且成比率で あり、また第 2の混合ガスは、メタン; 90%、プロパン; 5%、窒素; 5%の組成比率であ ることを示している。つまりこれらの混合ガスは、種類が既知であるがその成分比率( 組成比率)が不明なガスのサンプルである。
[0034] そして上記各混合ガスをそれぞれ雰囲気ガスとした状況下にお 、てマイクロヒータ 1 に 2.5mAの電流 Ihを流し、このときの放熱係数 Cと上記各混合ガスの熱伝導率 λ との関係を調べたところ、図 6に示す如き結果が得られた。尚、この場合の雰囲気ガ スの温度 (計測温度) Τは、温度境界層における平均温度 [ (Th+To) /2]であると 看做し得る。そしてこの実験結果からは、計測温度 Tにおける混合ガス (雰囲気ガス) の熱伝導率え と放熱係数 cとの関係が略比例していることが示される。従って前述 した如く放熱係数 Cを求めれば、この放熱係数 Cから雰囲気ガスの熱伝導率え を 直接的に評価し得ることが確認できた。
[0035] また図 7は、前述した各混合ガスをそれぞれ雰囲気ガスとした状況下においてマイ クロヒータ 1に流す電流 Ihを 3.5mAと増大させ、計測温度 Tを高くしたときの放熱係数 Cと上記各混合ガスの熱伝導率え との関係を示している。この図 7に示す実験結 果からは、その計測温度 Tを変えた場合であっても、つまりヒータ温度を変えても放熱 係数 Cと上記各混合ガスの熱伝導率 λ との間の比例関係が維持されることが確認
(τ)
できた。従って計測温度 Τにおける放熱係数 Cと雰囲気ガスの熱伝導率 λ との比 例関係を予め求めておけば、ヒータ電力 Phから求められる前述した放熱係数 Cに従 つて混合ガス (雰囲気ガス)の上記計測温度 Tでの熱伝導率 λ を精度良く求め得 ることが確認できた。
[0036] またこの実験結果から、前述した放熱係数 Cと雰囲気ガスの熱伝導率 λ 0との関係 の解析に誤りがな ヽことが確認できた。つまり平均熱伝達係数 hが雰囲気ガスの熱伝 導率 λに比例し、且つ温度境界層の厚み dに反比例すると看做して行った解析に誤 りがないことが確認できた。そしてマイクロヒータ 1からの放熱係数 Cに従って雰囲気 ガスの計測温度 Tにおける熱伝導率え を求めても、その測定結果が十分に精度の 高いものであることが理論的にも裏付けられた。
[0037] ところで天然ガスを構成する複数種の純粋ガス、例えばメタン、プロパン、窒素の個 々の熱伝導率に着目した場合、これらの各ガスの熱伝導率 λ は、例えば図 8に示 すように互いに異なる温度変化特性を有する。従って雰囲気ガスが上述した複数種 の純粋ガスカゝらなる混合ガスである場合、その組成比率が同じであると雖も温度丁に よって混合ガスの熱伝導率え が変化する。従って前述した如く雰囲気ガスの熱伝 導率え を求める場合には、例えばその計測温度 Τを予め定めておくことが重要で ある。或いは種々の計測温度 Τに応じた放熱係数 Cと熱伝導率 λ との関係を求め
(τ)
ておくことが必要である。
[0038] またこのことは逆に、例えば異なる温度 Τ1,Τ2,Τ3において上記雰囲気ガスの熱伝 導率え , λ , λ をそれぞれ求めれば、これらの熱伝導率え , λ , λ 力 上記雰囲気ガスの組成比率を逆算し得ることを意味する。
即ち、 3種類の純粋ガス Χ,Υ,Ζ (例えばメタン、プロパン、窒素)からなる混合ガスを 考えた場合、温度 T1における混合ガスの熱伝導率 λ は、概略的には上記各ガス の混合比率 (混合ガスの組成比率)を x,y,zとしたとき、
x+y+z= l - --(12)
λ =χ· λ +y λ +ζ· λ - --(13)
となる。但し、上記え , λ , λ は、上記各ガス Χ,Υ,Ζの温度 Tlにおける個
Figure imgf000014_0001
ヽる。
[0039] 同様に温度 Τ2における混合ガスの熱伝導率え は、
λ =χ· λ +y λ +ζ· λ - --(14)
となり、更に温度 Τ3における混合ガスの熱伝導率え は、
λ =χ· λ +y λ +ζ· λ · '·(15)
となる。そして前述したように各ガス Χ,Υ,Ζの熱伝導率え , λ , λ が互いに異 なる温度特性を有するので、これらの各温度 Tl ,Τ2,Τ3にお ヽてそれぞれ求められ る混合ガスの熱伝導率え , λ , λ は互いに異なることになる。
[0040] 尚、これらの各温度 Τ1,Τ2,Τ3における混合ガスの熱伝導率え , λ , λ に ついては、例えばマイクロヒータ 1の通電電流 Ihを変更してヒータ温度 Thを段階的に 変え、これによつて複数の温度 T1,T2,T3を設定することで、前述した放熱係数じか らそれぞれ求めることができる。従ってヒータ温度 Thを段階的に変えながら各測定条 件での放熱係数 Cをそれぞれ求めれば、これらの各放熱係数 Cに従って上記各測定 条件に応じて設定される基準温度 (温度 T)における混合ガスの熱伝導率 λ をそ れぞれ求めることが可能となる。
[0041] そして混合ガスを構成する複数の純粋ガス Χ,Υ,Ζの熱伝導率え , λ , λ に ついての温度特性については、予め図 8に示すように求めておくことができる。従つ て上述した混合ガスの熱伝導率え を求める温度 Τ1,Τ2,Τ3が決定されれば、これ らの温度 Τ1,Τ2,Τ3における上記各ガス Χ,Υ,Ζの熱伝導率え , λ , λ をそ れぞれ求めることができる。従って前述した (12)〜(15)式に従って、その未知数であ る混合比率 x,y,zにつ 、て解けば、これによつて各ガス Χ,Υ,Ζの組成比率 x,y,zを求 めることが可能となる。
[0042] 尚、厳密には混合ガスの熱伝導率 λは、該混合ガスを形成する純粋ガスの組成比 率だけではなぐ上記純粋ガス間の結合係数 Fにも依存する。具体的には 2種類の 純粋ガス Χ,Υ (例えばプロパンと窒素)カゝらなる混合ガスを考えた場合、上記各純粋 ガス X, Υの熱伝導率を λ X, λ yとし、その混合比率 (混合ガスの組成比率)を x,yとし たとき、上記混合ガスの熱伝導率えは、
x+y= l ー(16)
Figure imgf000015_0001
+Ύ' λ γ/ {γ+Υ ·χ) … ァ)
yx
となる。但し、 F は純粋ガス Xの純粋ガス Yに対する結合係数であり、また F は純粋
xy yx ガス Yの純粋ガス Xに対する結合係数である。
[0043] 同様に 3種類の純粋ガス Χ,Υ,Ζ (例えばメタン,プロパン,窒素)からなる混合ガスを 考えた場合、上記各純粋ガス Χ,Υ,Ζの熱伝導率を λ X, λ y, λ ζとし、その混合比率( 混合ガスの組成比率)を x,y,zとしたとき、上記混合ガスの熱伝導率えは、
x+y+z= i - - -(16&ノ
Figure imgf000015_0002
+ ζ · l z/ (z + F -x+F -y) - - -(17&)
zx zy
となる。但し、 F は純粋ガス Xの純粋ガス Zに対する結合係数、 F は純粋ガス Yの純
xz yz
粋ガス Zに対する結合係数、 F は純粋ガス Zの純粋ガス Xに対する結合係数、そして
F は純粋ガス Zの純粋ガス Yに対する結合係数である。
ちなみに上記結合係数 Fは、例えばリンゼイ 'ブロムレイ [Lindsay-Bromley]の近似 式力 次のようにして計算することができる。
[0044] [数 1] ( 1 8 )
Figure imgf000016_0001
[0045] 但し、上式において ηは粘性率、 Μは分子量であって、 Sはサザーランド [Sutherland ]定数である。また定数 Siは Tbを沸点としたときに [ 1.5Tb]として与えられるものであ つて、また定数 Sijは [= (Si ' Sj) 1/2]として与えられる。
従って前述した (13)〜(15)式に代えて (17a)式を用い、異なる温度 Tにてそれぞれ 求められる熱伝導率えの連立方程式を解くことにより、その未知数である組成比率 y,zを精度良く求めることが可能となる。
[0046] 特に混合ガスの成分が 3種類のガスカゝらなる場合には、 3元の連立方程式を解くこ とによって各ガス Χ,Υ,Ζの成分比率を求めることができるので、少なくとも互いに異な る 2つ温度 Τ1,Τ2にて混合ガスの熱伝導率え , λ を求めれば十分である。また 一般的には、混合ガスが η種類のガスが混合したものであるとして、 [η— 1]段階の温 度 Τを設定し、これらの各温度 Τにおける混合ガスの熱伝導率え をそれぞれ求め れば、これによつて η元連立方程式力も各ガスの組成比率を求めることが可能となる。
[0047] また上述したようにして混合ガスを形成する複数のガスの組成比率を求めれば、例 えば図 9に示すガス密度と発熱量との関係から上記各ガスが有する発熱量を混合ガ スの総量とその組成比率に応じてそれぞれ求めることができる。従って混合ガスの発 熱量を算出することが可能となる。具体的には単位体積当たりの混合ガスが有する 発熱量 (エネルギ量)を、上述した如く求められる成分比率力も簡易に、し力も正確に 計算することが可能となる。
[0048] このようにして混合ガスの成分比率を求め、更にはその発熱量を求めるガス成分比 率測定装置は、例えば図 10に示すように前述した熱伝導率測定装置に加えて、各 温度 Τでの混合ガスの熱伝導率 λ と、この混合ガスを形成して!/、ると思われる複数 のガスにつ 、ての上記各温度 Τでの熱伝導率 λ とを対応付けて記憶するメモリ 9を 備える。更にガス成分比率測定装置は、上記メモリ 9に記憶した混合ガスおよび各ガ スの熱伝導率 λ から前述した連立方程式を立て、この連立方程式を解析して各ガ
(τ)
スの成分比率を求める成分比率演算手段 10と、この成分比率演算手段 10にて算出 された成分比率に従って混合ガスの総発熱量を計算する発熱量計算手段 11とを備 えて実現される。この総発熱量の計算は、発熱量テーブル 12に予め登録した、例え ば図 9に示すガスの種類に応じたガス密度と発熱量との関係を参照することによって 行われる。
[0049] 尚、上述したようにマイクロヒータ 1の駆動電力 Ph (ヒータ電流 Ih)を変更しながら放 熱係数 Cに従って雰囲気ガスの熱伝導率 λ ο を求める場合には、マイクロヒータ 1 を発熱駆動する前述した電源 2を、雰囲気ガスに対する測定条件に応じてその出力 電流を可変可能な定電流源として実現される。具体的には電源 2は、例えば図 12に 示すように複数の定電流源 Ι1,Ι2,Ι3〜Ιηを備え、これらの定電流源 Ι1,Ι2,Ι3〜Ιηを、 スィッチ Sl,S2,S3〜Snを介して選択的にマイクロヒータ 1に接続してマイクロヒータ 1 を定電流駆動する装置として実現すれば十分である。
[0050] 力べして上述した如く構成されたガス成分比率測定装置によれば、例えば天然ガス のようにそのガス成分が予め分力つて 、るような場合、簡易にその成分比率を求める ことができる。即ち、天然ガスの場合には、そのガス成分が主としてメタン、ェタン、プ 口パン、ブタン等からなり、付随的に窒素や炭酸ガス等が含まれることがある。従って これらの各ガス成分が全て含まれると看做して前述した如く複数の温度 Tにおける熱 伝導率 λ をそれぞれ求め、これらの各ガス成分の比率を求めれば、混合ガスに含 まれて 、な 、ガス成分にっ 、てはその含有比率が [0]として求められるので、真に混 合ガスに含まれるガス成分の混合比率だけを正確に求めることができる。この結果、 天然ガスの品質を評価したり、更にはその総発熱量を容易に監視することが可能とな る等の実用上多大なる効果が奏せられる。
[0051] 以上説明したように本発明によれば、マイクロヒータの放熱係数 Cを求めるだけで純 粋ガスや混合ガスの熱伝導率え を高精度に、しかも簡易〖こ求めることができる。し 力も従来のように恒温槽を設ける等の大掛力りな設備を用いなくても、簡易に測定対 象とする雰囲気ガスの熱伝導率 λ を求めることができる。またヒータ温度 Thを変化さ せて雰囲気ガスの測定条件 (計測温度 T)を変えることで、混合ガスの成分比率に拘 わることなぐ計測温度 Tに応じた熱伝導率 λ を正確に評価することができる。
(τ)
[0052] 更には混合ガスの種類が既知であるが、その成分比率が不明な場合には、ヒータ 温度 Thを変えたときの混合ガスの熱伝導率え をそれぞれ求めることで、各ガス成
(τ)
分の熱伝導率え の温度特性に基づ 、て上記成分比率を正確に求めることができ る。特にガスクロマトグラフィのような複雑で大掛力りな装置を用いなくても、その成分 比率を簡易に、し力も精度良く求めることができる。そして混合ガスの成分比率が求 められたならば、その成分比率に従って混合ガスの総発熱量を簡易に評価すること ができる等の実用上多大なる効果が奏せられる。
[0053] 尚、本発明は上述した実施形態に限定されるものではない。例えば熱伝達量測定 装置における前述した各演算機能については、マイクロコンピュータにおけるソフトゥ エアにより実現することも可能である。またマイクロヒータの構造も特に限定されるもの ではなぐ既存のマイクロフローセンサのヒータ素子をそのまま流用することも可能で ある。またマイクロヒータ 1の発熱駆動手段についても上述した例に限定されないこと は言うまでもない。
[0054] またマイクロヒータ 1の近傍に設けた温度センサにて、上記マイクロヒータ 1によりカロ 熱された雰囲気ガスの温度を監視しながら、マイクロヒータ 1の温度を制御するように 構成することも可能である。このようにすればマイクロヒータ 1の発熱温度 (ヒータ温度 Th)と温度センサにて計測される加熱された雰囲気ガスの温度との比力 その温度 分布を求め、この温度分布から雰囲気ガスの熱伝導率を評価してヒータ温度 Thを調 整することも可能となるので、前述した熱伝導率の測定精度を高めることが可能とな る。
[0055] また本発明は、背景技術として挙げた雰囲気ガスを封入した恒温槽内でガス熱伝 導率を計測する手法においても適用することができる。この場合、マイクロヒータ 1を 取り巻く雰囲気ガス自体は他のガスに置換されることがないので、マイクロヒータ 1の 温度 Thは上記雰囲気ガスとの間で熱的に平衡状態になると言える。更には図 12に 示したようなキヤビティを用いた熱伝導率測定装置にも本発明を適用することができ る。この場合、キヤビティ内へ導かれた雰囲気ガスは滞留し、流路を通流する雰囲気 ガスとの間では分子拡散によってのみ交換されるだけなので、ヒータの駆動電力が一 定となったとき、キヤビティ内における雰囲気ガスとヒータとが熱的に平衡状態となつ たと看做すことができる。従ってこの熱的平衡状態において、雰囲気ガスの熱伝導率 を高精度に計測することが可能となる。その他、本発明はその要旨を逸脱しない範囲 で種々変形して実施することができる。

Claims

請求の範囲
空中に支持されて雰囲気ガス中に設けられたマイクロヒータを用 、、
上記マイクロヒータにカ卩えた電力 Phとそのときのヒータ温度 Thおよび周囲温度 Toと に従って前記マイクロヒータ力もの放熱係数 C[ = Ph/(Th— To)]を算出し、 計測温度 Tにおける前記雰囲気ガスの熱伝導率 λ と前記放熱係数 Cとの比例関
(τ)
係 [C=K, λ ]に基づいて、上記算出された放熱係数 Cから前記雰囲気ガスの熱 伝導率 λ を求めることを特徴とする熱伝導率測定方法。
前記計測温度 Τは、前記ヒータ温度 Thと周囲温度 Toとの平均温度として求められる ものである請求項 1に記載の熱伝導率測定方法。
前記計測温度 Tにおける前記雰囲気ガスの熱伝導率 λ と放熱係数 Cとの比例関 係 [C=K' λ ]は、前記マイクロヒータ力 雰囲気ガスへの平均熱伝達係数 hが該 雰囲気ガスの熱伝導率 λに比例し、且つ雰囲気ガスの温度境界層の厚み dに反比 例すると看做して、前記雰囲気ガスの上記計測温度 Tにおける熱伝導率 λ 、基準 ガスの熱伝導率とその温度境界層の厚みを基準として求められる前記雰囲気ガスの 温度境界層の厚み d、および前記マイクロヒータの放熱面積 Sを用いて前記放熱係 数 Cを表した関係式 [C = 2,(λ /ά),S]として求められるものである請求項 1に記 載の熱伝導率測定方法。
空中に支持されて雰囲気ガス中に設けられるマイクロヒータと、
このマイクロヒータの温度 Thを求めるヒータ温度検出手段と、
前記マイクロヒータの周囲温度 Toを計測する温度センサと、
前記マイクロヒータを通電加熱する電源と、
この電源による前記マイクロヒータの通電電力 Phと、そのときのヒータ温度 Thおよび 周囲温度 Toとに従って前記マイクロヒータ力 の放熱係数 Cを算出する放熱係数演 算手段と、
前記ヒータ温度 Thと周囲温度 Toとに従って前記雰囲気ガスの計測温度を求める計 測温度算出手段と、
前記計測温度 Tにおける前記雰囲気ガスの熱伝導率 λ と前記放熱係数 Cとの比
(τ)
例関係 [C=K, λ ]に基づいて、前記放熱係数演算手段にて算出された放熱係 数 Cから上記計測温度 Tにおける前記雰囲気ガスの熱伝導率 λ を求める熱伝導 率演算手段と
を具備したことを特徴とする熱伝導率測定装置。
[5] 前記ヒータ温度検出手段は、標準温度における前記マイクロヒータの抵抗値 Rstdと、 前記電源により前記マイクロヒータを通電加熱したときの駆動電力 Phと通電電流 Ih、 または端子電圧 Vhと通電電流 Ihから求められるヒータの抵抗値 Rhに従ってヒータ温 度 Thを算出するものである請求項 4に記載の熱伝導率測定装置。
[6] 前記熱伝導率演算手段は、計測温度 Tにおける前記雰囲気ガスの熱伝導率え と
(τ) 放熱係数 cとの比例関係を登録したテーブルを参照して、前記放熱係数演算手段に て求められた放熱係数 Cに対応する熱伝導率 λ を求めるものである請求項 5に記 載の熱伝導率測定装置。
[7] 前記計測温度算出手段は、前記ヒータ温度 Thと周囲温度 Toとの平均温度として前 記計測温度 Tを求めるものである請求項 5に記載の熱伝導率測定装置。
[8] 請求項 5に記載の熱伝導率測定装置において、更に前記マイクロヒータに加える電 力 Phを変化させてヒータ温度 Thを変化させる計測条件変更手段を備えることを特徴 とする熱伝導率測定装置。
[9] 請求項 8に記載の熱伝導率測定装置を用いて互いに異なるヒータ温度での雰囲気 ガスの熱伝導率え をそれぞれ求める手段と、
上記各ヒータ温度での熱伝導率 λ の連立方程式から前記雰囲気ガスの組成比 を解析する解析手段とを備えたことを特徴とするガス成分比率測定装置。
[10] 前記解析手段は、前記雰囲気ガスが η種のガスの混合ガスであって、その熱伝導率 λ が上記各ガスの熱伝導率 λ ΐ , 1 2 ,〜え η を、その組成比率と各ガス間の
(τ) (τ) (Τ) (Τ)
結合係数とに応じて定まる割合で加算したものであると看做して、 [η- 1]段階に設 定されたヒータ温度 Th(l),Th(2)〜Th(n- 1)においてそれぞれ求められる [η— 1 ]個の 熱伝導率え , % 〜え を解析して上記糸且成比率を求めるものである請求項
9に記載のガス成分比率測定装置。
[11] 請求項 9に記載のガス成分比率測定装置において、
更に前記解析手段により求められた前記雰囲気ガスの組成比率から、該雰囲気ガ スの発熱量を求める機能を備えたことを特徴とするガス成分比率測定装置。
[12] 前記雰囲気ガスは、メタン、ェタン、プロパン、ブタンを主体とする天然ガス力もなる請 求項 9〜: L 1のいずれかに記載のガス成分比率測定装置。
PCT/JP2006/318987 2005-09-27 2006-09-25 熱伝導率測定方法および装置、並びにガス成分比率測定装置 WO2007037209A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/088,225 US7926323B2 (en) 2005-09-27 2006-09-25 Thermal conductivity measuring method and apparatus, and gas component ratio measuring apparatus
EP06798312.2A EP1947450A4 (en) 2005-09-27 2006-09-25 METHOD AND DEVICE FOR MEASURING THERMAL CONDUCTIVITY, AND DEVICE FOR MEASURING PROPORTIONS OF A GAS
JP2007537612A JP4868604B2 (ja) 2005-09-27 2006-09-25 熱伝導率測定装置、ガス成分比率測定装置
CN2006800351552A CN101273265B (zh) 2005-09-27 2006-09-25 热导率测定方法及装置、以及气体成分比例测定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2005/017748 2005-09-27
PCT/JP2005/017748 WO2007036983A1 (ja) 2005-09-27 2005-09-27 熱伝導率測定方法および装置、並びにガス成分比率測定装置

Publications (1)

Publication Number Publication Date
WO2007037209A1 true WO2007037209A1 (ja) 2007-04-05

Family

ID=37899423

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2005/017748 WO2007036983A1 (ja) 2005-09-27 2005-09-27 熱伝導率測定方法および装置、並びにガス成分比率測定装置
PCT/JP2006/318987 WO2007037209A1 (ja) 2005-09-27 2006-09-25 熱伝導率測定方法および装置、並びにガス成分比率測定装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017748 WO2007036983A1 (ja) 2005-09-27 2005-09-27 熱伝導率測定方法および装置、並びにガス成分比率測定装置

Country Status (4)

Country Link
US (1) US7926323B2 (ja)
EP (1) EP1947450A4 (ja)
CN (1) CN101273265B (ja)
WO (2) WO2007036983A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210555A (ja) * 2009-03-12 2010-09-24 Yamatake Corp ガス物性値計測システム、ガス物性値の計測方法、発熱量算出式作成システム、発熱量算出式の作成方法、発熱量算出システム、及び発熱量の算出方法
JP2010237006A (ja) * 2009-03-31 2010-10-21 Yamatake Corp ガス物性値計測システム、ガス物性値の計測方法、発熱量算出式作成システム、発熱量算出式の作成方法、発熱量算出システム、及び発熱量の算出方法
JP2010237005A (ja) * 2009-03-31 2010-10-21 Yamatake Corp ガス物性値計測システム、ガス物性値の計測方法、発熱量算出式作成システム、発熱量算出式の作成方法、発熱量算出システム、及び発熱量の算出方法
US20110185789A1 (en) * 2008-10-01 2011-08-04 Yamatake Corporation Calorific value calculation formula generating system, calorific value calculation formula generating method, calorific value calculating system, and calorific value calculating method
JP2011196714A (ja) * 2010-03-17 2011-10-06 Yamatake Corp 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法
JP2011203050A (ja) * 2010-03-25 2011-10-13 Yamatake Corp 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法
JP2011209047A (ja) * 2010-03-29 2011-10-20 Yamatake Corp 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法
JP2011209008A (ja) * 2010-03-29 2011-10-20 Yamatake Corp 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法
KR101258007B1 (ko) * 2010-03-26 2013-04-24 아즈빌주식회사 발열량 산출식 작성 시스템, 발열량 산출식 작성 방법, 발열량 측정 시스템, 발열량 측정 방법, 저항 계측 시스템 및 저항 계측 방법
US8888361B2 (en) 2011-05-09 2014-11-18 Azbil Corporation Calorific value measuring system and calorific value measuring method
US9188557B2 (en) 2012-03-27 2015-11-17 Azbil Corporation Calorific value measuring system and calorific value measuring method
JP2019528463A (ja) * 2016-08-18 2019-10-10 ネバダ・ナノテック・システムズ・インコーポレイテッド 物質の少なくとも1つの特性を決定するためのシステムおよび方法
US20210055239A1 (en) * 2019-08-22 2021-02-25 Omron Corporation Mixture ratio calculation device
CN112414489A (zh) * 2019-08-22 2021-02-26 欧姆龙株式会社 混合比算出装置
JP7445531B2 (ja) 2020-06-15 2024-03-07 理研計器株式会社 メタン価測定装置およびメタン価算出方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5107063B2 (ja) 2008-01-08 2012-12-26 アズビル株式会社 流量制御装置
JP2009162128A (ja) 2008-01-08 2009-07-23 Yamatake Corp 燃料供給装置
JP5192431B2 (ja) * 2009-03-31 2013-05-08 アズビル株式会社 ガス物性値測定システム
DE102010018968A1 (de) * 2010-04-29 2011-11-03 Bundesrepublik Deutschland, vertr. durch d. Bundesministerium f. Wirtschaft und Technologie, dieses vertreten durch d. Präsidenten d. Physikalisch-Technischen Bundesanstalt Verfahren zum Messen einer thermischen Transportgröße und Transportgrößen-Messvorrichtung
JP5641996B2 (ja) * 2011-03-24 2014-12-17 アズビル株式会社 密度測定システム及び密度の測定方法
EP2574918B1 (de) * 2011-09-28 2014-12-10 Mems Ag Mikrothermisches Verfahren und Sensor zur Bestimmung physikalischer Gaseigenschaften
DE102012001573B4 (de) * 2012-01-18 2018-10-11 Diehl Metering Gmbh Verfahren zum Messen einer Durchflussmenge eines strömenden Gases und Durchflussmessgerät
JP5779131B2 (ja) * 2012-03-27 2015-09-16 アズビル株式会社 発熱量測定システム及び発熱量の測定方法
JP2015031577A (ja) * 2013-08-01 2015-02-16 アズビル株式会社 発熱量測定システムおよび発熱量測定方法
US9354220B2 (en) * 2013-09-27 2016-05-31 Caterpillar Inc. Engine system having fuel quality sensor
US9835575B2 (en) * 2014-10-16 2017-12-05 Ams International Ag Ratiometric device
CN105181005B (zh) * 2015-04-24 2017-10-20 西安交通大学 气体流量与组分浓度的一体化测量方法及装置
JP6670706B2 (ja) * 2016-08-09 2020-03-25 アズビル株式会社 発熱量測定装置および方法
US10852261B2 (en) * 2016-10-29 2020-12-01 Sendsor Gmbh Sensor and method for measuring respiratory gas properties
DE102017124256A1 (de) 2016-10-29 2018-05-03 Sendsor Gmbh Sensor und Verfahren zum Messen der Eigenschaften des Atemgas
EP3315956A1 (en) * 2016-10-31 2018-05-02 Sensirion AG Multi-parametric sensor with bridge structure
CN108132276B (zh) * 2016-12-01 2020-10-23 中国科学院大连化学物理研究所 一种测量气(液)-固相相互作用强度的装置和方法
CN107421985B (zh) * 2017-09-08 2023-03-31 西安科技大学 煤体导热系数测定装置及方法
EP3521816A1 (fr) * 2018-02-06 2019-08-07 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Méthode de contrôle sur site de la qualité des gaz livrés sur un site industriel consommateur utilisant la technique de la conductivité thermique
EP3367087A3 (en) * 2018-04-30 2018-12-26 Sensirion AG Sensor for determining thermal capacity of fluids
EP4169607A1 (de) * 2021-10-21 2023-04-26 Mems Ag Mischanteilsbestimmung beim mischen von gasen
CN114203316B (zh) * 2021-11-08 2022-10-21 华能核能技术研究院有限公司 高温气冷堆非热平衡工况下反应堆功率测量方法及其系统
CN115236478A (zh) * 2022-07-26 2022-10-25 华南理工大学 一种提取氮化镓器件热阻的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508382A (ja) * 1994-11-02 1998-08-18 アボアテク オサケ ユキチュア 実時間測定方法
JP2797198B2 (ja) * 1988-06-24 1998-09-17 ハネウエル・インコーポレーテッド 流体の熱伝導率及び比熱測定方法及び装置
JP3114139B2 (ja) * 1995-01-24 2000-12-04 株式会社山武 熱伝導率計
JP3153787B2 (ja) * 1996-07-31 2001-04-09 リコーエレメックス株式会社 抵抗体による熱伝導パラメータセンシング方法及びセンサ回路
JP2001221758A (ja) 2000-02-10 2001-08-17 Yamatake Corp 熱伝導率測定装置
JP2005505758A (ja) * 2001-09-12 2005-02-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 多孔質のカバーを備えたマイクロマシニング型の熱伝導率センサ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3711511C1 (de) * 1987-04-04 1988-06-30 Hartmann & Braun Ag Verfahren zur Bestimmung der Gaskonzentrationen in einem Gasgemisch und Sensor zur Messung der Waermeleitfaehigkeit
JPH0638071B2 (ja) * 1989-07-21 1994-05-18 新日鐵化学株式会社 熱伝導率の測定方法及びその装置
US5494826A (en) * 1994-04-18 1996-02-27 Gas Research Institute, Inc. Microcalorimeter sensor for the measurement of heat content of natural gas
CN2272139Y (zh) * 1996-02-11 1998-01-07 浙江大学 一种测量气体热导率的装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2797198B2 (ja) * 1988-06-24 1998-09-17 ハネウエル・インコーポレーテッド 流体の熱伝導率及び比熱測定方法及び装置
JPH10508382A (ja) * 1994-11-02 1998-08-18 アボアテク オサケ ユキチュア 実時間測定方法
JP3114139B2 (ja) * 1995-01-24 2000-12-04 株式会社山武 熱伝導率計
JP3153787B2 (ja) * 1996-07-31 2001-04-09 リコーエレメックス株式会社 抵抗体による熱伝導パラメータセンシング方法及びセンサ回路
JP2001221758A (ja) 2000-02-10 2001-08-17 Yamatake Corp 熱伝導率測定装置
JP2005505758A (ja) * 2001-09-12 2005-02-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 多孔質のカバーを備えたマイクロマシニング型の熱伝導率センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1947450A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110185789A1 (en) * 2008-10-01 2011-08-04 Yamatake Corporation Calorific value calculation formula generating system, calorific value calculation formula generating method, calorific value calculating system, and calorific value calculating method
CN102165309A (zh) * 2008-10-01 2011-08-24 株式会社山武 发热量计算式制作系统、发热量计算式的制作方法、发热量计算系统以及发热量的计算方法
JP2010210555A (ja) * 2009-03-12 2010-09-24 Yamatake Corp ガス物性値計測システム、ガス物性値の計測方法、発熱量算出式作成システム、発熱量算出式の作成方法、発熱量算出システム、及び発熱量の算出方法
JP2010237006A (ja) * 2009-03-31 2010-10-21 Yamatake Corp ガス物性値計測システム、ガス物性値の計測方法、発熱量算出式作成システム、発熱量算出式の作成方法、発熱量算出システム、及び発熱量の算出方法
JP2010237005A (ja) * 2009-03-31 2010-10-21 Yamatake Corp ガス物性値計測システム、ガス物性値の計測方法、発熱量算出式作成システム、発熱量算出式の作成方法、発熱量算出システム、及び発熱量の算出方法
JP2011196714A (ja) * 2010-03-17 2011-10-06 Yamatake Corp 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法
JP2011203050A (ja) * 2010-03-25 2011-10-13 Yamatake Corp 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法
KR101258007B1 (ko) * 2010-03-26 2013-04-24 아즈빌주식회사 발열량 산출식 작성 시스템, 발열량 산출식 작성 방법, 발열량 측정 시스템, 발열량 측정 방법, 저항 계측 시스템 및 저항 계측 방법
JP2011209047A (ja) * 2010-03-29 2011-10-20 Yamatake Corp 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法
JP2011209008A (ja) * 2010-03-29 2011-10-20 Yamatake Corp 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法
US8888361B2 (en) 2011-05-09 2014-11-18 Azbil Corporation Calorific value measuring system and calorific value measuring method
US9188557B2 (en) 2012-03-27 2015-11-17 Azbil Corporation Calorific value measuring system and calorific value measuring method
JP2019528463A (ja) * 2016-08-18 2019-10-10 ネバダ・ナノテック・システムズ・インコーポレイテッド 物質の少なくとも1つの特性を決定するためのシステムおよび方法
US10724976B2 (en) 2016-08-18 2020-07-28 Nevada Nanotech Systems Inc. Systems and methods for determining at least one property of a material
JP2020144134A (ja) * 2016-08-18 2020-09-10 ネバダ・ナノテック・システムズ・インコーポレイテッド 物質の少なくとも1つの特性を決定するためのシステムおよび方法
US11262321B2 (en) 2016-08-18 2022-03-01 Nevada Nanotech Systems Inc. Systems and methods for determining at least one property of a material
JP7155192B2 (ja) 2016-08-18 2022-10-18 ネバダ・ナノテック・システムズ・インコーポレイテッド 物質の少なくとも1つの特性を決定するためのシステムおよび方法
US11709142B2 (en) 2016-08-18 2023-07-25 Nevada Nanotech Systems Inc. Methods for determining at least one property of a material
US20210055239A1 (en) * 2019-08-22 2021-02-25 Omron Corporation Mixture ratio calculation device
CN112414489A (zh) * 2019-08-22 2021-02-26 欧姆龙株式会社 混合比算出装置
US11635395B2 (en) * 2019-08-22 2023-04-25 Omron Corporation Mixture ratio calculation device
JP7435323B2 (ja) 2019-08-22 2024-02-21 オムロン株式会社 混合比算出装置
JP7445531B2 (ja) 2020-06-15 2024-03-07 理研計器株式会社 メタン価測定装置およびメタン価算出方法

Also Published As

Publication number Publication date
US20090277246A1 (en) 2009-11-12
CN101273265A (zh) 2008-09-24
EP1947450A1 (en) 2008-07-23
CN101273265B (zh) 2010-12-29
US7926323B2 (en) 2011-04-19
EP1947450A4 (en) 2015-12-30
WO2007036983A1 (ja) 2007-04-05

Similar Documents

Publication Publication Date Title
WO2007037209A1 (ja) 熱伝導率測定方法および装置、並びにガス成分比率測定装置
JP3175887B2 (ja) 測定装置
JP4505842B2 (ja) 熱伝導率測定方法とその装置およびガス成分比率測定装置
EP1837645B1 (en) Thermal conductivity sensor
JP5075986B2 (ja) 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量算出システム、及び発熱量の算出方法
US7398681B2 (en) Gas sensor based on dynamic thermal conductivity and molecular velocity
JPH06130055A (ja) 基準条件の下でガス特性を測定する方法
US20170016840A1 (en) Device for analysis of mixtures of at least two gas
JPH08201327A (ja) 熱伝導率計
JP2004340964A (ja) 質量流量計
EP3367087A2 (en) Sensor for determining thermal capacity of fluids
EP3540382B1 (en) Airflow sensor with gas composition correction
JP5389501B2 (ja) 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量算出システム、及び発熱量の算出方法
JP3310430B2 (ja) 計測装置および計測方法
US5347876A (en) Gas flowmeter using thermal time-of-flight principle
JP4868604B2 (ja) 熱伝導率測定装置、ガス成分比率測定装置
JP3501746B2 (ja) 流体の計測方法
JP5165627B2 (ja) 物性値測定システム及び物性値測定方法
JP3502085B2 (ja) 計測装置
JP2010236972A (ja) ヒータ及びガス物性値測定システム
JP2001242114A (ja) 燃料電池用ガス検知装置用補償素子、気体熱伝導式ガス検知装置及び燃料電池用ガス供給装置
JP3243596B2 (ja) 酸素分析計
RU2146816C1 (ru) Способ детектирования газовых смесей
JP3506784B2 (ja) 計測装置および計測方法
JPH0798324A (ja) 計測装置およびその動作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680035155.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007537612

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12088225

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006798312

Country of ref document: EP