RU2146816C1 - Способ детектирования газовых смесей - Google Patents
Способ детектирования газовых смесей Download PDFInfo
- Publication number
- RU2146816C1 RU2146816C1 RU98107749/12A RU98107749A RU2146816C1 RU 2146816 C1 RU2146816 C1 RU 2146816C1 RU 98107749/12 A RU98107749/12 A RU 98107749/12A RU 98107749 A RU98107749 A RU 98107749A RU 2146816 C1 RU2146816 C1 RU 2146816C1
- Authority
- RU
- Russia
- Prior art keywords
- gas
- sensitive element
- temperature
- hot
- sensitivity
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000001514 detection method Methods 0.000 title description 3
- 230000035945 sensitivity Effects 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 12
- 239000004065 semiconductor Substances 0.000 claims abstract description 7
- 239000010409 thin film Substances 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims description 11
- 238000001179 sorption measurement Methods 0.000 claims description 10
- 239000010408 film Substances 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract description 2
- 238000010521 absorption reaction Methods 0.000 abstract 3
- 230000000694 effects Effects 0.000 abstract 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 230000001939 inductive effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 49
- 229910006404 SnO 2 Inorganic materials 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- YGANSGVIUGARFR-UHFFFAOYSA-N dipotassium dioxosilane oxo(oxoalumanyloxy)alumane oxygen(2-) Chemical compound [O--].[K+].[K+].O=[Si]=O.O=[Al]O[Al]=O YGANSGVIUGARFR-UHFFFAOYSA-N 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 229910052627 muscovite Inorganic materials 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Изобретение относится к способам анализа смесей газов с целью установления их количественного и качественного состава и может быть использовано в газовых сенсорах. Способ реализуется путем генерирования и измерения термоЭДС в электрической цепи с адсорбционным газочувствительным элементом и заключается в том, что температуру "горячего" контакта поддерживают на уровне чувствительности газочувствительного элемента к детектируемому газу и контролируют градиент температуры между "горячим" и "холодным" контактами, при этом существенно, что в качестве адсорбционного газочувствительного элемента используется слой тонкопленочного полупроводникового материала с планарными пленочными контактами. Способ позволяет уменьшить толщину и объем газочувствительного элемента при существенном увеличении градиента температуры, что обеспечивает повышение чувствительности, быстродействие сенсора, а также снижает дрейф показаний и релаксационные явления. 1 з.п. ф-лы, 1 ил.
Description
Изобретение относится к области анализа смесей газов с целью установления их качественного и количественного состава и может быть использовано в газовых сенсорах, работающих на принципе зависимости термоЭДС газочувствительного материала от наличия и концентрации определенного газа.
Известен способ детектирования газовых смесей, основанный на зависимости термоЭДС газочувствительного материала от качественного и количественного состава газовой среды, в котором измеряют ЭДС между "горячим" и "холодным" участками термоэлектрического материала при определенном градиенте температуры [1].
Недостатками известного способа детектирования газовых смесей являются низкая чувствительность к адсорбции, обусловленная большим вкладом объемной составляющей термоЭДС материала, невозможность селективного детектирования различных газов и сложных газовых смесей из-за трудности обеспечения избирательной чувствительности термоэлектрического материала к определяемым газовым компонентам, использование объемных газочувствительных элементов и связанная с этим невозможность миниатюризации датчиков.
Наиболее близким к предлагаемому способу, является способ детектирования концентрации паров этанола путем генерирования и измерения термоЭДС в электрической цепи с адсорбционным газочувствительным элементом, температуру которого поддерживают на уровне чувствительности к детектируемому газу, т.е. между "горячим" и "холодным" контактами, сформированными из благородных металлов, создают и поддерживают градиент температур при средней температуре толстопленочного газочувствительного элемента, соответствующей чувствительности к детектируемому газу [2].
Недостатками известного способа детектирования являются использование толстопленочных газочувствительных элементов, обладающих низкой чувствительностью к адсорбции, обусловленной большим вкладом объемной составляющей термоЭДС, наличие релаксации термоЭДС при установлении стационарного значения и связанное с этим достаточно низкое быстродействие, относительно малый градиент температуры (~ 20oC), при котором нет достаточного различия в процессах, происходящих в "горячей" и "холодной" зонах газочувствительного элемента. Увеличение градиента температуры при использовании толстопленочных газочувствительных элементов сопряжено с необходимостью увеличения габаритов газочувствительного элемента, в связи с невозможностью реализации больших перепадов температур на малых размерах объемных (толстопленочных) элементов. Недостатком также является невозможность применения групповой интегральной технологии при изготовлении сенсоров.
Задачей данного способа детектирования газовых смесей является повышение чувствительности к адсорбции газа, повышение быстродействия и уменьшение релаксационных явлений путем значительного уменьшения толщины и объема газочувствительного элемента и снижения вклада объемной составляющей термоЭДС (величина которой не зависит от состава окружающей среды, а определяется природой материала) в показания газоанализатора.
Решение поставленной задачи достигается тем, что в известный способ детектирования газовых смесей путем генерирования и измерения термоЭДС в электрической цепи с адсорбционным газочувствительным элементом, в котором используется толстопленочный газочувствительный элемент, причем температуру газочувствительного элемента поддерживают на уровне чувствительности к детектируемому газу при небольшом (~20oC) контролируемом градиенте температуры (при котором нет существенных различий в процессах происходящих в "горячей" и "холодной" зонах газочувствительного элемента, которые и определяют величину сигнала сенсора, т.е. его чувствительность) и контролируют градиент температуры между "горячим" и "холодным" контактами, в соответствии с нашим изобретением, вносятся существенные изменения, а именно, в качестве адсорбционного газочувствительного элемента используют слой тонкопленочного полупроводникового материала с пленочными электрическими контактами (что позволяет повысить чувствительность к адсорбции газа, быстродействие и уменьшить релаксационные явления путем значительного уменьшения толщины и объема газочувствительного элемента и снижения вклада объемной составляющей термоЭДС, а также создавать большие градиенты температур), нанесенный на диэлектрическую теплоизолирующую подложку, и температуру только "горячего" контакта поддерживают на уровне чувствительности к детектируемому газу ("холодный" контакт при этом находится при температуре, соответствующей низкой чувствительности материала газочувствительного элемента к детектируемому газу (желательно, минимально возможной для данного материала газочувствительного элемента в реальных условиях)).
Кроме того, согласно предпочтительному варианту реализации способа градиент температуры между "горячим" и "холодным" контактами создают в пределах 50-500oC в зависимости от материала тонкопленочного полупроводникового адсорбционного слоя и/или от природы детектируемого газа и, при необходимости, поддерживают за счет, например, подогрева "холодного" контакта.
Предложенный способ позволяет существенно уменьшить толщину и объем газочувствительго элемента, повысить используемый градиент температур и обеспечить повышение чувствительности, быстродействия, снизить дрейф показаний и релаксационные явления и уменьшить вклад объемной составляющей термоЭДС в измеряемый сигнал.
Кроме того, предложенный способ конкурентоспособен по отношению к способам детектирования газовых смесей тонкопленочными резистивными сенсорами, в основу работы которых положен иной принцип, а именно - принцип зависимости сопротивления газочувствительного элемента от концентрации и/или природы детектируемого газа в контролируемой среде. В частности, предложенный нами способ обеспечивает большее удобство измерений, обусловленное исключением необходимости измерения сопротивления газочувствительного элемента в широком диапазоне, исключает неконтролируемые процессы переноса вещества (связанные с ионной составляющей проводимости материала полупроводникового чувствительного элемента), поляризацию электрических контактов и инжекцию носителей заряда из контактов, обусловленные протеканием постоянного электрического тока через газочувствительный элемент резистивных сенсоров.
Реализуемость предложенного способа подтверждается примерами и схематическим чертежом сенсора (продольный разрез), где на теплоизолирующей диэлектрической подложке 1 сформирован тонкопленочный полупроводниковый газочувствительный слой 2, к которому присоединены электрические контакты 3 и 4. В зоне контакта 3, называемого "горячим", сформирован нагреватель 5. Контакт 4 условно назван "холодным".
Пример 1.
Для детектирования угарного газа (СО) использовался полупроводниковый газочувствительный слой 2, сформированный из диоксида олова (SnO2), легированного платиной и палладием в количествах по 0,5 ат.% каждого. Температура "горячего" контакта 3 составляет 225oC, температура "холодного" контакта 4 составляет 25oC. ЭДС газочувствительного элемента изменяется от 100 до 700 мВ при изменении концентрации СО в воздухе от 0 до 1 об.%. Толщина слоя SnO2 составляла при этом 50 нм. Слой SnO2 получен методом магнетронного распыления металлического олова с указанными легирующими добавками с последующим термическим окислением при температуре 500oC в течение одного часа. В качестве подложки 1 использовалась слюда (мусковит) толщиной 10 мкм, низкая теплопроводность которой позволяет создавать большие градиенты температур (до 600 градусов) на малых ( ~ несколько мм) расстояниях. В качестве электрических контактов использовалась пленка платины толщиной 250 нм, сформированная методом магнетронного распыления.
Пример 2.
Для детектирования диоксида азота (NO2) использовался газочувствительный слой нелегированного SnO2, полученный методом, описанным в примере 1. Температура "горячего" контакта составляла 100oC, температура "холодного" контакта составляла 25oC. ЭДС газочувствительного элемента изменялась на 10 мВ при введении в воздушную атмосферу 0,0002 об. % NO2. При температуре "горячего" контакта 325oC и температуре "холодного" контакта 25oC слой нелегированного SnO2 чувствителен к изменению концентрации кислорода. ЭДС газочувствительного элемента изменялась от 10 до 36 мВ при изменении концентрации кислорода от 21 до 0,0005 об.%.
Таким образом, изложенные сведения свидетельствуют о новизне, изобретательском уровне и промышленной применимости данного способа с указанными выше преимуществами по отношению к известным аналогам, позволяющими улучшить метрологические характеристики приборов, использующих данный способ, а тонкопленочное исполнение сенсоров позволяет применять групповую интегральную технологию производства.
Использованные источники информации
1. Патент США N 5507879, М.кл. H 01 L 35/02, 1996.
1. Патент США N 5507879, М.кл. H 01 L 35/02, 1996.
2. lonescu R. Combined Seebeck and resistive SnО2 gas sensor // EUROSENSORS XI. The 11th European Conference on Solid State Transdusers. Warsaw. Poland. 1997. -P.447-450.
Claims (2)
1. Способ детектирования газовых смесей путем генерирования и измерения термо-ЭДС в электрической цепи с адсорбционным газочувствительным элементом, заключающийся в том, что температуру газочувствительного элемента поддерживают на уровне чувствительности к детектируемому газу и контролируют градиент температуры между "горячим" и "холодным" контактами, отличающийся тем, что в качестве адсорбционного газочувствительного элемента используют слой тонкопленочного полупроводникового материала с пленочными электрическими контактами, поддерживают температуру только "горячего" контакта на уровне чувствительности к детектируемому газу.
2. Способ по п. 1, отличающийся тем, что градиент температуры между "горячим" и "холодным" контактами создают в пределах 50 - 500oC.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BY19980168 | 1998-02-19 | ||
BY19980168 | 1998-02-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU98107749A RU98107749A (ru) | 2000-02-20 |
RU2146816C1 true RU2146816C1 (ru) | 2000-03-20 |
Family
ID=4083716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU98107749/12A RU2146816C1 (ru) | 1998-02-19 | 1998-04-23 | Способ детектирования газовых смесей |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2146816C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2530442C1 (ru) * | 2013-05-23 | 2014-10-10 | Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" | Способ получения термоэлектрического газочувствительного материала |
RU2718133C1 (ru) * | 2019-09-17 | 2020-03-30 | Общество с ограниченной ответственностью "Научно-производственное объединение "АМБ" | Газочувствительный детектор |
-
1998
- 1998-04-23 RU RU98107749/12A patent/RU2146816C1/ru not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
Ionescu R., Combined Seebeck and yesistiveSnO 2 gas sensol, EUROSENSORS XI. The 11 tn Euvopean Confevence on Solid State Tvansdusevs, Wavsaw, Poland, 1997, p.447-450. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2530442C1 (ru) * | 2013-05-23 | 2014-10-10 | Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" | Способ получения термоэлектрического газочувствительного материала |
RU2718133C1 (ru) * | 2019-09-17 | 2020-03-30 | Общество с ограниченной ответственностью "Научно-производственное объединение "АМБ" | Газочувствительный детектор |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kappler et al. | CO consumption of Pd doped SnO2 based sensors | |
Sears et al. | Algorithms to improve the selectivity of thermally-cycled tin oxide gas sensors | |
Lampe et al. | Carbon-monoxide sensors based on thin films of BaSnO3 | |
US8161795B2 (en) | Thermal gas sensor | |
KR101931044B1 (ko) | 통합 온도 제어 및 온도 센서를 가지는 복합형 전위차 가스 센서 어레이 | |
Mandayo et al. | Strategies to enhance the carbon monoxide sensitivity of tin oxide thin films | |
US5573728A (en) | Device for selective detection of gas | |
JPH09145655A (ja) | 水素センサ | |
US20030119197A1 (en) | Fluid mixture composition sensor | |
Tomchenko et al. | Tungsten trioxide-based thick-film NO sensor: design and investigation | |
Roslyakov et al. | A thin-film platform for chemical gas sensors | |
US4134818A (en) | Solid electrolyte sensor for monitoring combustibles in an oxygen containing environment | |
JP2947904B2 (ja) | 酸素感知方法およびその装置 | |
De Graaf et al. | Surface-micromachined thermal conductivity detectors for gas sensing | |
US4870025A (en) | Method of sensing methane gas-I | |
RU2146816C1 (ru) | Способ детектирования газовых смесей | |
US4384934A (en) | Means for determining the partial pressure of oxygen in an atmosphere | |
Kim et al. | Propane/butane semiconductor gas sensor with low power consumption | |
RU2132551C1 (ru) | Способ эксплуатации газового датчика | |
Talazac et al. | Air quality evaluation by monolithic InP-based resistive sensors | |
Song et al. | A micro hot-wire sensors for gas sensing applications | |
Toda et al. | NO-sensing properties of Au thin film | |
Lantto et al. | Equilibrium and non-equilibrium conductance response of sintered SnO2 samples to CO | |
RU8805U1 (ru) | Тонкопленочный полупроводниковый газовый сенсор | |
RU2608979C2 (ru) | Газоанализатор |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20040424 |