WO2006137583A1 - 塩素製造用反応器および塩素の製造方法 - Google Patents

塩素製造用反応器および塩素の製造方法 Download PDF

Info

Publication number
WO2006137583A1
WO2006137583A1 PCT/JP2006/312938 JP2006312938W WO2006137583A1 WO 2006137583 A1 WO2006137583 A1 WO 2006137583A1 JP 2006312938 W JP2006312938 W JP 2006312938W WO 2006137583 A1 WO2006137583 A1 WO 2006137583A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
chlorine
temperature
hydrogen chloride
region
Prior art date
Application number
PCT/JP2006/312938
Other languages
English (en)
French (fr)
Inventor
Yasuhiko Mori
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to CN2006800224491A priority Critical patent/CN101223104B/zh
Priority to EP06767555A priority patent/EP1894885A4/en
Priority to KR1020077029849A priority patent/KR101299903B1/ko
Priority to BRPI0611992-1A priority patent/BRPI0611992A2/pt
Publication of WO2006137583A1 publication Critical patent/WO2006137583A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0083Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
    • F28D7/0091Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium the supplementary medium flowing in series through the units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00053Temperature measurement of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/00221Plates; Jackets; Cylinders comprising baffles for guiding the flow of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00256Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles in a heat exchanger for the heat exchange medium separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00204Sensing a parameter of the heat exchange system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00211Control algorithm comparing a sensed parameter with a pre-set value
    • B01J2219/0022Control algorithm comparing a sensed parameter with a pre-set value calculating difference
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00238Control algorithm taking actions modifying the operating conditions of the heat exchange system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus

Definitions

  • the present invention relates to a chlorine production reactor and a method for producing chlorine using the same. More specifically, the present invention relates to a chlorine production reactor that can effectively utilize a catalyst and stably maintain the catalytic activity, and a method for stably producing chlorine from hydrogen chloride in a high yield using the reactor. . Background art
  • Chlorine is useful as a raw material for producing vinyl chloride, isocyanate compounds, polystrength Ponate, chlorinated hydrocarbons, etc., and a large amount of hydrogen chloride is produced as a by-product.
  • Methods for producing chlorine by oxidizing hydrogen chloride produced as a by-product in the presence of a catalyst have been known for a long time.
  • a method using a dicon catalyst, a method using a chromium oxide catalyst, a method using a ruthenium oxide catalyst For example, see JP-A-9-6 7 10 3, EP 0 7 4 3 2 7 7, USP 5 8 7 1 7 0 7) and the like.
  • the obtained chlorine can be reused as a raw material for the above-mentioned pinyl chloride, isocyanate, polycarbonate, and chlorinated hydrocarbon processes. In each process, chlorine can be self-circulated.
  • the method using a di-icon catalyst or a chromium oxide catalyst does not have a sufficient catalyst life because it is carried out at a relatively high temperature, and the chromium oxide catalyst has a problem of handling harmful chromium.
  • the method using a ruthenium oxide catalyst can be carried out at a lower temperature than when the above catalyst is used, and has a long catalyst life, and is an excellent method. In addition, it effectively utilizes the catalyst and efficiently produces chlorine. There is a need for an improved industrial method of producing Disclosure of the invention
  • An object of the present invention is to provide a chlorine production reactor capable of effectively utilizing a catalyst and maintaining a stable catalyst activity, and to stably produce chlorine from hydrogen chloride using the reactor.
  • the object is to provide a method for producing in high yield.
  • the reactor for producing chlorine according to the present invention is a multi-tube heat exchange reactor used for producing chlorine by oxidizing hydrogen chloride with oxygen, and the inside of the shell of the reactor is a partition plate in the tube axis direction. And a temperature control means for at least one of the heating media circulating in each zone.
  • the method for producing chlorine of the present invention is a multi-tube heat exchange reactor used for producing chlorine by oxidizing hydrogen chloride with oxygen, and the inside of the reactor shell is a partition plate in the direction of the tube axis.
  • a chlorine production reactor that is divided into a plurality of regions and includes a temperature control means for at least one of the heat media circulating in each region, the gas containing hydrogen chloride and oxygen are contained. Gas is supplied, and hydrogen chloride is oxidized with oxygen at a pressure of 0.1 to lMP a G and a temperature of 20 to 500 ° C.
  • the catalyst By using the reactor for producing chlorine according to the present invention, the catalyst can be effectively utilized, the catalytic activity can be stably maintained, and chlorine can be stably produced in high yield from hydrogen chloride.
  • FIG. 1 is a schematic diagram showing an example of a chlorine production reactor according to the present invention.
  • FIG. 2 is a schematic view showing another example of the reactor for producing chlorine of the present invention.
  • FIG. 3 is a graph showing the temperature distribution of the catalyst layer in the example.
  • FIG. 4 is a graph showing the transition of HCL conversion in the examples.
  • V1 to V4 Flow rate adjusting valve BEST MODE FOR CARRYING OUT THE INVENTION
  • the reactor for producing chlorine according to the present invention is a multi-tube heat exchange reactor, in which the inside of the reactor shell is divided into a plurality of regions by partition plates in the tube axis direction, and the heat circulating through each region is divided.
  • a temperature control means for at least one of the mediums is provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of a reactor for producing chlorine according to the present invention.
  • the reactor for chlorine production (1) which is a multi-tube heat exchange reactor, mainly consists of a reaction tube (2) and a reactor shell (3).
  • the reaction tube (2) is an upper tube plate (10). And fixed to the reactor shell (3) by the lower tube plate (12).
  • the reactor shell (3) is divided into four regions (31 to 34) by partition plates in the tube axis direction.
  • the number of regions is not limited to four stages, and is usually 2 to 10 stages, preferably 3 to 8 stages, and more preferably 4 to 6 stages. When divided into three or more stages, or even four or more stages, the amount of heat generated in each region is relatively small, and the effect of the reactor (1) of the present invention is easily exerted. .
  • a partition plate (11) such as an intermediate tube plate or a shielding plate is usually used.
  • the intermediate tube plate is provided in the reactor shell (3) in close contact with the reaction tube (2) so that the heat medium (Cl, C2) does not move between the adjacent regions (31, 32). It is a partition plate.
  • the barrier plate is counteracted with a gap between it and the reaction tube (2).
  • the heat medium (C) circulating through each region (31 to 34) is appropriately selected according to the target reaction temperature, ease of handling of the heat medium, etc., for example, sodium nitrite 40% by mass, glass Inorganic consisting of inorganic substances such as molten salts (HTS: Heat Transfer Salt) such as a mixture of 7% by weight of sodium oxide and 53% by weight of potassium nitrate, and a mixture of 50% by weight of sodium nitrite and 50% by weight of potassium nitrate Heat transfer medium, alkylpiphenyls, mixtures of biphenyls and diphenyloxides, mixtures of biphenyls and diphenylethers, triphenyls, dibenzyltoluenes, alkylbenzenes, alkylnaphthalenes, arylalkyls Organic heat medium consisting of organic substances such as water, water, ionic liquids and the like.
  • HTS Heat Transfer Salt
  • a baffle plate (13) may be provided to adjust the flow direction of the heat medium (C1 to C4).
  • Examples of the shape of the baffle plate include a disc shape, a perforated disc shape, and a circular shape.
  • the baffle plate (13) is usually provided so that the flow direction of the heat medium (C 1) is substantially perpendicular to the reaction tube (2).
  • the baffle plate (13) may be provided in all the regions (31 to 34), or may be provided only in a region where it is desired to efficiently remove reaction heat. Further, the number of baffle plates may be different for each region.
  • the number of baffle plates provided in one area (31) is usually about 1 to 7.
  • Heat medium (C1 to C4) circulates in each region (31 to 34), and the reactor is provided with temperature control means for at least one of the heat media circulating in each region. It is preferable to provide a temperature control means for each divided area.
  • the temperature control means In order to control the reaction temperature in the region by the temperature control means, the temperature of the circulating heat medium is controlled.
  • the temperature control means provided in the divided area consists of a cooler and Z or a heater.
  • a temperature control means is provided for each region.
  • Circulation pumps (61 to 64) and coolers (81 to 84) are provided for each region, and the circulation pumps (61 to 64) are connected to the coolers (81 to 84) for each region (31 to 34). Cooling is performed by circulating the heat medium (C1 to C4) between the two. The temperature of the heat medium (C1 to C4) in each area is adjusted for each area (31 to 34) by adjusting the cooling temperature of the heat medium (Cl to C4) in each cooler (81 to 84). can do.
  • the reactor (1) in order to heat the circulating heat medium (C1 to C4) in the middle of the piping between the flow control valves (U1 to U4) and the divided areas (31 to 34), The heaters (41 to 44) are provided. As a result, the heat medium (C1 to C4) in all regions can be heated independently from the heat medium in the other regions.
  • FIG. 2 is a schematic cross-sectional view showing another example of the chlorine production reactor of the present invention. Similar to the reactor shown in Fig. 1, it is a multi-tube heat exchange reactor divided into four stages (31-34).
  • the heat medium (C1 to C4) in each region is cooled by adding a pre-cooled heat medium (CO) to each region (31 to 34). That is, in this reactor (1), a circulation pump (61 to 64) and a circulation tank (51 to 54) are provided for each region (31 to 34), and each region (31 to 34) is separated by a circulation pump (61 to 64).
  • the heat medium (C1 to C4) is circulated between 31 to 34) and the circulation tanks (51 to 54).
  • the heat medium (CO) cooled in advance from the heat medium tank (7) is distributed and added to each circulation tank (51 to 54).
  • the heating medium (C1 to C4) is cooled.
  • Heat medium in each region (C1 ⁇ (4) temperature can be measured with a circulation tank (51 ⁇ 54) and / or thermometers installed in each region (31 ⁇ 34), this temperature is a predetermined value
  • V1 to V4 the flow rate adjustment valve
  • the heat medium tank (7) is provided with a cooler (8), and the heat medium (CO) is cooled by the cooler (8).
  • Water is preferably used as the refrigerant in the cooler (8).
  • steam is generated, and by using this in the process, the reaction heat can be efficiently recovered.
  • the circulation tanks (51 to 54) are provided as close as possible to the respective areas (31 to 34) because the number of pipes between the respective areas and the circulation tank can be reduced.
  • the heating medium tank (7) is provided with a preheater (9). When the operation is started, the heating medium (C0) is preheated to a predetermined temperature by the preheating apparatus (9). This to each circulation tank (51 to 54) can also be supplied.
  • An electric heater is preferably applied as the preheater (9).
  • the movement of the heating medium (C1 to C4) between the regions (31 to 34) can be reduced, It is preferable to match the height of the liquid level of the heat medium in each circulation tank (51 to 54), and to further minimize the movement of the heat medium (C1 to C4) between each region (31 to 34). It is also preferable to adjust the circulation flow rate between each region (31 to 34) and the circulation tank (51 to 54) by the circulation flow rate control valve (U1 to U4).
  • the liquid level of the heat medium in each circulation tank (51 to 54) can be measured by a normal liquid level gauge (not shown).
  • the reactor (1) is a heater (41) that heats the heating medium (C1) packed in the divided area (31) independently from the heating medium (C2 to C4) in the other areas (32 to 34).
  • Examples of the heater (41) include an electric heater and a heat exchange type heater, but an electric heater is preferably used.
  • the heater (41) is provided only in the region (31). However, like the reactor shown in FIG. 1, all of the divided regions (31 to 34) are provided. The temperature of each region (31 to 34) can be adjusted more precisely, which is preferable.
  • an axial flow pump, a centrifugal vortex pump, or the like is used, and among them, a vertical centrifugal vortex pump is preferably used.
  • the part in contact with the process gas such as nickel is made of nickel or nickel lining.
  • the reactor (1) of the present invention it becomes easy to finely adjust the temperature in each region if necessary. For example, when the supply amount of the raw material compound (A) is small and the exothermic amount due to the exothermic reaction is small In addition, the region can be easily maintained at a predetermined reaction temperature.
  • the reaction temperature decreases near the inlet of the reaction tube (2).
  • the heater (41) for heating the heating medium (C1) in the region (31) near the inlet of the reaction tube (2) is provided, the heating medium (C2 to C4) in the other region (32 to 34) ),
  • the heating medium (C1) in this region (31) can be heated only without heating the other region (32 to 34) while maintaining the predetermined reaction temperature.
  • the catalyst near the inlet (31) of the reaction tube (2) tends to deteriorate relatively quickly, whereas the catalyst near the outlet (34) tends to deteriorate relatively slowly.
  • the reaction temperature is raised by heating the heating medium (C4) in the region (34) corresponding to the vicinity of the outlet.
  • the yield in this region (34) can be increased.
  • the temperature control method is not limited to one in which a circulation pump is provided for each region shown in FIGS. 1 and 2, and the heating medium is circulated, but each heating medium is supplied from a heating medium tank as shown in FIG. Instead of providing a circulation tank in these areas, it may be supplied via a flow control valve, a cooler or a heater, and the heat medium directly returned from each area to the heat medium tank.
  • catalysts having different catalytic activities are packed in layers from the inlet to the outlet, preferably so that the catalytic activity is increased.
  • a catalyst with different catalytic activity due to different composition, manufacturing method and Z or particle size, or dilute the catalyst with a packing formed only of inert material and Z or support. Filled.
  • An inert substance may be filled between the inlet and outlet of the catalyst layer and the catalyst layer.
  • Inert substances are solids that are inert to the process gas, such as alumina, silicon force, silicon carbide, nickel, etc.
  • a molded body made of can be applied.
  • spherical bodies made of hyalumina are preferably used.
  • Each part of the reaction tube corresponding to the divided region of the reactor shell is filled with catalyst so that the catalytic activity is different, but this is not necessarily limited, and the reaction tube corresponding to one region
  • a part may be filled with a plurality of catalysts having different catalytic activities, or a reaction tube part corresponding to a plurality of continuous regions may be filled with a catalyst having the same catalytic activity. That is, the area of the catalyst different from that of the divided shell does not need to match.
  • a ruthenium oxide catalyst is preferable, and a catalyst in which ruthenium oxide is supported on a titanium oxide-containing support is particularly preferable.
  • ruthenium oxide catalysts those prepared by the methods described in JP-A No. 9-67 10 3 and JP-A No. 2 00-0 2 8 1 3 1 4 are preferably used.
  • a particularly suitable catalyst in the present invention specifically, a supported ruthenium oxide catalyst having a ruthenium oxide content of 1 to 20% by weight and a ruthenium oxide central diameter of 1.0 to 10. O nm.
  • a ruthenium oxide composite oxide type catalyst can be mentioned, but the present invention is not limited to this.
  • the catalyst may be used in the form of a spherical granule, a cylindrical pellet, an extruded shape, a ring shape, a honeycomb shape, or an appropriately sized granule shape after powder classification.
  • the catalyst diameter is preferably 5 mm or less. This is because if the catalyst diameter exceeds 5 mm, the activity may decrease.
  • the lower limit of the catalyst diameter is not particularly limited, but if it becomes too small, the pressure loss in the catalyst packed bed will increase, so a catalyst with a diameter of 0.5 mm or more is usually used.
  • the catalyst diameter here means the diameter of a sphere in the case of spherical particles, the diameter of the cross section in the case of a cylindrical pellet, and the maximum diameter of the cross section in other shapes.
  • the portion less than 50% from the inlet of the reaction tube is filled with about 40% or less of the entire Ru amount, and the portion between 50 and 100% is filled with about 60% or more.
  • the portion less than 20% from the inlet of the reaction tube is filled with about 10% or less of the total amount of Ru, and the portion between 70 and 100% is filled with about 40% or more.
  • the portion less than 20% from the inlet of the reaction tube is about 10% or less of the total Ru amount, 20% or more, and the portion less than 50% is 25% or less, 50% or more, 70 Less than 30% is filled with 30% or less, and 70 to 100% is filled with 40% or more.
  • Distributing Ru in this way makes it possible to control the desired temperature, such as preventing excessive heat generation by filling the reactor inlet with a highly active catalyst, contributing to obtaining the desired hydrogen chloride conversion rate. To do.
  • Hydrogen chloride gas is supplied to the reactor, and the pressure is about 0.1 to lMP aG, preferably about 0.1 to 0.8 MPa aG, more preferably about 0.:! To 0.6 MPa aG, and the temperature is It is carried out at about 20 ° to 500 ° C., preferably about 20 ° to 3800 ° C. If the reaction temperature is too low, the conversion rate of hydrogen chloride may be low. On the other hand, if the reaction temperature is too high, the catalyst components may volatilize.
  • Hydrogen chloride is supplied to the reactor in the form of a gas, but the origin of hydrogen chloride is not limited, and the hydrogen chloride supplied in the form of gas from the source of hydrogen chloride is used as it is or hydrogen chloride is used as water. Absorbed and supplied hydrochloric acid is heated to generate hydrogen chloride gas and supplied to the reactor.
  • hydrogen chloride contains compounds that become catalyst poisons such as organic substances and sulfur compounds as impurities, the purity of the resulting chlorine will decrease, polychlorinated products may be generated, and the activity of the catalyst will decrease. Therefore, remove it by adsorption with an adsorbent, wash with water, etc.
  • hydrogen chloride gas contains something that is difficult to dissolve in water, such as carbonyl sulfide, it is absorbed in water to remove impurities as hydrochloric acid, and the resulting hydrochloric acid is heated to produce hydrogen chloride. Generate and supply gas. Organic compounds are adsorbed and removed by activated charcoal. When hydrogen chloride is a gas, it may be directly adsorbed on activated carbon or the like, but it may be adsorbed and removed on activated carbon after condensing and removing organic substances by pressurization and cooling.
  • aromatic compounds such as benzene, toluene, black benzene, dichlorobenzene, and nitrobenzene may be included, but these aromatic compounds are easily adsorbed on activated carbon in the gas phase and liquid phase, It can be easily removed with activated carbon.
  • Activated carbon adsorbed with organic substances can be regenerated and reused by a known method such as degassing organic substances by passing a gas such as heated nitrogen or air.
  • low boiling organic compounds such as ethane, propane, dichloroethane, and chloroform have a small adsorption capacity to activated carbon. When these organic compounds are contained, the organic compounds are absorbed by absorbing the generated hydrogen chloride gas in water. Most of the compound may be removed, and the resulting hydrochloric acid may be heated to generate hydrogen chloride gas for use.
  • hydrochloric acid In order to generate hydrogen chloride from hydrochloric acid, it is usually supplied to a diffusion tower such as a packed tower and heated in a reboiler using a steam. When hydrogen chloride gas is generated, hydrochloric acid with an azeotropic composition (about 20% by weight) is usually obtained. This hydrochloric acid is preferably used for absorption of hydrogen chloride if it is used at that concentration, or recycled to a hydrogen chloride generation plant. Hydrochloric acid with higher hydrogen chloride concentration requires less steam to generate hydrogen chloride, but it is possible to reduce heating steam by exchanging heat with hydrochloric acid that is extracted from the bottom of the tower and hydrochloric acid that is supplied at a high temperature. preferable.
  • the material of the stripping tower is tantalum, carbon
  • Fluorine resin lining can be applied.
  • a fluororesin lining in which the fluororesin sheets described in JP-A-2003-63591 are double arranged and the sheets communicate with the outside is preferably used.
  • the reaction is carried out at a pressure of about 0.1 lMPaG, for which purpose hydrogen chloride gas is pressurized using a known compressor (blower).
  • a known compressor for which purpose hydrogen chloride gas is pressurized using a known compressor (blower).
  • the compressor include a taper type axial flow compressor, a centrifugal compressor, a positive displacement reciprocating compressor, a screw type compressor, etc., taking into account the required pressure and air volume. It is selected appropriately. From the viewpoint of corrosion of the compressor, it is preferable to pressurize the dried hydrogen chloride gas.
  • Oxygen used for the reaction is a gas containing oxygen, and oxygen or air is used.
  • the oxygen concentration is 80% by volume or more, more preferably 90% by volume or more.
  • the oxygen concentration in the gas mainly composed of unreacted oxygen obtained in the purification process becomes low, and the amount of the gas supplied to the reaction process in the circulation process May have to be reduced.
  • a gas containing oxygen having an oxygen concentration of 80% by volume or more can be obtained by a normal industrial method such as pressure swinging of air or cryogenic separation.
  • the theoretical molar amount of oxygen with respect to 1 mol of hydrogen chloride is 0.25 mol, but it is preferable to supply more than the theoretical amount, and more preferably 0.25-2 mol of oxygen with respect to 1 mol of hydrogen chloride. If the amount of oxygen is too small, the conversion rate of hydrogen chloride may be low. On the other hand, if the amount of oxygen is too large, it may be difficult to separate generated chlorine and unreacted oxygen.
  • a gas containing hydrogen chloride and oxygen is mixed and supplied to the reactor.
  • the molar ratio of water to hydrogen chloride is preferably 0.00 1 to 1.0, more preferably 0.00 5 to 1.0, and most preferably 0.0 1 to 1.0. .
  • Moisture chloride If the molar ratio to hydrogen is too small, it may be difficult to smooth the temperature distribution in the catalyst layer. If the molar ratio is excessive, the conversion rate of hydrogen chloride will be low. There is.
  • Methods for adding water include simply adding it to hydrogen chloride gas, generating hydrogen chloride from hydrochloric acid, and adding water accompanying hydrogen chloride to the raw material hydrogen chloride gas, and the chlorine generated after the reaction After recovering the reaction hydrogen chloride, there is a method in which the unreacted oxygen gas is recovered and added to the raw material hydrogen chloride gas by humidification.
  • the supply rate of hydrogen chloride is usually 10 to 2 0 0 0 h—preferably 2 0 0 in terms of GHSV (hydrogen chloride (volume) Z catalyst (volume)) at 0 ° C, 0. IMPa. ⁇ 1 0 00 0 h 1 , more preferably 3 0 0 to 7 0 0 h 1 .
  • a heated heating medium is circulated in each of the divided regions in the reactor shell, and the reaction proceeds by supplying the reaction source gas to the reactor and heating the reaction source gas.
  • a heating medium of about 2600 to 2800 ° C is circulated in each divided region.
  • the temperature in the catalyst layer varies depending on the catalyst activity. Normally, ATmax is 0 to 40 ° C so that the difference (ATmax) between the maximum temperature of the catalyst layer (reaction zone) in the reaction tube in the divided region and the heat transfer medium temperature is within the specified range. As shown, adjust the temperature of the heating medium.
  • ⁇ of each reaction zone is, for example, in the case of a reactor in which the shell is divided into five and has five reaction zones, the first zone from the reactor inlet side is 15 to 40 ° C, preferably 20 to 3 5 ° C, second zone is 10-30 ° C, preferably 15-25 ° C, third zone is 10-25 ° C, preferably 10-20 ° C, fourth The fifth zone is set to 0 to 15 ° C, preferably 5 to 10 ° C. If ⁇ exceeds 40 ° C, temperature runaway may occur and temperature control may become impossible. ATmax can be measured with a temperature sensor attached to the center of the reaction tube in the axial direction.
  • a plurality of reaction tubes and temperature sensors are used, and one temperature sensor is arranged for each reaction tube so that the position of the temperature detection unit in the tube axis direction differs between the reaction tubes. Measure the ⁇ of ⁇ at the same time.
  • the catalytic activity may decrease from the inlet side, and the position indicating ATmax may move downstream. It is necessary to move the detection position of the sensor. Therefore, multiple temperature measuring units are attached to one temperature sensor. If the multipoint thermometer is used, it is preferable because ⁇ Tmax can be detected easily.
  • the conversion rate of hydrogen chloride at the exit of each zone is about 15 to 25%, about 35 to 45%, about 50 to 60%, about 65 to 7 5%, approximately 80 to 90%. Except for the conversion rate at the final exit, experiments were performed for each zone, and the goal is to achieve a final conversion rate of approximately 80 to 90%.
  • the catalyst activity gradually decreases and the hydrogen chloride conversion rate decreases, so the temperature of the first zone heating medium is raised while maintaining the above ⁇ range, and the final conversion rate Is adjusted to the above range.
  • the temperature of the second zone and the third zone is raised in sequence.
  • the temperature of the final zone filled with the most active catalyst should be kept as low as possible.
  • renewal of the catalyst should be considered when the maximum temperature in the reaction zone exceeds 500 ° C., preferably 400 ° C.
  • the reaction product gas is cooled by contact with water or hydrochloric acid, and further absorbs unreacted hydrogen chloride gas. It is carried out by circulating hydrochloric acid in an absorption tower such as a packed tower. Normally, absorption towers are arranged in multiple stages, and low-concentration hydrochloric acid is circulated in the last stage, and then the circulated hydrochloric acid in the subsequent stage is supplied and circulated to absorb the hydrochloric acid gas.
  • absorption towers are composed of tantalum, fluororesin lining, vinyl chloride resin lining, carbon, and the like.
  • Fluorine resin lining in which tantalum and fluorine resin sheets described in Japanese Patent Laid-Open No. 2000-03691 are double arranged and the sheets communicate with the outside is preferably used.
  • Hydrochloric acid obtained by absorbing unreacted hydrogen chloride is heated in a stripping tower or other stripping tower to generate hydrogen chloride gas and reused as a reaction raw material, or dissolved chlorine is used in a packed tower or the like. It can be removed by contact with an inert gas such as air, and it can be made into hydrochloric acid that does not contain chlorine.
  • low-concentration hydrochloric acid is preferably recycled to the hydrogen chloride generation plant and used to absorb hydrogen chloride, or used for any application at that concentration.
  • hydrogen chloride is obtained from the hydrochloric acid in the first stage distillation and recycled to the reaction system.
  • the chlorine yield can be increased by separating only water from the system by the second distillation.
  • the type of treatment to be performed is appropriately selected in consideration of the hydrochloric acid balance and the use of energy.
  • reaction product gas containing chlorine from which unreacted hydrogen chloride has been absorbed is dried using sulfuric acid.
  • the reaction product gas from which hydrogen chloride has been absorbed and removed is preferably cooled to about 15 to 20 ° C. to reduce the accompanying water. Increasing the temperature increases the amount of water that accompanies it, and decreasing the temperature may cause precipitation of chlorine hydrate.
  • the reaction product gas is dried by circulating sulfuric acid through a drying tower such as a packed tower to reduce the water content to 1 O p pm (volume) or less.
  • a drying tower provided with a bubble bell stage and a packed portion as described in Japanese Patent Application Laid-Open No. 2000-0 2 1 7 4 5 5 is preferably used.
  • the reaction product gas containing dried chlorine passes through the mist separator to remove the accompanying sulfuric acid mist.
  • the mist separator to be used is not particularly limited, and a known mist separator can be used, but a mist separator filled with glass wool is preferably used.
  • the reaction product gas containing chlorine is compressed to about 0.5 to 5 MPa, cooled to about 10 to ⁇ 40 ° C. to condense the chlorine, and unreacted oxygen gas is separated.
  • compressors that can be used include evening-type axial flow compressors, centrifugal compressors, positive displacement reciprocating compressors, and screw type (screw) compressors, taking into account the required pressure and air volume. Therefore, it is selected appropriately.
  • Condensed chlorine is stored as liquid chlorine and evaporated for use in various chlorination reactions. Or they are shipped in containers or cylinders. If the reaction product gas is simply compressed and cooled to condense the chlorine, the oxygen concentration in the chlorine is high, so the liquid chlorine and non-condensed gas obtained by cooling and condensing are supplied to a distillation column such as a packed column. The tower top gas is condensed, the condensate is refluxed to the distillation tower, the oxygen-containing gas, which is a non-condensable gas, is separated and recovered, and liquid chlorine is taken out from the bottom of the tower, so that liquid chlorine with a low oxygen content is obtained. can get.
  • the compressed gas is supplied to the distillation tower as it is, the tower top gas is condensed, the condensate is refluxed to the distillation tower, the oxygen-containing gas that is a non-condensed gas is separated and recovered, and liquid chlorine is taken out from the tower bottom. May be.
  • liquid chlorine when cooling the compressed reaction product gas, heat exchange with liquid chlorine to make chlorine gas, and using the latent heat of liquid chlorine to cool the reaction product gas, the liquid chlorine is converted to chlorine gas. It is preferable to save energy by exchanging heat between what is to be cooled and what is to be heated.
  • the separated oxygen-containing gas that accompanies chlorine is usually recovered and recycled to the reaction.
  • the packed tower is washed with water in the washing tower disclosed in Japanese Patent Laid-Open No. 2 0 0 2-1 3 6 8 25 It is preferable to recycle.
  • washing towers are composed of fluororesin lining, vinyl chloride resin lining, titanium, carbon, etc.
  • the oxygen-containing gas that accompanies the separated chlorine contains carbon dioxide that is generated by reaction of organic substances contained as impurities, nitrogen leaked from the compressor, etc., and accumulates by recycling. Usually, some of them are removed and discarded
  • Titanium oxide and —alumina were mixed at a mass ratio of 34:66 (titanium oxide: alumina), and then pure water was added and kneaded. This mixture is circled with a diameter of 1.5 mm After extruding into a column and drying, it was crushed to about 2 to 4 mm in length. The obtained molded body was fired in air at about 600 ° C. for 3 hours to obtain a carrier made of a mixture of titanium oxide and monoalumina.
  • the carrier is impregnated with an aqueous solution of ruthenium chloride, dried, and then calcined in air at 25 ° C. for 2 hours, whereby ruthenium oxide is supported on the carrier at a loading rate of 1% by mass. A supported ruthenium oxide was obtained.
  • Titanium oxide and ⁇ -alumina were mixed at a mass ratio of 34:66 (titanium oxide: alumina), and then pure water was added and kneaded. This mixture was extruded into a cylindrical shape having a diameter of 1.5 ⁇ , dried, and then crushed to a length of about 2 to 4 mm. The obtained molded body was calcined in the air at 700 to 73 ° C. for 3 hours to obtain a carrier made of a mixture of titanium oxide and hi-alumina.
  • the carrier is impregnated with an aqueous solution of ruthenium chloride, dried, and then calcined in air at 2500 for 2 hours, whereby the supported oxide in which ruthenium oxide is supported on the carrier at a loading ratio of 2% by mass. Ruthenium was obtained.
  • Titanium oxide and ⁇ -alumina were mixed at a mass ratio of 50:50 (titanium oxide: alumina), then titanium oxide sol with a mass ratio of 1 2.8 to the mixture of titanium oxide and ⁇ -alumina (100) CS Co., Ltd. (containing 39% titanium oxide) was diluted with pure water and kneaded. This mixture was extruded into a straight 1.5 mm * cylinder, dried, and then crushed to a length of about 2 to 4 mm. The obtained molded body was fired in air at 650 to 680 ° C. for 3 hours to obtain a carrier made of a mixture of titanium oxide and —alumina.
  • the carrier is impregnated with an aqueous solution of ruthenium chloride, dried, and then calcined in air at 2500 for 2 hours, whereby the supported oxide in which ruthenium oxide is supported on the carrier at a loading rate of 4% by mass. Ruthenium was obtained.
  • a reactor similar to that shown in Fig. 2 was used as the reactor for chlorine production. Note that the heater (41) is provided in all of the divided areas (31 to 34).
  • the base material of the tube sheet and channel cover is carbon steel, and the Ni gas sheet lined by the explosion method was used for the contact surface with the process gas.
  • Reactor shell side is divided into four parts, from 745 to 80 mm from the top of the tube plate is an intermediate tube plate with a thickness of 60 mm, from the inlet 1 50 5 to: 1 5 1 1 mm is 6 mm thick
  • a partition plate, an intermediate tube plate with a wall thickness of 60 mm is installed between 2805 and 2865 mm from the entrance.
  • the intermediate tube plate and the reaction tube are joined by the skin expansion method, and a gap of about 0.2 mm is provided between the partition plate and the reaction tube.
  • expansion joints are installed on the reactor shell walls of each layer partitioned by the intermediate tube sheet.
  • the heat medium melted by indirect heating using 220 ° C steam in the heat medium tank is sent by a circulation loop through an electric heater using a vertical centrifugal vortex pump installed in the heat medium tank. Heated to ⁇ 280 and fed to each area of the quadrant reactor. A single circulation loop was installed in each area, and it was circulated at a flow rate of about 20 m 3 Zh using a vertical centrifugal vortex pump.
  • the hydrogen chloride gas used as a raw material is obtained from the top of the stripping tower by supplying about 65.50 kgZh of 35 wt% hydrochloric acid to the stripping tower consisting of a packed tower and heating to about 146 ° C at the bottom of the tower. It was.
  • the flow rate of the obtained hydrogen chloride was about 90 Nm 3 / h, the temperature was about 75 ° C, the hydrogen chloride concentration was about 98.6 wt%, and the others were moisture.
  • the pressure in the tower is about 2 5 1 KP a G. From the bottom of the tower, hydrochloric acid water having an almost azeotropic composition was obtained.
  • the gas containing hydrogen chloride was mixed with about 26 Nm 3 / h of recovered oxygen gas (oxygen: 71.5 wt%, chlorine: 21.8 wt%, etc.) described later.
  • the mixed gas is heated to about 1700C using steam as a heat source in a tantalum heat exchanger, and then preheated oxygen (purity: 99.7 V o 1%, others; argon and Nitrogen) mixed with about 19 Nm 3 Zh.
  • the mixed gas was heated to about 200 ° C. in a nickel heat exchanger using steam as a heat source and introduced into the reactor to carry out an oxidation reaction of hydrogen chloride.
  • the reactor outlet gas was sent to an absorption tower, and about 150 kg gh of water was supplied from the top of the absorption tower to absorb unreacted hydrogen chloride gas and recovered as hydrochloric acid from the bottom of the absorption tower.
  • the recovered hydrochloric acid concentration was about 10 wt%.
  • this hydrochloric acid removes dissolved chlorine by air stripping, then neutralized and discarded, and the gas from the top of the absorption tower is continuously introduced into the drying tower, where it is 98 wt% concentrated.
  • Moisture was dried to about 10 V 0 1 p pm or less by contacting with 3 kg Zh of sulfuric acid.
  • the dried gas was introduced into a pulverized filter and the sulfuric acid mist was separated, then introduced into a reciprocating compressor, and the pressure was increased to 870 KPaG.
  • the compressed gas was introduced into the distillation column.
  • Two kettle heat exchangers were installed at the top of the distillation column to form a condenser, and the tube side was connected in series to introduce the top gas of the distillation column and cool it.
  • Liquid chlorine which will be described later, was introduced into the shell side of the first stage condenser to evaporate it and cooled to about 10 ° C by the latent heat of evaporation.
  • the fluorinated hydrocarbon (R-22) was evaporated and cooled to about -30 ° C.
  • the liquid condensed here was used as a reflux liquid.
  • the uncondensed gas that passed through the tube side of the second stage condenser about 26 Nm 3 Zh was washed with water to remove the sulfuric acid mist and then introduced into the reaction system as the recovered oxygen.
  • the purge gas amount was about 0.5 to 1 Nm 3 Zh.
  • An external circulation type lipoiler is installed at the bottom of the distillation column, and the distillation is performed by heating the temperature of the column bottom liquid to about 30 ° C using hot water at 60 as the heat source. Retained liquid chlorine was obtained. Liquid chlorine was introduced into the shell side of the first-stage condenser at the top of the column, vaporized, and further heated to obtain about 1 25 kgZh of chlorine gas. The purity of chlorine is 99.7 vo 1%.
  • the ATmax of each catalyst layer (reaction zone) in the divided region of the shell was adjusted as follows. That is, after starting the reaction at the heating medium 2 65-280 ° C, the ATmax of the first and second zones is 20 to 30 ° C, and the ATmax of the third and fourth zones is 0 to 20 ° C.
  • the temperature of each zone was adjusted so that the conversion rate at the outlet of the reactor was maintained at 80 to 90%.
  • the conversion rate was determined from the amount of hydrogen chloride gas introduced into the reactor and the flow rate and concentration of unreacted hydrochloric acid recovered from the absorption tower.
  • a multi-tube heat exchange type reactor used for producing chlorine by oxidizing hydrogen chloride with oxygen, and the reactor shell is divided into a plurality of regions by partition plates in the tube axis direction.
  • a chlorine production reactor comprising a temperature control means for at least one of the heating media circulating in each region.
  • a gas containing hydrogen chloride and a gas containing oxygen are supplied to the reactor for producing chlorine according to any one of [1] to [8], the pressure is 0.1 lMPaG, and the temperature is 200.
  • Chlorine production method characterized by oxidizing hydrogen chloride with oxygen at 500 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

 本発明の塩素製造用反応器は、塩化水素を酸素で酸化して塩素を製造する際に使用する多管式熱交換型反応器であって、反応器のシェル内が管軸方向に仕切り板で複数の領域に分割され、それぞれの領域毎に熱媒が循環し、そのうちの少なくとも一つの熱媒の温度制御手段を備えており、該温度制御手段が、冷却器および/または加熱器からなり、反応器の反応管の入口から出口方向に、触媒活性の異なる触媒が層状に充填されており、触媒が酸化ルテニウム触媒であり、反応管の入口から50%未満の領域に全ルテニウムの40%以下が充填され、50~100%の領域に全ルテニウムの60%以上が充填されていることを特徴とする。 また本発明の塩素の製造方法は、該塩素製造用反応器を用い、塩化水素を含有するガスおよび酸素を含有するガスを該塩素製造用反応器に供給し、圧力が0.1~1MPaG、温度が200~500℃で塩化水素を酸素で酸化することを特徴とする。

Description

明 細 書 塩素製造用反応器および塩素の製造方法 技術分野
本発明は、 塩素製造用反応器およびそれを使用した塩素の製造方法に関する。 詳しくは触媒を有効に活用し、 触媒活性を安定に維持することができる塩素製造 用反応器、 およびその反応器を使用して塩化水素から塩素を安定して高収率で製 造する方法に関する。 背景技術
塩素は塩化ビエル、 イソシァネート化合物、 ポリ力一ポネート、 塩素化炭化水 素等を製造する原料として有用であり、 その際に大量の塩化水素が副生する。 副 生する塩化水素を触媒の存在下に酸化して塩素を製造する方法は古くから知られ ており、 ディ一コン触媒を用いる方法、 酸化クロム触媒を用いる方法、 酸化ルテ ニゥム触媒を用いる方法 (例えば、 特開平 9— 6 7 1 0 3号公報、 E P 0 7 4 3 2 7 7、 U S P 5 8 7 1 7 0 7参照。 ) 等が知られている。 得られた塩素は、 前 記塩化ピニル、 イソシァネート、 ポリカーボネート、 塩素化炭化水素プロセスの 原料として再利用することができ、 それぞれのプロセスにおいて、 塩素の自己循 環を行うことが可能となる。
ディ一コン触媒や酸化クロム触媒を用いる方法は、 比較的高い温度で行われる ために触媒寿命が十分でなく、 また酸化クロム触媒は有害なクロムを取り扱う問 題も有している。
酸化ルテニウム触媒を使用する方法は、 上記触媒を使用する場合より低い温度 で行うことも可能で、 触媒寿命も長く、 優れた方法であるが、 更に、 触媒を有効 に活用し、 効率的に塩素を製造する工業的に改良された方法が望まれている。 発明の開示
本発明の目的は、 触媒を有効に活用し、 触媒活性を安定に維持することができ る塩素製造用反応器、 およびその反応器を使用して塩化水素から塩素を安定して 高収率で製造する方法を提供することにある。
本発明の塩素製造用反応器は、 塩化水素を酸素で酸化して塩素を製造する際に 使用する多管式熱交換型反応器であって、 反応器のシェル内が管軸方向に仕切り 板で複数の領域に分割され、 それぞれの領域を循環する熱媒のうちの少なくとも 一つの熱媒の温度制御手段を備えていることを特徴とする。
本発明の塩素の製造方法は、 塩化水素を酸素で酸化して塩素を製造する際に使 用する多管式熱交換型反応器であって、 反応器のシェル内が管軸方向に仕切り板 で複数の領域に分割され、 それぞれの領域を循環する熱媒のうちの少なくとも一 つの熱媒の温度制御手段を備えている塩素製造用反応器に、 塩化水素を含有する ガスおよび酸素を含有するガスを供給し、 圧力が 0 . l〜 l M P a G、 温度が 2 0 0〜 5 0 0 °Cで塩化水素を酸素で酸化することを特徴とする。
本発明の塩素製造用反応器を使用することによって、 触媒を有効に活用し、 触 媒活性を安定に維持することができ、 塩化水素から塩素を安定して高収率で製造 することができる。 図面の簡単な説明
図 1は、 本発明の塩素製造用反応器の一例を示す模式図である。
図 2は、 本発明の塩素製造用反応器の他の一例を示す模式図である。
図 3は、 実施例における触媒層の温度分布を示す図である。
図 4は、 実施例における H C L転化率の推移を示す図である。
符号の説明
1 :塩素製造用反応器
2 :反応管
3 :反応器シェル
7 :熱媒タンク
8 :冷却器
9 :予熱器
10:上管板
1 1:仕切板
12:下管板 13:邪魔板
31〜34:分割された領域
41〜44:加熱器
51 - 54:循環タンク
61 ~ 64:循環ポンプ
81 - 84:冷却器
A:原料化合物
B :生成物
C0〜C4:熱媒
U1〜! J4:流量調整弁
V1〜V4:流量調整弁 発明を実施するための最良の形態
本発明の塩素製造用反応器は、 多管式熱交換型反応器であって、 反応器のシェ ル内が管軸方向に仕切り板で複数の領域に分割され、 それぞれの領域を循環する 熱媒のうちの少なくとも一つの熱媒の温度制御手段を備えている。
以下、 図面で本発明の塩素製造用反応^ §で説明する。
図 1は本発明の塩素製造用反応器の例を示す断面模式図である。 多管式熱交換 型反応器である塩素製造用反応器(1)は、 主に反応管(2)と反応器シェル(3)からな り、 反応管(2)は上管板(10)および下管板(1 2)によって、 反応器シェル(3)に対し て固定されている。
反応器シェル(3)は、 管軸方向に仕切り板で 4段の領域(31 ~ 34)に分割されてい る。 領域数は 4段に限られるものではなく、 通常、 2〜1 0段、 好ましくは 3 ~ 8段、 さらに好ましくは 4〜 6段である。 3段以上、 さらには 4段以上に分割さ れている時には、 各領域あたりの発熱量が比較的少なくなつて、 本発明の反応器 (1)の効果を発揮し易いため、 好ましく適用される。
反応器シェル(3)を複数の領域(31〜34)に分割するには通常、 中間管板または遮 断板などの仕切板(1 1)が用いられる。 中間管板は、 互いに隣接する領域(31、 32) 間で熱媒(Cl、 C2)が相互に移動しないように、 反応管(2)と密着して反応器シェル (3)内に設けられる仕切板である。 遮断板は、 反応管(2)との間に隙間を空けて反 応器シェル(3)内に設けられ、 隣接する領域(31、 32)間で熱媒(Cl、 C2)が僅かに移 動することを許容する仕切板(1 1)である。
各領域(31〜34)を循環する熱媒(C)としては、 目的とする反応温度、 熱媒の取扱 いの容易さなどに応じて適宜選択され、 例えば亜硝酸ナトリウム 4 0質量%、 硝 酸ナトリウム 7質量%及び硝酸カリウム 5 3質量%の混合物、 亜硝酸ナトリウム 5 0質量%及び硝酸カリウム 5 0質量%の混合物などの溶融塩 (HTS : Heat Tr ans f er Sa l t ) などの無機物からなる無機熱媒、 アルキルピフエ二ル類、 ビフエ ニル類とジフエ二ルォキサイド類との混合物、 ビフエ二ル類とジフエニルエーテ ル類との混合物、 トリフエニル類、 ジベンジルトルエン類、 アルキルベンゼン類 、 アルキルナフタリン類、 ァリールアルキル類などの有機物からなる有機熱媒、 水、 イオン性液体などが挙げられる。
反応器シェル(3)内の各領域(31 ~ 34)には、 熱媒(C1〜C4)の流動方向を整えるた めに邪魔板(13)を設けてもよい。 邪魔板の形状としては、 例えば円板状、 穴開円 板状、 欠円形などが挙げられる。 邪魔板(13)は通常、 熱媒(C 1)の流れ方向が反応 管(2)に対して概ね直角になるように設けられる。 邪魔板(13)は、 全ての領域(31 〜 34)に設けてもよいし、 特に効率よく反応熱を除去したい領域だけに設けてもよ い。 また、 領域毎に邪魔板数を異ならせてもよい。 一つの領域(31)に設けられる 邪魔板の数は通常、 1 ~ 7枚程度である。 複数の邪魔板を設置する場合は、 米国 特許 3 8 0 7 9 6 3号に記載されているように、 邪魔板の開口部を互い違いに配 置する方法が一般的に用いられる。
各領域(31 ~ 34)には熱媒(C1〜C4)が循環し、 それぞれの領域を循環する熱媒の うちの少なくとも一つの熱媒の温度制御手段が反応器に備えられている。 温度制 御手段は、 分割された領域毎に備えておくのが好ましい。
温度制御手段によって、 領域における反応温度を制御するため、 循環する熱媒 の温度が制御される。 分割された領域に備えられる温度制御手段は、 冷却器およ び Zまたは加熱器からなる。
図 1に示す反応器(1 )では、 各領域毎に温度制御手段が備えられている。 各領域 毎に循環ポンプ(61〜64)および冷却器(81 ~ 84)を設け、 循環ポンプ(61〜64)によ り各領域(31〜34)ごとに冷却器(81〜84)との間で熱媒(C1〜C4)を循環させること により、 冷却している。 各領域における熱媒(C1〜C4)の温度は、 各冷却器(81 ~ 84)における熱媒(Cl〜 C4)の冷却温度を調整する方法などにより、 各領域(31〜 34)ごとに調整することが できる。
更に、 反応器(1)では、 流量調整弁(U1 ~U4)と分割された各領域(31〜34)との間 の配管の途中に、 循環する熱媒(C1〜C4)を加熱するための加熱器(41〜44)がそれ ぞれ設けられている。 これにより、 全ての領域の熱媒(C1〜C4)について、 それぞ れ他の領域の熱媒から独立して加熱することができる。
図 2は本発明の塩素製造用反応器の他の例を示す断面模式図である。 図 1に示 す反応器と同様に、 4段の領域(31〜34)に分割された多管式熱交換型反応器であ る。
反応器(1)では、 各領域(31〜34)に予め冷却された熱媒(CO)を加えることにより 、 各領域の熱媒(C1 ~C4)を冷却している。 すなわち、 この反応器(1)では、 各領域 (31 - 34)ごとに循環ポンプ(61〜64)および循環タンク(51〜54)を設け、 循環ボン プ(61〜64)により、 各領域(31〜34)と循環タンク(51〜54)との間で熱媒(C1〜C4) をそれぞれ循環させている。 これと共に、 各循環タンク(51 ~ 54)には、 熱媒タン ク(7)から予め冷却された熱媒(CO)を分配して加えており、 これにより、 各領域 (31 ~34)の熱媒(C1 ~C4)を冷却している。 各領域における熱媒(C1〜( 4)の温度は 、 循環タンク(51〜54)および/または各領域(31~ 34)に設置された温度計により 測定することができ、 この温度が所定値となるように、 熱媒タンク(7)と各循環タ ンク(51〜54)との間に設けられた流量調整弁(V1〜V4)により熱媒(CO)の供給量を 調整する方法などにより、 各領域(31〜34)ごとに調整することができる。
なお、 この反応器(1)において、 熱媒タンク(7)には冷却器(8)が設けられており 、 熱媒(CO)は、 この冷却器(8)により冷却される。 冷却器(8)における冷媒として は水が好適に用いられ、 この場合スチームが発生し、 これをプロセスで利用する ことにより効率的な反応熱の回収を行うことができる。 各循環タンク(51 ~ 54)か らは、 余剰となった熱媒(C1〜C4)がオーバーフローして熱媒タンク(7)に送られる 。 また、 各循環タンク(51〜54)は、 それぞれの領域(31〜34)にできるだけ接近し て設けられることが、 各領域と循環タンクとの間の配管を少なくし得て好ましい 。 熱媒タンク(7)には予熱器(9)が設けられており、 運転開始時などには、 この予 熱器(9)により、 予め熱媒(C0)を所定の温度に加熱しておき、 これを各循環タンク (51〜54)に供給することも可能である。 予熱器(9)としては、 電気ヒーターが好ま しく適用される。
反応器(1)において、 反応器シェル(3)が遮断板により分割されている場合には 、 各領域(31〜34)の間の熱媒(C1 ~ C4)の移動を少なくできる点で、 各循環タンク (51〜54)における熱媒の液面の高さを一致させることが好ましく、 さらに各領域 (31〜34)間で熱媒(C1〜C4)の移動を最小限にするよう、 循環流量調節弁(U1〜U4) により、 各領域(31〜 34)と循環タンク(51〜 54)との間の循環流量を調節すること も好ましい。 各循環タンク(51〜54)における熱媒の液面は、 通常の液面計(図示せ ず)により測定することができる。
反応器(1)は、 分割された領域(31)に充填された熱媒(C1)を他の領域(32〜34)の 熱媒(C2〜C4)から独立して加熱する加熱器(41)を備える。 加熱器(41)としては、 例えば電気ヒータ一、 熱交換式の加熱器などが挙げられるが、 電気ヒータ一が好 ましく用いられる。
図 2では、 領域(31)にだけ加熱器(41)を備えているが、 図 1に示す反応器と同 様に、 分割された領域の全て(31〜34)に備えられていることが、 各領域(31〜34) の温度をより緻密に調整することができて好ましい。
図 1および図 2で用いられる循環ポンプ(61〜64)としては、 軸流ポンプ、 遠心 渦卷ポンプなどが用いられ、 中でも縦型の遠心渦巻ポンプが好ましく用いられる また、 反応器は、 反応管等のプロセスガスと接触する部分はニッケルまたは二 ッケルライニングで構成される。
本発明の反応器(1)によれば、 必要により、 各領域の温度を緻密に調整すること が容易となり、 例えば原料化合物(A)の供給量が少なくて、 発熱反応による発熱量 が少ない場合にも、 容易に領域を所定の反応温度に維持することができる。
また、 例えば原料化合物(A)を十分に予熱しないまま反応管(2)に供給した場合 には、 反応管(2)の入口付近では反応温度が低くなるが、 図 1および図 2に示すよ うに、 反応管(2)の入口付近の領域(31)の熱媒(C1)を加熱する加熱器(41)を備える 場合には、 他の領域(32〜34)の熱媒(C2〜C4)を加熱することなく、 この領域(31) の熱媒(C1)だけを加熱することができるので、 他の領域(32〜34)を所定の反応温 度に維持したまま、 この領域(31)を所定の反応温度に維持することが容易である 反応管(2)の入口付近(31)に充填した触媒は比較的早く劣化し易いのに対して、 出口付近(34)の触媒は劣化が比較的遅い傾向にあるので、 入口付近に相当する領 域(31 )の触媒が劣化して、 この領域(31)における収率が低下した時には、 出口付 近に相当する領域(34)の熱媒(C4)を加熱することにより反応温度を上げ、 この領 域(34)における収率を上げることができる。
温度制御方法は、 図 1および図 2に示されている領域毎に循環ポンプを有し、 熱媒を循環させるものに限らず、 図 2に示すような熱媒タンクから熱媒をそれぞ れの領域に、 循環タンクを設けることなく、 流量調節弁、 冷却器または加熱器を 経由して供給し、 それぞれの領域から熱媒を熱媒タンクに直接戻す方法等でもよ い。
反応管内には、 入口から出口方向に、 通常、 触媒活性の異なる触媒が層状に、 好ましくは触媒活性が高くなるように触媒が充填される。 具体的には、 組成や製 法および Zまたは粒径が異なることによる触媒活性の異なる触媒を使用して、 ま たは触媒を不活性物質および Zまたは担体のみで成型した充填物で希釈して充填 される。 触媒層の入口部や出口部さらには触媒層間に不活性物質を充填してもよ レ 不活性物質とはプロセスガスに対して不活性な固体であり、 アルミナ、 シリ 力、 炭化珪素、 ニッケル等から成る成型体が適用できる。 特にひ-アルミナからな る球状体が好適に用いられる。
反応器シェルの分割された領域に対応する反応管の部分毎に、 触媒活性が異な るように触媒が充填されるが、 必ずしもこれに限られるものではなく、 一つの領 域に対応する反応管部分に触媒活性の異なる複数の触媒を充填してもよいし、 ま た連続する複数の領域に対応する反応管部分に同じ触媒活性の触媒を充填しても よい。 すなわち、 分割されたシェルと異なる触媒の領域は一致していなくても良 い。
塩化水素を酸素で酸化して塩素を製造する際に使用する触媒としては、 酸化ル テニゥム触媒が、 特に、 酸化チタン含有担体に酸化ルテニウムが担持された触媒 が好ましい。
これら酸化ルテニウム触媒は、 特開平 9一 6 7 1 0 3号公報、 特開 2 0 0 0— 2 8 1 3 1 4号公報に記載の方法によって調製されたものが好ましく使用される 本発明において特に好適な触媒として、 具体的には、 酸化ルテニウムの含有量 が、 1〜20重量%であり、 酸化ルテニウムの中心径が 1. 0〜 1 0. O nmで ある担持酸化ルテニウム触媒または酸化ルテニウム複合酸化物型触媒を挙げるこ とができるが、 これに限定されるものではない。
触媒の形状は、 球形粒状、 円柱形ペレット状、 押出形状、 リング形状、 ハニカ ム状または成型後に粉碎分級した適度の大きさの顆粒状などで用いられる。 この 際、 触媒直径としては 5 mm以下が好ましい。 触媒直径が 5 mmを越えると、 活 性が低下する場合があるためである。 触媒直径の下限は特に制限はないが、 過度 に小さくなると、 触媒充填層での圧力損失が大きくなるため、 通常は 0. 5 mm 以上のものが用いられる。 なお、 ここでいう触媒直径とは、 球形粒状では球の直 径、 円柱形ペレット状では断面の直径、 その他の形状では断面の最大直径を意味 する。
これらの酸化ルテニウム触媒を使用した場合、 反応管の入口から 50 %未満の 部分には Ru量全体の約 40 %以下、 50〜 1 00 %の部分には約 60 %以上が 充填される。 好ましくは、 反応管の入口から 20 %未満の部分には Ru量全体の 約 1 0%以下、 70〜 1 00 %の部分には約 40 %以上が充填される。 さらに好 ましくは、 反応管の入口から 20 %未満の部分には R u量全体の約 1 0 %以下、 20 %以上、 50 %未満の部分には 2 5 %以下、 50 %以上、 70 %未満の部分 には 30 %以下、 70 ~ 1 00 %の部分には 40 %以上が充填される。 このよう に R uを分配することで、 反応器入口部に高活性触媒を充填することによる過度 な発熱を防止するなど、 望ましい温度制御が可能となり、 所望の塩化水素転化率 を得ることに寄与する。
塩化水素を酸素で酸化して塩素を製造する際には、 上記した多管式熱交換型反 応器であって、 反応器のシェル内が管軸方向に仕切り板で複数の領域に分割され 、 少なくとも一つの分割された領域に、 循環する熱媒の温度制御手段を備えてい る反応器を用い、 好ましくは上記の酸化ルテニウム触媒を上記の方法によって充 填して行われる。
反応器には塩化水素ガスを供給し、 圧力が約 0. l~lMP aG、 好ましくは 約 0. 1〜0. 8MP aG、 更に好ましくは約 0. :!〜 0. 6MP aG、 温度が 約 2 0 0〜 5 0 0 °C、 好ましくは約 2 0 0〜 3 8 0 °Cで行われる。 反応温度が低 すぎる場合は、 塩化水素の転化率が低くなる場合があり、 一方、 反応温度が高す ぎる場合は、 触媒成分が揮発する場合がある。
塩化水素はガス状で反応器に供給されるが、 塩化水素の由来は限定されるもの ではなく、 塩化水素の発生源からガス状で供給される塩化水素をそのまま、 また は塩化水素を水に吸収して供給される塩酸を加熱して塩化水素ガスを発生させて 、 反応器に供給される。
塩化水素に不純物として有機物や硫黄化合物等の触媒毒になる化合物が含有さ れる場合には、 得られる塩素の純度が低下したり、 多塩素化物が発生したり、 触 媒の活性が低下したりするので、 吸着剤による吸着、 水洗浄等によって除去して 供給する。
不純物を除去する方法として、 例えば、 硫化カルポニル等の水に溶解し難いも のを塩化水素ガスが含む場合は、 水に吸収させて塩酸として不純物を除去し、 得 られる塩酸を加熱して塩化水素ガスを発生させて供給する。 有機化合物は活性炭 等で吸着して除去し供給する。 塩化水素がガスの場合、 直接、 活性炭等に吸着さ せても良いが、 加圧、 冷却して有機物を凝縮除去した後、 活性炭等に吸着除去し ても良い。 不純物として、 ベンゼン、 トルエン、 クロ口ベンゼン、 ジクロロベン ゼン、 ニトロベンゼン等の芳香族化合物が含まれることがあるが、 これらの芳香 族化合物は、 気相においても液相においても活性炭に吸着し易く、 活性炭で容易 に除去することができる。 有機物が吸着した活性炭は、 加熱した窒素や空気等の ガスを通気して有機物を脱離させる等の公知の方法で再生し、 再使用することが できる。 また、 ェタン、 プロパン、 ジクロロェタン、 クロ口ホルム等の低沸点有 機化合物は活性炭への吸着容量が小さく、 これら有機化合物が含まれる場合は、 発生する塩化水素ガスを水に吸収することで該有機化合物の大部分を除去し、 得 られた塩酸を加熱して塩化水素ガスを発生させて用いても良い。
塩酸から塩化水素を発生するには、 通常、 充填塔等の放散塔に供給し、 スチー ムを用いてリポイラ一で加熱して行う。 塩化水素ガスを発生させると、 通常、 共 沸組成 (約 2 0重量%) の塩酸が得られる。 この塩酸は、 その濃度で用途があれ ば、 それに使用し、 または塩化水素の発生プラントにリサイクルして塩化水素の 吸収に好ましく使用される。 塩化水素濃度が高い塩酸ほど塩化水素を発生させる際の加熱に要するスチーム は少なくてすむが、 塔底から抜出される温度の高い塩酸と供給する塩酸と熱交換 して加熱スチームを低減するのが好ましい。 放散塔の材質には、 タンタル、 炭素
、 フッ素樹脂ライニング等が適用できる。 特に特開 2003 - 63 59 1号公報 に記載のフッ素樹脂シートが二重に調設され、 シート間が外部と連通しているフ ッ素樹脂ライニングが好ましく用いられる。
反応は、 圧力が約 0. l〜lMP aGで行われ、 そのために塩化水素ガスは公 知の圧縮機 (送風機) を用いて加圧される。 圧縮機としては、 例えばタ一ポ型の 軸流圧縮機、 遠心圧縮機、 容積型の往復式圧縮機、 ねじ式 (スクリユー) 圧縮機 等が挙げられ、 必要とする圧力、 風量を勘案して適宜選択される。 圧縮機の腐食 の観点から、 乾燥した塩化水素ガスを加圧するのが好ましい。
反応に使用する酸素は、 酸素を含むガスであり、 酸素または空気が使用される が、 好ましくは酸素の濃度が 80体積%以上、 さらに好ましくは 90体積%以上 のものが用いられる。 酸素以外の成分としては、 窒素 (N2) 、 アルゴン (A r ) 、 炭酸ガス (C〇2) などが挙げられる。
酸素の濃度が 8 0体積%よりも小さい場合には、 精製工程で得られる未反応酸 素を主成分とするガス中の酸素濃度が低くなり、 循環工程で反応工程へ供給する 該ガスの量を少なくしなければならないことがある。 酸素濃度が 80体積%以上 の酸素を含むガスは、 空気の圧力スィング法や深冷分離などの通常の工業的な方 法によって得ることができる。
塩化水素 1モルに対する酸素の理論モル量は 0. 2 5モルであるが、 理論量以 上供給することが好ましく、 塩化水素 1モルに対し酸素 0. 2 5〜2モルがさら に好ましい。 酸素の量が少な過ぎると、 塩化水素の転化率が低くなる場合があり 、 一方酸素の量が多過ぎると生成した塩素と未反応酸素の分離が困難になる場合 がある。
通常、 塩化水素と酸素を含むガスを混合して反応器に供給するが、 触媒層内の 温度分布を平滑化させることによって、 触媒層を有効に活用し、 かつ触媒の安定 した活性を維持するために、 水分の存在下に反応するのが好ましい。 水分の塩化 水素に対するモル比は、 0. 00 1~1. 0であることが好ましく、 更に好まし くは 0. 00 5~1. 0、 最も好ましくは 0. 0 1~1. 0である。 水分の塩化 水素に対するモル比が過小な場合には、 触媒層内の温度分布を平滑化することが 困難になることがあり、 該モル比が過大な場合には、 塩化水素の転化率が低くな ることがある。
水分の添加方法としては、 単に塩化水素ガス中に添加する方法、 塩酸から塩化 水素を発生させ、 塩化水素と共に同伴する水分を原料の塩化水素ガスに加える方 法、 反応後、 生成する塩素および未反応の塩化水素を回収した後、 未反応の酸素 ガスを回収して原料の塩化水素ガスに加える際に、 加湿して加える方法がある。 塩化水素の供給速度は、 GHSV (0°C、 0. I MP aにおける塩化水素 (体 積) Z触媒 (体積) ) で表すと、 通常 1 0〜 2 0 0 0 h— 好ましくは 2 0 0 ~ 1 0 0 0 h 1、 更に好ましくは 3 0 0〜7 0 0 h 1で行われる。
反応器のシェル内の分割された領域のそれぞれに加熱した熱媒を循環し、 反応 器に反応原料ガスが供給され反応原料ガスが加熱されることにより、 反応が進行 する。
通常、 初めに約 2 6 0〜2 8 0°Cの熱媒をそれぞれ分割された領域に循環する 。 充填されている触媒活性によって、 触媒層内の温度が変わる。 分割された領域 部分の反応管内の触媒層 (反応ゾーン) の最高温度と熱媒温度との差 (ATmax) が所定の範囲内になるように、 通常は ATmaxが 0〜4 0°Cとなるように、 熱媒の 温度調節を行う。 各反応ゾーンの ΔΤΙΜΧは、 例えば、 シェルが 5分割され、 5個 の反応ゾーンを有する反応器の場合、 反応器入口側から第 1ゾーンは 1 5~4 0 °C、 好ましくは 2 0〜3 5°C、 第 2ゾーンは 1 0〜3 0°C、 好ましくは 1 5〜2 5°C、 第 3ゾーンは 1 0〜2 5°C、 好ましくは 1 0~2 0°C、 第 4、 第 5ゾーン は 0〜1 5°C、 好ましくは 5〜1 0°Cとする。 ΔΤΜΧが 4 0°Cを越えると温度暴 走し、 温度制御不能となる恐れがあるので好ましくない。 ATmaxは反応管の中心 部に管軸方向に取り付けられた温度センサーにより測定することができる。 通常 、 複数の反応管と温度センサ一を用いて、 反応管一本につき温度センサ一一本を 、 複数の反応管で温度検出部の管軸方向の位置が異なるように配置し、 各反応ゾ —ンの ΔΤΙΜΧを同時に測定する。 しかしながら原料ガス中に触媒毒成分が混入す る場合等は、 触媒活性が入口側から低下し、 ATmaxを示す位置が下流側に移動す ることがあり、 ATmaxを正確に測定するために、 温度センサーの検出位置を移動 させる必要がある。 そこで、 1本の温度センサーに複数の温度計測部が取り付け られた多点式温度計を用いれば、 容易に△ Tmaxを検出することができるため好ま しい。
このような温度管理をすることにより、 各ゾーン出口の塩化水素の転化率は、 それぞれ約 1 5 ~ 2 5 %、 約 3 5〜 4 5 %、 約 5 0〜 6 0 %、 約 6 5〜 7 5 %、 約 8 0〜9 0 %になる。 最終出口の転化率以外は、 各ゾーン毎に実験を行って想 定したものであり、 具体的には最終転化率を約 8 0〜 9 0 %にすることを目標に する。
反応の継続と共に、 順次触媒の活性が低下し、 塩化水素の転化率が低下してく るので、 上記の ΔΤΙΜΧの範囲を維持しつつ、 第 1ゾ一ン熱媒の温度を上げ、 最終 転化率を上記の範囲になるように調整する。 第 1ゾーンの次は順次第 2ゾーン、 第 3ゾーンの温度を上げる。 通常、 最も活性が高い触媒が充填されている最終ゾ ーンの温度はできるだけ上げないようにする。 最終的には、 反応ゾーンの最高温 度が 5 0 0 °C、 好ましくは 4 0 0でを越えるようになったら触媒の更新を検討す る。
反応生成ガスは、 上記のとおり、 水または塩酸と接触させて冷却し、 さらに未 反応の塩化水素ガスを吸収させる。 充填塔等の吸収塔に塩酸を循環して行われる 。 通常、 吸収塔を多段に配置し、 最後段で低濃度の塩酸を循環させ、 より前段に その後段の循環塩酸を供給して循環して塩酸ガスを吸収させる。
これらの吸収塔はタンタル、 フッ素樹脂ライニング、 塩化ビニル樹脂ライニン グ、 炭素等、 から構成される。 タンタルや、 特開 2 0 0 3— 6 3 5 9 1号公報に 記載のフッ素樹脂シートが二重に調設され、 シート間が外部と連通しているフッ 素樹脂ライニングが好ましく用いられる。
未反応塩化水素を吸収して得られる塩酸は、 充填塔等の放散塔で加熱して塩化 水素ガスを発生させて反応原料として再使用したり、 また、 溶存する塩素を充填 塔等を用いて空気等の不活性ガスと接触させて除き、 塩素を含まない塩酸とし、 必要に応じて濃度調整して製品化したりすることもできる。
通常、 低濃度の塩酸は、 塩化水素の発生プラントにリサイクルして塩化水素の 吸収に使用したり、 その濃度で用途があれば、 それに使用したりするのが好まし レ 。 また特開 2 0 0 1 - 1 3 9 3 0 5号公報に記載の圧力の異なる 2段蒸留によ り、 1段目の蒸留で前記塩酸から塩化水素を得て反応系にリサイクルすると同時 に、 2段目の蒸留により系内から水のみを分離することで、 塩素収率を高めるこ とも可能である。 どのような処理をするかは、 塩酸バランスやエネルギーの使用 を勘案して適宜選択される。
通常、 未反応の塩化水素を吸収除去した塩素を含む反応生成ガスは硫酸を用い て乾燥させる。
硫酸の消費を少なくするために、 塩化水素を吸収除去した反応生成ガスは、 約 1 5〜2 0 °Cに冷却して同伴する水分を少なくするのが好ましい。 温度を高くす ると同伴する水分が多くなり、 低くすると塩素水和物が析出する恐れがある。 反応生成ガスの乾燥は、 上記塩化水素の吸収除去と同様に、 充填塔等の乾燥塔 に硫酸を循環して行われ、 水分を l O p p m (容量) 以下にする。 通常、 特開 2 0 0 4 - 2 1 7 4 5 5号公報に記載されているような泡鐘段と充填部を設けた乾 燥塔が好適に使用される。
充填塔を多段に配置し、 最後段で濃硫酸を循環させ、 より前段にその後段の循 環硫酸を供給して循環して水分を除去することも可能である。 通常、 9 8重量% の硫酸を供給して 7 0〜8 0重量%の硫酸として回収される。
7 0〜8 0重量%の硫酸は、 溶存する塩素を充填塔等を用いて空気等の不活性 ガスと接触させて除き、 中和用途に使用したり、 中和して廃棄したりする。 これらの乾燥塔はハステロイ、 フッ素樹脂ライニング、 塩化ビニル樹脂ライ二 ング等から構成される。
乾燥した塩素を含む反応生成ガスは、 ミスト分離器を通して、 同伴する硫酸ミ ストを除去する。 使用するミスト分離器は、 特に限定されるものではなく、 公知 のものが使用できるが、 ガラスウールを充填したミスト分離器が好ましく用いら れる。
次いで塩素を含む反応生成ガスを約 0 . 5 ~ 5 M P aに圧縮し、 約一 1 0〜― 4 0 °Cに冷却して塩素を凝縮し、 未反応の酸素ガスを分離する。 使用する圧縮機 としては、 例えば夕一ポ型の軸流圧縮機、 遠心圧縮機、 容積型の往復式圧縮機等 、 ねじ式 (スクリュー) 圧縮機が挙げられ、 必要とする圧力、 風量を勘案して適 宜選択される。
凝縮した塩素は液体塩素として貯蔵され、 蒸発させて種々の塩素化反応に使用 される。 またはコンテナーまたはボンベに充填して出荷される。 単に反応生成ガスを圧縮し、 冷却して塩素を凝縮させると、 塩素中の酸素濃度 が高いので、 冷却し、 凝縮させて得られた液体塩素および非凝縮ガスを充填塔等 の蒸留塔に供給し、 塔頂ガスを凝縮し、 凝縮液を蒸留塔に還流し、 非凝縮ガスで ある酸素含有ガスを分離回収し、 塔底から液体塩素を取り出すことによって、 酸 素含有量の少ない液体塩素が得られる。 また、 圧縮したガスをそのまま蒸留塔に 供給し、 塔頂ガスを凝縮し、 凝縮液を蒸留塔に還流し、 非凝縮ガスである酸素含 有ガスを分離回収し、 塔底から液体塩素を取り出してもよい。
また、 例えば、 圧縮した反応生成ガスを冷却する際に、 塩素ガスにするための 液体塩素と熱交換し、 液体塩素の潜熱を利用して、 反応生成ガスを冷却すると共 に液体塩素を塩素ガスにする等、 冷却するものと加熱するものとを熱交換して、 エネルギーを節減するのが好ましい。
塩素を同伴する分離された酸素含有ガスは通常回収し、 反応にリサイクルされ る。 この際、 乾燥する際に使用した硫酸ミストが含まれる恐れがあるので、 充填 塔ゃ特開 2 0 0 2 - 1 3 6 8 2 5号公報に示される洗浄塔で水と接触させて洗浄 後、 リサイクルするのが好ましい。
これらの洗浄塔はフッ素樹脂ライニング、 塩化ビニル樹脂ライニング、 チタン 、 炭素等で構成される。
分離された塩素を同伴する酸素含有ガスには、 不純物として含まれた有機物が 反応で酸化され生成した二酸化炭素、 圧縮機から漏れこんだ窒素等が含まれ、 リ サイクルすることによって蓄積するので、 通常、 その一部は除害して廃棄される
実施例
以下、 実施例で本発明をより詳細に説明するが、 本発明は実施例に限定される ものではない。
[ 1 ] 触媒の調製
( 1 ) 触媒 1 :
酸化チタンと —アルミナとを、 質量比が 3 4 : 6 6 (酸化チタン: アルミナ ) で混合し、 次いで純水を加えて混練した。 この混合物を直径 1 . 5 mm Φの円 柱状に押出し、 乾燥した後、 長さ 2〜4mm程度に破砕した。 得られた成型体を 空気中、 約 600 °Cで 3時間焼成し、 酸化チタンとひ一アルミナの混合物からな る担体を得た。
この担体に、 塩化ルテニウムの水溶液を含浸し、 乾燥した後、 空気中、 2 5 0 °Cで 2時間焼成することにより、 酸化ルテニウムが 1質量%の担持率で上記担体 に担持されてなるの担持酸化ルテニウムを得た。
(2) 触媒 2 :
酸化チタンと α—アルミナとを、 質量比が 34 : 66 (酸化チタン:アルミナ ) で混合し、 次いで純水を加えて混練した。 この混合物を直径 1. 5πιπιφの円 柱状に押出し、 乾燥した後、 長さ 2〜4mm程度に破砕した。 得られた成型体を 空気中、 700〜7 3 0 °Cで 3時間焼成し、 酸化チタンとひ一アルミナの混合物 からなる担体を得た。
この担体に、 塩化ルテニウムの水溶液を含浸し、 乾燥した後、 空気中、 2 5 0 でで 2時間焼成することにより、 酸化ルテニウムが 2質量%の担持率で上記担体 に担持されてなる担持酸化ルテニウムを得た。
(3) 触媒 3 :
酸化チタンと α—アルミナとを、 質量比が 50 : 50 (酸化チタン: アルミナ ) で混合し、 次いで酸化チタンと α—アルミナの混合物 1 00に対し 1 2.8の質 量比の酸化チタンゾル (堺化学(株)製の C S Β、 酸化チタン 39 %含有) を純水 で希釈し、 混練した。 この混合物を直铎 1. 5 mm*の円柱状に押出し、 乾燥し た後、 長さ 2〜4mm程度に破砕した。 得られた成型体を空気中、 6 50 ~68 0 °Cで 3時間焼成し、 酸化チタンと —アルミナの混合物からなる担体を得た。 この担体に、 塩化ルテニウムの水溶液を含浸し、 乾燥した後、 空気中、 2 5 0 でで 2時間焼成することにより、 酸化ルテニウムが 4質量%の担持率で上記担体 に担持されてなる担持酸化ルテニウムを得た。
[2] 反応器
塩素製造用反応器として、 図 2に示す反応器と同様の反応器を用いた。 なお、 加熱器(41)は、 分割された領域の全て(31〜34)に備えられている。
長さ 42 00mm、 内径 1 8mm、 肉厚 1. 7 mmの N i製反応管 1 58本、 反応管ピッチ 2 7mmの正三角形配列、 シェル内径 450 mmの多管式熱交換型 反応器である。 シェルの中心と外側との略中間で、 略等間隔の位置の 5本の反応 管に温度センサ一を揷入した。
管板及びチヤンネルカバーの母材は炭素鋼であり、 プロセスガスとの接触面に は N iの薄板を爆着法にて内張りしたものを用いた。 反応器シェル側は 4分割さ れ、 管板の上端から 745 ~80 5 mm部は肉厚 60 mmの中間管板、 入口から 1 50 5〜: 1 5 1 1 mm部は肉厚 6 mmの仕切り板、 入口から 28 0 5〜 286 5 mm部には肉厚 60 mmの中間管板を設置されている。 中間管板と反応管は肌 付け拡管法にて接合し、 仕切り板と反応管の間には約 0. 2 mmの隙間を設けら れている。 また、 中間管板で仕切られた各層の反応器シェル壁には、 伸縮継手が 設置されている。
全ての反応管には、 上記の担持酸化ルテニウム触媒を充填した。 反応器入口か ら 22 7〜736 mm部には触媒 1を 30 k g、 8 1 7〜 2 1 58 mm部には触 媒 2を 80 k g、 2 1 76〜 41 80部には触媒 3を 1 14 k g充填した。 その 他の領域には α-アルミナ球を充填した。 この充填により、 反応器入口から 0〜1 8 %部には全ルテニウムの 4. 7 %、 1 8〜 54 %には全ルテニウムの 24. 6 %、 5 :〜 1 00 %部には全ルテニウムの 7 0. 7 %を配置したことになる。 熱媒には硝酸力リゥムと亜硝酸ナトリウムを 50w t %ずつ混合した溶融塩を 用いた。 硝酸力リゥムと亜硝酸ナトリゥムには固結防止剤などの有機物が全く含 まれていないものを用い、 事前に D S C熱量計により、 室温〜 500°Cの範囲に おいて全く熱分解しないことを確認した。
熱媒タンク内で 220 °Cのスチームを用いて間接加熱にて融解した熱媒は、 熱 媒タンクに設置した縦型遠心渦巻きポンプを用いて、 電気ヒータ一加熱器を経由 した循環ループにより 260 ~280 に加熱し、 4分割した反応器のそれぞれ の領域に供給した。 それぞれの領域には単独の循環ループが設置されており、 縦 型遠心渦巻きポンプを用いて約 20m3Zhの流量で循環させた。
[3] 塩化水素の酸化反応
原料となる塩化水素ガスは、 3 5 w t %塩酸約 6 5 0 k gZhを充填塔からな る放散塔に供給し、 塔底で約 146 °Cに加熱することにより放散塔の塔頂から得 た。 得られた塩化水素の流量は約 90 Nm3/h, 温度は約 7 5°C、 塩化水素濃度 は約 98. 6 w t %であり、 その他は水分であった。 塔内の圧力は約 2 5 1 KP a Gであった。 また塔底からはほぼ共沸組成の塩酸水を得た。
前記塩化水素を含むガスと、 後述する回収酸素ガス (酸素: 7 1. 5w t %、 塩素: 2 1. 8 w t %、 その他) 約 26 Nm3/hを混合した。 混合後のガスはタ ンタル製の熱交換器にて、 スチームを熱源として、 約 1 70°Cまで加熱し、 その 後、 予熱した酸素 (純度: 99. 7 V o 1 %、 その他; アルゴン及び窒素) 約 1 9Nm3Zhと混合した。 この混合後のガスをニッケル製の熱交換器にて、 スチ一 ムを熱源として、 約 2 00°Cまで加熱し、 前記の反応器に導入して塩化水素の酸 化反応を行った。
反応器出口ガスは吸収塔に送られ、 吸収塔の塔頂から水を約 1 50 k gZhを 供給して、 未反応塩化水素ガスを吸収し、 吸収塔の塔底から塩酸として回収した 。 回収した塩酸濃度は約 1 0 w t %であった。 なお、 本実施例では、 この塩酸は 空気によるストリッビングにより溶存塩素を除去した後、 中和処理して廃棄した 吸収塔の塔頂からのガスは引き続き乾燥塔に導入し、 98 w t %の濃硫酸 3 k gZhと接触させることにより、 水分を約 1 0 V 0 1 p pm以下まで乾燥した。 乾燥したガスはプリンク式フィルタ一に導入して硫酸ミストを分離後、 往復式 圧縮機に導入し、 87 0 KP a Gまで昇圧した。 圧縮後のガスは蒸留塔に導入し た。 蒸留塔の塔頂にはケトル式熱交換器を 2基設置して凝縮器とし、 チューブ側 を直列に連結して蒸留塔の塔頂ガスを導入し冷却した。 1段目凝縮器のシェル側 には後述する液体塩素を導入して蒸発させ、 その蒸発潜熱により約一 1 0°Cまで 冷却した。 また 2段目のシェル側ではフッ素化炭化水素 (R— 22) を蒸発させ 約— 30°Cまで冷却した。 ここで凝縮した液を還流液とした。 2段目凝縮器のチ ユーブ側を通過した未凝縮ガスのうち約 26 Nm3Zhは、 硫酸ミストを除去する ために水洗した後、 前述の回収酸素として反応系に導入した。 また前記蒸留塔の 圧力を約 8 50 KP a Gに維持するために、 前記未凝縮ガスの一部をパージした 。 パ一ジガス量は約 0. 5 ~ 1 Nm3Zhであった。
蒸留塔の底部には外部循環式のリポイラ一を設置して、 60での温水を熱源に して塔底液の温度を約 3 0°Cに加熱することで蒸留を行い、 塔底から精留された 液体塩素を得た。 液体塩素は、 前記塔頂の 1段目凝縮器のシェル側に導入して気 化後、 さらに加熱して塩素ガス約 1 2 5 k gZhを得た。 塩素の純度は 99. 7 v o 1 %であった。
反応原料ガス導入後、 シェルの分割された領域部分の触媒層 (反応ゾーン) の それぞれの ATmaxを次のように調整した。 すなわち、 熱媒 2 6 5 - 280 °Cで反 応開始後、 第 1および第 2ゾーンの ATmaxは 20〜30°C、 第 3および第 4ゾ一 ンの ATmaxは 0〜2 0°Cとし、 反応器出口における転化率が 8 0 ~ 90 %を維持 するように各ゾーンの温度を調整した。 転化率は、 反応器に導入した塩化水素ガ ス量と吸収塔から回収した未反応塩酸流量及び濃度から求めた。 触媒活性の経時 的な劣化により ATmaxは除々に低下するため第 1ゾーン部分の熱媒温度を少しず つ上昇させて対応したが、 反応温度が 380 °Cを超える場合はそれ以上の温度上 げは行わず、 他ゾーンの熱媒温度を調整した。 この反応を 14600時間連続で 行った。 反応開始から 997時間後の触媒層の温度分布と 1459 5時間後の温 度分布を、 その時の熱媒温度と共に図 3に示す。 997時間後における触媒層の 平均温度は 3 1 9 °Cであったが、 その後触媒の劣化とともに各層の熱媒温度を上 げ、 1459 5時間後では 364 Tであった。 反応開始時から終了時点までの反 応出口の HCL転化率の推移を図 4示す。 その転化率は約 80〜 90 %で、 平均 約 8 5 %であった。 本発明によれば、 以下の各発明が提供される。
[1] 塩化水素を酸素で酸化して塩素を製造する際に使用する多管式熱交換型 反応器であって、 反応器のシェル内が管軸方向に仕切り板で複数の領域に分割さ れ、 それぞれの領域を循環する熱媒のうちの少なくとも一つの熱媒の温度制御手 段を備えていることを特徴とする塩素製造用反応器。
[2] 反応器シェル内が 2〜1 0段の領域に分割されていることを特徴とする
[1] 記載の塩素製造用反応器。
[3] 温度制御手段が、 冷却器および/または加熱器からなることを特徴とす る [1] または [2] 記載の塩素製造用反応器。
[4] 反応器の反応管の入口から出口方向に、 触媒活性の異なる触媒が層状に 充填されていることを特徴とする [1] ~ [3] のいずれかに記載の塩素製造用 反応器。
[5] 反応器の反応管の入口から出口方向に、 触媒活性が高くなるように触媒 が充填されていることを特徴とする [ 1] 〜 [3] のいずれかに記載の塩素製造 用反応器。
[6] 反応器の反応管に充填した触媒層の入口部、 触媒層の出口部および Zま たは触媒層間に不活性物質を充填することを特徴とする [1] 〜 [5] のいずれ かに記載の塩素製造用反応器。
[7] 触媒が酸化ルテニウム触媒であることを特徴とする [4] 〜 [6] のい ずれかに記載の塩素製造用反応器。
[8] 反応管の入口から 5 0 %未満の領域に全ルテニウムの 40 %以下が充填 され、 50〜 1 00 %の領域に全ルテニウムの 60 %以上が充填されていること を特徴とする [7] 記載の塩素製造用反応器。
[9] 塩化水素を含有するガスおよび酸素を含有するガスを [1] 〜 [8] の いずれかに記載の塩素製造用反応器に供給し、 圧力が 0. l ~lMP aG、 温度 が 200~ 500 °Cで塩化水素を酸素で酸化することを特徴とする塩素の製造方 法。
[1 0] 触媒充填量当りの塩化水素の供給量 (GHS V) を標準状態で 1 00 〜2000/h rで行うことを特徴とする [9] 記載の塩素の製造方法。
[1 1] 塩化水素に対する酸素のモル比を 0. 2 5〜2で行うことを特徴とす る [9] または [1 0] 記載の塩素の製造方法。
[1 2] 未反応の塩化水素および/または酸素を回収して反応器に供給するこ とを特徴とする [9] 記載の塩素の製造方法。
[1 3] 分割された領域部分の反応管内の触媒層の温度を、 各領域の触媒層毎 に温度センサーを用いて測定し、 その最高温度と熱媒温度との差 (ATmax) が所 定の範囲内になるように熱媒温度を制御することを特徴とする [9] 記載の塩素 の製造方法。
[14] ATmaxを 0~40°Cとすることを特徴とする [ 1 3] 記載の塩素の製 造方法。
[1 5] 温度センサ一が、 1本のセンサ一に複数の測定点が埋め込まれた多点 式温度計であることを特徴とする [1 3] 記載の塩素の製造方法。 産業上の利用可能性 本発明によれば、 触媒を有効に活用し、 触媒活性を安定に維持することができ 、 塩化水素から塩素を安定して高収率で製造することができる。

Claims

請 求 の 範 囲
1 .
塩化水素を酸素で酸化して塩素を製造する際に使用する多管式熱交換型反応器 であって、 反応器のシェル内が管軸方向に仕切り板で複数の領域に分割され、 そ れぞれの領域毎に熱媒が循環し、 そのうちの少なくとも一つの熱媒の温度制御手 段を備えており、 該温度制御手段が、 冷却器および Zまたは加熱器からなり、 反 応器の反応管の入口から出口方向に、 触媒活性の異なる触媒が層状に充填されて おり、 触媒が酸化ルテニウム触媒であり、 反応管の入口から 5 0 %未満の領域に 全ルテニウムの 4 0 %以下が充填され、 5 0 ~ 1 0 0 %の領域に全ルテニウムの 6 0 %以上が充填されている塩素製造用反応器。
2 .
塩化水素を酸素で酸化して塩素を製造する際に使用する多管式熱交換型反応器 であって、 反応器のシェル内が管軸方向に仕切り板で複数の領域に分割され、 そ れぞれの領域毎に熱媒が循環し、 そのうちの少なくとも一つの熱媒が温度制御手 段を備えており、 該温度制御手段が、 冷却器および/または加熱器からなり、 反 応器の反応管の入口から出口方向に、 触媒活性の異なる触媒が層状に充填されて おり、 触媒が酸化ルテニウム触媒であり、 反応管の入口から 5 0 %未満の領域に 全ルテニウムの 4 0 %以下が充填され、 5 0 ~ 1 0 0 %の領域に全ルテニウムの 6 0 %以上が充填されている塩素製造用反応器を用い、 塩化水素を含有するガス および酸素を含有するガスを該塩素製造用反応器に供給し、 圧力が 0 . 1〜 1 M P a G、 温度が 2 0 0〜 5 0 0 °Cで塩化水素を酸素で酸化する塩素の製造方法。
3 .
分割された領域部分の反応管内の触媒層の温度を、 各領域の触媒層毎に温度セ ンサーを用いて測定し、 その最高温度と熱媒温度との差 (A T max) が所定の範囲 内になるように熱媒温度を制御する請求項 2記載の塩素の製造方法。
4 . △ T maxを 0〜4 0 °Cとする請求項 3記載の塩素の製造方法。
5 .
温度センサ一が、 1本のセンサ一に複数の測定点が埋め込まれた多点式温度計 である請求項 3記載の塩素の製造方法。
PCT/JP2006/312938 2005-06-22 2006-06-22 塩素製造用反応器および塩素の製造方法 WO2006137583A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800224491A CN101223104B (zh) 2005-06-22 2006-06-22 氯制备用反应器和氯的制备方法
EP06767555A EP1894885A4 (en) 2005-06-22 2006-06-22 REACTOR FOR THE MANUFACTURE OF CHLORINE AND METHOD FOR THE PRODUCTION OF CHLORINE
KR1020077029849A KR101299903B1 (ko) 2005-06-22 2006-06-22 염소 제조용 반응기 및 염소의 제조 방법
BRPI0611992-1A BRPI0611992A2 (pt) 2005-06-22 2006-06-22 reator para a produção de cloro e processo para a produção de cloro

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005181607A JP4341591B2 (ja) 2005-06-22 2005-06-22 塩素製造用反応器および塩素の製造方法
JP2005-181607 2005-06-22

Publications (1)

Publication Number Publication Date
WO2006137583A1 true WO2006137583A1 (ja) 2006-12-28

Family

ID=35435900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312938 WO2006137583A1 (ja) 2005-06-22 2006-06-22 塩素製造用反応器および塩素の製造方法

Country Status (6)

Country Link
EP (1) EP1894885A4 (ja)
JP (1) JP4341591B2 (ja)
KR (1) KR101299903B1 (ja)
CN (1) CN101223104B (ja)
BR (1) BRPI0611992A2 (ja)
WO (1) WO2006137583A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008122363A1 (de) 2007-04-10 2008-10-16 Bayer Materialscience Ag Regenerativer kondensations- und adsorptionsprozess zur entfernung organischer komponenten aus einem gasstrom
WO2008131873A1 (de) * 2007-04-26 2008-11-06 Bayer Materialscience Ag Kondensations-adsorptionsprozess zur entfernung organischer komponenten aus einem chlorwasserstoff enthaltenden gasstrom
WO2010067751A1 (ja) * 2008-12-09 2010-06-17 住友化学株式会社 塩素の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4785515B2 (ja) * 2005-12-08 2011-10-05 住友化学株式会社 塩素の製造方法
JP4263195B2 (ja) * 2006-02-20 2009-05-13 住友化学株式会社 塩化水素酸化反応装置および塩化水素酸化反応方法
CN101622213A (zh) * 2007-02-28 2010-01-06 雅宝公司 由甲烷和溴生产高级烃的方法
JP2010030831A (ja) * 2008-07-29 2010-02-12 Sumitomo Chemical Co Ltd 塩素の製造方法
JP5130155B2 (ja) * 2008-08-28 2013-01-30 住友化学株式会社 塩素の製造方法
JP5315578B2 (ja) * 2008-12-22 2013-10-16 住友化学株式会社 塩素の製造方法
US7985381B2 (en) * 2009-02-06 2011-07-26 Uop Llc Utilization of baffles in chlorination zone for continuous catalyst regeneration
JP5636601B2 (ja) * 2010-03-11 2014-12-10 住友化学株式会社 固定床反応器による塩素の製造方法
CA3013805C (en) * 2016-02-26 2024-03-26 Shell Internationale Research Maatschappij B.V. Alkane oxidative dehydrogenation (odh)
KR102235559B1 (ko) * 2019-03-22 2021-04-02 (주)제이엘씨 촉매반응장치
KR102246681B1 (ko) * 2019-03-22 2021-04-30 (주)제이엘씨 촉매반응장치
CN111450787A (zh) * 2020-03-31 2020-07-28 无锡银燕化工装备科技有限公司 一种用于连续洗涤的反应器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807963A (en) 1972-03-09 1974-04-30 J Smith Reaction apparatus
EP0743277A1 (en) 1995-05-18 1996-11-20 Sumitomo Chemical Company Limited Process for producing chlorine
JPH0967103A (ja) 1995-05-18 1997-03-11 Sumitomo Chem Co Ltd 塩素の製造方法
JP2000272907A (ja) * 1999-01-22 2000-10-03 Sumitomo Chem Co Ltd 塩素の製造方法
JP2000281314A (ja) 1998-02-16 2000-10-10 Sumitomo Chem Co Ltd 塩素の製造方法
JP2001139305A (ja) 1999-11-10 2001-05-22 Sumitomo Chem Co Ltd 塩化水素と水の分離回収方法
JP2001199710A (ja) * 2000-01-13 2001-07-24 Sumitomo Chem Co Ltd 塩素の製造方法
JP2002136825A (ja) 2000-08-21 2002-05-14 Sumitomo Chem Co Ltd 硫酸ミストの除去方法と硫酸ミスト除去装置
JP2003063591A (ja) 2001-08-22 2003-03-05 Nippon Valqua Ind Ltd 耐薬品性シートライニングタンク
JP2003083833A (ja) * 2001-06-26 2003-03-19 Sumitomo Chem Co Ltd 熱交換プロセスの異常検知方法
JP2004217455A (ja) 2003-01-14 2004-08-05 Sumitomo Chem Co Ltd 塩素ガスの乾燥装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2035663T3 (es) * 1989-02-17 1993-04-16 Jgc Corporation Aparato del tipo de envoltura y tubos, que tienen una placa intermedia de tubos.
BR0007634A (pt) * 1999-01-22 2001-12-18 Sumitomo Chemical Co Processo para produção de cloro
ZA200004211B (en) * 1999-08-31 2001-02-14 Nippon Catalytic Chem Ind Method for catalytic gas phase oxidation.
BRPI0008181B8 (pt) * 2000-01-19 2017-03-21 Sumitomo Chemical Co processo de preparação de cloro.
DE10258180A1 (de) * 2002-12-12 2004-06-24 Basf Ag Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff
US7731917B2 (en) * 2004-05-28 2010-06-08 Sumitomo Chemical Company, Limited Heat exchange reactor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807963A (en) 1972-03-09 1974-04-30 J Smith Reaction apparatus
EP0743277A1 (en) 1995-05-18 1996-11-20 Sumitomo Chemical Company Limited Process for producing chlorine
JPH0967103A (ja) 1995-05-18 1997-03-11 Sumitomo Chem Co Ltd 塩素の製造方法
US5871707A (en) 1995-05-18 1999-02-16 Sumitomo Chemical Company, Limited Process for producing chlorine
JP2000281314A (ja) 1998-02-16 2000-10-10 Sumitomo Chem Co Ltd 塩素の製造方法
JP2000272907A (ja) * 1999-01-22 2000-10-03 Sumitomo Chem Co Ltd 塩素の製造方法
JP2001139305A (ja) 1999-11-10 2001-05-22 Sumitomo Chem Co Ltd 塩化水素と水の分離回収方法
JP2001199710A (ja) * 2000-01-13 2001-07-24 Sumitomo Chem Co Ltd 塩素の製造方法
JP2002136825A (ja) 2000-08-21 2002-05-14 Sumitomo Chem Co Ltd 硫酸ミストの除去方法と硫酸ミスト除去装置
JP2003083833A (ja) * 2001-06-26 2003-03-19 Sumitomo Chem Co Ltd 熱交換プロセスの異常検知方法
JP2003063591A (ja) 2001-08-22 2003-03-05 Nippon Valqua Ind Ltd 耐薬品性シートライニングタンク
JP2004217455A (ja) 2003-01-14 2004-08-05 Sumitomo Chem Co Ltd 塩素ガスの乾燥装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1894885A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008122363A1 (de) 2007-04-10 2008-10-16 Bayer Materialscience Ag Regenerativer kondensations- und adsorptionsprozess zur entfernung organischer komponenten aus einem gasstrom
US7749307B2 (en) 2007-04-10 2010-07-06 Bayer Materialscience Ag Regenerative adsorption processes for removing organic components from gas streams
WO2008131873A1 (de) * 2007-04-26 2008-11-06 Bayer Materialscience Ag Kondensations-adsorptionsprozess zur entfernung organischer komponenten aus einem chlorwasserstoff enthaltenden gasstrom
JP2010524829A (ja) * 2007-04-26 2010-07-22 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト 塩化水素含有ガスストリームから有機成分を取り除くための凝縮−吸着方法
US7837767B2 (en) 2007-04-26 2010-11-23 Bayer Materialscience Ag Processes for removing organic components from gases containing hydrogen chloride
WO2010067751A1 (ja) * 2008-12-09 2010-06-17 住友化学株式会社 塩素の製造方法
JP2010138002A (ja) * 2008-12-09 2010-06-24 Sumitomo Chemical Co Ltd 塩素の製造方法

Also Published As

Publication number Publication date
KR101299903B1 (ko) 2013-08-23
JP4341591B2 (ja) 2009-10-07
EP1894885A4 (en) 2011-06-22
BRPI0611992A2 (pt) 2011-12-20
KR20080016874A (ko) 2008-02-22
JP2005306734A (ja) 2005-11-04
EP1894885A1 (en) 2008-03-05
CN101223104A (zh) 2008-07-16
CN101223104B (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
WO2006137583A1 (ja) 塩素製造用反応器および塩素の製造方法
KR101418612B1 (ko) 기체 상 산화에 의한 염소 제조 방법
EP1170250B1 (en) Method for producing chlorine
EP0233773B1 (en) Production of chlorine
JPH0567566B2 (ja)
JP2010533113A (ja) 多段階断熱的気相酸化による塩素の製造方法
JP2010533114A (ja) 気相酸化による塩素の製造方法
JP2005289800A (ja) 塩素の製造方法
WO2007066810A1 (ja) 塩素の製造方法
JP3606147B2 (ja) 塩素の製造方法
JPH0548216B2 (ja)
JP2006219369A (ja) 塩素の製造方法
US20100296998A1 (en) Reactor for producing chlorine and process for producing chlorine
US20140309457A1 (en) Catalyst and method for producing aromatic amines in the gas phase
WO2010067751A1 (ja) 塩素の製造方法
EP0830204B1 (en) Method of oxychlorination
KR100663218B1 (ko) 비균질적으로 촉매된 3상 반응의 등온적 수행 방법
JP5183047B2 (ja) 塩素の製造方法、塩素の製造装置および熱交換器
JP2012180242A (ja) 塩素の製造方法
JP2008105862A (ja) 塩素の製造方法
JP2012184133A (ja) 固定床反応器の停止方法
JP2009529485A (ja) 冷却される壁反応器中で気相酸化により塩素を作る方法と装置
CN117693488A (zh) 制备光气的方法
CN117177940A (zh) 光气的制备方法
JP2009196825A (ja) 塩素の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680022449.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006767555

Country of ref document: EP

Ref document number: 1020077029849

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0611992

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071221