WO2006123737A1 - 医療材料用高分子化合物及び該高分子化合物を用いたバイオチップ用基板 - Google Patents

医療材料用高分子化合物及び該高分子化合物を用いたバイオチップ用基板 Download PDF

Info

Publication number
WO2006123737A1
WO2006123737A1 PCT/JP2006/309920 JP2006309920W WO2006123737A1 WO 2006123737 A1 WO2006123737 A1 WO 2006123737A1 JP 2006309920 W JP2006309920 W JP 2006309920W WO 2006123737 A1 WO2006123737 A1 WO 2006123737A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer compound
functional group
polymerizable monomer
ethylenically unsaturated
Prior art date
Application number
PCT/JP2006/309920
Other languages
English (en)
French (fr)
Inventor
Takayuki Matsumoto
Sumio Shibahara
Sohei Funaoka
Daisuke Masuda
Original Assignee
Sumitomo Bakelite Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Company, Ltd. filed Critical Sumitomo Bakelite Company, Ltd.
Priority to JP2007516336A priority Critical patent/JP5167811B2/ja
Priority to EP06746605.2A priority patent/EP1882708B1/en
Priority to CA2608792A priority patent/CA2608792C/en
Priority to KR1020077028595A priority patent/KR101280341B1/ko
Priority to US11/920,560 priority patent/US9046515B2/en
Priority to AU2006248394A priority patent/AU2006248394B2/en
Publication of WO2006123737A1 publication Critical patent/WO2006123737A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3322Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33379Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing nitro group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33396Polymers modified by chemical after-treatment with organic compounds containing nitrogen having oxygen in addition to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D155/00Coating compositions based on homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C09D123/00 - C09D153/00
    • C09D155/005Homopolymers or copolymers obtained by polymerisation of macromolecular compounds terminated by a carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"

Definitions

  • the present invention relates to a polymer compound for medical materials having a function of immobilizing a physiologically active substance, a surface coating material containing the polymer material, and a nanochip substrate using the polymer compound.
  • proteomics involves the qualitative and quantitative measurement of gene activity by detecting and quantifying expression at the protein level rather than at the gene level. It also includes the study of non-gene-encoded events such as post-translational modification of proteins and protein-protein interactions.
  • a DNA chip has been put to practical use as a molecular array for this purpose.
  • a protein chip has been proposed and research is being conducted recently.
  • a protein chip is a generic term for a protein or a molecule that captures it immobilized on the surface of a chip (a small substrate or particle).
  • the current protein chip is generally developed on the extension line of the DNA chip. Therefore, the protein or the molecule that captures the protein chip is fixed on the surface of the chip like a glass substrate in a spot shape. (For example, see Patent Document 1). For example, immobilization by physical adsorption of proteins is performed. In such a protein chip, since it is preferable that the signal is high, a protein having a higher ability to immobilize a protein or a molecule that captures the protein on the chip surface is required.
  • Non-Patent Document 1 nonspecific adsorption (for example, see Non-Patent Document 1) of a substance to be detected to the substrate is cited as a cause of reducing the signal-to-noise ratio.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-116750
  • Patent Document 2 Japanese Translation of Special Publication 2004-531390
  • Non-Patent Document 1 "DNA Microarray Practice Manual”, Hayashizaki Yoshihide, Okazaki Koji edited, Yodosha, 2000, p.57 Disclosure of the invention
  • the subject of the present invention is excellent in the ability to fix physiologically active substances, has low chemical and physical stability, and is suitable for coating on the surface of a plastic substrate.
  • an ethylenically unsaturated polymerizable monomer having a functional group for immobilizing at least a physiologically active substance (a) is a copolymer having a force, and has a reactive functional group at least on one end.
  • the polymer compound for medical materials has excellent ability to immobilize biologically active substances, has chemical and physical stability with little dissolution and deterioration in the cleaning process, and evenly and warps on the plastic substrate.
  • the high molecular compound component is an ethylenically unsaturated polymerizable monomer having an alkylene glycol residue. It was found that heteroadsorption can be reduced. Furthermore, the present inventors have found that the polymer compound for medical materials can be suitably used for biochips and thus completed the present invention.
  • the present invention provides:
  • At least an ethylenically unsaturated polymerizable monomer having a functional group that fixes a physiologically active substance (a) a polymer containing a repeating unit that also induces force, and at least one side of the polymer A polymer compound for medical materials characterized by having a reactive functional group at the end;
  • At least an ethylenically unsaturated polymerizable monomer (a) having a functional group that fixes a physiologically active substance and an ethylenically unsaturated polymerizable monomer having an alkylene glycol residue (b) Force-induced repetition A copolymer comprising units, wherein A polymer compound for medical materials, characterized by having a reactive functional group at least on one end,
  • the terminal reactive functional group is a reactive silyl group (1) to (3) V, the polymer compound for medical materials according to any one of the above,
  • At least one of the functional groups of the ethylenically unsaturated polymerizable monomer (a) having a functional group for fixing a physiologically active substance is selected from an aldehyde group, an active ester group, an epoxy group, a vinyl sulfone group, and a pyridine power.
  • a high molecular compound for medical materials according to any one of (1) to (5),
  • the ethylenically unsaturated polymerizable monomer (a) having a functional group for fixing a physiologically active substance is a monomer having an active ester group represented by the following general formula [1] (1) to ( 6)
  • the polymer compound for medical material according to any one of
  • R represents a hydrogen atom or a methyl group
  • X represents an alkylene glycol residue or an alkyl group having 1 to 10 carbon atoms
  • W represents an active ester group
  • p represents an integer of 1 to: LOO
  • the repeated Xs may be the same or different.
  • the ethylenically unsaturated polymerizable monomer having an alkylene glycol residue (b) is a monomer represented by the following general formula [2] (2) to (8) Child compounds,
  • R represents a hydrogen atom or a methyl group, and R represents a hydrogen atom or a C 1-20
  • Y represents an alkylene glycol residue having 1 to 10 carbon atoms
  • q represents an integer of 1 to L00.
  • q is an integer of 2 or more and 100 or less, the repeated Ys may be the same or different.
  • the ethylenically unsaturated polymerizable monomer (c) having the hydrophobic group is at least one selected from n-butyl methacrylate, n-dodecyl methacrylate, n-octyl methacrylate, and cyclohexyl methacrylate.
  • the mercaptosilane compound (d) having a reactive functional group is a mercaptosilane compound represented by the following general formula [3] (15) or (16) Production method of molecular compounds,
  • R represents an alkyl group having 1 to 20 carbon atoms, and at least one of A, A and A is
  • a medical material surface coating comprising the medical material polymer compound according to any one of (1) to (14) or the medical material polymer compound obtained by any one of the production methods (15) to (18).
  • physiologically active substance is at least one physiologically active substance selected from nucleic acid, abutama, protein, oligopeptide, sugar chain, and glycoprotein
  • the physiologically active substance has excellent immobilization ability, and has chemical and physical stability with little dissolution or deterioration even in the cleaning process, and is particularly suitable for the surface of a plastic substrate.
  • a coatable polymer compound can be provided. Further, by adding the ethylenically unsaturated polymerizable monomer (b) having an alkylene glycol residue to the component of the polymer compound, a medical polymer compound with less nonspecific adsorption of protein can be provided. Furthermore, a biochip substrate having a high SN ratio can be provided using the polymer compound.
  • the polymer compound of the present invention is a polymer containing a repeating unit derived from an ethylenically unsaturated polymerizable monomer (a) having at least a functional group for fixing a physiologically active substance, and at least one side It is characterized by being a high molecular compound for medical materials having a reactive functional group at the terminal.
  • This polymer compound has a property of fixing a specific physiologically active substance. Furthermore, since it has a reactive functional group at least at one end, it is possible to form a covalent bond with the base material, and thereby the polymer compound can be grafted onto the surface of the base material. The polymer compound thus obtained does not flow out of the polymer compound due to the washing step.
  • the polymer compound does not require a curing reaction with volume shrinkage, and basically a highly developed network structure is not formed in the polymer compound film formed on the substrate. Coating can be applied evenly on plastic substrates without causing problems such as warpage and undulation. Furthermore, by adding a repeating unit derived from an ethylenically unsaturated polymerizable monomer (b) having an alkylene glycol residue as a component of the polymer compound, the alkylene glycol residue suppresses nonspecific adsorption of the protein. Therefore, the property of suppressing nonspecific adsorption of physiologically active substances increases.
  • the functional group of the ethylenically unsaturated polymerizable monomer (a) having a functional group for fixing the physiologically active substance used in the present invention includes a chemically active group, a receptor group, a ligand group, and the like. However, it is not limited to these. Specific examples include an aldehyde group, an active ester group, an epoxy group, a bursulfone group, a piotine, a thiol group, an amino group, an isocyanate group, an isothiocyanate group, a hydroxyl group, an acrylate group, a maleimide group, and a hydrazide group.
  • aldehyde groups aldehyde groups, active ester groups, epoxy groups, and bulusulfone groups are preferable, and piotin having a high binding constant with bioactive substances is preferable.
  • active ester groups are the most preferred for the stability and stability of monomers.
  • the ethylenically unsaturated polymerizable monomer (a) having a functional group for fixing a physiologically active substance used in the present invention is not particularly limited in structure, but is represented by the following general formula [1] It is preferably a compound in which the (meth) acrylic group and the active ester group are bonded via a chain of an alkylene glycol residue having 1 to 10 carbon atoms or an alkyl group.
  • the chain of alkylene dallicol residues itself has the property of suppressing nonspecific adsorption of proteins.
  • a monomer in which a (meth) acryl group and an active ester group are bonded via a chain of an alkylene glycol residue has both a property of immobilizing a physiologically active substance and a property of suppressing nonspecific adsorption of proteins. Therefore, even if such a polymer of monomers is a single polymer, it can be suitably used as a medical polymer compound as long as it has a reactive functional group at least on one end.
  • (meth) acryl represents acryl and Z or methacryl
  • (meth) acrylate represents atelate and Z or metatalylate.
  • X represents an alkylene glycol residue or an alkyl group having 1 to 10 carbon atoms
  • W represents an active ester group
  • p represents an integer of 1 to: LOO.
  • p is an integer of 2 or more and 100 or less, the repeated Xs may be the same or different.
  • the carbon number of X is 1 to 10, preferably 1 to 6, more preferably 2 to 4, and still more preferably. It is 2 to 3, and 2 is most preferable.
  • the alkylene glycol residue refers to an alkyleneoxy group (HOR—OH, where R is an alkylene group), an alkyleneoxy group (residue after the hydroxyl group at one end or both ends after condensation reaction with other compounds) 1 R—O, where R is an alkylene group) n, for example alkylene glycol in the case of methylene glycol (HO—CH—OH)
  • the residue is a methyleneoxy group (one CH—O) and ethylene glycol (HO—CH C
  • the alkylene glycol residue is an ethyleneoxy group (one CH CH -0
  • the repeating number p of X is an integer of 1 to 100, and when X is an alkylene glycol residue, it is more preferably an integer of 2 to 50, more preferably an integer of 2 to 30, and most preferably 2. It is an integer of ⁇ 20. In the case of a mixture of various types of p, P is specified as an average value for the entire polymer compound. When the number of repetitions p is 2 or more, the repeated Xs may be the same or different.
  • the alkyl group is not particularly limited in structure, and may be linear, branched or cyclic.
  • the "active ester group” used in the present invention is an ester group having a highly acidic electron-withdrawing group at one substituent of the ester group and activated for a nucleophilic reaction, Anti
  • active ester group means those commonly used in various chemical synthesis fields such as molecular chemistry and peptide synthesis. In practice, phenol esters, thiphenol esters, N-hydroxyamine esters, heterocyclic hydroxy compounds, and other active esters have much higher activity than alkyl esters.
  • R “represented by R” represented by such an active ester COOR has an electron-withdrawing group having a high acidity as described above.
  • R is p-trophophore, p-trophophore active ester group;
  • R ′′ is N hydroxysuccinimide, N—hydroxysuccinimide active ester group,
  • R ′′ is phthalimide, phthalimide active ester group;
  • R ′′ is 5 norbornene 2,3 dicarboximide, 5 Norbornene 1, 2, 3-Dicarboximide active ester group, etc.
  • P-trophic active ester group or N-hydroxysuccinimide active ester Groups are preferred, and p-nitrophenol active ester groups are most preferred.
  • Examples of the ethylenically unsaturated polymerizable monomer (a) having a functional group for immobilizing a physiologically active substance include p-trophenyl-carboxy-loop poly (ethylene glycol) (metha) acrylate and succinimidoxy Examples thereof include carbo-poly (ethylene glycol) (meth) atalylate, and among them, p-trophenyl carboxy-poly (ethylene glycol) metatalate represented by the following formula is preferable.
  • the average number of ethylene glycol repeats p and Z or P is preferably 2-20.
  • the proportion of the moiety derived from the ethylenically unsaturated polymerizable monomer (a) having a functional group for immobilizing a physiologically active substance is not particularly limited, but is heavy. 1 to 99 for the total number of repeating units of all monomers in the coalescence. 7 mol% is preferred, more preferably 1 to 70 mol%, most preferably 1 to 50 mol%.
  • the ethylenically unsaturated polymerizable monomer (b) having an alkylene glycol residue used in the present invention is not particularly limited in structure, but the (meth) acryl group and carbon represented by the general formula [2] A compound having a chain strength of the alkylene glycol residue Y having a prime number of 1 to 10 is preferred.
  • R represents a hydrogen atom or a methyl group, and R represents a hydrogen atom or a C 1-20
  • Y represents an alkylene glycol residue having 1 to 10 carbon atoms
  • q represents an integer of 1 to: LOO.
  • q is an integer of 2 or more and 100 or less, the repeated Ys may be the same or different.
  • the number of carbon atoms of the alkylene glycol residue Y in the formula is 1 to 10, preferably 1 to 6, more preferably 2 to 4, still more preferably 2 to 3, and most preferably 2.
  • the repeating number q of the alkylene glycol residue Y is not particularly limited, but is preferably 1 to: an integer of LOO, more preferably 2 to: an integer of LOO, and more preferably 2 to 95. And most preferably an integer of 20 to 90. In the case of a mixture of various types of q, q is specified as an average value for the entire polymer compound. When the number of repetitions q is 2 or more, Y may be the same or different.
  • Examples of the ethylenically unsaturated polymerizable monomer (b) having an alkylene glycol residue include methoxy polyethylene glycol (meth) acrylate, ethoxy polyethylene glycol (meth) acrylate, 2-hydroxyethyl (meth).
  • Atarylate and its hydroxyl-substituted ester 2-hydroxypropyl (meth) atalylate and its hydroxyl-substituted ester, 2-hydroxybutyl (meth) acrylate and its hydroxyl-substituted monoester, Reserol mono (meth) acrylate, (meth) acrylate with polypropylene glycol as side chain, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, ethoxy Forces such as diethylene glycol (meth) acrylate, ethoxy polyethylene glycol (meth) acrylate, etc.
  • the average number of repeating ethylene glycol residues is 3 to: LOO methoxypolyethylene glycol (meth) acrylate or ethoxypolyethylene glycol (meth) acrylate has excellent operability during synthesis (no ringing). Point power is also preferably used.
  • the ratio of the portion that also induces the force of the ethylenically unsaturated polymerizable monomer (b) having an alkylene glycol residue is not particularly limited, but in the polymer O to 95 mol% is preferable, more preferably 30 to 95 mol%, and most preferably 50 to 90 mol%, based on the total number of repeating units of all monomers.
  • the polymer compound used in the present invention has an ethylenically unsaturated polymerizable monomer having a reactive functional group at least on one end and having a functional group for fixing a physiologically active substance.
  • an ethylenically unsaturated polymerizable monomer having an alkylene glycol residue (b) another ethylenically unsaturated polymerizable monomer may be included.
  • it may be a polymer compound obtained by copolymerizing an ethylenically unsaturated polymerizable monomer (c) further having a hydrophobic group from the viewpoint of improving applicability to a plastic substrate or the like! /, .
  • the structure of the ethylenically unsaturated polymerizable monomer (c) having a hydrophobic group is particularly limited as long as it has a functional group that fixes a physiologically active substance or a hydrophobic group that does not have an alkylene glycol residue. I can't.
  • the hydrophobic group include linear, branched and cyclic aliphatic hydrocarbon groups and aromatic hydrocarbon groups.
  • (meth) acrylic group (CH CR—COO—, where R is a hydrogen atom or a methyl group
  • the structure of the alkyl group is not particularly limited, and the alkyl group may be linear, branched or cyclic.
  • monomers include n-butyl (meth) acrylate, iso butyl (meth) acrylate, sec butyl (meth) acrylate, t butyl (meth) acrylate, n neopentyl (meth) ) Atalylate, iso Neopentyl (meth) acrylate, sec Neopentyl (meth) acrylate, Neopentyl (meth) acrylate, n—Hexyl (meth) acrylate, iso Monohexyl (meth) acrylate, heptyl ( (Meth) acrylate, n-octyl (meth) acrylate, iso-octyl (meth) acrylate, 2-ethyl hexyl (meth) acrylate, n-nor (meth) acrylate, iso-nor ( (Meta) attalylate, n-decyl (meth) acrylate,
  • the proportion of the portion derived from the ethylenically unsaturated polymerizable monomer (c) having a hydrophobic group is not particularly limited, but it is not limited to all the components in the polymer. 0 to 90 mol% is preferable with respect to the total number of repeating units of the monomer, more preferably 0 to 80 mol%, and most preferably 0 to 70 mol%. If the composition ratio of the ethylenically unsaturated polymerizable monomer (c) in the polymer exceeds the upper limit, nonspecific adsorption of physiologically active substances such as proteins may increase.
  • the reactive functional group introduced into at least one end of the polymer is not particularly limited as long as it is a functional group that can be covalently bonded to the surface of the substrate as used in a biochip substrate. .
  • a reactive functional group capable of being covalently bonded can be appropriately selected in accordance with the functional group present on the surface of the substrate to be used.
  • the substrate used is as described below. In general, plastics, glass substrates, etc. are often used, and hydroxyl groups, amino groups, aldehyde groups, carboxyl groups, etc. can be introduced on the surface. Silyl group, epoxy group, amino group and the like.
  • the reactive functional group introduced into at least one terminal of the polymer is preferably a reactive silyl group because it can be reacted with the substrate under relatively mild conditions.
  • the reactive silyl group include a functional group that generates a silanol group by hydrolysis, a silanol group, and the like.
  • a functional group that generates a silanol group by hydrolysis is a group that readily hydrolyzes to form a silanol group upon contact with water.
  • the reactive silyl group has a structure represented by the following general formula [4]. Is mentioned.
  • At least one of A, A and A is a reactive site in the reactive functional group.
  • the reactive site refers to a site that can be covalently bonded to the substrate.
  • the reactive site include an alkoxyl group, a halogen group, an amino group, an isocyanate group, a phenoxy group, and a hydroxyl group.
  • Suitable reactive functional groups include, for example, halogenated silyl groups ( ⁇ Si—X, where X is a halogen group), alkoxysilyl groups ( ⁇ Si—OR, where R is an alkyl group), phenoxy Ryl group ( ⁇ Si—OPh, where Ph is a phenol group), Acetoxysilyl group ( ⁇ Si—OOCCH
  • the ability not to contain a halogen is particularly preferable, since an alkoxysilyl group, a phenoxysilyl group, and an acetoxysilyl group are preferred, but an alkoxysilyl group that can easily form a silanol group is particularly preferred.
  • the introduction ratio of the reactive functional group introduced into the terminal of at least one side of the polymer is preferably 0.2 to LOmol% with respect to the total number of repeating units of all monomers in the polymer. More preferably, it is 0.5 to 5 mol%.
  • the method for introducing a reactive functional group at the terminal is not particularly limited, but at least a functional group for immobilizing a physiologically active substance in the presence of the mercapto compound (d) having a reactive functional group.
  • a method of radical polymerization of the ethylenically unsaturated polymerizable monomer (a) having a solvent in a solvent is preferred. If necessary, the monomer (b), the monomer (c) and others may be added.
  • the mercapto compound (d) having a reactive functional group acts as a chain transfer agent, a polymer compound having a reactive functional group at the terminal can be obtained.
  • the mercapto compound (d) having a reactive functional group is not particularly limited, but a mercaptosilane compound represented by the following general formula [3] is preferable.
  • the alkyl group R has 1 to 20 carbon atoms, more preferably 1 to 5 carbon atoms, most preferably
  • At least one of A, A, A is a reactive site in the reactive functional group
  • the reactive site is most preferably a point alkoxyl group that easily generates a silane group among the forces including an alkoxyl group, a halogen group, an amino group, an isocyanate group, a phenoxy group, and a hydroxyl group. Further, when the polymer needs to be stored for a long period of time, it is preferable that the reactive force in the reactive functional group is one reactive site.
  • Examples of the mercaptosilane compound having an alkoxyl group include (3-mercaptopropyl) trimethoxysilane, (3-mercaptopropyl) methyldimethoxysilane, (3-mercaptopropyl) dimethylmethoxysilane, and (3-mercaptopropyl).
  • 3-mercaptopropyl) trimethoxysilane and (3-mercaptopropyl) triethoxysilane are preferred.
  • (3-mercaptopropyl) dimethylethoxysilane is more preferable from the viewpoint of good storage stability when long-term storage of the polymer is required.
  • These mercaptosilane compounds are used alone or in combination of two or more.
  • the solvent is not particularly limited as long as it dissolves the respective ethylenically unsaturated polymerizable monomer and the mercapto compound (d) having a reactive functional group.
  • a reactive functional group for example, methanol, ethanol, t-butyl alcohol, benzene , Toluene, tetrahydrofuran, dioxane, dichloromethane, black mouth form and the like. These solvents are used alone or in combination of two or more.
  • ethanol and methanol are preferable because they do not denature the substrate.
  • the polymerization initiator may be any ordinary radical initiator.
  • AIBN 2, 2'-azobisisobutylnitrile
  • 1, 1, monoazobis cyclohexane 1 Carbo-tolyl
  • organic peroxides such as benzoyl peroxide and peroxylauryl.
  • the chemical structure of the polymer compound of the present invention is a polymer containing a repeating unit derived from at least each ethylenically unsaturated polymerizable monomer having a functional group for fixing a physiologically active substance, As long as the polymer has a reactive functional group at one end, the bonding method when the polymer is a copolymer may be random, block, graft, or the like! ! / ⁇ .
  • the molecular weight of the polymer compound of the present invention can be easily applied uniformly to a substrate, and the polymer compound and unreacted ethylenically unsaturated polymerizable monomer can be easily separated and purified.
  • the number average molecular weight is calculated based on the composition obtained from the analysis of NMR measurement, assuming that a reactive functional group is introduced at one end of all the polymers.
  • the monomer component mixture When a mixture of monomer components is applied to a substrate and cured after application, the monomer component mixture may not be uniformly applied to the substrate due to the affinity of the substrate or monomer components. is there. On the other hand, by using a polymer compound in which a monomer component is copolymerized in advance as in the present invention, it can be uniformly applied to a substrate.
  • the polymer compound of the present invention is different from a resin that crosslinks to form a network matrix, and is different from a substrate (a substrate having an inert surface that is not covalently bonded to a reactive functional group of the polymer compound). ) Is easily dissolved in an organic solvent such as ethanol, which will be described later, even after being applied by about 0.1 to 1 ⁇ m and after heat treatment.
  • a substrate a polyolefin resin substrate or the like can be used after performing a surface treatment for activating the substrate surface as described later. Examples of the heat treatment include heat treatment at 60 to 120 ° C. for 5 minutes to 24 hours.
  • the polymer compound of the present invention can be easily imparted with a property of fixing a specific physiologically active substance by coating the surface of the substrate with the polymer compound.
  • an alkylene glycol residue is present in the component of the polymer compound, in addition to the property of immobilizing a specific physiologically active substance, the property of suppressing nonspecific adsorption of the protein may be further imparted. it can.
  • the reactive group at the end can be bonded to the substrate, the polymer compound can be grafted chemically, so that there is no fear of signal decrease due to substrate cleaning.
  • a polymer solution in which a polymer compound is dissolved in an organic solvent so as to have a concentration of 0.05 to 10% by weight is prepared, immersed, sprayed, etc. After applying to the surface of the substrate by a known method, drying is performed at room temperature or under heating.
  • a single solvent such as ethanol, methanol, t-butyl alcohol, benzene, tonolene, tetrahydrofuran, dioxane, dichloromethane, chlorophenol, acetone, methyl ketone, or a mixed solvent thereof is used. Of these, ethanol and methanol are preferable because they do not denature the plastic substrate and are easy to dry.
  • the polymer compound of the present invention is covalently bonded to a substrate using a reactive functional group at the end.
  • the bonding conditions can be arbitrarily selected according to the functional group.
  • a silanol group generated by hydrolysis is dehydrocondensed with a hydroxyl group, amino group, carbonyl group, silanol group, etc. on the substrate surface to form a covalent bond.
  • the covalent bond formed by the dehydration condensation of silanol groups has the property that it is difficult to hydrolyze, so the polymer compound grafted on the surface of the base material will not dissolve easily or the base material will not be detached.
  • Silanol group dehydration condensation is promoted by heat treatment. Heat treatment is preferably performed within a temperature range where the polymer compound is not denatured by heat, for example, at 60 to 120 ° C. for 5 minutes to 24 hours.
  • the alkoxysilyl group at the end of the polymer may be affected by the moisture contained in the solvent or the moisture in the air after coating. Therefore, it is often possible to carry out grafting only by heating the substrate without performing a special hydrolysis step.
  • a mixed solution containing water in an organic solvent may be used. Theoretically, it is sufficient to supply water necessary for generating silanol groups by hydrolysis, but considering the ease of preparing the solution, the water content is preferably 15% by weight or less. If the water content increases, the polymer compound may become insoluble in the solvent.
  • the material of the biochip substrate used in the present invention can be made of glass, plastic, metal, or the like. From the viewpoint of ease of surface treatment and mass productivity, thermoplastic resin is preferred even when plastic is preferred. Fat is more preferred.
  • thermoplastic resin those having a small amount of fluorescence are preferable.
  • linear polyolefin such as polyethylene and polypropylene, cyclic polyolefin, fluorine-containing resin, etc. are preferably used.
  • a saturated cyclic polyolefin excellent in chemical resistance, low fluorescence and moldability.
  • the saturated cyclic polyolefin refers to a homopolymer having a cyclic olefin structure or a saturated polymer obtained by hydrogenating a copolymer of cyclic olefin and OC 1-year-old olefin.
  • activation means plasma treatment under conditions such as oxygen atmosphere, argon atmosphere, nitrogen atmosphere and air atmosphere, excimer such as ArF, KrF, etc.
  • oxygen atmosphere argon atmosphere
  • nitrogen atmosphere nitrogen atmosphere
  • air atmosphere excimer such as ArF, KrF, etc.
  • plasma processing in an oxygen atmosphere is preferred.
  • a biochip substrate that is easily coated with the polymer compound of the present invention and is excellent in the ability to immobilize a physiologically active substance and that further suppresses nonspecific adsorption of the physiologically active substance on the substrate. Can be produced. Further, since the polymer compound can be bonded to the substrate by chemical bonding, there is no outflow in the cleaning process. For these reasons, the substrate coated with the polymer compound can be suitably used for a biochip.
  • bioactive substances can be immobilized using the biochip substrate of the present invention.
  • Physiologically active substances to be immobilized include nucleic acids, abutama, proteins, oligopeptides, sugar chains, glycoproteins and the like.
  • nucleic acid when a nucleic acid is immobilized, it is preferable to introduce an amino group into the nucleic acid in order to increase the reactivity with the active ester group.
  • the introduction position of the amino group may be the side chain or the side chain, but it is preferable that the amino group is introduced at the molecular chain end.
  • a method of spotting (spotting) a liquid in which the physiologically active substance is dissolved or dispersed is preferred.
  • the physiologically active substance is immobilized on the surface.
  • an aminated nucleic acid it can be immobilized by allowing it to stand for 1 hour at a room temperature of 80 ° C. A higher processing temperature is preferred.
  • the liquid in which the physiologically active substance is dissolved or dispersed is preferably alkaline.
  • the functional groups on the substrate surface other than those on which the physiologically active substance is immobilized are inactivated.
  • an active ester group or an aldehyde group it is preferable to use an alkaline compound or a compound having a primary amino group.
  • Alkaline compounds include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, disodium hydrogen phosphate, calcium hydroxide, magnesium hydroxide, sodium borate, hydroxide. Lithium, potassium phosphate and the like can be preferably used.
  • Examples of the compound having a primary amino group include methylamine, ethylamine, butylamine, glycine, 9-aminoacazine, aminobutanol, 4-aminobutyric acid, aminocaprylic acid, aminoethanol, 5-amino2,3 dihydro-1, 4 Pentanol, aminoethanethiol hydrochloride, aminoethanethiol sulfuric acid, 2- (2-aminoethylamino) ethanol, phosphoric acid 2-Hydroxy 2-aminoethyl, H2-aminoethyl sulfate, 4- (2-aminoethyl) morpholine, 5-Aminofluorescein, 6-Aminohexanoic acid, Aminohexylcellulose, p-Aminohippuric acid, 2-Amino-2 hydroxy Methyl-1,3-propanediol, 5-aminoisophthalic acid, aminomino, aminophenol
  • the biochip obtained by immobilizing a physiologically active substance in this way can be used in many analysis systems including immunodiagnostics, gene microarrays, protein microarrays, and microfluidic devices. .
  • Olmol polyethylene glycol monometatalylate (Blenme r PE-200 manufactured by Nippon Oil & Fats Co., Ltd.) was dissolved in 20 mL of black mouth form and then cooled to 30 ° C. —Preliminarily prepared 0. Olmol p-Trophe-Lucloform Formate (Aldrich) and 0. Olmol Triethylamine (Wako Pure Chemical Industries, Ltd.) And a homogeneous solution of black mouth form 20 mL was slowly added dropwise. After reacting at 30 ° C for 1 hour, the solution was stirred at room temperature for another 2 hours.
  • Polyethylene glycol methyl ether metatalylate with a number average molecular weight Mn about 1100 (also known as methoxypolyethylene glycol metatalylate, hereinafter referred to as PEGMA1100, manufactured by Aldrich), p-trophe-loxycarbo-polyethylene glycol metatalylate (Hereinafter referred to as MEONP) was dissolved in dehydrated ethanol to prepare a monomer mixed solution. The total monomer concentration is 0.3 molZL, and the molar ratio of each is 85:15 in the order of PEGMA1100 and MEON P.
  • M PTMS (3-mercaptopropyl) trimethoxysilane
  • AIBN 2,2-azobisisobutyryl-tolyl
  • the obtained polymer compound was measured by 1H-NMR in a heavy ethanol solvent, and the peak attributed to the terminal methoxy group of PEGMA appearing at around 3.4 ppm, the benzene ring of MEONP appearing at around 7.6 and 8.4 ppm.
  • the composition ratio of the polymer compound was calculated from the peak attributed to ⁇ , the peak attributed to MPTMS-bonded methylene that appeared in the vicinity of 0.7 ppm, and the integrated value of each. Table 1 shows the results.
  • MPTMS (3-mercaptopropyl) trimethoxysilane
  • AIBN 2,2-azobisisobutyryl-tolyl
  • the obtained polymer compound was measured by 1H-NMR in a heavy solvent solvent, and the peak attributed to the terminal methoxy group of PEGMA appearing at around 3.4 ppm, the MEONP benzene appearing at around 7.6 and 8.4 ppm.
  • the composition ratio of the polymer compound was calculated from the peak attributed to the ring and the peak attributed to methylene bonded to Si of MPTMS appearing at around 0.7 ppm. In Table 1 Results are shown.
  • a polymer compound was obtained in the same manner as in Synthesis Example 2 except that MPDES was used instead of MPTMS in Synthesis Example 2.
  • the composition ratio of the polymer compound was calculated in the same manner as described above. Table 1 shows the results.
  • Saturated cyclic polyolefin resin (hydrogenated product of 5-ring-2-norbornene ring-opening polymer (MFR (Melt flow rate): 21 gZlO), hydrogenation rate: substantially 100%, thermal deformation temperature: 123 ° C) and processed into a glass slide (dimension: 76mm x 26mm x lm m) by injection molding to produce a solid phase substrate.
  • MFR Melt flow rate
  • thermal deformation temperature 123 ° C
  • the substrate surface was oxidized by plasma treatment in an oxygen atmosphere This solid phase substrate was obtained in polymer compound synthesis examples 1 to 4.
  • a copolymer containing a repeating unit derived from an ethylenically unsaturated polymerizable monomer having a group (b), the polymer containing a polymer compound having an alkoxyl group at least on one end of the copolymer. did. This substrate was heated and dried at 100 ° C. for 2 hours to chemically bond the substrate and the layer containing the polymer.
  • Saturated cyclic polyolefin resin hydrogenated product of 5-methyl-2-norbornene ring-opening polymer (MFR (Melt flow rate): 21 gZlO content, hydrogenation rate: substantially 100%, thermal deformation temperature: 123 ° C) and processed into a glass slide (dimension: 76mm x 26mm x lm m) by injection molding to produce a solid phase substrate.
  • MFR Melt flow rate
  • Saturated cyclic polyolefin resin (hydrogenated product of 5-methyl-2-norbornene ring-opening polymer (MFR (Melt flow rate): 21 gZlO), hydrogenation rate: substantially 100%, thermal deformation temperature: 123 ° C) and processed into a glass slide (dimension: 76mm x 26mm x lm m) by injection molding to produce a solid phase substrate.
  • the substrate surface was oxidized by plasma treatment in an oxygen atmosphere
  • This substrate was immersed in a 2% by volume ethanol solution of 3-aminopropyltrimethoxysilane, washed with pure water, and heat treated at 45 ° C for 2 hours to introduce amino groups, and another 1 volume.
  • Aldehyde groups were introduced by immersing them in an aqueous solution of 10% dartalaldehyde and then washing with pure water.
  • An amine-reactive slide glass substrate was prepared according to Example X of Patent Document 2 (Japanese Patent Publication No. 2004-531390).
  • a coating solution was prepared as follows.
  • An organic solvent solution of aminosilane was prepared by adding 26.51 (3 trimethoxysilylpropyl) monodiethylenetriamine (Gerest) in 10 ml organic solvent in a polypropylene vial.
  • Dimethyl sulfoxide (DMSO) or N, N dimethylacetamide (DMAC) can be used as a solvent (both commercially available from Aldrich).
  • DMSO dimethyl sulfoxide
  • DMAC N dimethylacetamide
  • Oml of this solution was added to a 40 mg quantity of Pyotin-PEG-SPA (Sharewater Polymer; SPA is a succinimidyl derivative of propionic acid that is reactive towards amine groups).
  • the SPA group of Piotin-PEG- SPA reacts with a terminal amine on the aminosilane to form a Piotin PEG silane molecule.
  • the solution of Piotin P EG -Silane / DMAC is called Solution A.
  • azidosulfohexyl-triethoxysilane was added to 10 ml DMSO.
  • 125 ⁇ l of a matrix forming agent polyoxyethylene sorbitan tetraoleate, Aldrich
  • Solution IV and solution B were mixed at a volume ratio of 1: 4 (1 ml of solution A was added to 4 ml of solution B) to obtain a coating solution mixture.
  • a glass slide of 25 ⁇ 75 mm was coated with an about 400 angstrom acid layer by high frequency sputtering, and then cleaned as follows.
  • the slide glass was rinsed with high-purity water.
  • the slide glass was placed in a glass / staining / rack and immersed in a 1% alkonox solution (alkaline glass cleaner) degassed at 60 ° C. and sonicated for 15 minutes.
  • the slide glass was then rinsed with a large amount of high purity water and sonicated in high purity water at 60 ° C for an additional 15 minutes.
  • the slide glass was then rinsed with a large amount of high purity water and immersed in fresh ultrapure water until the drying process.
  • the slide glass is thoroughly blown dry with compressed N gas and kept dry until use.
  • the cleaned and pretreated glass slide was placed in a spin coater and rotated at 3500 rpm. 0.5 ml of the coating solution mixture was dispensed onto the pretreated glass slide and rotated for 90 seconds.
  • the coated 25 ⁇ 75 mm glass slide was placed in a vacuum oven and subsequently evacuated with a vacuum pump for 30 minutes until the pressure reached 150 mmHg.
  • the oven switch was turned on and heated to about 70 ° C.
  • the total heat treatment time was 1 hour.
  • the support was naturally cooled to room temperature in ambient air with V.
  • the sandwich method was carried out on each substrate obtained in Examples and Comparative Examples. For details, first spot the anti-mouse IgG2a, which is the primary antibody prepared in 3.3 molZ liters with a carbonate buffer (PH9.5 manufactured by Wako Pure Chemical Industries, Ltd.) using an automatic spotter on each substrate, and then place it in a room temperature environment The primary antibody was immobilized by allowing to stand for 24 hours.
  • a carbonate buffer PH9.5 manufactured by Wako Pure Chemical Industries, Ltd.
  • Step 2 Adsorption prevention treatment
  • the substrates of Examples 1 to 4 were prepared as follows: 0. ImolZ liter of ethanolamine (manufactured by Wako Pure Chemicals Co., Ltd., deer special grade) and 0.1. The remaining active ester part was inactivated by immersion in (pH 9.5) for 1 hour.
  • the substrate of Comparative Example 1 was prepared by using Block Ace (Dainippon Pharmaceutical Co., Ltd.), a commercially available adsorption inhibitor, in PBS buffer (Nissui Pharmaceutical: Dulbecco PBS (-) for tissue culture in 1 liter of pure water).
  • the solution was treated with a substrate that had been subjected to anti-adsorption treatment by immersing it in a solution diluted 4-fold with 9.6 g of buffer (2), and a substrate that had not been subjected to anti-adsorption treatment.
  • the substrate of Comparative Example 2 was subjected to adsorption prevention treatment by immersing Block Ace (manufactured by Dainippon Pharmaceutical Co., Ltd.), a commercially available adsorption inhibitor, in a solution diluted 4 times as described above for 2 hours.
  • Step 3 (antigen-antibody reaction 1)
  • an FBS (calf serum) solution was prepared by diluting to 10% with PBS buffer (manufactured by Nissui Pharmaceutical: buffer containing 9.6 g of Dulbecco PBS (—) for tissue culture dissolved in 1 liter of pure water).
  • Mouse IgG2a an antigen, was added to this solution to prepare a 20 nmol / liter solution.
  • This solution was diluted 1x with FBS (calf serum) diluted to 10% with PBS buffer (Nissui Pharmaceutical: Dulbecco PBS (-) for tissue culture dissolved in 9.6 g in 1 liter of pure water), 2 Double, triple and quadruple dilution solutions were prepared.
  • Antigen antibodies by contacting these diluted solutions and 10% FBS solution that does not contain the mouse IgG2a antigen, at 37 ° C for 2 hours. The reaction was carried out. 1 X SSC buffer antigen-antibody reaction after 0. 05wt% nonionic surfactant T W een20 the (Roche 'die ⁇ Diagnostics STICKS Co., Ltd.) was ⁇ Ka ⁇ (Zymed La boratories, Inc. manufactured SSC20 X Buffer Was used for 5 minutes at room temperature
  • Step 4 (antigen-antibody reaction 2)
  • PBS buffer Nasui Pharmaceutical: Dulbecco PBS (—) for tissue culture dissolved in 9.6 g in 1 liter of pure water. / Liter solution was made. This solution and the substrate were subjected to antigen-antibody reaction at 37 ° C for 2 hours. After the antigen-antibody reaction, dilute 1 X SSC buffer (Zymed Laboratories, Inc. SSC20 X Buffer) to which 0.05 wt% of non-ionic surfactant Tween20 (Roche Diagnostics) was added. Used) for 5 minutes at room temperature.
  • PBS buffer Nasui Pharmaceutical: Dulbecco PBS (—) for tissue culture dissolved in 9.6 g in 1 liter of pure water. / Liter solution was made. This solution and the substrate were subjected to antigen-antibody reaction at 37 ° C for 2 hours. After the antigen-antibody reaction, dilute 1 X SSC buffer (Zymed Laboratories, Inc. SSC20 X Buffer) to which 0.05 w
  • the biochip substrate according to the present invention has a lower background and a higher signal than a conventional aldehyde substrate treated with a commercially available adsorption treatment agent. I was acknowledged that it was a biochip substrate.
  • the nanochip substrate according to the present invention has a lower knock ground than that of the substrate described in Patent Document 2, that is, nonspecifically contained in serum.
  • Biochip substrate that is difficult to adsorb various proteins and has low signal strength when no antigen is present in the primary antibody spot, that is, the primary antibody is immobilized on the substrate while retaining its antibody function It was a power to be.
  • the biochip substrate according to the present invention is a nanochip substrate that is excellent in reproducibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Materials For Medical Uses (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 本発明は、生理活性物質の固定化能力に優れ、洗浄工程における溶解や劣化の少ない化学的・物理的安定性を有し、特にプラスチック基材表面へも好適にコーティング可能な医療用高分子化合物を提供することを主目的とする。  本発明は、少なくとも、生理活性物質を固定化する官能基を有するエチレン系不飽和重合性モノマー(a)から誘導される繰り返し単位を含む重合体であって、前記重合体の少なくとも片側の末端に反応性官能基を有することを特徴とする医療材料用高分子化合物、および該高分子化合物を含む層を基板表面に形成したバイオチップ用基板により、上記課題を解決した。

Description

明 細 書
医療材料用高分子化合物及び該高分子化合物を用いたバイオチップ用 基板
技術分野
[0001] 本発明は、生理活性物質を固定化する機能を有する医療材料用高分子化合物、 該高分子材料を含む表面コーティング材料、該高分子化合物を用いたノィォチップ 基板に関する。
背景技術
[0002] 遺伝子活性の評価や疾患プロセス、薬物効果の生物学的プロセスを含む生物学 的プロセスを解読するための試みは、伝統的に、ゲノミタスに焦点が当てられてきた 力 プロテオミクスは、細胞の生物学的機能についてより詳細な情報を提供する。プ 口テオミクスは、遺伝子レベルというよりもむしろ、タンパク質レベルでの発現を検出し 、定量すること〖こよる、遺伝子活性の定性的かつ定量的な測定を含む。また、タンパ ク質の翻訳後修飾、タンパク質間の相互作用など遺伝子にコードされない事象の研 究を含む。
[0003] 膨大なゲノム情報の入手が可能となった今日、プロテオミクス研究はますます迅速 高効率(ノヽイスループット)化が求められている。この目的の分子アレイとして DNAチ ップが実用化されてきた。一方、生体機能において最も複雑で多様性の高いタンパ ク質の検出に関しては、プロテインチップが提唱され、最近研究が進められている。 プロテインチップとは、タンパク質、またはそれを捕捉する分子をチップ (微小な基板 や粒子)表面に固定化したものを総称する。
[0004] 現状のプロテインチップは一般に DNAチップの延長線上に位置付けられて開発が なされている為、タンパク質、またはそれを捕捉する分子をガラス基板のようなチップ 表面にスポット状に固定ィ匕する検討がなされている (例えば、特許文献 1参照)。たと えば、タンパク質の物理的吸着による固定ィ匕などが行われている。このようなプロティ ンチップにおいてはシグナルが高いほうが好ましいため、よりタンパク質、またはそれ を捕捉する分子をチップ表面に固定ィ匕する能力の高いものが求められている。 [0005] 一方、プロテインチップのシグナル検出において、信号対雑音比を低下させる原因 として検出対象物質の基板への非特異的な吸着 (たとえば、非特許文献 1参照)が挙 げられる。
[0006] 前述のタンパク質の物理的吸着による固定ィ匕では、タンパク質を固定ィ匕した後に 2 次抗体の非特異的吸着を防止するため、吸着防止剤のコーティングが行われて 、る 力 これらの非特異的吸着防止能は十分でない。また 1次抗体を固定ィ匕した後に吸 着防止剤をコーティングするため、固定ィ匕したタンパク質がコーティングされてしまい 、 2次抗体との反応性が悪くなるという問題があった。このため、 1次抗体の固定化後 、吸着防止剤をコーティングすることなぐ生理活性物質の非特異的吸着量の少ない バイオチップが求められている。
[0007] ノィォチップに対する生理活性物質の非特異的吸着量を低減させるには、バイオ チップの親水性を向上させるのが有効であるが、このようなバイオチップを用 、た場 合、親水性が高 ヽためにタンパク質を捕捉させた後の洗浄工程にお!ヽて基板に固定 化したタンパク質またはそれを捕捉する分子が流出し、信号が低下するという問題が あった。この問題に対する 1つのアプローチとして、官能基、スぺーサ一基、および結 合基を含む活性成分、架橋用成分、マトリックス形成成分を支持体上に被覆し、硬化 させることで、支持体上に強固に結合した機能性表面を形成できることが開示されて いる(たとえば、特許文献 2)。しかしながら、この開示された方法では支持体上で低 分子成分の硬化が進行するが、硬化反応は反応物の体積収縮を伴うため、支持体 がプラスチック基板の場合には反りや変形が起きる恐れがあった。また、網の目状に 絡み合ったマトリックスが形成されることから、生理活性物質を固定ィ匕するための官能 基の反応が抑制されたり、固定化した生理活性物質の機能発現の再現性が悪いな どの問題があった。また、洗浄を行ってもマトリックス内部に入り込んだタンパク質を除 去しきれな!/、ために非特異吸着を十分に抑制できな ヽと 、つた問題もあった。
[0008] 特許文献 1 :特開 2001— 116750号公報
特許文献 2 :特表 2004— 531390号公報
非特許文献 1 :「DNAマイクロアレイ実戦マニュアル」、林崎良英、岡崎康司編、羊土 社、 2000年、 p.57 発明の開示
発明が解決しょうとする課題
[0009] 本発明の課題は、生理活性物質の固定ィ匕能力に優れ、洗浄工程における溶解や 劣化の少な ヽ化学的 ·物理的安定性を有し、特にプラスチック基材表面へも好適に コーティング可能な医療用高分子化合物を提供すること、さらには前記特性に加えて タンパク質に対して非特異吸着のより少ない医療用高分子化合物を提供すること、な らびに該高分子化合物を用いて SN比の高いバイオチップ用基板を提供することで ある。
課題を解決するための手段
[0010] 本発明者らは、生理活性物質の固定ィ匕能力に優れ、タンパク質に対して非特異吸 着が少ない医療材料用高分子化合物の開発を目指して鋭意検討を行った。その結 果、少なくとも生理活性物質を固定化する官能基を有するエチレン系不飽和重合性 モノマー (a)力もなる共重合体であって、少なくとも片側の末端に反応性の官能基を 有することを特徴とする医療材料用高分子化合物が、生理活性物質の固定化能力 に優れ、洗浄工程における溶解や劣化の少ない化学的 ·物理的安定性を有し、ブラ スチック基板上にも均一にかつ反りやうねりなどの問題が生じることなくコーティング できること、および該高分子化合物の成分にアルキレングリコール残基を有するェチ レン系不飽和重合性モノマー (b)力もなる成分をカ卩えることによりタンパク質等の非特 異吸着をより少なくできることを見出した。さらにはこれらの医療材料用高分子化合物 力 バイオチップに好適に用いられることを見出し、本発明を完成するに至った。
[0011] すなわち本発明は、
(1)少なくとも、生理活性物質を固定ィ匕する官能基を有するエチレン系不飽和重合 性モノマー(a)力も誘導される繰り返し単位を含む重合体であって、前記重合体の少 なくとも片側の末端に反応性官能基を有することを特徴とする医療材料用高分子化 合物、
(2)少なくとも、生理活性物質を固定ィ匕する官能基を有するエチレン系不飽和重合 性モノマー(a)及びアルキレングリコール残基を有するエチレン系不飽和重合性モノ マー (b)力 誘導される繰り返し単位を含む共重合体であって、前記共重合体の少 なくとも片側の末端に反応性官能基を有することを特徴とする医療材料用高分子化 合物、
(3)少なくとも、生理活性物質を固定ィ匕する官能基を有するエチレン系不飽和重合 性モノマー(a)及びアルキレングリコール残基を有するエチレン系不飽和重合性モノ マー (b)、疎水性ユニットを有するエチレン系不飽和重合性モノマー(c)から誘導さ れる繰り返し単位を含む共重合体であって、前記共重合体の少なくとも片側の末端 に反応性官能基を有することを特徴とする医療材料用高分子化合物、
(4)前記末端の反応性官能基が反応性シリル基である(1)〜(3) V、ずれか記載の医 療材料用高分子化合物、
(5)前記反応性シランがアルコキシシリル基である (4)記載の医療材料用高分子化 合物、
(6)生理活性物質を固定ィ匕する官能基を有するエチレン系不飽和重合性モノマー( a)の官能基がアルデヒド基、活性エステル基、エポキシ基、ビニルスルホン基、ピオ チン力 選ばれる少なくとも一つの官能基である(1)〜(5)いずれか記載の医療材料 用高分子化合物、
(7)生理活性物質を固定ィ匕する官能基を有するエチレン系不飽和重合性モノマー( a)が下記の一般式 [1]で表される活性エステル基を有するモノマーである(1)〜(6) いずれか記載の医療材料用高分子化合物、
[化 1]
Figure imgf000005_0001
(式中 Rは水素原子またはメチル基を示し、 Xは炭素数 1〜10のアルキレングリコー ル残基またはアルキル基を示す。 Wは活性エステル基を示す。 pは 1〜: LOOの整数を 示す。 pが 2以上 100以下の整数である場合、繰り返される Xは、それぞれ同一であつ ても、異なっていてもよい。 )
(8)前記活性エステル基力 ¾ -トロフエ-ルエステル又は N ヒドロキシスクシンイミ ドエステルである請求項 6または 7記載の医療材料用高分子化合物、
(9)アルキレングリコール残基を有するエチレン系不飽和重合性モノマー (b)が下記 の一般式 [2]で表されるモノマーである(2)〜(8)いずれか記載の医療材料用高分 子化合物、
[化 2]
[ 2 ]
Figure imgf000006_0001
(式中 Rは水素原子またはメチル基を示し、 Rは水素原子または炭素数 1〜20のァ
2 3
ルキル基を示す。 Yは炭素数 1〜10のアルキレングリコール残基を示し、 qは 1〜: L00 の整数を示す。 qが 2以上 100以下の整数である場合、繰り返される Yは、同一であつ ても、または異なっていてもよい。 )
(10)アルキレングリコール残基を有するエチレン系不飽和重合性モノマー(b)力メト キシポリエチレングリコール (メタ)アタリレートまたはエトキシポリエチレングリコール (メ タ)アタリレートである(2)〜(9) V、ずれか記載の医療材料用高分子化合物、
(11)前記メトキシポリエチレングリコール (メタ)アタリレートまたはエトキシポリエチレン グリコール (メタ)アタリレートのエチレングリコール残基の平均繰り返し数が 3〜: L00で ある( 10)記載の医療材料用高分子化合物、
(12)疎水基を有するエチレン系不飽和重合性モノマー(c)の疎水基がアルキル基 である(3)〜(11) 、ずれか記載の医療材料用高分子化合物、
(13)疎水基を有するエチレン系不飽和重合性モノマー(c)の疎水基が炭素数 3〜2 0のアルキル基である(3)〜( 12) ヽずれか記載の医療材料用高分子化合物、
(14)前記疎水基を有するエチレン系不飽和重合性モノマー(c)が n—ブチルメタタリ レート、 n—ドデシルメタタリレート、 n—ォクチルメタタリレート、及びシクロへキシルメ タクリレートから選ばれる少なくとも一つのモノマーである(13)記載の医療材料用高 分子化合物、 (15)反応性官能基を有するメルカプト化合物 (d)の存在下、少なくとも生理活性物 質を固定ィ匕する官能基を有するエチレン系不飽和重合性モノマー (a)をラジカル重 合することにより、末端に前記反応性官能基を導入した高分子化合物を得ることを特 徴とする(1)〜(14 、ずれか記載の医療材料用高分子化合物の製造方法、
(16)反応性官能基を有するメルカプト化合物 (d)の存在下、少なくとも生理活性物 質を固定ィ匕する官能基を有するエチレン系不飽和重合性モノマー (a)およびアルキ レンダリコール残基を有するエチレン系不飽和重合性モノマー (b)をラジカル共重合 することにより、末端に前記反応性官能基を導入した高分子化合物を得ることを特徴 とする(2)〜(14) 、ずれか記載の医療材料用高分子化合物の製造方法、
(17)前記反応性官能基を有するメルカプトィ匕合物 (d)が下記の一般式 [3]で表され るメルカプトシランィ匕合物である(15)又は(16)記載の医療材料用高分子化合物の 製造方法、
[化 3]
[ 3 ]
Αι
HS—— R4— Si A2
A3
(式中 Rは炭素数 1〜20のアルキル基を示し、 A、 A、 Aの内、少なくとも 1個は
4 1 2 3
反応性部位であり、その他はアルキル基を示す。 )
( 18)前記一般式 [3]で表されるメルカプトシランィ匕合物の反応性部位がアルコキシ ル基であることを特徴とする(17)記載の医療材料用高分子化合物の製造方法、
( 19) ( 1 )〜( 14)いずれか記載の医療材料用高分子化合物または( 15)〜( 18)い ずれかの製造方法で得られる医療材料用高分子化合物を含む医療材料用表面コ 一ティング材料、
(20) (19)記載の医療材料用表面コーティング材料を含む層を基板表面に形成した バイオチップ用基板、
(21)前記基板がプラスチック製である(20)記載のバイオチップ用基板、 (22)前記プラスチックが飽和環状ポリオレフインである(21)記載のバイオチップ用 基板、
(23) (20)〜(22) V、ずれか記載のバイオチップ用基板に生理活性物質を固定ィ匕し たバイオチップ、
(24)前記生理活性物質が核酸、アブタマ一、タンパク質、オリゴペプチド、糖鎖、及 び糖タンパク質カゝら選ばれる少なくとも一つの生理活性物質である(23)記載のバイ ォチップ、
である。
発明の効果
[0015] 本発明によれば、生理活性物質の固定ィ匕能力に優れ、洗浄工程においても溶解 や劣化の少な ヽ化学的 ·物理的安定性を有し、特にプラスチック基材表面へも好適 にコーティング可能な高分子化合物を提供することができる。また、高分子化合物の 成分にアルキレングリコール残基を有するエチレン系不飽和重合性モノマー(b)を加 えることにより、タンパク質の非特異吸着がより少ない医療用高分子化合物を提供で きる。更には、該高分子化合物を用いて SN比の高いバイオチップ用基板を提供する ことができる。
発明を実施するための最良の形態
[0016] 本発明の高分子化合物は、少なくとも生理活性物質を固定ィ匕する官能基を有する エチレン系不飽和重合性モノマー(a)から誘導される繰り返し単位を含む重合体で あって、少なくとも片側の末端に反応性の官能基を有する医療材料用高分子化合物 であることを特徴とする。この高分子化合物は、特定の生理活性物質を固定ィ匕する 性質をしている。さらに、少なくとも片側の末端に反応性官能基を有することから、基 材と共有結合を形成することが可能になり、これにより基材の表面に該高分子化合物 をグラフトさせることができる。このようにして得られたグラフトイ匕基材は、洗净工程によ り該高分子化合物が流出してしまうことがない。また、該高分子化合物は体積収縮を 伴う程の硬化反応を必要とせず、基材上に形成される該高分子化合物の膜中には 基本的に高度に発達した網目構造が形成されないので、プラスチック基板上にも均 一にかつ反りやうねりなどの問題が生じることなくコーティングが可能になる。 更に、該高分子化合物の成分としてアルキレングリコール残基を有するエチレン系 不飽和重合性モノマー (b)から誘導される繰り返し単位を加えることにより、アルキレ ングリコール残基がタンパク質の非特異的吸着を抑制する役割を果たすので、生理 活性物質の非特異的吸着を抑制する性質が増す。
[0017] 本発明に用いる生理活性物質を固定ィ匕する官能基を有するエチレン系不飽和重 合性モノマー (a)の官能基としては、化学的に活性な基、受容体基、リガンド基など があるが、これらに限定されない。具体的な例としては、アルデヒド基、活性エステル 基、エポキシ基、ビュルスルホン基、ピオチン、チオール基、アミノ基、イソシァネート 基、イソチオシァネート基、ヒドロキシル基、アタリレート基、マレイミド基、ヒドラジド基、 アジド基、アミド基、スルホネート基、ストレプトアビジン、金属キレートなどがあるがこ れらに限定されない。これらの中でも生理活性物質に多く含まれるァミノ基との反応 性の点力 アルデヒド基、活性エステル基、エポキシ基、ビュルスルホン基が好ましく 、また生理活性物質と結合定数が高いピオチンが好ましい。なかでもモノマーの保存 安定性の点力も活性エステル基が最も好まし 、。
[0018] 本発明に使用する生理活性物質を固定ィ匕する官能基を有するエチレン系不飽和 重合性モノマー (a)は、特に構造を限定しないが、下記の一般式 [1]で表される (メタ )アクリル基と活性エステル基が炭素数 1〜10のアルキレングリコール残基の連鎖ま たはアルキル基を介して結合したィ匕合物であることが好ましい。特に、アルキレンダリ コール残基の連鎖は、それ自体がタンパク質の非特異吸着を抑制する性質を有して いる。このため、(メタ)アクリル基と活性エステル基がアルキレングリコール残基の連 鎖を介して結合したモノマーは、生理活性物質を固定化する性質とタンパク質の非 特異吸着を抑制する性質とを併せ持つ。従ってこのようなモノマーの重合体は、たと え単独の重合体であったとしても、少なくとも片側の末端に反応性官能基を有してい れば、医療用高分子化合物として好適に用いることができる。なお、本発明において (メタ)アクリルはアクリル及び Z又はメタクリルを示し、 (メタ)アタリレートは、アタリレー ト及び Z又はメタタリレートを示す。
[0019] [化 4]
Figure imgf000010_0001
(式中 は水素原子またはメチル基を示し、 Xは炭素数 1〜10のアルキレングリコー ル残基またはアルキル基を示す。 Wは活性エステル基を示す。 pは 1〜: LOOの整数を 示す。 pが 2以上 100以下の整数である場合、繰り返される Xは、それぞれ同一であつ ても、異なっていてもよい。 )
[0020] 式 [1]で、 Xがアルキレングリコール残基の場合、 Xの炭素数は 1〜10であり、好ま しくは 1〜6であり、より好ましくは 2〜4であり、更に好ましくは 2〜3であり、最も好まし くは 2である。なおここで、アルキレングリコール残基とは、アルキレングリコール (HO R— OH、ここで Rはアルキレン基)の片側末端又は両末端の水酸基が他の化合物 と縮合反応した後に残る、アルキレンォキシ基(一 R— O 、ここで Rはアルキレン基) をいう n例えば、メチレングリコール(HO— CH—OH)の場合のアルキレングリコー
2
ル残基はメチレンォキシ基(一 CH—O )であり、エチレングリコール(HO— CH C
2 2
H OH)の場合のアルキレングリコール残基はエチレンォキシ基(一 CH CH -0
2 2 2 一)である。
Xの繰り返し数 pは 1〜 100の整数であり、 Xがアルキレングリコール残基の場合、よ り好ましくは 2〜50の整数であり、更に好ましくは 2〜30の整数であり、最も好ましくは 2〜20の整数である。各種 pの混合物である場合には、高分子化合物全体としては、 Pは平均値として特定される。繰り返し数 pが 2以上の場合は、繰り返される Xは同一 であっても、異なっていてもよい。
式 [1]で、 Xがアルキル基の場合、 p個分のアルキル基の炭素数の合計((X) )が 1
P
〜100であることが好ましぐ 1〜20であることがより好ましい。アルキル基は特に構 造を限定されるものではなぐ直鎖であっても、分岐していても、環状になっていても よい。
[0021] 本発明に使用する「活性エステル基」は、エステル基の片方の置換基に酸性度の 高い電子求引性基を有して求核反応に対して活性化されたエステル群、すなわち反 応活性の咼ぃエステル基を意味するものとして、各種の化学合成、たとえば咼分子 化学、ペプチド合成等の分野で慣用されているものである。実際的には、フエノール エステル類、チォフエノールエステル類、 N ヒドロキシァミンエステル類、複素環ヒド 口キシィ匕合物のエステル類等がアルキルエステル等に比べてはるかに高い活性を有 する活性エステル
[0022] このような活性エステル COOR"で表される R"に上記酸性度が高い 電子吸引性基を有するものが R"が p -トロフエ-ルである 、 p -トロフエ-ル活性エステル基;上記 R"が N ヒドロキシスクシンイミドである、 N —ヒドロキシスクシンイミド活性エステル基、上記 R"がフタル酸イミドである、フタル酸 イミド活性エステル基;上記 R"が 5 ノルボルネン 2, 3 ジカルボキシイミドである 、 5 ノルボルネン一 2, 3 ジカルボキシイミド活性エステル基等が挙げられる力 中 でも保存安定性と反応性の高さとのバランスの点カゝら P -トロフエ-ル活性エステル 基又は N -ヒドロキシスクシンイミド活性エステル基が好ましく、 p ニトロフエ-ル活 性エステル基が最も好まし 、。
[0023] 生理活性物質を固定ィ匕する官能基を有するエチレン系不飽和重合性モノマー (a) としては、例えば p -トロフエ-ルォキシカルボ-ルーポリ(エチレングリコール)(メ タ)アタリレートゃスクシンイミドォキシカルボ-ル—ポリ(エチレングリコール)(メタ)ァ タリレートを挙げることができるが、中でも、下記式で表される p -トロフエ-ルォキシ カルボ-ルーポリ(エチレングリコール)メタタリレートが好ましい。なお、エチレングリコ ールの繰り返し数 p及び Z又は Pの平均値は 2〜20が好ましい。
[0024] [化 5]
Figure imgf000011_0001
本発明の高分子化合物において、生理活性物質を固定化する官能基を有するェ チレン系不飽和重合性モノマー (a)から誘導される部分の割合は、特に制限されるも のではないが、重合体における全モノマーの繰り返し単位の総数に対して、 1〜99. 7mol%が好ましぐより好ましくは l〜70mol%、最も好ましくは l〜50mol%である
[0026] 本発明に使用するアルキレングリコール残基を有するエチレン系不飽和重合性モ ノマー (b)は、特に構造を限定しないが、一般式 [2]で表される (メタ)アクリル基と炭 素数 1〜10のアルキレングリコール残基 Yの連鎖力もなる化合物であることが好まし い。
[0027] [化 6]
[ 2 ]
Figure imgf000012_0001
(式中 Rは水素原子またはメチル基を示し、 Rは水素原子または炭素数 1〜20のァ
2 3
ルキル基を示す。 Yは炭素数 1〜10のアルキレングリコール残基を示し、 qは 1〜: LOO の整数を示す。 qが 2以上 100以下の整数である場合、繰り返される Yは、同一であつ ても、または異なっていてもよい。 )
[0028] 式中のアルキレングリコール残基 Yの炭素数は 1〜10であり、好ましくは 1〜6であり 、より好ましくは 2〜4であり、更に好ましくは 2〜3であり、最も好ましくは 2である。アル キレングリコール残基 Yの繰り返し数 qは、特に限定されるものではないが、好ましく は 1〜: LOOの整数であり、より好ましくは 2〜: LOOの整数であり、更に好ましくは 2〜95 の整数であり、最も好ましくは 20〜90の整数である。各種 qの混合物である場合には 、高分子化合物全体としては、 qは平均値として特定される。繰り返し数 qが 2以上の 場合は、 Yは同一であっても、異なっていてもよい。
[0029] アルキレングリコール残基を有するエチレン系不飽和重合性モノマー(b)としては、 例えばメトキシポリエチレングリコール (メタ)アタリレート、エトキシポリエチレングリコー ル (メタ)アタリレート、 2—ヒドロキシェチル (メタ)アタリレートおよびその水酸基の一置 換エステル、 2—ヒドロキシプロピル (メタ)アタリレートおよびその水酸基の一置換エス テル、 2—ヒドロキシブチル (メタ)アタリレートおよびその水酸基の一置換エステル、グ リセロールモノ (メタ)アタリレート、ポリプロピレングリコールを側鎖とする (メタ)アタリレ ート、 2—メトキシェチル (メタ)アタリレート、 2—エトキシェチル (メタ)アタリレート、メト キシジエチレングリコール (メタ)アタリレート、エトキシジエチレングリコール (メタ)ァク リレート、エトキシポリエチレングリコール (メタ)アタリレート等が挙げられる力 生理活 性物質の非特異的吸着の少なさ及び入手性カもメトキシポリエチレングリコールメタク リレートまたはエトキシポリエチレングリコールメタタリレートが好ましい。中でも、ェチレ ングリコール残基の平均繰り返し数が 3〜: LOOであるメトキシポリエチレングリコール( メタ)アタリレートまたはエトキシポリエチレングリコール (メタ)アタリレートが、合成時の 操作性 (ノ、ンドリング)の良さの点力も好ましく用いられる。
[0030] 本発明の高分子化合物において、アルキレングリコール残基を有するエチレン系 不飽和重合性モノマー (b)の力も誘導される部分の割合は、特に制限されるもので はないが、重合体における全モノマーの繰り返し単位の総数に対して、 O〜95mol% が好ましぐより好ましくは 30〜95mol%、最も好ましくは 50〜90mol%である。
[0031] 本発明に使用する高分子化合物は、少なくとも片側の末端に反応性の官能基を有 して 、れば、生理活性物質を固定ィヒする官能基を有するエチレン系不飽和重合性 モノマー(a)、アルキレングリコール残基を有するエチレン系不飽和重合性モノマー( b)以外に、他のエチレン系不飽和重合性モノマーを含んでも良い。例えばプラスチ ック基板等への塗布性が向上する点から、更に疎水基を有するエチレン系不飽和重 合性モノマー (c)を共重合して得られる高分子化合物であってもよ!/、。疎水基を有す るエチレン系不飽和重合性モノマー (c)は、生理活性物質を固定ィ匕する官能基や、 アルキレングリコール残基を有することなぐ疎水基を有すれば、特に構造は限定さ れない。疎水基としては、直鎖、分岐鎖、環状の脂肪族炭化水素基や芳香族炭化水 素基などが挙げられる。疎水基を有するエチレン系不飽和重合性モノマー(c)として は、 (メタ)アクリル基 (CH =CR— COO—、ここで Rは、水素原子またはメチル基
2 5 5
を示す。 )に疎水基が結合したモノマーが好ましぐ脂肪族炭化水素が結合した (メタ )アタリレート類や芳香族炭化水素が結合した (メタ)アタリレート類が挙げられる。より 好ましくは、合成時の操作性の良さの点から、前記疎水基がアルキル基である (メタ) アタリレート類である。さらに好ましくは、前記アルキル基が炭素数 3〜20のアルキル 基である (メタ)アタリレート類である。アルキル基は特に構造を限定されるものではな く、直鎖であっても、分岐していても、環状になっていてもよい。
[0032] 具体的なモノマーの例としては、 n—ブチル (メタ)アタリレート、 iso ブチル (メタ)ァ タリレート、 sec ブチル(メタ)アタリレート、 t ブチル(メタ)アタリレート、 n ネオペン チル(メタ)アタリレート、 iso ネオペンチル(メタ)アタリレート、 sec ネオペンチル(メ タ)アタリレート、ネオペンチル (メタ)アタリレート、 n—へキシル (メタ)アタリレート、 iso 一へキシル (メタ)アタリレート、ヘプチル (メタ)アタリレート、 n—ォクチル (メタ)アタリ レート、 iso—ォクチル (メタ)アタリレート、 2—ェチルへキシル (メタ)アタリレート、 n- ノ-ル (メタ)アタリレート、 iso ノ-ル (メタ)アタリレート、 n—デシル (メタ)アタリレート 、 iso デシル (メタ)アタリレート、 n—ドデシル (メタ)アタリレート、 iso ドデシル (メタ) アタリレート、 n—トリデシル (メタ)アタリレート、 iso トリデシル (メタ)アタリレート、 n- テトラデシル (メタ)アタリレート、 iso—テトラデシル (メタ)アタリレート、 n—ペンタデシ ル (メタ)アタリレート、 iso ペンタデシル (メタ)アタリレート、 n—へキサデシル (メタ)ァ タリレート、 iso へキサデシル (メタ)アタリレート、 n—ォクタデシル (メタ)アタリレート、 iso—ォクタデシル (メタ)アタリレート、シクロへキシル (メタ)アタリレート、イソボ-ル (メ タ)アタリレートなどが挙げられる。これらのなかでも入手性の良さの点から、最も好ま しいのが、 n ブチルメタタリレート、 n—ドデシルメタタリレート、 n—ォクチルメタクリレ ート、及びシクロへキシルメタタリレートである。
[0033] 本発明の高分子化合物において、疎水基を有するエチレン系不飽和重合性モノマ 一(c)から誘導される部分の割合は、特に制限されるものではないが、重合体におけ る全モノマーの繰り返し単位の総数に対して、 0〜90mol%が好ましぐより好ましく は 0〜80mol%、最も好ましくは 0〜70mol%である。エチレン系不飽和重合性モノ マー(c)のポリマー中での組成比が上限値を超えるとタンパク質等の生理活性物質 の非特異的吸着が多くなるおそれがある。
[0034] 前記重合体の少なくとも片側の末端に導入される反応性官能基は、バイオチップ 基板に用いられるような基板の表面と共有結合可能な官能基であれば、特に限定さ れるものではない。用いられる基板の表面に存在する官能基に合わせて、適宜、共 有結合可能な反応性官能基を選択することができる。用いられる基板は、後述のよう に通常、プラスチック、ガラス基板等が多く用いられ、表面に水酸基、アミノ基、アル デヒド基、カルボキシル基等を導入することができるため、末端に導入される反応性 官能基としては、例えば、反応性シリル基、エポキシ基、アミノ基等が挙げられる。
[0035] 中でも、比較的温和な条件で基板と反応させることができることから、前記重合体の 少なくとも片側の末端に導入される反応性官能基は、反応性シリル基であることが好 ましい。ここで、反応性シリル基としては、加水分解によりシラノール基を生成する官 能基、シラノール基などが挙げられる。加水分解によりシラノール基を生成する官能 基とは、水と接触すると容易に加水分解を受けシラノール基を生成する基であり、反 応性シリル基としては、下記一般式 [4]で表される構造が挙げられる。
[0036] [化 7]
[ 4 ]
Figure imgf000015_0001
式 [4]において、 A、 A、 Aの内、少なくとも 1個は反応性官能基内の反応性部位
1 2 3
であり、その他はアルキル基を示す。ここで、反応性部位とは、基板と共有結合し得る 部位をいう。反応性部位としては、アルコキシル基、ハロゲン基、アミノ基、イソシァネ ート基、フ ノキシ基、水酸基などが挙げられる。
[0037] 好適な反応性官能基としては、例えば、ハロゲン化シリル基(≡ Si— X、ここで Xは ハロゲン基)、アルコキシシリル基(≡ Si— OR、ここで Rはアルキル基)、フエノキシシ リル基(≡Si—OPh、ここで Phはフエ-ル基)、ァセトキシシリル基(≡Si—OOCCH
3
)等が挙げられる。ハロゲンを含まないこと力もアルコキシシリル基、フエノキシシリル 基、ァセトキシシリル基が好ましぐ中でもシラノール基を生成しやすい点力 アルコ キシシリル基が特に好まし 、。
[0038] 前記重合体の少なくとも片側の末端に導入される反応性官能基の導入割合は、重 合体における全モノマーの繰り返し単位の総数に対して、 0. 2〜: LOmol%であること が好ましぐより好ましくは 0. 5〜5mol%である。 [0039] また、末端に反応性官能基を導入する方法は特に限定されるものではないが、反 応性官能基を有するメルカプト化合物 (d)の存在下、少なくとも生理活性物質を固定 化する官能基を有するエチレン系不飽和重合性モノマー (a)を溶媒中でラジカル重 合する方法が簡便で好ましい。必要に応じて上記モノマー (b)、上記モノマー(c)、 その他を添加しても良い。反応性官能基を有するメルカプト化合物 (d)が連鎖移動 剤として働くため、末端に反応性官能基を有する高分子化合物が得られる。反応性 官能基を有するメルカプト化合物(d)は特に限定されるものではないが、下記の一般 式 [3]で表されるメルカプトシランィ匕合物が好ましい。
[0040] [化 8]
[ 3 ]
Αι
HS—— R4— Si A2
A3 式 [3]でアルキル基 Rの炭素数は 1〜20であり、より好ましくは 1〜5であり、最も好ま
4
しくは 1〜3である。 A、 A、 Aの内、少なくとも 1個は反応性官能基内の反応性部位
1 2 3
であり、その他はアルキル基を示す。反応性部位としては、アルコキシル基、ハロゲン 基、アミノ基、イソシァネート基、フエノキシ基、水酸基などが挙げられる力 中でもシ ラノール基を生成しやすい点力 アルコキシル基が最も好ましい。また、ポリマーの長 期保存が必要な場合に、保存性が良い点力 は、反応性官能基内の反応性部位は 1つであることが好ましい。
[0041] アルコキシル基を有するメルカプトシラン化合物としては、たとえば(3-メルカプトプ 口ピル)トリメトキシシラン、(3-メルカプトプロピル)メチルジメトキシシラン、(3-メルカ プトプロピル)ジメチルメトキシシラン、(3-メルカプトプロピル)トリエトキシシラン、(3- メルカプトプロピル)メチルジェトキシシラン、(3-メルカプトプロピル)ジメチルエトキシ シラン、(メルカプトメチル)トリメトキシシラン、(メルカプトメチル)メチルジメトキシシラ ン、(メルカプトメチル)ジメチルメトキシシラン、(メルカプトメチル)トリエトキシシラン、 ( メルカプトメチル)メチルジェトキシシラン、(メルカプトメチル)ジメチルエトキシシラン などが挙げられるがこれらに限定されるものではない。入手性から(3-メルカプトプロ ピル)トリメトキシシラン、(3-メルカプトプロピル)トリエトキシシランが好ましい。中でも 、ポリマーの長期保存が必要な場合に、保存性が良い点から、(3-メルカプトプロピ ル)ジメチルエトキシシランがより好ましい。これらのメルカプトシラン化合物は、単独ま たは 2種以上の組み合わせで用いられる。
[0042] 溶媒としてはそれぞれのエチレン系不飽和重合性モノマーおよび反応性官能基を 有するメルカプト化合物(d)が溶解するものであればよぐ例えば、メタノール、ェタノ ール、 t—ブチルアルコール、ベンゼン、トルエン、テトラヒドロフラン、ジォキサン、ジ クロロメタン、クロ口ホルム等を挙げることができる。これらの溶媒は、単独または 2種 以上の組み合わせで用いられる。プラスチック基材に該高分子化合物を塗布する場 合は、エタノール、メタノールが基材を変性させないため好ましい。
[0043] 重合開始剤としては通常のラジカル開始剤ならいずれでもよぐ例えば、 2, 2'ーァ ゾビスイソブチル二トリル(以下「AIBN」という)、 1, 1,一ァゾビス(シクロへキサン一 1 カルボ-トリル)等のァゾィ匕合物、過酸化べンゾィル、過酸ィ匕ラウリル等の有機過 酸ィ匕物等を挙げることができる。
[0044] 本発明の高分子化合物の化学構造は、少なくとも生理活性物質を固定ィ匕する官能 基を有する各エチレン系不飽和重合性モノマーから誘導される繰り返し単位を含む 重合体であって、少なくとも片側の末端に反応性の官能基を有するものであれば、当 該重合体が共重合体の場合の結合方式はランダム、ブロック、グラフト等いずれの形 態をなして!/ヽてもかまわな!/ヽ。
[0045] 本発明の高分子化合物の分子量は、基板に均一に塗布しやすくなり、且つ高分子 化合物と未反応のエチレン系不飽和重合性モノマーとの分離精製が容易になること 力ら、数平均分子量 ίま 5, 000以上 1, 000, 000以下力 S好まし <、 10, 000以上 500 , 000以下がより好ましい。なおここで、数平均分子量は NMR測定の解析より求めた 組成を基に、全ての高分子の片側の末端に反応性官能基が導入されていると仮定 して算出したものである。
生理活性物質を固定ィ匕する官能基を有するエチレン系不飽和重合性モノマー (a) 、アルキレングリコール残基を有するエチレン系不飽和重合性モノマー (b)、疎水性 ユニットを有するエチレン系不飽和重合性モノマー(C)等を予め共重合させることなく
、各モノマー成分の混合物を用いて基板に塗布し塗布後に硬化反応させるような場 合には、上記モノマー成分の混合物は、基板若しくはモノマー成分同士の親和性に より基板に均一に塗布できない場合がある。それに対し、本発明のように予めモノマ 一成分を予め共重合させた高分子化合物とすることにより、基板に均一に塗布できる ようになる。
[0046] 本発明の高分子化合物は、架橋して網目状マトリックスを形成するような榭脂とは 異なり、基板 (該高分子化合物が有する反応性官能基と共有結合しない不活性表面 を有する基板)に 0. 1〜1 μ m程度塗布後、加熱処理した後も、エタノール等の後述 するような有機溶剤に容易に溶解することを特徴とする。なお、上記基板としては、後 述するような基板表面を活性化させる表面処理を行って 、な 、ポリオレフイン榭脂基 板等を用いることができる。また、加熱処理としては、例えば、 60〜120°Cで 5分間〜 24時間加熱処理することが挙げられる。
[0047] 本発明の高分子化合物は、基材表面を該高分子化合物で被覆することにより、特 定の生理活性物質を固定ィ匕する性質を容易に付与することができる。また、該高分 子化合物の成分にアルキレングリコール残基が存在する場合は、特定の生理活性物 質を固定ィ匕する性質に加えてタンパク質の非特異吸着を抑制する性質をさらに付与 することができる。さらに、末端の反応性基が基材と結合しうることから、該高分子化 合物をィ匕学的にグラフトすることができるため、基材洗浄による信号低下のおそれが ない。
[0048] 基材表面への高分子化合物の被覆は、例えば有機溶剤に高分子化合物を 0. 05 〜10重量%濃度になるように溶解した高分子溶液を調製し、浸漬、吹きつけ等の公 知の方法で基材表面に塗布した後、室温下ないしは加温下にて乾燥させることによ り行われる。有機溶剤としてはエタノール、メタノール、 t—ブチルアルコール、ベンゼ ン、トノレェン、テトラヒドロフラン、ジォキサン、ジクロロメタン、クロロホノレム、アセトン、メ チルェチルケトン等の単独溶媒またはこれらの混合溶剤が使用される。中でも、エタ ノール、メタノールがプラスチック基材を変性させず、乾燥させやすいため好ましい。
[0049] 本発明の高分子化合物は末端の反応性官能基を用いて基材と共有結合させること ができる。結合させる条件は官能基に応じて任意に選択することができる。例えば、 末端にアルコキシシリル基を有する高分子化合物の場合、加水分解により生成され たシラノール基が、基材表面の水酸基、アミノ基、カルボニル基、シラノール基等と脱 水縮合して共有結合を形成する。シラノール基の脱水縮合により形成される共有結 合は加水分解されにくい性質があるので、基材表面にグラフトされた高分子化合物 は容易に溶解したり、基材カも脱離してしまうことはない。シラノール基の脱水縮合は 加熱処理により促進される。高分子化合物が熱により変成されない温度範囲内、例 えば、 60〜120°Cで 5分間〜 24時間加熱処理するのが好ましい。
[0050] エタノールやメタノールなど極性の高い有機溶剤を用いる場合や、高分子化合物 自体の親水性が高い場合は、溶剤に含まれる水分や塗布後空気中の水分により、 高分子末端のアルコキシシリル基の加水分解が生じるため、特別な加水分解工程を 施さなくとも、基板を加熱するだけでグラフトイ匕することができることが多い。加水分解 が不足する場合は、有機溶剤中に水を含有させた混合溶液を用いてもよい。理論上 加水分解によりシラノール基を生成するのに必要な水が供給されれば十分であるが 、溶液の調製の容易さを考えると、含水量を 15重量%以下にするのが好ましい。含 水量が多くなると高分子化合物が溶媒に不溶となる恐れがある。
[0051] 本発明に使用するバイオチップ用基板の素材は、ガラス、プラスチック、金属その 他を用いることができる力 表面処理の容易性、量産性の観点から、プラスチックが 好ましぐ中でも熱可塑性榭脂がより好ましい。
[0052] 熱可塑性榭脂としては、蛍光発生量の少ないものが好ましぐたとえばポリエチレン 、ポリプロピレン等の直鎖状ポリオレフイン、環状ポリオレフイン、含フッ素榭脂等を用 いることが好ましぐ耐熱性、耐薬品性、低蛍光性、成形性に特に優れる飽和環状ポ リオレフインを用いることがより好ましい。ここで飽和環状ポリオレフインとは、環状ォレ フィン構造を有する単独重合体または環状ォレフィンと OC一才レフインとの共重合体 を水素添加した飽和重合体をさす。
[0053] 該高分子化合物を基材にグラフトさせるには、基材表面を活性ィ匕することが好まし い。活性化する手段としては酸素雰囲気下、アルゴン雰囲気下、窒素雰囲気下、空 気雰囲気下などの条件下でプラズマ処理する方法、 ArF、 KrFなどのエキシマレー ザ一で処理する方法があるが、酸素雰囲気下でプラズマ処理する方法が好ま 、。
[0054] 本発明の高分子化合物を基材に塗布することで容易に、生理活性物質の固定ィ匕 能力に優れ、更に基材に生理活性物質の非特異的吸着を抑制されたバイオチップ 基板を作製できる。また、該高分子化合物は化学結合により基板に結合させることが できるので、洗浄工程での流出がない。これらのことより、該高分子化合物を塗布し た基材はバイオチップに好適に用いることができる。
[0055] 本発明のバイオチップ基板を使用して各種の生理活性物質を固定ィ匕することがで きる。固定化する生理活性物質は核酸、アブタマ一、タンパク質、オリゴペプチド、糖 鎖、糖タンパク質などがある。例えば核酸を固定ィ匕する場合は、活性エステル基との 反応性を高めるため、核酸にアミノ基を導入することが好ましい。ァミノ基の導入位置 は分子鎖末端ある ヽは側鎖であってもよ ヽが、分子鎖末端にァミノ基が導入されて ヽ ることが好ましい。
[0056] 本発明において生理活性物質をバイオチップ基板上に固定ィ匕する際には、生理 活性物質を溶解又は分散した液体を点着する (スポット)方法が好ま 、。
[0057] 点着後、静置することにより、生理活性物質が表面に固定化される。例えばアミノ化 された核酸を用いた場合は室温力 80°Cにおいて 1時間静置することにより、固定 化が可能である。処理温度は高いほうが好ましい。生理活性物質を溶解または分散 させる液体としてはアルカリ性であることが好ましい。
[0058] 洗浄後は生理活性物質を固定化した以外の基板表面の官能基を不活性化処理す る。活性エステル基やアルデヒド基の場合はアルカリィ匕合物、あるいは一級アミノ基を 有する化合物で行うことが好まし 、。
[0059] アルカリィ匕合物としては、水酸化ナトリウム、水酸ィ匕カリウム、炭酸ナトリウム、炭酸水 素ナトリウム、リン酸水素ニナトリウム、水酸ィ匕カルシウム、水酸化マグネシウム、ホウ 酸ナトリウム、水酸化リチウム、リン酸カリウムなどを好ましく用いることができる。
[0060] 一級アミノ基を有する化合物としては、メチルァミン、ェチルァミン、ブチルァミン、グ リシン、 9—アミノアクアジン、アミノブタノール、 4ーァミノ酪酸、アミノカプリル酸、アミ ノエタノール、 5 ァミノ 2, 3 ジヒドロー 1, 4 ペンタノール、アミノエタンチオール 塩酸塩、アミノエタンチオール硫酸、 2—(2—アミノエチルァミノ)エタノール、リン酸 二水素 2 アミノエチル、硫酸水素アミノエチル、 4一(2 アミノエチル)モルホリン、 5-ァミノフルォレセイン、 6—ァミノへキサン酸、ァミノへキシルセルロース、 p ァミノ 馬尿酸、 2 アミノー 2 ヒドロキシメチルー 1, 3 プロパンジオール、 5 ァミノイソフ タル酸、ァミノメタン、ァミノフエノール、 2—ァミノオクタン、 2—ァミノオクタン酸、 1—ァ ミノ 2 プロパノール、 3 アミノー 1 プロパノール、 3 ァミノプロペン、 3 アミノプ 口ピオ-トリル、アミノビリジン、 11—アミノウンデカン酸、ァミノサリチル酸、アミノキノリ ン、 4—ァミノフタロニトリル、 3—ァミノフタルイミド、 p ァミノプロピオフエノン、アミノフ ェニル酢酸、ァミノナフタレンなどを好ましく用いることができ、アミノエタノール、グリシ ンが最も好ましい。
[0061] このように生理活性物質を固定ィ匕することによって得られたバイオチップは免疫診 断、遺伝子マイクロアレイ、タンパク質マイクロアレイ、マイクロフルィディスクデバイス を含めた多くの分析システムにおいて使用することができる。
実施例
[0062] (p -トロフエ-ルォキシカルボ-ルーポリエチレングリコールメタタリレート(ME ONP)の合成)
0. Olmolのポリエチレングリコールモノメタタリレート(日本油脂株式会社製 Blenme r PE— 200)を 20mLのクロ口ホルムに溶解させた後、 30°Cまで冷却した。—30 °Cに保ちながらこの溶液に、予め作製しておいた 0. Olmolの p -トロフエ-ルクロ 口フォーメート (Aldrich社製)と 0. Olmolのトリエチルァミン (和光純薬工業株式会 社製)及びクロ口ホルム 20mLの均一溶液をゆっくりと滴下した。 30°Cにて 1時間反 応させた後、室温でさらに 2時間溶液を攪拌した。その後反応液力も塩をろ過により 除去し、溶媒を留去して p -トロフエ-ルォキシカルボ-ル—ポリエチレングリコー ルメタタリレート(MEONP)を得た。得られたモノマーを重クロ口ホルム溶媒中 1H— NMRで測定し、エチレングリコール残基が 4. 5単位含まれていることを確認した。
[0063] (高分子化合物の合成例 1)
数平均分子量 Mn=約 1100のポリエチレングリコールメチルエーテルメタタリレート (別名メトキシポリエチレングリコールメタタリレート、以下 PEGMA1100と記載、 Aldr ich社製)、 p -トロフエ-ルォキシカルボ-ルーポリエチレングリコールメタタリレー ト(以下 MEONPと記載)を脱水エタノールに溶解させ、モノマー混合溶液を作製し た。総モノマー濃度は 0. 3molZL、それぞれのモル比は PEGMA1100、 MEON Pの順に 85 : 15である。そこにさらに(3-メルカプトプロピル)トリメトキシシラン(以下 M PTMSと記載、 Aldrich社製)および 2、 2—ァゾビスイソブチ口-トリル(以下 AIBNと 記載、和光純薬工業株式会社製)をそれぞれ 0. 003molZLになるように添加し、均 一になるまで撹拌した。その後、アルゴンガス雰囲気下、 60°Cで 6時間反応させた後 、反応溶液をジェチルエーテル中に滴下し、沈殿を収集した。得られた高分子化合 物を重エタノール溶媒中 1H— NMRで測定し、 3. 4ppm付近に現れる PEGMAの 末端メトキシ基に帰属されるピーク、 7. 6および 8. 4ppm付近に現れる MEONPの ベンゼン環に帰属されるピーク、 0. 7ppm付近に現れる MPTMSの Siに結合したメ チレンに帰属されるピーク、それぞれの積分値より、この高分子化合物の組成比を算 出した。表 1に結果を示した。
(高分子化合物の合成例 2)
高分子化合物の合成例 1と同様に数平均分子量 Mn=約 2080のポリエチレンダリ コールメチルエーテルメタタリレート(別名メトキシポリエチレングリコールメタタリレート 、以下 PEGMA2080と記載、 Aldrich社製 50wt%水溶液を脱水して使用。)、 p— ニトロフエ-ルォキシカルボ-ルーポリエチレングリコールメタタリレート(以下 MEON Pと記載)を脱水エタノールに溶解させ、モノマー混合溶液を作製した。総モノマー濃 度は 0. 2molZL、それぞれのモル比は PEGMA2080、 MEONPの順に 85 : 15で ある。そこにさらに(3-メルカプトプロピル)トリメトキシシラン(以下 MPTMSと記載、 A ldrich社製)および 2、 2—ァゾビスイソブチ口-トリル(以下 AIBNと記載、和光純薬 工業株式会社製)をそれぞれ 0. 003molZLになるように添加し、均一になるまで撹 拌した。その後、アルゴンガス雰囲気下、 60°Cで 6時間反応させた後、反応溶液をジ ェチルエーテル中に滴下し、沈殿を収集した。得られた高分子化合物を重工タノ一 ル溶媒中 1H— NMRで測定し、 3. 4ppm付近に現れる PEGMAの末端メトキシ基 に帰属されるピーク、 7. 6および 8. 4ppm付近に現れる MEONPのベンゼン環に帰 属されるピーク、 0. 7ppm付近に現れる MPTMSの Siに結合したメチレンに帰属さ れるピーク、それぞれの積分値より、この高分子化合物の組成比を算出した。表 1に 結果を示した。
[0065] (高分子化合物の合成例 3)
上記合成例 1にお 、て(3—メルカプトプロピル)トリメトキシシラン(以下 MPTMSと 記載、 Aldrich社製)を用いた代わりに、(3—メルカプトプロピル)ジメチルエトキシシ ラン (以下 MPDESと記載)を用 、た以外は、上記合成例 1と同様にして高分子化合 物を得た。上記と同様に高分子化合物の組成比を算出した。表 1に結果を示した。
[0066] (高分子化合物の合成例 4)
上記合成例 2において MPTMSを用いた代わりに、 MPDESを用いた以外は、上 記合成例 2と同様にして高分子化合物を得た。上記と同様に高分子化合物の組成 比を算出した。表 1に結果を示した。
[0067] [表 1]
Figure imgf000023_0001
単位 : m o 1 比
[0068] (実施例 1〜4)
飽和環状ポリオレフイン榭脂を(5—メチルー 2ノルボルネンの開環重合体の水素添 加物(MFR (Melt flow rate): 21gZlO分、水素添カ卩率:実質的に 100%、熱変形温 度: 123°C)を用い、射出成形によりスライドガラス形状(寸法: 76mm X 26mm X lm m)に加工して固相基板を作製した。酸素雰囲気下のプラズマ処理によって基板表 面に酸化処理を施した。この固相基板を高分子化合物の合成例 1〜4にて得られた 高分子化合物の 1. 0重量%エタノール溶液に浸漬することにより、基板表面に、ァ ルキレングリコール残基を有するエチレン系不飽和重合性モノマー(a)及び生理活 性物質を固定ィ匕する官能基を有するエチレン系不飽和重合性モノマー (b)から誘導 される繰り返し単位を含む共重合体であって、前記共重合体の少なくとも片側の末端 にアルコキシル基を有する高分子化合物を含む層を導入した。この基板を 100°C、 2 hr加熱乾燥することにより、基板と該高分子を含む層とを化学的に結合させた。
[0069] (比較例 1)
(ノンコート基板)
飽和環状ポリオレフイン榭脂を(5—メチルー 2ノルボルネンの開環重合体の水素添 加物(MFR(Melt flow rate): 21gZlO分、水素添カ卩率:実質的に 100%、熱変形温 度: 123°C)を用い、射出成形によりスライドガラス形状(寸法: 76mm X 26mm X lm m)に加工して固相基板を作製した。酸素雰囲気下のプラズマ処理によって基板表 面に酸化処理を施した。
[0070] (比較例 2)
(アルデヒド基板)
飽和環状ポリオレフイン榭脂を(5—メチルー 2ノルボルネンの開環重合体の水素添 加物(MFR(Melt flow rate): 21gZlO分、水素添カ卩率:実質的に 100%、熱変形温 度: 123°C)を用い、射出成形によりスライドガラス形状(寸法: 76mm X 26mm X lm m)に加工して固相基板を作製した。酸素雰囲気下のプラズマ処理によって基板表 面に酸化処理を施した。この基板を 2体積%の 3—ァミノプロピルトリメトキシシランの エタノール溶液に浸漬した後、純水洗浄し、 45°Cにて 2時間熱処理することによりァ ミノ基を導入し、さらに 1体積%のダルタルアルデヒド水溶液に浸漬した後、純水洗浄 することでアルデヒド基を導入した。
[0071] (比較例 3)
特許文献 2 (特表 2004— 531390号公報)の実施例 Xに従いアミン反応性スライド ガラス基板を作製した。
具体的には、まず以下のようにコーティング溶液を調製した。
<コ一ティング溶液の調製 > ポリプロピレンのバイアル中にて、 26. 5 1の(3 トリメトキシシリルプロピル)一ジ エチレントリァミン (ゲレスト社)を 10mlの有機溶媒中に加えることによって、アミノシラ ンの有機溶媒溶液を調製した。ジメチルスルホキシド(DMSO)又は N, N ジメチル ァセトアミド (DMAC)を溶媒として使用することができる(どちらもアルドリッチ社から 市販)。次いで、この溶液の 1. Omlを 40mgの量のピオチン— PEG— SPA (シェアゥ オーターポリマー社; SPAは、アミン基に対して反応性を示す、プロピオン酸のスクシ ンィミジル誘導体である。)に加えた。ピオチン— PEG— SPAの SPA基がアミノシラ ン上の末端ァミンと反応してピオチン PEG シラン分子を形成する。ピオチン P EG -シラン/ DMAC溶液を溶液 Aと呼ぶ。
別のバイアルにおいて、 70. 6 1の 6 アジドスルホ-ルへキシル—トリエトキシシ ランを 10mlの DMSOに加えた。この溶液に 125 μ 1のマトリックス形成剤(ポリオキシ エチレンソルビタンテトラオレエート、アルドリッチ)をカ卩えて溶液 Βを得た。溶液 Αと溶 液 Bとを 1 : 4の体積比で混合(lmlの溶液 Aを 4mlの溶液 Bに加える)して、コーティン グ溶液混合物を得た。
次に、 25 X 75mmの顕微鏡用スライドガラスを高周波スパッタリングによる約 400ォ ングストロームの酸ィ匕ケィ素層で被覆し、次いで以下のように清浄ィ匕した。先ずスライ ドガラスを高純度水ですすぎ洗 、した。スライドガラスをガラス ·ステイニング ·ラック中 に入れ、 60°Cの脱気した 1 %アルコノックス溶液 (アルカリ性のガラスクリーナー)中に 浸漬し、 15分超音波処理した。次いでスライドガラスを多量の高純度水ですすぎ洗 いし、 60°Cの高純度水中でさらに 15分超音波処理した。次いでスライドガラスを多量 の高純度水ですすぎ洗いし、乾燥工程にかけるまで新鮮な超純水中に浸漬した。ス ライドガラスを圧縮 Nガスで充分に吹きつけ乾燥し、使用するまで乾燥状態のまま保
2
存した。清浄化し、予備処理したスライドガラスをスピンコーター中に据え付け、 3500 rpmで回転させた。予備処理したスライドガラス上に 0. 5mlのコーティング溶液混合 物を分与し、 90秒回転させた。
塗被した 25 X 75mmのスライドガラスを真空オーブン中に入れ、引き続き真空ボン プで 150mmHgの圧力になるまで 30分減圧した。オーブンのスィッチを入れ、約 70 °Cに加熱した。熱処理の合計時間 (加熱の傾斜と加熱の保持)は 1時間であった。次 V、で支持体を周囲空気中にて室温に自然冷却した。
[0072] <実験 1 >
実施例、比較例で得られた各基板について、以下のように評価を行った。実施例 1 〜4の基板および比較例 3の基板については下記実験を 5回繰り返して再現性を確 認した。再現性は抗原であるマウス IgG2aを添加しない系で行った。
[0073] 工程 1 (1次抗体の固定化)
実施例、比較例で得られた各基板上でサンドイッチ法を実施した。詳細はまず、該 各基板に自動スポッターにより炭酸バッファ(和光純薬製 PH9. 5)で 3. 3 molZリ ットルに調製された一次抗体である抗マウス IgG2aをスポット後、室温の環境下に 24 時間静置することにより一次抗体を固定ィ匕した。
[0074] 工程 2 (吸着防止処理)
その後、実施例 1〜4の基板は 0. ImolZリットルのエタノールァミン(和光純薬製、 鹿特級)と 0. ImolZリットルのトリスバッファ(SIGMA製)水溶液との 1: 1 (体積比) 水溶液 (pH9. 5)に 1時間浸漬することにより残りの活性エステル部を失活させた。ま た、比較例 1の基板は市販の吸着防止剤であるブロックエース (大日本製薬株式会 社製)を PBSバッファ(日水製薬製:組織培養用ダルベッコ PBS (―)を純水 1リットル 中に 9. 6g溶解したバッファ)にて 4倍希釈した溶液に 2時間浸漬することにより吸着 防止処理を施した基板と、吸着防止処理を施さない基板とで行った。比較例 2の基 板は市販の吸着防止剤であるブロックエース (大日本製薬株式会社製)を上記と同 様に 4倍希釈した溶液に 2時間浸漬することにより吸着防止処理を施した。
[0075] 工程 3 (抗原抗体反応 1)
その後、 PBSバッファ(日水製薬製:組織培養用ダルベッコ PBS (—)を純水 1リット ル中 9. 6g溶解したバッファ)で 10%に希釈した FBS (子牛血清)溶液を作製した。こ の溶液中に抗原であるマウス IgG2aを添カ卩し 20nmol/リットルとした溶液を作製し た。この溶液を PBSバッファ(日水製薬製:組織培養用ダルベッコ PBS ( - )を純水 1 リットル中 9. 6gを溶解したバッファ)で 10%に希釈した FBS (子牛血清)で 1倍、 2倍 、 3倍、 4倍希釈溶液を作製した。これらの希釈溶液および抗原であるマウス IgG2a を含まない 10%FBS溶液を 37°Cにて 2時間、基板と接触させることにより抗原抗体 反応を実施した。抗原抗体反応後 0. 05wt%の非イオン性界面活性剤 TWeen20 ( ロシュ'ダイァグノスティックス株式会社製)を添カ卩した 1 X SSCバッファ(Zymed La boratories, Inc.製 SSC20 X Bufferを希釈して使用)で室温にて 5分間洗浄した
[0076] 工程 4 (抗原抗体反応 2)
洗浄後、二次抗体であるピオチン標識抗マウス IgG2aを PBSバッファ(日水製薬 製:組織培養用ダルベッコ PBS (—)を純水 1リットル中 9. 6g溶解したバッファ)に添 加することにより 20nmol/リットルの溶液を作製した。この溶液と基板とを 37°Cにて 2 時間、抗原抗体反応を実施した。抗原抗体反応後 0. 05wt%の非イオン性界面活 性剤 Tween20 (ロシュ'ダイァグノスティックス株式会社製)を添加した 1 X SSCバッ ファ(Zymed Laboratories, Inc.製 SSC20 X Bufferを希釈して使用)で室温に て 5分間洗浄した。
[0077] 工程 5 (標識化)
最後に Cy5標識されたストレプトアビジンを PBSバッファ(日水製薬製:組織培養用 ダルベッコ PBS (―)を純水 1リットル中 9. 6g溶解したバッファ)に添加することにより 20nmolZリットルの溶液を作製した。この溶液と基板とを 37°Cにて 30分反応させた 後、 0. 05wt%の非イオン性界面活性剤 Tween20 (ロシュ'ダイァグノスティックス株 式会社製)を添カ卩した 1 X SSCバッファ(Zymed Laboratories, Inc.製 SSC20 X Bufferを希釈して使用)で室温にて 5分間洗浄することにより標識ィ匕をした。
[0078] 各基板につ!、て蛍光量測定を行 、スポットシグナル強度値とバックグランド値を評 価した。ノ ックグランド値の結果を表 2に、スポットシグナル強度の結果を表 3に、再現 性試験結果を表 4に示す。
[0079] 実施例および比較例における蛍光量の測定には、 Packard BioChip Technol ogies社製マイクロアレイスキャナー「3じ&11八 & 」を用いた。測定条件は、レーザー 出力 90%、 PMT感度 50%、励起波長 649nm、測定波長 670nm、解像度 50 m であった。
[0080] 実施例 1〜4および比較例 1のブロックエース処理無しを比較することにより、本発 明のバイオチップ基板とすることによりバックグランドが低減されることが確認された。 [0081] また、実施例 1〜4および比較例 2を比較することにより、本発明によるバイオチップ 基板は、従来のアルデヒド基板に市販の吸着処理剤を処理するよりもバックグランド が低くシグナルが高いバイオチップ基板であることがわ力つた。
[0082] 実施例 1〜4および比較例 3を比較することにより、本発明によるノィォチップ基板 は特許文献 2に記載の基板よりも、ノ ックグランドが低い、すなわち、血清中に含まれ る非特異的なタンパクを吸着し難ぐ且つ、 1次抗体スポット部の抗原なしの時のシグ ナル強度が低い、すなわち、基板に 1次抗体がその抗体機能を保持した状態で固定 化されているバイオチップ基板であることがわ力 た。また、本発明によるバイオチッ プ基板は、再現性に関しても優れるノィォチップ基板であることがわ力 た。
[0083] [表 2] バッタ グラン ド値
Figure imgf000028_0001
[0084] [表 3]
シグナル強度値
Figure imgf000029_0001
4] 再現性 (抗原な し)
1 回目 2回目 3回目 4回目 5回目 実施例 1 '、" ツクタ1'ラン卜'" fC 723 732 882 651 774 シグナル強度値 852 823 840 752 842 実施例 2 1ぐ クタ、' 7ント ίί 11 A 829 882 852 899 シグナル強度値 939 921 945 947 953 実施例 3 ハ、'ッタタ'、ラント" lit 701 802 752 649 711 シグナル強度値 772 73 743 755 751 実施例 4 '·、■" ツタタ 7ント" ίί 682 703 732 697 732 シグナル強度値 721 778 783 733 796 比較例 3 ' ' Wラ Γ ί直 1, 389 2, 243 1, 429 2, 239 1, 834 シグナル強度値 4, 262 4, 43? 3, 905 4, 945 5, 495

Claims

請求の範囲
[1] 少なくとも、生理活性物質を固定ィ匕する官能基を有するエチレン系不飽和重合性 モノマー(a)力も誘導される繰り返し単位を含む重合体であって、前記重合体の少な くとも片側の末端に反応性官能基を有することを特徴とする医療材料用高分子化合 物。
[2] 少なくとも、生理活性物質を固定ィ匕する官能基を有するエチレン系不飽和重合性 モノマー(a)及びアルキレングリコール残基を有するエチレン系不飽和重合性モノマ 一 (b)力も誘導される繰り返し単位を含む共重合体であって、前記共重合体の少なく とも片側の末端に反応性官能基を有することを特徴とする医療材料用高分子化合物
[3] 少なくとも、生理活性物質を固定ィ匕する官能基を有するエチレン系不飽和重合性 モノマー(a)及びアルキレングリコール残基を有するエチレン系不飽和重合性モノマ 一 (b)、疎水性ユニットを有するエチレン系不飽和重合性モノマー(c)から誘導され る繰り返し単位を含む共重合体であって、前記共重合体の少なくとも片側の末端に 反応性官能基を有することを特徴とする医療材料用高分子化合物。
[4] 前記末端の反応性官能基が反応性シリル基である請求の範囲第 1項〜第 3項のい ずれかに記載の医療材料用高分子化合物。
[5] 前記反応性シリル基がアルコキシシリル基である請求の範囲第 4項に記載の医療 材料用高分子化合物。
[6] 生理活性物質を固定ィ匕する官能基を有するエチレン系不飽和重合性モノマー (a) の官能基がアルデヒド基、活性エステル基、エポキシ基、ビュルスルホン基、ビォチ ン力 選ばれる少なくとも一つの官能基である請求の範囲第 1項〜第 5項のいずれか に記載の医療材料用高分子化合物。
[7] 生理活性物質を固定ィ匕する官能基を有するエチレン系不飽和重合性モノマー (a) が下記の一般式 [1]で表される活性エステル基を有するモノマーである請求の範囲 第 1項〜第 6項のいずれかに記載の医療材料用高分子化合物。
[化 1]
Figure imgf000031_0001
(式中 は水素原子またはメチル基を示し、 Xは炭素数 1〜10のアルキレングリコー ル残基またはアルキル基を示す。 Wは活性エステル基を示す。 pは 1〜: LOOの整数を 示す。 pが 2以上 100以下の整数である場合、繰り返される Xは、それぞれ同一であつ ても、異なっていてもよい。 )
前記活性エステル基が P トロフエニルエステル又は N—ヒドロキシスクシンイミド エステルである請求の範囲第 6項又は第 7項に記載の医療材料用高分子化合物。 アルキレングリコール残基を有するエチレン系不飽和重合性モノマー(b)が下記の 一般式 [2]で表されるモノマーである請求の範囲第 2項〜第 8項のいずれかに記載 の医療材料用高分子化合物。
[化 2]
[ 2 ]
Figure imgf000031_0002
(式中 Rは水素原子またはメチル基を示し、 Rは水素原子または炭素数 1〜20のァ
2 3
ルキル基を示す。 Yは炭素数 1〜10のアルキレングリコール残基を示し、 qは 1〜: L00 の整数を示す。 qが 2以上 100以下の整数である場合、繰り返される Yは、同一であつ ても、異なっていてもよい。 )
[10] アルキレングリコール残基を有するエチレン系不飽和重合性モノマー(b)がメトキシ ポリエチレングリコール (メタ)アタリレートまたはエトキシポリエチレングリコール (メタ) アタリレートである請求の範囲第 2項〜第 9項のいずれかに記載の医療材料用高分 子化合物。
[11] 前記メトキシポリエチレングリコール (メタ)アタリレートまたはエトキシポリエチレンダリ コール (メタ)アタリレートのエチレングリコール残基の平均繰り返し数が 3〜100であ る請求の範囲第 10項に記載の医療材料用高分子化合物。
[12] 疎水基を有するエチレン系不飽和重合性モノマー(c)の疎水基がアルキル基であ る請求項 3〜11いずれか記載の医療材料用高分子化合物。
[13] 疎水基を有するエチレン系不飽和重合性モノマー(c)の疎水基が炭素数 3〜20の アルキル基である請求の範囲第 3項〜第 12項のいずれかに記載の医療材料用高分 子化合物。
[14] 前記疎水基を有するエチレン系不飽和重合性モノマー(c)が n—ブチルメタクリレ ート、 n—ドデシルメタタリレート、 n—ォクチルメタタリレート、及びシクロへキシルメタク リレートから選ばれる少なくとも一つのモノマーである請求の範囲第 13項に記載の医 療材料用高分子化合物。
[15] 反応性官能基を有するメルカプト化合物 (d)の存在下、少なくとも生理活性物質を 固定ィ匕する官能基を有するエチレン系不飽和重合性モノマー (a)をラジカル重合す ることにより、末端に前記反応性官能基を導入した高分子化合物を得ることを特徴と する請求の範囲第 1項〜第 14項のいずれかに記載の医療材料用高分子化合物の 製造方法。
[16] 反応性官能基を有するメルカプト化合物 (d)の存在下、少なくとも生理活性物質を 固定ィ匕する官能基を有するエチレン系不飽和重合性モノマー(a)およびアルキレン グリコール残基を有するエチレン系不飽和重合性モノマー (b)をラジカル共重合する ことにより、末端に前記反応性官能基を導入した高分子化合物を得ることを特徴とす る請求の範囲第 2項〜第 14項のいずれかに記載の医療材料用高分子化合物の製 造方法。
[17] 前記反応性官能基を有するメルカプト化合物 (d)が下記の一般式 [3]で表されるメ ルカプトシランィ匕合物である請求の範囲第 15項又は第 16項に記載の医療材料用高 分子化合物の製造方法。
[化 3] [ 3 ]
Αι
HS—— R—— Si A2
A3
(式中 Rは炭素数 1〜20のアルキル基を示し、 A、 A、 Aの内、少なくとも 1個は
4 1 2 3
反応性部位であり、その他はアルキル基を示す。 )
[18] 前記一般式 [3]で表されるメルカプトシランィ匕合物の反応性部位がアルコキシル基 であることを特徴とする請求の範囲第 17項に記載の医療材料用高分子化合物の製 造方法。
[19] 請求の範囲第 1項〜第 14項のいずれかに記載の医療材料用高分子化合物または 請求の範囲第 15項〜第 18項の 、ずれかに記載の製造方法で得られる医療材料用 高分子化合物を含む医療材料用表面コーティング材料。
[20] 請求の範囲第 19項に記載の医療材料用表面コーティング材料を含む層を基板表 面に形成したバイオチップ用基板。
[21] 前記基板がプラスチック製である請求の範囲第 20項に記載のバイオチップ用基板
[22] 前記プラスチックが飽和環状ポリオレフインである請求の範囲第 21項に記載のバイ ォチップ用基板。
[23] 請求の範囲第 20項〜第 22項のいずれかに記載のバイオチップ用基板に生理活 性物質を固定ィ匕したバイオチップ。
[24] 前記生理活性物質が核酸、アブタマ一、タンパク質、オリゴペプチド、糖鎖、及び糖 タンパク質力も選ばれる少なくとも一つの生理活性物質である請求の範囲第 23項に 記載のバイオチップ。
PCT/JP2006/309920 2005-05-19 2006-05-18 医療材料用高分子化合物及び該高分子化合物を用いたバイオチップ用基板 WO2006123737A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007516336A JP5167811B2 (ja) 2005-05-19 2006-05-18 医療材料用高分子化合物及び該高分子化合物を用いたバイオチップ用基板
EP06746605.2A EP1882708B1 (en) 2005-05-19 2006-05-18 High molecular compound for medical material and biochip substrate using such high molecular compound
CA2608792A CA2608792C (en) 2005-05-19 2006-05-18 High molecular compound for medical material, and biochip substrate using such high molecular compound
KR1020077028595A KR101280341B1 (ko) 2005-05-19 2006-05-18 의료 재료용 고분자 화합물 및 상기 고분자 화합물이 사용된 바이오칩용 기판
US11/920,560 US9046515B2 (en) 2005-05-19 2006-05-18 Polymer compound for medical material, and biochip substrate using the polymer compound
AU2006248394A AU2006248394B2 (en) 2005-05-19 2006-05-18 High molecular compound for medical material and biochip substrate using such high molecular compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-146122 2005-05-19
JP2005146122 2005-05-19
JP2006-002015 2006-01-10
JP2006002015 2006-01-10

Publications (1)

Publication Number Publication Date
WO2006123737A1 true WO2006123737A1 (ja) 2006-11-23

Family

ID=37431309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309920 WO2006123737A1 (ja) 2005-05-19 2006-05-18 医療材料用高分子化合物及び該高分子化合物を用いたバイオチップ用基板

Country Status (7)

Country Link
US (1) US9046515B2 (ja)
EP (1) EP1882708B1 (ja)
JP (1) JP5167811B2 (ja)
KR (1) KR101280341B1 (ja)
AU (1) AU2006248394B2 (ja)
CA (1) CA2608792C (ja)
WO (1) WO2006123737A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087909A1 (ja) * 2007-01-16 2008-07-24 Sumitomo Bakelite Company, Ltd. 医療用粒子、及び分析用粒子、並びにそれらの製造方法
JP2009229351A (ja) * 2008-03-25 2009-10-08 Sumitomo Bakelite Co Ltd 生理活性物質の検出方法および測定キット
JP2013019713A (ja) * 2011-07-08 2013-01-31 Sumitomo Bakelite Co Ltd 遺伝子物質固定化医療用粒子および遺伝子物質の捕捉方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5349838B2 (ja) * 2007-11-30 2013-11-20 和光純薬工業株式会社 smallRNAの取得用担体、取得方法及び取得用試薬
JP4638555B1 (ja) * 2010-09-08 2011-02-23 田中貴金属工業株式会社 核酸又は免疫クロマトグラフィー用試薬組成物、核酸又は免疫クロマトグラフィー測定方法及び核酸又は免疫クロマトグラフィー測定用キット
WO2014061371A1 (ja) * 2012-10-19 2014-04-24 住友ベークライト株式会社 分析用担体、その製造方法および使用方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112605A (ja) * 1986-10-29 1988-05-17 Kanegafuchi Chem Ind Co Ltd 新規な硬化性樹脂
JPH02108699A (ja) * 1988-10-15 1990-04-20 Wakunaga Pharmaceut Co Ltd 上皮細胞成長因子誘導体
JPH0693035A (ja) * 1992-04-01 1994-04-05 Sanshin Chem Ind Co Ltd 新規ビニル化合物およびそのポリマー
JPH073171A (ja) * 1993-04-22 1995-01-06 Toray Ind Inc コーティング材料用組成物およびその製造方法
JPH08143678A (ja) * 1994-11-22 1996-06-04 Nippon Steel Chem Co Ltd スター型ポリマーの製造方法
JPH0928790A (ja) * 1995-07-17 1997-02-04 Kuraray Co Ltd 医療材料
JP2001316405A (ja) * 2000-05-11 2001-11-13 Asia Kogyo Kk アクリルシリコーン塗料用樹脂の製造方法
JP2003517998A (ja) * 1998-11-17 2003-06-03 ノボソム アーゲー ナノカプセル及びその製造方法
JP2003177129A (ja) * 2001-08-21 2003-06-27 Samsung Sdi Co Ltd 生体物質固定用基板及びその製造方法
JP2003301059A (ja) * 2002-04-11 2003-10-21 Rikogaku Shinkokai 高分子グラフト基板製造方法
JP2004279204A (ja) * 2003-03-14 2004-10-07 Toyobo Co Ltd バイオチップ
JP2004361387A (ja) * 2003-06-02 2004-12-24 Samsung Sdi Co Ltd 生体物質固定用基板,生体物質固定用基板の製造方法,及びバイオチップ
JP2005010004A (ja) * 2003-06-19 2005-01-13 Sumitomo Bakelite Co Ltd バイオチップ
JP2005008863A (ja) * 2003-05-22 2005-01-13 Pola Chem Ind Inc 応答性を有するコポリマー及びそれを含有する組成物
JP2006017458A (ja) * 2004-06-30 2006-01-19 Sumitomo Bakelite Co Ltd バイオチップ用基板およびバイオチップ
JP2006176720A (ja) * 2004-12-24 2006-07-06 Sumitomo Bakelite Co Ltd 医療材料用高分子化合物およびそれを用いた高分子溶液
JP2006184015A (ja) * 2004-12-24 2006-07-13 Sumitomo Bakelite Co Ltd バイオチップ用基板およびバイオチップ
JP2006184016A (ja) * 2004-12-24 2006-07-13 Sumitomo Bakelite Co Ltd バイオチップ用基板の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200315A (en) 1990-07-25 1993-04-06 Eastman Kodak Company Particulate biologically active reagent containing polyoxyalkylene side chains, analytical element and methods for use of the reagent
US5086143A (en) 1990-07-25 1992-02-04 Eastman Kodak Company Copolymers containing polyoxyalkylene side chains
JPH06313009A (ja) 1993-04-30 1994-11-08 Nippon Oil & Fats Co Ltd 末端官能性ホスホリルコリン基含有ポリマー
JP2001116750A (ja) 1999-10-21 2001-04-27 Ngk Insulators Ltd 反応性チップの製造方法、同方法により製造されうる反応性チップ、および反応性物質
CA2403275A1 (en) * 2000-03-14 2001-09-20 Hammen Corporation Composite matrices with interstitial polymer networks
JP4824151B2 (ja) * 2000-03-14 2011-11-30 日油株式会社 末端官能性ホスホリルコリン類似基含有重合体皮膜を有するガラス基材及び皮膜形成剤
JP3909824B2 (ja) * 2001-01-24 2007-04-25 富士フイルム株式会社 シランカップリング基末端の親水性ポリマー
DE60215710T2 (de) 2001-01-24 2007-09-20 Fujifilm Corp. Hydrophiles Polymer mit endständiger Silankupplungsgruppe und Flachdruckplattenträger
US6685983B2 (en) 2001-03-14 2004-02-03 International Business Machines Corporation Defect-free dielectric coatings and preparation thereof using polymeric nitrogenous porogens
US6844028B2 (en) 2001-06-26 2005-01-18 Accelr8 Technology Corporation Functional surface coating
JP2003077129A (ja) 2001-09-04 2003-03-14 Ricoh Co Ltd 光ディスクの記録方式及び光ディスク装置
US7842498B2 (en) * 2001-11-08 2010-11-30 Bio-Rad Laboratories, Inc. Hydrophobic surface chip
US20050176003A1 (en) * 2001-11-27 2005-08-11 Sumitomo Bakelite Co., Ltd. Plastic substrate for microchips
WO2003046562A1 (fr) * 2001-11-27 2003-06-05 Sumitomo Bakelite Co., Ltd. Substrat plastique pour microcircuits
US6800663B2 (en) * 2002-10-18 2004-10-05 Alkermes Controlled Therapeutics Inc. Ii, Crosslinked hydrogel copolymers
JP3887647B2 (ja) * 2003-09-19 2007-02-28 住友ベークライト株式会社 バイオチップ
JP2006258458A (ja) * 2005-03-15 2006-09-28 Sumitomo Bakelite Co Ltd 医療材料用高分子化合物及び該高分子化合物を用いたバイオチップ用基板

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112605A (ja) * 1986-10-29 1988-05-17 Kanegafuchi Chem Ind Co Ltd 新規な硬化性樹脂
JPH02108699A (ja) * 1988-10-15 1990-04-20 Wakunaga Pharmaceut Co Ltd 上皮細胞成長因子誘導体
JPH0693035A (ja) * 1992-04-01 1994-04-05 Sanshin Chem Ind Co Ltd 新規ビニル化合物およびそのポリマー
JPH073171A (ja) * 1993-04-22 1995-01-06 Toray Ind Inc コーティング材料用組成物およびその製造方法
JPH08143678A (ja) * 1994-11-22 1996-06-04 Nippon Steel Chem Co Ltd スター型ポリマーの製造方法
JPH0928790A (ja) * 1995-07-17 1997-02-04 Kuraray Co Ltd 医療材料
JP2003517998A (ja) * 1998-11-17 2003-06-03 ノボソム アーゲー ナノカプセル及びその製造方法
JP2001316405A (ja) * 2000-05-11 2001-11-13 Asia Kogyo Kk アクリルシリコーン塗料用樹脂の製造方法
JP2003177129A (ja) * 2001-08-21 2003-06-27 Samsung Sdi Co Ltd 生体物質固定用基板及びその製造方法
JP2003301059A (ja) * 2002-04-11 2003-10-21 Rikogaku Shinkokai 高分子グラフト基板製造方法
JP2004279204A (ja) * 2003-03-14 2004-10-07 Toyobo Co Ltd バイオチップ
JP2005008863A (ja) * 2003-05-22 2005-01-13 Pola Chem Ind Inc 応答性を有するコポリマー及びそれを含有する組成物
JP2004361387A (ja) * 2003-06-02 2004-12-24 Samsung Sdi Co Ltd 生体物質固定用基板,生体物質固定用基板の製造方法,及びバイオチップ
JP2005010004A (ja) * 2003-06-19 2005-01-13 Sumitomo Bakelite Co Ltd バイオチップ
JP2006017458A (ja) * 2004-06-30 2006-01-19 Sumitomo Bakelite Co Ltd バイオチップ用基板およびバイオチップ
JP2006176720A (ja) * 2004-12-24 2006-07-06 Sumitomo Bakelite Co Ltd 医療材料用高分子化合物およびそれを用いた高分子溶液
JP2006184015A (ja) * 2004-12-24 2006-07-13 Sumitomo Bakelite Co Ltd バイオチップ用基板およびバイオチップ
JP2006184016A (ja) * 2004-12-24 2006-07-13 Sumitomo Bakelite Co Ltd バイオチップ用基板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1882708A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087909A1 (ja) * 2007-01-16 2008-07-24 Sumitomo Bakelite Company, Ltd. 医療用粒子、及び分析用粒子、並びにそれらの製造方法
JP2009229351A (ja) * 2008-03-25 2009-10-08 Sumitomo Bakelite Co Ltd 生理活性物質の検出方法および測定キット
JP2013019713A (ja) * 2011-07-08 2013-01-31 Sumitomo Bakelite Co Ltd 遺伝子物質固定化医療用粒子および遺伝子物質の捕捉方法

Also Published As

Publication number Publication date
KR101280341B1 (ko) 2013-07-01
AU2006248394B2 (en) 2012-11-01
EP1882708B1 (en) 2013-09-25
JPWO2006123737A1 (ja) 2008-12-25
EP1882708A1 (en) 2008-01-30
CA2608792A1 (en) 2006-11-23
AU2006248394A1 (en) 2006-11-23
EP1882708A4 (en) 2010-12-22
JP5167811B2 (ja) 2013-03-21
US9046515B2 (en) 2015-06-02
US20090176298A1 (en) 2009-07-09
CA2608792C (en) 2014-07-15
KR20080014994A (ko) 2008-02-15

Similar Documents

Publication Publication Date Title
JP5552474B2 (ja) 医療材料用高分子化合物及び該高分子化合物を用いたバイオチップ用基板
JP5365623B2 (ja) 生理活性物質の固定化方法
JP5167811B2 (ja) 医療材料用高分子化合物及び該高分子化合物を用いたバイオチップ用基板
JP2006299045A (ja) 医療材料用高分子化合物及び該高分子化合物を用いたバイオチップ用基板
JP4640150B2 (ja) バイオチップおよびその使用方法
JP2006176720A (ja) 医療材料用高分子化合物およびそれを用いた高分子溶液
JP4376813B2 (ja) バイオチップ用基板およびバイオチップ
JP6299862B2 (ja) コート剤組成物及びその利用
JP5614179B2 (ja) 医療材料用高分子化合物および該高分子化合物を用いたバイオチップ用基板
JP5364971B2 (ja) 生理活性物質の固定化方法
JP5364973B2 (ja) 生理活性物質の固定化方法
JP2009128093A (ja) 生理活性物質の検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007516336

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2608792

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006746605

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006248394

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020077028595

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

ENP Entry into the national phase

Ref document number: 2006248394

Country of ref document: AU

Date of ref document: 20060518

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006248394

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006746605

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11920560

Country of ref document: US