WO2006112485A1 - 耐火物及びその製造方法、並びに耐火物原料 - Google Patents

耐火物及びその製造方法、並びに耐火物原料 Download PDF

Info

Publication number
WO2006112485A1
WO2006112485A1 PCT/JP2006/308244 JP2006308244W WO2006112485A1 WO 2006112485 A1 WO2006112485 A1 WO 2006112485A1 JP 2006308244 W JP2006308244 W JP 2006308244W WO 2006112485 A1 WO2006112485 A1 WO 2006112485A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
refractory
metal
transition metal
particles
Prior art date
Application number
PCT/JP2006/308244
Other languages
English (en)
French (fr)
Inventor
Katsumi Morikawa
Koichi Haren
Joki Yoshitomi
Toshiyuki Hokii
Keisuke Asano
Original Assignee
Krosaki Harima Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corporation filed Critical Krosaki Harima Corporation
Priority to JP2007528178A priority Critical patent/JP4641316B2/ja
Priority to KR1020077008422A priority patent/KR100927935B1/ko
Priority to CA2602882A priority patent/CA2602882C/en
Priority to BRPI0608165A priority patent/BRPI0608165B8/pt
Priority to US11/887,744 priority patent/US8450228B2/en
Priority to EP06745476A priority patent/EP1873128A4/en
Priority to CN2006800133238A priority patent/CN101163650B/zh
Priority to AU2006237926A priority patent/AU2006237926B2/en
Publication of WO2006112485A1 publication Critical patent/WO2006112485A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/013Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics containing carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Definitions

  • the present invention relates to a refractory having a carbon bond used in a steelmaking or steelmaking process.
  • a refractory material in which a carbonaceous bond structure (carbon bond) is formed between base particles such as a refractory inorganic oxide raw material such as alumina and magnesia and a carbon substrate raw material such as graphite is It has poor wettability, excellent corrosion resistance, and high thermal conductivity and low elastic modulus. In particular, this characteristic is more remarkable in a refractory containing a carbon substrate raw material such as graphite as a base particle (hereinafter referred to as “carbon-containing refractory”). For this reason, it is widely used for chaotic cars, converter linings, and continuous forging refractories. In recent years, with the harsh use of refractories, higher strength and thermal shock resistance have been demanded.
  • Patent Document 1 describes a magnesia carbon brick in which carbonaceous fibers having an outer diameter or less and a length of 0.13 to 50 mm are dispersed and mixed.
  • Patent Document 2 describes a material mixture of carbon-containing refractory with 1 to 5 mm of carbonaceous fiber added thereto.
  • Patent Document 3 in order to improve the unfamiliarity of refractory materials and carbon fibers, carbon powder with an outer diameter of 10 to 50 111 and a length of 0.20 to 2 mm and Si Carbon-containing refractories to which low melting point active metals such as Al are added are described. This is because, during heat treatment, the active metal having a low melting point reacts with C and N in the atmosphere to form a convex object having a non-acidic compound force on the surface of the carbon fiber, and pulling the carbon fiber. The punching resistance is increased and the splicing effect is improved.
  • Patent Document 4 metal powders such as Al, B, Cr, Ti, and Mg are used as an oxidation resistance imparting agent.
  • oxides of metal powder are generated in a high temperature range, and the metal oxide is expanded by volume expansion to close the gap in the structure almost completely, thereby achieving high strength and low air permeability. .
  • This densification prevents the intrusion of acid gas into the tissue and improves the acid resistance.
  • Patent Document 5 describes a magnesia carbon brick added with a chromium compound such as metallic chromium or chromium carbide or chromium boride. These chromium metal compounds react with magnesia in a high-temperature atmosphere and have a high melting point of MgO-CrO system.
  • a chromium compound such as metallic chromium or chromium carbide or chromium boride.
  • Patent Document 6 describes a carbon-containing refractory formed by adding a metal alkoxide powder such as Al, Ca, Mg, Zr, Si, Ti, and Cr to graphite and a refractory raw material.
  • the Metal alkoxide decomposes at a high temperature of 300 ° C or higher, and a part of the alkoxide group remains, strengthening the bond of the carbon bond.
  • the metal part reacts with CO, which is the main atmosphere inside the refractory, to produce metal carbide, and when nitrogen is contained, it produces metal nitride.
  • the structure is densified by the volume expansion caused by the formation of the metal carbide and the metal nitride, so that the oxygen-containing gas slag is prevented from entering the structure and the oxidation resistance is improved.
  • Patent Document 1 Japanese Patent Publication No. 62-9553
  • Patent Document 2 Japanese Patent Laid-Open No. 3-90271
  • Patent Document 3 Japanese Patent Laid-Open No. 5-78180
  • Patent Document 4 Japanese Patent Laid-Open No. 54-163913
  • Patent Document 5 JP-A-1-320262
  • Patent Document 6 Japanese Patent Laid-Open No. 6-64961
  • Patent Document 7 WOOOZ40509 specification
  • Patent Document 8 Japanese Patent Laid-Open No. 2002-293524
  • Non-Patent Literature 1 Yahachi Saito, Toshiharu Itou, “Introduction to Carbon Nanotubes J, First Edition, Corona Inc., November 13, 1998, pp.23-57. Disclosure of the Invention
  • the carbon fiber functions as a filler, so that the strength of the refractory is improved and the thermal shock resistance and wear resistance are improved.
  • An effect is obtained.
  • dense packing of the matrix is hindered due to fiber elasticity, and voids are likely to occur in the refractory. For this reason, intrusion of the acid gas slag into the structure of the refractory tends to occur.
  • a large amount of carbon fiber is not preferred, but the amount of addition is limited. Therefore, there is a limit to the method for improving the thermal shock resistance and wear resistance of the carbon fiber.
  • an object of the present invention is to provide a refractory having a carbon bond that can improve thermal shock resistance, wear resistance, and corrosion resistance even at the same carbon content without reducing oxidation resistance, and production thereof.
  • the object is to provide a method and a refractory raw material as the raw material. Means for solving the problem
  • the refractory according to the present invention is a refractory in which carbon bonds are formed between base particles.
  • fine particles containing a transition metal or transition metal salt having a particle size of lOOOnm or less (hereinafter referred to as “transition metal or transition metal salt” collectively as “transition metal”) are dispersed. It is characterized by being contained in. (Claim 1)
  • the refractory according to the present invention is a refractory in which a carbon bond is formed between base particles.
  • the carbon bond includes a metal that promotes the formation of fine fibers of carbon having a particle diameter of lOOOnm or less.
  • fine particles containing a metal salt catalyst hereinafter referred to as “metal catalyst” are contained in a dispersed state.
  • fine particles containing a transition metal having a particle size of lOOOnm or less and “fine particles containing a metal catalyst that promotes microfibrosis of carbon having a particle size of lOOOnm or less” are collectively referred to as “metal. It is called “containing nanoparticles”.
  • the "carbon bond” is a carbonaceous connective structure formed between particles of a refractory base material (refractory aggregate, carbon matrix raw material, etc.) and bonding them.
  • This carbon bond is formed by heat-treating an organic binder composed of any one of phenol resin, tar, and pitch, or a mixture of these arbitrarily.
  • an organic binder composed of any one of phenol resin, tar, and pitch, or a mixture of these arbitrarily.
  • the present invention provides a fine fibrous structure of carbon necessary for solving the above-mentioned problems in a refractory during the refractory manufacturing process or during preheating or receiving steel during use. It is characterized by being generated in a distributed state.
  • the space between the base particles is narrow!
  • the space (the space where the carbon bond is formed) is decomposed or decomposed by the organic volatile components contained in the organic binder. Vaporization is in a gas atmosphere such as CO or hydrocarbons. Therefore, it is considered that a reaction environment similar to the reaction environment in the carbon nanotube synthesis method is formed between the base particles in a minute space throughout the carbon bond, and is further contained in the carbon bond in a dispersed state.
  • carbon nanotubes, and carbon nanofibers such as amorphous nanoscale carbon tubes whose tube walls are made of amorphous carbon. It is presumed to form a structural structure.
  • the resulting ultrafine carbon fibrous structure and the minute spaces formed simultaneously in the ultrafine carbon fibrous structure increase the strength and low modulus of elasticity of refractories with carbon bonds. Bring.
  • the carbon-containing refractories containing the carbon matrix raw material show remarkable improvements.
  • the ultra-fine carbon fibrous structure such as carbon nanotubes contains many structures in which carbon atoms are regularly bonded, and therefore carbon compared to irregular structures such as glassy carbon structures. Compared to carbon bonds that have irregular structure such as glassy carbon structures with high bond strength between atoms, carbon bonds that contain a lot of fine carbon fiber structures must have a low coefficient of thermal expansion.
  • an extremely fine carbon fibrous structure forms a very small space in the fibrous structure at the same time as its formation, and resists external forces due to thermal expansion of refractory components such as refractory aggregates. The fibrous structure is deformed flexibly, and the thermal expansion coefficient of the carbon bond is reduced by absorbing the deformation in a minute space around the fibrous structure. As a result of these, the coefficient of thermal expansion of the entire refractory is reduced.
  • the ultrafine carbon fibrous structure such as carbon nanotubes formed in the carbon bond by the catalytic action of the metal-containing nanoparticles has a diameter of about 20 to 50 nm.
  • this size of diameter is preferable. Therefore, the size of the fine particles of transition metal or the like (or metal catalyst) is more preferably in the range close to the diameter of the ultrafine carbon fibrous structure, that is, lOOnm or less, and the thickness is more preferably 20 to 50 nm.
  • the specific surface area can be increased, the reactivity as a catalyst can be increased, and moreover, the carbon bond can be dispersed more uniformly over a wide area, As a result, a carbon fibrous structure in the carbon bond can be generated uniformly and in a large amount over a wide range.
  • Such a metal-containing nanoparticle having a small particle diameter has a large surface energy. Usually it cannot be handled as a single powder.
  • the present invention provides, as a starting material for a metal source having a suitable size, a transition metal or transition metal salt, or a metal catalyst or metal catalyst salt in liquid, colloid or suspension form.
  • a metal solution which is a solution is used, and precipitated metal-containing nanoparticles having a suitable size as described above are contained inside the carbon bond structure.
  • the refractory according to the present invention is present in the carbon bond with the refractory to which the conventional metal powder oxidation resistance imparting agent and the like are added, and the carbon nanotube synthesis method of the prior art.
  • the particle size of the metal particles is completely different.
  • the "metal catalyst” (Claim 2) is a catalyst that promotes the formation of fine carbon fibers such as carbon nanotubes. Specifically, a metal having catalytic ability for the production of carbon nanotubes as described in Non-Patent Document 1, for example,
  • Metals such as iron, white metal, and rare earth.
  • the refractory of the present invention includes other forms of refractory products called so-called light-fired products and non-fired products when heat treatment as described above is not performed. .
  • a carbon fiber structure having a diameter of 50 nm or less may not be contained in the carbon bond of the refractory, and the metal-containing nanoparticle having a particle diameter of lOOOnm or less is contained in the carbon bond.
  • the particles in a dispersed state the same structure as that of the heat treatment, that is, the fibrous structure of carbon having a diameter of 50 nm or less, is dispersed by the preheat or the heat reception during use of the steel. Organizations that exist within the bond can be obtained.
  • base particle is a base material used for a normal refractory, and the kind of the base material is particularly limited. Not what you want. Therefore, refractory aggregates, carbon matrix raw materials, etc. can be used as “base particles”.
  • the present invention is characterized by carbon bond modification, and in (Claims 1 and 2), it does not matter whether or not the “substrate particles” contain a carbon substrate raw material.
  • the refractory according to the present invention is characterized in that the carbon bond contains a carbon fibrous structure having a diameter of 50 nm or less. (Claim 3)
  • This carbon bond contains a carbon fibrous structure having a diameter of 50 nm or less.
  • a bright refractory can be obtained by heat-treating the refractory containing the metal-containing nanoparticles in a dispersed state (Claims 1 and 2) at about 600 to about 1200 ° C.
  • the refractory according to the present invention is a refractory in which a carbon bond is formed between base particles, and the carbon bond includes a liquid, a colloid or a liquid in the base particles and an organic binder. It is characterized in that it contains metal-containing nanoparticles precipitated inside the bond structure by mixing and heat-treating a starting material obtained by adding a suspension-like metal solution that is a transition metal or transition metal salt solution. To do. (Claim 4)
  • the refractory according to the present invention is a refractory in which a carbon bond is formed between base particles, and the carbon bond includes a liquid and a particle in the base particle and the organic binder.
  • a starting material which is a colloidal or suspension-like fine particle with a diameter of lOOOnm or less
  • a metal solution which is a metal catalyst solution that promotes the fine fiber formation of carbon
  • a solvent or a metal that promotes the formation of fine carbon fibers
  • the refractory has high strength, low elastic modulus, and low thermal expansion coefficient. It is possible to improve the thermal shock resistance without substantially reducing the properties and corrosion resistance.
  • the starting material carbon fiber does not contain a mixture that prevents dense filling of each base material when mixing the starting materials, the porosity inside the refractory does not increase. . Therefore, the acid resistance of the refractory is not lowered.
  • the refractory according to the present invention includes an organic binder made of phenol resin, tar, or pitch, or a mixture of any of these, and a liquid, particle size Formed by kneading and heat-treating a starting material containing a base metal particle and a metal solution that is a transition metal or transition metal salt solution in the form of a colloid or suspension in which fine particles of lOOOnm or less are dispersed in a solvent Being featured! (Claim 6)
  • the refractory according to the present invention includes an organic binder composed of any one of phenol resin, tar, or pitch, or a mixture of these arbitrarily, and liquid particles having a particle size of lOOOnm or less. Is formed by kneading and heat-treating a starting material containing a base metal particle and a metal solution that is a colloidal or suspension-like metal catalyst solution that promotes microfibrosis of carbon dispersed in a solvent. It is characterized by. (Claim 7)
  • the metal salt (or metal catalyst or metal catalyst salt) is dispersed and mixed almost uniformly. Then, by heat treatment, the metal dispersed and mixed between the base particles acts as a catalyst, and an ultrafine carbon fibrous structure is formed in the carbon bond formed as a residual carbon component of phenol resin, tar, or pitch. Is formed.
  • this increases the strength of the refractory, lowers the modulus of elasticity, and lowers the coefficient of thermal expansion, and withstands thermal shock resistance (heat spalling resistance) without substantially reducing oxidation resistance and corrosion resistance. ) Improves.
  • the metal solution can be a solution of an organometallic compound having compatibility with an organic binder. (Claim 8)
  • the metal solution and the organic binder can be uniformly mixed with further improved dispersibility. Therefore, it is possible to form a very fine carbon fibrous structure by dispersing it in a wide range in the carbon bond, so it is effective to increase the strength, lower elastic modulus, and lower thermal expansion coefficient of the refractory. Figured.
  • Examples of the solution of the organometallic compound having compatibility with the organic binder include organic salts of transition metals having compatibility with the thermosetting resin. These include transition metal carboxylates with 1 to 18 carbons, transition metal naphthenates with 1 to 25 carbons, alkyl transition metals with 1 to 10 carbons, transition metals with 1 to 10 carbons ⁇ -diketonates, C1-C20 transition metal dialkylamide, transition metal carbonyl, etc. Any of various organic transition metal compounds having compatibility can be used.
  • 2-ethylhexanoic acid octylic acid
  • 2-ethylpentanoic acid 2-ethylbutanoic acid
  • cyclopentanoic acid cyclohexanoic acid
  • succinic acid malonic acid
  • fumaric acid examples thereof include organic transition metal salts such as maleic acid, octanoic acid, neodecanoic acid, decanoic acid, naphthenic acid and benzoic acid.
  • an organic binder containing phenol resin when used, it is preferable to use an octylate or naphthenate of a transition metal as the organic acid salt of the transition metal.
  • a transition metal As the organic acid salt of the transition metal.
  • these salts do not require the addition of excess transition metal organic acid salts to ensure a certain amount of metal with a high metal content in the salt! Therefore, volatile components can be reduced as much as possible. Therefore, the carbon bond after the heat treatment does not become porous, and high strength and acid resistance can be obtained.
  • the heat treatment may be performed in a reducing atmosphere or a non-oxidizing atmosphere. (Claim 9)
  • the residual carbon ratio in the carbon bond is increased and the porosity is kept low. Therefore, the strength of the refractory can be further increased, the elastic modulus can be lowered, and high thermal shock resistance can be obtained.
  • the transition metal or transition metal salt or metal catalyst is any of transition metals of Ni, Co, Fe, Ti, Zr, Cr, Mn, Cu, Pt, Rh, and Pd, or their It can be a compound. (Claim 10)
  • These metals or metal compounds have a high action as a catalyst for promoting the formation of carbon nanotubes (see Non-Patent Document 1).
  • the fine catalyst rearranges crystals during the carbon bond heat treatment process to create a soft weave containing carbon fine fibers such as carbon nanotubes.
  • carbonaceous substrate raw materials such as carbon black and graphite raw materials coexist, these raw materials act as carbon bond fillers (fillers) containing carbon fine fibers.
  • the continuity of carbon bonds in the refractory structure is increased.
  • the refractory has high strength, low elastic modulus, and low thermal expansion coefficient, and the thermal shock resistance is improved.
  • Ni, Co, Fe, and Cr are preferably used from the viewpoint of a high effect as a catalyst in a synthesis reaction of an extremely fine carbon fibrous structure such as a carbon nanotube.
  • transition metal salt When a transition metal salt is used, a transition metal salt that does not hydrolyze and cause a change in phenolic resin over time is used.
  • Examples of powerful transition metal salts include metal sarcophagus (R) n—M (0), acetylethylacetone metal salt (C 3 H 2 O 3) n—M (O) metal octylate
  • M is a metal such as Ti, Zr, Cr, Ni, Co, Fe, Cu, Pt, Rh, and Pd
  • R represents an alkyl group such as methyl, ethyl, propyl, n-butyl, and phenyl.
  • transition metal inorganic compounds such as transition metal chlorides, sulfides, acetic acid compounds, and phosphoric acid compounds can be used in liquid form. These transition metal inorganic compounds are used as liquids (metal solutions) in a form dissolved in water or an organic solvent such as alcohol or mineral oil.
  • the transition metal salt it is preferable to appropriately select a transition metal salt having good compatibility with the organic binder so that the transition metal salt can be homogeneously mixed with the organic binder.
  • a transition metal salt compatible with phenol resin such as a metal octylate compound or a metal naphthenate, is selected.
  • a transition metal or the like may be used as a suspension of ultrafine powder of metal colloid or metal oxide, or a metal sol.
  • a colloidal solution in which each transition metal or salt thereof is dispersed in a solvent as nano-sized fine particles (fine particles having a particle size of lOOOnm or less) is used.
  • a transition metal or the like (or a metal catalyst) is used as a catalyst or the like for measuring the low elasticity of the carbon bond by generating an extremely fine carbon fibrous structure inside the carbon bond. It is what Therefore, if a strong catalytic action is obtained, the addition amount is preferably as small as possible from the viewpoint of maintaining high strength. Therefore, in the present invention, the amount of transition metal, etc. or metal catalyst contained in the force bond is 1. Owt of the entire refractory.
  • the optimum adjustment is made between sufficiently exerting the catalytic action of the transition metal or the like (or the metal catalyst) and minimizing the deterioration of the strength, oxidation resistance, and corrosion resistance of the refractory.
  • the amount of transition metal or the like (or metal catalyst) is more preferably 0.01 to 0.5 wt% of the entire refractory.
  • fine metal powders such as Al, B, Cr, Ti, Mg, Si and B C, S
  • Non-acidic substances such as iC and BN, glass components, etc. may be added separately.
  • the acid resistance of the refractory having a carbon bond can be improved, and a refractory with higher durability can be obtained.
  • a carbon-containing refractory containing a carbon substrate material can provide a significant improvement in the oxidation resistance and durability of carbon as the carbon substrate material.
  • the metal fine powder, non-oxide, glass component, and the like as these oxidation resistance-imparting agents are up to 2 parts by weight as a total amount with respect to 100 parts by weight of the entire refractory excluding these additives. It is preferable to add in the range of. If the amount is more than 2 parts by weight, the thermal expansion of the metal itself tends to destroy the refractory structure, and the reaction of the metal, etc. with carbon and other refractory components. This is a force that reduces the effect S of the present invention by greatly changing the properties of the carbon bond, such as an increase in elastic modulus, as the influence of the object etc. on the carbon bond structure increases.
  • the acid-resistance-imparting agent may not be included! / ⁇ , but oxidation resistance may be insufficient. Therefore, it is preferable to add about 0.5 parts by weight or more.
  • the base particles may include those containing a refractory aggregate and a carbon substrate raw material. (Claim 12)
  • carbon-containing refractory Even in such a refractory containing a carbon substrate raw material (hereinafter referred to as "carbon-containing refractory"), carbon bond bonds each of the refractory aggregate and the base particles containing the carbon substrate raw material and each other. . Furthermore, in carbon-containing refractories, the fibrous structure of carbon binds carbon substrate raw materials. In particular, the bond between the carbon matrix raw material and the refractory aggregate can be strengthened.
  • magnesia MgO
  • alumina Al 2 O 3
  • zircon ZrO 2
  • the refractory aggregate coarse particles usually have a particle size of 0.001 to lmm.
  • the refractory aggregate also has a function as an antioxidant such as carbide or nitride. When using it, it is preferable to use one with a particle size of 0.01 mm or more to prevent destruction of the refractory structure due to expansion, etc., and not reduce corrosion resistance!
  • the carbon substrate raw material coarse particles such as scaly graphite, earthy graphite, carbon black, anthracite, and mesophase carbon can be used. Usually, those having a particle size of 0.001 to lmm are used.
  • the blending ratio of the refractory aggregate, the carbon matrix raw material, the organic noinder, and the metal solution is 99 to 45 parts by weight of the refractory aggregate, and the carbon matrix raw material.
  • the outer part is 1.5 to 20 parts by weight as the solid content of the organic binder, and the amount of metal in the metal solution is 0.01 to: L 0 parts by weight. Is preferred.
  • the carbon substrate raw material exceeds 55 parts by weight, the volume ratio of the carbon substrate raw material increases even if the carbon bond is formed in the carbon bond by the transition metal or the metal catalyst of the present invention. Therefore, it becomes difficult to maintain acid resistance, etc., and if it is less than 1 part by weight, it becomes the same as a refractory that does not contain carbon substrate raw materials, and thermal shock resistance, corrosion resistance, etc. as refractories containing carbon substrate raw materials The characteristic of cannot be obtained. If the solid content of the organic binder exceeds 20 parts by weight, the carbon fiber structure by the transition metal of the present invention, metal catalyst, etc. is contained in the carbon bond! Since it increases, it becomes difficult to maintain oxidation resistance, etc. 1. If the amount is less than 5 parts by weight, the function as a carbon bond binder cannot be obtained. The amount of metal in the metal solution is as described above.
  • the method for producing a refractory according to the present invention includes an organic binder composed of any one of phenol resin, tar, and pitch, or a mixture of any of these, a liquid form,
  • the method for producing a refractory according to the present invention includes an organic binder having a mixture power of any one of phenol resin, tar, and pitch, or a combination thereof, and a liquid state and particle size of lOOOnm or less.
  • the kneaded product produced in the first step can be heat-treated in a reducing atmosphere or a non-oxidizing atmosphere.
  • a reducing atmosphere or a non-oxidizing atmosphere e.g., so-called light-fired products and non-fired products do not necessarily need to be heat-treated in a reducing atmosphere or non-oxidizing atmosphere.
  • a refractory having a carbon fiber structure with a diameter of 50 nm or less contained in the carbon bond (Claim 3), or (b) It contains fine particles (metal-containing nano-particles) containing transition metals (or metal catalysts) whose particle size is lOOOnm or less in a dispersed state, and the diameter is 50 nm due to preheating or heat reception during use of steel receiving.
  • a refractory (claim 1 or 2) can be obtained in which the following fibrous structure of carbon is dispersed to obtain a structure existing in the carbon bond.
  • first kneading method and second kneading method can be used selectively or in combination.
  • the second kneading method is preferred in order to further improve the dispersibility and uniformly mix the metal solution and the organic binder.
  • the molding method in the second step is not particularly limited in the present invention.
  • Target product form
  • the heat treatment in the second step may employ the following first heat treatment method or second heat treatment method.
  • the molded product is heat-treated in a reducing atmosphere or a non-oxidizing atmosphere of about 600 ° C. to about 1200 ° C.
  • Heat treatment is performed at a low temperature of about 600 ° C. or lower to obtain a so-called light-fired product or non-fired product.
  • a carbon fibrous structure can be obtained during the heat treatment step.
  • This heat treatment temperature varies depending on the type of transition metal or the like (or metal catalyst), so the temperature of the heat treatment is not particularly limited in the constitutional requirements of the present invention, but the metal catalytic action can be exhibited sufficiently effectively.
  • the heat treatment temperature is 600 to 800. 600 to 1200 for C and Ni catalysts. C, more preferably ⁇ 11 oo ° C. is suitable.
  • the second heat treatment method almost no carbon fibrous structure is formed in the carbon bond. In other words, it has a structure in which metal-containing nanoparticles having a particle size of lOOOnm or less are dispersed.
  • the refractory raw material according to the present invention is a refractory raw material in which at least base material particles and an organic binder that forms a carbon bond between heat are mixed.
  • the organic noinder has a particle diameter of lOOOnm or less. It is characterized by containing fine particles (metal-containing nanoparticle) containing a transition metal or a transition metal salt in a dispersed state. (Claim 17)
  • the refractory raw material according to the present invention is a refractory raw material in which at least base particles and an organic binder that forms a carbon bond with heat are mixed! Is characterized in that fine particles containing a metal catalyst that promotes the fine fiber formation of carbon having a particle size of lOOOnm or less are contained in a dispersed state. (Claim 18)
  • the refractory according to the present invention can be produced.
  • the base particles containing refractory aggregates and carbon base material particles can be used.
  • oxidation resistance, corrosion resistance, and the like are reduced. While suppressing the above, high strength, low elastic modulus, and low thermal expansion can be achieved. Furthermore, along with the increase in strength, the wear resistance also improves, and in order to ensure a certain thermal shock resistance, the content of carbon substrate raw materials, particularly graphite, required in the prior art may be reduced. In view of this, effects such as improvement in corrosion resistance, wear resistance, oxidation resistance and the like can be obtained. Therefore, it is possible to provide a high-temperature refractory with thermal shock resistance.
  • FIG. 1 is a diagram showing a structure of a refractory according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of the carbon bond in FIG.
  • FIG. 3 is an enlarged view of the carbon bond of FIG. 2 further enlarged.
  • FIG. 4 is a schematic diagram illustrating the internal structure of a carbon bond of a refractory according to an embodiment of the present invention.
  • FIG. 5 (a) —Enlarged view of a typical amorphous carbon bond. (B) It is an enlarged view of the fibrous carbon bond of this invention.
  • transition metal salt solution or a colloidal solution in which a transition metal is dispersed in a solvent as nanoparticles
  • metal solution a transition metal salt solution or a colloidal solution in which a transition metal is dispersed in a solvent as nanoparticles
  • magnesia MgO
  • alumina Al 2 O 3
  • zircoyu MgO
  • MgO magnesia
  • Al 2 O 3 alumina
  • zircoyu zircoyu
  • carbide and nitride such as silicon carbide (SiC) and silicon nitride (Si N).
  • the coarse particles of the refractory aggregate usually have a particle size of 0.001 to Lmm.
  • coarse particles such as scaly graphite and earthy graphite are used. Use coarse particles with a particle size of 0.001 to Lmm.
  • organic binder those showing a high residual carbon by heat treatment, such as pitch, tar, phenol resin, etc. can be used.
  • Transition metals used as starting materials include Ni, Co, Fe, Ti, Zr, Cr, Mn, Cu, Pt,
  • Rh, Pd can be used.
  • ultrafine carbon fibers such as carbon nanotubes. From the viewpoint of the high effect as a catalyst in the synthesis reaction of the fibrous structure, it is preferable to use Ni, Co, Fe, Cr.
  • transition metal salt When a transition metal salt is used, a transition metal salt that does not hydrolyze and cause a change in phenolic resin over time is used.
  • Examples of powerful transition metal salts include metal sarcophagus (R) n—M (0), acetylethylacetone metal salt (C 3 H 2 O 3) n—M (O) metal octylate
  • M is Ti, Zr, Cr,
  • transition metal inorganic compounds such as transition metal chlorides, sulfides, acetic acid compounds, and phosphoric acid compounds can be used in liquid form. These transition metal compounds are used as liquids (metal solutions) in a form dissolved in water or an organic solvent such as alcohol or mineral oil.
  • the transition metal salt one having good compatibility with the organic binder is appropriately selected so that it can be homogeneously mixed with the organic binder.
  • a transition metal salt that is compatible with phenol resin such as a metal octylate compound or a metal naphthenate is selected.
  • transition metals and the like may be used as a suspension of metal colloid or ultrafine metal oxide powder, or as a metal sol.
  • a colloidal solution or suspension in which each of the above transition metals or salts thereof is dispersed in a solvent as nanosized fine particles (fine particles having a particle size of lOOOnm or less) is used.
  • the blending ratio of coarse particles of refractory aggregate, carbon matrix raw material, organic binder, and metal solution is based on 99 to 45 parts by weight of refractory aggregate particles and 1 to 55 parts by weight of carbon matrix raw material.
  • the solid content of the organic binder is 1.5 to 20 parts by weight
  • the metal amount in the metal solution is 0.01 to L: 0 part by weight.
  • metal fine powder or carbide powder is added in the range of 0.5 to 2 parts by weight.
  • a metal solution is dissolved in a liquid organic binder such as phenol or pitch. Add a predetermined amount of liquid and mix thoroughly.
  • the coarse particles of the above refractory aggregate and the coarse particles of the carbon matrix raw material are added to a kneading machine such as a fret mill and mixed, and then mixed in the previous step in the first step.
  • the metal solution is sufficiently kneaded inside the organic binder, and the transition metal is dispersed and mixed in the organic binder as a solution or nanoparticles.
  • the kneaded product thus obtained is molded, and heat-treated in a non-oxidizing atmosphere or a reducing atmosphere, whereby the refractory according to this embodiment is obtained.
  • This heat treatment is performed at an optimum temperature for a very fine carbon fiber structure in the carbon bond depending on the type of transition metal.
  • the transition metal For example, when Fe is used as the transition metal, it is preferable to perform heat treatment at 600 to 800 ° C. for 30 to 120 minutes from the viewpoint of promoting the formation of an extremely fine carbon fibrous structure.
  • heat treatment is preferably performed at 600 to 1200 ° C, preferably 900 to L at 100 ° C for 30 to 120 minutes.
  • the heat treatment time needs to be determined in consideration of the modification of the organic binder and the carbon substrate raw material.
  • the temperature at which the volatile components of phenol resin disappear and the product stabilizes is 800 ° C or higher, so the heat treatment temperature must be 800 ° C or higher.
  • Fig. 1 shows the entire SEM photograph of the metaphysis structure
  • Figs. 2 and 3 show the enlarged SEM photographs of the carbon bond part of Fig. 1.
  • Fig. 4 is a diagram schematically showing the structure of the refractory in Fig. 1 in an easy-to-understand manner. 1 to 4, the structure of the refractory is as follows: coarse particles of refractory aggregate, carbonaceous coarse particles 2 formed from carbon matrix raw material 2, carbon bond 3 formed by carbonization of organic binder, and carbon bond 3 It is composed of metal-containing nanoparticles 4 uniformly dispersed in the inside (note that FIG.
  • the metal-containing nanoparticles 4 are transition metal particles that are precipitated when the volatile component of the metal solution is volatilized in the heat treatment. A large number of voids 10 formed by the elimination of volatile components in the starting material are formed inside the tissue.
  • a fine gap 10a is formed around the coarse particles 1 of the refractory aggregate. That is, the coarse particles 1 of the refractory aggregate generally have a higher coefficient of thermal expansion than the carbon bond 3. Therefore, the coarse particles 1 of the refractory aggregate expanded during the heat treatment shrink after cooling, and voids 10 a are formed between the carbon bonds 3.
  • the refractory is coarsely formed in a cavity slightly larger than the coarse particles 1 of the refractory aggregate 1 formed in the skeleton of the network-like carbon bond 3 stretched in three dimensions. 1 is housed.
  • the carbonaceous coarse particles 2 have almost the same thermal expansion coefficient as that of the carbon bond 3, so that no gap is generated between the carbonaceous coarse particles 2 and the carbon bond 3.
  • the carbonaceous coarse particles 2 and the carbon bond 3 both have carbon power and can be easily chemically bonded.
  • the thermal expansion coefficient of the refractory in the hot state is mainly governed by the thermal expansion coefficient of the carbon bond 3. Because the void 1 Oa is formed around the coarse particles 1 of the refractory aggregate 1, the expansion pressure of the coarse particles 1 of the refractory aggregate is transferred to the skeleton of the carbon bond 3 and the thermal expansion of the refractory This is because it is difficult to contribute to the rate.
  • a large number of extremely fine carbon fibrous structures 6 are formed inside the carbon bond 3. These ultrafine carbon fibrous structures 6 are presumed to have a structure in which carbon atoms are regularly arranged like carbon nanotubes, and compared with a glassy (amorphous) carbon structure. The bond strength between carbon atoms is considered strong. Therefore, the coefficient of thermal expansion of carbon bond 3 is less than that of conventional amorphous carbon bonds. It is considered to be small. Therefore, the thermal expansion coefficient as a whole of the refractory is reduced.
  • FIG. 5 shows an SEM photograph of a structure obtained in a test in which phenol resin is heat-treated in a reducing atmosphere using a transition metal catalyst.
  • Fig. 5 (a) shows the case without a transition metal catalyst, and
  • Fig. 5 (b) shows the case with a transition metal catalyst.
  • Each lower photo is an enlargement of a portion of the organization of the upper photo.
  • the heat treatment conditions were both 250 ° C heat treatment in an Al O crucible.
  • heat treatment was performed at 1500 ° C for 3 h in a coke breeze with a crucible.
  • Threads and weaves without transition metal catalyst have a homogeneous and smooth surface with a so-called glass shape (amorphous), whereas structures with transition metal catalyst ( FIG. 5 (b)) shows a strip shape and a fine fiber shape, and carbon nanotubes having a diameter of about 20 nm are formed.
  • (Table 1) to (Table 5) show experimental data of examples and comparative examples of the refractory according to the present invention.
  • the three-point bending strength S is the measured value at room temperature
  • the kinematic modulus is the value measured by the sound velocity method at room temperature.
  • Example 4 Comparative example 4 Comparative example 5 Fire aggregate (alumina) 75 75 75 Carbon substrate raw material (black bell) 25 25 25 Carbon substrate raw material (force-rack)--One phenol resin (solid excluding solvent) Min) +7 +7 +7 Tar-pitch ⁇ ⁇ -"Transition metal powder (Fe203)
  • Fine powder (as Fe) Taken ⁇ SOOjLim--+0.5 Fine powder (as Fe) 1 ⁇ 100jUm-+0.5-Ultra fine powder (as Fe) ⁇ 1 jU m +0.5
  • Metal nickel roller solution (as Ni component)---Metal alcohola-as KGr component)
  • Example 5 Example ⁇ ⁇ Example 7
  • Example 8 Refractory aggregate (alumina) 75 75 75 75 75 Carbon substrate raw material (graphite) 25 25 25 25 Carbon substrate raw material (forced black)--One phenol resin ( Solid content excluding solvent) +7 +7 +7 +7 Tar 'Pitches---+3.5 Transition metal powder (Fe203)
  • Example 1 Example 1 2
  • Example 13 Example 14
  • Example Section 5 Example 16 Bonfire aggregate (alumina) 98 98 98 98 9B 9 & 98 Carbon substrate material (graphite)
  • Carbon substrate raw material 1 2 2 2 2 2 2 2 2 Phenolic resin (solid content excluding solvent) +3 +3 +3 +3 +3 +3 +3 Tar
  • Transition metal powder (Fe203)
  • Amic acid solution (as Co component)
  • Chloroplatinic acid solution (as Pt component)-+ G.1
  • Chloride Bay liquid (as Pd component) +0.1
  • Comparative Example 1 shows an example in which no metal solution was added. The result of observation of the bond charcoal part was amorphous.
  • Example 1 to Example 3 an iron hexyl hexanoate solution was used as a metal solution, and the metal was converted into a metal part from 0.01 to L:
  • Example 4 and Comparative Examples 4 and 5 the influence of the particle size was investigated with the metal addition amount being constant.
  • the transition metal powder was suspended in a solvent in advance and added to phenol resin and mixed well.
  • the particle size was 1 ⁇ m or less, many carbon fibrous structures with a diameter of 20 50 ⁇ m were observed in the bonded charcoal part, but in Comparative Examples 4 and 5, the particle size was large. As a result, the carbon fibrous structure was not observed and the physical properties were not improved.
  • Examples 5 to 7 show examples in which the transition metal species are changed.
  • V and shear bond charcoal many carbon fibrous structures having a diameter of about 20 to 50 nm were observed.
  • Example 6 many observations were possible. In terms of physical properties, the phenomenon of high strength, low elasticity, and low expansion was observed as V and deviation, but Example 6 was particularly remarkable.
  • Example 8 is a combination of phenol resin and tar pitch as binders, and a force obtained by adding a metal solution at the metal part in an amount of 0.0%. Carbon fiber of about 20 to 50 nm in the bond carbon part Many textures were observed. In terms of physical properties, it has been found that the use of tar pitch is also effective as the strength, low elasticity, and low expansion phenomenon are further improved.
  • Comparative Example 6 is a case where graphite is used as a carbon substrate raw material
  • Comparative Example 7 is a case where carbon black is used as a carbon substrate raw material.
  • the characteristics of high elastic modulus and high expansion were shown.
  • Example 9 and Example 10 show an increase in strength and strength, and a decrease in the modulus of elasticity and the coefficient of thermal expansion, which is the case where 0.0% of iron hexylhexanoate is added as an Fe component to Comparative Examples 6 and 7. It was recognized and a sufficient improvement effect was confirmed even in the low carbon content region.
  • Example 11 Si powder was added as strength, and in Example 12, Si-A1-based alloy powder was added as strength. A metal Ni colloid solution was added in an amount of 0.2 wt% with Ni content.
  • Examples 13 to 16 show the results of the same investigation for Pt, Pd, Ti, and Zr as metal species! / However, even with these metal species, the strength increase, dynamic elastic modulus, and thermal expansion coefficient are shown. The lowering effect was confirmed.
  • the present invention can be used in the refractory manufacturing industry used in the steelmaking process.

Abstract

耐酸化性を低下させることなく耐熱衝撃性、耐摩耗性、耐食性を高めることのできる炭素含有耐火物を提供する。 耐火骨材、炭素基質原料、及び前記耐火骨材又は前記炭素基質原料の間を結合するカーボンボンドで構成された炭素含有耐火物において、前記カーボンボンドに、粒子径が1000nm以下の遷移金属を含む遷移金属含有ナノ粒子を分散された状態で含有させた。これを熱処理すれば、カーボンボンド内部に直径50nm以下の炭素繊維状組織の柔構造が形成され、高強度化、低弾性率化、及び低熱膨張率化が図られる。従って、耐熱衝撃性、耐摩耗性、耐食性の高い炭素含有耐火物が提供される。

Description

明 細 書
耐火物及びその製造方法、並びに耐火物原料
技術分野
[0001] 本発明は、製銑 ·製鋼プロセスなどにおいて使用するカーボンボンドを有する耐火 物に関するものである。
背景技術
[0002] アルミナ、マグネシア等のような耐火性無機酸化物原料や黒鉛等の炭素基質原料 等の基材粒子間にカーボン質の結合組織 (カーボンボンド)が形成された耐火物は、 スラグに対して濡れ性が悪く耐食性に優れ、また熱伝導率が高く弾性率が低 、ため 耐熱衝撃性にも優れる等の特徴がある。特に、基材粒子として黒鉛等の炭素基質原 料を含む耐火物(以下「炭素含有耐火物」 、う。)ではこの特徴はより顕著である。 そのため、混銑車、転炉の内張り用や連続铸造の耐火物用として広く使用されてい る。また、近年は耐火物の使用条件の過酷化に伴い、より高い強度と耐熱衝撃性が 求められるようになってきている。
[0003] 上記炭素含有耐火物のようなカーボンボンドを有する耐火物においては、その強 度を向上させる方法として、炭素含有耐火物の素材に炭素質ファイバーを添加する 技術が開発されている (特許文献 1〜3参照)。例えば、特許文献 1では、外径 以下、長さ 0. 13〜50mmのカーボン質ファイバーを分散混合したマグネシアカーボ ン質煉瓦が記載されている。また、特許文献 2では、炭素含有耐火物の原料配合物 中に l〜5mmの炭素質ファイバーを添カ卩したものが記載されている。このように、炭 素質ファイバーを添加することで、炭素質ファイバーがフィラーとして作用することに より強度が向上し、耐火物の耐食性、耐熱衝撃性を向上させることができる。また、特 許文献 3では、耐火物素材とカーボンファイバーとの馴染みの悪さを改善するため、 而火物粉末に、外径10〜50 111、長さ 0. 20〜2mmのカーボンファイバーと、 Si, Al等の低融点の活性金属を添加した炭素含有耐火物が記載されている。これは、熱 処理において、低融点の活性金属が、雰囲気中の C, Nと反応し、カーボンファイバ 一の表面に非酸ィ匕系の化合物力もなる凸状物を形成し、カーボンファイバーの引き 抜き抵抗を高め、継ぎ効果を向上させたものである。
[0004] 一方、炭素含有耐火物は、高温での使用時に耐火物中の炭素成分が酸化消失し 、脱炭された部分が脆弱化して溶損や摩耗が顕著となる。すなわち炭素含有耐火物 は高温での耐酸ィ匕性に弱点を有しており、耐用寿命が比較的短いという欠点がある 。そこで、従来、耐酸ィ匕性を向上させる目的で炭素含有耐火物の素材に各種耐酸ィ匕 性付与剤を添加したものが開発されて 、る。
[0005] 例えば、特許文献 4では、耐酸化性付与剤として、 Al, B, Cr, Ti, Mgなどの金属 粉末が用いられている。これにより、高温域において金属粉末の酸化物を生成させ、 金属酸ィ匕物の体積膨張により成型時の組織内の間隙をほぼ完全に塞ぐことで緻密 化され、高強度 ·低通気性を図る。この緻密化により、組織内への酸ィ匕性ガスゃスラ グの侵入を防止し、耐酸ィ匕性も向上させている。
[0006] 特許文献 5には、マグネシアカーボン煉瓦に、金属クロム、又は、クロムカーバイト、 硼化クロム等のクロム化合物を添加したものが記載されて 、る。これら金属クロムゃク ロム化合物は、高温雰囲気下ではマグネシアと反応して MgO— Cr O系の高融点
2 3
物を生成する。これにより、スラグの見かけ上の粘性を高め、マグネシア骨材のスラグ への溶出を抑えるようにしたものである。
[0007] 特許文献 6には、黒鉛及び耐火原料に、 Al, Ca, Mg, Zr, Si, Ti, Cr等の金属ァ ルコキシド粉末を添加して形成された炭素含有耐火物が記載されて 、る。金属アル コキシドは 300°C以上の高温で分解し、アルコキシド基の一部が残存してカーボンボ ンドの結合を強化する。一方、金属部は耐火物内部の主な雰囲気である COと反応 して金属炭化物を生成し、また窒素が含まれる場合は金属窒化物を生成する。この 金属炭化物、金属窒化物の生成による体積膨張により組織が緻密化され、組織内へ の酸ィ匕性ガスゃスラグの侵入を防止し、耐酸化性も向上させて 、る。
特許文献 1:特公昭 62— 9553号公報
特許文献 2:特開平 3 - 90271号公報
特許文献 3:特開平 5 - 78180号公報
特許文献 4:特開昭 54— 163913号公報
特許文献 5:特開平 1— 320262号公報 特許文献 6:特開平 6 - 64961号公報
特許文献 7:WOOOZ40509明細書
特許文献 8:特開 2002— 293524号公報
非特許文献 1 :斉藤弥八,板東俊治, 「カーボンナノチューブの基礎 (Introduction to Carbon Nanotubes) J ,初版,株式会社コロナ社, 1998年 11月 13日, pp.23- 57. 発明の開示
発明が解決しょうとする課題
[0008] ところで、上述のカーボン質ファイバーをマトリックスに混合した耐火物では、カーボ ン質ファイバーがフィラーとして機能するため耐火物の強度が向上し、耐熱衝撃性、 耐摩耗性が向上するという優れた効果が得られる。しかし、カーボン質ファイバーを 混合することにより、繊維弾性のためマトリックスの稠密な充填が妨げられて、耐火物 中に空隙が生じやすくなる。そのため、耐火物の組織内への酸ィ匕性ガスゃスラグの 侵入が生じやすくなる。すなわち、耐酸ィ匕性の観点からは多量のカーボン質ファイバ 一の添カ卩は好ましくなぐその添加量は制約される。したがって、カーボン質ファイバ 一の添カ卩による耐熱衝撃性、耐摩耗性を向上させる手法には限界がある。
[0009] 一方、上述の耐火物中に耐酸化性付与剤として金属粉末を添加する手法によれ ば、炭素含有耐火物の耐酸化性を向上させ、耐用性を向上させるという優れた効果 が得られる。しかし、金属粉末は高温における膨張率が大きぐ反応生成物等の弾性 率も高くなるため、耐熱衝撃性、耐摩耗性、耐食性の観点からは、多量の金属粉末 の添カ卩はあまり好まし 、ものとは 、えな!/、。
[0010] 同様に、特許文献 5に示すような非酸化物原料の多量の添加も熱膨張率や弾性率 を高めるので、耐熱衝撃性、耐摩耗性、耐食性の観点からは、あまり好ましいものと はいえない。
[0011] そこで、本発明の目的は、耐酸化性を低下させることなぐ同じ炭素含有量におい ても耐熱衝撃性、耐摩耗性、耐食性を高めることのできるカーボンボンドを有する耐 火物及びその製造方法、並びにその原料となる耐火物原料を提供することにある。 課題を解決するための手段
[0012] 本発明に係る耐火物は、基材粒子間にカーボンボンドが形成された耐火物におい て、前記カーボンボンドには、粒子径が lOOOnm以下の遷移金属又は遷移金属塩( 以下、「遷移金属又は遷移金属塩」をまとめて「遷移金属等」という。)を含む微粒子 が分散された状態で含有されて ヽることを特徴とする。(請求項 1)
[0013] また、本発明に係る耐火物は、基材粒子間にカーボンボンドが形成された耐火物 において、前記カーボンボンドには、粒子径が lOOOnm以下の炭素の、微細繊維化 を促進する金属又は金属塩の触媒 (以下「金属触媒」 、う。 )を含む微粒子が分散 された状態で含有されて ヽることを特徴とする。(請求項 2)
[0014] 以下では、「粒子径が lOOOnm以下の遷移金属等を含む微粒子」及び「粒子径が lOOOnm以下の炭素の、微細繊維化を促進する金属触媒を含む微粒子」とを総称し て「金属含有ナノ粒子」という。
[0015] ここで、「カーボンボンド」とは、耐火物の基材 (耐火骨材、炭素基質原料等)の粒子 間に生成され、それらを結合している炭素質の結合組織である。このカーボンボンド は、フエノール榭脂,タール,又はピッチの何れか一若しくはこれらを任意に組み合 わせた混合物からなる有機バインダーを熱処理することで形成される。遷移金属等( 又は金属触媒)の微粒子をカーボンボンド内部に分散させることにより、遷移金属等 ( 又は金属触媒)の微粒子力 熱処理時のカーボンボンド内における炭素の微細繊維 化を促進する。
[0016] 現在、カーボンナノチューブのような極微細な炭素繊維状組織の合成方法として、 炭化水素と触媒を気相において高温下で反応させることにより、多層カーボンナノチ ユーブが高効率で生成する炭化水素触媒分解法が知られている。また、熱分解性榭 脂と金属系触媒とを加熱処理することによりアモルファスナノスケールカーボンチュー ブを製造する方法も知られている (特許文献 7, 8,非特許文献 1参照)。
[0017] これらはカーボンナノチューブを単独で製造するものであって、これまで、そのよう にして製造されたカーボンナノチューブを出発原料として耐火物に添加する試みは 為されている。
[0018] しかし、このようなカーボンナノチューブ原料を耐火物に添カ卩して利用しょうとしても 、耐火物構成物間等に、偏析のない程度に均一に炭素の微細な繊維状組織を形成 させることは困難であり、また耐火物の諸物性の改善効果も満足できるものではない [0019] 本発明は、前記課題を解決するのに必要な程度の炭素の微細な繊維状組織を、 耐火物の製造過程又は使用時の予熱中若しくは受鋼中にお 、て耐火物中に分散さ せた状態で生成させることを特徴とする。
[0020] 耐火物の熱処理工程中にお!、ては、基材粒子間の狭!、空間(カーボンボンドが形 成される空間)は、有機バインダーに含まれる有機系の揮発成分が分解又は気化し 、 COや炭化水素等のガス雰囲気下にある。そのため、基材粒子間は、これらのカー ボンナノチューブ合成法における反応環境と類似の反応環境がカーボンボンド全域 の微小な空間に形成されると考えられ、さらにそのカーボンボンドに分散された状態 で含有されて 、る金属含有ナノ粒子の触媒作用等により、熱処理にお!、てカーボン ボンド内に、カーボンナノチューブ、チューブ壁がアモルファスカーボンからなるァモ ルファスナノスケールカーボンチューブ等のような炭素の微細繊維状の構造形態を 形成すると推測される。その結果生成される極微細な炭素繊維状組織と極微細な炭 素繊維状組織内に同時に形成される微小な空間とが、カーボンボンドを有する耐火 物の高強度化及び低弾性率ィ匕をもたらす。特に、炭素基質原料を含む炭素含有耐 火物ではそれらの顕著な改善が観られる。
[0021] 耐火物に低熱膨張率化をもたらす作用は、次のように考えられる。第 1に、カーボン ナノチューブのような極微細な炭素繊維状組織は、炭素原子が規則的に結合した組 織を多く含むものであるため、ガラス状の炭素組織のような不規則なものに比べると 炭素原子間の結合強度が大きぐガラス状の炭素組織などの不規則な組織力 なる カーボンボンドに比べて、極微細な炭素繊維状組織を多く含有するカーボンボンド は熱膨張率力 、さくなること。第 2に、極微細な炭素繊維状組織はその形成と同時に 微小な空間を必然的にその繊維状組織の中に形成し、耐火骨材等の耐火物構成物 の熱膨張による外力に対して繊維状組織がフレキシブルに変形すると共に、その変 形を繊維状組織周囲の微小な空間が吸収することでカーボンボンドの熱膨張率が小 さくなること。これらの結果として、耐火物全体としての熱膨張率が小さくなる。
[0022] 耐火物に高強度化及び低弾性率ィ匕をもたらす作用は、次のように考えられる。第 1 に、カーボンナノチューブのような極微細な炭素繊維状組織は、外力に対してフレキ シブルに変形しながら、同時に応力を広く分散して緩和する機能を果たす。極微細 な炭素繊維状組織がカーボンボンド中に多く分散して存在するので、この機能が相 乗的に、且つ広範囲に働く。第 2に、極微細な炭素繊維状組織はその形成と同時に 微小な空間を必然的にその繊維状組織の中に形成し、外力に対して繊維状組織が フレキシブルに変形すると共に、その変形を繊維状組織周囲の微小な空間が吸収 することで応力を緩和すること。これらの結果、カーボンボンド内で破壊強度を超える 応力集中点が生じにくくなり、耐火物全体として破壊強度が高くなり、同時に弾性率 も低下する。
[0023] すなわち、カーボンボンド内に粒子径が lOOOnm以下の金属含有ナノ粒子を分散 された状態で含有させ、熱処理することにより、カーボンボンド全域に亘つて均一に 分散された状態で、極微細な炭素繊維状組織が形成され、耐火物の高強度化、低 弾性率化、及び低熱膨張率化が図られ、その結果、耐熱衝撃性 (耐熱スポーリング 性)が向上する。
[0024] 金属含有ナノ粒子の粒子径が、 lOOOnmより大きくなると、触媒作用が低下し、極 微細な炭素繊維状組織が生成されにくくなり、し力もカーボンボンド組織内に偏祈す る傾向がある。その結果、耐火物の高強度化、低弾性率化、低熱膨張率化の効果が 小さくなり、耐熱衝撃性が特に大き 、耐火物を得ることができな!/、。
[0025] また、本発明において金属含有ナノ粒子の触媒作用等によってカーボンボンド内 に生成させるカーボンナノチューブ等の極微細な炭素繊維状組織は、その径がおよ そ 20〜50nm程度である。前記の作用をより効果的に得るためには、この程度の径 の大きさが好ましい。したがって、遷移金属等 (又は金属触媒)の微粒子の大きさは 極微細な炭素繊維状組織の径に近い範囲、すなわち、 lOOnm以下、さら〖こは 20〜 50nmとすることがより好ましい。このように径をより小さくすることで、その比表面積を 大きくすることができ、触媒としての反応性を高めることができ、しかもカーボンボンド 内部の広範囲に亘り、より均一に分散させることができ、その結果カーボンボンド内の 炭素の繊維状組織を広範囲に亘つて均一に、かつ多量に生成させることが可能とな る。
[0026] このように小さな粒径の金属含有ナノ粒子は、粒子の表面エネルギーが大きぐ通 常は単独の粉末状態としては取り扱うことはできない。
[0027] 本発明は、この好適な径の大きさを有する金属源の出発原料として、液体状、コロ イド状又は懸濁液状の、遷移金属若しくは遷移金属塩又は金属触媒若しくは金属触 媒塩の溶液である金属溶液を用いること、及びカーボンボンド組織内部に前記のよう な好適な径の大きさを有する、析出した金属含有ナノ粒子が含まれていることを特徴 とする。
[0028] したがって、本発明に係る耐火物は、従来の金属粉末の耐酸化性付与剤等が添加 された耐火物や前記従来技術のカーボンナノチューブ合成法等とは、カーボンボン ド内に存在する金属粒子の粒径が全く異なるものである。
[0029] 尚、「金属触媒」(請求項 2)とは、カーボンナノチューブ等の炭素の微細繊維化を 促進する触媒である。具体的には、非特許文献 1に記載されているようなカーボンナ ノチューブ等の生成の触媒能を有する金属、例えば、
鉄属、白金属、希土類等の金属である。
[0030] また、上記本発明の耐火物 (請求項 1, 2)は、前述のような熱処理を行わない場合 、いわゆる軽焼品、不焼成品と呼ばれる他の形態の耐火物製品も含まれる。
[0031] この場合には、耐火物のカーボンボンド内には、直径 50nm以下の炭素繊維状組 織が含有されていないことがある力 カーボンボンド内には、粒子径が lOOOnm以下 の金属含有ナノ粒子が分散された状態で含有されて ヽることで、予熱又は受鋼等の 使用時の受熱により、前記熱処理を行ったと同様な組織すなわち直径 50nm以下の 炭素の繊維状組織が分散してカーボンボンド内に存在する組織を得ることができる。
[0032] また、上記本発明の耐火物(請求項 1, 2)にお 、て、「基材粒子」は通常の耐火物 に使用される基材材料のことであり、特にその種類を限定するものではない。したが つて、耐火骨材、炭素基質原料等を「基材粒子」として使用することが可能である。特 に、本発明はカーボンボンドの改質を特徴とし、(請求項 1, 2)においては「基材粒子 」に炭素基質原料が含まれるか否かは問わない。
[0033] また、本発明に係る耐火物は、前記カーボンボンドに、直径 50nm以下の炭素繊維 状組織が含有されていることを特徴とする。(請求項 3)
[0034] このカーボンボンド内に直径 50nm以下の炭素繊維状組織が含有されている本発 明の耐火物は、上記金属含有ナノ粒子を分散状態で含有する耐火物 (請求項 1, 2) を約 600〜約 1200°Cの熱処理を行うことで得られる。
[0035] 本発明に係る耐火物は、基材粒子間にカーボンボンドが形成された耐火物であつ て、前記カーボンボンドには、前記基材粒子、及び有機バインダーに液体状、コロイ ド状又は懸濁液状の、遷移金属又は遷移金属塩の溶液である金属溶液を添加して なる出発原料を混合し熱処理することによりボンド組織内部に析出した金属含有ナノ 粒子が含まれていることを特徴とする。(請求項 4)
[0036] また、本発明に係る耐火物は、基材粒子間にカーボンボンドが形成された耐火物 であって、前記カーボンボンドには、前記基材粒子、及び有機バインダーに、液体状 、粒径 lOOOnm以下の微粒子が溶媒中に分散されたコロイド状又は懸濁液状の、炭 素の微細繊維化を促進する金属触媒の溶液である金属溶液を添加してなる出発原 料を混合し熱処理することによりボンド組織内部に析出した金属含有ナノ粒子が含ま れていることを特徴とする。(請求項 5)
[0037] 有機ノインダ一に液体状、粒径 lOOOnm以下の微粒子が溶媒中に分散されたコロ イド状又は懸濁液状の遷移金属又は遷移金属塩の溶液 (又は炭素の微細繊維化を 促進する金属触媒の溶液)を混合することにより、遷移金属等又は金属触媒を含む 分子、コロイド、又は超微粒子が有機バインダー中にほぼ均一に分散混合される。そ して、この有機バインダーと基材粒子との混合物を熱処理することにより、まず揮発成 分が揮発してカーボンボンド組織 (及び、基材に炭素基質を含む場合にはその炭素 基質)の内部に極めて微細な金属含有ナノ粒子が分散した状態で析出する。その後 、これらの金属含有ナノ粒子の触媒作用等により、炭素の繊維組織を形成し、前述し たように耐火物の高強度化、低弾性率化、及び低熱膨張率化が図られ、耐酸化性や 耐食性を殆ど低下させずに耐熱衝撃性を向上させることが可能となる。
[0038] さらに、上述した原料物質カーボンファイバーのように出発原料の混合時に各基材 の稠密な充填を妨げる原因となる混合物が入っていないため、耐火物内部の空隙率 が大きくなることがない。そのため、耐火物の耐酸ィ匕性等を低めることがない。
[0039] また、本発明に係る耐火物は、フエノール榭脂,タール,又はピッチの何れか一若 しくはこれらを任意に組み合わせた混合物からなる有機バインダーと、液体状、粒径 lOOOnm以下の微粒子が溶媒中に分散されたコロイド状又は懸濁液状の、遷移金 属又は遷移金属塩の溶液である金属溶液と、基材粒子とを含む出発原料を混練し 熱処理することによって形成されて!ヽることを特徴とする。(請求項 6)
[0040] また、本発明に係る耐火物は、フエノール榭脂,タール,又はピッチの何れか一若 しくはこれらを任意に組み合わせた混合物からなる有機バインダーと、液体状、粒径 lOOOnm以下の微粒子が溶媒中に分散されたコロイド状又は懸濁液状の、炭素の 微細繊維化を促進する金属触媒の溶液である金属溶液と、基材粒子とを含む出発 原料を混練し熱処理することによって形成されていることを特徴とする。(請求項 7)
[0041] これにより、フエノール榭脂,タール,又はピッチの何れか一若しくはこれらを任意に 組み合わせた混合物からなる有機バインダー内に、液体状、コロイド状又はサブミク ロンの粒子状の、遷移金属若しくは遷移金属塩 (又は金属触媒若しくは金属触媒塩) がほぼ均一に分散混合される。そして、熱処理によって、基材粒子間に、分散混合さ れた金属が触媒として作用し、フエノール榭脂,タール又はピッチの残炭成分として 形成されるカーボンボンド内に、極微細な炭素繊維状組織が形成される。そして、こ れにより前述したように、耐火物の高強度化、低弾性率化、及び低熱膨張率化が図 られ、耐酸化性や耐食性を殆ど低下させずに耐熱衝撃性 (耐熱スポーリング性)が向 上する。
[0042] 本発明にお ヽて、前記金属溶液は、有機バインダーとの相溶性を有する有機金属 化合物の溶液とすることができる。(請求項 8)
[0043] これにより、金属溶液と有機ノインダ一とを、より一層分散性を高めて均一に混合 することができる。したがって、極微細な炭素繊維状組織をカーボンボンド内に広範 囲に亘つて分散させて形成することができるので、耐火物の高強度化、低弾性率化、 及び低熱膨張率化が効果的に図られる。
[0044] 有機ノインダ一との相溶性を有する有機金属化合物の溶液としては、例えば熱硬 化性榭脂との相溶性を有する遷移金属の有機酸塩などが挙げられる。これには、炭 素数 1〜18の遷移金属カルボン酸塩、炭素数 1〜25の遷移金属ナフテン酸塩、炭 素数 1〜 10のアルキル遷移金属、炭素数 1〜10の遷移金属 β—ジケトナート、炭素 数 1〜20の遷移金属ジアルキルアミド、遷移金属カルボニルなど、フエノール榭脂と の相溶性を有する各種の有機遷移金属化合物等を使用することができる。
[0045] 具体的には、例えば、 2—ェチルへキサン酸 (ォクチル酸)、 2—ェチルペンタン酸 、 2—ェチルブタン酸、シクロペンタン酸、シクロへキサン酸、コハク酸、マロン酸、フ マル酸、マレイン酸、オクタン酸、ネオデカン酸、デカン酸、ナフテン酸、安息香酸等 カゝらなる有機遷移金属塩等が挙げられる。
[0046] 特に、有機バインダーの中にフエノール榭脂を含むものを使用する場合、遷移金属 の有機酸塩としては遷移金属のォクチル酸塩又はナフテン酸塩を使用するのが好 適である。これらは、フエノール榭脂との相溶性に優れる。また、金属アルコラートのよ うに加水分解してフエノール榭脂の経時変化を起こすことが少なぐ良好に均一混合 することができる。また、フエノール榭脂の経時変化に伴うカーボンボンドの不十分な 形成や偏祈が抑制される。
[0047] さらに、これらの塩は、その塩の中の金属含有率が高ぐ一定の金属量を確保する ために過剰な遷移金属有機酸塩の添加を必要としな!、ため、揮発成分を極力減ら すことができる。したがって、熱処理後のカーボンボンドがポーラスとなることがなぐ 高 、強度と耐酸ィ匕性を得ることができる。
[0048] また、本発明において、前記熱処理は、還元雰囲気又は非酸化雰囲気中で行うこ ととすることができる。(請求項 9)
[0049] 熱処理を還元雰囲気又は非酸化雰囲気中で行うことで、カーボンボンドにおける残 炭率を高め空隙率が低く抑えられる。そのため、耐火物の強度をより高め、低弾性率 化を図り、高い耐熱衝撃性を得ることができる。
[0050] 本発明にお 、て、遷移金属若しくは遷移金属塩又は金属触媒は、 Ni, Co, Fe, Ti , Zr, Cr, Mn, Cu, Pt, Rh, Pdの何れかの遷移金属若しくはその化合物とすること ができる。(請求項 10)
[0051] これらの金属若しくは金属化合物は、カーボンナノチューブの生成を促進する触媒 としての作用が高い (非特許文献 1参照)。微細な触媒は、カーボンボンドの熱処理 過程で結晶を再配列させカーボンナノチューブのような炭素微細繊維を含んだ柔組 織をつくる。カーボンブラックや黒鉛原料などの炭素質基質原料が共存する場合は、 これらの原料が炭素微細繊維を含んだカーボンボンドのフィラー(充填材)として作用 し、耐火物組織内でのカーボンボンドの連続性が高まる。その結果、耐火物の高強 度化、低弾性率化、及び低熱膨張率化が図られ、耐熱衝撃性が高められる。
[0052] 特に、カーボンナノチューブ等の極微細な炭素繊維状組織の合成反応における触 媒としての効果の高さの観点からは、 Ni, Co, Fe, Crを使用するのが好適である。
[0053] 遷移金属塩を使用する場合には、加水分解してフ ノール榭脂の経時変化を起こ さないような遷移金属塩を使用する。力かる遷移金属塩としては、例えば、金属石鹼 (R) n— M (0)、ァセチルアセトン金属塩(C H O ) n— M (O)ゃォクチル酸金属化
5 7 2
合物やナフテン酸金属化合物を使用するのが好適である。ここで、 Mは Ti, Zr, Cr, Ni, Co, Fe, Cu, Pt, Rh, Pdなどの金属であり、 Rはメチル、ェチル、プロピル、 n— プチル、フエニルなどのアルキル基を示す。さらに、遷移金属無機化合物、例えば遷 移金属の塩化物、硫化物、酢酸化合物、リン酸化合物などを液体の形として使用す ることも可能である。これらの遷移金属無機化合物は、水あるいはアルコールや鉱物 油などの有機溶媒に溶解した形で液体 (金属溶液)として使用する。
[0054] 特に、遷移金属塩としては、有機バインダーと混合する際に均質に混合できるよう にするため、有機バインダーとの相溶性のよいものを適宜選択することが好ましい。 例えば、有機ノ インダーとしてフエノール榭脂を使用する場合には、ォクチル酸金属 化合物やナフテン酸金属化合物のようにフエノール榭脂と相溶性のある遷移金属塩 を選択する。
[0055] また、遷移金属等を金属コロイドや金属酸化物の超微粉末の懸濁液、若しくは金属 ゾルとして使用してもよい。この場合、上記の各遷移金属又はその塩をナノサイズの 微粒子 (粒径が lOOOnm以下の微粒子)として溶媒中に分散させたコロイド溶液ゃ懸 濁液を使用する。
[0056] 前述のように、遷移金属等 (又は金属触媒)は、カーボンボンドの内部に、極微細な 炭素繊維状組織を生成させてカーボンボンドの低弾性ィ匕を測るための触媒等として 用いられるものである。したがって、力かる触媒作用が得られれば、高強度維持の観 点から添加量はできるだけ少ない方が好ましい。そこで、本発明においては、前記力 一ボンボンド内に含まれる遷移金属等又は金属触媒の量力 耐火物全体の 1. Owt
%以下 (Owt%は除く)とすることが好ましい。(請求項 11) [0057] 遷移金属等 (又は金属触媒)の量が耐火物全体の 1. 0Wt%を超えると、当該金属 の酸化触媒の作用が大きくなり、耐火物の強度、耐酸化性、耐食性が低下する傾向 力 Sあり、特に炭素含有耐火物ではその傾向が大きくなるため好ましくない。
[0058] さらに、遷移金属等 (又は金属触媒)の触媒作用等を十分に発揮させることと、耐火 物の強度、耐酸化性、耐食性の低下を最小限に止めることとの最適な調整を図る観 点からは、遷移金属等(又は金属触媒)の量は、耐火物全体の 0. 01〜0. 5wt%と するのがより好適である。
[0059] 尚、これは、耐火物構成物の種類、それらの比率、粒度構成等、設定の物性等によ り変動するカーボンボンドの量に応じて変動させ得る。
[0060] さらに、耐酸ィ匕性付与剤として Al, B, Cr, Ti, Mg, Siなどの金属微粉末や B C, S
4 iC, BNなどの非酸ィ匕物やガラス成分等を別途に適量添加するようにしてもよい。こ れにより、カーボンボンドを有する耐火物の耐酸ィ匕性を向上させ、さらに高耐用な耐 火物を得ることができる。特に、炭素基質原料を含む炭素含有耐火物ではその炭素 基質原料としての炭素の耐酸化性及び耐用性に対しても顕著な改善が得られる。
[0061] これらの耐酸化性付与剤としての金属微粉末や非酸化物やガラス成分等は、これ ら添加物を除く耐火物全体 100重量部に対し、合量で外掛けで最大 2重量部の範囲 で添加することが好ましい。 2重量部より多いと、それらの金属等自体の熱膨張が耐 火物組織を破壊する可能性が大きくなる傾向があり、またそれらの金属等とカーボン その他の諸耐火物構成成分との反応生成物等がカーボンボンド組織へ及ぼす影響 が大きくなつて、弾性率の上昇等カーボンボンドの性質を大きく変え、本発明の効果 力 S小さくなる力 である。
[0062] 尚、前記耐酸ィ匕性付与剤は含まなくてもよ!/ヽが、耐酸化性が不足する場合がある ので、 0. 5重量部程度以上を添加することが好ましい。
[0063] 本発明にお ヽて、前記基材粒子には、耐火骨材及び炭素基質原料が含まれるも のを使用することができる。(請求項 12)
[0064] このような炭素基質原料を含む耐火物(以下「炭素含有耐火物」という、)でも、カー ボンボンドは、耐火骨材、炭素基質原料を含む基材粒子の各々及び相互を結合す る。さらに、炭素含有耐火物においては、炭素の繊維状組織が炭素基質原料の結合 、特に炭素基質原料と耐火骨材との結合を強化することができる。
[0065] 耐火性骨材としては、マグネシア(MgO)、アルミナ(Al O )、ジルコ-ァ(ZrO )、
2 3 2 スピネル (MgAl O )、シリカ(SiO )などを単独若しくはその化合物として、一種又は
2 4 2
複数組み合わせて使用することができ、炭化珪素 (SiC)、窒化珪素 (Si N )などの
3 4 炭化物や窒化物なども使用することができる。耐火性骨材の粗粒子の粒径は、通常 、 0. 001〜 lmmの粒径のものが使用される力 炭化物や窒化物などの酸化防止材 としての機能も有するものを耐火性骨材として使用する場合は、 0. 01mm以上の粒 径のものを使用することが、膨張による耐火物組織の破壊等を防止する、耐食性を 低下させな 、等のためには好まし!/、。
[0066] 炭素基質原料としては、鱗状黒鉛,土状黒鉛,カーボンブラック,無煙炭,メソフエ一 ズカーボン等の粗粒子が使用できる。通常、これらの粒径は 0. 001〜lmmのものが 使用される。
[0067] 炭素基質原料を含む本発明の耐火物の場合、耐火性骨材、炭素基質原料、有機 ノインダー、及び金属溶液の配合割合は、耐火性骨材 99〜45重量部、炭素基質原 料 1〜55重量部に対して、外掛けで、有機バインダーの固形分として 1. 5〜20重量 部、及び金属溶液の中の金属量として 0. 01〜: L 0重量部の割合とすることが好まし い。
[0068] 炭素基質原料が 55重量部を越えると、本発明の遷移金属等や金属触媒等による 炭素の繊維状組織をカーボンボンド内に有していても、炭素基質原料の体積割合が 増加するため耐酸ィ匕性等を維持することが困難になり、 1重量部を下まわると炭素基 質原料を含まない耐火物と同じになり、炭素基質原料含有耐火物としての耐熱衝撃 性や耐食性等の特性を得られない。有機バインダーの固形分が 20重量部を越える と、本発明の遷移金属等や金属触媒等による炭素の繊維状組織をカーボンボンド内 に有して!/ヽても、炭素基質原料の体積割合が増加するため耐酸化性等を維持するこ とが困難になり、 1. 5重量部を下まわるとカーボンボンドの結合材としての機能が得 られな 、。金属溶液の中の金属量にっ 、ては前述の通りである。
[0069] 本発明に係る耐火物の製造方法は、フエノール榭脂,タール,又はピッチの何れか 一若しくはこれらを任意に組み合わせた混合物からなる有機バインダーと、液体状、 粒径 lOOOnm以下の微粒子が溶媒中に分散されたコロイド状又は懸濁液状の、遷 移金属又は遷移金属塩の溶液と、基材粒子とを含む出発原料を混練する第 1工程、 及び、前記第 1工程により製造される混練物を成形し、その成形体を熱処理する第 2 工程を有することを特徴とする。(請求項 13)
[0070] また、本発明に係る耐火物の製造方法は、フエノール榭脂,タール,又はピッチの 何れか一若しくはこれらを任意に組み合わせた混合物力 なる有機バインダーと、液 体状、粒径 lOOOnm以下の微粒子が溶媒中に分散されたコロイド状又は懸濁液状 の、炭素の微細繊維化を促進する金属触媒の溶液と、基材粒子とを含む出発原料を 混練する第 1工程、及び、前記第 1工程により製造される混練物を成形し熱処理する 第 2工程を有することを特徴とする。(請求項 14)
[0071] また、本発明に係る耐火物の製造方法において、前記第 2工程において、前記第 1 工程により製造される混練物を還元雰囲気又は非酸化雰囲気中で熱処理することが できる。(請求項 15)但し、いわゆる軽焼品,不焼成品は、必ずしも還元雰囲気又は 非酸化雰囲気中で熱処理する必要はない。
[0072] これらの工程〖こより、 (a)カーボンボンド内に直径 50nm以下の炭素繊維状組織が 含有されていることを特徴とする耐火物(請求項 3)、又は (b)カーボンボンド内に粒 子径が lOOOnm以下の遷移金属等 (又は金属触媒)を含む微粒子 (金属含有ナノ粒 子)が分散された状態で含有されており、予熱又は受鋼等の使用時の受熱により直 径 50nm以下の炭素の繊維状組織が分散してカーボンボンド内に存在する組織を 得ることができる耐火物(請求項 1又は 2)を得ることができる。
[0073] すなわちこれらの工程により、耐酸化性、耐食性等の低下を抑制しつつ、高強度、 低弾性率、及び低熱膨張率で、耐熱衝撃性に優れた耐火物を製造することができる
[0074] 尚、上記第 1工程では、次の第 1の混練方法及び第 2の混練方法を選択的に、又 は併存して採ることができる。
[0075] (第 1の混練方法) 耐火物構成物の出発原料の混和物にフエノール榭脂、タール 、又はピッチの何れか一若しくはこれらを任意に組み合わせた混合物力 なる有機 バインダーと、液体状、粒径 lOOOnm以下の微粒子が溶媒中に分散されたコロイド 状又は懸濁液状の、遷移金属若しくは遷移金属塩又は触媒金属若しくは触媒金属 化合物の溶液とを別々に添加して混練する。
[0076] (第 2の混練方法) 前記有機バインダー及び有機バインダーとの相溶性を有する 有機金属化合物の溶液を予め混合した液体を、耐火物構成物の出発原料の混和物 に添加して混練する。
[0077] 尚、金属溶液と有機バインダーとをよりいっそう分散性を高めて均一に混合するた めには第 2の混練方法が好ま 、。
[0078] 第 2工程における成形方法は本発明では特に制限しない。目的とする製品の形態
、形状に応じて適宜な方法で成形すればよい。
[0079] 第 2工程における熱処理は、以下の第 1の熱処理方法や第 2の熱処理方法を採る ことができる。
[0080] (第 1の熱処理方法) 成形物を、約 600°C〜約 1200°C程度の還元雰囲気又は非 酸化雰囲気中で熱処理する。
[0081] (第 2の熱処理方法) 約 600°C程度以下の低温で熱処理して、いわゆる軽焼品又 は不焼成品を得る。
[0082] 第 1の熱処理方法の場合、その熱処理工程中に炭素の繊維状組織を得ることがで きる。この熱処理温度は遷移金属等 (又は金属触媒)の種類によっても好適な温度 域は異なるので、本発明の構成要件では熱処理の温度は特に限定しないが、金属 の触媒作用を十分に有効に発揮させる観点からは、例えば、 Fe触媒の場合には熱 処理温度は 600〜800。C、 Ni触媒の場合には 600〜1200。C、より好ましくは 〜 11 oo°cとするのが好適である。
[0083] また、この第 2の熱処理を還元雰囲気又は非酸化雰囲気中で行うことで、カーボン ボンドにおける残炭率をより高め空隙率を低く抑えることができる。それにより、炭素 含有耐火物の強度をより高め、より低弾性率化を図り、より高い耐熱衝撃性を得ること ができる。使用途中の受熱を利用して炭素微細繊維組織を含んだカーボンボンドを 生成させることも可能である。この場合も、還元雰囲気又は非酸化雰囲気中が好まし い。
[0084] 第 2の熱処理方法では、カーボンボンド内には、炭素の繊維状組織は殆ど形成さ れず、粒径 lOOOnm以下の金属含有ナノ粒子が分散された組織を有する。
[0085] また、本発明に係る耐火物の製造方法にお!ヽて、前記基材粒子に、耐火骨材及び 炭素基質原料の粒子が含まれたものを使用することができる。(請求項 16)
[0086] 本発明に係る耐火物原料は、少なくとも、基材粒子、及び熱間でカーボンボンドを 形成する有機バインダーが混合された耐火物原料において、前記有機ノインダ一に は、粒子径が lOOOnm以下の遷移金属又は遷移金属塩を含む微粒子 (金属含有ナ ノ粒子)が分散された状態で含有されていることを特徴とする。(請求項 17)
[0087] また、本発明に係る耐火物原料は、少なくとも、基材粒子、及び熱間でカーボンボ ンドを形成する有機バインダーが混合された耐火物原料にお!、て、前記有機バイン ダ一には、粒子径が lOOOnm以下の炭素の微細繊維化を促進する金属触媒を含む 微粒子が分散された状態で含有されていることを特徴とする。(請求項 18)
[0088] この耐火物原料を用いることにより、上記本発明に係る耐火物を製造することがで きる。
[0089] また、本発明に係る耐火物原料にお!ヽて、前記基材粒子に、耐火骨材及び炭素基 質原料の粒子が含まれたものを使用することができる。(請求項 19)
発明の効果
[0090] 以上のように、本発明に係る耐火物によれば、カーボンボンド内部に粒子径が 100 Onm以下の金属含有ナノ粒子を分散状態で含有させることで、耐酸化性、耐食性等 の低下を抑制しつつ、高強度化、低弾性率化、及び低熱膨張率化が図られる。さら に、高強度化に伴い、耐摩耗性も向上すると共に、一定の耐熱衝撃性を確保するた めに、従来技術で必要とされていた炭素基質原料、特に黒鉛の含有量を減ずること ができ、その点からも耐食性、耐摩耗性、耐酸化性等の向上等の効果が得られる。し たがって、耐熱衝撃性の高 ヽ耐火物を提供することができる。
図面の簡単な説明
[0091] [図 1]本発明の実施形態に係る耐火物の組織を示す図である。
[図 2]図 1におけるカーボンボンドの拡大図である。
[図 3]図 2のカーボンボンドをさらに拡大した拡大図である。
[図 4]本発明の実施形態に係る耐火物のカーボンボンドの内部構造を説明する模式 図である。
[図 5] (a)—般的な非晶質カーボンボンドの拡大図である。 (b)本発明の繊維状カー ボンボンドの拡大図である。
符号の説明
[0092] 1 耐火性骨材の粗粒子
2 炭素質粗粒子
3 カーボンボンド
4 金属含有ナノ粒子
6, 7 炭素繊維状組織
10, 10a 空隙
発明を実施するための最良の形態
[0093] 以下、本発明を実施するための最良の形態について説明する。
[0094] 最初に、本発明の実施形態に係る耐火物の製造方法について説明する。出発原 料としては、耐火性骨材の粗粒子、炭素基質原料、及び有機バインダーに加えて、 遷移金属塩の溶液又は遷移金属をナノ粒子として溶媒中に分散させたコロイド溶液 (以下、遷移金属塩の溶液及び前記コロイド溶液をまとめて「金属溶液」という。)を用 いる。
[0095] 耐火性骨材の粗粒子としては、マグネシア(MgO)、アルミナ(Al O )、ジルコユア(
2 3
ZrO )、スピネル (MgAl O )、シリカ(SiO )などを単独若しくはその化合物として使
2 2 4 2
用可能であり、炭化珪素 (SiC)、窒化珪素 (Si N )などの炭化物や窒化物などを使
3 4
用することができる。また、耐火性骨材の粗粒子の粒径は、通常、 0. 001〜: Lmmの ものが使用される。
[0096] 炭素基質原料としては、鱗状黒鉛,土状黒鉛等の粗粒子が使用される。粗粒子の 粒径は 0. 001〜: Lmmのものを使用する。
[0097] また、有機バインダーとしては、ピッチ,タール,フエノール榭脂等、熱処理により高 い残留炭素を示すものを使用することができる。
[0098] 出発原料に使用する遷移金属としては、 Ni, Co, Fe, Ti, Zr, Cr, Mn, Cu, Pt,
Rh, Pdを使用することができる。特に、カーボンナノチューブ等の極微細な炭素繊 維状組織の合成反応における触媒としての効果の高さの観点からは、 Ni, Co, Fe, Crを使用するのが好適である。
[0099] 遷移金属塩を使用する場合には、加水分解してフ ノール榭脂の経時変化を起こ さないような遷移金属塩を使用する。力かる遷移金属塩としては、例えば、金属石鹼 (R) n— M (0)、ァセチルアセトン金属塩(C H O ) n— M (O)ゃォクチル酸金属化
5 7 2
合物やナフテン酸金属化合物を使用するのが好適である。ここで、 Mは Ti, Zr, Cr,
Ni, Co, Fe, Cu, Ptなどの金属であり、 Rはメチル、ェチル、プロピル、 n—ブチル、 フ ニルなどのアルキル基を示す。さらに、遷移金属無機化合物、例えば遷移金属 の塩化物、硫化物、酢酸化合物、リン酸化合物などを液体の形として使用することも 可能である。これらの遷移金属化合物は、水あるいはアルコールや鉱物油などの有 機溶媒に溶解した形で液体 (金属溶液)として使用する。
[0100] また、特に、遷移金属塩としては、有機バインダーと混合する際に均質に混合でき るようにするため、有機バインダーとの相溶性のよいものを適宜選択する。例えば、有 機バインダーとしてフエノール樹脂を使用する場合には、ォクチル酸金属化合物や ナフテン酸金属化合物のようにフエノール榭脂と相溶性のある遷移金属塩を選択す る。
[0101] また、遷移金属等を金属コロイドゃ超微粉末の金属酸化物粉末の懸濁液、若しくは 金属ゾルとして使用してもよい。この場合、上記の各遷移金属又はその塩をナノサイ ズの微粒子 (粒径が lOOOnm以下の微粒子)として溶媒中に分散させたコロイド溶液 や懸濁液を使用する。
[0102] 尚、耐酸化性付与剤として、 Al, B, Cr, Ti, Mg, Siの金属微粉末や SiCや B Cな
4 どの炭化物粉末等を別途に適量添加するようにしてもょ ヽ。
[0103] 耐火性骨材の粗粒子、炭素基質原料、有機バインダー、及び金属溶液の配合割 合は、耐火性骨材の粒子 99〜45重量部、炭素基質原料 1〜55重量部に対して、外 掛けで、有機バインダーの固形分として 1. 5〜20重量部、及び金属溶液の中の金 属量として 0. 01〜: L 0重量部の割合とする。また、耐酸化性付与剤を添加する場 合には、 0. 5〜2重量部の範囲で金属微粉末や炭化物粉末を添加する。
[0104] まず、第 1工程において、フエノールやピッチ等の液状の有機バインダーに金属溶 液を所定量添加して十分に混合を行う。
[0105] 次に、上記耐火性骨材の粗粒子及び炭素基質原料の粗粒子をフレットミル等の混 練機に添加して混合処理を行った後、第 1工程中の先の工程で混合した所定量の 混合溶液を添カ卩して常温〜 150°Cの温度範囲で 5〜20分間混練する。これにより、 金属溶液は有機バインダー内部に十分練り込まれ、有機バインダー内に遷移金属 等が溶液又はナノ粒子として分散混合された状態となる。
[0106] 次に、第 2工程において、このようにして得られた混練物を成形し、非酸化雰囲気 下又は還元雰囲気下で熱処理を行うことによって本実施形態の耐火物が得られる。 尚、この熱処理は、遷移金属の種類によって、カーボンボンド内に極微細な炭素繊 維状組織が形成されるのに最適な温度 '時間で行われる。例えば、遷移金属として F eを使用する場合、極微細な炭素繊維状組織の生成を促進する観点からは、 600〜 800°Cで 30〜120分間熱処理を行うのが好適である。また、遷移金属として Niを使 用する場合、同様の観点からは、 600〜1200°C、好ましくは 900〜: L 100°Cで 30〜 120分間熱処理を行うのがよい。
[0107] 但し、実際には熱処理の時間は、有機バインダーや炭素基質原料の変性も考慮し て決定する必要がある。例えば、有機バインダーにフエノール榭脂を使用する場合に は、フエノール榭脂の揮発成分がなくなり製品が安定ィ匕する温度が 800°C以上なの で、熱処理温度は 800°C以上とする必要がある。
[0108] 以上のようにして製造された耐火物は、図 1〜図 4のような組織構造となる。図 1は、 而火物の組織の全体の SEM写真を示しており、図 2,図 3は、図 1のカーボンボンド の部分を拡大した SEM写真を示す。図 4は、図 1の耐火物の組織構成をわかりやす く模式的に示した図である。図 1〜図 4において、耐火物の組織は、耐火性骨材の粗 粒子 炭素基質原料により形成された炭素質粗粒子 2、有機バインダーが炭化して 形成されたカーボンボンド 3、及びカーボンボンド 3の内部に一様に分散された金属 含有ナノ粒子 4からなる(尚、図 1では、耐酸ィ匕性付与剤は添加されていない場合を 示している)。金属含有ナノ粒子 4は、金属溶液の揮発分が熱処理において揮発す ることによって析出した遷移金属粒子である。組織の内部には、出発原料中の揮発 成分が抜けて形成された多数の空隙 10が形成される。 [0109] また、一般に、耐火性骨材の粗粒子 1とカーボンボンド 3とは結合性が悪いため、耐 火性骨材の粗粒子 1の周囲には微小幅の空隙 10aが形成される。すなわち、耐火性 骨材の粗粒子 1はカーボンボンド 3に比べて、一般に熱膨張率が大きい。したがって 、熱処理中において膨張した耐火性骨材の粗粒子 1は、冷却後に収縮し、カーボン ボンド 3との間に空隙 10aが形成される。したがって、耐火物は、 3次元的に張り巡ら された網目状のカーボンボンド 3の骨格中に形成された、耐火性骨材の粗粒子 1より も若干大きい空洞に、耐火性骨材の粗粒子 1が収納された構成となる。それに対して 、炭素質粗粒子 2はカーボンボンド 3と熱膨張率が殆ど同じであるため、炭素質粗粒 子 2とカーボンボンド 3との間には隙間は生じにくい。また、炭素質粗粒子 2とカーボ ンボンド 3とは、ともに炭素力もなるため、容易に化学的に結合できる。
[0110] また、カーボンボンド 3内の炭素においては、金属含有ナノ粒子 4の周囲に、直径 が 20nm程度の極微細な炭素繊維状組織 6が多く観察される(図 3においては、金属 含有ナノ粒子 4の周囲に薄い影のような複雑に絡み合った繊維状のものが見られる 力 これが極微細な炭素繊維状組織 6である)。
[0111] また、カーボンボンド 3の内部には、図 3に示すように、金属含有ナノ粒子 4の触媒 作用等により、カーボンボンド 3内にナノサイズの空隙を伴った極微細な炭素繊維状 組織 6が形成されると推測される。この炭素繊維状組織 6の生成は、炭素質粗粒子 2 をフイラ一として三次元的な結合をもったカーボンボンド 3の特性を変化させるために 、炭素含有炭化物の特性を高強度、低弾性率なものとすると考えられる。
[0112] また、このような構成では、熱間における耐火物の熱膨張率は主としてカーボンボ ンド 3の熱膨張率に支配される。なぜなら、耐火性骨材の粗粒子 1の周囲には空隙 1 Oaが形成されているため、耐火性骨材の粗粒子 1の膨張圧力はカーボンボンド 3の 骨格に伝わりにくぐ耐火物の熱膨張率には寄与しにくいと考えられるからである。一 方、上述のように、カーボンボンド 3の内部には多数の極微細な炭素繊維状組織 6が 形成されている。これらの極微細な炭素繊維状組織 6は、カーボンナノチューブのよ うに、規則的に炭素原子が配列した構成を有していると推測され、ガラス状 (ァモルフ ァス状)の炭素組織と比較すると炭素原子間の結合強度は強 、と考えられる。したが つて、従来の非晶質のカーボンボンドに比べると、カーボンボンド 3の熱膨張率は遙 かに小さいと考えられる。そのため、耐火物の全体としての熱膨張率は小さくなる。
[0113] 図 5は、フエノール榭脂を遷移金属触媒を用いて還元雰囲気下で熱処理を行う試 験で得られた組織の SEM写真を表す。図 5 (a)は遷移金属触媒のないもの、図 5 (b) は遷移金属触媒があるものを表す。またそれぞれ下側の写真は上側の写真の組織 の一部を拡大したものである。熱処理条件は、ともに Al Oルツボ中で 250°Cの熱処
2 3
理後、ルツボと共にコークスブリーズ中で 1500°Cで 3hの熱処理を行った。
[0114] 遷移金属触媒のないものの糸且織(図 5 (a) )は、表面が均質かつ平滑でいわゆるガ ラス状 (非晶質)であるのに対し、遷移金属触媒があるものの組織 (図 5 (b) )は、短冊 状、微細繊維状を示しており、約 20nmの直径を有するカーボンナノチューブが形成 されている。
[0115] その結果として、耐酸化性、耐食性等の低下を抑制しつつ、高強度、低弾性率、低 熱膨張率の耐火物が得られ、極めて耐熱衝撃性及び耐摩耗性に優れたものが得ら れる。
[0116] 次に、本発明の耐火物のさらに具体的な実施例について説明する。
実施例
[0117] (表 1)〜(表 5)は本発明の耐火物の実施例と比較例の実験データを表したもので ある。 3点曲げ強度 Sは常温に於ける測定値,動弾性率は常温に於ける音速法によ る測定値を示す。
[0118] (表 1)〜(表 3)は高炭素含有量系での本発明の適用例である。これらの実験では 、まず、耐火性骨材としてアルミナ 75wt%、炭素基質骨材として黒鉛 25wt%を配合 した原料に、外掛けでフエノール榭脂を固形分で 7wt%添加した配合物を製造した 。これらの配合物を CIP (cold isostatic pressing)により成形後、 1000°Cの熱処理を 加えて炭素含有耐火物とした。熱処理後のボンド炭 (カーボンボンドのこと。)部分を 透過形電子顕微鏡 (TEM)で観察し状態を観察した。なお、実施例で示した金属溶 液は液状のフエノール榭脂に予め添加して十分混合し使用した。
[0119] (表 4) , (表 5)の実験は低炭素含有量系での本発明の適用例である。この実験で は、まず、耐火性骨材としてアルミナ 98wt%、炭素基質骨材として黒鉛又はカーボ ンブラック 2wt%を配合した原料に、外掛けでフエノール榭脂を固形分で 2wt%添カロ した配合物を製造した。この配合物をフリクションプレスにより成形後、 1000°Cの熱 処理を加えて炭素含有耐火物とした。なお、実施例で示した金属溶液は液状のフエ ノール榭脂に予め添加して十分混合し使用した。
[表 1]
Figure imgf000024_0001
[表 2]
実施例 4 比較例 4 比較例 5 火骨材 (アルミナ) 75 75 75 炭素基質原料 (黒鈴) 25 25 25 炭素基質原料 (力- ンプ'ラック) - - 一 フエノ-ル樹脂(溶剤を除く固形分) +7 +7 +7 タ-ル-ピッチ類 ― ― -" 遷移金属粉末 (Fe203)
粉末(Feとして) 撮〜 SOOjLim - - +0.5 微粉末 (Feとして) 1~100jUm - +0.5 - 超微粉末 (Feとして) <1 jU m +0.5
ェチルへキサン酸鉄溶液 (Fe成分として〉 - - - スルファミン酸コハ'ル卜溶液 (Co成分として)
金属ニッケルコロ仆 '溶液 (Ni成分として) - - - 金属アルコラ— KGr成分として)
ホ'ント'炭特性 (1000°C加熱後)
炭素繊維状組織の有無 あり 僅かあり なし
(A:非晶質, CF:フアイハ—状) CF ほとんど A A 焼成後の品質 (1000°C焼成)
曲 (フ MPa 8.1 7.1 7.1 動弾性率 E GPa 11.1 11.4 11.6 熱彭張率 at 1500°C % 0.62 0,66 0.67 熱衝撃性指数 S/Ea 131 105 101 耐食性指数 (高いほど強い) 98 98 98 総合評価 〇 厶 X
O;良好、 Δ;変わらず、 X;性能低下 3]
実施例 5 実施俩 β 実施例 7 実施例 8 耐火骨材 (アルミナ) 75 75 75 75 炭素基質原料 (黒鉛) 25 25 25 25 炭素基質原料 (力 ホ'ンブラック) - - 一 フエノ-ル樹脂 (溶剤を除く固形分) +7 +7 +7 +7 タ-ル 'ピッチ類 - - - +3.5 遷移金属粉末 (Fe203)
粉末 (Feとして) 100〜500〃 m - - - - 微粉末(Feとして) 1 ~ 100 /i m
超微粉末 (Feとして) <1 μ m - - - - ェチルへキサン酸鉄溶液 (Fe成分として) - +0.1 スルフアミン酸コ A'ルト溶液 (Co成分として) +0.1 - - - 金属::ツケルコロ仆 '溶液 (Ni成分として) +0.1
金属アルコラ - KCr成分として) 一 一 +0.1 一 ホ'ント'炭特性 (1000¾加熱後)
炭素繊維状組織の有無 あり あり あ y あり
(A:非晶質, CF :フアイ A' -状) GF CF GF CF 焼成後の品質 (1000¾焼成)
曲げ強度 S MPa 8,7 9.6 7.8 9.5 動弾性率 E GPa 10.6 9.8 1 1.2 9.6 熱膨張率 a at 1500°C % 0.57 0.52 0,64 0.51 熱衝撃性指数 S/E ff 160 209 121 215 耐食性指数 (高いほど強い) 102 98 108 95 総合評価 O 〇 O 〇
〇;良好、 ;変ゎらず、 X;性能低下 4]
Figure imgf000027_0001
表 5]
比較例 8 実施例 1 1実施倒 1 2実施例 13 実施例 14実施節 5 実施例 16 爾火骨材 (アルミナ) 98 98 98 98 9B 9 & 98 炭素基質原料 (黒鉛)
炭素基質原料 ホ'ンプラック) 1 2 2 2 2 2 2 フエノ ル樹脂(溶剤を除く固^分) +3 +3 +3 +3 +3 +3 +3 タ―ル 'ツチ類
金属粉末 (Si合金) +2 +2
金属粉末 系合金) +2
遷移金属粉末 (Fe203)
粉末( として) 100〜5GO m
微粉末(Feとして) ί〜ΐ00 m
超微粉末( として) く 1 m
工チルへキサン酸鉄溶液 (Fe成分として)
アミン酸コ 溶液 (Co成分として)
金属ニッケル] ド溶液 (Ni成分と +0.2 +0.2
金属アルコラ" - Gr成分として)
塩化白金酸溶液 (Pt成分として) - +G.1
塩化 湾液 (Pd成分として) +0.1
塩化 Zr溶液 (Zr成分として) +0.1
Τί超微粉末 (<1 jLi ni) +0.1 ン 炭特性 ( οο ¾加熱後)
炭素繊維状組織の有無 なし あり ぁ あり あり あり
(Α:非晶質, CF :フアイ -状) A CF CF CF CF GF CF 焼成後の品質 (1000¾焼成)
曲げ強度 S Pa 12 0 22 0 25.0 7.7 7.9 7—6 8 0 動弾性率 E GPa 36.5 39.0 45.0 13.1 13. & 14.0 13.5 熱膨張率 at 1500°C % 0.84 0.83 0.87 0.71 0.72 0.70 0.70 熱衝擊性指数 S/E a 43 75 71 92 8Θ 86 94 爾食性指数 (高いほど強い) 210 208 220 241 240 238 234 総含評籲 - O 〇 〇 〇 〇 O
〇:良好、厶: わらず、 ;性能坻下
[0125] 比較例 1は金属溶液を添加していない例を示している。ボンド炭部分の観察の結果 は、非晶質であった。
[0126] 実施例 1から実施例 3は、金属溶液としてェチルへキサン酸鉄溶液を使用して金属 を金属部で 0. 01〜: L
Figure imgf000028_0001
る。 TEM観察の結果、全てのサンプルでボンド炭部分には直径 20 50nmサイズ の炭素繊維状組織が観察された。特に、実施例 2及び実施例 3ではそれらが多く観 察された。
[0127] 品質面では、金属鉄の添加量が 0. 01〜: L Owt%の範囲では耐食性の低下はあ まりなぐ強度が向上し、弾性率、熱膨張が低下した。その結果、耐熱衝撃性の向上 が見られた。一方、金属鉄を 1. 5wt%まで添加した比較例 2では、熱衝撃性は向上 するものの、耐食性が大幅に低下する結果となった。
[0128] 実施例 4及び比較例 4, 5は、金属添加量を一定として、粒度の影響につ!、て調べ たものである。添加方法は、予め遷移金属粉末を溶媒に懸濁した状態でフエノール 榭脂に添加して十分混合した。 1 μ m以下の粒径ではボンド炭部分で直径 20 50η mの炭素繊維状組織が多く観察されたが、比較例 4, 5については、粒径が大きくな るに従い炭素繊維状組織が観察されなくなり、物性面でも改善されない結果となった
[0129] 実施例 5〜7は、遷移金属種を変更した例を示したものである。 V、ずれのボンド炭も 、直径 20〜50nm程度の炭素繊維状組織が多く観察された。特に、実施例 6では多 く観察することができた。物性面では、高強度化並びに低弾性化、低膨張化現象が V、ずれもみられたが、実施例 6が特に顕著であった。
[0130] 実施例 8は、結合材としてフエノール榭脂、タール'ピッチ類を併用し、金属溶液を 金属部で 0. ^%添加した場合である力 ボンド炭部分に 20〜50nm程度の炭素 繊維状組織が多く見られた。物性面でも、さらに高強度化ならびに低弾性化、低膨 張ィ匕現象が進み改善されタール'ピッチの併用も効果的であることが判明した。
[0131] 比較例 6は、炭素基質原料として黒鉛を、比較例 7は、炭素基質原料としてカーボ ンブラックを使用した場合であるが、共に炭素基質原料が約 2wt%と少ないために低 強度、高弾性率、高膨張の特徴を示した。一方、実施例 9及び実施例 10は、比較例 6, 7にェチルへキサン酸鉄を Fe成分として 0. ^%添加した場合である力 強度上 昇と、弾性率及び熱膨張率の低下が認められ、低炭素含有量の領域でも十分な改 善効果を確認した。
[0132] また、実施例 11は強度付与として Si粉末を、実施例 12は強度付与として Si— A1系 合金粉末を添加した系に金属 Niコロイド溶液を Ni分で 0. 2wt%添カ卩した例であるが 、比較例 8と比べると動弾性率の上昇が少なく高強度化する効果を確認した。実施例 13から実施例 16までは、金属種として Pt、 Pd、 Ti、 Zrについて同様に調査した結果 を示して!/、るが、これらの金属種でも強度上昇と動弾性率及び熱膨張率の低下効果 を確認した。
[0133] 更に、比較例 1及び実施例 8の材料を用いて所定ラバーモールドにて CIPにより成 形後、乾燥-焼成-力卩ェを行い、鍋用溶鋼輸送パイプ (Ladle shroud;外径 φ 180 X内 径 φ 105 X長さ llOOmmL)を得た。このノズルを用いて無予熱にて溶鋼铸造テストを 行ったところ、比較例 1は 1回目の铸造で熱応力による割れが発生した力 実施例 8 では無予熱铸造の繰り返しを 10サイクル実施しても割れが発生せず優れた熱衝撃 性を確認した。 産業上の利用可能性
本発明は、製銑'製鋼プロセスなどにお!ヽて使用する耐火物製造業にお V、て利用 可能である。

Claims

請求の範囲
[1] 基材粒子間にカーボンボンドが形成された耐火物において、
前記カーボンボンドには、粒子径が lOOOnm以下の遷移金属又は遷移金属塩を 含む微粒子が分散された状態で含有されていることを特徴とする耐火物。
[2] 基材粒子間にカーボンボンドが形成された耐火物において、
前記カーボンボンドには、粒子径が lOOOnm以下の、炭素の微細繊維化を促進す る金属又は金属塩の触媒 (以下「金属触媒」 t 、う。 )を含む微粒子が分散された状 態で含有されて!、ることを特徴とする耐火物。
[3] 前記カーボンボンドには、直径 50nm以下の炭素繊維状組織が含有されていること を特徴とする請求項 1又は 2記載の耐火物。
[4] 基材粒子間にカーボンボンドが形成された耐火物であって、
前記カーボンボンドには、
前記基材粒子、及び有機ノインダ一に、液体状、粒径 lOOOnm以下の微粒子が溶 媒中に分散されたコロイド状又は懸濁液状の、遷移金属又は遷移金属塩の溶液で ある金属溶液を添加してなる出発原料を混合し熱処理することによりボンド組織内部 に析出した金属含有ナノ粒子
が含まれて!/、ることを特徴とする耐火物。
[5] 基材粒子間にカーボンボンドが形成された耐火物であって、
前記カーボンボンドには、
前記基材粒子、及び有機ノインダ一に、液体状、粒径 lOOOnm以下の微粒子が溶 媒中に分散されたコロイド状又は懸濁液状の、炭素の微細繊維化を促進する金属触 媒の溶液である金属溶液を添加してなる出発原料を混合し熱処理することによりボン ド組織内部に析出した金属含有ナノ粒子
が含まれて!/、ることを特徴とする耐火物。
[6] フエノール榭脂,タール,又はピッチの何れか一若しくはこれらを任意に組み合わせ た混合物カゝらなる有機バインダーと、液体状、粒径 lOOOnm以下の微粒子が溶媒中 に分散されたコロイド状又は懸濁液状の、遷移金属又は遷移金属塩の溶液である金 属溶液と、基材粒子とを含む出発原料を混練し熱処理することによって形成された耐 火物。
[7] フエノール榭脂,タール,又はピッチの何れか一若しくはこれらを任意に組み合わせ た混合物カゝらなる有機バインダーと、液体状、粒径 lOOOnm以下の微粒子が溶媒中 に分散されたコロイド状又は懸濁液状の、炭素の微細繊維化を促進する金属触媒の 溶液である金属溶液と、基材粒子とを含む出発原料を混練し熱処理することによって 形成された耐火物。
[8] 前記金属溶液は、有機バインダーとの相溶性を有する有機金属化合物の溶液であ ることを特徴とする請求項 4乃至 7の何れか一記載の耐火物。
[9] 前記熱処理は、還元雰囲気又は非酸化雰囲気中で行われたものであることを特徴と する請求項 4乃至 8の何れか一記載の耐火物。
[10] 前記カーボンボンドに含有された遷移金属若しくは遷移金属塩又は金属触媒は、 Ni
, Co, Fe, Ti, Zr, Cr, Mn, Cu, Pt, Rh, Pdの何れかの遷移金属若しくはその化 合物であることを特徴とする請求項 1乃至 7の何れか一記載の耐火物。
[11] 前記カーボンボンド内に含まれる遷移金属若しくは遷移金属塩又は金属触媒の量が
、耐火物全体の lwt%以下 (Owt%は除く)であることを特徴とする請求項 1乃至 10 の何れか一に記載の耐火物。
[12] 前記基材粒子には、耐火骨材及び炭素基質原料の粒子が含まれることを特徴とする 請求項 1乃至 11の何れか一記載の耐火物。
[13] フエノール榭脂,タール,又はピッチの何れか一若しくはこれらを任意に組み合わせ た混合物カゝらなる有機バインダーと、液体状、粒径 lOOOnm以下の微粒子が溶媒中 に分散されたコロイド状又は懸濁液状の、遷移金属又は遷移金属塩の溶液と、基材 粒子とを含む出発原料を混練する第 1工程、
及び、前記第 1工程により製造される混練物を成形し熱処理する第 2工程 を有することを特徴とする耐火物の製造方法。
[14] フエノール榭脂,タール,又はピッチの何れか一若しくはこれらを任意に組み合わせ た混合物カゝらなる有機バインダーと、液体状、粒径 lOOOnm以下の微粒子が溶媒中 に分散されたコロイド状又は懸濁液状の、炭素の微細繊維化を促進する金属触媒の 溶液と、基材粒子とを含む出発原料を混練する第 1工程、 及び、前記第 1工程により製造される混練物を成形し熱処理する第 2工程 を有することを特徴とする耐火物の製造方法。
[15] 前記第 2工程において、前記第 1工程により製造される混練物を還元雰囲気又は非 酸化雰囲気中で熱処理することを特徴とする請求項 13又は 14記載の耐火物の製造 方法。
[16] 前記基材粒子には、耐火骨材及び炭素基質原料の粒子が含まれることを特徴とする 請求項 13乃至 15の何れか一記載の耐火物の製造方法。
[17] 少なくとも、基材粒子、及び熱間でカーボンボンドを形成する有機バインダーが混合 された耐火物原料にぉ 、て、
前記有機ノインダ一には、粒子径が lOOOnm以下の遷移金属又は遷移金属塩を 含む微粒子が分散された状態で含有されていることを特徴とする耐火物原料。
[18] 少なくとも、基材粒子、及び熱間でカーボンボンドを形成する有機バインダーが混合 された耐火物原料にぉ 、て、
前記有機ノインダ一には、粒子径が lOOOnm以下の炭素の微細繊維化を促進す る金属触媒を含む微粒子が分散された状態で含有されていることを特徴とする耐火 物原料。
[19] 前記基材粒子には、耐火骨材及び炭素基質原料の粒子が含まれることを特徴とする 請求項 17又は 18記載の耐火物原料。
PCT/JP2006/308244 2005-04-19 2006-04-19 耐火物及びその製造方法、並びに耐火物原料 WO2006112485A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2007528178A JP4641316B2 (ja) 2005-04-19 2006-04-19 耐火物及びその製造方法、並びに耐火物原料
KR1020077008422A KR100927935B1 (ko) 2005-04-19 2006-04-19 내화물 및 그 제조 방법, 및 내화물 원료
CA2602882A CA2602882C (en) 2005-04-19 2006-04-19 Refractory, method for manufacturing refractory, and refractory raw material
BRPI0608165A BRPI0608165B8 (pt) 2005-04-19 2006-04-19 refratário e seu método de produção, materias do refratário
US11/887,744 US8450228B2 (en) 2005-04-19 2006-04-19 Refractory, method for manufacturing refractory, and refractory raw material
EP06745476A EP1873128A4 (en) 2005-04-19 2006-04-19 FIRE-RESISTANT MATERIAL, MANUFACTURING METHOD AND RAW MATERIAL FOR FIRE-RESISTANT MATERIAL
CN2006800133238A CN101163650B (zh) 2005-04-19 2006-04-19 耐火材料及其制造方法以及耐火材料原料
AU2006237926A AU2006237926B2 (en) 2005-04-19 2006-04-19 Refractory and method for production thereof, and raw material for refractory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005121363 2005-04-19
JP2005-121363 2005-04-19

Publications (1)

Publication Number Publication Date
WO2006112485A1 true WO2006112485A1 (ja) 2006-10-26

Family

ID=37115197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308244 WO2006112485A1 (ja) 2005-04-19 2006-04-19 耐火物及びその製造方法、並びに耐火物原料

Country Status (10)

Country Link
US (1) US8450228B2 (ja)
EP (1) EP1873128A4 (ja)
JP (1) JP4641316B2 (ja)
KR (1) KR100927935B1 (ja)
CN (1) CN101163650B (ja)
AU (1) AU2006237926B2 (ja)
BR (1) BRPI0608165B8 (ja)
CA (1) CA2602882C (ja)
RU (1) RU2380342C2 (ja)
WO (1) WO2006112485A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100868A (ja) * 2006-10-18 2008-05-01 Kurosaki Harima Corp ナノカーボン含有耐火物
JP2008133177A (ja) * 2006-10-26 2008-06-12 Kurosaki Harima Corp ナノカーボン被覆耐火原料とのその製造方法、およびそれを使用した耐火物とその製造方法
JP2009221031A (ja) * 2008-03-13 2009-10-01 Kurosaki Harima Corp ジルコニア−炭素含有耐火物及びその製造方法
WO2015083552A1 (ja) * 2013-12-06 2015-06-11 住友大阪セメント株式会社 導電性耐食部材及び導電性耐食部品、並びに導電性耐食部材の製造方法
JP2017081810A (ja) * 2015-10-30 2017-05-18 Jfeスチール株式会社 カーボン含有焼成れんが耐火物
JP2017081786A (ja) * 2015-10-29 2017-05-18 Jfeスチール株式会社 カーボン含有不焼成れんが耐火物
JP2017095784A (ja) * 2015-11-27 2017-06-01 Jfeスチール株式会社 製鉄用溶銑輸送容器

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727505B2 (en) * 2008-05-21 2010-06-01 International Business Machines Corporation Methods for separating carbon nanotubes by enhancing the density differential
WO2010132612A2 (en) * 2009-05-13 2010-11-18 The Regents Of The University Of California Metal-coated shrinkable polystyrene and methods for using same
SI3002265T1 (en) * 2014-10-01 2018-01-31 Refractory Intellectual Property Gmbh & Co. Kg A mixture for the production of a refractory magnesium oxide-carbon product or a refractory alumina-magnesium oxide-carbon product, a process for the production of such a product, such a product, and the use of such a product
CN107141001B (zh) * 2017-06-05 2020-05-19 武汉钢铁有限公司 复合碳纤维增强铁沟浇注料
RU2672893C1 (ru) * 2017-07-24 2018-11-20 Сергей Анатольевич Поморцев Состав шихты и способ изготовления углеродсодержащих огнеупоров
CN108177405B (zh) * 2017-12-28 2020-02-07 中冶建筑研究总院有限公司 用于钢结构的防火防腐蚀复合材料
RU2684538C1 (ru) * 2017-12-28 2019-04-09 Акционерное общество "Научно-исследовательский институт конструкционных материалов на основе графита "НИИграфит" Углеродкерамический волокнисто-армированный композиционный материал и способ его получения
CN108440006A (zh) * 2018-04-13 2018-08-24 山东理工大学 过渡金属元素调控碳纤维增强陶瓷基复合材料界面的方法
US11763972B2 (en) * 2018-08-12 2023-09-19 HeFeChip Corporation Limited Magnetic tunnel junction element with a robust reference layer
CN111004041B (zh) * 2019-12-05 2022-06-21 上海利尔耐火材料有限公司 一种以铝铬渣为主料的钢包包底浇注料及其制备方法
CN111056841A (zh) * 2019-12-27 2020-04-24 欧阳建国 稀土增强的石墨板材制作方法
CN114349524A (zh) * 2022-01-12 2022-04-15 郑州汇盛耐火材料有限公司 一种碳纳米纤维改性的含碳耐火浇注料及其制备方法
CN115925397B (zh) * 2022-12-30 2024-01-23 江苏集萃安泰创明先进能源材料研究院有限公司 一种塞棒本体、塞棒及其制备方法
CN117383949B (zh) * 2023-11-10 2024-04-02 江苏君耀耐磨耐火材料有限公司 一种碳纳米纤维增韧耐火材料的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617977A (en) 1979-07-24 1981-02-20 Matsushita Electric Works Ltd Binder for refractories
JPS5983979A (ja) 1982-11-06 1984-05-15 大光炉材株式会社 マグネシア−カ−ボン質流し込み耐火物
WO2000040509A1 (fr) 1998-12-28 2000-07-13 Osaka Gas Company Limited Tube de carbone amorphe de l'ordre du nanometre et son procede de fabrication
DE19954893A1 (de) 1999-11-15 2001-05-17 Refratechnik Holding Gmbh & Co Kohlenstoffhaltiger feuerfester Formkörper mit verbessertem Oxidationsverhalten sowie Verfahren zu seiner Herstellung
JP2002265210A (ja) * 2001-03-08 2002-09-18 Tsunemi Ochiai 耐火物原料、耐火物原料組成物、耐火物、及びそれらに使用可能なグラファイト粒子の製造方法
JP2002265211A (ja) * 2001-03-08 2002-09-18 Tsunemi Ochiai グラファイト粒子の製造方法とそれを用いた耐火物
JP2002293524A (ja) 2001-03-30 2002-10-09 Osaka Gas Co Ltd 気相成長ナノスケールカーボンチューブ製造法及び装置
JP2002316865A (ja) * 2001-04-17 2002-10-31 Tsunemi Ochiai 耐火物原料組成物、その製造方法及びそれを成形してなる耐火物
JP2004067431A (ja) * 2002-08-06 2004-03-04 Kyushu Refract Co Ltd 耐火物用バインダー及びそれを使用した耐火物
US20040106509A1 (en) 2001-03-08 2004-06-03 Tsunemi Ochiai Refractory raw materials, method for production thereof and refractory using the material
JP2005089271A (ja) * 2003-09-19 2005-04-07 Tsunemi Ochiai 炭素含有耐火物、その製造方法及びその用途

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602269B2 (ja) * 1978-06-16 1985-01-21 旭硝子株式会社 炭素含有不焼成耐火物の製造方法
US4663230A (en) * 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
JPS629553A (ja) 1985-07-05 1987-01-17 Matsushita Electric Ind Co Ltd テ−プ移送速度検出方法
JPH01320262A (ja) 1988-06-18 1989-12-26 Kurosaki Refract Co Ltd 不焼成マグネシアカーボンれんが
JPH0390271A (ja) 1989-08-31 1991-04-16 Kawasaki Refract Co Ltd 不焼成スライディングノズルプレートれんが
JPH0578180A (ja) 1991-09-24 1993-03-30 Kurosaki Refract Co Ltd カーボンフアイバー含有耐火物
JPH0664961A (ja) 1992-08-20 1994-03-08 Nippon Steel Corp 炭素含有耐火物
ES2146387T3 (es) * 1995-03-03 2000-08-01 Kyushu Refractories Materiales refractarios no formados y materiales refractarios de pavonado preparados a partir de estos.
FR2844510B1 (fr) 2002-09-12 2006-06-16 Snecma Propulsion Solide Structure fibreuse tridimensionnelle en fibres refractaires, procede pour sa realisation et application aux materiaux composites thermostructuraux

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617977A (en) 1979-07-24 1981-02-20 Matsushita Electric Works Ltd Binder for refractories
JPS5983979A (ja) 1982-11-06 1984-05-15 大光炉材株式会社 マグネシア−カ−ボン質流し込み耐火物
WO2000040509A1 (fr) 1998-12-28 2000-07-13 Osaka Gas Company Limited Tube de carbone amorphe de l'ordre du nanometre et son procede de fabrication
DE19954893A1 (de) 1999-11-15 2001-05-17 Refratechnik Holding Gmbh & Co Kohlenstoffhaltiger feuerfester Formkörper mit verbessertem Oxidationsverhalten sowie Verfahren zu seiner Herstellung
JP2002265210A (ja) * 2001-03-08 2002-09-18 Tsunemi Ochiai 耐火物原料、耐火物原料組成物、耐火物、及びそれらに使用可能なグラファイト粒子の製造方法
JP2002265211A (ja) * 2001-03-08 2002-09-18 Tsunemi Ochiai グラファイト粒子の製造方法とそれを用いた耐火物
US20040106509A1 (en) 2001-03-08 2004-06-03 Tsunemi Ochiai Refractory raw materials, method for production thereof and refractory using the material
JP2002293524A (ja) 2001-03-30 2002-10-09 Osaka Gas Co Ltd 気相成長ナノスケールカーボンチューブ製造法及び装置
JP2002316865A (ja) * 2001-04-17 2002-10-31 Tsunemi Ochiai 耐火物原料組成物、その製造方法及びそれを成形してなる耐火物
JP2004067431A (ja) * 2002-08-06 2004-03-04 Kyushu Refract Co Ltd 耐火物用バインダー及びそれを使用した耐火物
JP2005089271A (ja) * 2003-09-19 2005-04-07 Tsunemi Ochiai 炭素含有耐火物、その製造方法及びその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAHACHI SAITO; SHUNJI BANDOW: "Ka-bon Nanochu-bu no Kiso", 13 November 1998, CORONA PUBLISHING CO., LTD., pages: 23 - 57

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100868A (ja) * 2006-10-18 2008-05-01 Kurosaki Harima Corp ナノカーボン含有耐火物
JP2008133177A (ja) * 2006-10-26 2008-06-12 Kurosaki Harima Corp ナノカーボン被覆耐火原料とのその製造方法、およびそれを使用した耐火物とその製造方法
JP2009221031A (ja) * 2008-03-13 2009-10-01 Kurosaki Harima Corp ジルコニア−炭素含有耐火物及びその製造方法
WO2009113744A3 (ja) * 2008-03-13 2009-11-05 黒崎播磨株式会社 ジルコニア-炭素含有耐火物及びその製造方法
US8084122B2 (en) 2008-03-13 2011-12-27 Krosaki Harima Corporation Zirconia-carbon-containing refractory and method for producing same
CN101970375B (zh) * 2008-03-13 2013-10-30 黑崎播磨株式会社 含氧化锆-碳的耐火材料及其制造方法
WO2015083552A1 (ja) * 2013-12-06 2015-06-11 住友大阪セメント株式会社 導電性耐食部材及び導電性耐食部品、並びに導電性耐食部材の製造方法
JP2017081786A (ja) * 2015-10-29 2017-05-18 Jfeスチール株式会社 カーボン含有不焼成れんが耐火物
JP2017081810A (ja) * 2015-10-30 2017-05-18 Jfeスチール株式会社 カーボン含有焼成れんが耐火物
JP2017095784A (ja) * 2015-11-27 2017-06-01 Jfeスチール株式会社 製鉄用溶銑輸送容器

Also Published As

Publication number Publication date
AU2006237926B2 (en) 2009-12-17
AU2006237926A1 (en) 2006-10-26
RU2380342C2 (ru) 2010-01-27
CA2602882C (en) 2011-10-11
US20090075808A1 (en) 2009-03-19
CN101163650A (zh) 2008-04-16
RU2007122623A (ru) 2009-05-27
CN101163650B (zh) 2011-06-08
EP1873128A4 (en) 2011-04-27
BRPI0608165B1 (pt) 2021-04-06
JPWO2006112485A1 (ja) 2008-12-11
BRPI0608165B8 (pt) 2021-04-20
BRPI0608165A2 (pt) 2009-11-10
KR100927935B1 (ko) 2009-11-19
JP4641316B2 (ja) 2011-03-02
KR20080007216A (ko) 2008-01-17
EP1873128A1 (en) 2008-01-02
CA2602882A1 (en) 2006-10-26
US8450228B2 (en) 2013-05-28

Similar Documents

Publication Publication Date Title
WO2006112485A1 (ja) 耐火物及びその製造方法、並びに耐火物原料
JP2009221031A (ja) ジルコニア−炭素含有耐火物及びその製造方法
JP5539201B2 (ja) 炭素質耐火物及びその製造方法、並びに、高炉炉底又は側壁及びその製造方法
TW201544487A (zh) 鋼的鑄造用耐火物,和滑動噴嘴裝置用板,以及鋼的鑄造用耐火物之製造方法
JP2013072090A (ja) 転炉の操業方法、その転炉に使用するマグネシアカーボン質れんが、当該れんがの製造方法、及び転炉内張りのライニング構造
KR100914788B1 (ko) 내화물
WO2017150333A1 (ja) 鋳造用耐火物及びスライディングノズル装置用のプレート
JP2006008504A (ja) 炭素含有耐火物
CN1185320C (zh) 一种纳米改性酚醛树脂结合剂及其制备方法
JP2002316865A (ja) 耐火物原料組成物、その製造方法及びそれを成形してなる耐火物
JP4856513B2 (ja) カーボン含有耐火物
JP2009001462A (ja) 定形耐火物及びその製造方法
JP2023094018A (ja) カーボン含有不焼成れんが耐火物及びカーボン含有不焼成れんが耐火物の製造方法
JP2023094019A (ja) カーボン含有焼成れんが耐火物及びカーボン含有焼成れんが耐火物の製造方法
CN115819074B (zh) 一种用于镁碳耐火材料的异质结构及其制备方法
TWI762076B (zh) 耐火物
JP2011256074A (ja) 高炉用出銑孔閉塞材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680013323.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020077008422

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007528178

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2602882

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11887744

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006237926

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006745476

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1811/MUMNP/2007

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2006237926

Country of ref document: AU

Date of ref document: 20060419

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006237926

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007122623

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006745476

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0608165

Country of ref document: BR

Kind code of ref document: A2