CN108440006A - 过渡金属元素调控碳纤维增强陶瓷基复合材料界面的方法 - Google Patents

过渡金属元素调控碳纤维增强陶瓷基复合材料界面的方法 Download PDF

Info

Publication number
CN108440006A
CN108440006A CN201810330242.5A CN201810330242A CN108440006A CN 108440006 A CN108440006 A CN 108440006A CN 201810330242 A CN201810330242 A CN 201810330242A CN 108440006 A CN108440006 A CN 108440006A
Authority
CN
China
Prior art keywords
transition metal
metal element
fibre reinforced
carbon fibre
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810330242.5A
Other languages
English (en)
Inventor
温广武
吴松松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201810330242.5A priority Critical patent/CN108440006A/zh
Publication of CN108440006A publication Critical patent/CN108440006A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/002Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of fibres, filaments, yarns, felts or woven material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/02Fibres; Filaments; Yarns; Felts; Woven material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/20Glass-ceramics matrix
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/30Methods of making the composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种过渡金属元素调控碳纤维增强陶瓷基复合材料界面的方法,包括以下步骤:将过渡金属元素盐溶液与陶瓷基体混合,球磨后得到混合均匀的浆料待用,制备纤维预制片,烧结。本发明实施例示例的过渡金属元素调控碳纤维增强陶瓷基复合材料界面的方法,极大的降低了调控界面的难度、成本和时间,同时也能保证了界面调控的有效性。

Description

过渡金属元素调控碳纤维增强陶瓷基复合材料界面的方法
技术领域
本发明属于陶瓷基复合材料制备技术领域,尤其涉及一种过渡金属元素调控碳纤维增强陶瓷基复合材料界面结构的方法。
背景技术
纤维增强陶瓷基复合材料在航空航天领域具有广泛的应用,而纤维和陶瓷基的界面结构是保证复合材料具有良好力学性能的关键因素。根据现有的研究结果表明,纤维和陶瓷基之间以弱界面相连时,能够促进裂纹的偏转,消耗裂纹功,使复合材料具有优异的抗弯强度和断裂韧性。
目前改善纤维增强陶瓷基复合材料界面结合的方法主要是在碳纤维表面沉积热解碳层和BN图层,所采用的工艺以化学气相沉积和化学气相渗透为主,该工艺虽然能够获得性能良好的制品,但是这些工艺需要在真空环境下,通过加热源使固体或者液态先驱体变为气相,然后通过低压气体运载至基底上沉积,这一过程往往非常耗时,而仪器长时间在高温环境下工作不可避免地会产生安全隐患,所以后期的维护和保养工作量较为庞大工艺较为复杂,成本较高,限制了其大范围应用。因此,急需一种工艺简单,成本较低,同时能够有效调控界面结构的方法。
发明内容
基于上述现有技术,本发明的目的在于提供一种过渡金属元素调控碳纤维增强陶瓷基复合材料界面的方法,本发明的方法极大的降低了调控界面的难度、成本和时间,同时也保证了界面调控的有效性。
第一方面,本申请实施例提供了一种过渡金属元素调控碳纤维增强陶瓷基复合材料界面的方法,包括以下步骤:将过渡金属元素盐溶液与陶瓷基体混合,球磨后得到混合均匀的浆料待用,制备纤维预制片,烧结。
优选的:所述过渡金属元素为铁、钴、镍金属粉末中的一种以上。
优选的:所述盐溶液为硝酸盐溶液,进一步的:所述硝酸盐溶液可以选自硝酸铁、硝酸镍、硝酸钴中的一种以上。
优选的:所述陶瓷基体可以选自锂铝硅微晶玻璃、镁铝硅微晶玻璃、氧化铝、氧化硅、氧化物基等陶瓷、氮化硅、碳化硅等非氧化物陶瓷、钡铝硅微晶玻璃。
优选的:所述过渡金属元素盐与陶瓷基体的质量比在0.5-3.5%。
优选的:所述烧结的具体步骤为:将得到的纤维预制片叠层装入石墨磨具中,在真空热压炉中热压烧结,首先升温至700-900℃(优选的:以每分钟5℃的升温速度),并且保温20-40分钟(优选的:30分钟),之后以每分钟8-20℃(优选的:10℃)的升温速度加热到1300-1500℃ (优选的:1400℃),并保温0.5-1.5小时,同时加压8-14Mpa,15-30 分钟即可。
第二方面,本申请实施例要求保护的上述任一方法制备得到的碳纤维增强陶瓷基复合材料。
第三方面,本申请实施例要求保护的上述任一方法制备得到的碳纤维增强陶瓷基复合材料在航空航天领域中的应用。
与现有技术相比,本发明具有以下有益效果:
本发明实施例示例的过渡金属元素调控碳纤维增强陶瓷基复合材料界面的方法,首次将过渡金属元素促进石墨化的机制运用到陶瓷基复合材料的界面调控上,该种方法获得的石墨界面层对裂纹的偏转能力,通过改变过渡金属(例如:铁离子)的含量能够对陶瓷基界面结构进行合理的调控(如图2和图3所示),通过促进碳纤维界面石墨化有效的提升了复合材料的抗弯强度和断裂韧性(如图4所示),抗弯强度和断裂韧性分别提升30%和50%左右。
本发明实施例示例的过渡金属元素调控碳纤维增强陶瓷基复合材料界面的方法,极大的降低了调控界面的难度、成本和时间,同时也能保证了界面调控的有效性。
本发明实施例示例的过渡金属元素调控碳纤维增强陶瓷基复合材料界面的方法,通过在陶瓷基体中掺杂一定量的铁离子,使其弥散分布在基体中,在高温时与碳纤维反应,促进其石墨化,采用这种方式适合工业化的大规模生产,不需要特殊的设备以及工艺流程的增设,仅仅在混粉时添加适量的铁离子就能改善陶瓷基界面结构,虽然陶瓷生产中也有掺杂金属元素的,但是该掺杂的目的是为了在陶瓷中形成一种陶瓷修饰体,达到硬化和改色的目的,与在本发明方法中所起的作用是完全不一样的。
附图说明
图1为不同铁离子添加量的钡铝硅微晶玻璃复合材料的XRD图谱,其中F0、F1、F3和F5分别代表铁离子含量分别为0、1、3和5wt.%.(a) 为总图谱,(b)(c)(d)分别为局部精扫图片;
图2为1400℃烧结的铁含量为1wt.%的钡铝硅微晶玻璃复合材料界面TEM图片,其中(a)为TEM明场像,(b)为1区HRTEM图像,(c)为 2区HRTEM图像,(d)为2区选区电子衍射图像,(e)为2区EDS能谱;
图3为1400℃烧结的不含铁离子的钡铝硅微晶玻璃的界面形貌,其中(a)为界面区的TEM明场像,(b-f)分别对应C、Al、Si、O和Ba的元素分布图;
图4为不同铁离子含量的钡铝硅微晶玻璃复合材料的抗弯强度和断裂韧性图,其中(a)为F0-F5试样的抗弯强度和断裂韧性折线图,(b) 为F0、F1和F5的应力应变曲线,(c-e)分别对应F0、F1和F5的断口形貌图片;
图5为实施例一中含铁离子钡铝硅微晶玻璃前驱体的制备的流程图。
具体实施方式
为了更好的了解本发明的技术方案,下面结合说明书附图和具体实施例对本发明作进一步说明。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
实施例一
一种过渡金属元素调控碳纤维增强陶瓷基复合材料界面的方法,具体为铁离子掺杂调控碳纤维增强钡铝硅微晶玻璃复合材料界面结构的方法:
包括如下步骤:
(1)含铁离子钡铝硅微晶玻璃前驱体的制备
采用溶胶凝胶法制备含铁离子的钡铝硅微晶玻璃的前驱体。首先将750g九水硝酸铝(Al(NO3)3·9H2O)与1L去离子水加入烧杯中于75℃水热搅拌20分钟。然后滴加适量氨水得到勃姆石溶胶,然后加入 Fe(NO3)3·9H2O和醋酸钡水溶液持续搅拌20分钟,最后加入二氧化硅溶胶持续搅拌4小时得到含铁离子的钡铝硅溶胶。之后与100℃鼓风干燥4 天使其凝胶化,然后500℃保温5小时得到玻璃前驱体,如图5所示。
(2)纤维预制片的制备
取90g玻璃前驱体和150g去离子水与球墨罐中球磨4小时,然后加入3g甲基纤维素、3ml区拉通和3ml聚乙二醇继续搅拌4小时得到浸渍浆料。将纤维浸渍上浸渍料并烘干得到纤维预制片。
(3)含铁钡铝硅微晶玻璃复合材料的制备
将得到的纤维预制片叠层装入石墨磨具中,在真空热压炉中热压烧结。首先以每分钟5℃的升温速度升温至800℃,并且保温30分钟。之后以每分钟10℃的升温速度加热到1400℃,并保温1小时,同时加压10 MPa,保压20分钟得到致密的碳纤维增强陶瓷基复合材料。物相分析XRD 表明主晶相为钡长石(celsian),见图1。
实施例二
所述过渡金属元素为钴,其他的步骤同实施例一。
实施例三
所述过渡金属元素为镍,其他的步骤同实施例一。
实施例四
所述过渡金属元素盐与陶瓷基体的质量比在0.5%,其他的步骤同实施例一、实施例二或实施例三。
实施例五
所述过渡金属元素盐与陶瓷基体的质量比在3.5%,其他的步骤同实施例一、实施例二或实施例三。
实施例六
所述步骤(3)中,首先升温至700℃,并且保温40分钟,之后以每分钟8℃的升温速度加热到1500℃,并保温0.5小时,同时加压14Mpa, 15分钟即可,其他的步骤同实施例一、实施例二或实施例三。
实施例七
所述步骤(3)中,首先以每分钟5℃的升温速度升温至900℃,并且保温20分钟,之后以每分钟20℃的升温速度加热到1300℃,并保温 1.5小时,同时加压8Mpa,30分钟即可。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (10)

1.一种过渡金属元素调控碳纤维增强陶瓷基复合材料界面的方法,其特征是:包括以下步骤:将过渡金属元素盐溶液与陶瓷基体混合,球磨后得到混合均匀的浆料待用,制备纤维预制片,烧结。
2.如权利要求1所述的方法,其特征是:所述过渡金属元素为铁、钴、镍金属粉末中的一种以上。
3.如权利要求1所述的方法,其特征是:所述盐溶液为硝酸盐溶液。
4.如权利要求3所述的方法,其特征是:所述硝酸盐溶液选自硝酸铁、硝酸镍、硝酸钴中的一种以上。
5.如权利要求1所述的方法,其特征是:所述陶瓷基体选自锂铝硅微晶玻璃、镁铝硅微晶玻璃、氧化铝、氧化硅、氧化物基陶瓷、氮化硅、碳化硅非氧化物陶瓷、钡铝硅微晶玻璃。
6.如权利要求1所述的方法,其特征是:所述过渡金属元素盐与陶瓷基体的质量比在0.5-3.5%。
7.如权利要求1所述的方法,其特征是:所述烧结的具体步骤为:将得到的纤维预制片叠层装入石墨磨具中,在真空热压炉中热压烧结,首先升温至700-900℃,并且保温20-40分钟,之后以每分钟8-20的升温速度加热到1300-1500,并保温0.5-1.5小时,同时加压8-14Mpa,15-30分钟即可。
8.如权利要求7所述的方法,其特征是:首先以5℃/min的速度升温至800℃。
9.权利要求1-8任一所述的方法制备得到的碳纤维增强陶瓷基复合材料。
10.权利要求1-8任一所述的方法制备得到的碳纤维增强陶瓷基复合材料在航空航天领域中的应用。
CN201810330242.5A 2018-04-13 2018-04-13 过渡金属元素调控碳纤维增强陶瓷基复合材料界面的方法 Pending CN108440006A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810330242.5A CN108440006A (zh) 2018-04-13 2018-04-13 过渡金属元素调控碳纤维增强陶瓷基复合材料界面的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810330242.5A CN108440006A (zh) 2018-04-13 2018-04-13 过渡金属元素调控碳纤维增强陶瓷基复合材料界面的方法

Publications (1)

Publication Number Publication Date
CN108440006A true CN108440006A (zh) 2018-08-24

Family

ID=63199894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810330242.5A Pending CN108440006A (zh) 2018-04-13 2018-04-13 过渡金属元素调控碳纤维增强陶瓷基复合材料界面的方法

Country Status (1)

Country Link
CN (1) CN108440006A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1101027A (zh) * 1993-09-29 1995-04-05 中国建筑材料科学研究院 纤维增强玻璃、玻璃-陶瓷基复合材料的制造工艺
CN1694981A (zh) * 2002-09-12 2005-11-09 Snecma固体燃料推进器公司 耐火纤维的三维纤维结构、其制备方法、以及在热结构复合材料中的应用
CN101163650A (zh) * 2005-04-19 2008-04-16 黑崎播磨株式会社 耐火材料及其制造方法以及耐火材料原料
CN107188526A (zh) * 2017-04-19 2017-09-22 天津大学 碳纤维/碳纳米管阵列双取向导热碳‑碳复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1101027A (zh) * 1993-09-29 1995-04-05 中国建筑材料科学研究院 纤维增强玻璃、玻璃-陶瓷基复合材料的制造工艺
CN1694981A (zh) * 2002-09-12 2005-11-09 Snecma固体燃料推进器公司 耐火纤维的三维纤维结构、其制备方法、以及在热结构复合材料中的应用
CN101163650A (zh) * 2005-04-19 2008-04-16 黑崎播磨株式会社 耐火材料及其制造方法以及耐火材料原料
CN107188526A (zh) * 2017-04-19 2017-09-22 天津大学 碳纤维/碳纳米管阵列双取向导热碳‑碳复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. R. DHAKATE等: ""CATALYTIC EFFECT OF IRON OXIDE ON CARBON/CARBON COMPOSITES DURING GRAPHITIZATION"", 《CARBON》 *

Similar Documents

Publication Publication Date Title
US8419814B2 (en) Polycrystalline abrasive compacts
CN100358832C (zh) 莫来石晶须-莫来石复合涂层及其制备方法
CN107540400A (zh) 一种具有复合界面的SiCf/SiC陶瓷基复合材料
CN103409732B (zh) 一种金刚石表面金属化的复合处理方法
CN109553430A (zh) 一种具有复合界面的SiCf/SiC陶瓷基复合材料及其制备方法
Ding et al. Low-temperature synthesis of nanocrystalline ZrC coatings on flake graphite by molten salts
CN108484190B (zh) 一种碳纤维增强的多相碳化物陶瓷基复合材料的制备方法
Boakye et al. Rare‐earth disilicates as oxidation‐resistant fiber coatings for silicon carbide ceramic–matrix composites
CN105418071A (zh) 高纯超细ZrC-SiC复合粉体的合成方法
Drouelle et al. Oxidation resistance of Ti3AlC2 and Ti3Al0. 8Sn0. 2C2 MAX phases: A comparison
CN101550030A (zh) 一种三维网络碳化硅表面制备氧化铝陶瓷薄膜的方法
CN106045550A (zh) SiC‑ZrC梯度改性碳/碳复合材料的制备方法
CN112853260B (zh) 一种粉末包埋渗涂层的制备方法
Sarkar et al. Formation and densification of mullite through solid-oxide reaction technique using commercial-grade raw materials
CN109704798A (zh) 真空浸渍结合反应熔体浸渗RMI制备C/SiC-Diamond复合材料的方法
Ye et al. Effect of different preparation methods on the microstructure and mechanical properties of Si3N4 ceramic composites
CN103274617A (zh) 一种磷酸二氢铝纳微粘结剂及其制备方法
CN103614808A (zh) 带有绒毛状晶须的莫来石纤维及制备方法
Yu et al. A novel strategy for the fabrication of AlN–AlON refractories: nitrogen gas pressure sintering of Al4O4C
CN106966744B (zh) 一种碳纤维增强氧化铝陶瓷复合材料及其制备方法
Guo et al. Air-brazed Al2O3 joint with a novel bismuth glass
CN113735590B (zh) 一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品
CN106631161A (zh) 一种在碳基材料表面制备抗高温氧化复合涂层的方法
CN109231990A (zh) 一种碳化钨-金刚石复合材料的制备方法
CN108440006A (zh) 过渡金属元素调控碳纤维增强陶瓷基复合材料界面的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180824