CN109231990A - 一种碳化钨-金刚石复合材料的制备方法 - Google Patents

一种碳化钨-金刚石复合材料的制备方法 Download PDF

Info

Publication number
CN109231990A
CN109231990A CN201811310895.3A CN201811310895A CN109231990A CN 109231990 A CN109231990 A CN 109231990A CN 201811310895 A CN201811310895 A CN 201811310895A CN 109231990 A CN109231990 A CN 109231990A
Authority
CN
China
Prior art keywords
tungsten carbide
diamond
preparation
sintering
diamond composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811310895.3A
Other languages
English (en)
Inventor
张建峰
葛梦妮
于淞百
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201811310895.3A priority Critical patent/CN109231990A/zh
Publication of CN109231990A publication Critical patent/CN109231990A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

本发明属于先进陶瓷材料制备技术领域,具体涉及一种碳化钨‑金刚石复合材料的制备方法。首先在氩气或氮气氛下,利用前驱体Si2(CH3)6分解,在金刚石粉体表面生成厚度为20~50nm的碳化硅纳米颗粒包覆层;然后将该金刚石粉体与碳化钨均匀混合并进行放电等离子体烧结,制备得到碳化钨‑金刚石复合材料。本发明制备工艺简单,包覆均匀,制备的复合材料具有更高的硬度和断裂韧性,有望应用于机械加工刀具、高耐磨模具等,具有广阔的应用前景。

Description

一种碳化钨-金刚石复合材料的制备方法
技术领域
本发明属于先进陶瓷材料制备技术领域,具体涉及一种碳化钨-金刚石复合材料的制备方法。
背景技术
硬质合金材料是有史以来发展最为成功的合成材料之一,其具有硬度高、强度高、韧性好等优势,同时兼具优良的耐磨、耐热、耐腐蚀等性能,被称为“工业牙齿”。硬质合金材料中,碳化钨基硬质合金发现最早,使用最广,以碳化钨为基体的硬质合金约占90%以上,这使得碳化钨在硬质合金领域占据着相当重要的地位。
随着现代工业的快速发展,对硬质合金材料的硬度、韧性等要求也不断提高,金刚石已广泛用于切削工具或作为增强相,以提高其他切削材料(如碳化钨和氧化铝)的硬度和断裂韧性。其中碳化钨-金刚石烧结体是一种号称“斯拉乌季契”(Slavutich)的超硬复合材料,硬质合金骨架相,金刚石颗粒均匀潜铸在其中,两者牢牢结合在一起,从而满足工业对超硬材料的要求。然而,这种复合材料因具较强的共价键很难通过传统的无压烧结或热压来致密化,并且在高温、低压和长烧结时间内,金刚石易于相变为石墨,而复合材料也易产生腐蚀现象,导致产品开裂和硬度低,降低材料的使用寿命。金刚石粉末的表面改性从而在高温高压下提高其烧结性能引起了科研工作者的关注。通过将碳化物形成元素(如Ti、W、Cr等)涂覆到金刚石粉末上与金刚石表面反应形成碳化物过渡层,可产生化学键合作用并有效改善金刚石颗粒与其它切削材料之间的界面粘合作用,避免金刚石颗粒与金属之间的直接接触,防止金刚石表面的氧化和石墨化。
碳化硅与金刚石具有相似的晶体结构,两者热膨胀性能接近,兼容性好。但现有直接在金刚石颗粒上制备碳化硅涂层的研究较少,Miyamoto等人使用SiO粉末与基体碳气相反应制备SiC涂层的金刚石复合材料,提高了金刚石的抗氧化性,有可能提高其烧结性能(Miyamoto Y,Kashiwagi T,Hirota K,et al.J.Am.Cera.Soc.2003,86(1):73-76.)。寻找一种简单高效的金刚石复合材料的制备方法,并将其与切削材料有效复合,进而提高切削材料的硬度和断裂韧性,有利于切削材料向高强、高硬、高韧的方向进一步发展。
发明内容
发明目的:本发明提出一种碳化钨-金刚石复合材料的制备方法。采用这种方法制作的硬质合金材料具有优异的机械性能和高强、高硬、高断裂韧性等优点。有望应用于机械加工刀具、高耐磨模具等,具有广阔的应用前景。
技术方案:为解决上述技术问题,本发明采用如下技术方案:一种碳化钨-金刚石复合材料的制备方法,包括以下步骤:
(1)金刚石粉体表面包覆:首先在氩气或氮气气氛下,利用前驱体Si2(CH3)6分解在金刚石粉体表面生成厚度为20~50nm的包覆碳化硅纳米颗粒的金刚石粉体;
(2)碳化钨-金刚石复合材料的烧结:然后将步骤1)制备的包覆碳化硅纳米颗粒的金刚石粉体与碳化钨均匀混合并进行放电等离子体烧结,制备得到碳化钨-金刚石复合材料。
其中,所述步骤(1)中金刚石粉体的平均粒径为2~7μm,纯度≥99%。
其中,所述的碳化钨-金刚石复合材料具体的制备步骤如下:
1a)将干燥、过筛处理后的金刚石粉体置于旋转反应室内抽真空预热,然后利用氩气或氮气将蒸发器中的前驱体Si2(CH3)6带入旋转反应室内,使前驱体分解生成碳化硅,并沉积到金刚石表面,反应结束后,关闭阀门,冷却至室温,取出包覆后的金刚石粉末;
2a)将步骤1a)得到的包覆后的金刚石粉末和碳化钨粉体按比例均匀混合并预先压实置于无压烧结石墨模具中,放入放电等离子体烧结炉中进行烧结成型,结束后,关闭电源并冷却至室温,取出石墨模具中的样品。
其中,所述步骤1a)的旋转反应室旋转速度为15~45r/min,包覆温度为773~973K,反应时间为0.5~1h。
其中,所述步骤2a)中包覆后的金刚石粉末与碳化钨粉体按照体积比为1:2.3~9的比例混合。
其中,所述步骤2a)中金刚石粉末与碳化钨粉体混合后预先压实,预压压力为30~50Mpa。
其中,所述步骤2a)中烧结条件为:烧结升温速率为50~100K/min,烧结温度为1673~1973K,保温时间为3~10min,烧结气氛为氩气或氮气。
有益效果:本发明提供的一种碳化钨-金刚石复合材料的制备方法,技术方案操作简单,得到的硬质合金复合材料具有优异的机械性能和高强、高硬、高断裂韧性等优势,有望应用于机械加工刀具、高耐磨模具等。
附图说明
图1为本发明实施例1得到的碳化钨-金刚石复合材料的扫描电镜图;
图2为实施例1、实施例2以及与分别在同等条件下未经包覆碳化硅处理的碳化钨-金刚石复合材料的XRD图;
图3为本发明实施例3得到的碳化钨-金刚石复合材料测试断裂韧性后的扫描电镜图;
图4为本发明实施例4得到的碳化钨-金刚石复合材料的扫描电镜图;
图5为本发明对比例1得到的碳化钨-金刚石复合材料的扫描电镜图。
具体实施方式
以下为本发明的优选实施方式,仅用于解释本发明,而非用于限制本发明,且由该说明所作出的相关改进都属于本发明所附权利要求所保护的范围。
实施例1
本实施例提供了一种碳化钨-金刚石复合材料的制备方法,制备步骤如下:
将干燥、过筛处理后的5g平均粒径为7μm金刚石粉体置于旋转反应室内并抽真空预热,然后利用氩气将蒸发器中的前驱体Si2(CH3)6带入反应室内,使前驱体分解生成碳化硅,并沉积到金刚石表面,其中旋转反应器的旋转转速为15r/min,包覆温度为873K,反应时间为0.5h。反应结束后,关闭阀门,冷却至室温。取出包覆后的粉末,与碳化钨粉体按体积比为1:5的比例均匀混合,50MPa压力下预压后置于石墨模具中放电等离子烧结成型,烧结升温速率为100K/min,烧结温度为1873K,保温时间为10min,烧结气氛为氩气。结束后,关闭电源并冷却至室温,取出石墨模具中的样品。
附图1为所属实验参数下获得的碳化钨-金刚石材料的扫描电镜图,结果表明此时获得的样品烧结完好,金刚石形貌无相变迹象。
实施例2
本实施例提供了一种碳化钨-金刚石复合材料的制备方法,制备步骤如下:
将干燥、过筛处理后的5g平均粒径为5μm的金刚石粉体置于旋转反应室内并抽真空预热,然后利用氩气将蒸发器中的前驱体Si2(CH3)6带入反应室内,使前驱体分解生成碳化硅,并沉积到金刚石表面,其中旋转反应器的旋转转速为45r/min,包覆温度为773K,反应时间为0.5h。反应结束后,关闭阀门,冷却至室温。取出包覆后的粉末,与碳化钨粉体按体积比为1:2.3的比例均匀混合,40MPa压力下预压后置于石墨模具中放电等离子烧结成型,烧结升温速率为50K/min,烧结温度为1973K,保温时间为5min,烧结气氛为氩气。结束后,关闭电源并冷却至室温,取出石墨模具中的样品。
图2为实施例1和实施例2中1873K和1973K下获得的碳化钨-金刚石复合材料与同等条件下未经包覆碳化硅处理的碳化钨-金刚石复合材料的XRD图。在1873K时,可以明显看到金刚石的峰位,在1973K时,有碳化硅存在的样品可以看出明显的金刚石的峰,而未经碳化硅包覆处理的样品的金刚石峰几乎不可见。表明本发明制备的材料在高温下可以有效抑制金刚石的石墨化。
实施例3
本实施例提供了一种碳化钨-金刚石复合材料的制备方法,制备步骤如下:
将干燥、过筛处理后的5g平均粒径为7μm的金刚石粉体置于旋转反应室内并抽真空预热,然后利用氩气将蒸发器中的前驱体Si2(CH3)6带入反应室内,使前驱体分解生成碳化硅,并沉积到金刚石表面,其中旋转反应器的旋转转速为30r/min,包覆温度为873K,反应时间为0.75h。反应结束后,关闭阀门,冷却至室温。取出包覆后的粉末,与碳化钨粉体按体积比为1:5的比例均匀混合,30MPa压力下预压后置于石墨模具中放电等离子烧结成型,烧结升温速率为75K/min,烧结温度为1773K,保温时间为10min,烧结气氛为氮气。结束后,关闭电源并冷却至室温,取出石墨模具中的样品。
附图3为所属实验参数下获得的碳化钨-金刚石复合材料测试断裂韧性后的扫描电镜图,可以看出此时获得的样品强度很高,经过断裂测试后样品依然保持原结构不变。
实施例4
本实施例提供了一种碳化钨-金刚石复合材料的制备方法,制备步骤如下:
将干燥、过筛处理后的5g平均粒径为2μm金刚石粉体置于旋转反应室内并抽真空预热,然后利用氩气将蒸发器中的前驱体Si2(CH3)6带入反应室内,使前驱体分解生成碳化硅,并沉积到金刚石表面,其中旋转反应器的旋转转速为30r/min,包覆温度为873K,反应时间为1h。反应结束后,关闭阀门,冷却至室温。取出包覆后的粉末,与碳化钨粉体按体积比为1:9的比例均匀混合,40MPa压力下预压后置于石墨模具中放电等离子烧结成型,烧结升温速率为50K/min,烧结温度为1673K,保温时间为3min,烧结气氛为氮气。结束后,关闭电源并冷却至室温,取出石墨模具中的样品。
图4为本实施例的实验参数下获得的碳化钨-金刚石复合材料的扫描电镜图,表明此时获得的样品烧结完成,但未烧结致密。
实施例5
本实施例提供了一种碳化钨-金刚石复合材料的制备方法,制备步骤如下:
将干燥、过筛处理后的5g平均粒径为2μm金刚石粉体置于旋转反应室内并抽真空预热,然后利用氩气将蒸发器中的前驱体Si2(CH3)6带入反应室内,使前驱体分解生成碳化硅,并沉积到金刚石表面,其中旋转反应器的旋转转速为30r/min,包覆温度为973K,反应时间为1h。反应结束后,关闭阀门,冷却至室温。取出包覆后的粉末,与碳化钨粉体按体积比为1:4的比例均匀混合,50MPa压力下预压后置于石墨模具中放电等离子烧结成型,烧结升温速率为100K/min,烧结温度为1873K,保温时间为5min,烧结气氛为氩气。结束后,关闭电源并冷却至室温,取出石墨模具中的样品。
将所属实验参数下获得的碳化钨-金刚石复合材料进行硬度和韧度测试,得到相应的维氏硬度值与断裂韧性值,列于表1。
实施例6
本实施例提供了一种碳化钨-金刚石复合材料的制备方法,制备步骤如下:
将干燥、过筛处理后的5g平均粒径为2μm金刚石粉体置于旋转反应室内并抽真空预热,然后利用氩气将蒸发器中的前驱体Si2(CH3)6带入反应室内,使前驱体分解生成碳化硅,并沉积到金刚石表面,其中旋转反应器的旋转转速为30r/min,包覆温度为973K,反应时间为0.5h。反应结束后,关闭阀门,冷却至室温。取出包覆后的粉末,与碳化钨粉体按体积比为1:4的比例均匀混合,50MPa压力下预压后置于石墨模具中放电等离子烧结成型,烧结升温速率为100K/min,烧结温度为1973K,保温时间为5min,烧结气氛为氩气。结束后,关闭电源并冷却至室温,取出石墨模具中的样品。
将所属实验参数下获得的碳化钨-金刚石复合材料进行硬度和韧度测试,得到相应的维氏硬度值与断裂韧性值,列于表1。
对比例1
本实施例提供了一种碳化钨-金刚石复合材料的制备方法,制备步骤如下:
将干燥、过筛处理后的5g平均粒径为2μm金刚石粉体和碳化钨粉体按体积比为1:9的比例均匀混合,30MPa压力下预压后置于石墨模具中,放入放电等离子体烧结炉中进行烧结成型,烧结升温速率为100K/min,烧结温度为1973K,保温时间为10min,烧结气氛为氩气。结束后,关闭电源并冷却至室温,取出石墨模具中的样品。
附图5为所属实验参数下获得的碳化钨-金刚石材料的扫描电镜图,结果表明此时获得的烧结后样品在高温下结构出现了断裂,出现了严重的石墨化现象。
对比例2
本实施例提供了一种碳化钨-金刚石复合材料的制备方法,制备步骤如下:
将干燥、过筛处理后的5g平均粒径为2μm金刚石粉体和碳化钨粉体按体积比为1:4的比例均匀混合,50MPa压力下预压后置于石墨模具中,放入放电等离子体烧结炉中进行烧结成型,烧结升温速率为100K/min,烧结温度为1873K,保温时间为10min,烧结气氛为氩气。结束后,关闭电源并冷却至室温,取出石墨模具中的样品。
将所属实验参数下获得的碳化钨-金刚石复合材料进行硬度和韧度测试,得到相应的维氏硬度值与断裂韧性值,列于表1。
对比例3
本实施例提供了一种碳化钨-金刚石复合材料的制备方法,制备步骤如下:
将干燥、过筛处理后的5g平均粒径为2μm金刚石粉体和碳化钨粉体按体积比为1:4的比例均匀混合,50MPa压力下预压后置于石墨模具中,放入放电等离子体烧结炉中进行烧结成型,烧结升温速率为100K/min,烧结温度为1973K,保温时间为10min,烧结气氛为氩气。结束后,关闭电源并冷却至室温,取出石墨模具中的样品。
将所属实验参数下获得的碳化钨-金刚石复合材料进行硬度和韧度测试,得到相应的维氏硬度值与断裂韧性值,列于表1。
表1为本发明实施例5、6和对比例2、3获得的碳化钨-金刚石(金刚石体积含量为20%)复合材料的维氏硬度和断裂韧性对照表。可以看出,有碳化硅存在的样品的维氏硬度和断裂韧性都有很大的提高,本发明实施例5制备条件下制备的碳化钨-金刚石复合材料的硬度与韧性最优。本发明所得样品具有硬度高、断裂韧性好的特点。
表1碳化钨-金刚石复合材料的维氏硬度和断裂韧度表

Claims (7)

1.一种碳化钨-金刚石复合材料的制备方法,其特征在于:包括以下步骤:
1)金刚石粉体表面包覆:首先在氩气或氮气气氛下,利用前驱体Si2(CH3)6分解在金刚石粉体表面生成厚度为20~50nm的包覆碳化硅纳米颗粒的金刚石粉体;
2)碳化钨-金刚石复合材料的烧结:然后将步骤1)制备的包覆碳化硅纳米颗粒的金刚石粉体与碳化钨均匀混合并进行放电等离子体烧结,制备得到碳化钨-金刚石复合材料。
2.根据权利要求1所述的一种碳化钨-金刚石复合材料的制备方法,其特征在于:所述步骤1)中金刚石粉体的平均粒径为2~7μm,纯度≥99%。
3.根据权利要求1所述的一种碳化钨-金刚石复合材料的制备方法,其特征在于:所述具体的制备步骤如下:
1a)将干燥、过筛处理后的金刚石粉体置于旋转反应室内抽真空预热,然后利用氩气或氮气将蒸发器中的前驱体Si2(CH3)6带入旋转反应室内,使前驱体分解生成碳化硅,并沉积到金刚石表面,反应结束后,关闭阀门,冷却至室温,取出包覆后的金刚石粉末;
2a)将步骤1)得到的包覆后的金刚石粉末和碳化钨粉体按比例均匀混合并预先压实置于无压烧结石墨模具中,放入放电等离子体烧结炉中进行烧结成型,结束后,关闭电源并冷却至室温得到样品,取出石墨模具中的样品即得。
4.根据权利要求3所述的一种碳化钨-金刚石复合材料的制备方法,其特征在于:所述步骤1a)的旋转反应室旋转速度为15~45r/min,包覆温度为773~973K,反应时间为0.5~1h。
5.根据权利要求3所述的一种碳化钨-金刚石复合材料的制备方法,其特征在于:所述步骤2a)中包覆后的金刚石粉末与碳化钨粉体按照体积比为1:2.3~9的比例混合。
6.根据权利要求3所述的一种碳化钨-金刚石复合材料的制备方法,其特征在于:所述步骤2a)中金刚石粉末与碳化钨粉体混合后预先压实的压力为30~50Mpa。
7.根据权利要求3所述的一种碳化钨-金刚石复合材料的制备方法,其特征在于:所述步骤2a)中烧结条件为:烧结升温速率为50~100K/min,烧结温度为1673~1973K,保温时间为3~10min,烧结气氛为氩气或氮气。
CN201811310895.3A 2018-11-06 2018-11-06 一种碳化钨-金刚石复合材料的制备方法 Pending CN109231990A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811310895.3A CN109231990A (zh) 2018-11-06 2018-11-06 一种碳化钨-金刚石复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811310895.3A CN109231990A (zh) 2018-11-06 2018-11-06 一种碳化钨-金刚石复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN109231990A true CN109231990A (zh) 2019-01-18

Family

ID=65076887

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811310895.3A Pending CN109231990A (zh) 2018-11-06 2018-11-06 一种碳化钨-金刚石复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN109231990A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257008A (zh) * 2019-06-25 2019-09-20 郑州航空工业管理学院 一种聚合多晶金刚石磨粒的制造方法
CN114315358A (zh) * 2021-12-27 2022-04-12 海南大学 一种全致密无粘结剂碳化钨陶瓷及其制备方法
CN116143542A (zh) * 2022-12-08 2023-05-23 中国科学院上海硅酸盐研究所 一种金刚石结合碳化硅复相陶瓷的制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103100977A (zh) * 2013-01-29 2013-05-15 中国地质大学(北京) 一种高强度的金刚石砂轮修整笔的制备方法
CN105753476A (zh) * 2016-02-16 2016-07-13 武汉理工大学 采用放电等离子烧结制备超高硬度金刚石复合材料的方法
CN106191807A (zh) * 2016-08-03 2016-12-07 中国科学院深圳先进技术研究院 一种具有金刚石涂层的硬质合金件及其制备方法
CN107107206A (zh) * 2014-10-29 2017-08-29 住友电气工业株式会社 复合金刚石体和复合金刚石工具
CN108145168A (zh) * 2017-12-25 2018-06-12 富耐克超硬材料股份有限公司 细粒度金刚石复合片及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103100977A (zh) * 2013-01-29 2013-05-15 中国地质大学(北京) 一种高强度的金刚石砂轮修整笔的制备方法
CN107107206A (zh) * 2014-10-29 2017-08-29 住友电气工业株式会社 复合金刚石体和复合金刚石工具
CN105753476A (zh) * 2016-02-16 2016-07-13 武汉理工大学 采用放电等离子烧结制备超高硬度金刚石复合材料的方法
CN106191807A (zh) * 2016-08-03 2016-12-07 中国科学院深圳先进技术研究院 一种具有金刚石涂层的硬质合金件及其制备方法
CN108145168A (zh) * 2017-12-25 2018-06-12 富耐克超硬材料股份有限公司 细粒度金刚石复合片及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIDEKI MORIGUCHI等人: "Sintering behavior and properties of diamond/cemented carbides", 《INTERNATIONAL JOURNAL OF REFRACTORY METALS AND HARD MATERIALS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257008A (zh) * 2019-06-25 2019-09-20 郑州航空工业管理学院 一种聚合多晶金刚石磨粒的制造方法
CN114315358A (zh) * 2021-12-27 2022-04-12 海南大学 一种全致密无粘结剂碳化钨陶瓷及其制备方法
CN114315358B (zh) * 2021-12-27 2023-01-24 海南大学 一种全致密无粘结剂碳化钨陶瓷及其制备方法
CN116143542A (zh) * 2022-12-08 2023-05-23 中国科学院上海硅酸盐研究所 一种金刚石结合碳化硅复相陶瓷的制备方法和应用

Similar Documents

Publication Publication Date Title
CN109053206B (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
CN101892411B (zh) 一种新型wc基硬质合金材料及其制备方法
CN101456737B (zh) 一种碳化硼基复合陶瓷及其制备方法
CN113292318A (zh) 一种zta/高铬铸铁复合耐磨材料的制备方法
WO2016062163A1 (zh) 金属陶瓷复合体及其制备方法
CN109231990A (zh) 一种碳化钨-金刚石复合材料的制备方法
CN109023220A (zh) 一种反应等离子喷涂制备Ti-SiC-C复合涂层的方法
CN109439991A (zh) 一种TiB2晶须高温强韧化Ti(C,N)基金属陶瓷材料制备方法
CN103464764A (zh) 一种金属基耐磨耐蚀表面涂层复合材料及其制备方法
CN109182874A (zh) 一种添加石墨烯的Ti(C,N)基金属陶瓷的制备方法
CN110747378B (zh) 一种Ti3AlC2-Al3Ti双相增强Al基复合材料及其热压制备方法
CN108101543A (zh) 一种碳化硅基碳陶摩擦材料及其模压制备方法
CN111747748B (zh) 超高温防/隔热一体化ZrC/Zr2C复相材料及其制备方法
CN100513625C (zh) 无定形碳纤维铝基复合材料的制备方法
CN108439990B (zh) 一种二硼化钛基陶瓷复合材料及其制备方法
CN109663900A (zh) 一种钢铁基复合板锤及其制备方法
CN108690929A (zh) 内生型纳米颗粒增强高熵合金基复合材料的制备方法
CN102731071A (zh) 一种铝钛硼和稀有金属协同增韧氧化铝的制备方法
CN1737184A (zh) 一种耐磨耐蚀材料及其制备方法
CN1594625A (zh) 一种用粉末原料制备金属陶瓷的方法
CN113582698A (zh) 一种ZrB2-SiC增韧B4C防弹片的制备方法
Zhao et al. Influence of applied pressure on the microstructure and properties of Ti (C, N)–TiB2–Co cermets prepared in situ by reactive hot-pressing
CN109180209B (zh) 一种采用原位自生法制备碳化硅纳米线增强石墨-碳化硅复合材料的方法
CN112239360A (zh) 一种氧化硼与氧化镁及其反应产物协同增韧的碳化钨复合材料及其制备
CN113105243A (zh) 表面具有碳化硅和硅涂层的b4c/石墨复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190118

RJ01 Rejection of invention patent application after publication