WO2006112242A1 - 基板検査装置 - Google Patents

基板検査装置 Download PDF

Info

Publication number
WO2006112242A1
WO2006112242A1 PCT/JP2006/306412 JP2006306412W WO2006112242A1 WO 2006112242 A1 WO2006112242 A1 WO 2006112242A1 JP 2006306412 W JP2006306412 W JP 2006306412W WO 2006112242 A1 WO2006112242 A1 WO 2006112242A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate data
substrate
scanned image
image
specific part
Prior art date
Application number
PCT/JP2006/306412
Other languages
English (en)
French (fr)
Inventor
Daisuke Imai
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to JP2007521156A priority Critical patent/JPWO2006112242A1/ja
Publication of WO2006112242A1 publication Critical patent/WO2006112242A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/282Determination of microscope properties
    • H01J2237/2826Calibration

Definitions

  • the present invention relates to a substrate inspection apparatus that performs substrate inspection based on a scanning image obtained by two-dimensionally scanning a charged particle beam such as an electron beam or an ion beam on a substrate. Regarding location.
  • a substrate inspection apparatus that performs substrate inspection based on a scanning image obtained by two-dimensionally scanning a charged particle beam such as an electron beam or an ion beam on a substrate is known. For example, in the manufacturing process of a TFT array substrate used in a TFT display device, an inspection is performed to determine whether the manufactured TFT array substrate is correctly driven. In this TFT array substrate inspection, for example, a scanning image is obtained by scanning an electron beam on the TFT array substrate, and the inspection is performed based on the scanning image.
  • the electron beam and the stage are generally moved in the X-axis direction and the Y-axis direction, and usually one track in the X-axis direction.
  • the scanning signal for one frame is obtained by repeating the operation of shifting one line in the Y-axis direction.
  • Inspecting a TFT array substrate with a scanned image requires that the position of each pixel included in the TFT array panel be accurately identified with the scanned image.
  • FIG. 6 is a diagram for explaining calculation of pixel positions of a panel on a TFT array substrate in a conventional TFT array substrate inspection apparatus!
  • Fig. 6 (a) shows the coordinate position in the design of the TFT array substrate, and
  • Fig. 6 (b) shows the pixel of the panel which is the active area of the TFT array.
  • the TFT array substrate has a panel size, number of installation surfaces, Design values such as the position of each panel are determined, and the manufacturing process is performed based on these specifications and design values.
  • the position of each panel and the position of each pixel on the panel are obtained by calculation based on this design value, and the inspection is performed based on this position. .
  • the coordinates of the reference position of each panel are calculated based on the design information, and the obtained coordinate data Is input to the substrate inspection apparatus, and based on this coordinate data, the electron beam and stage are moved relative to each other in the X-axis direction and the Y-axis direction to obtain a scanned image.
  • the pixel position is shifted in the substrate inspection, so that it takes time to specify the defect position.
  • One factor that causes the deviation of the coordinate position is that the coordinate system of the stage and the coordinate system of the scanning beam do not match.
  • the position of the scanned image obtained by obtaining the detection signal and the stage A displacement occurs between the substrate and the position of the substrate placed on the substrate.
  • this misalignment correction is performed by providing a mark for alignment on the sample (TFT array substrate), checking the position of the mark provided on the sample while operating the stage, and moving the stage. This is done by transforming the coordinate system of the beam and the coordinate system of the scanning beam.
  • a mark is provided on the stage that supports the sample. The applicant of the present application has applied for an inspection for obtaining the positional deviation of the scanning image coordinate stage of the mark and the coordinate system of the scanning beam.
  • the coordinate position of an inspection target region such as a panel of a substrate is conventionally obtained by calculation based on a design value.
  • an error in the substrate manufacturing process is taken into consideration for this coordinate position. Therefore, the inspection target position formed on the actual substrate may deviate from the coordinate position obtained by calculation. This shift in coordinate position is not uniform and varies depending on manufacturing conditions and environmental conditions.
  • FIG. 7 is a diagram for explaining a shift in the coordinate position of the inspection target region.
  • the broken line schematically shows the panel position 104 calculated based on the design information
  • the solid line schematically shows the panel position 105 formed on the actual substrate.
  • the actual coordinate position (panel position) 105 of the active area is deviated from the design coordinate position 104 due to a manufacturing error.
  • the direction and amount of this coordinate shift differ for each panel on the same TFT array substrate, and are not uniform.
  • an object of the present invention is to solve the above-described conventional problems, eliminate position errors in the manufacturing process, increase position accuracy, and increase inspection accuracy.
  • Another object of the present invention is to obtain an accurate position of an inspection target region on a substrate in order to eliminate a position error in a manufacturing process.
  • a substrate inspection apparatus is a substrate inspection apparatus that performs substrate inspection based on a scanning image obtained by two-dimensionally scanning a charged particle beam on a substrate. Coordinate data acquisition means for acquiring the coordinate data of the specific part. In the substrate inspection, the inspection position on the scanned image is specified based on the coordinate data acquired by the coordinate data acquisition means, so that the substrate inspection is performed without being affected by the error due to the panel displacement.
  • a first form of the coordinate data acquisition means of the present invention is a form in which a scan image is displayed and coordinate data is acquired by designating a specific part of the examination target region on the display image.
  • Designation means for designating the specific part on the display image in which the image is displayed on the display means, and coordinate data reading means for reading out coordinate data of the designated specific part from the scanned image.
  • the display means displays the scanned image.
  • the designation means moves the cursor on the display image displayed on the display means and designates a specific part of the displayed scan image.
  • the coordinate data reading means reads the coordinate data of the scanned image corresponding to the position based on the position on the display means designated by the designation means. The read coordinate data can be registered.
  • the second form of the coordinate data acquisition means of the present invention is an extraction means for automatically extracting a specific part from a scanned image by data processing, and a coordinate image of the specific part extracted by the extracting means. Coordinate data reading means for reading from.
  • the extracting means searches the scanned image and extracts a specific part.
  • the specific part can be extracted, for example, by searching for a shape characteristic of the specific part from the scanned image by image processing.
  • the coordinate data reading means reads the coordinate data of the scanned image corresponding to the position based on the position of the specific part extracted by the extracting means, as in the first embodiment. The read coordinate data can be registered.
  • the area to be inspected can be a rectangular area, and the specific part can be a part of the four corners of the rectangular area.
  • the substrate may be a TFT array substrate on which a TFT array is formed.
  • the inspection target region may be a panel portion on which TFTs on the TFT array are formed.
  • the coordinate data acquired by the coordinate data acquisition means can be registered.
  • the inspection position of a specific part of the TFT array substrate based on the registered coordinate data with respect to the electron beam scanning image obtained by two-dimensionally scanning the electron beam on the substrate.
  • the panel part is inspected.
  • FIG. 1 is a diagram for explaining the operation of a substrate inspection apparatus of the present invention.
  • FIG. 2 is a schematic block diagram for explaining a configuration example of a substrate inspection apparatus of the present invention.
  • FIG. 3 is a flowchart for explaining an operation of acquiring coordinate data by the substrate inspection apparatus of the present invention.
  • FIG. 4 is an example of a display screen on the display of the substrate inspection apparatus of the present invention.
  • FIG. 5 is a schematic block diagram for explaining another configuration example of the substrate inspection apparatus of the present invention.
  • FIG. 6 is a diagram for explaining the calculation of the pixel position of the panel on the TFT array substrate in the conventional TFT array substrate inspection apparatus!
  • FIG. 7 is a diagram for explaining a shift in the coordinate position of an inspection target region.
  • Substrate inspection device 2 ... Electron beam source, 3 ... Stage, 4 ... Detector, 5 ... Scanning image forming means, 6 ... Scanning image storage means, 7 ... Coordinate data acquisition means, 7a ... Designating means, 7h- Coordinate data reading means, 7c, 8 ... Coordinate data storage means, 9 ... Control means, 10 ... Running image, 11 "'TFT array substrate, 12 ... N", 13- TFT array, 14— 1 to 14— 4 .. Specific part, 15... Mark, 20... 21 display image, 21a.
  • 21d Coordinate value area
  • 21e "'Position Find Start button, 2 ⁇ ⁇ ' Next button, 21g-Back button, 21h"'Align area, 21i-Apply button, 21j, 21k, 211 ... Display state, 21m ... Guide list, 22 ⁇ Nonore statue, 23—1 to 23—4 ⁇ Corner part.
  • FIG. 1 is a diagram for explaining the operation of the substrate inspection apparatus of the present invention, and schematically shows a state in which coordinate data of a specific part of an inspection target region on a substrate is obtained from a scanned image.
  • the substrate inspection apparatus of the present invention relates to a substrate inspection apparatus that performs substrate inspection based on a scanned image obtained by two-dimensionally scanning a charged particle beam on a substrate.
  • a substrate inspection apparatus that performs substrate inspection based on a scanned image obtained by two-dimensionally scanning a charged particle beam on a substrate.
  • an electron beam is used as a charged particle beam
  • the TFT array substrate on which the TFT array is formed is scanned two-dimensionally to obtain a scanned image. From this scanned image, a panel on which the TFT on the TFT array is formed.
  • a case will be described in which a defect inspection is performed on a pixel formed in the panel portion with the portion as an inspection target region.
  • FIG. 1 (a) shows a scanned image of the TFT array substrate
  • FIG. 1 (b) shows a displayed image of the scanned image.
  • FIG. 1 (a) shows an example of a scanned image obtained by scanning a TFT array substrate supported on a stage (not shown) with an electron beam.
  • the scanned image 10 includes a TFT array substrate 11 and a mark 15 provided on the stage.
  • a TFT array 11 is formed on the TFT array substrate 11.
  • twelve panels 12 of [00], [01], [02], [03], to [23] are arranged as the TFT array 11.
  • Each nonel 12 is formed with a plurality of pixels (not shown).
  • the number and arrangement pattern of this panel are not limited to this example and can be arbitrary.
  • the substrate inspection apparatus uses the panel 12 in the scanned image as an inspection target area, and performs a defect inspection of pixels included in the panel 12, for example.
  • the substrate inspection apparatus of the present invention acquires the coordinate position of the specific portion 14 of the panel 12 in the scanned image 10 in order to specify the position of each panel on the TFT array substrate 11.
  • the four corner parts of the rectangular shape of the panel 12 are designated as the specific parts 14-1 to 14-4, and the position of each panel 12 is specified by obtaining the coordinate position of the specific part.
  • the position of panel 12 By specifying the position of panel 12, the position of each pixel included in panel 12 can be specified.
  • FIG. 1B shows a display image in which one panel in the scanned image of FIG. 1A is displayed on display means (not shown).
  • a panel image 21 of the panel 12 indicated by [00] is displayed.
  • the force that uses the corner parts 23-1 to 23-4 of the panel image 22 as the specific part is not limited to the corner part.
  • the coordinate data of the region to be inspected is acquired using the display image in which the scanned image is displayed on the display means.
  • the scanned image is subjected to image processing. You can also obtain the coordinate data of the inspection target area directly.
  • the mark 14 in FIG. 1 (a) is an index position for determining the positional relationship between the coordinate system of the stage and the coordinate system of the scanning beam such as an electron beam. Then, the position of the mark is obtained from the scanned image of the mark on the stage, and the positional deviation is obtained using this mark position as the index position.
  • the positional relationship between the coordinate system of the stage and the coordinate system of the electron beam is determined from the position of the mark 14 by using the scanned image 10, and each panel
  • the position of the specific region can be specified on the panel on the TFT array substrate, and the accurate position of the inspection target area on the substrate can be obtained.
  • FIG. 2 is a schematic block diagram for explaining a configuration example of the substrate inspection apparatus of the present invention.
  • the scanning inspection apparatus 1 includes an electron beam source 2, a stage 3, a detector 4, a scanned image forming unit 5, a scanned image storage unit 6, a coordinate data acquisition unit 7, a coordinate data storage unit 8, and a control unit 9. Prepare.
  • the electron beam source 2 and the stage 3 scan the TFT array substrate (shown in the figure) placed on the stage 3 under the control of the control means 9, and detect secondary electrons having the TFT array substrate power. Detect with ejector 4.
  • the scanned image forming means 5 forms a scanned image based on the secondary electrons detected by the detector 4. The formed scanned image is stored in the scanned image storage means 6.
  • the substrate inspection apparatus 1 includes a TFT array substrate panel (scanner) The coordinate data of the specific part set in (target area) is acquired.
  • the scan image stored in the scan image storage unit 6 is displayed on the display unit 20 and the displayed display image is observed, whereby the TFT array substrate panel (scan target area) is displayed. ) Is confirmed in advance, and the coordinate data acquisition means 7 acquires the coordinate data of the specific part.
  • the display means 20 may display all the panels in a lump in addition to displaying scanned images of a plurality of panels included in the TFT array substrate according to a preset order.
  • the display means 20 can be an arbitrary display device such as a liquid crystal display or a CRT.
  • the coordinate data acquisition unit 7 shown in FIG. 2 includes a designation unit 7a and a coordinate data reading unit 7b.
  • the designation means 7a designates the position on the display image displayed on the display means 20, and the coordinate data reading means 7b reads the coordinate data at the position designated by the designation means 7a from the scanned image storage means 6, and the coordinate data Store in storage means 8 and register.
  • the specification of the specific part by the specifying means 7a can be performed in a preset order.
  • the coordinate data storage means 8 can store the coordinate data of the specific part in the preset order by storing the coordinate data designated and read by the designation means 7a in the order of reading.
  • the specification of the specific part by the specifying means 7a is not limited to the preset order, but may be specified in any order. In this case, the specific part is set for each specific part so that the specific part can be identified. It is stored in the coordinate data storage means 8 together with the identification data such as the received address.
  • the designation unit 7a moves the cursor on the display unit 20 and operates a device such as a mouse or a key for operating the cursor position input, or a device for performing position designation on the display surface of the display unit 20 such as a touch panel. Any position specifying device such as can be used.
  • the coordinate data storage means 8 stores and registers the coordinate data of the specific part acquired by the coordinate data acquisition means 7.
  • the control means 9 reads the coordinate data registered in the coordinate data storage means 8, drives the electron beam source 2 and the stage 3, and scans again on the TFT array substrate (not shown). Then, secondary electrons are detected by the detector 4, and a scanned image is acquired.
  • the substrate inspection apparatus 1 designates a specific part for each TFT array substrate to be inspected.
  • the coordinate data is acquired by scanning the electron beam on the TFT array substrate (Signal Scan) to obtain a scanned image (SI), and using the scanned image obtained in the step S1, the coordinate data of a specific part is obtained.
  • the acquisition step (S2) is provided.
  • step S2 of acquiring coordinate data a panel to be displayed on the display of the display means is selected from the scanned image stored in the scanned image storage means.
  • the selection of this panel can be done in the preset order. For example, as shown in FIG. 1, in an example in which 12 panels 12 of [00], [01], [02], [03], ⁇ , [23] are arranged on the scanned image 10, [00] ⁇ [01] ⁇ [02] ⁇ [03] ⁇ ⁇ ⁇ [23] etc., set the order in advance, and select the panel according to this setting order.
  • the selection of the panel to be displayed on the display means is not limited to the preset selection order, and may be arbitrarily selected from the input means (S2a).
  • the scanned image of the panel selected in S2a is displayed on the display of the display means (S2b).
  • FIG. 4 is an example of a display screen on the display.
  • a display for acquiring and editing the coordinate data of the specific part designated on the panel image 22 is performed.
  • the scanned image of the selected panel is displayed as a panel image 22.
  • four corner parts (numbers 1 to 4 surrounded by circles in the figure) of the rectangular panel image 22 are set as specific parts.
  • the operator confirms the corner portion by observing the displayed panel image 22, and designates a specific portion by moving the cursor or pointer to the corner portion for alignment.
  • the four corners of the rectangular panel image 22 are shown in the upper left (circled number 1) and lower left (circled). Click in the counterclockwise direction (LU click, LD click, RD click, etc.) in the order of counterclockwise, such as number 2), lower right (circle 3), and upper right (circle 4). Click RU) and specify 4 specific parts.
  • this designation order can be set arbitrarily, it corresponds to the address stored in the coordinate data storage means, so that the designation order and the coordinate data storage order are set. If the data is stored in other than the setting order, it is specified by an address or the like so that the specified position corresponds to the storage destination and set so that the correspondence can be identified.
  • the scan image displayed in the scan image display area 21a is used for selecting a specific part for acquiring coordinate data, and is merely an auxiliary image for the scan image of the substrate inspection. (S2c).
  • buttons 21f adds the coordinate data to the guide list 21m.
  • the panel for which coordinate data has already been acquired, the panel for which coordinate data is currently being acquired, and the panel before the acquisition of coordinate data can be displayed in different display states.
  • display state 21 j indicates a panel for which coordinate data has already been acquired
  • display state 21k indicates a panel that is currently being acquired
  • display state 211 indicates a panel prior to acquisition of coordinate data
  • color and decoration are displayed. It can be made identifiable, for example, by changing the display.
  • the coordinate data of the display state 21j is registered and stored in the coordinate data storage means (S2g).
  • FIG. 5 is a schematic block diagram for explaining another configuration example of the substrate inspection apparatus of the present invention.
  • the configuration example shown in FIG. 5 automatically acquires the scanned image by performing image processing when acquiring the coordinate data of the specific portion of the scanning image force.
  • the configuration example and coordinate data acquisition shown in FIG. Although different in the configuration of the means 7, the other configurations are almost the same as the configuration example shown in FIG.
  • the coordinate data acquisition means 7 reads the scan image stored in the scan image storage means 6, searches for a specific part using the shape of the specific part etc. set as a search key in advance, and the coordinate data of the searched specific part Coordinate data extracting means 7c for extracting.
  • Image processing that extracts a specific part from the scanned image can use any algorithm.
  • the shape part corresponding to the scanning image force such as pattern processing using search keys such as angle information and shadow information of the corner part is searched. Can be done by algorithm.
  • the scanning beam apparatus of the present invention can be applied to an electron beam microanalyzer, a scanning electron microscope, an X-ray analyzer, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Thin Film Transistor (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Liquid Crystal (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】 製造工程における位置誤差を解消して、位置精度を高め、検査精度を高め、基板上の検査対象領域の正確な位置を取得する。 【解決手段】 基板検査装置1は、荷電粒子ビームを基板上で二次元的に走査させて得られる走査画像に基づいて基板検査を行う基板検査装置において、走査画像から基板上の検査対象領域の特定部位の座標データを取得する座標データ取得手段7を備える。基板検査において、座標データ取得手段で取得した座標データに基づいて走査画像上の検査位置を特定することで、誤差によるずれに影響されることなく基板検査を行う。    

Description

明 細 書
基板検査装置
技術分野
[0001] 本発明は、電子ビームやイオンビーム等の荷電粒子ビームを基板上で二次元的に 走査して得られる走査画像に基づいて基板検査を行う基板検査装置に関し、特に、 基板上の検査位置の特定に関する。
背景技術
[0002] 電子ビームやイオンビーム等の荷電粒子ビームを基板上で二次元的に走査して得 られる走査画像に基づいて基板検査を行う基板検査装置が知られている。例えば、 TFTディスプレイ装置に用いる TFTアレイ基板の製造工程では、製造された TFTァ レイ基板が正しく駆動するカゝ否かの検査が行われる。この TFTアレイ基板検査では、 例えば電子ビームを TFTアレイ基板で走査させることで走査画像を取得し、この走 查画像に基づ 、て検査を行って 、る。
[0003] 電子ビームを TFTアレイ基板上で二次元的に走査するには、電子ビームとステー ジを X軸方向及び Y軸方向に相対的に移動することによって、通常、 X軸方向に 1ラ イン分移動して検出信号を取得した後、 Y軸方向に 1ライン分ずらす操作を繰り返す ことによって 1フレーム分の走査信号を取得して 、る。
[0004] 走査画像によって TFTアレイ基板の検査を行うには、 TFTアレイのパネルが備える 各ピクセルの位置を走査画像で正確に特定する必要がある。
[0005] 従来、 TFTアレイ上に複数配置されるパネル内において、各ピクセルの座標位置 を求める際には、 TFTアレイの仕様等の設計上で定められて 、る値を用 、て計算に より求めている。
[0006] 図 6は、従来の TFTアレイ基板検査装置にお!、て、 TFTアレイ基板上のパネルの ピクセル位置の算出を説明するための図である。図 6 (a)は TFTアレイ基板の設計上 の座標位置を示し、図 6 (b)は TFTアレイのアクティブエリアであるパネルのピクセル を示している。
[0007] TFTアレイ基板は、その仕様にぉ ヽて、パネルの寸法や設置面数、基板上におけ る各パネルの配置位置等の設計値が定められ、製造工程ではこの仕様及び設計値 に基づいて製造される。製造された TFTアレイ基板を検査する際においても、この設 計値に基づ 、て各パネルの位置及びそのパネル上の各ピクセル位置を計算によつ て求め、この位置に基づいて検査を行う。
[0008] 図 6 (a)にお!/、て、 TFTアレイ基板 100に形成される複数のパネル 101にお!/、て、 各パネル 101の特定部位の位置を設計情報に基づいて算出して基準位置 102とし 、図 6 (b)〖こ示すように、この基準位置 102をパネル 101の原点として各ピクセル 103 の位置を算出する。
[0009] 一枚の TFTアレイ基板上に、例えば 16面のアクティブエリアであるパネルが設けら れる場合には、各パネルの基準位置の座標を設計情報に基づいて算出し、得られた 座標データを基板検査装置に入力し、この座標データに基づいて、電子ビームとス テージを X軸方向及び Y軸方向に相対的に移動させ、走査画像を取得する。
発明の開示
発明が解決しょうとする課題
[0010] 走査画像の取得において、座標位置がずれている場合には、基板検査においてピ クセル位置がずれるため、欠陥位置の特定に時間を要することになる。この座標位置 がずれる一つの要因として、ステージの座標系と走査ビームの座標系とがー致してい ない場合があり、この場合には、検出信号を取得して得られる走査画像の位置とステ ージ上に配置した基板の位置との間に位置ずれ (走査信号の視野ずれ)が生じるこ とになる。
[0011] 従来、この位置ずれの補正は、試料 (TFTアレイ基板)上に位置合わせのためのマ ークを設け、ステージを動作させながら試料上に設けたマークの位置を確認し、ステ ージの座標系と走査ビームの座標系を座標変換することによって行っている。また、 マークを試料上に設けた場合には検査対象の基板を交換する際に生じる位置ずれ の問題があるため、この問題を解消するものとして、試料を支持するステージ上にマ ークを設け、このマークの走査画像力 ステージの座標系の位置ずれや走査ビーム の座標系の位置ずれを求める検査を、本願の出願人は出願している。
[0012] さらに、本願の発明者は、座標位置がずれる他の要因として、前記したステージの 座標系と走査ビームの座標系との関係の他に、基板上の検査対象領域の座標位置 があることを見出した。
[0013] 基板のパネルなどの検査対象領域の座標位置は、従来前記したように、設計値に 基づいて計算によって求めているが、この座標位置には、基板製造工程における誤 差が考慮されていないため、実際の基板上に形成される検査対象位置は、計算で得 られた座標位置からずれて ヽる場合がある。この座標位置のずれは画一的でなく、 製造条件や環境条件によって種々変化する。
[0014] 図 7は、検査対象領域の座標位置のずれを説明するための図である。図 7 (a)にお いて破線は設計情報に基づいて算出したパネルの位置 104を、また、実線は実際の 基板上に形成されるパネルの位置 105をそれぞれ模式的に示して ヽる。 TFTアレイ 基板において、アクティブエリアの実際の座標位置 (パネル位置) 105は、製造上の 誤差によって設計上の座標位置 104から座標ずれが生じる。この座標ずれの方向や ずれ量は、同一の TFTアレイ基板上の各パネルによってそれぞれ異なり画一的とな らない。
[0015] 図 7 (b)において、アクティブエリアの実際の座標位置 (パネル位置) 105が、設計 上の座標位置 104からずれて!/、る場合には、実際のピクセル 103の位置 (XI Ι,ΥΙ 1 )も、設計上のピクセル 103の位置(xl l,yl l)からずれることになり、ピクセルの位置 を正確に特定することが困難となり、欠陥ピクセルの特定も困難となる。
[0016] そこで、本発明は前記した従来の問題点を解決し、製造工程における位置誤差を 解消して、位置精度を高め、検査精度を高めることを目的とする。
[0017] また、製造工程における位置誤差を解消するために、基板上の検査対象領域の正 確な位置を取得することを目的とする。
課題を解決するための手段
[0018] 本発明は、基板上の検査対象領域の特定部位の座標データを走査画像力 求め 、この座標データに基づいて座標位置を算出するものであり、走査画像から座標デ ータを求めることによって、製造された実際の基板に含まれる設計値からの誤差を含 めた座標データを取得することができるため、製造工程における位置誤差を解消す ることがでさる。 [0019] 本発明の基板検査装置は、荷電粒子ビームを基板上で二次元的に走査させて得 られる走査画像に基づいて基板検査を行う基板検査装置において、走査画像から 基板上の検査対象領域の特定部位の座標データを取得する座標データ取得手段を 備える。基板検査において、座標データ取得手段で取得した座標データに基づいて 走査画像上の検査位置を特定することにより、パネルの位置ずれによる誤差に影響 されることなく基板検査を行う。
[0020] 本発明の座標データ取得手段の第 1の形態は、走査画像を表示し、表示画像上に おいて検査対象領域の特定部位を指定することによって座標データを取得する形態 であり、走査画像を表示手段に表示した表示像上において前記特定部位を指定す る指定手段と、指定した特定部位の座標データを走査画像から読み出す座標データ 読み出し手段とを備える。
[0021] 表示手段は走査画像を表示する。指定手段は、表示手段に表示された表示画像 の上でカーソルを移動して、表示された走査画像の特定部位を指定する。座標デー タ読み出し手段は、指定手段で指定されて表示手段上の位置に基づいて、その位 置に対応する走査画像の座標データを読み出す。読み出した座標データは登録し ておくことができる。
[0022] また、本発明の座標データ取得手段の第 2の形態は、走査画像から、特定部位を データ処理によって自動抽出する抽出手段と、抽出手段で抽出した特定部位の座 標データを走査画像から読み出す座標データ読み出し手段とを備える。
[0023] 抽出手段は、走査画像を検索して特定部位を抽出する。特定部位の抽出は、例え ば、特定部位に特徴的な形状を画像処理によって走査画像から検索することで行う ことができる。座標データ読み出し手段は、第 1の形態と同様に、抽出手段で抽出し た特定部位の位置に基づ 、て、その位置に対応する走査画像の座標データを読み 出す。読み出した座標データは登録しておくことができる。
検査対象領域は矩形領域とすることができ、特定部位は、この矩形領域の 4つのコ ーナ一部位とすることができる。
[0024] また、基板は TFTアレイを形成した TFTアレイ基板とすることができ、この場合には 、検査対象領域は TFTアレイ上の TFTが形成されたパネル部分とすることができ、ま た、座標データ取得手段で取得した座標データを登録することができる。
[0025] この場合には、電子線を基板上で二次元的に走査して得られる電子ビーム走査画 像に対して、登録した座標データに基づいて、 TFTアレイ基板の特定部位の検査位 置を特定し、パネル部分の検査を行う。
発明の効果
[0026] 本発明によれば、製造工程におけるパネルの位置ずれによる誤差を解消して、位置 精度を高め、検査精度を高めることができる。
[0027] また、基板上の検査対象領域の正確な位置を取得することができる。
図面の簡単な説明
[0028] [図 1]本発明の基板検査装置の動作を説明するための図である。
[図 2]本発明の基板検査装置の構成例を説明するために概略ブロック図である。
[図 3]本発明の基板検査装置による座標データの取得動作を説明するためのフロー チャートである。
[図 4]本発明の基板検査装置のディスプレイ上の表示画面例である。
[図 5]本発明の基板検査装置の別の構成例を説明するために概略ブロック図である。
[図 6]従来の TFTアレイ基板検査装置にお!、て、 TFTアレイ基板上のパネルのピク セル位置の算出を説明するための図である。
[図 7]検査対象領域の座標位置のずれを説明するための図である。
符号の説明
[0029] 1…基板検査装置、 2…電子ビーム源、 3···ステージ、 4…検出器、 5…走査画像形 成手段、 6…走査画像記憶手段、 7…座標データ取得手段、 7a…指定手段、 7h- 座標データ読み出し手段、 7c 、 8…座標データ記憶手段、 9…制御手段、 10…走 查画像、 11"'TFTアレイ基板、 12···ノ《ネル、 13- TFTアレイ、 14— 1〜14— 4··. 特定部位、 15···マーク、 20···、 21···表示画像、 21a…走査画像表示領域、 21b"- 座標データ領域、 21cr"Plotボタン、 21d…座標値領域、 21e" 'Position Find Start ボタン、 2Π·· 'Nextボタン、 21g〜Backボタン、 21h"'Align領域、 21i〜Applyボタン、 21j, 21k, 211···表示状態、 21m…ガイドリスト、 22···ノ ネノレ像、 23— 1〜23—4··· コーナー部位。 発明を実施するための最良の形態
[0030] 以下、本発明の実施の形態について、図を参照しながら詳細に説明する。
[0031] 図 1は本発明の基板検査装置の動作を説明するための図であり、基板上の検査対 象領域の特定部位の座標データを走査画像から求める状態を模式的に示している。
[0032] なお、本発明の基板検査装置は、荷電粒子ビームを基板上で二次元的に走査して 得られる走査画像に基づいて基板検査を行う基板検査装置に関するが、以下に説 明する例では、荷電粒子ビームとして電子ビームを用い、 TFTアレイを形成した TFT アレイ基板上を二次元的に走査して走査画像を取得し、この走査画像から TFTァレ ィ上の TFTが形成されたパネル部分を検査対象領域として、そのパネル部分に形成 されたピクセルの欠陥検査を行う場合について説明する。
[0033] 図 1 (a)は、 TFTアレイ基板の走査画像を示し、図 1 (b)は走査画像の表示画像を 示している。
[0034] 図 1 (a)は、ステージ(図示していない)上に支持させた TFTアレイ基板を、電子ビ ームで走査して得られる走査画像の一例を示している。走査画像 10は、 TFTアレイ 基板 11とステージ上に設けられたマーク 15を含んで 、る。
[0035] TFTアレイ基板 11上には TFTアレイ 11が形成される。ここでは、 TFTアレイ 11とし て、 [00] , [01] , [02] , [03] ,〜, [23]の 12面のパネル 12を配列した例を示して いる。各ノネル 12には、複数のピクセル(図示していない)形成される。このパネルの 配列数及び配列パターンはこの例に限らず任意とすることができる。
[0036] 基板検査装置は、この走査画像中のパネル 12を検査対象領域とし、例えばこのパ ネル 12中に含まれるピクセルの欠陥検査を行う。本発明の基板検査装置は、 TFTァ レイ基板 11上における各パネルの位置を特定するために、この走査画像 10中をパ ネル 12の特定部位 14の座標位置を取得する。
[0037] ここでは、パネル 12の矩形形状の 4つのコーナー部位を特定部位 14-1〜14-4とし 、この特定部位の座標位置を求めることにより、各パネル 12の位置を特定する。パネ ル 12の位置を特定することで、パネル 12に含まれる各ピクセルの位置を特定するこ とがでさる。
[0038] 走査画像からパネルの特定部位の座標データの取得は、走査画像 10を表示手段 (図示して!/、な 、)上に表示し、この表示画像のパネル像の特定部位を指定する形 態とすることができる。
[0039] 図 1 (b)は、図 1 (a)の走査画像中の一つのパネルを表示手段(図示していない)上 に表示した表示画像を示している。表示画像 21には、 [00]で示されるパネル 12の パネル像 21が表示される。パネル像 22の矩形形状の輪郭に注目して、例えば 4つ のコーナー部位 23-1〜23-4を特定部位とし、この特定部位を指定することによって 座標データを取得する。ここでは、特定部位としてパネル像 22のコーナー部位 23-1 〜23-4を用いている力 コーナー部位に限らず任意の部位を特定部位としてもよ!/、。
[0040] また、図 1 (b)では、走査画像を表示手段上に表示した表示画像を用いて検査対 象領域の座標データを取得して!/、るが、走査画像を画像処理することによって検査 対象領域の座標データを直接に取得してもよ 、。
[0041] なお、図 1 (a)中のマーク 14は、ステージの座標系と電子ビーム等の走査ビームの 座標系との位置関係を定めるための指標位置であり、ステージの座標系にお ヽてス テージ上のマークの走査画像からマークの位置を求め、このマーク位置を指標位置 として位置ずれを求める。
[0042] したがって、本発明の基板検査装置では、走査画像 10を用いることによって、マー ク 14の位置からステージの座標系と電子ビームの座標系との位置関係を定める、さ らに、各パネルの特定部位の位置から、 TFTアレイ基板上のパネルに位置を特定す ることができ、基板上の検査対象領域の正確な位置を取得することができる。
[0043] 図 2は、本発明の基板検査装置の構成例を説明するために概略ブロック図である。
図 2において、走査検査装置 1は、電子ビーム源 2、ステージ 3、検出器 4、走査画像 形成手段 5,走査画像記憶手段 6、座標データ取得手段 7,座標データ記憶手段 8、 制御手段 9を備える。
[0044] 電子ビーム源 2及びステージ 3は、制御手段 9の制御によって、ステージ 3に配置し た TFTアレイ基板(図示して 、な 、)を走査し、 TFTアレイ基板力もの二次電子を検 出器 4で検出する。走査画像形成手段 5は検出器 4で検出した二次電子に基づき、 走査画像を形成する。形成された走査画像は、走査画像記憶手段 6に記憶される。
[0045] 本発明の基板検査装置 1は、取得した走査画像カゝら TFTアレイ基板のパネル (走 查対象領域)に設定した特定部位の座標データを取得する。
[0046] 図 2に示す構成では、走査画像記憶手段 6が記憶している走査画像を表示手段 20 に表示し、表示された表示画像を観察することによって、 TFTアレイ基板のパネル( 走査対象領域)に予め設定されている特定部位を確認し、その特定部位の座標デー タを座標データ取得手段 7によって取得する。
[0047] 表示手段 20は、 TFTアレイ基板が有する複数のパネルの走査画像を予め設定さ れた順に従って表示する他、全パネルを一括して表示してもよい。また、表示手段 20 は、液晶表示ディスプレイや CRT等の任意の表示装置を用いることができる。
[0048] 図 2に示す座標データ取得手段 7は、指定手段 7a及び座標データ読み出し手段 7 bを備える。指定手段 7aは、表示手段 20に表示される表示画像上の位置を指定し、 座標データ読み出し手段 7bは、指定手段 7aで指定された位置の座標データを走査 画像記憶手段 6から読み出し、座標データ記憶手段 8に格納し登録する。
[0049] 指定手段 7aによる特定部位の指定は、予め設定された順番に沿って行うことがで きる。座標データ記憶手段 8は、指定手段 7aによって指定して読み出された座標デ ータを、読み出し順に格納することによって、予め設定された順に特定部位の座標デ ータを格納することができる。なお、指定手段 7aによる特定部位の指定は、予め設定 された順序に限らず任意の順番で指定してもよいが、この場合には、特定部位を識 別できるように、特定部位毎に設定されたアドレス等の識別データと共に座標データ 記憶手段 8に格納する。
[0050] 指定手段 7aは、表示手段 20上のカーソルを移動し、カーソル位置の入力を操作 するマウスやキー等の装置や、タツチパネル等の表示手段 20の表示面上で位置指 定を行う装置等の任意の位置指定装置を用いることができる。
[0051] 座標データ記憶手段 8は、座標データ取得手段 7で取得した特定部位の座標デー タを記憶し登録する。
[0052] 制御手段 9は、座標データ記憶手段 8に登録された座標データを読み出して、電子 ビーム源 2やステージ 3を駆動して、 TFTアレイ基板(図示して 、な 、)上を再度走査 し、二次電子を検出器 4で検出し、走査画像を取得する。
[0053] 基板検査装置 1は、基板検査対象の TFTアレイ基板毎に特定部位を指定して座 標データを取得して座標データ記憶手段 8に登録し、この登録した座標データに基 づ 、て走査画像を取得して基板検査を行うことができる力 TFTアレイ基板の寸法 やパネルの寸法、配列の数やパターン等の各種仕様が同一である場合には、製造 工程で生じる位置誤差は何れの TFTアレイ基板にも同様に発生すると考えられるの で、一回の走査で得た走査画像を用いて取得した座標データを共通データとし、同 じ仕様の TFTアレイ基板に基板検査では、この予め求めて登録してぉ ヽた座標デー タを用いて、基板検査に用いる走査画像を取得してもよ ヽ。
[0054] 次に、図 3のフローチャートを用いて基板検査装置による座標データの取得動作に ついて説明する。座標データの取得は、電子ビームを TFTアレイ基板上で走査(Sig nal Scan)して走査画像を取得する工程 (SI)と、 S1の工程で取得した走査画像を用い て特定部位の座標データを取得する工程 (S2)を備える。
[0055] 座標データを取得する S2の工程では、走査画像記憶手段に記憶されている走査画 像から、表示手段のディスプレイ上に表示したいパネルを選択する。このパネルの選 択は、予め設定された順に行うことができる。例えば、図 1に示すように、走査画像 10 に [00] , [01] , [02] , [03] ,〜, [23]の 12面のパネル 12を配列した例では、 [00 ]→[01]→[02]→[03]→〜→[23]等のように予め順序を設定しておき、この設定 順に従ってパネルを選択する。なお、表示手段に表示するパネルの選択は、予め設 定した選択順に限らず、入力手段から任意に選択するようにしてもよい (S2a)。
[0056] S2aで選択したパネルの走査画像を表示手段のディスプレイ上に表示する (S2b)。
[0057] 図 4はディスプレイ上の表示画面例である。図 4に示す表示画像例では、走査画像 表示領域 21aに選択したパネルのパネル像 22を表示する他、パネル像 22上で指定 した特定部位の座標データを取得し編集するための表示を行う。
[0058] 走査画像表示領域 21aには選択されたパネルの走査画像をパネル像 22として表 示する。ここでは、矩形形状のパネル像 22の 4つのコーナー部位(図中の丸で囲ま れた数字 1〜4)を特定部位として設定している。操作者は、この表示されたパネル像 22を観察してコーナー部位を確認し、このコーナー部位にカーソルやポインターを 移動して位置合わせすることによって、特定部位を指定する。図 4では、矩形形状の パネル像 22の 4つのコーナー部位を、左上(丸で囲まれた数字 1)、左下(丸で囲ま れた数字 2)、右下 (丸で囲まれた数字 3)、右上 (丸で囲まれた数字 4)のように反時 計方向の順にクリックして(LUクリック、 LDクリック、 RDクリック、 RUクリック)、 4つの特 定部位を指定する。
[0059] したがって、座標データを取得する順は、一つの TFTアレイ基板で 12面を想定し た場合には、以下の表 1となる。
[0060] [表 1]
Figure imgf000012_0001
[0061] なお、この指定順は、任意に設定することができるが、座標データ記憶手段に格納 するアドレスと対応して 、るため、指定順と座標データの格納順が設定されて 、る場 合にはその順で指定し、設定順以外で格納する場合には、指定位置と格納先が対 応するようにアドレス等によって指定し、対応関係が識別できるように設定する。
[0062] なお、走査画像表示領域 21aに表示される走査画像は、座標データを取得するた めの特定部位の選択に用いるものであって、基板検査の走査画像に対する補助的 な画像に過ぎない (S2c)。
[0063] 図 4に示す表示画像 21にお!/、て、 "Position Find Start"のボタン 21eをクリックする と、座標データの取得処理の実行が開始され、 "Position Find Start"の表示から" Ab ort Position Find"に切り替わる。座標データの取得処理を中断するには、この" Abor t Position Find"をクリックする。処理を中断した場合には、取得中のデータは、例え ば全て破棄され、全ての取得値は前回値のままとする。
[0064] 座標データの取得処理の実行が開始した後は、 "Next"ボタン 2 Ifや" Back"ボタン 21gの操作ガイドに従って処理を行う。
[0065] 走査画像表示領域 21aにおいて、パネル像 22のコーナー部位(図中の丸で囲まれ た数字 1)をクリックすると、クリックされたコーナー部位の座標データが領域 21bに表 示される。このコーナー部位を選択する場合には、 "Plotl"のボタン 21cをクリックする 。このクリックによって、右隣の領域 2 Idに座標値 (XXX, YYY)が表示される。
[0066] 同様に、パネル像 22の他のコーナー部位(図中の丸で囲まれた数字 2〜4)をクリツ クすると、クリックされたコーナー部位の座標データが領域 21bに表示され、 "Plot2" 〜"Plot4"のボタン 21cをクリックすることによって、このコーナー部位が選択され、右 隣の領域 2 Idに座標値 (XXX, YYY)が表示される (S2d) 0
[0067] これら 4点のコーナー部位の座標データが決定された後、 "Next"ボタン 21fをクリツ クすると、ガイドリスト 21mに座標データが追加される。なお、ガイドリスト 21mにおい て、座標データを既に取得したパネル、座標データを現在取得中であるパネル、座 標データを取得する前のパネルを、それぞれ異なる表示状態で表示することができ る。例えば、表示状態 21 jは座標データを既に取得したパネルを示し、表示状態 21k は現在取得中であるパネルを示し、表示状態 211は座標データを取得する前のパネ ルを示し、色や修飾を変えて表示する等して識別可能とすることができる。
[0068] また、表示状態 21kから表示状態 21jに変化することによって、そのコーナー部位 の座標データの取得が終了したことを認識させている。
[0069] また、走査 (Signal Scan)時に取得したァライメント座標値を用いて編集する場合に は(S2e)、 "Alinl"や" Alin2"の領域 21hに表示されたァライメント座標値について、 " Apply"ボタン 2 liをクリックする(S2f)。
[0070] ガイドリスト 21mにおいて、表示状態 21jの座標データは登録され、座標データ記 憶手段に格納される(S2g)。
[0071] 走査画像表示領域 21aに選択されたパネルの全コーナー部位について前記 S2c〜 S2gを繰り返し (S2h)、 TFTアレイ基板が備える全パネルについて前記 S2a〜S2hを繰 り返すことによって、 TFTアレイ基板が有する全パネルの特定部位の座標データを 取得する(S2h)。
[0072] 図 5は、本発明の基板検査装置の別の構成例を説明するために概略ブロック図で ある。図 5に示す構成例は、走査画像力 特定部位の座標データを取得する際に、 走査画像を画像処理することによって自動取得するものであり、前記図 2に示した構 成例と座標データ取得手段 7の構成の点で相違するが、その他の構成は図 2に示し た構成例とほぼ同様である。
[0073] 以下、座標データ取得手段 7についてのみ説明する。座標データ取得手段 7は、 走査画像記憶手段 6に記憶する走査画像を読み出し、予め設定してお 、た特定部 位の形状等を検索キーとして特定部位を検索し、検索した特定部位の座標データを 抽出する座標データ抽出手段 7cを備える。走査画像から特定部位を抽出する画像 処理は、任意のアルゴリズムを用いることができ、例えばコーナー部位の角度情報や 陰影情報等の検索キーを用いたパターン処理等の走査画像力 対応する形状部分 を検索するアルゴリズムによって行うことができる。
産業上の利用可能性
[0074] 本発明の走査ビーム装置は、電子線マイクロアナライザ、走査電子顕微鏡、 X線分 析装置等に適用することができる。

Claims

請求の範囲
[1] 荷電粒子ビームを基板上で二次元的に走査して得られる走査画像に基づいて基 板検査を行う基板検査装置において、
前記走査画像力 基板上の検査対象領域の特定部位の座標データを取得する座 標データ取得手段を備え、
前記座標データ取得手段で取得した座標データに基づ!/ヽて走査画像上の検査位 置を特定することを特徴とする基板検査装置。
[2] 前記座標データ取得手段は、
前記走査画像を表示手段に表示した表示画像上において前記特定部位を指定 する指定手段と、
前記指定した特定部位の座標データを走査画像から読み出す座標データ読み 出し手段とを備えることを特徴とする、請求項 1に記載の基板検査装置。
[3] 前記座標データ取得手段は、
前記走査画像から、前記特定部位をデータ処理によって自動抽出する抽出手段 と、
前記抽出手段で抽出した特定部位の座標データを前記走査画像から読み出す 座標データ読み出し手段とを備えることを特徴とする、請求項 1に記載の基板検査装 置。
[4] 前記検査対象領域は矩形領域であり、
前記特定部位は、前記矩形領域の 4つのコーナー部位である請求項 1乃至 3の何 れか 1項に記載の基板検査装置。
[5] 前記基板は TFTアレイを形成した TFTアレイ基板であり、
前記検査対象領域は前記 TFTアレイ上の TFTが形成されたパネル部分であり、 前記座標データ取得手段で取得した座標データを登録し、
電子線を基板上で二次元的に走査させて得られる電子ビーム走査画像に対して、前 記登録した座標データに基づ 、て、前記 TFTアレイ基板の特定部位の検査位置を 特定し、前記パネル部分の検査を行うことを特徴とする、請求項 1乃至 4の何れか 1項 に記載の基板検査装置。
PCT/JP2006/306412 2005-04-14 2006-03-29 基板検査装置 WO2006112242A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007521156A JPWO2006112242A1 (ja) 2005-04-14 2006-03-29 基板検査装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005117364 2005-04-14
JP2005-117364 2005-04-14

Publications (1)

Publication Number Publication Date
WO2006112242A1 true WO2006112242A1 (ja) 2006-10-26

Family

ID=37114973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306412 WO2006112242A1 (ja) 2005-04-14 2006-03-29 基板検査装置

Country Status (5)

Country Link
JP (2) JPWO2006112242A1 (ja)
KR (1) KR20070107760A (ja)
CN (1) CN101156061A (ja)
TW (1) TWI321709B (ja)
WO (1) WO2006112242A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127914A (ja) * 2010-12-17 2012-07-05 Shimadzu Corp Tftアレイ検査装置およびtftアレイ検査方法
JP2012221594A (ja) * 2011-04-04 2012-11-12 Shimadzu Corp アレイ検査装置およびアレイ検査方法
WO2013065142A1 (ja) * 2011-11-02 2013-05-10 株式会社島津製作所 液晶アレイ検査装置および液晶アレイ検査装置の信号処理方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8391587B2 (en) * 2008-06-02 2013-03-05 Shimadzu Corporation Liquid crystal array inspection apparatus and method for correcting imaging range
JP2010232295A (ja) * 2009-03-26 2010-10-14 Hitachi High-Technologies Corp 作業処理装置またはacf貼付状態検査方法あるいは表示基板モジュール組立ラインまたは表示基板モジュール組立方法
JP2010251415A (ja) * 2009-04-13 2010-11-04 Hitachi High-Technologies Corp 作業処理装置あるいは表示基板モジュール組立ラインまたは表示基板モジュール組立方法
CN102023161B (zh) * 2009-09-09 2012-05-30 中芯国际集成电路制造(上海)有限公司 获取缺陷图像的方法
JP5865734B2 (ja) * 2012-03-01 2016-02-17 株式会社Screenホールディングス 領域分類装置、そのプログラム、基板検査装置、および領域分類方法
CN104317079B (zh) * 2014-10-29 2017-12-01 京东方科技集团股份有限公司 一种显示面板识别系统、检测系统、识别方法及检测方法
JP2017044671A (ja) * 2015-08-28 2017-03-02 三重富士通セミコンダクター株式会社 検査装置及び検査方法
JP2018054464A (ja) * 2016-09-29 2018-04-05 セイコーエプソン株式会社 電子部品搬送装置及び電子部品検査装置
TWI694537B (zh) * 2018-07-08 2020-05-21 香港商康代影像技術方案香港有限公司 用於失準補償之系統及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031629A (ja) * 2001-07-17 2003-01-31 Hitachi Ltd パターン検査方法及びその装置
JP2004192506A (ja) * 2002-12-13 2004-07-08 Dainippon Screen Mfg Co Ltd パターンマッチング装置、パターンマッチング方法およびプログラム
JP2004271516A (ja) * 2003-03-04 2004-09-30 Shimadzu Corp 基板検査装置及び基板検査方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122217A (ja) * 1986-11-12 1988-05-26 Jeol Ltd 微細パタ−ン検査方法
JP2910706B2 (ja) * 1996-11-27 1999-06-23 日本電気株式会社 Lsi画像の位置合わせ方法
JP4014379B2 (ja) * 2001-02-21 2007-11-28 株式会社日立製作所 欠陥レビュー装置及び方法
JP4510327B2 (ja) * 2001-05-29 2010-07-21 エスアイアイ・ナノテクノロジー株式会社 Cad情報に基くレイヤ合わせずれ評価方法及び装置
JP2004228394A (ja) * 2003-01-24 2004-08-12 Hitachi High-Technologies Corp 半導体ウェーハのパターン形状評価システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031629A (ja) * 2001-07-17 2003-01-31 Hitachi Ltd パターン検査方法及びその装置
JP2004192506A (ja) * 2002-12-13 2004-07-08 Dainippon Screen Mfg Co Ltd パターンマッチング装置、パターンマッチング方法およびプログラム
JP2004271516A (ja) * 2003-03-04 2004-09-30 Shimadzu Corp 基板検査装置及び基板検査方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127914A (ja) * 2010-12-17 2012-07-05 Shimadzu Corp Tftアレイ検査装置およびtftアレイ検査方法
JP2012221594A (ja) * 2011-04-04 2012-11-12 Shimadzu Corp アレイ検査装置およびアレイ検査方法
WO2013065142A1 (ja) * 2011-11-02 2013-05-10 株式会社島津製作所 液晶アレイ検査装置および液晶アレイ検査装置の信号処理方法
CN104024837A (zh) * 2011-11-02 2014-09-03 株式会社岛津制作所 液晶阵列检查装置及液晶阵列检查装置的信号处理方法
JPWO2013065142A1 (ja) * 2011-11-02 2015-04-02 株式会社島津製作所 液晶アレイ検査装置および液晶アレイ検査装置の信号処理方法
CN104024837B (zh) * 2011-11-02 2016-08-31 株式会社岛津制作所 液晶阵列检查装置及液晶阵列检查装置的信号处理方法

Also Published As

Publication number Publication date
CN101156061A (zh) 2008-04-02
TWI321709B (en) 2010-03-11
JPWO2006112242A1 (ja) 2008-12-11
TW200636409A (en) 2006-10-16
KR20070107760A (ko) 2007-11-07
JP2011180136A (ja) 2011-09-15

Similar Documents

Publication Publication Date Title
WO2006112242A1 (ja) 基板検査装置
TWI605529B (zh) 用於根據cad之註冊的系統、方法及電腦程式產品
TWI435071B (zh) Defect pixel address detection method and detection device
JP5424144B2 (ja) ビジョン検査システム及びこれを用いた座標変換方法
TW201346298A (zh) 用於根據cad之註冊的系統、方法及電腦程式產品
JP6576664B2 (ja) エッジ検出偏り補正値計算方法、エッジ検出偏り補正方法、及びプログラム
JP2014055864A (ja) 画像測定装置、その制御方法及び画像測定装置用のプログラム
JP2008256541A (ja) 荷電粒子システム
KR20070056142A (ko) 주사 빔 조사 장치
US6667483B2 (en) Apparatus using charged particle beam
JP5576469B2 (ja) パターン検査装置及びパターン検査方法
US20060100730A1 (en) Method for detection and relocation of wafer defects
JP3887807B2 (ja) 画像計測装置
JP2009162718A (ja) 基板検査装置および検査領域設定方法
WO2006059662A1 (ja) 表示デバイスの検査装置および検査方法
JP2007311430A (ja) 被撮像物の移動方法、この方法を記録した記憶媒体及びこれらを用いる処理装置
JP2009079915A (ja) 微小寸法測定方法および測定装置
JPH11167893A (ja) 走査電子顕微鏡
JP4253023B2 (ja) 荷電粒子線装置及び走査電子顕微鏡の制御装置
JP2005221287A (ja) 基板検査方法及び基板検査装置
JP5491817B2 (ja) 電子顕微鏡における薄膜試料位置認識装置
JP5729483B2 (ja) 液晶アレイ検査装置および液晶アレイ検査装置の信号処理方法
JP5472636B2 (ja) Tftアレイ検査装置およびtftアレイ検査方法
JP2009037985A (ja) ライン・スペース判定方法およびライン・スペース判定装置
JPS63241405A (ja) 硬度計

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680011536.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007521156

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077020867

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730360

Country of ref document: EP

Kind code of ref document: A1