WO2006105372A2 - Alkynyl pyrrolopyrimidines and related analogs as hsp90-inhibitors - Google Patents

Alkynyl pyrrolopyrimidines and related analogs as hsp90-inhibitors Download PDF

Info

Publication number
WO2006105372A2
WO2006105372A2 PCT/US2006/011846 US2006011846W WO2006105372A2 WO 2006105372 A2 WO2006105372 A2 WO 2006105372A2 US 2006011846 W US2006011846 W US 2006011846W WO 2006105372 A2 WO2006105372 A2 WO 2006105372A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
pharmaceutically acceptable
enantiomer
prodrug
Prior art date
Application number
PCT/US2006/011846
Other languages
English (en)
French (fr)
Other versions
WO2006105372A3 (en
Inventor
Srinivas R. Kasibhatla
Marco A. Biamonte
Jiandong Shi
Marcus F. Boehm
Original Assignee
Conforma Therapeutics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37054161&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006105372(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to BRPI0609509-7A priority Critical patent/BRPI0609509A2/pt
Priority to CA002602257A priority patent/CA2602257A1/en
Priority to EP06749002A priority patent/EP1869027A4/en
Priority to MX2007011903A priority patent/MX2007011903A/es
Priority to EA200702109A priority patent/EA013522B1/ru
Application filed by Conforma Therapeutics Corporation filed Critical Conforma Therapeutics Corporation
Priority to JP2008504412A priority patent/JP2008534609A/ja
Priority to AU2006230447A priority patent/AU2006230447A1/en
Priority to NZ561939A priority patent/NZ561939A/en
Publication of WO2006105372A2 publication Critical patent/WO2006105372A2/en
Publication of WO2006105372A3 publication Critical patent/WO2006105372A3/en
Priority to IL186270A priority patent/IL186270A/en
Priority to NO20075099A priority patent/NO20075099L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the invention relates in general to alkynyl pyrrolopyrimidines and their broad-spectrum utility, e.g. , in inhibiting heat shock protein 90 (HSP90) to thereby treat or prevent HSP90- mediated diseases.
  • HSP90 heat shock protein 90
  • HSP90s are ubiquitous chaperone proteins that are involved in folding, activation and assembly of a wide range of proteins, including key proteins involved in signal transduction, cell cycle control and transcriptional regulation.
  • HSP90 chaperone proteins are associated with important signaling proteins, such as steroid hormone receptors and protein kinases, including, e.g., Raf-1, EGFR, v-Src family kinases, Cdk4, and ErbB-2 ( Buchner J. TIBS 1999, 24, 136-141; Stepanova, L. et al. Genes Dev. 1996, 10, 1491-502; Dai, K. et al J. Biol. Chem. 1996, 271, 22030-4).
  • HSP90 may assist HSP90 in its function (see, e.g., Caplan, A. Trends in Cell Biol. 1999, 9, 262-68).
  • HSP90 possesses a binding pocket at its N-terminus. This pocket is highly conserved and has weak homology to the ATP-binding site of DNA gyrase (Stebbins, C. et al, supra; Grenert, J.P. et al. J. Biol. Chem. 1997, 272, 23843-50).
  • ATP and ADP have both been shown to bind this pocket with low affinity and to have weak ATPase activity (Proromou, C. et al. Cell 1997, 90, 65-75; Panaretou, B. et al EMBO J. 1998, 17, 4829-36).
  • In vitro and in vivo studies have demonstrated that occupancy of this N-terminal pocket by ansamycins and other HSP90 inhibitors alters HSP90 function and inhibits protein folding.
  • ansamycins and other HSP90 inhibitors have been shown to prevent binding of protein substrates to HSP90 (Scheibel, T.H. et al Proc. Natl. Acad. Sd.
  • HSP90 inhibitors e.g. ansamycins
  • HSP90 inhibitors have also been demonstrated to inhibit the ATP-dependent release of chaperone-associated protein substrates (Schneider, CL. et al Proc. Natl. Acad. ScL 1 USA 1996, 93, 14536-41; Sepp-Lorenzino et al J. Biol. Chem.
  • HSP90 substrate destabilization occurs in tumor and non-transformed cells alike and has been shown to be especially effective on a subset of signaling regulators, e.g. , Raf (Schulte, T. W.
  • EGF receptor EGFR
  • Her2/Neu Hartmann, F., et a Int. J. Cancer 1997, 70, 221-9; Miller, P. et a Cancer Res. 1994, 54, 2724-2730; Mimnaugh, E. G., et a J. Biol. Chem. 1996, 271, 22796-801; Schnur, R. et a J. Med. Chem.
  • HSP90 inhibitors thus hold great promise for the treatment and/or prevention of many types of cancers and proliferative disorders, and also hold promise as traditional antibiotics.
  • HSP90 inhibitors have also been implicated in a wide variety of other utilities, including use as anti-inflammation agents, anti- infectious disease agents, agents for treating autoimmunity, agents for treating stroke, ischemia, multiple sclerosis, cardiac disorders, central nervous system related disorders and agents useful in promoting nerve regeneration (See, e.g. , Rosen et a WO 02/09696 (PCT/USOl/23640);
  • the present invention is directed towards alkynyl pyrrolo[2,3-d]pyrimidines and related compounds that show broad utility, e.g., by inhibiting HSP90 and treating diseases that are HSP90-dependent.
  • These compounds differ from a parent pyrrolopyrimidine which was disclosed in prior patent applications in that they are substituted with an alkyne, e.g., acetylene, on the ring carbon at the fifth position (C-5 position) and they exhibit improved HSP90 inhibitory activity over the parent compounds.
  • the invention comprises alkynyl pyrrolo[2,3-d]pyrimidine compounds of Formula I:
  • R 0 is selected from the group consisting of hydrogen, halogen, lower alkyl, -CN, -SR 8 , -OR 8 , and -NHR 8 ;
  • R 1 is selected from the group consisting of halogen, -OR 11 , -SR 11 and lower alkyl;
  • R 2 is -NHR 8 ;
  • R 3 is selected from the group consisting of hydrogen, -CN, -C(O)OH, -OR 11 , -SR 11 ,
  • R 3 are selected from the group consisting of lower alkyl, lower alkenyl, lower alkynyl, -CN, -C(O)OH, -NO 25 -SR 8 , -OR 8 , -C(O)R 9 , -NR 8 R 8 , lower aryl, heteroaryl, alicyclyl, lower heterocyclyl, arylalkyl, heteroarylalkyl, amino, alkylamino, dialkylamino, arylalkylamino, diarylamino, heteroarylamino, diheteroarylamino, arylheteroarylamino, oxo, perhaloalkyl, perhaloalkoxy, perhaloacyl, guanidinyl, pyridinyl, thiophenyl, furanyl, indolyl, indazolyl, phosphonyl, phosphatidyl, phosphoramidyl, sulfany
  • R 8 and R 8 taken together with the N atom to which they are attached optionally form an optionally substituted ring comprising 3-7 ring atoms, wherein, in addition to said N atom, 0-3 of the ring atoms are heteroatoms selected from the group consisting of O, S and N;
  • R 4 is selected from the group consisting of optionally substituted lower alkylene, -
  • R 5 is selected from the group consisting of aryl, heteroaryl, alicyclyl and heterocyclyl, wherein: the aryl group is substituted with 2 to 5 substituents; the heteroaryl group is substituted with 2 to 5 substituents; the alicyclyl group is substituted with 3 to 5 substituents; the heterocyclyl group is substituted with 3 to 5 substituents; the substituents on R 5 are selected from the group consisting of halogen, lower alkyl, lower alkenyl, lower alkynyl, -CN, -C(O)OH, -NO 2, -SR 8 , -OR 8 , -C(O)R 9 , -NR 8 R 10 , lower aryl, lower heteroaryl, lower alicyclyl, lower heterocyclyl, arylalkyl, heteroarylalkyl, thioalky
  • R and R taken together with the N atom to which they are attached optionally form an optionally substituted ring comprising 3-7 ring atoms, wherein, in addition to said N atom, 0-3 of the ring atoms are heteroatoms selected from the group consisting of O, S and N;
  • R is selected from the group consisting of hydrogen, lower alkyl, lower alkenyl, lower alkynyl, lower heteroalkyl, lower heteroalkenyl, lower heteroalkynyl, lower aryl, lower heteroaryl and -C(O)R 9 ;
  • R 9 is selected from the group consisting of H, lower alkyl, lower alkenyl, lower alkynyl, lower aryl, lower heteroaryl, -NR 10 R 10 and -OR 1 ⁇ wherein P C which they are attached optionally form an optionally substituted ring comprising 3-7 ring atoms, wherein, in addition to said N atom, 0-3 of the ring atoms are heteroatoms selected from the group consisting of O, S and N;
  • R 10 is selected from the group consisting of hydrogen, lower alkyl, lower alkenyl, lower alkynyl, lower heteroalkyl, lower heteroalkenyl, lower heteroalkynyl, lower aryl, lower heteroaryl and -C(O)R 11 ;
  • R 11 is selected from the group consisting of lower alkyl, lower alkenyl, lower alkynyl, lower aryl and lower heteroaryl;
  • R 12 is selected from the group consisting of hydrogen and lower alkyl.
  • R 12 is selected from the group consisting of hydrogen and lower alkyl.
  • stereoisomic forms including the individual enantiomers and diastereomers, racemic mixtures, and diasteromeric mixtures, and combinations thereof, where appropriate, as well as polymorphs, specific racemates and stereoisomers, solvates, esters, tautomers, pharmaceutically acceptable salts and prodrugs of these compounds.
  • the invention features pharmaceutical compositions comprising the compounds of the invention, in particular, the compounds of Formula I, or a polymorph, solvate, ester, tautomer, diastereoisomer, enantiomer, pharmaceutically acceptable salt or prodrug thereof, and one or more pharmaceutical excipients, for use in treatment or prevention of diseases and conditions that are HSP90-dependent.
  • the invention is related to methods of preventing or treating
  • the invention provides a method for treating an individual having a disorder selected from the group of inflammatory diseases, infections, autoimmune disorders, stroke, ischemia, cardiac disorders, neurological disorders, fibrogenetic disorders, proliferative disorders, tumors, leukemias, chronic lymphocytic leukemia, acquired immuno-deficiency syndrome, neoplasms, cancers, carcinomas, metabolic diseases, and malignant diseases.
  • the invention provides a method for treating an individual having a fibrogenetic disorder, such as, for example, scleroderma, polymyositis, systemic lupus, rheumatoid arthritis, liver cirrhosis, keloid formation, interstitial nephritis or pulmonary fibrosis.
  • a fibrogenetic disorder such as, for example, scleroderma, polymyositis, systemic lupus, rheumatoid arthritis, liver cirrhosis, keloid formation, interstitial nephritis or pulmonary fibrosis.
  • the invention provides a combination therapy comprising the administration of a pharmaceutically effective amount of a compound of Formula I, or a solvate, tautomer, diastereomer, enantiomer, pharmaceutically acceptable salt, polymorph, or prodrug or the preceding aspects or embodiments, and at least one therapeutic agent selected from the group of cytotoxic agents, anti-angiogenesis agents and anti-neoplastic agents.
  • the anti-neoplastic agent may be selected from the group of alkylating agents, antimetabolites, epidophyllotoxins, antineoplastic enzymes, topoisomerase inhibitors, procarbazines, mitoxantrones, platinum coordination complexes, biological response modifiers and growth inhibitors, hormonal/anti-hormonal therapeutic agents, and haematopoietic growth factors.
  • the invention is related to the use of the compounds of Formula I in the manufacture of a medicament.
  • the invention is related to the use of the compounds of Formula I in the manufacture of a medicament.for the therapeutical and/or prophylactic treatment of HSP90-dependent diseases and conditions.
  • FIGURE 1 represents a plot of tumor volume (mm 3 ) against time (days), for animals administered compounds of the present invention (and controls) in a mouse N87 Gastric Carcinoma Xenograft model, as described in example 70.
  • FIGURE 2 represents a plot of tumor volume (mm 3 ) against time (days), for animals administered compounds of the present invention (and controls) in a mouse NCI295 Adrenocortical Carcinoma Xenograft model, as described in example 71.
  • FIGURE 3 represents a plot of tumor volume (mm 3 ) against time (days), for animals administered compounds of the present invention (and controls) in a mouse SK-MEL-28 Melanoma Xenograft model, as described in example 72.
  • FIGURE 4 represents a plot of tumor volume (mm 3 ) against time (days), for animals administered compounds of the present invention (and controls) in a mouse a plot of tumor volume (mm 3 ) against time (days), for animals administered compounds of the present invention (and controls) in a mouse HT29 Colon Carcinoma Xenograft model, as described in example 73.
  • FIGURE 5 represents Western Blot protein analysis of N87 gastric carcinoma cells after treatment with compounds 2 and 23 at varying concentrations and timepoints, as described in example 74.
  • a "pharmaceutically acceptable derivative or prodrug” means any pharmaceutically acceptable salt, ester, salt of an ester or other derivative of a compound of this invention, which, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of this invention or a pharmaceutically active metabolite or residue thereof.
  • Particularly favored derivatives or prodrugs are those that increase the bioavailability of the compounds of this invention when such compounds are administered to a patient (e.g., by allowing orally administered compound to be more readily absorbed into blood) or which enhance delivery of the parent compound to a biological compartment (e.g., the brain or lymphatic system).
  • a "pharmaceutically acceptable salt” may be prepared for any compound of the invention having functionality capable of forming a salt, for example, an acid or base functionality.
  • Pharmaceutically acceptable salts may be derived from organic or inorganic acids and bases.
  • Compounds of the invention that contain one or more basic functional groups, (e.g., amino, alkylamino), are capable of forming pharmaceutically acceptable salts with pharmaceutically acceptable organic and inorganic acids.
  • These salts can be prepared in situ during the final isolation and purification of the compounds of the invention, or by separately reacting a purified compound of the invention in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed.
  • Suitable acid salts include acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptanoate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, malonate, methanesulfonate, 2-napthalenesulfonate, nicotinate, nitrate, oxalate, palmoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, prop
  • compositions of the present invention that contain one or more acidic functional groups are capable of forming pharmaceutically acceptable salts with pharmaceutically acceptable bases.
  • pharmaceutically acceptable salts refers to the relatively non-toxic, inorganic and organic base addition salts of compounds of the present invention. These salts can likewise be prepared in situ during the final isolation and purification of the compounds, or by separately reacting the punned compound in its free acid form with a suitable base, such as the hydroxide, carbonate or bicarbonate of a pharmaceutically acceptable metal cation, with ammonia, or with a pharmaceutically acceptable organic primary, secondary or tertiary amine.
  • Representative pharmaceutically acceptable cations include alkali or alkaline earth salts such as lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like.
  • Illustrative examples of some of the bases that can be used include sodium hydroxide, potassium hydroxide, choline hydroxide, sodium carbonate, N + (C 1-4 alkyl) 4 , and the like.
  • Representative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like. This invention also envisions the quaternization of any basic nitrogen-containing groups of the compounds disclosed herein. Water or oil-soluble or dispersible products may be obtained by such quaternization. See, for example, Berge et al., supra.
  • a reference to a salt includes the solvent addition forms or crystal forms thereof, particularly solvates or polymorphs.
  • Solvates contain either stoichiometric or non- stoichiometric amounts of a solvent, and are often formed during the process of crystallization with pharmaceutically acceptable solvents such as water, ethanol, and the like. Hydrates are formed when the solvent is water, or alcoholates are formed when the solvent is alcohol.
  • Polymorphs include the different crystal packing arrangements of the same elemental composition of a compound. Polymorphs usually have different X-ray diffraction patterns, infrared spectra, melting points, density, hardness, crystal shape, optical and electrical properties, stability, and solubility.
  • prodrugs of the compounds of this invention include, but are not limited to, esters, carbonates, thiocarbonates, N-acyl derivatives, N-acyloxyalkyl derivatives, quaternary derivatives of tertiary amines, N-Mannich bases, Schiff bases, aminoacid conjugates, phosphate esters, metal salts and sulfonate esters.
  • Suitable positions for derivatization of the compounds of the invention to create “prodrugs” include but are not limited, to, 2-amino substitution. Those of ordinary skill in the art have the knowledge and means to accomplish this without undue experimentation. Various forms of prodrugs are well known in the art. See for example Design of Prodrugs, Bundgaard, A. Ed., Elseview, 1985 and Method in Enzymology, Widder, K. et al, Ed.; Academic, 1985, vol. 42, p. 309-396; Bundgaard, H. "Design and Application of Prodrugs” in A Textbook of Drug Design and Development, Krosgaard-Larsen and H. Bundgaard, Ed., 1991, Chapter 5, p.
  • Hydroxy prodrugs include, but are not limited to acyloxyalkyl esters, alkoxycarbonyloxyalkyl esters, alkyl esters, aryl esters and disulfide containing esters.
  • alkyl refers to an optionally substituted straight-chain, or optionally substituted branched-chain saturated hydrocarbon monoradical having from one to about thirty carbons, more preferably one to twelve carbons.
  • alkyl radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec- butyl, tert-butyl, tert-amyl, pentyl, hexyl, heptyl, octyl and the like.
  • cycloalkyl refers to cyclic alkyl monoradicals which include monocyclic, bicyclic, tricyclic, and higher multicyclic alkyl radicals wherein each cyclic moiety has from three to about eight carbon atoms.
  • cycloalkyl radicals include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
  • lower alkyl refers to an alkyl containing fewer carbon atoms, e.g., one containing from one to about six carbon atoms.
  • alkenyl refers to an optionally substituted straight-chain, or optionally substituted branched-chain hydrocarbon radical having one or more carbon-carbon double-bonds and having from two to about thirty carbon atoms, more preferably two to about eighteen carbons.
  • alkenyl radicals examples include ethenyl, propenyl, butenyl, 1,3-butadienyl and the like.
  • cycloalkenyl refers to to cyclic alkenyl radicals which include monocyclic, bicyclic, tricyclic, and higher multicyclic alkenyl radicals wherein each cyclic moiety has from three to about eight carbon atoms.
  • alKenyl sis used herein, alone or in combination, refers to to an alkenyl having from two to about six carbons.
  • alkynyl refers to an optionally substituted straight-chain or optionally substituted branched-chain hydrocarbon radical having one or more carbon-carbon triple-bonds and having from two to about thirty carbon atoms, more preferably from two to about twelve carbon atoms, or from two to about six carbon atoms, as well as those having from two to about four carbon atoms.
  • alkynyl radicals include ethynyl, 2- propynyl, 2-butynyl, 1,3-butadiynyl and the like.
  • cycloalkynyl refers to cyclic alkynyl radicals that include monocyclic, bicyclic, tricyclic, and higher multicyclic alkynyl radicals wherein each cyclic moiety has from three to about eight carbon atoms.
  • lower alkynyl refers to an alkynyl having from two to about six carbons.
  • heteroalkyl refers to include optionally substituted alkyl, alkenyl and alkynyl structures, as described above, and which have one or more skeletal chain atoms selected from an atom other than carbon, e.g., oxygen, nitrogen, sulfur, phosphorous or combinations thereof.
  • lower heteroalkyl refers to, respectively, a heteroalkyl, heteroalkenyl and heteroalkynyl having from two to about six carbons.
  • alkylene refers to a divalent hydrocarbyl group; because it is divalent, it can link two other groups together. Typically it refers to -(CH 2 ) n - where n is 1-8 and preferably n is 1-4, though where specified, an alkylene can also be substituted by other groups, and can be of other lengths, and the open valences need not be at opposite ends of a chain. Thus -CH(Me)- and -C(Me) 2 - may also be referred to as alkylenes, as can a cyclic group such as cyclopropan-l,l-diyl.
  • alkylene group where an alkylene group is substituted, the substituents include those typically present on alkyl groups as described herein.
  • lower alkylene as used herein, alone or in combination, refers to an alkylene group containing fewer carbon atoms, e.g., one containing from one to about six carbon atoms.
  • carbon chain as used herein, alone or in combination, refers to any alkyl, alkenyl, alkynyl, or heteroalkyl, heteroalkenyl, or heteroalkynyl group, which is linear, cyclic, or any combination thereof.
  • the chain is part of a linker and that linker comprises one or more rings as part of the core backbone, for purposes of calculating chain length, the "chain" only includes those carbon atoms that compose the bottom or top of a given ring and not both, and where the top and bottom of the ring(s) are not equivalent in length, the shorter distance shall be used in contains heteroatoms as part of the backbone, those atoms are not calculated as part of the carbon chain length.
  • membered ring refers to any cyclic structure, including aromatic, heteroaromatic, alicyclic, heterocyclic, monocyclic, polycyclic, and fused rings.
  • membered is meant to denote the number of skeletal (or ring) atoms that constitute the ring system.
  • pyrrole, pyrrolidine, succinimide, maleimide, tetrahydrofuran and thiophene are five-membered rings
  • pyridine, pyran, morpholine, piperazine, piperidine and pyrimidine are six-membered rings
  • phthalimide, indole and indane are nine membered fused rings.
  • aryl refers to an optionally substituted aromatic hydrocarbon monoradical of six to about twenty ring atoms, and includes mono- aromatic rings and fused aromatic rings.
  • a fused aromatic ring radical contains from two to four fused rings where the ring of attachment is an aromatic ring, and the other individual rings within the fused ring may be aromatic, heteroaromatic, alicyclic or heterocyclic.
  • aryl includes mono-aromatic rings and fused aromatic rings containing from six to about twelve carbon atoms, as well as those containing from six to about ten carbon atoms. Examples of aryl groups include, without limitation, phenyl, naphthyl, anthryl, chrysenyl, and benzopyrenyl ring systems.
  • lower aryl refers to an aryl having six to about ten skeletal ring carbons, e.g., phenyl and naphthyl ring systems.
  • heteroaryl refers to optionally substituted aromatic radicals containing from about five to about twenty skeletal ring atoms and where one or more of the ring atoms is a heteroatom such as, for example, oxygen, nitrogen, sulfur, selenium or phosphorus.
  • heteroaryl includes optionally substituted mono-heteroaryl radicals and fused heteroaryl radicals having at least one heteroatom (e.g., quinoline, benzothiazole).
  • a fused heteroaryl radical may contain from two to four fused rings where the ring of attachment is a heteroaromatic ring, the other individual rings within the fused ring system may be aromatic, heteroaromatic, alicyclic or heterocyclic.
  • heteroaryl also includes mono-heteroaryls or fused heteroaryls having from five to about twelve skeletal ring atoms, as well as those having from five to about ten skeletal ring atoms.
  • heteroaryls include, without limitation, furanyl, benzofuranyl, chromenyl, pyridyl, pyrrolyl, indolyl, quinolinyl, pyridyl-N-oxide, pyrimidyl, pyrazinyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, benzothiozolyl, benzimidazolyl, benzoxazolyl, benzothiadiazolyl, benzoxadiazolyl, benzotriazolyl, quinolinyl, isoquinolinyl, indolyl, purinyl, indolizinyl, thienyl and the like and their oxides.
  • TM The f? te Crm X/ low UerS nepterBoa/ry ⁇ i . a Is. B use NdtB herei .n, . a,lone or i .n com ,bi.nati .on, ref ,ers + to a u he,teroary n l h.avi •ng five to about ten skeletal ring atoms, e.g., pyridyl, thienyl, pyrimidyl, pyrazinyl, pyrrolyl, or furanyl.
  • NdtB herei .n, . a,lone or i .n com ,bi.nati .on, ref ,ers + to a u he,teroary n l h.avi •ng five to about ten skeletal ring atoms, e.g., pyridyl, thienyl, pyr
  • alicyclic and "alicyclyl” as used herein, alone or in combination, refer to an optionally substituted saturated or unsaturated nonaromatic hydrocarbon ring system containing from three to about twenty ring atoms.
  • the term alicyclic includes mono-alicyclic and fused alicyclic radicals.
  • a fused alicyclic may contain from two to four fused rings where the ring of attachment is an alicyclic ring, and the other individual rings within the fused-alicyclic radical may be aromatic, heteroaromatic, alicyclic and heterocyclic.
  • alicyclic also includes mono-alicyclic and fused alicyclic radicals containing from three to about twelve carbon atoms, as well as those containing from three to about ten carbon atoms.
  • Examples of alicyclics include, without limitation, cyclopropyl, cyclopropenyl, cyclobutyl, cyclopentyl, cyclodecyl, cyclododecyl, cyclopentadienyl, indanyl, and cyclooctatetraenyl ring systems.
  • lower alicyclic and “lower alicyclyl” as used herein, alone or in combination, refer to an alicyclic having three to about ten skeletal ring carbons, e.g., cyclopropyl, cyclopropenyl, cyclobutyl, cyclopentyl, decalinyl, and cyclohexyl.
  • heterocyclic and “heterocyclyl” as used herein, alone or in combination, refer to optionally substituted saturated or unsaturated nonaromatic ring radicals containing from five to about twenty ring atoms where one or more of the ring atoms are heteroatoms such as, for example, oxygen, nitrogen, sulfur, and phosphorus.
  • heterocyclic includes mono- heterocyclic and fused heterocyclic ring radicals.
  • a fused heterocyclic radical may contain from two to four fused rings where the attaching ring is a heterocyclic, and the other individual rings within the fused heterocyclic radical may be aromatic, heteroaromatic, alicyclic or heterocyclic.
  • heterocyclic also includes mono-heterocyclic and fused alicyclic radicals having from five to about twelve skeletal ring atoms, as well as those having from five to about ten skeletal ring atoms.
  • Example of heterocyclics include without limitation, tetrahydrofuranyl, benzodiazepinyl, tetrahydroindazolyl, dihyroquinolinyl, and the like.
  • lower heterocyclic and “lower heterocyclyl” as used herein, alone or in combination, refer to a heterocyclic ring system having five to about ten skeletal ring atoms, e.g., dihydropyranyl, pyrrolidinyl, dioxolanyl, piperidinyl, piperazinyl, and the like.
  • alkylaryl refers to an aryl radical as defined above in which at least one H atom is replaced by an alkyl radical as defined above, such as, for example, tolyl, xylyl and the like.
  • alkyl radical as defined above in which at least one H atom is replaced by an aryl radical as defined above, such as, for example, benzyl, 2-phenylethyl and the like.
  • heteroarylalkyl refers to an alkyl radical as defined above in which at least one H atom is replaced by a heteroaryl radical as defined above, each of which may be optionally substituted.
  • alkoxy refers to an alkyl ether radical, alkyl-
  • alkyl wherein the term alkyl is defined as above.
  • alkoxy radicals include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy and the like.
  • lower alkoxy refers to an alkoxy group having one to about six carbon atoms.
  • aryloxy refers to an aryl ether radical wherein the term aryl is defined as above.
  • aryloxy radicals include phenoxy, thienyloxy and the like.
  • alkylthio and thioalkyl as used herein, alone or in combination, refer to an alkyl thio radical, alkyl-S-, wherein the term alkyl is as defined above.
  • arylthio refers to an aryl thio radical, aryl-S-, wherein the term aryl is as defined above.
  • heteroarylthio refers to the group heteroaryl- S-, wherein the term heteroaryl is as defined above.
  • acyl refers to a radical -C(O)R where R includes alkyl, alkenyl, alkynyl, aryl, heteroaryl, alicyclic, heterocyclic, arylalkyl or heteroarylalkyl wherein the alkyl, alkenyl, alkynyl, aryl, heteroaryl, alicyclic, heterocyclic, arylalkyl or heteroaryl alkyl groups may be optionally substituted.
  • acyloxy refers to the ester group -OC(O)R, where R is H, alkyl, alkenyl, alkynyl, aryl, heteroaryl, alicyclic, heterocyclic, arylalkyl, or heteroarylalkyl wherein the alkyl, alkenyl, alkynyl, aryl, heteroaryl, alicyclic, heterocyclic, arylalkyl or heteroarylalkyl may be optionally substituted.
  • carboxy esters as used herein, alone or in combination, refers to -C(O)OR where R is alkyl, aryl or arylalkyl, wherein the alkyl, aryl and arylalkyl groups may be optionally substituted.
  • BOC as used herein, alone or in combination, refers to -C(O)Otbutyl.
  • R" w he P ren eaTchZ ofU RS anqd REZ areI inideBpe 1 MnKdBent 1 ly selected from the group consi .sti .ng o c f H, a n lkyl, aryl, heteroaryl, alicyclic, heterocyclic, arylalkyl and heteroarylalkyl, wherein the alkyl, aryl, heteroaryl, alicyclic, heterocyclic, or arylalkyl groups may be optionally substituted.
  • R and R 1 are independently selected from the group consisting of H, alkyl, aryl, heteroaryl, alicyclic, heterocyclic, arylalkyl and heteroarylalkyl, wherein the alkyl, aryl, heteroaryl, alicyclic, heterocyclic, or arylalkyl groups may be optionally substituted.
  • halogen as used herein, alone or in combination, refers to F, Cl, Br and I.
  • haloalkyl refers to alkyl, alkenyl, alkynyl and alkoxy structures, as described above, that are substituted with one or more fluorines, chlorines, bromines or iodines, or with combinations thereof.
  • perhaloalkyl refers to alkyl, alkyloxy and acyl radicals as described above, in which all the H atoms are replaced by fluorines, chlorines, bromines or iodines, or combinations thereof.
  • lower perhaloalkyl refers to perhaloalkyl, perhaloalkyloxy and perhaloacyl radicals as described above, having from two to about six carbons.
  • cycloalkyl, arylalkyl, aryl, heteroaryl, alicyclic, heterocyclic, alkyl, alkynyl, alkenyl, haloalkyl, and heteroalkyl include optionally substituted cycloalkyl, arylalkyl, aryl, heteroaryl, alicyclic, heterocyclic, alkyl, alkynyl, alkenyl, haloalkyl and heteroalkyl groups.
  • alkylsilyl as used herein, alone or in combination, refers to -NRR 1 R" where R, R' and R" are alkyls.
  • lower alkylsilyl as used herein, alone or in combination, refers to -NRR'R" where R,
  • R' and R" are lower alkyls.
  • amino as used herein, alone or in combination, refers to -NH 2 .
  • alkylamino refers to the group -NHR where R is alkyl.
  • aminoalkyl as used herein, alone or in combination, refers to the group -alkylene-
  • alkylene is as defined herein.
  • dialkylamino refers to the group -NRR' where R and R' are alkyls. alone or in combination, refers to the group -NRR 1 where R is alkyl, and R is aryl.
  • diarylamino refers to the group -NRR 1 where R and R are aryls.
  • heteroarylamino refers to the group -NHR where R is heteroaryl.
  • diheteroarylamino refers to the group -NRR' where R and R are heteroaryls.
  • arylheteroarylamino refers to the group - NRR' where R is aryl, and R is heteroaryl.
  • carbamyl refers to the -NHC(O)OR and -OC(O)NHR groups, wherein R may be, but is not limited to alkyl, alkenyl, alkynyl, aryl , alicyclic, heterocyclic, aryl, heteroaryl, arylalkyl and heteroarylalkyl, wherein the alkyl, alkenyl, alkynyl, aryl , alicyclic, heterocyclic, aryl, heteroaryl, arylalkyl and heteroarylalkyl groups may be optionally substituted.
  • sulfanyl groups include methylsulfanyl (- SCH 3 ) and iso-propylsulfanyl (-SCH(CH 3 ) 2 ) and the like.
  • uryl refers to the -NHC(O)NHR group, wherein R may be, but is not limited to alkyl, alkenyl, alkynyl, aryl , alicyclic, heterocyclic, aryl, heteroaryl, arylalkyl and heteroarylalkyl, wherein the alkyl, alkenyl, alkynyl, aryl , alicyclic, heterocyclic, aryl, heteroaryl, arylalkyl and heteroarylalkyl groups may be optionally substituted.
  • sulfanyl groups include methylsulfanyl (-SCH 3 ) and iso- propylsulfanyl (-SCH(CH 3 ) 2 ) and the like.
  • thiouryl refers to the -NHC(S)NHR group, wherein R may be, but is not limited to alkyl, alkenyl, alkynyl, aryl , alicyclic, heterocyclic, aryl, heteroaryl, arylalkyl and heteroarylalkyl, wherein the alkyl, alkenyl, alkynyl, aryl , alicyclic, heterocyclic, aryl, heteroaryl, arylalkyl and heteroarylalkyl groups may be optionally substituted.
  • Non-limiting examples of sulfanyl groups include methylsulfanyl (-SCH 3 ) and iso- propylsulfanyl (-SCH(CH 3 ) 2 ) and the like.
  • Non-limiting examples of sulfanyl groups include methylsulfanyl (-SCH 3 ) and iso-propylsulfanyl (-SCH(CH 3 ) 2 ) and the like. alone or in combination, refer to a sulfur atom covalently linked to two atoms; the formal oxidation state of said sulfur is (II). These terms may be used interchangeably.
  • sulfanyl refers to the -S-R group, wherein R may be, but is not limited to alkyl, alkenyl, alkynyl, aryl , alicyclic, heterocyclic, aryl, heteroaryl, arylalkyl and heteroarylalkyl, wherein the alkyl, alkenyl, alkynyl, aryl , alicyclic, heterocyclic, aryl, heteroaryl, arylalkyl and heteroarylalkyl groups may be optionally substituted.
  • Non-limiting examples of sulfanyl groups include methylsulfanyl (-SCH 3 ) and iso-propylsulfanyl (- SCH(CH 3 ) 2 ) and the like.
  • sulfoxide as used herein, alone or in combination, refers to a sulfur atom covalently linked to three atoms, at least one of which is an oxygen atom; the formal oxidation state of said sulfur atom is (IV).
  • sulfmyl refers to the groups -S(O)-R, wherein R may be, but is not limited to alkyl, alkenyl, alkynyl, aryl , alicyclic, heterocyclic, aryl, heteroaryl, arylalkyl and heteroarylalkyl, wherein the alkyl, alkenyl, alkynyl, aryl , alicyclic, heterocyclic, aryl, heteroaryl, arylalkyl and heteroarylalkyl groups may be optionally substituted.
  • a non-limiting example of a sulfmyl group includes methylsulfinyl (-S(O)CH 3 ) and the like.
  • sulfone refers to a sulfur atom covalently linked to four atoms, at least two of which are oxygen atoms; the formal oxidation state of said sulfur atom is (VI).
  • sulfonyl refers to the groups -S(Oi)-R, wherein R may be, but is not limited to alkyl, alkenyl, alkynyl, aryl , alicyclic, heterocyclic, aryl, heteroaryl, arylalkyl and heteroarylalkyl, wherein the alkyl, alkenyl, alkynyl, aryl , alicyclic, heterocyclic, aryl, heteroaryl, arylalkyl and heteroarylalkyl groups may be optionally substituted.
  • a non-limiting example of a sulfonyl group includes methylsulfonyl (-S(O 2 )CH 3 ) and the like.
  • phosphite refers to a phosphorus atom covalently linked to three carbon atoms, wherein the formal oxidation state of said phosphorus is (III).
  • phosphinyl refers to the monoradical derived from a phosphite group, as defined above.
  • phosphonate refers to a phosphorus atom covalently linked to four atoms, three of which are oxygen and one of which is carbon wherein the formal oxidation state of said phosphorus is (V).
  • phosphonyl refers to the monoradical derived from a phosphonate group, as defined above.
  • phosphatidyl as used herein, alone or in combination, refers to the monoradical derived from a phosphate group, as defined above.
  • phosphoramide refers to a phosphorus atom covalently linked to four atoms, three of which are nitrogen and one of which is oxygen wherein the formal oxidation state of said phosphorus is (V).
  • phosphoramidyl refers to the monoradical derived from a phosphoramide group, as defined above.
  • aryl optionally mono- or di-substituted with an alkyl means that the alkyl may but need not be present, or either one alkyl or two may be present, and the description includes situations where the aryl is substituted with one or two alkyls and situations where the aryl is not substituted with an alkyl.
  • Optionally substituted groups may be substituted or unsubstituted.
  • substituents of an "optionally substituted" group may include, without limitation, one or more substituents independently selected from the following groups or designated subsets thereof: lower alkyl, lower alkenyl, lower alkynyl, lower aryl, heteroaryl, alicyclic, heterocyclic, arylalkyl, heteroarylalkyl, lower alkoxy, lower aryloxy, amino, alkylamino, dialkylamino, diarylalkylamino, alkylthio, arylthio, heteroarylthio, oxo, oxa, acyl (-C(O)R), (-C(O)), carboxyesters (-C(O)OR), carboxamido (-C(O)NH 2 ), carboxy, acyloxy, -H, halo, -CN, -NO 2 , - N 3 , -SH, -OH, -(O)CH 3 , perhaloalkyl, perhaloalk
  • An optionally substituted group may be unsubstituted (e.g., - CH 2 CH 3 ), fully substituted (e.g., -CF 2 CF 3 ), monosubstituted (e.g., -CH 2 CH 2 F) or substituted at a level anywhere in-between fully substituted and monosubstituted (e.g., -CH 2 CF 3 ).
  • pyridine- 1-oxy also means "pyridine-N-oxy”.
  • heteroaryl group is substituted with 2 to 5 substituents
  • substituents encompasses 1-oxy-pyridyl or N-oxy-pyridyl having 1 to 4 substituents, i.e. the oxygen atom of the pyridine-N-oxide should be counted as a substituent.
  • Some of the compounds of the present invention may contain one or more chiral centers and therefore may exist in enantiomeric and diastereomeric forms.
  • the scope of the present invention ls ' inten ⁇ e ⁇ to cover all ' isomers per se, as well as mixtures of cis and trans isomers, mixtures of diastereomers and racemic mixtures of enantiomers (optical isomers) as well. Further, it is possible using well known techniques to separate the various forms, and some embodiments of the invention may feature purified or enriched species of a given enantiomer or diastereomer.
  • a "pharmacological composition” refers to a mixture of one or more of the compounds described herein, or pharmaceutically acceptable salts thereof, with other chemical components, such as pharmaceutically acceptable carriers and/or excipients. The purpose of a pharmacological composition is to facilitate administration of a compound to an organism.
  • pharmaceutically acceptable carrier means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject agent from one organ, or portion of the body, to another organ, or portion of the body.
  • Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient.
  • materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and
  • excipient refers to an inert substance added to a pharmacological composition to further facilitate administration of a compound.
  • excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars and types of starch, cellulose derivatives, gelatin, vegetable oils and polyethylene glycols.
  • a “pharmaceutically effective amount” means an amount which is capable of providing a therapeutic and/or prophylactic effect.
  • the specific dose of compound administered according to this invention to obtain therapeutic and/or prophylactic effect will, of course, be determined by the particular circumstances surrounding the case, including, for example, the specific compound administered, the route of administration, the condition being treated, and the individual being treated.
  • a typical daily dose (administered in single or divided doses) will contain a dosage level of from about 0.01 mg/kg to about 50-100 mg/kg of body weight of an active compound of the invention.
  • Preferred daily doses generally will be from about 0.05 mg/kg to about 20 mg/kg and ideally from about 0.1 mg/kg to about 10 mg/kg.
  • Factors such as clearance rate, half-life and maximum tolerated dose (MTD) have yet to be determined but one of ordinary skill in the art can determine these using standard procedures.
  • the preferred therapeutic effect is the inhibition, to some extent, of the growth of cells characteristic of a proliferative disorder, e.g., breast cancer.
  • a therapeutic effect will also normally, but need not, relieve to some extent one or more of the symptoms other than cell growth or size of cell mass.
  • a therapeutic effect may include, for example, one or more of 1) a reduction in the number of cells; 2) a reduction in cell size; 3) inhibition (i.e., slowing to some extent, preferably stopping) of cell infiltration into peripheral organs, e.g., in the instance of cancer metastasis; 3) inhibition (i.e., slowing to some extent, preferably stopping) of tumor metastasis; 4) inhibition, to some extent, of cell growth; and/or 5) relieving to some extent one or more of the symptoms associated with the disorder.
  • IC 50 refers to an amount, concentration or dosage of a particular test compound that achieves a 50% inhibition of a maximal response in an assay that measures such response
  • the "IC 50 " value of a compound of the invention can be greater for normal cells than for cells exhibiting a proliferative disorder, e.g. , breast cancer cells. The value depends on the assay used.
  • a "standard” is meant a positive or negative control.
  • a negative control in the context of Her2 expression levels is, e.g., a sample possessing an amount of Her2 protein that correlates with a normal cell.
  • a negative control may also include a sample that contains no Her2 protein.
  • a positive control does contain Her2 protein, preferably of an amount that correlates wi .t.Ph oCve Trex/pr Uess SioOn alBs f/ou 1nd1 i.nB pr 1 MoklIiSfera + ti.ve d .i.sord ,ers, e.g., u breas + t cancers.
  • the conticiantro ,ls may be from cell or tissue samples, or else contain purified ligand (or absent ligand), immobilized or otherwise.
  • one or more of the controls may be in the form of a diagnostic
  • selective targeting is meant affecting one type of cell to a greater extent than another, e.g., in the case of cells with high as opposed to relatively low or normal Her2 levels.
  • R 0 is selected from the group consisting of hydrogen, halogen, lower alkyl, -CN, -SR 8 , -OR 8 , and -NHR 8 ;
  • R 1 is selected from the group consisting of halogen, -OR 11 , -SR 11 and lower alkyl; R 2 is -NHR 8 ;
  • R 3 is selected from the group consisting of hydrogen, -CN, -C(O)OH, -OR 11 , -SR 11 , -C(O)R 9 , -NR 8 R 10 , lower alkyl, lower alkenyl, lower alkynyl, lower perhaloalkyl, lower alkylsilyl, aryl, heteroaryl, alicyclyl and heterocyclyl, all optionally substituted, wherein: the aryl, heteroaryl, alicyclyl and heterocyclyl groups are mono-, bi- or tri- cyclic; R 8 and R 10 taken together with the N atom to which they are attached optionally form an optionally substituted ring comprising 3-7 ring atoms, wherein, in addition to said N atom, 0-3 of the ring atoms are heteroatoms selected from the group consisting of O, S and N; the optional substituents on R 3 are selected from the group consisting of lower alkyl, lower alkenyl, lower alky
  • R 8 and R 8 taken together with the N atom to which they are attached optionally form an optionally substituted ring comprising 3-7 ring atoms, wherein, in addition to said N atom, 0-3 of the ring atoms are heteroatoms selected from the group consisting of
  • R 4 is selected from the group consisting of optionally substituted lower alkylene, -
  • R 5 is selected from the group consisting of aryl, heteroaryl, alicyclyl and heterocyclyl, wherein: the aryl group is substituted with 2 to 5 substituents; the heteroaryl group is substituted with 2 to 5 substituents; the alicyclyl group is substituted with 3 to 5 substituents; the heterocyclyl group is substituted with 3 to 5 substituents; the substituents on R 5 are selected from the group consisting of halogen, lower alkyl, lower alkenyl, lower alkynyl, -CN, -C(O)OH, -NO 2 , -SR 8 , -OR 8 , -C(O)R 9 , -NR 8 R 10 , lower aryl, lower heteroaryl, lower alicyclyl, lower heterocyclyl, arylalkyl, heteroarylalkyl, thio
  • R 8 and R 10 taken together with the N atom to which they are attached optionally form an optionally substituted ring comprising 3-7 ring atoms, wherein, in addition to said N atom, 0-3 of the ring atoms are heteroatoms selected from the group consisting of O, S and N;
  • R 8 is selected from the group consisting of hydrogen, lower alkyl, lower alkenyl, lower alkynyl, lower heteroalkyl, lower heteroalkenyl, lower heteroalkynyl, lower aryl, lower heteroaryl and -C(O)R 9 ;
  • R 9 is selected from the group consisting of H, lower alkyl, lower alkenyl, lower alkynyl, lower aryl, lower heteroaryl, -NR 10 R 10 and -OR 11 , wherein
  • R 10 and R 10 taken together with the N atom to which they are attached optionally form an optionally substituted ring comprising 3-7 ring atoms, wherein, in addition to said N atom, 0-3 of the ring atoms are heteroatoms selected from the group consisting of O, S and N; i;> lt:: y° is lefecle ⁇ n ⁇ We group consisting of hydrogen, lower alkyl, lower alkenyl, lower alkynyl, lower heteroalkyl, lower heteroalkenyl, lower heteroalkynyl, lower aryl, lower heteroaryl and -C(O)R 11 ;
  • R 11 is selected from the group consisting of lower alkyl, lower alkenyl, lower alkynyl, lower aryl and lower heteroaryl;
  • R 12 is selected from the group consisting of hydrogen and lower alkyl.
  • R 0 is hydrogen, halogen or -CN.
  • R 0 is hydrogen, lower alkyl, -SR 8 or -OR 8 .
  • R 0 is hydrogen, -SR 8 , -OR 8 or -NHR 8 .
  • R 0 is -SR 8 or -OR 8 .
  • R 0 is hydrogen.
  • R 1 is halogen or lower alkyl.
  • R 1 is -OR 11 Or -SR 11 .
  • R 1 is halogen, hi some embodiments, R 1 is chloro or bromo. In some embodiments, R 1 is chloro. hi some embodiments, R 1 is bromo.
  • R 2 is -NH 2 or -NHC(O)R 9 . hi other embodiments, R 2 is -NH- lower alkyl, -NH-lower alkenyl, -NH-lower alkynyl, -NH-lower aryl or -NH-lower heteroaryl. In other embodiments, R 2 is -NHC(O)R 9 where R 9 is lower alkyl, lower alkenyl, lower alkynyl, lower aryl or lower heteroaryl. In other embodiments, R 2 is -NH 2 . hi other embodiments, R 2 is - NH(O)tBu.
  • R 3 is hydrogen, lower alkyl, lower alkenyl, lower alkynyl, lower perhaloalkyl, aryl, heteroaryl, alicyclyl, heterocyclyl, -CN or -C(O)R 9 , all optionally substituted. In other embodiments, R 3 is hydrogen, lower alkyl, aryl, heteroaryl, alicyclyl, heterocyclyl or -C(O)R 9 , all optionally substituted. In other embodiments, R 3 is hydrogen, lower alkyl, aryl, heteroaryl, or -C(O)R 9 , all optionally substituted.
  • R 3 is substituted lower alkyl wherein the substituent on the lower alkyl is selected from the group consisting of lower alkyl, -OR 8 , -C(O)R 9 and -NR 8 R 8 .
  • R 3 is lower alkyl, aryl, heteroaryl, -CN or -C(O)R 9 , all optionally substituted.
  • R 3 is hydrogen.
  • R 3 is optionally substituted lower alkyl.
  • R 3 is optionally substituted phenyl or pyridinyl.
  • R 4 is optionally substituted lower alkylene, -C(O)-, -S(O)- or -
  • R 4 is -CH 2 -, -S(O)- or -SO 2 . In other embodiements, R 4 is - CHR 12 -. In other embodiements, R 4 is -CH 2 -.
  • the aryl, heteroaryl, alicyclyl or heterocyclyl group of R 5 is monocyclic or bicyclic.
  • R 5 is substituted aryl or heteroaryl and the substituents on said aryl or heteroaryl are selected from the group consisting of halogen, lower alkoxy, lower alkyl, thioalkyl, amino, alkylamino, dialkylamino.
  • R 5 is substituted aryl or heteroaryl and the substituents on the aryl or heteroaryl are selected from the group consisting of halogen, lower alkoxy and lower alkyl.
  • R 0 is hydrogen, halogen, -SH, -OH, or -CN; R 1 is halogen; and R 2 is -NH 2 or -NH-C(O)R 9 .
  • R 1 is chloro or bromo
  • R 2 is -NH 2 or -NH-C(O)R 9
  • R 3 is lower alkyl, lower alkenyl, lower alkynyl, lower perhaloalkyl, lower aryl, or lower heteroaryl, all optionally substituted with -OR 8 , -NR 8 R 8 or -C(O)R 9 .
  • R 0 is hydrogen, halogen or -CN
  • R 2 is -NH 2 or -NH-C(O)R 9 ;
  • R 4 is -CH 2 -.
  • R 0 is hydrogen, halogen, -SH, -OH or -CN; R 1 is halogen; R 2 is -NH 2 ; R 3 is hydrogen, -OR 11 , -SR 11 , -NR 8 R 8 , lower alkyl, lower alkenyl, lower alkynyl, lower perhaloalkyl, lower aryl, or lower heteroaryl, wherein the R 8 in R 3 is hydrogen, lower alkyl, lower heteroalkyl, lower aryl, or -C(O)R 9 ; R 4 is -CH 2 -; and R 5 is aryl or heteroaryl, substituted with 2 to 5 substituents.
  • R 0 is selected from hydrogen, halogen and -CN; R 1 is halogen; R 2 is -NHR ; R is selected from the group consisting of hydrogen, lower alkyl, lower alkenyl, lower alkynyl, lower perhaloalkyl, aryl, heteroaryl, alicyclyl and heterocyclyl, all optionally substituted; R 4 is -CHR 12 -; and R 5 optionally substituted is aryl or heteroaryl.
  • R 0 is selected from hydrogen, halogen and -CN; R 1 is halogen; R 2 is -NH 2 ; R 3 is selected from the group consisting of lower alkyl, lower alkenyl, lower alkynyl, all optionally substituted with -OR 8 , -NR 8 R 8 or -C(O)R 9 ; R 4 is -CH 2 ; and R 5 is aryl or heteroaryl.
  • R 1 is chloro or bromo
  • R 2 is -NH 2
  • R 5 is a phenyl having at least three substituents.
  • R 1 is chloro or bromo; R 2 is -NH 2 ; and R 5 is a pyridyl having at least two substituents.
  • R 1 ' is cn'loro or bromo; R 2 is -NH 2 ; and R 5 is 1-oxy-pyridyl (N- oxy-pyridyl) having at least two substituents.
  • R 10 and R 10 are independently hydrogen or -C(O)R 11 , or are taken together forming an optionally substituted piperazine;
  • R 4 is -CH 2 -;
  • R 5 is substituted heteroaryl, and the substituents on said heteroaryl are independently selected from the group consisting of lower alkoxy and lower alkyl.
  • R 3 is substituted lower alkyl, and in some further selected embodiments R is substituted lower alkyl, and the substituent on said lower alkyl is phosphonyl or phosphatidyl.
  • hi other preferred embodiemnts are the following compounds
  • R 0 is H
  • R 4 is -CH 2 -.
  • R 3 is not alkynyl, which were disclosed in U.S. Patent Application No. 10/945,851 and PCT Application US04/31248.
  • the pyrrolopyrimidine compounds specified in the EXAMPLE sections of the above patent applications carry either no substituent or a substituted alkyl group.
  • the potency increases approximately 10-20 fold.
  • EC 50 (compound)/EC 5 o(control) where the control is 17- AAG (17-allyl-17-desmethoxy-geldanamycin).
  • EC 50 is defined as the amount of compound added to effect a 50% reduction in viable cell number. Selected compounds were tested on cells of MCF7 and BT474 breast tumor cell lines. The assay shows that Compound 0 is over 10 times less active than 17-AAG. The best non-alkyne substituted analogs are 6 to >50 times less potent than 17-AAG. In contrast, the alkyne substituted analogs can be more potent than 17-AAG (see Cpd. H) - a record in the field of HSP90 inhibitors, or nearly as active, with an index between 0.7-6. TABLE 2 summarized the result of the assay.
  • the compounds of the present invention may be prepared from 5-halo-pyrolo[2,3-d]pyrimidines according to Scheme A below.
  • the preparation of the starting material, N-(4-chloro-5-iodo-7H- pyrrolo[2,3-d]pyrimidin-2-yl)pivalamide, wherein PG is the pivaloyl protecting group and X I, has been reported in Seela, F. Synthesis 2004, 8, 1203 and references therein.
  • Zinc (II) chloride can be substituted with other compounds
  • Lewis acids such as ZnI 2 or CuCl which, however, may not give yields as high.
  • Pd(PPh 3 )VCuI as catalytic system
  • Et 3 N as base
  • DCM or DMF as solvent
  • the reactions are typically run at 20-50 0 C for 0.5 to 24 h.
  • a variety of alternative catalytic systems/base/conditons can be used (see Liang, B. et. al., J. Org. Chem. 2005, 70, 391 and references therein).
  • the R group can be further manipulated if necessary, as illustrated below:
  • the propargylic alcohol can be converted to the mesylate or bromide using methods well known in the art.
  • the mesyl or bromide group can then be displaced by nucleophiles such as amines. Care must be taken to avoid the unwanted nucleophilic substitution of the 4-Cl atom.
  • compositions, Medicaments, Dosaging and Modes of Administration The present invention is also directed to the use of alkynyl pyrrolo[2,3-d]pyrimidine compounds of Formula I and their related analogs, and their polymorphs, solvates, esters, tautomers, diastereomers, enantiomers, pharmaceutically acceptable salts and prodrugs thereof.
  • the compounds are used for the treatment or prevention of diseases that are HSP90-dependent.
  • the compounds are used in the manufacture of a medicament.
  • the compounds are used in the manufacture of a medicament for the therapeutic and/or prophylactic treatment of diseases and conditions that are HSP90-dependent.
  • diseases and conditions include disorders such as inflammatory diseases, infections, autoimmune disorders, stroke, ischemia, cardiac disorder, neurological disorders, fibrogenetic disorders, proliferative disorders, tumors, leukemias, chronic lymphocytic leukemia, acquired immunodeficiency syndrome, neoplasms, cancers, carcinomas, metabolic diseases, and malignant disease.
  • the fibrogenetic disorders include but are not limited to scleroderma, polymyositis, systemic lupus, rheumatoid arthritis, liver cirrhosis, keloid formation, interstitial nephritis and pulmonary fibrosis.
  • compositions and medicaments comprising the compound of Formula I, or a polymorph, solvate, ester, tautomer, enantiomer, diastereomer, pharmaceutically acceptable salt thereof, or prodrug thereof, of any of the preceding aspects and embodiments and one or more pharmaceutical excipients.
  • Those of ordinary skill in the art are familiar with formulation and administration techniques that can be employed with the compounds and methods of the invention, e.g., as discussed in Goodman and Gihnan, The Pharmacological Basis of Therapeutics (10th edition); Pergamon; and Remington 's, Pharmaceutical Sciences (20th edition), Mack Publishing Co., Easton, Pa.
  • the compounds utilized in the methods of the instant invention may be administered either alone or in combination with pharmaceutically acceptable carriers, excipients or diluents, in a pharmaceutical composition, according to standard pharmaceutical practice.
  • the compounds can be administered orally or parenterally, including the intravenous, intramuscular, intraperitoneal, subcutaneous, rectal and topical routes of administration.
  • the therapeutic or pharmaceutical compositions of the invention can be administered locally to the area in need of treatment.
  • This may be achieved by, for example, but not limited to, local infusion during surgery, topical application, e.g., cream, ointment, injection, catheter, or implant, said implant made, e.g., out of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers.
  • topical application e.g., cream, ointment, injection, catheter, or implant
  • said implant made, e.g., out of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers.
  • the administration can also be by direct injection at the site (or former site) of a tumor or neoplastic or pre-neoplastic tissue.
  • the compounds or compositions of the invention can be delivered in a vesicle, e.g., a liposome (see, for example, Langer, Science 1990, 249,1527-1533; Treat et al., Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Bernstein and Fidler, Ed., Liss, N. Y., pp. 353-365, 1989).
  • a vesicle e.g., a liposome
  • the compounds and pharmaceutical compositions used in the methods of the present invention can also be delivered in a controlled release system, hi one embodiment, a pump may be used (see, Sefton, 1987, CRC Crit. Ref. Biomed. Eng. 14:201; Buchwald et al.
  • a controlled release system can be placed in proximity of the therapeutic target. (See, Goodson, Medical Applications of Controlled Release, 1984, Vol. 2, pp. 115-138).
  • compositions used in the methods of the instant invention can also contain the active ingredient in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs.
  • Compositions intended for oral use may be prepared according to any method known in the art for the manufacture of pharmaceutical compositions, and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets.
  • excipients may be, for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, such as microcrystalline cellulose, sodium crosscarmellose, corn starch, or alginic acid; binding agents, for example starch, gelatin, polyvinyl-pyrrolidone or acacia, and lubricating agents, for example, magnesium stearate, stearic acid or talc.
  • the tablets may be un- coated or coated by known techniques to mask the taste of the drug or delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period.
  • Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water soluble carrier such as polyethyleneglycol or an oil medium, for example peanut oil, liquid paraffin, or olive oil.
  • an inert solid diluent for example, calcium carbonate, calcium phosphate or kaolin
  • water soluble carrier such as polyethyleneglycol or an oil medium, for example peanut oil, liquid paraffin, or olive oil.
  • Aqueous suspension ' s contain the active material in admixture with excipients suitable for the manufacture of aqueous suspensions.
  • excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxypropylrnethyl-cellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethylene-oxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydr
  • the aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose, saccharin or aspartame.
  • Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in mineral oil such as liquid paraffin.
  • the oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation.
  • compositions may be preserved by the addition of an anti-oxidant such as butylated hydroxyanisol or alpha-tocopherol.
  • an anti-oxidant such as butylated hydroxyanisol or alpha-tocopherol.
  • Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present.
  • an anti-oxidant such as ascorbic acid.
  • the compounds and pharmaceutical compositions used in the methods of the instant invention may also be in the form of an oil-in-water emulsion.
  • the oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin, or mixtures of these.
  • Suitable emulsifying agents may be naturally-occurring phosphatides, for example soybean lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate.
  • the emulsions may also contain sweetening agents, flavoring agents, preservatives and antioxidants.
  • Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative, flavoring and coloring agents and antioxidant.
  • sweetening agents for example glycerol, propylene glycol, sorbitol or sucrose.
  • Such formulations may also contain a demulcent, a preservative, flavoring and coloring agents and antioxidant.
  • compositions may be in the form of a sterile inj ectable aqueous solution.
  • acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution.
  • the sterile injectable preparation may also be a sterile injectable oil-in-water microemulsion where the active ingredient is dissolved in the oily phase.
  • the active ingredient may be first dissolved in a mixture of soybean oil and lecithin.
  • the oil solution may then be introduced into a water and glycerol mixture and processed to form a microemulsion.
  • the injectable solutions or microemulsions may be introduced into a patient's bloodstream by local bolus injection.
  • a continuous intravenous delivery device may be utilized.
  • An example of such a device is the Deltec CADD-PLUSTM model 5400 intravenous pump.
  • the pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleagenous suspension for intramuscular and subcutaneous administration.
  • This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1,3-butanediol.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil may be employed including synthetic mono- or diglycerides.
  • fatty acids such as oleic acid find use in the preparation of injectables.
  • compositions can be prepared by mixing the inhibitors with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug.
  • suitable non-irritating excipient include cocoa butter, glycerinated gelatin, hydrogenated vegetable oils, mixtures of polyethylene glycols of various molecular weights and fatty acid esters of polyethylene glycol.
  • creams, ointments, jellies, solutions or suspensions, etc. containing a compound or composition of the invention can be used.
  • topical application can include mouth washes and gargles.
  • the compounds used in the methods of the present invention can be administered in intranasal form via topical use of suitable intranasal vehicles and delivery devices, or via transdermal routes, using those forms of transdermal skin patches well known to those of ordinary skill in the art.
  • the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.
  • the methods, compounds and compositions of the instant invention may also be used in conjunction with other well known therapeutic agents that are selected for their particular usefulness against the condition that is being treated.
  • the instant compounds may be useful in combination with known anti-cancer and cytotoxic agents.
  • the instant methods and compounds may also be useful in combination with other inhibitors of parts of the signaling pathway that links cell surface growth factor receptors to nuclear signals initiating cellular proliferation.
  • the methods of the present invention may also be useful with other agents that inhibit angiogenesis and thereby inhibit the growth and invasiveness of tumor cells, including, but not limited to VEGF receptor inhibitors, including ribozymes and antisense targeted to VEGF receptors, angiostatin and endostatin.
  • VEGF receptor inhibitors including ribozymes and antisense targeted to VEGF receptors, angiostatin and endostatin.
  • antineoplastic agents that can be used in combination with the compounds and methods of the present invention include, in general, and as appropriate, alkylating agents, anti-metabolites, epidophyllotoxins, an antineoplastic enzyme, a topoisomerase inhibitor, procarbazine, mitoxantrone, platinum coordination complexes, biological response modifiers and growth inhibitors, hormonal/anti-hormonal therapeutic agents and haematopoietic growth factors.
  • antineoplastic examples include the anthracyclines, vinca drugs, mitomycins, bleomycins, cytotoxic nucleosides, epothilones, discodermolide, pteridines, diynenes and podophyllotoxins.
  • Particularly useful members of those classes include, for example, carminomycin, daunorubicin, aminopterin, methotrexate, methopterin, dichloromethotrexate, mitomycin C, porfiromycin, 5-fluorouracil, 6- mercaptopurine, gemcitabine, cytosine arabinoside, podophyllotoxin or podo-phyllotoxin derivatives such as etoposide, etoposide phosphate or teniposide, melphalan, vinblastine, vincristine, leurosidine, vindesine, leurosine, paclitaxel and the like.
  • antineoplastic agents include estramustine, carboplatin, cyclophosphamide, bleomycin, gemcitibine, ifosamide, melphalan, hexamethyl melamine, thiotepa, cytarabin, idatrexate, trimetrexate, dacarbazine, L- asparaginase, camptothecin, CPT-Il, topotecan, ara-C, bicalutamide, flutamide, leuprolide, pyridobenzoindole derivatives, interferons and interleukins.
  • the daily dosage will normally be determined by the prescribing physician with the dosage generally varying according to the age, weight, and response of the individual patient, as well as the severity of the patient's symptoms.
  • a suitable amount of compound is administered to a mammal undergoing treatment for cancer, for example, breast cancer.
  • Administration typically occurs in an amount of between about 0.01 mg/kg of body weight to about 100 mg/kg of body weight per day (administered in single or divided doses), more preferably at least about 0.1 mg/kg of body weight per day.
  • a particular therapeutic dosage can include, e.g., from about 0.01 mg to about 1000 mg of compound, and preferably includes, e.g., from about 1 mg to about 1000 mg.
  • the quantity of active compound in a unit dose of preparation may be varied or adjusted from about 0.1 mg to 1000 mg, preferably from about 1 mg to 300 mg, more preferably 10 mg to 200 mg, according to the particular application.
  • the amount administered will vary depending on the particular IC 5O value of the compound used and the judgment of the attending clinician taking into consideration factors such as health, weight, and age. In combinational applications in which the compound is not the sole active ingredient, it may be possible to administer lesser amounts of compound and still have therapeutic or prophylactic effect.
  • the pharmaceutical preparation is in unit dosage form.
  • the preparation is subdivided into unit doses containing appropriate quantities of the active component, e.g., an effective amount to achieve the desired purpose.
  • the actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated. Determination of the proper dosage for a particular situation is within the skill of the art. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small amounts until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day if desired.
  • the amount and frequency of administration of the compounds and compositions of the present invention used in the methods of the present invention, and if applicable other chemotherapeutic agents and/or radiation therapy, will be regulated according to the judgment of the attending clinician (physician) considering such factors as age, condition and size of the patient as well as severity of the disease being treated.
  • the chemotherapeutic agent and/or radiation therapy can be administered according to therapeutic protocols well known in the art. It will be apparent to those skilled in the art that the administration of the chemotherapeutic agent and/or radiation therapy can be varied depending on the disease being treated and the known effects of the chemotherapeutic agent and/or rad ,i paticon T th/era upy s on o t Bha /t d,i ⁇ se ⁇ asee.
  • the therapeutic protocols e.g., dosage amounts and times of administration
  • the administered therapeutic agents i.e., antineoplastic agent or radiation
  • the compounds of the invention need not be administered in the same pharmaceutical composition as a chemotherapeutic agent, and may, because of different physical and chemical characteristics, be administered by a different route.
  • the compounds/compositions may be administered orally to generate and maintain good blood levels thereof, while the chemotherapeutic agent may be administered intravenously.
  • the determination of the mode of administration and the advisability of administration, where possible, in the same pharmaceutical composition, is well within the knowledge of the skilled clinician.
  • the initial administration can be made according to established protocols known in the art, and then, based upon the observed effects, the dosage, modes of administration and times of administration can be modified by the skilled clinician.
  • the particular choice of compound (and where appropriate, chemotherapeutic agent and/or radiation) will depend upon the diagnosis of the attending physicians and their judgment of the condition of the patient and the appropriate treatment protocol.
  • the compounds/compositions of the invention (and where appropriate chemotherapeutic agent and/or radiation) may be administered concurrently (e.g., simultaneously, essentially simultaneously or within the same treatment protocol) or sequentially, depending upon the nature of the proliferative disease, the condition of the patient, and the actual choice of chemotherapeutic agent and/or radiation to be administered in conjunction (i.e., within a single treatment protocol) with the compound/composition, hi combinational applications and uses, the compound/composition and the chemotherapeutic agent and/or radiation need not be administered simultaneously or essentially simultaneously, and the initial order of administration of the compound/composition, and the chemotherapeutic agent and/or radiation, may not be important.
  • the compounds/compositions of the invention may be administered first followed by the administration of the chemotherapeutic agent and/or radiation; or the chemotherapeutic agent and/or radiation may be administered first followed by the administration of the compounds/compositions of the invention.
  • This alternate administration may be repeated during a single treatment protocol. The determination of the order of administration, and the number of repetitions of administration of each therapeutic agent during a treatment protocol, is well within the knowledge of the skilled physician after evaluation of the disease being treated and the condition of the patient.
  • the chemotherapeutic agent andfo/ra ⁇ iatiori'nlly Il 1 'admmistere ⁇ irst especially if it is a cytotoxic agent, and then the treatment continued with the administration of the compounds/compositions of the invention followed, where determined advantageous, by the administration of the chemotherapeutic agent and/or radiation, and so on until the treatment protocol is complete.
  • the practicing physician can modify each protocol for the administration of a compound/composition for treatment according to the individual patient's needs, as the treatment proceeds.
  • the attending clinician in judging whether treatment is effective at the dosage administered, will consider the general well-being of the patient as well as more definite signs such as relief of disease-related symptoms, inhibition of tumor growth, actual shrinkage of the tumor, or inhibition of metastasis. Size of the tumor can be measured by standard methods such as radiological studies, e.g., CAT or MRI scan, and successive measurements can be used to judge whether or not growth of the tumor has been retarded or even reversed. Relief of disease-related symptoms such as pain, and improvement in overall condition can also be used to help judge effectiveness of treatment.
  • HSP90 competitive binding assays and functional assays can be performed as known in the art by substituting in the compounds of the invention. Gnosis et al. Chemistry & Biology 2001, 8, 289-299, describe some of the known ways in which this can be done.
  • competition binding assays using, e.g., geldanamycin or 17-AAG as a competitive binding inhibitor of HSP90 can be used to determine relative HSP90 affinity of the compounds of the invention by immobilizing the compound of interest or other competitive inhibitor on a gel or solid matrix, preincubating HSP90 with the other inhibitor, passing the preincubated mix over the gel or matrix, and then measuring the amount of HSP90 that retains or does not retain on the gel or matrix.
  • Downstream effects can also be evaluated based on the known effect of HSP90 inhibition on function and stability of various steroid receptors and signaling proteins including, e.g., Rafl and Her2.
  • Compounds of the present invention induce dose-dependent degradation of these molecules, which can be measured using standard techniques.
  • Inhibition of HSP90 also results in up-regulation of HSP90 and related chaperone proteins that can similarly be measured.
  • Antiproliferative activity on various cancer cell lines can also be measured, as can morphological and functional differentiation related to HSP90 inhibition.
  • Many different types of methods are known in the art for determining protein concentrations and measuring or predicting the level of proteins within cells and in fluid sanipl'k.
  • the determination of whether cells overexpress or contain elevated levels of Her2 can be determined using well known antibody techniques such as immunoblotting, radioimmunoassays, western blotting, immunoprecipitation, enzyme-linked immunosorbent assays (ELISA), and derivative techniques that make use of antibodies directed against Her2.
  • Her2 expression in breast cancer cells can be determined with the use of an immunohistochemical assay, such as the Dako HercepTM test (Dako Corp., Carpinteria, CA).
  • the HercepTM test is an antibody staining assay designed to detect Her2 overexpression in tumor tissue specimens. This particular assay grades Her2 expression into four levels: 0, 1, 2, and 3, with level 3 representing the highest level of Her2 expression. Accurate quantitation can be enhanced by employing an Automated Cellular Imaging System (ACIS) as described, e.g., by Press, M. et al. Modern Pathology 2000, 13, 225 A. [099] Antibodies, polyclonal or monoclonal, can be purchased from a variety of commercial suppliers, or may be manufactured using well-known methods, e.g., as described in Harlow et al.
  • ACIS Automated Cellular Imaging System
  • Her2 overexpression can also be determined at the nucleic acid level since there is a reported high correlation between overexpression of the Her2 protein and amplification of the gene that codes for it. One way to test this is by using RT-PCR.
  • the genomic and cDNA sequences for Her2 are known.
  • Specific DNA primers can be generated using standard, well- known techniques, and can then be used to amplify template already present in the cell. An example of this is described in Kurokawa, H. et al. Cancer Res. 2000, 60, 5887-5894.
  • PCR can be standardized such that quantitative differences are observed as between normal and abnormal cells, e.g., cancerous and noncancerous cells.
  • Well known methods employing, e.g., densitometry, can be used to quantitate and/or compare nucleic acid levels amplified using PCR.
  • fluorescent in situ hybridization (FISH) assays and other assays can be used, e.g., Northern and/or Southern blotting. These rely on nucleic acid hybridization between the Her2 gene or rnRNA and a corresponding nucleic acid probe that can be designed in the same or a See, e.g., Mitchell MS, and Press M.F. Oncol, Suppl. 1999, 12, 108-116.
  • this nucleic acid probe can be conjugated to a fluorescent molecule, e.g., fluorescein and/or rhodamine, that preferably does not interfere with hybridization, and which fluorescence can later be measured following hybridization.
  • a fluorescent molecule e.g., fluorescein and/or rhodamine
  • ACIS-based approaches as described above can be employed to make the assay more quantitative (de Ia Torre-Bueno, J., et al. Modern Pathology 2000, 13, 221 A).
  • Imrnuno and nucleic acid detection can also be directed against proteins other than HSP90 and HER2, which proteins are nevertheless affected in response to HSP90 inhibition.
  • proteins other than HSP90 and HER2 which proteins are nevertheless affected in response to HSP90 inhibition.
  • the final compounds were usually purified by preparative TLC (silica gel 60 A, Whatman Partisil PK6F) or flash chromatography (silica gel 60 A, EMD Chemicals) using EtOAc/hexane or MeOHZCH 2 Cl 2 as eluents.
  • Rf s were measured using silica gel TLC plates (silica gel 60 A, EMD Chemicals).
  • Analytical HPLC chromatograms were obtained using a Cl 8 column (Agilent Zorbax 300SB-C18; 5 microns; 4.6 mm x 150 mm).
  • R 2 ' H, PG
  • Step 2 2-Dimethyl-N-(4-oxo-4, 7-dihydro-3H-pyrrolo[2, 3-d]pyrimidin-2-yl)-propionamide
  • 2-amino-3,7-dihydro-pyrrolo[2,3-d]pyrimidin-4-one (186 g, 1.23 mol) in pyridine (2 L) was treated with trimethylacetyl chloride (475 g, 3.94 mol, 485 mL, 3.2 eq) at 90 0 C for 2h, to give a mixture of N(2)-monoacylated and N(2), N(7)-bisacylated material.
  • N-(4-Chloro-7H-pyrrolo[2,3-d]pyrimidin-2-yl)-2,2-dimethyl-propionamide A mixture of 2,2-dimethyl-N-(4-oxo-4,7-diriydro-3H-pyrrolo[2,3-d]pyrimidiri-2-yl)- propionamide (21O g, 0.90 mol), POCl 3 (828 g, 5.40 mol, 503 mL, 6.0 eq), benzyltriethylammonium chloride (411 g, 1.80 mol), N,N-dimethylaniline (220 g, 23ImL, 1.80 mol), and acetonitrile (2.0 L) was heated to reflux for 40-60 min, monitoring with HPLC.
  • N-(4-Chloro-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-2-yl)-2,2-dimethyl-propionamide A solution of N-(4-chloro-7H-pyrrolo[2,3-d]pyrimidin-2-yl)-2,2-dimethyl-propionamide (101 g, 0.40 mol) in anhydrous THF (2 L) was treated with N-iodosuccinimide (98.9g, 0.44mol, 1.1 eq.) under N 2 atmosphere at rt for 40 min.
  • Stepl N-[4-Chloro-5-(3-hydro?cy-prop-l-ynyl)-7-(4-methoxy-3,5-dimethyl-pyridin-2-ylmethyl)- 7H-pyrrolo[2,3-d]pyrimidin-2-yl]-2,2-dimethyl-propionamide
  • the title compound was prepared by Sonogashira coupling of N-[4-chloro-5-iodo-7-(4-methoxy- 3,5-dimethyl-pyridin-2-ylmethyl)-7H-pyrrolo[2,3-d]pyrimidin-2-yl]-2,2-dimethyl-propionamide (see Example 1) with propargylic alcohol according to the General Procedure A.
  • the title compound was prepared by cleaving the pivaloyl protecting group of N-[4-chloro-5-(3- diisobutylamino-prop-l-ynyl)-7-(4-methoxy-3,5-dimethyl-pyridin-2-yhnethyl)-7H-pyrrolo[2,3- d]pyrimidin-2-yl]-2,2-dimethyl-propionamide with ZnCl 2 according to the General Procedure B.
  • the title compound was prepared by cleaving the pivaloyl protecting group of N-[4-chloro-5-(3- diisopropylamino-prop-l-ynyl)-7-(4-methoxy-3 5 5-dimethyl-pyridin-2-yhiiethyl)-7H-pyrrolo[2 5 3- d]pyrimidin-2-yl]-2,2-dimethyl-propionamide with ZnCl 2 according to the General Procedure B. t R : 4.71min.
  • Step 2 ⁇ Chloro-V-ft-methoxy-S.S-dimethyl ⁇ yridin ⁇ -ylmethyty-S-trimethylsilatiylethynyl ⁇ H- pyrrolo[2,3-d]pyrimidin-2-ylamine
  • the title compound was prepared by cleaving the pivaloyl protecting group of N-[4-chloro-7-(4- methoxy-3,5-dimethyl-pyridm-2-yhnethyl)-5-trimethylsilanylethynyl-7H-pyrrolo[2,3- d]pyrimidin-2-yl]-2,2-dimethyl-propionamide with ZnCl 2 according to the General Procedure B.
  • t ⁇ 6.56 min.
  • 1 H NMR (CDCl 3 ) ⁇ 8.22 (s, IH), 7.11 (s, IH), 5.30 (s, 2H), 5.09 (s, 2H), 3.75 (s,
  • Step 1 l-(4-Methyl-piperazin-l-yl)-pent-4-yn-l-one
  • Step 2 5-[2-Amino-4-chloro- 7-(4-methoxy-3, 5-dimethyl ⁇ pyridin-2-ylmethyl)- 7H-pyrrolo[2, S- dJpyrimidin-5-ylJ -1 -(4-methyl-piperazin-l -yl)-pent-4-yn-l -one
  • Step 2 5-[2-Amino-4-chloro- 7-(4-methoxy-3, 5-dimethyl-pyridin-2-ylmethyl)- 7H-pyrrolo[2, 3- d]pyrimidin-5-yl] -pent-4-ynoic acid amide
  • the title compound was obtained by Sonogashira coupling of 4-Chloro-5-iodo-7-(4-methoxy-
  • Step 2 ⁇ 3-[2-Amino-4-chloro-7-(4-methoxy-3,5-dimethyl-pyridin-2-ylmethyl)-7H-pyrrolo[2,3 ⁇ d]pyrimidin-5-yl]-prop-2-ynyl ⁇ -carbamic acid tert-butyl ester
  • Step 2 ⁇ 5-[2-Amino-4-chloro- 7-(4-methoxy-3, 5-dimethyl-pyridin-2-ylmethyl)-7H-pyrrolo[2, 3- d]pyrimidin-5-yl]-pent-4-ynyl ⁇ -carbamic acid tert-butyl ester.
  • Step 3 4-Chloro-7-(4-methoxy-3,5-dimethyl-pyridin-2-ylmethyl)-5-(5-morpholin-4-yl-pent-l- ynyl)- 7H-pyrrolo[2, 3-d]pyrimidin-2-ylamine
  • the title compound was obtained by Sonogashira coupling of 4-Chloro-5-iodo-7-(4-nietnoxy-
  • Step 2 5-(5-tert-Butylamino-pent-l-ynyl)-4-chloro-7-(4-fnethoxy-3,5-ditnethyl-pyridin-2- ylmethyl)- 7H-pyrrolo[2, 3-d]pyrimidin-2-ylamine
  • Step 1 l-ethyl-4-(pent-4-ynyl)piperazine
  • Step 1 l-(but-3-ynyl)-4-methylpiperazine A mixture of but-3-ynyl 4-methylbenzenesulfonate (972 mg) and N-methyl piperazine (482 ⁇ L) was heated to 8OC for 4.5 h, diluted with 1,2-dichloroethane (5 mL) and heated to 70 °C for 18h.
  • Step 2 Saturated aq. NaHCO 3 was added (10 mL) and the mixture was extracted with DCM (3 x 40 mL), and concentrated to afford 0.70 g of l-(but-3-ynyl)-4-methylpiperazine as a 3:2 mixture of tosylate salt and free base.
  • Step 2 S _on Pogcash 1 TiraZ cUoupaliOngB ofZ 4-icnIlorBo-y5-I-iSod 1 o- n 7- t (( t 4 A -met ,hoxy-3,5-d ⁇ i.met .hy .lpyn .d,m.
  • Step 1 l-(but-3-ynyl)-4-phenylpiperazine A solution of but-3-ynyl 4-methylbenzenesulfonate (1.72 g), N-phenyl piperazine (1.17 mL) and diisoproylethylamine (1.45 mL) in 1,2-dichloroethane (5 mL) was heated to reflux overnight. The mixture was concentrated, diluted with sat. aq. NaHCO 3 (5 mL) and extracted with DCM (2 x 50 mL). Drying (Na 2 SO 4 ) and silica gel flash chromatography (3% Et 3 N in EtOAc) afforded 1- (but-3-ynyl)-4-phenylpiperazine (0.76 g) Step 2
  • Step 1 l-(but-3-ynyl)-4-(pyridin-2-yl)piperazine
  • Step 1 2-(4-(but-3-ynyl)piperazin-l-yl)pyrimidine A solution of but-3-ynyl 4-methylbenzenesulfonate (1.14 g), 2-(piperazin-l-yl)pyrimidine (1.06 g) and diisoproylethylamine (1.24 mL) in 1,2-dichloroethane (6 mL) was heated to reflux overnight. The mixture was concentrated, diluted with sat. aq. NaHCO 3 (5 mL) and extracted with DCM (2 x 50 mL).
  • Step 1 l-(pent-4-ynyl)-4-phenylpiperazine A solution of pent-4-ynyl methanesulfonate (1.05 g), N-phenyl piperazine (1.02 g) and diisoproylethylamine (1.2 mL) in THF (5 mL) was heated to reflux overnight. The mixture was concentrated, diluted with aq. NaOH 2M (10 mL) and extracted with DCM (2 x 50 mL).
  • Example 33 4-chloro-7-((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)-5-(5-(4-(pyridin-2-yl)piperazin-l- yl)pent-l -ynyl)-7H-py rr olo [2,3-d] py rimidin-2-amme
  • Step 1 l-(pent-4-ynyl)-4-(pyridin-2-yl)piperazine
  • Step 1 l-(pent-4-ynyl)-lH-imidazole
  • Step 1 l-(but-3-ynyl)p ⁇ perazine
  • Step 2 4-(but-3-ynyl)-N-methylpiperazine-l-carboxam ⁇ de A solution of l-(but-3-ynyl)piperazine (445 mg) in THF (4 mL) was treated with 4-nitrophenyl carbonochloridate (649 mg) at rt for 5 min. A precipitate formed immediately, and the suspension was treated with Et 3 N (0.45 mL) to ensure complete reaction. The suspension was diluted wiht H 2 O (2 mL), MeOH (2 mL) and 40% aq. MeNH 2 (4.0 mL) and stirred at rt for 3 days.
  • Step 1 l-(but-3-ynyl)-lH-imidazole
  • the crude was dissolved in a mixture OfEt 3 N (0.7 mL and MeOH (60 mL), loaded on Dowex 50Wx2-400 (20 g, pre-washed with MeOH), and the resin was washed with MeOH (200 mL) to remove the excess TFA.
  • the desired phosphate was released from the resin with Et 3 NiMeOH 1:10 (200 mL)
  • the solution was concentrated to give the phosphate as an oily triethylamine salt (2.75 g). Crystallization was induced with EtOH (60 mL). The mixture was left at rt for 1.5 h and at -20 °C overnight to give a first crop of crystals (0.64 g).
  • Step 1 2-((4-chloro-5-iodo-2-pivalamido- 7H-pyrrolo[2, 3-d]pyrimidin ⁇ 7-yl)methyl)-4-methoxy- 3, 5-dimethylpyridine 1 -oxide
  • Step 2 2-((4-chloro-5-(4-hydroxybut-l -ynyl)-2-pivalamido- 7H-pyrrolo[2, 3-dJpyrimidin- 7- yl)methyl)-4-methoxy-3,5-dimethylpyridine 1-oxide
  • Step 1 But-3-ynyl hydrogen sulfate, pyridine salt
  • But-3-yn-l-ol (2.1 g) in DCM (20 niL) was treated with sulfur trioxide-pyridine complex (4.77 g) overnight. The solid was filtered off and the reaction mixture was concentrated and used without further purification.
  • Step 1 But-3-ynyl bis (2, 2, 2-trichloroethyl) phosphate
  • rHSP90 protein Stressgen, BC, Canada, #SPP-770
  • PBS phosphate buffered saline
  • biotin-GM biotinylated- geldanamycin
  • biotin-GM biotinylated- geldanamycin
  • the wells were washed again twice with 200 ⁇ L PBS, before the addition of 20 ⁇ g/mL streptavidin- phycoerythrin (streptavidin-PE) (Molecular Probes, Eugene, OR) and incubation for 60 min. at 37 0 C.
  • streptavidin-PE streptavidin- phycoerythrin
  • Relative fluorescence units was measured using a SpectraMax Gemini XS Spectrofluorometer (Molecular Devices, Sunnyvale, CA) with an excitation at 485 nm and emission at 580 nm; data was acquired using SOFTmax ® PRO software (Molecular Devices Corporation, Sunnyvale, CA).
  • the background was defined as the RFU generated from wells that were not coated with HSP90 but were treated with the biotin-GM and streptavidin-PE. The background measurements were subtracted from each sample treated with biotin-GM and streptavidin-PE measurements before other com ppuctatTion/.
  • MCF7 breast carcinoma cell lysates were prepared by douncing in lysing buffer (20 mM HEPES, pH 7.3, 1 mM EDTA, 5 mM MgCl 2 , 100 mM KCl), and then incubated with or without test compound for 30 mins at 4 0 C, followed by incubation with biotin-GM linked to BioMagTM streptavidin magnetic beads (Qiagen) for 1 hr at 4 0 C. The tubes were placed on a magnetic rack, and the unbound supernatant removed. The magnetic beads were washed three times in lysis buffer and boiled for 5 mins at 95 0 C in SDS-PAGE sample buffer.
  • MCF7 breast carcinoma cells (ATCC) were grown in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum (FBS) and 10 mM HEPES, and plated in 24 well plates (50% confluent). Twenty-four hrs later (cells are 65-70% confluent), test compounds were added and incubated overnight for 16 h.
  • DMEM Dulbecco's modified Eagle's medium
  • FBS fetal bovine serum
  • HEPES fetal bovine serum
  • the amounts added were 100 ⁇ M, 30 ⁇ M, 10 ⁇ M and 1 ⁇ M, and for more potent compounds, the amounts added were 1 ⁇ M, 0.3 ⁇ M, 0.1 ⁇ M, 0.03 ⁇ M, 0.01 ⁇ M and 0.003 ⁇ M.
  • the wells were washed with 1 mL phosphate buffered saline (PBS), and 200 ⁇ L trypsin was added to each well. After trypsinization was complete, 50 ⁇ L of FBS was added to each well. Then 200 ⁇ L cells were transferred to 96 well plates. The cells were pipetted up and down to obtain a single cell suspension.
  • PBS phosphate buffered saline
  • the plates were centrifuged at 2,500 rpm for 1 min using a Sorvall Legend RTTM tabletop centrifuge (Kendro Laboratory Products, Asheville, NC). The cells were then washed once in PBS containing 0.2% BSA and 0.2% sodium azide (BA buffer).
  • PE conjugated "ant ⁇ HER27Ne ⁇ antibody '(Becton Dickinson, #340552), or PE conjugated anti- keyhole limpet hemocyanin [KLH] (Becton Dickinson, #340761) control antibody was added at a dilution of 1 :20 and 1 :40 respectively (final concentration was 1 ⁇ g/mL) and the cells were pipeted up and down to form a single cell suspension, and incubated for 15 mins. The cells were washed twice with 200 ⁇ L BA buffer, and resuspended in 200 ⁇ L BA buffer, and transferred to FACSCAN tubes with an additional 250 ⁇ L BA buffer.
  • IC 50 is defined as the concentration at which there was 50% degradation of the HER2/Neu protein.
  • MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assays measure the cytotoxicity of geldanamycin derivatives.
  • MTS 3-(4,5-dimethylthiazol-2- yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
  • a tetrazolium dye that is converted to a formazan product by dehydrogenase enzymes of metabolically active cells (Corey, A. et al.
  • mice Six to 8 week old Balb/C and nu/nu athymic female mice were obtained from Harlan Sprague Dawley, (Indianapolis, IN). The mice were maintained in sterilized filter topped cages or ventilated caging in a room with a 12 hour light/dark cycle. Irradiated pelleted food (Harlan Teklad #7912) and autoclaved deionized water were provided ad libitum. Animals were . ⁇ IRCT/ USOB/J-iBM-B , . identified by the use of individually numbered ear tags. Expe ⁇ ments were carried out under institutional guidelines for the proper and human use of animals in research established by the Institute for Laboratory Animal Research (ILAR).
  • ILAR Institute for Laboratory Animal Research
  • Example 70 The change in mean treated tumor volume was divided by the change in mean control tumor volume, multiplied by 100 and subtracted from 100% to give the tumor growth inhibition for each group. Statistical analysis was performed using the standard T-test and using GraphPad Prism ⁇ Software. [0175] Example 70
  • Tumors were established in mice, by innoculation of human N87 stomach cancer cells, according to example 69.
  • Example 71 a plot of tumor volume (mm 3 ) against time (days).
  • Tumors were established in mice, by innoculation of NCI295 adrenocortical carcinoma cells, according to example 69.
  • Tumors were established in mice, by innoculation of SK-MEL-28 melanoma cells, according to example 69.
  • WLS Western Lysis Buffer
  • Western Transfer Buffer contains 23.3g Tris base, 116g glycine and 1.6L methanol. Add water to a final volume of 8L and store at 4 0 C.
  • TBST (IX) contains 1OmM Tris pH8.0, 15OmM NaCl and 0.1% Tweene 20. Blocking solution contains 5% nonfat dry milk in IX TBST. Keep at 4 0 C. Processing of tumor samples: Snap-frozen N87 gastric carcinoma tumors are transferred from liquid nitrogen into -8O 0 C freezer. WLB is supplemented with protease inhibitor cocktail (stock at 100X) on ice. Each tumor is thawed on ice and transferred onto the lid of a Petri dish. It is covered with 50ul of WLB and is dissected into smaller pieces with disposable scalpels. Any residual skin attached to the tumor is removed. The tumor pieces are then chopped further down, and transferred into 300-50OuI of ice-cold WLB.
  • the minced sample is sonicated at setting 3 on Fisher Scientific's Sonic Dismembrator 550 untill no more solid pieces can be broken down.
  • the suspension is then centrifuged at 15,000g, 4 0 C for 5 minutes.
  • the supernatant is collected into a clean Eppendorf tube on ice as lysate.
  • 2ul of the lysate is used for total protein quantification by following directions in the BCA Protein Assay kit.
  • the rest of the lysate is snap-frozen in liquid nitrogen while the BCA assay is in process. The total protein concentration in each lysate is calculated upon completion of BCA assay.
  • the lysates are thawed in a water bath, and their total protein concentrations adjusted to 4-10mg/ml using 5X WSB (to a final of 20% of the total volume) and WLB (if necessary).
  • the adjusted lysates are boiled at 95 0 C for 5 minutes and cooled to room temperature. At this stage, they are frozen at -2O 0 C for future Western blotting analysis.
  • Western blotting analysis Western blotting analysis:
  • the quantified and adjusted lysates from tumor or spleen samples are thawed in a water bath, and loaded at equal total protein amount onto 4-12% Tris- glycine precast gels together with biotinylated protein marker. Electrophoresis is carried out at 140V for 1.5 hours. The separated proteins in the gels are transferred onto PVDF membranes at 100V for about 1 hour in Western transfer buffer. The blots are incubated in blocking buffer at room temperature for 1 hour or at 4 0 C overnight with gentle rocking. Primary antibodies against various HSP90 client proteins of interest are applied at room temperature for 1 hour with gentle rocking. Excess antibodies are washed off with six 5- minute washes in TBST.
  • the blots are then incubated in HRP-conjugated secondary antibodies and streptavidin-HRP conjugate at room temperature for 1 hour with gentle rocking. Excess secondary antibodies and conjugate are washed off by six 5 minute washes in P C T. / 11 J S O 6 / 1, .18 1 MHB TBST.
  • the blots are then developed using Pierce's SuperSignal West Femto chemilluminescent substrate by mixing freshly prepared equal volumes of luminal enhancer and peroxide buffer and adding the mixture onto the blots one at a time.
  • the protein bands can be visualized on Bio- Rad's fluor-S Max2 Multilrnager using Bio-Rad's Quantity One software. The results of the Western Blott analysis are shown in figure 5.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oncology (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Immunology (AREA)
  • Communicable Diseases (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Dermatology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Plural Heterocyclic Compounds (AREA)
PCT/US2006/011846 2005-03-30 2006-03-29 Alkynyl pyrrolopyrimidines and related analogs as hsp90-inhibitors WO2006105372A2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
NZ561939A NZ561939A (en) 2005-03-30 2006-03-29 Alkynyl pyrrolopyrimidines and related analogs as HSP90-inhibitors
CA002602257A CA2602257A1 (en) 2005-03-30 2006-03-29 Alkynyl pyrrolopyrimidines and related analogs as hsp90-inhibitors
EP06749002A EP1869027A4 (en) 2005-03-30 2006-03-29 ALKYNYL-PYRROLOPYRIMIDINES AND CORRESPONDING ANALOGS AS HSP90 INHIBITORS
MX2007011903A MX2007011903A (es) 2005-03-30 2006-03-29 Alquinil pirrolopirimidinas y analogos relacionados como inhibidores de hsp90.
EA200702109A EA013522B1 (ru) 2005-03-30 2006-03-29 Алкинилпирролопиримидины и их применение в качестве ингибиторов hsp90
BRPI0609509-7A BRPI0609509A2 (pt) 2005-03-30 2006-03-29 composto ou um polimorfo, solvato, tautÈmero, enanciÈmero, pró-droga ou sal farmaceuticamente aceitável do mesmo, composição farmacêutica, e, uso do composto, polimorfo, solvato, tautÈmero, enanciÈmero, pró-droga ou sal farmaceuticamente aceitável
JP2008504412A JP2008534609A (ja) 2005-03-30 2006-03-29 Hsp90阻害剤としてのアルキニルピロロピリミジンおよび関連類似体
AU2006230447A AU2006230447A1 (en) 2005-03-30 2006-03-29 Alkynyl pyrrolopyrimidines and related analogs as HSP90-inhibitors
IL186270A IL186270A (en) 2005-03-30 2007-09-25 Compositions comprising alkynyl pyrrolopyrimidines and uses thereof for preparing medicaments
NO20075099A NO20075099L (no) 2005-03-30 2007-10-09 Alkynyl-pyrrolopyrmidiner og relaterte analoger som HSP90-inhibitorer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US66689905P 2005-03-30 2005-03-30
US60/666,899 2005-03-30

Publications (2)

Publication Number Publication Date
WO2006105372A2 true WO2006105372A2 (en) 2006-10-05
WO2006105372A3 WO2006105372A3 (en) 2007-07-19

Family

ID=37054161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/011846 WO2006105372A2 (en) 2005-03-30 2006-03-29 Alkynyl pyrrolopyrimidines and related analogs as hsp90-inhibitors

Country Status (15)

Country Link
US (2) US7544672B2 (US07544672-20090609-C00214.png)
EP (1) EP1869027A4 (US07544672-20090609-C00214.png)
JP (1) JP2008534609A (US07544672-20090609-C00214.png)
KR (1) KR20080004550A (US07544672-20090609-C00214.png)
CN (1) CN101180297A (US07544672-20090609-C00214.png)
AU (1) AU2006230447A1 (US07544672-20090609-C00214.png)
BR (1) BRPI0609509A2 (US07544672-20090609-C00214.png)
CA (1) CA2602257A1 (US07544672-20090609-C00214.png)
EA (1) EA013522B1 (US07544672-20090609-C00214.png)
IL (1) IL186270A (US07544672-20090609-C00214.png)
MX (1) MX2007011903A (US07544672-20090609-C00214.png)
NO (1) NO20075099L (US07544672-20090609-C00214.png)
NZ (1) NZ561939A (US07544672-20090609-C00214.png)
WO (1) WO2006105372A2 (US07544672-20090609-C00214.png)
ZA (1) ZA200708520B (US07544672-20090609-C00214.png)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007104944A1 (en) * 2006-03-11 2007-09-20 Vernalis (R & D) Ltd. Pyrrolopyrimidine derivatives used as hsp90 inhibitors
WO2008045529A1 (en) * 2006-10-12 2008-04-17 Serenex, Inc. Purine and pyrimidine derivatives for treatment of cancer and inflammatory diseases
WO2008049105A2 (en) * 2006-10-19 2008-04-24 Wyeth Sulfamoyl-containing derivatives and uses thereof
WO2008049994A1 (fr) 2006-10-24 2008-05-02 Sanofi-Aventis Nouveaux derives du fluorene, compositions les contenant et utilisation comme inhibiteurs de la proteine chpaerone hsp90
WO2008096218A1 (en) * 2007-02-06 2008-08-14 Pfizer Inc. 2-amin0-5, 7-dihydr0-6h- pyrrolo [3, 4-d] pyrimidine derivatives as hsp-90 inhibitors for treating cancer
WO2009030871A1 (en) * 2007-09-07 2009-03-12 Vernalis R & D Ltd Pyrrolopyrimidine derivatives having hsp90 inhibitory activity
US7595401B2 (en) 2006-05-12 2009-09-29 Myriad Pharmaceuticals, Inc. Therapeutic compounds and their use in cancer
WO2010043865A1 (en) * 2008-10-17 2010-04-22 Chroma Therapeutics Ltd Inhibitors of hsp90
WO2010043867A1 (en) * 2008-10-17 2010-04-22 Chroma Therapeutics Ltd Pyrrolo [2, 3-d] pyrimidines as inhibitors of hsp90
US7799781B2 (en) 2007-02-01 2010-09-21 Astrazeneca Ab 5,6,7,8-tetrahydropteridine derivatives as HSP90 inhibitors
WO2011004132A1 (fr) 2009-07-10 2011-01-13 Sanofi-Aventis Nouveaux derives de l'indole inhibiteurs d'hsp90, compositions les contenant et utilisation
WO2011027081A2 (fr) 2009-09-03 2011-03-10 Sanofi-Aventis Nouveaux derives de 5,6,7,8-tetrahydroindolizine inhibiteurs d'hsp90, compositions les contenant et utilisation
US8080556B2 (en) 2008-08-13 2011-12-20 Pfizer Inc. 2-amino pyrimidine compounds as potent HSP-90 inhibitors
US9296742B2 (en) 2008-09-26 2016-03-29 Intellikine Llc Heterocyclic kinase inhibitors

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ561939A (en) * 2005-03-30 2011-03-31 Conforma Therapeutics Corp Alkynyl pyrrolopyrimidines and related analogs as HSP90-inhibitors
WO2007131034A1 (en) * 2006-05-03 2007-11-15 The Regents Of The University Of Michigan Pyrimidone derivatives which are modulators of heat shock protein (hsp) 70
LT5623B (lt) 2008-04-30 2010-01-25 Biotechnologijos Institutas, , 5-aril-4-(5-pakeistieji 2,4-dihidroksifenil)-1,2,3-tiadiazolai kaip hsp90 šaperono slopikliai ir tarpiniai junginiai jiems gauti
WO2011059731A1 (en) * 2009-10-29 2011-05-19 Janssen Pharmaceutica Nv Alkynyl derivatives useful as dpp-1 inhibitors
WO2014145576A2 (en) 2013-03-15 2014-09-18 Northwestern University Substituted pyrrolo(2,3-d)pyrimidines for the treatment of cancer
WO2015153510A1 (en) * 2014-03-30 2015-10-08 Cepheid Modified cytosine polynucleotide oligomers and methods
DK3126372T3 (en) * 2014-03-30 2019-04-23 Cepheid MODIFIED THYMIN-POLYNUCLEOTID OIGOMER AND SIMILAR PROCEDURES
KR102133569B1 (ko) * 2018-06-28 2020-07-13 한국과학기술연구원 신규한 피롤로[2,3-d]피리미딘-4-온 유도체 및 이를 포함하는 암의 예방 또는 치료용 약학 조성물
CN115192712B (zh) * 2022-07-05 2023-08-01 四川大学华西第二医院 Hsp抑制剂在制备胚胎神经系统畸形治疗的产品中的应用

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595955A (en) 1969-03-26 1971-07-27 Upjohn Co Geldanamycin and process for producing same
US4261989A (en) 1979-02-19 1981-04-14 Kaken Chemical Co. Ltd. Geldanamycin derivatives and antitumor drug
IL64501A (en) 1980-12-22 1985-07-31 Astra Laekemedel Ab 9-substituted 4-hydroxybutyl guanine derivatives,their preparation and antiviral use
US4533254A (en) 1981-04-17 1985-08-06 Biotechnology Development Corporation Apparatus for forming emulsions
US4699877A (en) 1982-11-04 1987-10-13 The Regents Of The University Of California Methods and compositions for detecting human tumors
US4921859A (en) 1983-10-31 1990-05-01 Warner-Lambert Company Purine derivatives
US5098906A (en) 1983-10-31 1992-03-24 Warner-Lambert Company Purine derivatives
US4806642A (en) 1984-10-05 1989-02-21 Warner-Lambert Company Purine derivatives
US4547573A (en) 1983-12-02 1985-10-15 Ici Pharma Process for preparing cephalosporin derivatives
EP0151528B1 (en) 1984-02-02 1990-07-04 Merck & Co. Inc. 5-(amino or substituted amino)-1,2,3-triazoles
US4748177A (en) 1984-03-26 1988-05-31 Warner-Lambert Company Guanine derivatives
US4617304A (en) 1984-04-10 1986-10-14 Merck & Co., Inc. Purine derivatives
IT1196261B (it) 1984-09-20 1988-11-16 Pierrel Spa Derivati nucleosidici e purinici 8-sostituiti
US4772606A (en) 1985-08-22 1988-09-20 Warner-Lambert Company Purine derivatives
IL76546A (en) 1984-10-12 1988-12-30 Warner Lambert Co 9-(heteroarylalkyl)-6-purine(thi)one derivatives,their preparation and pharmaceutical compositions containing them
JO1406B1 (en) 1984-11-02 1986-11-30 سميث كلاين اند فرينش لابوراتوريز ليمتد Chemical compounds
US5217866A (en) 1985-03-15 1993-06-08 Anti-Gene Development Group Polynucleotide assay reagent and method
DE3650699T2 (de) 1985-03-15 1999-04-15 Antivirals Inc Immunotestmittel für Polynukleotid und Verfahren
DE3512194A1 (de) 1985-04-03 1986-10-09 Hoechst Ag, 6230 Frankfurt Ein neues ansamycin-antibiotikum, ein mikrobielles verfahren zu seiner herstellung und seine verwendung als arzneimittel
GB8515934D0 (en) 1985-06-24 1985-07-24 Janssen Pharmaceutica Nv (4-piperidinomethyl and-hetero)purines
US4918162A (en) 1986-05-06 1990-04-17 The Regents Of The University Of California Assays and antibodies for N-MYC proteins
US5002950A (en) 1986-10-24 1991-03-26 Warner-Lambert Co. 7-deazaguanines as immunomodulators
US4968603A (en) 1986-12-31 1990-11-06 The Regents Of The University Of California Determination of status in neoplastic disease
US5204353A (en) 1987-04-07 1993-04-20 Ciba-Geigy Corporation 3-benzyl-3H-1,2,3-triazolo[4,5-d]pyrimidines, compositions thereof, and method of treating epilepsy therewith
SE8801729D0 (sv) 1988-05-06 1988-05-06 Astra Ab Purine derivatives for use in therapy
US4923885A (en) 1988-08-19 1990-05-08 Merck & Co., Inc. 5-amino-1-(4-naphthoylbenzyl)-1,2,3-triazole-4-carboxamides and analogs as antiproliferative agents
EP0363320A3 (de) 1988-10-06 1991-11-21 Ciba-Geigy Ag Substituierte 9H-Purine
US5332744A (en) 1989-05-30 1994-07-26 Merck & Co., Inc. Substituted imidazo-fused 6-membered heterocycles as angiotensin II antagonists
DE69116750T2 (de) 1990-07-04 1996-11-14 Merrell Dow Pharma 9-Purinyl-Phosphonsäurederivate
GB9020931D0 (en) 1990-09-26 1990-11-07 Wellcome Found Heterocyclic compounds
DE69230349T2 (de) 1991-03-05 2000-07-27 Ajinomoto Kk Cyclopropanderivat
WO1992021032A1 (en) 1991-05-24 1992-11-26 The Regents Of The University Of California Methods for the detection of bcr-abl and abnormal abl proteins in leukemia patients
US6025126A (en) 1991-10-28 2000-02-15 Arch Development Corporation Methods and compositions for the detection of chromosomal aberrations
HU9401936D0 (en) 1992-01-06 1994-09-28 Pfizer Process and uses for 4,5-diohydrogeldanamycin and its hydroquinone
CA2093403C (en) 1992-04-08 1999-08-10 Fumio Suzuki Therapeutic agent for parkinson's disease
JPH0680670A (ja) 1992-09-03 1994-03-22 Ajinomoto Co Inc シクロプロパン誘導体及びその製造法
GB9226879D0 (en) 1992-12-23 1993-02-17 Iaf Biochem Int Anti-viral compounds
US6444656B1 (en) 1992-12-23 2002-09-03 Biochem Pharma, Inc. Antiviral phosphonate nucleotides
US6005107A (en) 1992-12-23 1999-12-21 Biochem Pharma, Inc. Antiviral compounds
US5387584A (en) 1993-04-07 1995-02-07 Pfizer Inc. Bicyclic ansamycins
US5602156A (en) 1993-09-17 1997-02-11 The United States Of America As Represented By The Department Of Health And Human Services Method for inhibiting metalloproteinase expression
US5744492A (en) 1993-09-17 1998-04-28 United States Of America Method for inhibiting angiogenesis
GB9402161D0 (en) 1994-02-04 1994-03-30 Wellcome Found Chloropyrimidine intermediates
JP3769737B2 (ja) 1994-03-30 2006-04-26 味の素株式会社 シクロプロパン誘導体及びその製造法
US5932566A (en) 1994-06-16 1999-08-03 Pfizer Inc. Ansamycin derivatives as antioncogene and anticancer agents
US5994361A (en) 1994-06-22 1999-11-30 Biochem Pharma Substituted purinyl derivatives with immunomodulating activity
US5525606A (en) 1994-08-01 1996-06-11 The United States Of America As Represented By The Department Of Health And Human Services Substituted 06-benzylguanines and 6(4)-benzyloxypyrimidines
JPH0841035A (ja) 1994-08-05 1996-02-13 Ajinomoto Co Inc シクロプロパン誘導体及びその製造法
US5846749A (en) 1994-10-12 1998-12-08 The Regents Of The University Of California Quantitative measurement of tissue protein identified by immunohistochemistry and standardized protein determination
JPH08208687A (ja) 1994-11-25 1996-08-13 Sankyo Co Ltd グリセリルオリゴヌクレオチド
US5656629A (en) 1995-03-10 1997-08-12 Sanofi Winthrop, Inc. 6-substituted pyrazolo (3,4-d)pyrimidin-4-ones and compositions and methods of use thereof
US6177460B1 (en) 1995-04-12 2001-01-23 The Procter & Gamble Company Method of treatment for cancer or viral infections
JPH0920776A (ja) 1995-06-30 1997-01-21 Nippon Paper Ind Co Ltd 新規なプリンヌクレオシド誘導体、その製造方法及びその誘導体を有効成分とする抗ウイルス剤
JPH09169758A (ja) 1995-10-18 1997-06-30 Nippon Paper Ind Co Ltd 新規なプリンヌクレオシド誘導体、その製造方法、及びそれを用いた抗ウイルス剤
JPH1025294A (ja) 1996-03-26 1998-01-27 Akira Matsuda 縮合ヘテロ環誘導体、その製造法及びそれを含有する悪性腫瘍治療剤
AU698419B2 (en) 1996-07-03 1998-10-29 Dainippon Sumitomo Pharma Co., Ltd. A novel purine derivative
US6723727B1 (en) 1996-12-20 2004-04-20 Hoechst Aktiengesellschaft Substituted purine derivatives, processes for their preparation, their use, and compositions comprising them
WO1998039344A1 (en) 1997-03-07 1998-09-11 Metabasis Therapeutics, Inc. Novel purine inhibitors of fructose-1,6-bisphosphatase
US5861503A (en) 1997-04-30 1999-01-19 The Regents Of The University Of California Process for producing 8-fluoropurines
JP4903922B2 (ja) 1997-05-14 2012-03-28 スローン − ケッタリング インスティチュート フォー キャンサー リサーチ 選択された蛋白質を分解する複合化合物
CN1268137A (zh) 1997-07-03 2000-09-27 杜邦药品公司 治疗神经失调的咪唑并嘧啶和咪唑并吡啶
EP1017394B1 (en) 1997-07-12 2005-12-07 Cancer Research Technology Limited Cyclin dependent kinase inhibiting purine derivatives
AUPO912997A0 (en) 1997-09-11 1997-10-02 Commonwealth Scientific And Industrial Research Organisation Antiviral agents
WO1999016465A1 (en) 1997-09-30 1999-04-08 Beth Israel Deaconess Medical Center Method for inhibiting tumor angiogenesis in a living subject
US5968921A (en) 1997-10-24 1999-10-19 Orgegon Health Sciences University Compositions and methods for promoting nerve regeneration
DE69824632T2 (de) 1997-11-12 2005-06-09 Mitsubishi Chemical Corp. Purinderivate und medikamente, welche dieselben als aktiven bestandteil enthalten
TW572758B (en) 1997-12-22 2004-01-21 Sumitomo Pharma Type 2 helper T cell-selective immune response inhibitors comprising purine derivatives
WO1999051223A1 (en) 1998-04-03 1999-10-14 University Of Pittsburgh Of The Commonwealth System Of Higher Education Benzoquinoid ansamycins for the treatment of cardiac arrest and stroke
SI20022A (sl) 1998-07-29 2000-02-29 Kemijski inštitut Alkilno substituirani purinovi derivati in njihova priprava
JP2000072773A (ja) 1998-08-28 2000-03-07 Zeria Pharmaceut Co Ltd プリン誘導体
JP2000072733A (ja) 1998-08-31 2000-03-07 Kanebo Ltd アミド化合物の製造法
US6140374A (en) 1998-10-23 2000-10-31 Abbott Laboratories Propofol composition
US6369092B1 (en) 1998-11-23 2002-04-09 Cell Pathways, Inc. Method for treating neoplasia by exposure to substituted benzimidazole derivatives
JP2002532535A (ja) 1998-12-22 2002-10-02 アメリカ合衆国 水不溶性薬剤送達システム
JP2002539076A (ja) 1999-01-06 2002-11-19 ユニバーシティ・オブ・サザン・カリフォルニア 新脈管形成抑制のための方法および組成物
DK1150982T3 (da) 1999-02-01 2005-12-27 Cv Therapeutics Inc Purininhibitorer af cylkineafhængig kinase 2 og 1kB-alfa
FR2790702B1 (fr) 1999-03-08 2001-07-20 Sidel Sa Unite de moulage et machine d'extrusion-soufflage munie d'une telle unite
US6174875B1 (en) 1999-04-01 2001-01-16 University Of Pittsburgh Benzoquinoid ansamycins for the treatment of cardiac arrest and stroke
WO2000061578A1 (en) 1999-04-09 2000-10-19 Sloan-Kettering Institute For Cancer Research Methods and compositions for degradation and/or inhibition of her-family tyrosine kinases
WO2000068230A1 (en) 1999-05-05 2000-11-16 Darwin Discovery Limited 9-(1,2,3,4-tetrahydronaphthalen-1-yl)-1,9-dihydropurin-6-one derivatives as pde7 inhibitors
US6667300B2 (en) 2000-04-25 2003-12-23 Icos Corporation Inhibitors of human phosphatidylinositol 3-kinase delta
CN101928288B (zh) * 2000-11-02 2013-09-11 斯隆-凯特林癌症研究所 结合hsp90的小分子组合物
GB0100621D0 (en) 2001-01-10 2001-02-21 Vernalis Res Ltd Chemical compounds VI
GB0100624D0 (en) 2001-01-10 2001-02-21 Vernalis Res Ltd Chemical compounds VII
MY141789A (en) 2001-01-19 2010-06-30 Lg Chem Investment Ltd Novel acyclic nucleoside phosphonate derivatives, salts thereof and process for the preparation of the same.
US20020156277A1 (en) 2001-04-20 2002-10-24 Fick David B. Synthesis and methods of use of purine analogues and derivatives
US20030022864A1 (en) 2001-04-24 2003-01-30 Ishaq Khalid S. 9-[(5-dihydroxyboryl)-pentyl] purines, useful as an inhibitor of inflammatory cytokines
US6962991B2 (en) 2001-09-12 2005-11-08 Epoch Biosciences, Inc. Process for the synthesis of pyrazolopyrimidines
JP2003113181A (ja) 2001-10-04 2003-04-18 Sumika Fine Chemicals Co Ltd 6−ハロプリンの製造方法
JP4397691B2 (ja) * 2001-10-30 2010-01-13 コンフォーマ・セラピューティクス・コーポレイション Hsp90阻害活性を有するプリン類似体
CN1688580A (zh) 2002-08-08 2005-10-26 记忆药物公司 作为磷酸二酯酶4抑制剂的2-三氟甲基-6-氨基嘌呤衍生物
GB0219746D0 (en) 2002-08-23 2002-10-02 Inst Of Ex Botany Ascr Azapurine derivatives
AU2003267145A1 (en) 2002-09-13 2004-04-30 Irm, Llc Highly specific modulators of gtpases for target validation
EP1546164A4 (en) 2002-09-26 2006-06-07 Lg Life Sciences Ltd (+) - TRANS-ISOMERS OF (1-PHOSPHONOMETHOXY-2-ALKYLCYCLOPROPYL) METHYL NUCLEOSIDE DERIVATIVES, METHOD FOR THE PRODUCTION OF STEREO-ISOMERS THEREOF, AND THE USE OF ANTIVIRAL AGENTS PRODUCED THEREOF
US7601694B2 (en) 2003-02-20 2009-10-13 New York University CLK-peptide and SLK-peptide
US7579332B2 (en) 2003-07-30 2009-08-25 Gilead Sciences, Inc. Nucleobase phosphonate analogs for antiviral treatment
US20050054614A1 (en) 2003-08-14 2005-03-10 Diacovo Thomas G. Methods of inhibiting leukocyte accumulation
WO2005016348A1 (en) 2003-08-14 2005-02-24 Icos Corporation Method of inhibiting immune responses stimulated by an endogenous factor
KR101139314B1 (ko) * 2003-08-29 2012-04-26 베르날리스(캠브리지)리미티드 피리미도티오펜 화합물
KR20060070572A (ko) 2003-09-18 2006-06-23 콘포마 세러퓨틱스 코포레이션 Hsp90-저해제로서의 신규 헤테로시클릭 화합물
CN100475815C (zh) 2003-09-25 2009-04-08 詹森药业有限公司 抑制hiv复制的嘌呤衍生物
KR20050062944A (ko) 2003-12-19 2005-06-28 주식회사 엘지생명과학 디이소프로필((1-((2-아미노-6-클로로-9h-퓨린-9-일)메틸)사이클로프로필)옥시)-메틸포스포네이트의 새로운 제조방법
KR20050062940A (ko) 2003-12-19 2005-06-28 주식회사 엘지생명과학 디이소프로필((1-((2-아미노-6-할로-9h-퓨린-9-일)메틸)사이클로프로필)옥시)-메틸포스포네이트의 새로운 제조방법
WO2005067901A2 (en) 2004-01-08 2005-07-28 Michigan State University Methods for treating and preventing hypertension and hypertension-related disorders
TW200533358A (en) 2004-02-17 2005-10-16 Anadys Pharmaceuticals Inc Nucleoside phosphonate derivatives useful in the treatment of hiv infections
US20070225303A1 (en) 2004-03-26 2007-09-27 Haruhisa Ogita 8-Oxoadenine Compound
NZ561939A (en) 2005-03-30 2011-03-31 Conforma Therapeutics Corp Alkynyl pyrrolopyrimidines and related analogs as HSP90-inhibitors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP1869027A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007104944A1 (en) * 2006-03-11 2007-09-20 Vernalis (R & D) Ltd. Pyrrolopyrimidine derivatives used as hsp90 inhibitors
US7595401B2 (en) 2006-05-12 2009-09-29 Myriad Pharmaceuticals, Inc. Therapeutic compounds and their use in cancer
US8476285B2 (en) 2006-05-12 2013-07-02 Myrexis, Inc. Purine-core inhibitors of HSP90 and their use in treating cancer
WO2008045529A1 (en) * 2006-10-12 2008-04-17 Serenex, Inc. Purine and pyrimidine derivatives for treatment of cancer and inflammatory diseases
WO2008049105A2 (en) * 2006-10-19 2008-04-24 Wyeth Sulfamoyl-containing derivatives and uses thereof
WO2008049105A3 (en) * 2006-10-19 2008-10-09 Wyeth Corp Sulfamoyl-containing derivatives and uses thereof
WO2008049994A1 (fr) 2006-10-24 2008-05-02 Sanofi-Aventis Nouveaux derives du fluorene, compositions les contenant et utilisation comme inhibiteurs de la proteine chpaerone hsp90
US8163750B2 (en) 2006-10-24 2012-04-24 Sanofi-Aventis Fluorene derivatives, compositions containing the same and use thereof as inhibitors of the protein chaperone HSP 90
US7799781B2 (en) 2007-02-01 2010-09-21 Astrazeneca Ab 5,6,7,8-tetrahydropteridine derivatives as HSP90 inhibitors
WO2008096218A1 (en) * 2007-02-06 2008-08-14 Pfizer Inc. 2-amin0-5, 7-dihydr0-6h- pyrrolo [3, 4-d] pyrimidine derivatives as hsp-90 inhibitors for treating cancer
WO2009030871A1 (en) * 2007-09-07 2009-03-12 Vernalis R & D Ltd Pyrrolopyrimidine derivatives having hsp90 inhibitory activity
US8080556B2 (en) 2008-08-13 2011-12-20 Pfizer Inc. 2-amino pyrimidine compounds as potent HSP-90 inhibitors
US9296742B2 (en) 2008-09-26 2016-03-29 Intellikine Llc Heterocyclic kinase inhibitors
US9790228B2 (en) 2008-09-26 2017-10-17 Intellikine Llc Heterocyclic kinase inhibitors
WO2010043865A1 (en) * 2008-10-17 2010-04-22 Chroma Therapeutics Ltd Inhibitors of hsp90
WO2010043867A1 (en) * 2008-10-17 2010-04-22 Chroma Therapeutics Ltd Pyrrolo [2, 3-d] pyrimidines as inhibitors of hsp90
WO2011004132A1 (fr) 2009-07-10 2011-01-13 Sanofi-Aventis Nouveaux derives de l'indole inhibiteurs d'hsp90, compositions les contenant et utilisation
WO2011027081A2 (fr) 2009-09-03 2011-03-10 Sanofi-Aventis Nouveaux derives de 5,6,7,8-tetrahydroindolizine inhibiteurs d'hsp90, compositions les contenant et utilisation

Also Published As

Publication number Publication date
NO20075099L (no) 2007-10-29
IL186270A (en) 2012-08-30
CN101180297A (zh) 2008-05-14
WO2006105372A3 (en) 2007-07-19
AU2006230447A1 (en) 2006-10-05
US20090318387A1 (en) 2009-12-24
EP1869027A2 (en) 2007-12-26
US8093229B2 (en) 2012-01-10
EA200702109A1 (ru) 2008-06-30
EP1869027A4 (en) 2010-06-23
CA2602257A1 (en) 2006-10-05
NZ561939A (en) 2011-03-31
JP2008534609A (ja) 2008-08-28
ZA200708520B (en) 2008-10-29
US20060223797A1 (en) 2006-10-05
MX2007011903A (es) 2007-12-05
EA013522B1 (ru) 2010-06-30
KR20080004550A (ko) 2008-01-09
US7544672B2 (en) 2009-06-09
IL186270A0 (en) 2008-01-20
BRPI0609509A2 (pt) 2010-04-13

Similar Documents

Publication Publication Date Title
US8093229B2 (en) Alkynyl pyrrolo[2,3-d]pyrimidines and related analogs as HSP90-inhibitors
US7129244B2 (en) Triazolopyrimidines and related analogs as HSP90-inhibitors
US20080096903A1 (en) Sulfamoyl-containing derivatives and uses thereof
JP6105578B2 (ja) 複素環式プロテインキナーゼ阻害剤
US20070253896A1 (en) 7,9-Dihydro-Purin-8-One and Related Analogs as HSP90-Inhibitors
EA011815B1 (ru) Пирролопиразолы в качестве сильнодействующих ингибиторов киназы
JP2010132704A (ja) サイクリン依存性キナーゼインヒビターとしてのピラゾロピリミジン
JP2010180235A (ja) サイクリン依存性キナーゼインヒビターとしての新規ピラゾロピリミジン
JP2016513117A (ja) 過剰増殖性疾患を治療するためのbetタンパク質阻害剤としてのピロロ−およびピラゾロ−トリアゾロジアゼピン類
ZA200602786B (en) Novel heterocyclic compounds as HSP90-inhibitors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680017555.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2602257

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 186270

Country of ref document: IL

Ref document number: 7387/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/011903

Country of ref document: MX

Ref document number: 561939

Country of ref document: NZ

Ref document number: 2006230447

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2008504412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006230447

Country of ref document: AU

Date of ref document: 20060329

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006749002

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 1020077025174

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200702109

Country of ref document: EA

ENP Entry into the national phase

Ref document number: PI0609509

Country of ref document: BR

Kind code of ref document: A2