WO2006093356A1 - 車両用駆動装置の制御装置 - Google Patents

車両用駆動装置の制御装置 Download PDF

Info

Publication number
WO2006093356A1
WO2006093356A1 PCT/JP2006/304675 JP2006304675W WO2006093356A1 WO 2006093356 A1 WO2006093356 A1 WO 2006093356A1 JP 2006304675 W JP2006304675 W JP 2006304675W WO 2006093356 A1 WO2006093356 A1 WO 2006093356A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
state
speed
continuously variable
control means
Prior art date
Application number
PCT/JP2006/304675
Other languages
English (en)
French (fr)
Inventor
Atsushi Kamata
Atsushi Tabata
Yuji Inoue
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE112006000524.3T priority Critical patent/DE112006000524B4/de
Priority to CN2006800071250A priority patent/CN101133268B/zh
Priority to US11/817,726 priority patent/US7771309B2/en
Publication of WO2006093356A1 publication Critical patent/WO2006093356A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18027Drive off, accelerating from standstill
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/12Driver interactions by confirmation, e.g. of the input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/24Driver interactions by lever actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/0006Vibration-damping or noise reducing means specially adapted for gearings
    • F16H2057/0012Vibration-damping or noise reducing means specially adapted for gearings for reducing drive line oscillations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control device for a vehicle drive device, and more particularly to a technology for downsizing an electric motor or the like in a vehicle drive device including a differential mechanism capable of operating a differential action and an electric motor.
  • a vehicle drive device includes a differential mechanism that distributes engine output to a first motor and an output shaft, and a first motor that is provided between the output shaft of the differential mechanism and a drive wheel. ing.
  • Japanese Patent Laid-Open No. 2 0 0 3 _ 1 2 7 6 7 9 Japanese Patent Laid-Open No. 9 1 7 0 5 3 3
  • Japanese Patent Laid-Open No. 2 0 0 0-3 1 6 2 0 5 Japanese Patent Laid-Open No. 2
  • This is the hybrid vehicle drive device described in Japanese Patent No. 0 0 3 — 1 6 1 1 8 1.
  • the differential mechanism is composed of, for example, a planetary gear device, and the main part of the power from the engine is mechanically transmitted to the drive wheels by the differential action, and the power from the engine is transmitted.
  • It is made to function as a transmission in which the gear ratio is electrically changed by electrical transmission using a motor, for example, an electric continuously variable transmission, and to drive the vehicle while maintaining the engine in an optimum operating state.
  • the fuel consumption is improved by the control by the control device.
  • a continuously variable transmission is known as a device that improves the fuel consumption of a vehicle
  • a gear transmission such as a stepped automatic transmission is known as a device having good transmission efficiency.
  • the first motor functions as a star evening by energizing the first motor to increase its rotational speed.
  • the engine is rotationally driven (cranking), and the engine is started by performing ignition, fuel injection, or the like at an engine rotational speed that is higher than a predetermined engine rotational speed, for example, at an autonomous rotational speed.
  • vibrations and noises are generated in vehicles.
  • the vibration and noise are caused by engine fluctuations (vibration source, vibration forcing force) due to rotational fluctuations caused by engine torque fluctuations caused by periodic cylinder ignition (explosion) and piston reciprocation.
  • the vibration transmitted to the vehicle's vibration system such as the engine suspension system, exhaust pipe system, and vehicle system composed of a power plant and an engine mount combined with a transaxle) is caused by the resonance phenomenon of the vehicle's vibration system. This is a phenomenon in which vibrations and booming noise occur in each part of the vehicle when amplified.
  • the resonance region is a predetermined engine rotational speed region in which the engine rotational speed is lower than the idle rotational speed.
  • the engine rotational speed is bowed up to enter the predetermined engine rotational speed region. The above resonance phenomenon may occur.
  • a vehicular drive apparatus that can solve the above-described problems of the hybrid vehicular drive apparatus be similarly suppressed from vibration and noise generated in the vehicle when the engine is started.
  • the resonance phenomenon described above occurs when the engine speed is reduced to zero, that is, when entering the predetermined engine speed range in the process of lowering the bow I toward the engine rotation stop when the engine is stopped. Since there is a possibility, in the vehicle drive device that can solve the problems of the hybrid vehicle drive device described above, it is desired that vibration and noise generated in the vehicle when the engine is stopped are suppressed.
  • the present invention has been made against the background of the above circumstances.
  • the purpose of the present invention is to provide a differential mechanism capable of operating a differential action for distributing the engine output to the first electric motor and the output shaft, and its differential mechanism.
  • a vehicle drive device including an electric motor provided in a power transmission path from a differential mechanism to a drive wheel
  • the drive device can be reduced in size or fuel consumption can be improved, and the engine can be started or stopped. It is an object of the present invention to provide a control device that sometimes suppresses generation of vibration and / or noise of a vehicle. Disclosure of the invention
  • the gist of the invention according to claim 1 is that: (a) the engine, the differential mechanism that distributes the output of the engine to the first motor and the transmission member, and the power transmission path from the transmission member to the drive wheel
  • a vehicle rain drive device control device comprising: a first stepper motor provided in the vehicle; and a continuously variable transmission unit operable as an electric continuously variable speed changer; and (b) the differential.
  • a differential state switching device that is selectively switched to an engaged state for setting a state; (c) + engine start-time switching control that sets the continuously variable transmission portion to the continuously variable transmission state when the engine is started Means.
  • the continuously variable transmission part in the vehicle drive device by the differential state switching device causes the continuously variable transmission state in which the electric continuously variable transmission can be operated and the electric continuously variable transmission does not operate. Since it is selectively switched to a non-stepless speed change state, for example, a stepped speed change state, the fuel efficiency improvement effect of the transmission in which the gear ratio is electrically changed and the high efficiency of the gear type transmission device that mechanically transmits power A driving device having both advantages of transmission efficiency can be obtained. For example, in the regular output range of the engine where the vehicle is running at low and medium speeds and low and medium power, the fuel consumption performance of the vehicle is ensured when the continuously variable transmission is in the continuously variable transmission state.
  • the engine output is transmitted to the drive wheels exclusively through a mechanical power transmission path, and it operates as a transmission that can electrically change the gear ratio. This reduces the conversion loss between the power and the electric energy that is generated when the engine is used, thus improving fuel efficiency.
  • the region to be operated as a transmission in which the gear ratio is electrically changed is the low and medium speed traveling of the vehicle.
  • the maximum value of the electric energy that the electric motor should generate in other words, the maximum value of the electric energy transmitted by the electric motor can be reduced, and the electric motor or a drive device for the vehicle including the electric motor can be further downsized.
  • the engine start switching control means is used when the engine is started. Since the continuously variable transmission is in the continuously variable transmission state, unlike the continuously variable transmission state of the continuously variable transmission where the engine rotational speed may be constrained by the vehicle speed, the engine rotational speed exceeds the predetermined engine rotational speed, for example.
  • the engine speed can be quickly increased above the engine speed at which the engine can rotate autonomously, and the engine can be quickly passed through a predetermined engine speed range that is less than the engine idle speed that is well known as the resonance area in which resonance occurs. Vehicle vibration and / or noise generation can be suppressed at start-up.
  • the invention according to claim 2 further includes an engine start control means for starting the engine by raising the engine speed to a predetermined engine speed or higher using the first electric motor. In this way, when the engine is started, the actual engine rotation speed can be quickly passed through the predetermined engine rotation speed region.
  • the engine start-time switching control means is When the vehicle vibration and / or noise becomes a predetermined value or more at the time of starting the engine, the continuously variable transmission state is changed to the continuously variable transmission state. In this way, when the engine is started, the vibration and / or noise of the vehicle can be quickly passed through the predetermined engine rotation speed region where a resonance phenomenon occurs where the vibration and / or noise exceeds a predetermined value. Generation of vibration and / or noise can be suppressed.
  • the engine start-time switching control means determines the speed change state of the continuously variable transmission section when the power transmission path from the engine to the drive wheel is in a power transmittable state.
  • the continuously variable transmission state is set. In this way, unlike the case where the continuously variable transmission portion is in a continuously variable transmission state and the engine speed is restricted by the vehicle speed when the power transmission path is in a state where the power can be transmitted, the engine speed is limited to the predetermined engine. It is possible to pass through the rotation speed area quickly and to suppress the generation of vehicle vibration and / or noise when starting the engine.
  • the engine start-time switching control means sets the continuously variable transmission portion to the continuously variable transmission state until the engine start is completed. is there. In this way, the engine rotation speed can quickly pass through the predetermined engine rotation speed region during engine startup, and the generation of vehicle vibration and / or noise can be suppressed when the engine is started.
  • the engine start time switching control means is configured so that the predetermined start time required for starting the engine after the start of the engine is changed according to the speed change state of the continuously variable transmission section. This is a shift state. In this way, during engine start-up, the engine rotation speed can be quickly passed through the predetermined engine rotation speed / degree region, and the generation of vehicle vibration and / or noise can be suppressed during engine start-up.
  • the gist of the invention according to claim 7 is that: (a) the engine, the differential mechanism for distributing the engine output to the first motor and the transmission member, and the power from the transmission member to the drive wheels
  • a control device for a vehicle drive device including a differential unit having a first electric motor provided in a transmission path, and (b) provided in the differential mechanism, and the differential mechanism works on the differential mechanism. Selectively switch between unconnected state and connected state without differential action.
  • a drive device which has both the advantages of improving the fuel efficiency of a transmission whose gear ratio is changed and the high transmission efficiency of a gear transmission that mechanically transmits power. For example, in the engine's regular output range where the vehicle is running at low and medium speeds and low and medium power, if the differential mechanism is disconnected, the fuel efficiency of the vehicle will be ensured.
  • the differential mechanism When the differential mechanism is in the connected state, the engine output is transmitted to the drive wheels exclusively through a mechanical power transmission path, and the power generated when operating as a transmission that can be electrically changed in gear ratio. Since conversion loss with the electric energy is suppressed, fuel efficiency is improved.
  • the regions that operate as a transmission whose gear ratio is electrically changed are low and medium output running and low and medium output running.
  • the maximum value of the electrical energy that should be generated by the motor in other words, the maximum value of the electrical energy transmitted by the motor can be reduced, and the motor or the drive device of the vehicle including the motor can be further downsized.
  • the differential mechanism is disconnected by the engine start switching control means when starting the engine. Therefore, the engine rotation speed is higher than a predetermined engine rotation speed, for example, an engine rotation speed capable of autonomous rotation. Can be quickly passed through a predetermined engine rotation speed region less than the engine idle rotation speed, which is well known as a resonance region in which a resonance phenomenon occurs. Occurrence can be suppressed.
  • the invention according to claim 8 further includes engine starting control means for starting the engine by using the first electric motor to raise the engine rotational speed to a predetermined engine rotational speed or higher. In this way, when the engine is started, the actual engine rotation speed can be quickly passed through the predetermined engine rotation speed region.
  • the engine start switching control means disconnects the differential mechanism when the vibration and / or noise of the vehicle exceeds a predetermined value when the engine is started. It is a state. In this way, when the engine starts, the vibration and / or noise of the vehicle can be quickly passed through the predetermined engine rotation speed region in which a resonance phenomenon occurs that exceeds a predetermined value. Generation of vibration and / or noise can be suppressed.
  • the engine start-time switching control means may be configured such that when the power transmission path from the engine to the drive wheel is in a state where power can be transmitted, the differential mechanism is in a disconnected state. It is what. In this way, unlike the case where the differential mechanism is connected when the power transmission path is in a state where power transmission is possible and the engine rotational speed is restricted by the vehicle speed, the engine rotational speed exceeds the predetermined engine rotational speed region. It can be passed quickly and the vibration and / or noise generation of the vehicle can be suppressed when starting the engine.
  • the engine start switching control means sets the differential mechanism in a disconnected state until the start of the engine is completed. In this way, the engine rotational speed can quickly pass through the predetermined engine rotational speed region during engine startup, and the generation of vehicle vibration and / or noise can be suppressed when the engine is started.
  • the engine start switching control means sets the differential mechanism in a disconnected state during a predetermined start time required for starting the engine after the engine starts. is there. In this way, the engine rotational speed can quickly pass through the predetermined engine rotational speed region during engine startup, and the generation of vehicle vibration and / or noise can be suppressed during engine startup.
  • the gist of the invention according to claim 13 is that: (a) the engine, a differential mechanism for distributing the engine output to the first electric motor and the transmission member, and the transmission member to the drive wheel;
  • a control device for a vehicle drive device comprising: a first step motor provided in a power transmission path; and a stepless transmission unit operable as an electric stepless transmission, wherein (b) the difference And a continuously variable transmission that can be electrically operated.
  • a differential state switch that can be selectively switched between a disengaged state for shifting to a stepless shift state and an engaged state for switching the continuously variable transmission unit to an infinitely variable shift state without performing an electric continuously variable shift operation.
  • (C) engine stop-time switching control means for setting the continuously variable transmission portion to the continuously variable transmission state when the engine is stopped.
  • the continuously variable transmission section in the vehicle rain drive device is driven by the differential state switching device so that the continuously variable transmission state in which the electric continuously variable transmission can be operated and the electric continuously variable transmission does not operate. Because it is selectively switched to a step shifting state, for example, a stepped shifting state, the fuel efficiency improvement effect of the transmission in which the gear ratio is electrically changed and the high transmission efficiency of the gear transmission that mechanically transmits power Thus, a driving device having both advantages can be obtained. For example, in the normal output range of the engine where the vehicle is running at low and medium speeds and low and medium power, the fuel efficiency of the vehicle is ensured when the continuously variable transmission is in a continuously variable state.
  • the engine output is transmitted to the drive wheels exclusively through a mechanical power transmission path, and it operates as a transmission that can electrically change the gear ratio. This reduces the conversion loss between the power and electric energy that is generated when the power is generated, thus improving fuel efficiency.
  • the region to be operated as a transmission in which the gear ratio is electrically changed is the low and medium speed traveling of the vehicle.
  • the maximum value of the electrical energy that should be generated by the electric motor in other words, that is, the maximum value of the electric energy transmitted by the electric motor can be reduced, and the electric motor or the drive device of the vehicle including the electric motor can be further downsized.
  • the engine stop-time switching control means is Since the continuously variable transmission unit is in the continuously variable transmission state, the engine rotation speed may be restricted by the vehicle speed. Unlike the continuously variable transmission state of the continuously variable transmission unit, the engine rotation speed is less than the predetermined engine rotation speed region.
  • the vehicle can be quickly passed through a predetermined engine rotation speed region less than the engine idle rotation speed, which is well known as a resonance region in which a resonance phenomenon occurs, and the vehicle is stopped when the engine stops. Vibration and Z or noise generation can be suppressed.
  • the invention according to claim 14 further includes an engine stop control means for stopping the engine by lowering the engine speed to a predetermined engine speed or lower using the first electric motor. In this way, when the engine is stopped, the actual engine rotation speed can be quickly passed through the predetermined engine rotation speed region.
  • the engine stop switching control means sets the continuously variable transmission state to the continuously variable transmission state when the vehicle vibration and / or noise exceeds a predetermined value when the engine is stopped. Is. In this way, when the engine is stopped, the vehicle can be quickly passed through the predetermined engine rotation speed region in which a resonance phenomenon in which the vibration and / or noise of the vehicle exceeds a predetermined value occurs. Vibration and / or noise generation can be suppressed.
  • the engine stop-time switching control means is configured such that when the power transmission path from the engine to the drive wheels is in a state where power transmission is possible, the speed change state of the continuously variable transmission unit is Is set to the continuously variable transmission state.
  • the engine rotational speed is The predetermined engine rotation speed range can be quickly passed, and the vibration and / or noise of the vehicle can be suppressed when the engine stops.
  • the engine stop-time switching control means sets the speed change state of the continuously variable transmission section to the continuously variable speed change state until the stop of the engine is completed. . In this way, when the engine is stopped, the engine speed can be quickly passed through the predetermined engine speed range, and the generation of vehicle vibration and / or noise can be suppressed when the engine is stopped.
  • the engine stop-time switching control means sets the speed change state of the continuously variable speed change portion for the predetermined stop time required for the engine stop when the engine is stopped. This is a step shift state. In this way, when the engine is stopped, the engine rotation speed can be quickly passed through the predetermined engine rotation speed region, and the generation of vehicle vibration and / or noise can be suppressed when the engine stops. .
  • the gist of the invention according to claim 18 is that: (a) the engine, a differential mechanism for distributing the engine output to the first electric motor and the transmission member, and the transmission member to the drive wheel;
  • a control device for a vehicle drive device comprising: a differential unit having a second electric motor provided in a power transmission path; and (b) provided in the differential mechanism, wherein the differential mechanism is subjected to a differential action.
  • a differential state switching device that is selectively switched between a non-connected state in which the engine operates and a differential action thereof, and a connected state; and (c) when the engine is stopped, the differential mechanism is in a non-connected state.
  • An engine stop switching control means is that: (a) the engine, a differential mechanism for distributing the engine output to the first electric motor and the transmission member, and the transmission member to the drive wheel;
  • a control device for a vehicle drive device comprising: a differential unit having a second electric motor provided in a power transmission path; and (b) provided in the differential mechanism, where
  • the differential mechanism is selectively switched between the unconnected state in which the differential action is applied by the differential state switching device and the connected state without the differential action.
  • a drive device is obtained which has both the advantages of improving the fuel efficiency of a transmission whose gear ratio is changed and the high transmission efficiency of a gear transmission that mechanically transmits power. For example, if the differential mechanism is disconnected in the normal output range of the engine where the vehicle runs at low to medium speed and low to medium power, the fuel efficiency of the vehicle is ensured, but Occurs when the differential mechanism is in the connected state during driving, and the output of the engine is transmitted to the drive wheels exclusively through a mechanical power transmission path, causing it to operate as a transmission that can electrically change the gear ratio.
  • the fuel efficiency is increased.
  • the region to be operated as a transmission in which the gear ratio is electrically changed is low and medium output running of the vehicle.
  • the maximum value of electrical energy that should be generated by the motor in other words, the maximum value of electrical energy transmitted by the motor can be reduced, and the motor or the drive device of the vehicle including the motor can be further downsized.
  • the above drive device including a differential mechanism configured to be switchable between the disconnected state and the connected state, when the engine is stopped, the differential mechanism is disconnected by the engine stop switching control means.
  • the engine rotation speed can be quickly reduced below the predetermined engine rotation speed, for example, a resonance phenomenon occurs.
  • the engine can be quickly passed through a predetermined engine speed range that is less than the engine idle speed, well known as the resonance area, and the vehicle vibration and / or Or generation
  • the invention according to claim 19 further includes an engine stop control means for stopping the engine by lowering the engine speed to a predetermined engine speed or lower using the first electric motor. In this way, when the engine is stopped, the actual engine rotation speed can be quickly passed through the predetermined engine rotation speed region.
  • the engine stop-time switching control means sets the differential mechanism in a non-connected state when vehicle vibration and / or noise exceeds a predetermined value when the engine is stopped. In this way, when the engine is stopped, the vehicle can be quickly passed through the predetermined engine rotation speed region in which a resonance phenomenon occurs in which the vibration and / or noise of the vehicle exceeds a predetermined value. The occurrence of vibrations and / or can be suppressed.
  • the engine stop-time switching control means is configured such that when the power transmission path from the engine to the drive wheel is in a state where power transmission is possible, the differential mechanism is in a non-connected state. It is what. In this way, unlike the case where the differential mechanism is connected when the power transmission path is in a power transmission enabled state and the engine rotation speed is restricted by the vehicle speed, the engine rotation speed is within the predetermined engine rotation speed region. It can be passed quickly, and the generation of vehicle vibration and / or noise can be suppressed when the engine is stopped.
  • the engine stop-time switching control means disconnects the differential mechanism until the stop of the engine is completed. In this way, when the engine is stopped, the engine rotation speed can be quickly passed through the predetermined engine rotation speed region, and the generation of vibration and / or noise of the vehicle can be suppressed when the engine is stopped.
  • the engine stop-time switching control means sets the differential mechanism in a disconnected state during a predetermined stop time required for the engine stop when the engine is stopped. It is. In this way, the engine rotation speed can quickly pass through the predetermined engine rotation speed region while the engine is stopped, and the generation of vibration and / or noise of the vehicle can be suppressed when the engine is stopped.
  • the continuously variable transmission unit is set to a continuously variable transmission state by the differential state switching device being brought into a non-connected state in which a differential action is performed, that is, a differential state.
  • the continuous yarn shifting state where the differential action is not performed, that is, the locked state is set to a continuously variable transmission state such as a stepped transmission state. In this way, the continuously variable transmission section is switched between the continuously variable transmission state and the continuously variable transmission state.
  • the differential mechanism has a first element connected to the engine, a second element connected to the first electric motor, and a third element connected to the transmission member.
  • the differential state switching device allows the first to third elements to rotate relative to each other in order to achieve the non-continuous yarn state, that is, the differential state, and the connected state, that is, the locked state. In order to achieve this, either the first element to the third element are rotated together or the second element is brought into a non-rotating state. In this way, the differential mechanism can be switched between the differential state and the locked state.
  • the differential state switching device includes a clutch that connects at least two of the first to third elements with each other in order to rotate the first to third elements together.
  • the differential mechanism can be easily switched between the differential state and the locked state.
  • the differential mechanism is configured to be in a differential state in which the first to third rotating elements can be rotated relative to each other by releasing the clutch and the brake, so that an electrical differential device is provided.
  • the transmission is a transmission with a change gear ratio of 1 due to the engagement of the clutch, or the speed change transmission with a transmission gear ratio of less than 1 due to the engagement of the brake.
  • the differential mechanism can be configured to be switched between the differential state and the locked state, and can also be configured as a transmission having a single gear ratio or a plurality of constant gear ratios.
  • the differential mechanism motion is a planetary gear device
  • the first element is a carrier of the planetary gear device
  • the second element is a sun gear of the planetary gear device
  • the third element Is the ring gear of the planetary gear unit. If you do this The axial dimension of the differential mechanism is reduced. Further, the differential mechanism can be easily configured by one planetary gear unit.
  • the planetary gear device is a single-pinion type planetary gear device.
  • the differential mechanism is easily configured by a single pinion type planetary gear unit.
  • the switching control means includes an electric system control device such as an electric motor for operating the vehicle state as a transmission whose gear ratio is electrically changed by setting the differential mechanism to the differential state.
  • an electric system control device such as an electric motor for operating the vehicle state as a transmission whose gear ratio is electrically changed by setting the differential mechanism to the differential state.
  • the differential mechanism is switched to the hooked state. In this way, even if the differential mechanism is normally in the differential state, it is preferentially locked so that it is almost the same as running in the differential state although it is in the locked state. Vehicle travel is ensured.
  • the vehicle drive device further includes a speed change portion that constitutes a part of the power transmission path, and based on the speed change ratio of the speed change portion and the speed change ratio of the continuously variable speed change portion.
  • a ratio is to be formed. In this way, a wide range of driving force can be obtained by using the gear ratio of the transmission unit, so that the efficiency of control as an electric continuously variable transmission control in the continuously variable transmission unit is further enhanced. .
  • the vehicle further includes a speed change portion that constitutes a part of the power transmission path, and the overall speed change ratio of the vehicle drive device is based on the speed change ratio of the speed change portion and the speed change ratio of the differential portion. Is formed. In this way, a wide range of driving force can be obtained by utilizing the gear ratio of the transmission unit.
  • the transmission unit is a stepped automatic transmission.
  • the continuously variable transmission and the transmission unit constitute a continuously variable transmission in the continuously variable transmission state of the continuously variable transmission unit, and the continuously variable transmission unit and the transmission in the continuously variable transmission state of the continuously variable transmission unit.
  • the stepped transmission is composed of the parts.
  • the transmission unit is a stepped automatic transmission.
  • the continuously variable transmission is configured by the differential mechanism and the transmission unit in the differential state of the differential mechanism
  • the stepped transmission is configured by the differential mechanism and the transmission unit in the locked state of the differential mechanism.
  • FIG. 1 is a skeleton diagram illustrating the configuration of a drive device for a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 2 illustrates the relationship between the speed change operation and the operation of the hydraulic friction engagement device used in the case where the drive device of the hybrid vehicle of FIG. 1 is operated continuously or stepwise. It is an operation chart to perform.
  • FIG. 3 is a collinear diagram illustrating the relative rotational speeds of the respective gear stages when the hybrid vehicle drive device of the embodiment of FIG.
  • FIG. 4 is a diagram for explaining input / output signals of the electronic control unit provided in the driving apparatus of the embodiment of FIG.
  • FIG. 5 is an example of a switching device operated to select a plurality of types of shift positions equipped with a shift lever.
  • FIG. 6 is a functional block diagram for explaining the main part of the control operation of the electronic control unit of FIG.
  • FIG. 7 shows an example of a pre-stored shift diagram that is based on the same two-dimensional coordinates using the vehicle speed and the output torque as parameters, and that is used as a basis for determining the shift of the automatic transmission unit, and switching of the shift state of the transmission mechanism.
  • An example of a pre-stored driving power source having an example of a pre-stored switching diagram as a basis for judgment and a boundary line between the engine driving region and the motor driving region for switching between engine driving and motor driving. It is a figure which shows an example of a switching diagram, Comprising: It is also a figure which shows each relationship.
  • Fig. 8 is a collinear diagram corresponding to Fig. 3 illustrating the vibration generation region where the vibration noise of the vehicle exceeds a predetermined value and the operation of passing the vibration generation region using the first motor when the engine starts. This is an example.
  • FIG. 9 is a diagram illustrating a pre-stored relationship having a boundary line between a stepless control region and a stepped control region, and a boundary between the stepless control region and the stepped control region indicated by a broken line in FIG. It is also a conceptual diagram for mapping.
  • FIG. 10 is an example of a change in engine rotation speed accompanying an upshift in a stepped transmission.
  • FIG. 11 is a flowchart for explaining the control operation of the electronic control device of FIG. 6, that is, the control operation for preventing the generation of vehicle vibration noise exceeding a predetermined value when the engine is started.
  • Fig. 1 2 is a time chart for explaining the control operation shown in the flowchart of Fig. 1 1.
  • the accelerator pedal is depressed greatly during motor running, engine start for switching to engine running and This is an example when it is determined that the differential section is switched from a continuously variable transmission state to a stepped variable transmission state.
  • FIG. 13 is a functional block diagram for explaining the main part of the control operation of the electronic control device of FIG. 4, corresponding to FIG.
  • Fig. 14 is a nomogram corresponding to Fig. 3 for explaining the vibration generation area where the vibration noise of the vehicle exceeds a predetermined value and the operation of passing the vibration generation area using the first motor when the engine is stopped. This is an example.
  • FIG. 15 is a flow chart for explaining the control operation of the electronic control device of FIG. 13, that is, the control operation for preventing the vibration noise of the vehicle exceeding a predetermined value when the engine is stopped.
  • FIG. 16 is a time chart for explaining the control operation shown in the flowchart of FIG. 15.
  • the accelerator pedal is returned while the engine is running in the stepped speed change state of the differential portion, the fuel force is increased. This is an example when it is determined that the engine stops for
  • FIG. 17 is a skeleton diagram illustrating the configuration of a hybrid vehicle drive device according to another embodiment of the present invention, and corresponds to FIG. ,
  • FIG. 18 shows the relationship between the speed change operation and the hydraulic friction engagement device used when the drive device of the hybrid vehicle of the embodiment of Fig. 17 is operated continuously or with variable speed.
  • FIG. 3 is an operation chart to be described, and corresponds to FIG. 2; '
  • FIG. 19 is a collinear diagram for explaining the relative rotational speeds of the respective gear stages when the hybrid vehicle drive device of the embodiment of FIG. It is.
  • FIG. 20 is an example of a shift state manual selection device which is a seesaw type switch as a switching device and is operated by a user to select a shift state. Explanation of symbols
  • Switching control means switching control means at engine start, switching control means at engine stop
  • Engine start / stop control means engine start control means, engine stop control means
  • FIG. 1 is a skeleton diagram illustrating a speed change mechanism 10 constituting a part of a drive device for a hybrid vehicle to which a control device according to an embodiment of the present invention is applied.
  • the speed change mechanism 10 is an input disposed on a common shaft center in a transmission case 1 2 (hereinafter referred to as case 1 2) as a non-rotating member attached to the vehicle body.
  • case 1 2 a transmission case 1 2
  • a speed change part that functions as a stepped transmission connected in series via a transmission member (transmission shaft) 18 in the power transmission path between the differential part 11 and the drive wheels 3 8
  • the automatic transmission unit 20 and an output shaft 22 as an output rotating member connected to the automatic transmission unit 20 are provided in series.
  • This speed change mechanism 10 is suitably used for, for example, an FR (front engine / rear drive) type vehicle installed vertically in a vehicle, and directly on the input shaft 14 or via a pulsation absorbing damper (not shown).
  • an engine 8 that is an internal combustion engine such as a gasoline engine or a diesel engine and a pair of driving wheels 3 8 are provided.
  • the differential gear device final reduction gear that forms part of the power transmission path with the power from 8 as the other part of the drive unit 3 6 and the left and right drive wheels 3 8 through the pair of axles in sequence To communicate.
  • the engine 8 and the differential unit 11 are directly connected.
  • This direct connection means that the connection is made without using a fluid transmission such as a torque converter or a fluid coupling.
  • the connection via the pulsation absorbing damper is included in this direct connection. Since the speed change mechanism 10 is configured symmetrically with respect to its axis, the lower side is omitted in the skeleton diagram of FIG. The same applies to each of the following embodiments.
  • the differential unit 1 1 is a mechanical mechanism that mechanically distributes the output of the engine 8 input to the first motor M l and the input shaft 14 and outputs the output of the engine 8 to the first motor M 1 and the first motor M 1.
  • a power distribution mechanism 16 as a differential mechanism that distributes to the transmission member 18, and a second electric motor M 2 provided so as to rotate integrally with the transmission member 18.
  • the second electric motor M 2 may be provided in any part constituting the power transmission path between the transmission member 18 and the drive wheels 38.
  • the first motor M 1 and the second motor M 2 of this embodiment are so-called motor generators that also have a power generation function, but the first motor M l has at least a generator (power generation) function for generating a reaction force.
  • the first motor M 1 is a motor (electric motor) that outputs driving force as a driving force source for traveling. Machine) at least a function.
  • the power distribution mechanism 16 includes, for example, a single pinion type first planetary gear device 24 having a predetermined gear ratio p 1 of about “0.4 18”, a switching clutch C 0 as an engaging device, and a switching device.
  • Brake B 0 is mainly provided.
  • the first planetary gear unit 24 has a first sun gear S 1, a first planetary gear P 1, a first carrier CA that supports the first planetary gear P 1 so that it can rotate and revolve, and a first planetary gear P
  • a first ring gear R 1 that meshes with the first sun gear S 1 via 1 is provided as a rotating element (element).
  • the gear ratio / 0 1 is ZS 1 / ZR 1.
  • the first carrier CA 1 is connected to the input shaft 14, that is, the engine 8
  • the first sun gear S 1 is connected to the first electric motor M 1
  • the first ring gear R 1 is It is connected to the transmission member 1 8.
  • the switching brake B 0 is provided between the first sun gear S 1 and the case 11, and the switching clutch C 0 is provided between the first sun gear S 1 and the first carrier CA 1.
  • the dynamic force distribution mechanism 16 is a first sun gear S 1, a first sun gear S 1, which is the three elements of the first planetary gear unit 24.
  • 1 Carry CA 1, No. 1 Ring gear R 1 can be rotated relative to each other, so that the differential operation can be activated, that is, the differential action is activated.
  • the electric motor M 1 and the transmission member 1 8 are distributed, and a part of the output of the distributed engine 8 is stored by the electric energy generated from the first electric motor M 1 or the second electric motor M 2 is Since it is rotationally driven, the differential unit 1 1 (power distribution mechanism 1 6) is caused to function as an electrical differential device.
  • the differential unit 1 1 is in a so-called stepless variable state (electric CVT state). Therefore, the rotation of the transmission member 1 8 is linked regardless of the predetermined rotation of the engine 8. To be varied. That is, when the power distribution mechanism 16 is set to the differential state, the differential unit 1 1 is also set to the differential state, and the differential unit 1 ⁇ has its transmission gear ratio 0 (the rotational speed Z of the input shaft 14 Z transmission member).
  • the rotation speed of 1 8) is a continuously variable transmission state that functions as an electrical continuously variable transmission that is continuously changed from the minimum value O min to the maximum value 0 max.
  • Non-differential state Specifically, when the switching clutch C 0 is engaged and the first sun gear S 1 and the first carrier CA 1 are integrally connected, the power distribution mechanism 16 is connected to the first planetary gear device 2 4.
  • the differential unit 1 1 (power distribution mechanism 1 6) has a speed change ratio 0 with the transmission ratio 0 fixed to “1”.
  • a continuously variable transmission state that functions as a machine for example, a constant transmission state, that is, a stepped transmission state.
  • the switching brake B 0 is engaged instead of the switching clutch C 0 and the first sun gear S 1 is connected to the case 12
  • the power distribution mechanism 16 is connected to the first sun gear S 1. Since the non-rotating state is set to the connected state, that is, the locked state and the non-differential state in which the differential operation is impossible, the differential unit 11 is also set to the non-differential state.
  • the power distribution mechanism 16 functions as a speed increase mechanism, and the differential section 1 1 (power distribution mechanism 16) Is a non-stepless speed change state, for example, a constant speed change state, that is, a stepped speed change state, which functions as an speed increase transmission in which the gear ratio 0 is fixed to a value smaller than “1”, for example, about 0.7.
  • a non-stepless speed change state for example, a constant speed change state, that is, a stepped speed change state, which functions as an speed increase transmission in which the gear ratio 0 is fixed to a value smaller than “1”, for example, about 0.7.
  • the switching clutch C 0 and the switching brake B 0 change the shifting state of the differential portion 11 (power distribution mechanism 16) to the differential state, that is, the non-locked state (non-coupled state).
  • the non-differential state that is, in a locked state (connected state)
  • the differential part 1 1 ′ power distribution mechanism 1 6
  • the gear ratio continuously changes.
  • Electric continuously variable transmission operation that operates as a continuously variable transmission
  • Possible continuously variable transmission state and continuously variable transmission state that does not operate an electrical continuously variable transmission for example, continuously variable transmission operation without operating as a continuously variable transmission Is in a locked state where the gear ratio change is locked at a fixed state, that is, one or more gear ratios with one or more gear ratios.
  • an electric continuously variable transmission that does not operate that is, an electrical continuously variable speed operation is not possible (non-differential state), in other words, as a one-stage or multiple-stage transmission with a constant gear ratio.
  • It functions as a differential state switching device that selectively switches to an operating constant shift state.
  • the disconnected state includes not only the state where the switching clutch C 0 and the switching brake B 0 are completely released, but also the case where the switching clutch C 0 or the switching brake B 0 is in a half-engaged (slip) state. good.
  • the automatic transmission unit 20 includes a single pinion type second planetary gear unit 26, a single pinion type third planetary gear unit 28, and a single pinion type fourth planetary gear unit 30.
  • the second planetary gear set 26 includes a second sun gear S2, a second planetary gear P2, a second carrier C A2 that supports the second planetary gear P2 so as to be capable of rotating and revolving, and a second ⁇ gM gear P. 2 is provided with a second ring gear R 2 that meshes with the second sun gear S 2, and has a predetermined gear ratio 2 of, for example, “0.5 6 2”.
  • the third planetary gear unit 28 is connected via a third sun gear S3, a third planetary gear P3, a third carrier CA3, and a third planetary gear P3 that support the third planetary gear P3 so as to rotate and revolve.
  • the third ring gear R 3 meshes with the third sun gear S 3, and has a predetermined gear ratio p 3 of about “0.4 4 5”, for example.
  • the 4i gear device 30 is connected via a fourth sun gear S.4, a fourth planetary gear P4, a fourth carrier CA4 that supports the fourth planetary gear P4 so as to be capable of rotating and revolving, and a fourth planetary gear P4.
  • a fourth ring gear R 4 that meshes with the fourth sun gear S 4 is provided, and has a predetermined gear ratio ⁇ 4 of about “0.4 2 1”, for example.
  • the number of teeth of the second sun gear S2 is ZS2
  • the number of teeth of the second ring gear R2 is ZR2
  • the number of teeth of the third sun gear S3 is Z, S3, the number of teeth of the third ring gear R3 is ZR3,
  • the gear ratio p2 is ZS2 / ZR2
  • the gear ratio p3 is ZS3 / ZR3
  • the gear ratio 4 is ZS 4 / ZR4.
  • the second sun gear S 2 and the third sun gear S 3 are integrally connected and selectively connected to the transmission member 18 via the second clutch C 2 and the first brake B 1 is selectively connected to case 1 1 and the second carrier CA 2 is selectively connected to case 1 2 via the second brake B 2 and the fourth ring gear R 4 Is selectively connected to the case 12 via the third brake B 3 and the second ring gear R 2, the third carrier CA 3 and the fourth carrier CA 4 are integrally connected to the output shaft 22.
  • the third ring gear R 3 and the fourth sun gear S 4 are integrally connected and selectively connected to the transmission member 18 via the first clutch C 1.
  • the automatic transmission unit 20 and the transmission member 18 are selectively coupled via the first clutch C 1 or the second clutch C used to establish the gear position of the automatic transmission unit 20.
  • the first clutch C 1 and the second clutch C 2 are arranged between the transmission member 18 and the automatic transmission unit 20, that is, between the differential unit 11 (transmission member 18) and the drive wheel 38.
  • Functioning as an engagement device that selectively switches the power transmission path between a power transmission enabling state that enables power transmission of the power transmission path and a power transmission cutoff state that interrupts the power transmission of the power transmission path. Yes.
  • the power transmission path is brought into a power transmission enabled state, or the first clutch C 1 and the second clutch C 2 are released. As a result, the power transmission path is brought into a power transmission cut-off state.
  • the switching clutch C 0, the first clutch C 1, the second clutch C 2, the switching brake B 0, the first brake B 1, the second brake B 2 and the third brake B 3 are conventional stepped automatics for vehicles. It is a hydraulic friction engagement device often used in transmissions. It is a wet type multi-plate type in which a plurality of friction plates stacked on each other are pressed by a hydraulic actuator, or an outer peripheral surface of a rotating drum. One end of one or two wound bands is composed of a band brake or the like that is tightened by a hydraulic actuate and is used to selectively connect the members on both sides of the band brake.
  • the power distribution mechanism 16 is provided with a switching clutch C 0 and a switching brake B 0, and either of the switching clutch C 0 and the switching brake B 0 is engaged and operated.
  • the moving part 11 can constitute a constant transmission state that operates as a transmission having a constant gear ratio. Therefore, in the speed change mechanism 10, the stepped transmission is made up of the differential portion 11 and the automatic speed change portion 20 that are brought into a constant speed change state by engaging and operating either the switching clutch C 0 or the switching brake B 0.
  • the stepped variable speed state is configured, and the differential part 11 and the automatic speed changer 20 are set to the continuously variable speed state by engaging neither the switching clutch C0 nor the switching brake B0.
  • the speed change mechanism 10 is switched to the stepped variable state by engaging any one of the switching clutch C 0 and the switching brake B 0, and the switching clutch C 0 and the switching brake B 0.
  • the differential unit 11 is also a transmission that can be switched between a stepped transmission state and a continuously variable transmission state.
  • the gear ratio ratio 1 is increased by the engagement of the switching clutch C 0, the first clutch C 1 and the third brake B 3. Is set to a maximum value, for example, about “3.35 7”, and the gear ratio ratio is increased by engaging the switching clutch C 0, the first clutch C 1, and the second brake B 2.
  • the second gear is smaller than the first gear, for example, about “2.180”
  • the second gear is established, and the switching clutch C 0, the first clutch, the latch C 1 and the first brake B 1
  • the third speed gear stage in which the transmission gear ratio 3 is smaller than the second speed gear stage, for example, about “1.4 2 4 J” is established, and the switching clutch C 0 and the first clutch C 1
  • the engagement of the second clutch C 2 causes the transmission gear ratio 4 to be smaller than the third speed gear stage, for example, about “1.0 0 0”.
  • the first gear C 1, the second clutch C 2, and the switching brake B 0 are engaged, and the gear ratio 5 is smaller than the fourth gear, for example, “0 ⁇ 7 0 5”.
  • the fifth gear is established.
  • the second clutch C 2 and the third brake B 3 The reverse gear stage in which the gear ratio R is a value between the first speed gear stage and the second speed gear stage, for example, about “3.210” is established by the engagement.
  • the neutral “N” state is set, for example, only the switching clutch C 0 is engaged.
  • FIG. 3 shows a transmission mechanism 10 composed of a differential unit 11 that functions as a continuously variable transmission unit or a first transmission unit and an automatic transmission unit 20 that functions as a stepped transmission unit or a second transmission unit.
  • FIG. 6 is a collinear diagram that can represent on a straight line the relative relationship between the rotational speeds of the rotating elements that are connected in different gear stages.
  • the collinear diagram of Fig. 3 consists of a horizontal axis indicating the gear ratio / 0 relationship of each planetary gear unit 24, 26, 28, 30 and a vertical axis indicating the relative rotational speed.
  • the lower horizontal line X 1 of the three horizontal lines indicates the rotational speed zero, and the upper horizontal line X 2 indicates the rotational speed “1.0”, that is, the engine connected to the input shaft 14.
  • horizontal line XG indicates the rotational speed of the power transmitting member 1 8.
  • the three vertical lines Y1, Y2, Y3 corresponding to the three elements of the power distribution mechanism 16 constituting the differential unit 1 1 are the first rotation element (second element) RE from the left side.
  • the relative rotation speed of the first planetary gear unit 24 is determined according to the gear ratio p 1 of the first planetary gear unit 24.
  • the five vertical lines Y4, Y5, ⁇ 6, ⁇ ⁇ , ⁇ 8 of the automatic transmission unit 20 correspond to the fourth rotation element (fourth element) RE 4 in order from the left, and
  • the second sun gear S 2 and the third sun gear S 3 that are connected to each other are connected to the second carrier CA 2 corresponding to the fifth rotating element (fifth element) RE 5, and the sixth rotating element (sixth element) RE.
  • the fourth ring gear R 4 corresponding to 6 is connected to the seventh ring element R 2, the third carrier CA 3 and the fourth carrier CA 4 corresponding to the seventh rotating element (seventh element) RE 7 and connected to each other.
  • 8th rotating element Represents a third ring gear R 3 and a fourth sun gear S 4 corresponding to RE 8 and connected to each other, and their intervals are the second, third and fourth planetary gears, respectively.
  • the gear ratios p 2, p 3 and p 4 of the devices 2 6, 28 and 30 are respectively determined. In the relationship between the vertical axes of the nomographic chart, if the distance between the sun gear and the carrier is the distance corresponding to “1”, the distance between the carrier and the ring gear is the distance corresponding to the gear ratio P of the planetary gear unit.
  • the interval between the vertical lines Y 1 and Y 2 is set to the interval corresponding to “1”, and the interval between the vertical lines Y 2 and Y 3 corresponds to the gear ratio;
  • 0 1 Set to the interval to be
  • an interval corresponding to “1” is set between the sun gear and the carrier every second, third, and fourth planetary gear devices 26, 28, and 30.
  • the ring gear are set to an interval corresponding to p.
  • the speed change mechanism 10 of the present embodiment is the same as the first rotating element of the first planetary gear unit 24 in the power distribution mechanism 16 (differential portion 11).
  • RE 1 first carrier CA 1
  • RE 2 second rotating element
  • the element RE 2 is connected to the first motor M 1 and selectively connected to the case 12 via the switching brake B 0, and the third rotating element (first ring gear R 1) RE 3 is transmitted.
  • It is connected to the member 18 and the I-th motor M2, and is configured to transmit (input) the rotation of the input shaft 14 to the automatic transmission unit (stepped transmission unit) 0 via the transmission member 18 Yes.
  • the relationship between the rotational speed of the first sun gear S 1 and the rotational speed of the first ring gear R 1 is shown by an oblique straight line L 0 passing through the intersection of Y 2 and X 2.
  • the rotational speed of the first motor M l is controlled.
  • the rotational speed of the first sun gear S 1 indicated by the intersection of the straight line L 0 and the vertical line Y 1 is raised or lowered, the rotational speed of the first ring gear R 1 restrained by the vehicle speed V is substantially constant.
  • the rotational speed of the first carrier CA 1 indicated by the intersection of the straight line L 0 and the vertical line Y 2 is increased or decreased.
  • the power distribution mechanism 16 When the first sun gear S 1 and the first carrier CA 1 are connected by the engagement of the switching clutch CO, the power distribution mechanism 16 is in a non-differential state in which the three rotating elements rotate together. , linear and 0 is aligned with the horizontal line X 2, the transmission member 1 8 is allowed rotated at the same rotation to the engine speed N E.
  • the power distribution mechanism 16 when the rotation of the first sun gear S 1 is stopped by the engagement of the switching brake B 0, the power distribution mechanism 16 is brought into a non-differential state that functions as a speed increasing mechanism.
  • the rotation speed of the first ring gear R 1, that is, the transmission member 18, indicated by the intersection of the straight line L 0 and the vertical line Y 3, is automatically changed by rotation that is higher than the engine rotation speed N E. Part 2 is input to 0.
  • the fourth rotating element RE 4 is selectively connected to the transmission member 18 via the second clutch C 2 and selectively to the case 12 via the first brake B 1.
  • the fifth rotating element RE 5 is selectively connected to the case 12 via the second brake B 2 and the sixth rotating element RE 6 is connected to the case 12 via the third brake B 3
  • the seventh rotating element RE 7 is selectively connected to the output shaft 22, and the eighth rotating element RE 8 is selectively connected to the transmission member 18 via the first clutch C 1.
  • the vertical line Y 8 indicating the rotational speed of the eighth rotating element RE 8
  • the seventh rotation connected to the output shaft 2 2 and the diagonal line L 1 passing through the intersection of the horizontal line X 2 and the vertical line Y 6 indicating the rotation speed of the sixth rotation element RE 6 and the intersection of the horizontal line X 1 and the output shaft 2 2
  • the rotational speed of the output shaft 22 of the first speed is shown at the intersection with the vertical line Y7 indicating the rotational speed of the element RE7.
  • the rotation speed of the output shaft 22 of the 2nd speed is shown at the intersection with Y 7, and the diagonal straight line determined by the engagement of the 1st clutch C 1 and the 1st brake B 1
  • the rotation speed of the third output shaft I 2 is indicated by the intersection of the vertical line Y 7 indicating the rotation speed of the seventh rotation element RE 7 connected to L 3 and the output shaft 2 2, and the first clutch C 1 At the intersection of the horizontal straight line L 4 determined by the engagement of the second clutch C 2 and the vertical line Y 7 indicating the rotational speed of the seventh rotating element RE 7 connected to the output shaft 2 2.
  • the rotation speed of the output shaft 22 of the 4th speed is shown.
  • the engine rotational speed N E and at the same rotational speed eighth rotary element RE 8 to the differential unit 1 1 or power distributing mechanism 1 Power from 6 is input.
  • the switching brake B 0 is engaged instead of the switching clutch C 0
  • the power from the differential section 1 1 is input at a higher rotational speed than the engine rotational speed N E, so that the first clutch C 1, vertical line Y indicating the rotation speed of the seventh rotating element RE 7 connected to the output shaft 22 and the horizontal straight line L 5 determined by engaging the second clutch C 2 and the switching brake B 0
  • the rotation speed of the fifth output shaft 22 at the intersection with 7 is shown.
  • FIG. 4 illustrates a signal input to the electronic control device 40 for controlling the speed change mechanism 10 of the present embodiment and a signal output from the electronic control device 40.
  • This electronic control unit 40 is configured to include a so-called microcomputer comprising a CPU, a ROM M. RAM, an input / output interface, etc. Performs drive control such as hybrid drive control for engine 8, first and second motors Ml and M2, and shift control for automatic transmission unit 20 by performing signal processing according to the stored program It is.
  • the electronic control device 40 receives a signal indicating the engine water temperature TEMP W and a shift position PSH which is the operation position of the shift lever 92 (see FIG. 5) from each sensor and switch as shown in FIG.
  • a signal that represents the engine speed N E which is the rotational speed of the engine 8
  • a signal that represents the gear ratio train set value a signal that commands the M mode (manually-controlled travel mode)
  • a signal that represents the operation of the air conditioner and output
  • a signal representing the hydraulic oil temperature of the automatic transmission 20 a signal representing the side brake operation, a signal representing the foot brake operation, a signal representing the catalyst temperature, Accelerator opening Acc, which is the amount of accelerator pedal operation corresponding to the driver's required output
  • a signal indicating the presence or absence of operation a continuously variable switch for switching the differential unit 1 1 (power distribution mechanism 1 6) to the continuously variable transmission state (differential state) in order to make the transmission mechanism 10 function as a continuously variable transmission.
  • Signal indicating presence / absence of operation signal indicating rotation speed N M 1 of first motor M 1 (hereinafter referred to as first motor rotation speed NMI), rotation speed N M 2 of second motor M 2 (hereinafter referred to as second motor) signal representative of) that the rotational speed N M 2, indicative of the air-fuel ratio AZ F of the engine 8 No., such as a signal indicative of a charged capacity (charged state) SOC of power storage device 6 0 (see FIG. 6) is supplied.
  • the electronic control device 40 controls the control signal to the engine output control device 43 (see FIG. 6) for controlling the engine output, for example, the electronic throttle valve 96 provided in the intake pipe 95 of the engine 8.
  • a throttle signal that controls the opening 0 TH 9 A drive signal to 7 7 and a fuel injection signal 9 7
  • a fuel supply signal that controls the amount of fuel supplied to each cylinder of the engine 8 by the fuel injection device 9 8 and an ignition device 9 9
  • FIG. 5 is a diagram showing an example of a switching device 90 for switching a plurality of types of shift positions PSH by an artificial operation.
  • the switching device 9 for example, is disposed beside the driver's seat and includes a shift lever one 9 2 which is operated for selecting a plurality of shift positions P SH.
  • the shift lever 92 is a transmission mechanism 10 in which neither of the first clutch C 1 and the second clutch C 2 is engaged.
  • the manual valve in the hydraulic control circuit 42 connected mechanically to the shift lever 9 is switched in conjunction with the manual operation of the shift lever 92 to each shift position, and the engagement operation of FIG.
  • the hydraulic control circuit 42 is mechanically switched so that the reverse gear stage “R”, neutral “N”, forward gear stage “D”, etc. shown in the table are established.
  • the 1st to 5th shift stages shown in the engagement operation table of FIG. 2 in the “D” or “M” position are established by electrically switching the solenoid valve in the hydraulic control circuit 42. .
  • the “P” position and the “N” position are non-traveling positions that are selected when the vehicle is not traveling, for example, the engagement operation of FIG.
  • the first clutch that disables driving of the vehicle in which the power transmission path in the automatic transmission 20 is released so that both the first clutch C 1 and the second clutch C 2 are released.
  • This is the drive position for selecting the switching of the power transmission cutoff state of the power transmission path by C 1 and the second clutch C 2.
  • the “R” position, “D” position, and “M” position are travel positions that are selected when the vehicle travels. For example, as shown in the engagement operation table of FIG.
  • the “M” position is provided adjacent to the width direction of the vehicle at the same position as the “D” position in the longitudinal direction of the vehicle, for example, and the shift lever 92 is operated to the “M” position. Accordingly, any one of “D” range and “L” range is changed according to the operation of the shift lever 92. Specifically, the “M” position is provided with an upshift position “10” and a downshift position “one” in the longitudinal direction of the vehicle, and the shift lever 92 is provided with the upshift position. When “10” or downshift position “1” is operated, either “D” range or “L” range is selected.
  • the five shift ranges, “D” range to “L” range, selected in the “M” position are the high speed side in the change range of the total gear ratio T that allows automatic transmission control of the transmission mechanism 10.
  • the shift lever 92 is automatically returned from the upshift position “+” and the downshift position “1” to the “M” position by an urging means such as a spring.
  • the switching device 90 also has a shift lever.
  • a shift position sensor (not shown) for detecting each shift position is provided.
  • the electronic control unit displays the signal indicating the shift position PSH of the shift lever 92 and the number of operations at the ⁇ M '' position. 4 Output to 0.
  • FIG. 6 is a functional block diagram for explaining the main part of the control function by the electronic control unit 40.
  • the stepped shift control means 54 functions as a shift control means for shifting the automatic transmission 20.
  • the stepped shift control means 54 is requested by the vehicle speed V and the automatic transmission unit 20 based on the relationship (shift diagram, shift map) indicated by the solid line and the alternate long and short dash line in FIG.
  • the vehicle state indicated by the output torque T 0UT it is determined whether or not the shift of the automatic transmission unit 20 should be executed, that is, the shift stage of the automatic transmission unit 20 that is to be shifted is determined.
  • the automatic transmission 20 is shifted so that the determined shift speed is obtained.
  • the stepped shift control means 5 4 is a hydraulic friction engagement device excluding the switching clutch C 0 and the switching brake B 0 so that the shift stage is achieved according to, for example, the engagement table shown in FIG. A command (shift output command) for engaging and / or releasing is output to the hydraulic control circuit 42.
  • the hybrid control means 52 is configured to operate the engine 8 in an efficient operating range in the continuously variable transmission state of the transmission mechanism 10, that is, the differential state of the differential unit 11, while the engine 8 and the second electric motor M
  • the transmission ratio a 0 as an electric continuously variable transmission of the differential section 11 is controlled by changing the distribution of the driving force to 2 and the reaction force generated by the power generation of the first motor M 1 to be optimized.
  • the vehicle target (request) output is calculated from the accelerator opening Acc and the vehicle speed V as the driver's required output
  • the required total target is calculated from the vehicle target output and the required charging value.
  • the engine 8 is controlled so that the engine speed N E and the engine torque T E are obtained, and the power generation amount of the first electric motor M 1 is controlled.
  • the hybrid control means 52 performs the control in consideration of the gear position of the automatic transmission unit 20 in order to improve power performance and fuel consumption.
  • the engine speed NE determined to operate the engine 8 in the operating range efficiently.
  • the differential unit 11 is caused to function as an electric continuously variable transmission.
  • Haiburitsudo control unit 5 2 the drivability and the fuel consumption when the continuously-variable shifting control in a two-dimensional coordinate composed of the output torque (engine torque) T E of the engine rotational speed N E and the engine 8
  • the optimal fuel consumption rate curve (fuel consumption map, relationship) of engine 8 (not shown) that has been experimentally determined in advance so as to achieve both of these is stored in advance so that engine 8 can be operated along the optimal fuel consumption rate curve.
  • the speed change mechanism 10 is set so that the engine torque T E and the engine speed N E are generated to generate the engine output necessary to satisfy the target output (total target output, required driving force).
  • the target value of the total gear ratio T is determined, and the gear ratio 0 of the differential unit 1 1 is controlled so that the target value can be obtained. Within the range of 0.5 To control.
  • the hybrid control means 52 supplies the electric energy generated by the first electric motor M 1 to the power storage device 60 and the second electric motor M 2 through the inverter 58, so that the main power of the engine 8 is Is mechanically transmitted to the transmission member 1 8, but part of the motive power of the engine 8 is consumed for the power generation of the first motor M 1, where it is converted into electric energy. Then, the electric energy is supplied to the second electric motor M 2, and the second electric motor M 2 is driven and transmitted from the second electric motor M 2 to the transmission member 18. From the generation of this electric energy to the consumption by the second electric motor M2, a part of the power of the engine 8 is converted into electric energy and the electric energy is converted into mechanical energy. An electrical path is constructed.
  • the hybrid control means 5 2 controls the opening and closing of the electronic throttle valve 96 by the throttle actuator 9 7 for throttle control, and the fuel injection amount and injection timing by the fuel injection device 98 for fuel injection control.
  • a command for controlling the ignition timing by the ignition device 99, such as IGNAI is used alone or in combination with the engine. It is functionally equipped with an engine output control means for executing the output control of engine 8 to generate.
  • the hybrid control means 52 is basically not shown in advance. Based on the remembered relationship, the throttle actu- ation is driven based on the accelerator opening Acc, and the throttle control is executed so that the throttle valve opening 6 TH increases as the accelerator opening Acc increases.
  • the engine output control device 4 3 opens and closes the electronic throttle valve 9 6 by the throttle actuator 9 7 in accordance with the order by the hybrid control means 52, and the fuel injection device 9 8
  • the fuel is injected and ignited by an ignition device 99 such as ignai evening.
  • the hybrid control means 52 can be driven overnight by the electric CVT function of the differential section 11 regardless of whether the engine 8 is stopped or idling.
  • the solid line ⁇ in FIG. 7 indicates that the driving force source for starting / running the vehicle (hereinafter referred to as running) is switched between the engine 8 and the electric motor, for example, the second electric motor M 2, in other words, the engine 8 Is used to switch between so-called engine running that starts / runs the vehicle (hereinafter referred to as running) and so-called motor running that uses the second electric motor M 2 as a driving force source for running. It is the boundary line between the Jinjin driving area and the Moyu driving area.
  • the pre-stored relationship with the boundary line (solid line ⁇ ) for switching between the engine running and motor running shown in FIG. 7 is that the vehicle speed V and the output torque T OUT ′, which is a driving force related value.
  • a driving force source switching diagram driving force source map
  • This driving force source switching diagram is stored in advance in the storage means 56 together with, for example, a shift diagram (shift map) indicated by a solid line and a one-dot chain line in FIG.
  • the hybrid control means 5 for example, one from the driving force source switching diagram of Fig. 7 the vehicle condition represented by the vehicle speed V and the required output torque T Omikuron'upushirontau based, the motor drive region and Enjin traveling regions have If it is determined that the vehicle is running, the morning driving or the engine driving is executed. In this way, as shown in FIG. 7, the motor running by the hybrid control means 52 is generally worse than the high torque range when the engine efficiency is relatively low. That time of low engine torque T e, or executed in a relatively low vehicle speed, that is, when the low load region of the vehicle speed V. Therefore, when starting a vehicle, it is usually performed.
  • Haiburitsudo control unit 5 2 the motor run ⁇ 1 times, in order to improve fuel efficiency by suppressing the drag of the engine 8 is stopped, owing to the electric CVT function of the differential portion 1 1 (differential action)
  • the first motor rotation speed N M 1 is controlled at a negative rotation speed, for example, idling, and the engine rotation speed N E is maintained at zero or substantially zero as required by the differential action of the differential section 11.
  • the hybrid control means 52 is an engine start / stop control means 80 that switches the operating state of the engine 8 between an operating state and a stopped state in order to switch between engine running and motor running, that is, engine 8 starting And engine start / stop control means 80 for stopping.
  • the hybrid control means 52 can change the operating state of the engine 8 between the operating state and the stopped state as required when the shift lever 92 is in the vehicle stop state of the “P” position or the “N” position.
  • the engine start / stop control means 80 is switched.
  • the hybrid control means 52 functions as engine start condition establishment determination means, and determines whether or not an engine start condition for starting the engine 8 is established.
  • the hybrid control means 52 is configured so that the accelerator pedal is depressed and the required output torque T is applied as shown by points a ⁇ b and point a- c in solid line B in FIG.
  • the hybrid control means 52 determines that the engine start condition is satisfied when the return from the well-known fuel cut operation during acceleration-decelerated deceleration is determined based on the accelerator pedal depressing operation, etc. It is determined that Alternatively, the hybrid control means 52 determines that the actual state of charge S 0 C is less than the specified value based on a signal indicating the state of charge SOC of the power storage device 60 when the engine is stopped while the vehicle is stopped. It is determined that the engine start condition is satisfied.
  • the hybrid control means 52 determines that the engine 8 or the catalyst device needs to be warmed up based on a signal indicating the engine water temperature TEMP W or a signal indicating the catalyst temperature when the engine is stopped in the vehicle stopped state.
  • the specified value of the above-mentioned charging state s0c is a charging state in which the charging of the power storage device 60 by power generation of the first electric motor M 1 by operating the engine 8 in the charging state S 0 C is less than the specified value.
  • S 0 C is a value that is previously determined by experiments and stored.
  • the engine start / stop control means 80 functions as an engine start control means for starting the engine 8 when it is determined by the hybrid control means 52 that the engine start condition is satisfied.
  • engine start stop control means 8 0, by raising the first electric motor speed N M 1 by energizing the first electric motor M 1, i.e. the first electric motor M 1 is made to function as a star evening, engine velocity N E a predetermined engine rotational speed N E, or for example the idle speed N E,.
  • the engine 8 is started by raising the engine speed N E above the above-described autonomous rotation speed, supplying fuel with the fuel injection device 98, and igniting with the ignition device 99.
  • the engine start / stop control means 80 has an idle rotation speed N E 1 DL or less well known as a resonance region in which the vibration of the vehicle vibration system in which the vibration and / or noise of the vehicle exceeds a predetermined value is likely to occur. So that the vibration and / or noise during start-up can be suppressed quickly and the first motor rotation speed N M ! Ru pulled up quickly it quickly (i.e. rapidly) the Enjin rotational speed N E at which bring can bow I given engine speed N E '. For example, the engine rotation speed N E is increased to a predetermined engine rotation speed N E ′ at a speed obtained experimentally so that the vibration and / or noise of the vehicle does not exceed a predetermined value. In the present embodiment, vibration and / or noise is hereinafter referred to as vibration noise.
  • the vibration system resonance of the vehicle includes, for example, the resonance of the Eddon suspension system composed of the power plant such as the engine 8 and the transmission mechanism 10 and the engine mount, the torsional resonance of the drive system, the resonance of the exhaust system, the engine accessory It is assumed that there are similar resonances, drive system bending resonances, drive system coupled resonances, body system resonances, and suspension component resonances. Further, the predetermined engine speed region N ER is obtained, for example, experimentally in advance and stored. This is the engine rotation speed range where the vibration of the vehicle vibration system is likely to occur and is about 20 to 30 rpm, so that the vibration noise of the vehicle is more than a predetermined value considering the viewpoint of passenger comfort. The degree is assumed.
  • This predetermined engine speed range N ER is not only the engine speed N E but also the vehicle speed V, the state of the variable cylinder of the engine 8, that is, the number of cylinders of the engine 8 in operation, the electromagnetically driven valve It may be determined based on the vehicle state represented by the number of cycles of the variable cycle engine represented by. This is because even if the engine speed NE and the vehicle speed V are the same, the resonance of the transmission mechanism 10 may or may not occur due to the difference in the vehicle state described above.
  • the predetermined engine speed range N ER is determined in consideration of various vehicle conditions that affect the engine.
  • Figure 8 is passed with the predetermined Enjin speed range N ER i.e. a vibration generating area A where vibration noise is greater than or equal to a predetermined value of the vehicle, Enjin startup to the vibration generation region A of the first electric motor M 1 operates Is an example for explaining on the alignment chart corresponding to FIG. 8
  • (a) is a collinear diagram in the case of a first gear of the speed change mechanism 1?
  • (b) is a collinear diagram in the case of a reverse gear of the speed change mechanism 1 0 .
  • the straight line LO a shows the motor running when the engine rotation is stopped
  • the straight line LO b shows the first motor M 1 as shown by the solid line B when the engine is switched from the motor running to the engine running.
  • the first motor rotation speed N M 1 (the rotation speed of the first sun gear S 1 and the rotation speed of the vertical line Y 1) is increased by using the engine speed NE (the rotation speed of the first carrier CA 1 and the vertical line).
  • (Y2 rotation speed) indicates the dog state in the middle of being raised toward the predetermined engine speed N E ,.
  • a region A indicated by hatching in FIG. 8 is the vibration generation region A, and exists below a predetermined engine speed N E '.
  • the second motor rotation speed N M 2 (the rotation speed of the first ring gear R 1 and the rotation speed of the vertical line Y 3) is uniquely determined by the vehicle speed V and the gear ratio ratio of the automatic transmission unit 20. Therefore, it can be seen that the engine speed N E cannot be quickly increased using the second electric motor M 2.
  • the E engine start stop control means 8 0 At the time of engine start, in the course of change of the engine rotational speed N E from the straight line LO a to the straight line LO b, by the E engine start stop control means 8 0 to quickly pass through the vibration generating area A In addition, the engine speed N E is rapidly increased using the first electric motor M 1.
  • the hybrid control means 52 functions as an engine stop condition establishment judging means, and whether or not an engine stop condition for stopping the engine 8 by stopping the fuel supply to the engine 8 is established. Determine. For example, the hybrid control means 52, as shown by a solid line B point b ⁇ point a and point c ⁇ point a in FIG. 7, the accelerator pedal is returned and the required output torque T 0UT is reduced to reduce the vehicle state. When changing from the engine travel area to the motor travel area, it is determined that the engine stop condition is satisfied. Alternatively, the hybrid control means 52 determines that the actual state of charge S0 C is equal to or greater than a specified value based on a signal indicating the state of charge SOC of the power storage device 60 when the engine is operating in the vehicle stop state.
  • the hybrid control means 52 determines that the engine 8 or the catalyst device has been warmed up based on a signal indicating the engine water temperature TEMP W or a signal indicating the catalyst temperature when the engine is operating in the vehicle stopped state. Sometimes it is determined that the engine stop condition is satisfied. Alternatively, the hybrid control means 52 determines that the engine stop condition is satisfied when it is determined that the accelerator is decelerated with the accelerator opening Acc.
  • the engine start / stop control means 80 functions as an engine stop control means for stopping the engine 8 when it is determined by the hybrid control means 52 that the engine stop condition is satisfied.
  • the engine start / stop control means 80 stops the engine 8 by stopping the fuel supply by the fuel injection device 98, that is, by a fuel cut operation.
  • the first electric motor M 1 does not output the engine torque T E is an idling state of the reaction force torque is not allowed to occur Therefore, the engine rotation speed N E decreases so that the engine rotation stop state, that is, the engine rotation speed N E becomes zero.
  • the hybrid control means 52 also transmits the electric energy from the first electric motor M1 and / or the electric energy from the power storage device 60 to the second electric motor M2 by the electric path described above even in the engine traveling region.
  • the second motor M 2 By applying torque to the drive wheels 38, so-called torque assist for assisting the power of the engine 8 is possible. Therefore, the engine travel of this embodiment includes the engine travel + the overnight travel.
  • the hybrid control means 5 can maintain the operating state of the engine 8 by the electric CVT function of the differential section 11 regardless of whether the vehicle is stopped or in a low vehicle speed state. For example, if the charging capacity SOC of the power storage device 60 decreases when the vehicle is stopped and power generation by the first motor M 1 is required, the first motor M 1 is generated by the power of the engine 8 and Even if the rotation speed of the first motor M 1 is increased and the second motor rotation speed N M 2 is uniquely determined by the vehicle speed V As a result, the engine speed N E is maintained at a speed higher than the autonomous rotation speed.
  • the hybrid control means 5 2 is configured so that the first motor rotation speed N M 1 and / or the first rotation speed is controlled by the electrical C VT function of the differential unit 1 1 regardless of whether the vehicle is stopped or running.
  • the motor rotation speed N M 2 can be controlled to maintain the engine rotation speed N E constant or to control the rotation to an arbitrary rotation speed.
  • Haiburitsudo control unit 5 2 first conductive motivation rotational speed N M while controlling the engine rotational speed N E to any rotational speed or kept constant, and / or the second electric motor rotation speed N M 2 Rotation can be controlled at any rotation speed.
  • Haiburitsu de control means 5 2 As can be seen from the diagram of FIG. 3 to raise the engine rotational speed N E is the vehicle speed V (driving wheels
  • the hybrid control means 52 can idle the first motor M 1, that is, not generate a reaction force by the first motor M 1, so that the differential unit 11 cannot transmit torque, that is, the differential Power transmission cut-off state with the power transmission path in part 1 1 cut off
  • the speed-increasing gear stage determining means 6 2 is used to determine which of the switching clutch C 0 and the switching brake B 0 is to be engaged when the transmission mechanism 10 is set to the stepped transmission state, for example, the vehicle state
  • the shift line shown in FIG. 7 previously stored in the storage means 56 based on According to the figure, it is determined whether or not the gear position to be shifted of the speed change mechanism 10 is the speed increasing side gear stage, for example, the fifth gear stage.
  • the switching control means 50 switches between the continuously variable transmission state and the stepped transmission state by switching engagement / release of the engagement device (switching clutch C 0, switching brake B 0) based on the vehicle state. That is, the differential state and the hook state are selectively switched.
  • the switching control means 50 is indicated by the vehicle speed V and the required output torque T OUT based on the relationship (switching diagram, switching map) shown in FIG.
  • transmission mechanism 1 0 Differential part 1
  • a signal for disabling or prohibiting hybrid control or continuously variable shift control is output to the hybrid control means 52.
  • the step-variable shift control means 54 is permitted to perform a shift at the time of a preset step-shift.
  • the stepped shift control means 54 performs automatic shift of the automatic transmission unit 20 in accordance with, for example, the shift diagram shown in FIG.
  • FIG. 2 stored in advance in the storage means 56 is a hydraulic friction engagement device selected in the speed change at this time, that is, C 0, C 1, C 2, B 0, B 1, B 2, B 3
  • the combination of operation is shown. That is, the entire speed change mechanism 10, that is, the differential part 11 and the automatic speed change part 20 function as a so-called stepped automatic speed changer, and the speed stage is achieved according to the engagement table shown in the figure.
  • the speed-up side gear stage having a gear ratio smaller than 1.0 as a whole of the speed change mechanism 10 is a so-called overdrive gear.
  • the switching control means 50 releases the switching clutch C 0 so that the differential section 11 can function as a sub-transmission with a fixed gear ratio r 0, for example, a gear ratio 0 of 0.7. Command for engaging the switching brake B 0 and hydraulic control circuit 4 2 Output to.
  • the speed change mechanism 10 is switched to obtain a reduction-side gear stage with a gear ratio of 1.0 or more as a whole.
  • the control means 50 engages the switching clutch C 0 and releases the switching brake B 0 so that the differential section 11 can function as a sub-transmission with a fixed transmission ratio 0, for example, a transmission ratio 0 of 1. Command to output to the hydraulic control circuit 42.
  • the shift control means 50 is switched to the stepped shift state by the switching control means 50, and is selectively switched to be one of the two types of shift steps in the stepped shift state.
  • the moving part 1 1 is caused to function as a sub-transmission, and the automatic transmission part 20 in series with the moving part 1 1 functions as a stepped transmission, whereby the entire speed change mechanism 10 is made to function as a so-called stepped automatic transmission. .
  • the switching control means 50 determines that it is within the continuously variable transmission control region for switching the transmission mechanism 10 to the continuously variable transmission state, the continuously variable transmission state is obtained as a whole of the transmission mechanism 10.
  • a command for releasing the switching clutch C and the switching brake B 0 is output to the hydraulic control circuit 42 so that the differential section 11 is in a continuously variable transmission state and can be continuously variable.
  • a signal for permitting the hybrid control is output to the hybrid control means 5, and a signal for fixing to a preset gear position at the time of the continuously variable transmission is output to the stepped shift control means 54.
  • a signal permitting automatic shifting of the automatic transmission unit 20 is output in accordance with, for example, the shift diagram shown in FIG.
  • the gear ratio between the gear stages is continuously variable and the transmission mechanism 10 as a whole is in a continuously variable transmission state, and the total gear ratio key can be obtained continuously.
  • the relationship between the shifting state of the transmission mechanism 10 and the operation of the shift lever 92 in the switching device 90 as shown in FIG. 5 will be described below.
  • the shift control unit 50 automatically switches the shift state of the speed change mechanism 10 based on the shift map and the switch map stored in advance as shown in FIG.
  • the switching control is executed, the continuously variable transmission control of the power distribution mechanism 16 is executed by the hybrid control means 52, and the automatic transmission control of the automatic transmission unit 20 is executed by the stepped transmission control means 54.
  • the speed change mechanism 10 when the speed change mechanism 10 is switched to the stepped speed change state, the speed change mechanism 10 is automatically controlled within the range of the first speed gear to the fifth speed as shown in FIG.
  • the speed change mechanism 10 when the speed change mechanism 10 is switched to the stepless speed change state, the speed change mechanism 10 is set to the stepless speed ratio width of the power distribution mechanism 16 and the first speed gear of the automatic speed changer 20.
  • automatic transmission control within the range of the fourth speed gear stage, automatic transmission control is performed within the change range of the total speed ratio T that can be changed by the transmission mechanism 10 obtained with each gear stage.
  • This “D” position is also a shift position for selecting an automatic shift running mode (automatic mode) which is a control mode in which the automatic shift control of the speed change mechanism 10 is executed.
  • the switching control means 50, the rapid control means 5 2 so as not to exceed the maximum speed side gear stage or gear ratio of the shift range.
  • the step-variable shifting control means 5 4 by 3 ⁇ 4 is automatic shift control within a range of the speed change mechanism 1 0 shiftable total speed ratio ⁇ T at each shift range of, for example, is switched transmission mechanism 1 0 in the step-variable shifting state
  • the speed change mechanism 10 is automatically controlled within the range of the total speed ratio T where the speed change mechanism 10 can change speed in each speed range, or the speed change mechanism 10 is switched to the continuously variable speed state.
  • the gear mechanism 10 is automatically controlled within the range of the stepless gear ratio range of the power distribution mechanism 16 and the automatic transmission unit 20 corresponding to each gear range.
  • Speed change mechanism obtained by the stage 1 0
  • the automatic shift control. Is in the range of shiftable total speed ratio ⁇ T in each shift range.
  • This “M” position is also a shift position for selecting a manual shift running mode (manual mode), which is a control mode in which manual shift control of the speed change mechanism 10 is executed.
  • the control unit of the electric system such as an electric motor for operating the differential unit 11 as an electric continuously variable transmission is malfunctioning or the function is reduced, for example, the electric motor energy is generated from the occurrence of electric energy in the first electric motor M 1.
  • the switching control means 50 is used to ensure vehicle travel even in the continuously variable control region.
  • the speed change mechanism 10 may be preferentially in the stepped speed change state.
  • FIG. 7 is a relationship (shift diagram, shift map) stored in advance in the storage means 56 that is the basis of the shift determination of the automatic transmission unit 20.
  • the broken lines in FIG. 7 indicate the determination vehicle speed VI and the determination output torque T 1 for determining the stepped control region and the stepless control region by the switching control means 50.
  • the broken line in FIG. 7 relates to a high vehicle speed determination line that is a series of determination vehicle speed V1, which is a predetermined high-speed driving determination value for determining high-speed traveling of the hybrid vehicle, and a driving force of the hybrid vehicle.
  • Drive power related value for example, output torque of automatic transmission unit 20 0
  • High output that is a series of judgment output torque T 1 that is a preset high output travel judgment value for judging high output travel where ⁇ is high output
  • a traveling determination line is shown. Furthermore, as shown by the two-dot chain line with respect to the broken line in FIG.
  • FIG. 7 shows that the vehicle speed V and the output torque ⁇ including the determination vehicle speed V 1 and the determination output torque T 1 are used as parameters in the stepped control region and the stepless control region by the switching control means 50.
  • It is a switching diagram (switching map, relationship) stored in advance for determining whether there is an area.
  • the shift map including this switching diagram may be stored in advance in the storage means 56. Further, this switching diagram may include at least one of the judgment vehicle speed V 1 and the judgment output torque T 1, and any one of the vehicle speed V and the output torque T 0UT is used as a parameter.
  • a switching line stored in advance may be used.
  • the above shift diagram, switching diagram, or driving force source switching diagram is not a map, but a judgment formula that compares the actual vehicle speed V with the judgment vehicle speed V 1, output torque T 0 UT and judgment output torque It may be stored as a judgment formula for comparing T1.
  • the switching control means 50 sets the speed change mechanism 10 to the stepped speed change state when the vehicle state, for example, the actual vehicle speed exceeds the determination vehicle speed V 1. Further, the switching control means 50 sets the transmission mechanism 10 to the stepped speed change state when the vehicle state, for example, the output torque ⁇ ⁇ ⁇ of the automatic transmission ⁇ 0 exceeds the judgment output torque ⁇ 1.
  • the determination vehicle speed V 1 is such that, for example, when the speed change mechanism 10 is set to a continuously variable speed state during high speed travel, the speed change mechanism 10 during the high speed travel suppresses deterioration of fuel consumption. It is set to be in a state.
  • the determination torque ⁇ 1 is used to reduce the size of the first motor ⁇ 1 without causing the reaction torque of the first motor ⁇ 1 to correspond to the high output range of the engine 8 when the vehicle is traveling at a high output. It is set according to the characteristics of the first electric motor ⁇ 1 that can be installed with a lower maximum output of the electric energy from the first electric motor ⁇ 1.
  • the driving force-related value is a parameter corresponding to the vehicle driving force on a one-to-one basis, and includes not only the driving torque or driving force at the driving wheels 38 , but also, for example, the output torque of the automatic transmission unit 20 , Engine torque T E , vehicle acceleration G, for example, accelerator opening
  • throttle valve opening 0 TH (or intake air amount, air-fuel ratio, fuel injection amount) and actual value such as engine torque T E calculated based on engine speed N E , accelerator opening Acc or throttle Requirement calculated based on valve opening 0 TH, etc.
  • the drive torque may be calculated from the output torque T OUT or the like in consideration of the differential ratio, the radius of the drive wheels 38, or may be directly detected by, for example, a torque sensor or the like. The same applies to the other torques described above.
  • Fig. 9 is also a conceptual diagram for creating the broken line in Fig. 7. In other words, the broken line in Fig. 7 shows the vehicle speed V and output torque based on the relationship diagram (map) in Fig. 9.
  • the output torque ⁇ ⁇ ⁇ ⁇ has a preset output ⁇ torque T 1 or higher torque range, or the vehicle speed V has a preset vehicle speed range V 1 or higher. Since the stepped control region is set, the stepped variable speed travel is executed at the time of high driving torque, which is a relatively high torque of the engine 8, or at a relatively high vehicle speed. The engine is executed at a low driving torque of 8 at a relatively low torque, or at a relatively low vehicle speed, that is, at the engine 8 normal output range.
  • the engine torque T E is set to a high torque region in which a predetermined value TE 1 or higher is set in advance
  • the engine speed N E is set to a high value that is higher than a predetermined value NE 1 in advance. Since the engine output calculated from the engine speed T E and the engine speed N E is higher than the specified range, the stepped control area is set as the stepped control area. This is executed at relatively high torque, relatively high rotational speed, or relatively high output, and continuously variable speed running is relatively low torque, relatively low rotational speed, or relatively low output of engine 8. It is designed to be executed in the normal output area of engine 8 at the time.
  • the speed change mechanism 10 is set to a continuously variable speed to ensure the fuel efficiency of the vehicle, but the actual vehicle speed V is determined as described above.
  • the speed change mechanism 10 is a stepped transmission. The speed of the engine 8 is transmitted through the mechanical power transmission path to the driving wheels 3 8 and operated as an electric continuously variable transmission. The conversion loss during the period is suppressed, and the cost is improved.
  • the speed change mechanism 10 is set to a stepped transmission state that operates as a stepped transmission, and mechanical power is exclusively used.
  • the region where the output of engine 8 is transmitted to the drive wheels 3 8 through the transmission path and operates as an electric continuously variable transmission is the low and medium power traveling of the vehicle, and the first motor M 1
  • the electric energy to be generated in other words, the maximum value of the electric energy transmitted by the first electric motor M1 can be reduced, and the first electric motor M1 or a vehicle driving device including the electric motor M1 can be further downsized.
  • the predetermined value TE 1 is the first electric motor M 1 is preset as switching threshold value of the engine torque T E that is as possible out to withstand the reaction torque
  • the engine torque T E exceeds the predetermined value TE 1
  • the differential unit 1 1 is in the stepped speed change state, the first motor M l has the engine torque T Since it is not necessary to take charge of the reaction torque against E , the deterioration of the durability of the first electric motor M 1 is prevented while being prevented.
  • the first electric motor M 1 of the present embodiment by the maximum output is smaller than the reaction torque capacity corresponding to the maximum value of the engine torque T E, to Wachisono maximum output that does not correspond to the reaction force torque capacity against the engine torque T E that exceeds the predetermined value TE 1, downsizing is realized such.
  • the maximum output of the first electric motor M 1 is the rated value of the first electric motor M 1 that is experimentally obtained and set so as to be allowed in the usage environment of the first electric motor M 1.
  • switching threshold value of the Enjintoruku T E is the maximum value or a predetermined value lower have value than that of the engine torque T E by the first electric motor M 1 can and Zuko pinch receiving the reaction torque, first This is a value obtained experimentally in advance so that a decrease in the durability of the motor M1 is suppressed.
  • the speed change mechanism 10 (differential part 11, power distribution mechanism 16) of the present embodiment is in a continuously variable transmission state (differential state) and in a continuously variable transmission state (stepped speed change state, locked state).
  • the switching control means 50 determines the shift state to be switched of the differential unit 11 based on the vehicle state, and the differential unit 11 is not switched to the continuously variable shift state. It can be selectively switched to either a continuously variable transmission state (stepped transmission state).
  • the engine speed N E is controlled by the electric CVT function without being restricted by the vehicle speed V, in other words, the rotational speed of the transmission member 18. obtain. Therefore, when the engine is started, the engine speed N E is quickly increased using the first electric motor M l so that the predetermined engine speed region N ER is quickly passed by the engine start / stop control means 80. Can be raised. In the stepped shift state of the differential section 1 1, the power transmission path between the engine 8 and the drive wheels 3 8 is mechanically connected, and the engine rotation speed NE is restricted to the vehicle speed V. Therefore, the engine speed N E cannot be freely controlled.
  • the first motor M 1 is used so that the predetermined engine rotation speed region N ER can be quickly passed by the engine start / stop control means 80. Since the engine speed N E could not be increased quickly, there was a possibility that vehicle noise exceeding the specified value could occur when the engine 8 was started. For example, when the differential unit 1 1 is running in the stepped speed change state, for example, when starting the engine that recovers from the fuel cut by the engine start / stop control means 8 0 during stepped running, or at point a of the solid line B in FIG. ⁇ As indicated by point c, there was a possibility that vehicle vibration noise exceeding a predetermined value could be generated when starting the engine when switching from the stepless speed change state to the stepped speed change state.
  • the switching control means 50 determines that the engine start condition is satisfied by the hybrid control means 52, and when the engine 8 is started by the engine start / stop control means 80, Engine start / stop control means 8 to 0 In order to allow the predetermined engine speed range N EK to pass through more quickly, maintain the shifting state of the differential section 1 1 to the continuously variable shifting state, or release the switching clutch C 0 or the switching brake B 0. It functions as an engine start-up switching control means that preferentially (mandatoryly) changes the shifting state of the differential section 1 1 to a continuously variable shifting state.
  • the power transmission path from the engine 8 to the drive wheels 38 is driven by power.
  • the transmission is cut off, the power transmission path between the engine 8 and the drive wheels 3 8 is mechanically connected even if the speed change state of the differential unit 1 1 is a stepped speed change state.
  • the engine speed N E is not restricted by the vehicle speed V, and the engine speed N E can be controlled. Therefore, when the engine is started when the power transmission path is in the power transmission cut-off state, regardless of whether the speed change state of the differential part 11 is a continuously variable speed change state or a stepped speed change state. not the engine start stop control means 8 0 by a predetermined engine speed range N ER can pass fast Ya crab.
  • Shift position determining means 82 may determine whether the current shift lever one 9 2 based on a signal representing the shift position P SH has become one of the position, or shift small Le Bas one 9 2 is operated to either position To do.
  • the shift position determination means 8 2 is based on a signal indicating the shift position P SH and the shift lever-92 is in the “P” position or “N” position, that is, the power transmission path from the engine 8 to the driving wheels 3 8 is driven by power. Judges whether or not it is a non-driving position where transmission is cut off.
  • the shift position determining means 82 is Shifutopojisho down P SH on the basis of a signal representing the shift lever one 9 2 "R" position, "D" positive Chillon or "M” position, i.e. the drive from the engine 8 wheels 3 8 It is determined whether or not the power transmission / reach route is in a drive position where power transmission is possible.
  • the switching control means 50 is changed from the engine 8 to the drive wheel 3 8.
  • the shift position determining means 82 When the power transmission path to the power transmission is possible, that is, the shift position determining means 82 When the shift positive Chillon P SH Trevor 9 2 is determined to be the driving position, so that a predetermined engine speed range N ER is rapidly passed by the engine start stop control means 8 0, the differential unit 1 Maintain the shifting state of 1 in a continuously variable shifting state, or release the switching clutch C 0 or switching brake B 0 to make the shifting state of the differential unit 1 1 preferentially (forced) a continuously variable shifting state. .
  • the speed change state of the differential section 11 is preferentially (forced) set to the continuously variable speed change state so that the predetermined engine speed region N ER can be quickly passed by the engine start / stop control means 80. There is no need to
  • the case where the vibration noise of the vehicle above the predetermined value does not occur is, for example, when the engine rotation speed N E already exceeds the predetermined engine rotation speed region N ER at the time of engine start, and the engine start / stop control means 8
  • the engine speed N E is set to the predetermined engine speed N e by the engine start / stop control means 80. to pass through the predetermined engine rotational speed region N ER when pulled above, there is a possibility that noise and vibration of the vehicle becomes a predetermined value or more.
  • the vibration generation area determination means 84 is used to detect vehicle vibration noise. whether resonance occurs in the vibration system of the vehicle as a predetermined value or more, for example, the actual engine rotational speed N E is whether or not exceed a predetermined engine rotational speed region N ER as vibration onset generating region Judge with.
  • the switching control means 50 determines that the engine start condition has been established by the hybrid control means 52, and the vehicle vibration noise is predetermined when the engine start / stop control means 80 starts the engine 8.
  • the engine start / stop control means 8 0 determines that the predetermined engine speed area N ER Maintain the shifting state of the differential unit 1 1 in a continuously variable transmission state so that it can be passed quickly, or release the switching clutch C 0 or switching brake B 0 to give priority to the shifting state of the differential unit 1 1 (Forcibly) Set to the continuously variable transmission state.
  • the power transmission path from the engine 8 to the drive wheels 3 8 is in a state where power transmission is possible.
  • the speed change state of the differential portion 11 is the stepped speed change state
  • the engine speed N E uniquely determined by the vehicle speed V and the speed change ratio of the automatic speed change portion 20, that is, It is assumed that the vehicle speed V increases as the engine speed N E restricted by the vehicle speed V exceeds the predetermined engine speed range N ER .
  • the engine start / stop control means 80 uses the first electric motor M l to set the engine speed N E.
  • the engine 8 does not need to be increased to a predetermined engine speed N E 'or more, and the engine 8 is started by supplying the fuel as it is with the fuel injection device 98 and igniting it with the ignition device 99.
  • the stepped gear shift state determining means 86 is a shift position determining means when it is determined that the engine start condition is satisfied by the hybrid control means 52, and the engine 8 is moved by the engine start / stop control means 80. If it is determined by 8 2 that the shift position P SH of the shift lever 9 2 is the drive position, the power distribution mechanism 16 is in the locked state (connected state), that is, the differential unit 1 1 is stepped. It is determined whether or not it is in a state.
  • the stepped gear shift state determining means 8 6 determines whether or not the differential unit 1 1 is in the stepped gear shift state, for example, whether or not the speed change mechanism 10 is in the stepped gear shift state by the switching control means 50. Judge with. '
  • the vibration generation region determining means 84 is configured such that when the stepped speed change state determining means 86 determines that the differential portion 11 is in the stepped speed change state, the vibration noise of the vehicle is not less than a predetermined value. It is determined whether or not.
  • the switching control means 50 maintains the speed change state of the differential portion 11 in a continuously variable speed change state or gives priority to the speed change state of the differential portion 11 (forced). )
  • the differential section 11 is set to the stepless speed change state for at least the predetermined period T s . That is, at least for the predetermined period T s, the switching control means 50 is prohibited from switching the differential portion 11 to the stepped speed change state.
  • the predetermined period T s is until the engine 8 is actually supplied with fuel and ignited.
  • the engine speed N E becomes equal to the predetermined engine speed N E.
  • This is the predetermined start time A which is experimentally obtained and stored in advance as the time required for starting until the fuel is supplied and ignited.
  • the speed change state of the differential section 11 is set to the continuously variable speed change state until the fuel is supplied to the engine 8 and ignition is actually performed after the speed is increased to the speed N E 'or higher.
  • the switching control means 50 may be configured to at least change the shifting state of the differential unit 11 to the continuously variable transmission state for a predetermined starting time A required for starting after the engine start / stop control means 80 starts to start the engine 8.
  • FIG. 11 is a flow chart for explaining the main part of the control operation of the electronic control unit 40, that is, the control operation for preventing the vibration noise of the vehicle exceeding a predetermined value when the engine is started, for example, several msec to several m It is repeatedly executed with an extremely short cycle time of about 10 msec.
  • Fig. 12 is a time chart for explaining the control operation shown in the flowchart of Fig. 11.
  • the accelerator pedal is stepped on greatly while the motor is running, the vehicle state changes to point a ⁇ point of solid line B in Fig. 7.
  • it is determined that the engine start for switching to engine running and the switching of the differential unit 11 from the continuously variable transmission state to the stepped transmission state are determined by changing as shown in c. is there.
  • steps corresponding to the hybrid control means 52 (hereinafter, steps are referred to as steps). (Omitted)
  • steps it is determined whether or not an engine start condition for starting the engine 8 is satisfied. For example, as shown by point a-point c on solid line B in Fig. 7, the accelerator pedal is depressed and the required output torque ⁇ ⁇ ⁇ increases to
  • the power distribution mechanism 16 is in the hooked state (connected state), that is, the differential unit 1 1 is stepped. Whether or not the speed change state is set is determined by, for example, the switching control means 50 based on whether or not the speed change mechanism 10 is set to a stepped speed change state.
  • S4 corresponding to the vibration generation region determination means 84, whether or not the vibration of the vehicle vibration system that causes the vibration noise of the vehicle to be a predetermined value or more occurs. but for example, the actual engine rotational speed N E is determined by the absence does not exceed a predetermined engine rotational speed region N ER as vibration generation region. If the determination of S4 is affirmative, in S5 corresponding to the switching control means 50, the switching clutch C0 or the switching brake B0 is released, and the shift state of the differential section 11 is at least a predetermined period T. s is preferentially (forced) to be continuously variable.
  • the shift state of the differential section 11 is maintained in a continuously variable shift state in a step (not shown) corresponding to the switching control means 50. At this time, at least for the predetermined period T s , switching of the differential section 11 to the stepped variable state by the switching control means 50 is prohibited.
  • the engine start / stop control means 80 in S 6 corresponding to, so that the vibration noise of the vehicle is the vibration noise when starting to be quickly passes a predetermined Enjin speed range N ER resonance have Chasse occurrence of the vibration system of the vehicle becomes a predetermined value or more is suppressed
  • the first motor M 1 is energized and the first motor rotation speed N M 1 is quickly increased, so that the engine rotation speed N E is rapidly increased to a predetermined engine rotation speed N E or more.
  • the engine 8 is started by supplying the fuel and the ignition device 99.
  • the power transmission path from the engine 8 to the drive wheels 3 8 is in a power transmission cut-off state, so that the vibration of the vehicle vibration system is difficult to occur, Since vibration noise is difficult to be transmitted, it is not necessary to rapidly increase the engine speed N E to the predetermined engine speed N E or more in that case. If the determination in S4 is negative and the engine speed N E has already exceeded the predetermined engine speed N E , the engine speed N E a predetermined engine speed N e, since there is no need to increase the above, the starting of the engine 8 is performed as to and the ignition device 9 9 by point the fire was fueled by intact fuel injectors 9 8.
  • the predetermined period T s is determined after the start of the engine 8 is started. That is, after the engine speed N E is increased by the first electric motor M 1 until the start of the engine 8 is completed, that is, until the fuel supply and ignition are actually performed, the broken line B in FIG. As shown in Fig. 5, it may be after a predetermined time B that has been experimentally obtained in advance as an allowance time until the engine 8 is stabilized after the engine 8 is started. Further, the predetermined period T s may be the predetermined start time A required for starting after the start of the engine 8 is started.
  • the shift control means 50 maintains the speed change state of the differential section 11 in a continuously variable speed change state. either, or because shifting state of the differential portion 1 1 releases the switching clutch C 0 or switching brake B 0 is a continuously variable shifting state preferentially (forcing), the E down Jin speed N E Unlike the stepped speed change state of the differential section 1 1 that may be restricted by the vehicle speed V, the engine speed N E is quickly increased to a predetermined engine speed N E 'or more, and the predetermined engine speed range N The vehicle can pass through the ER quickly, and the generation of vehicle vibration noise can be suppressed when the engine is started.
  • the engine start / stop control means 80 uses the first electric motor M 1 to increase the engine rotation speed N ′ E to a predetermined engine rotation speed N E ′ or higher.
  • the actual engine speed N E can be quickly passed through the predetermined engine speed range N E R.
  • the switching control means 50 is configured such that when the vibration noise of the vehicle exceeds a predetermined value when the engine 8 is started, that is, when the engine 8 is started, the predetermined engine speed When passing through the area N ER , the speed change state of the differential section 1.1 is set to a continuously variable speed change state, so that when the engine 8 is started, the predetermined engine rotation speed area N ER can be quickly passed, and the engine Generation of vibration noise of the vehicle at the start of 8 can be suppressed.
  • the switching control means 50 continuously changes the speed change state of the differential section 11 when the power transmission path from the engine 8 to the drive wheels 38 is in a power transmission enabled state. This is different from the case where the differential portion 1 1 is set to the stepped speed change state and the engine speed N E is restricted to the vehicle speed V when the power transmission path is in the power transmission enabled state.
  • the engine speed N E can quickly pass through the predetermined engine speed range N ER, and generation of vibration noise of the vehicle can be suppressed when the engine 8 is started.
  • the switching control means 50 continuously changes the speed change state of the differential section 11 until the start of the engine 8 by the engine start / stop control means 80 is completed. since the state, during the starting of Enjin 8 is Enjin rotational speed N E can rapidly transit the predetermined Enjin speed range N ER, generation of vibration noise of the vehicle can be suppressed at the start of Enjin.
  • the switching control means 50 is configured such that the predetermined start time A required for starting the engine 8 after the engine start / stop control means 80 is started is the differential unit. 1 Since the shifting state of 1 is a continuously variable shifting state, the engine speed N E can quickly pass through the predetermined engine speed range N ER while the engine 8 is starting. Occurrence can be suppressed.
  • the control operation for preventing the vibration noise of the vehicle exceeding a predetermined value when starting the engine has been described.
  • the predetermined value is set when the engine is stopped, particularly when the engine is stopped while the vehicle is running. A control operation for preventing the above vibration noise of the vehicle from occurring will be described.
  • FIG. 13 is a functional block diagram illustrating the main part of the control function of the electronic control unit 40, and corresponds to FIG.
  • the engine start / stop control means 8 ′ 0 functioning as the engine stop control means is operated by the fuel injection device 98 when the hybrid control means 52 determines that the engine stop condition is satisfied. was performed to stop the engine 8 by ie fuel Katsuhito actuated to stop the supply, in addition, engine start stop control means 8 0, the predetermined engine rotational speed region N ER can turn promptly pass To suppress vibration and / or noise when the engine stops.
  • the first motor M 1 is energized and the first motor rotation speed N M 1 is quickly reduced to positively reduce the engine rotation speed N E quickly to the predetermined engine rotation speed range N ER or less. Pull it down.
  • the engine speed N E can be quickly passed through the predetermined engine speed region N ER compared to the case where the engine speed N E naturally decreases so that the engine 8 stops due to the fuel cut operation and becomes zero. Vibration noise when stopping is suppressed.
  • Fig. 14 shows a predetermined engine speed region NER, that is, a vibration generation region A in which the vibration noise of the vehicle exceeds a predetermined value, and an operation of passing the vibration generation region A using the first electric motor M1 when the engine is stopped.
  • NER predetermined engine speed region
  • FIG. 14 is a collinear diagram for the first speed gear stage and the fourth speed gear stage of the speed change mechanism 10.
  • the straight line LO b shows the engine running before switching to the motor running
  • the straight line LO a shows the motor running when the engine rotation is stopped.
  • a region A indicated by hatching in FIG. 14 is the vibration generation region A, which exists below the predetermined engine speed N E , below.
  • the second motor rotation speed N M 2 (the rotation speed of the first ring gear R 1 and the rotation speed of the vertical line Y 3) is uniquely determined by the vehicle speed V and the gear ratio ratio of the automatic transmission 20. is the reason, it is seen that not promptly pulled E engine rotational speed N E using the first electric motor M 2.
  • the transmission mechanism 10 of this embodiment can be selectively switched between the continuously variable transmission state and the continuously variable transmission state, and the differential control unit 50 based on the vehicle state by the switching control means 50.
  • a shift state to be switched is determined, and the differential unit 1 1 is selectively switched between a continuously variable shift state and a non-continuously variable shift state (stepped shift state).
  • the vehicle speed V in other words, the engine rotation without being restricted by the rotational speed of the transmission member 18 by the electrical CVT function.
  • the speed N E can be controlled. Therefore, when the engine is stopped, the engine speed N E is quickly increased using the first electric motor M 1 so that the predetermined engine speed region N ER is quickly passed by the engine start / stop control means 80.
  • the first motor M l is used so that the predetermined engine rotation speed region N ER is quickly passed by the engine start / stop control means 80. Since the engine speed N E could not be lowered quickly, there was a possibility that vehicle vibration noise exceeding the specified value would occur when the engine 8 stopped. For example, when the engine is stopped when the accelerator 11 is decelerated while the differential unit 11 is running in the stepped speed change state, there is a possibility that vehicle vibration noise exceeding a predetermined value may occur.
  • the switching control means 50 is replaced with or added to the above-mentioned function as the engine starting switching control means, and the engine start condition is determined by the hybrid control means 52 when it is determined that the engine stop condition is satisfied.
  • the speed change state of the differential section 11 is maintained at the continuously variable speed change state so that the predetermined engine speed region N ER is quickly passed by the engine start / stop control means 80.
  • the switching clutch C 0 or the switching brake B 0 is released to function as a switching control means at the time of engine stop that preferentially (forcibly) shifts the differential section 1 1 to a continuously variable shifting state.
  • the power transmission path from the engine 8 to the drive wheels 38 is the power.
  • the power transmission path between the engine 8 and the drive wheels 3 8 is mechanically connected even if the speed change state of the differential section 1 1 is a stepped speed change state.
  • Sarezu Enjin rotational speed NE is the engine rotational speed N E can be controlled without being bound with the vehicle speed V. Therefore, when the engine is stopped when the power transmission path is in the power transmission cut-off state, regardless of whether the speed change state of the differential unit 11 is a continuously variable speed change state or a stepped speed change state. Without The engine start / stop control means 80 can pass the predetermined engine speed region NER quickly. Therefore, the switching to the continuously variable transmission state of the differential section 11 by the switching control means 50 here is assumed to be an engine stop at the time of raining.
  • the vehicle running determination means 8 8 determines whether or not the vehicle is running.
  • the vehicle running determination means 8 8 is a drive in which the shift lever 9 2 is in the “D” position or the “M” position, that is, the power transmission path from the engine 8 to the drive wheels 3 8 is in a state capable of transmitting power.
  • Whether or not the vehicle is traveling is determined based on whether or not the vehicle is in the position and the vehicle speed V is equal to or higher than a predetermined value for determining that the vehicle is traveling.
  • the switching control means 50 determines that the vehicle running determination means when the engine stop condition is satisfied by the engine start / stop control means 80 when it is determined by the hybrid control means 52 that the engine stop condition is satisfied. 8
  • the engine start / stop control means 80 allows the predetermined engine speed region N ER to pass quickly so that the speed change state of the differential section 11 Is maintained in a continuously variable transmission state, or the switching clutch C 0 or the switching brake B 0 is released, and the shifting state of the differential section 11 is preferentially (forced) set to the continuously variable transmission state.
  • the engine speed N E is already below the specified engine speed range N ER when the engine is stopped. means 8 0 by the case E emissions' Gin rotational speed N E is odd, such passes through the predetermined engine rotational speed region N ER when pulled towards a stop state stop rotating.
  • the engine speed N E exceeds the predetermined engine speed range N E R when the engine is stopped, the engine start / stop control To pass through the predetermined engine rotational speed region N ER by stage 8 0 when the engine rotational speed N E is lowered, there is a possibility that vibration noises of the vehicle is greater than or equal to the predetermined value.
  • the vibration generation region determination means 84 determines that the engine stop condition is satisfied by the hybrid control means 52, and the engine start / stop control means 80 controls the engine 8
  • the vibration of the vehicle vibration system that causes the vibration noise of the vehicle to exceed a predetermined value occurs, that is, the predetermined engine rotation speed as a vibration generation region when the engine stops.
  • Whether or not to pass through the region N E R is determined by, for example, whether or not the actual engine speed N E exceeds a predetermined engine speed region N ER .
  • the switching control means 50 determines that the engine stop condition is satisfied by the hybrid control means 52, and the vehicle vibration noise is predetermined when the engine start / stop control means 80 stops the engine 8.
  • the engine start / stop control means 8 In order that the predetermined engine speed region N ER can be quickly passed by 0, the shifting state of the differential section 11 is maintained in the continuously variable shifting state, or the switching clutch C 0 or the switching brake B 0 is released.
  • the shifting state of the differential unit 1 1 is set to the infinitely variable state with priority (forced).
  • the shifting state of 1 is a stepped shifting state, that is, during stepped shifting, the vehicle speed V is low, the total speed ratio 0 is small (high speed side gear ratio, etc.) ) and, if Enjin rotational speed E, which depends on the vehicle speed V is such that at a low rotation speed than the predetermined Enjin rotational speed region NE R is assumed.
  • the continuously variable transmission state determining means 8 9 is a means for determining that the vehicle is running when it is determined that the engine stop condition is satisfied by the hybrid control means 52 and the engine 8 is stopped by the engine start / stop control means 80.
  • the continuously variable transmission state determination means 8 9 determines whether or not the differential unit 11 is in a continuously variable transmission state, for example, whether or not the transmission mechanism 10 is in a continuously variable transmission state by the switching control means 50. Judge with.
  • the vibration generation area determining means 84 determines that the vibration noise of the vehicle is predetermined when the differential section 11 is determined not to be in the continuously variable transmission state by the continuously variable transmission state determining means 89. It is determined whether or not the value is greater than or equal to.
  • the switching control means 50 maintains the speed change state of the differential section 11 at the stepless speed change state when the engine 8 is stopped or gives priority to the speed change state of the differential section 11 (forced). ) when the continuously variable shifting state, is at least a predetermined time period t D is the differential part 1 1 and the continuously variable shifting state. That is, at least the switching of the predetermined time t D is the step-variable shifting state of the differential portion 1 1 by the switching control means 5 0 is prohibited.
  • the engine speed N E is actually stopped after the engine 8 is stopped, that is, after the engine speed N E is reduced by the first electric motor M l.
  • This is the predetermined stop time A that is obtained experimentally and stored in advance as the time required to stop until it is brought into a state.
  • the predetermined time t D is from the start stop of the engine 8, as time required to stop until pulled to speed the engine rotational speed N E is actually below the Jo Tokoro engine speed range N ER It may be a predetermined stop time B that has been obtained experimentally and stored in advance.
  • the switching control means 50 makes at least the speed change state of the differential section '11 until the engine start / stop control means 80 completes the stop of the engine 8.
  • FIG. 15 is a flowchart for explaining the main part of the control operation of the electronic control unit 40, that is, the control operation for preventing the vibration noise of the vehicle exceeding a predetermined value when the engine is stopped. It is repeatedly executed with an extremely short cycle time of, for example, several milliseconds to several tens of milliseconds.
  • FIG. 16 is a time chart for explaining the control operation shown in the flowchart of FIG. 15. For example, when the accelerator pedal is returned while the engine is running in the stepped speed change state of the differential section 11. This is an example when it is determined that the engine stops for fuel.
  • S B 1 corresponding to the hybrid control means 52 it is determined whether or not an engine stop condition for stopping the engine 8 is satisfied. For example, when the accelerator pedal is returned and the accelerator is turned off, it is determined that the engine stop condition is satisfied.
  • the time t i in Fig. 16 indicates that it was determined that the engine 8 stop condition was satisfied due to the accelerator off.
  • SB 4 corresponding to the vibration generation area determination means 84, is there any vibration in the vehicle vibration system that causes the vehicle vibration noise to exceed a predetermined value? whether, for example the actual engine rotational speed N E is determined by whether it exceeds a predetermined engine speed range N ER.
  • the switching clutch C 0 or the switching brake B 0 is released and the shift state of the differential section 11 is at least a predetermined time t D. Is preferentially (forced) to be continuously variable. If the determination of SB 3 is affirmed, a diagram corresponding to the switching control means 50 is shown. In no step, the shift state of the differential ⁇ ⁇ 1 is maintained in the continuously variable shift state. At least switching of the a predetermined time period t D step-variable shifting state of the differential portion 1 1 by the switching control means 5 0 At this time are prohibited.
  • FIG. 16 is an example in which the fuel cut operation of SB 6 is executed when the determination of SB 2 is affirmed in the flowchart of FIG.
  • t 3 time points 1 6, directive for switching the differential portion 1 1 after the predetermined time t B elapsed fuel Katsuhito operation is determined whether we advance the start of the engine 8 to the continuously variable shifting state is output It shows that.
  • the predetermined time t D is the time when the engine 8 is instructed to stop, that is, after the engine speed N E is reduced by the first electric motor M 1, the engine 8 is stopped. Is the predetermined stop time C until the stop of the engine 8 is completed after the command to switch the differential unit 11 to the continuously variable transmission state is output.
  • the output torque of the motor I 2 may be increased in order to compensate for pumping loss caused by dragging of the engine 8 that has been fueled. .
  • the switching control means 50 maintains the speed change state of the differential section 11 in a continuously variable speed change state.
  • the switching clutch C 0 or the switching brake B 0 is released and the shifting state of the differential section 1 1 is preferentially (forced) to be a continuously variable shifting state, so that the engine speed N E is Unlike the stepped speed change state of the differential section 1 1 that may be constrained by the vehicle speed V, the engine speed N E is quickly lowered below the predetermined engine speed range N ER and the predetermined engine speed By passing the area N ER quickly, the generation of vehicle vibration and noise can be suppressed when the engine stops.
  • the engine start stop control means 8 since reduced pull the engine speed N E to or less than a predetermined engine speed range N ER using the first electric motor M l, stopping of the engine 8 Sometimes the actual engine speed N E can be quickly passed through a predetermined engine speed range N ER .
  • the switching control means 50 is configured so that the predetermined engine speed when the vehicle vibration noise exceeds a predetermined value when the engine 8 is stopped, that is, when the engine 8 is stopped.
  • the speed change state of the differential section 11 is set to a continuously variable speed change state, so that when the engine 8 is stopped, the predetermined engine rotation speed region N ER can be passed quickly, and the engine 8 Reduces vehicle vibration and noise when stopping Le Protect
  • the switching control means 50 is configured such that, when the power transmission path from the engine 8 to the drive wheels 38 is in a state where power can be transmitted, for example, during traveling of the vehicle, the differential unit 1 1 When the power transmission path is in a state where power transmission is possible, the differential section 11 is set to the stepped speed change state and the engine rotation speed ⁇ ⁇ is restricted to the vehicle speed V. Unlike the engine speed ⁇ ⁇ ⁇ ⁇ ⁇ , the engine speed ⁇ ⁇ can be quickly passed through the predetermined engine speed range ⁇ ER, and the generation of vibration noise of the vehicle can be suppressed when the engine 8 is stopped.
  • the switching control means 50 continuously changes the shifting state of the differential section 11 until the stop of the engine 8 by the engine start / stop control means 80 is completed. since the state, during the stop of the engine 8 is the engine rotational speed New E can rapidly transit the predetermined Enjin rotational speed region NER, generation of vibration noise of the vehicle can be suppressed during shutdown of Enjin.
  • the switching control means 50 is configured such that the predetermined stop time ⁇ ⁇ ⁇ required to stop the engine 8 after the engine start / stop control means 80 starts to stop is the differential unit. 1 Since the shifting state of 1 is a continuously variable shifting state, the engine speed N E can quickly pass through the predetermined engine speed range N ER while the engine 8 is stopped. Occurrence can be suppressed. [Example 3]
  • FIG. 17 is a skeleton diagram illustrating the configuration of the speed change mechanism 70 according to another embodiment of the present invention.
  • FIG. 18 is a combination of the gear position of the speed change mechanism 70 and the engagement of the hydraulic friction engagement device.
  • FIG. 19 is a collinear diagram illustrating the speed change operation of the speed change mechanism 70.
  • the speed change mechanism 70 includes a differential unit 1 1 having a first motor M 1, a power distribution mechanism 16 and a second motor M 2, and the differential unit 11 and the output
  • a forward three-stage automatic transmission portion 7 2 connected in series with a shaft 2 2 via a transmission member 18 is provided.
  • the power distribution mechanism 16 is, for example, a predetermined gear of about “0.4 1 8”.
  • a single pinion type first planetary gear unit 24 having a ratio / 0 1, a switching clutch C 0 and a switching brake B 0 are provided.
  • the automatic transmission unit 72 includes, for example, a single pinion type second planetary gear unit 16 having a predetermined gear ratio p 2 of about 0.5 3 2 J and a predetermined gear ratio of, for example, about “0.4 18”.
  • a single pinion type third planetary gear device 28 having 0 3.
  • the second sun gear S 2 of the second planetary gear unit 26 and the third sun gear S 3 of the third planetary gear unit 28 are integrally connected to be selected as the transmission member 18 via the second clutch C 2.
  • R 3 is connected to the output shaft 1 2 and the second ring gear R 2 is selectively connected to the transmission member 1 8 via the first clutch C 1, and the third carrier CA 3 Is selectively connected to the case 1 1 via the second brake B 2.
  • the power distribution mechanism 16 is provided with a switching clutch C 0 and a switching brake ⁇ 0, and either of the switching clutch C 0 and the switching brake ⁇ 0 is engaged and operated.
  • the moving part 11 can constitute a constant transmission state that operates as a transmission having a constant gear ratio. Therefore, in the speed change mechanism 70, a stepped speed change is made between the differential portion 11 and the automatic speed change portion 7 that are brought into a constant speed change state by engaging and operating either the switching clutch C0 or the switching brake ⁇ 0.
  • a stepped gear shifting state that operates as a machine is configured, and the differential portion 11 and the automatic transmission portion 7 2 that are set to a continuously variable shifting state by engaging neither the switching clutch C 0 nor the switching brake ⁇ 0 operates as an electric continuously variable transmission
  • a step shift state is configured.
  • the transmission mechanism 70 is switched to the stepped shift state by engaging and operating either the switching clutch CO or the switching brake B 0, and both the switching clutch C 0 and the switching brake B 0 are engaged.
  • the shift clutch C 0, the first clutch C 1, and the second brake B 2 are engaged to change the speed.
  • the engagement of C 2 establishes the third speed gear stage in which the speed ratio 3 is smaller than that of the second speed gear stage, for example, about “1.0 00”, and the first clutch C 1, Due to the engagement of the clutch C 2 and the switching brake B 0, the gear ratio 4 is smaller than the third gear stage, for example, about “0.7.05”.
  • a 4th gear is established. Further, due to the engagement of the second clutch C 2 and the second brake B 2, the transmission gear ratio R is a value between the first speed gear stage and the second speed gear stage, for example, about “2.3 9 3”. The reverse gear is established. When the neutral “N” state is set, for example, only the switching clutch C 0 is engaged.
  • a transmission mechanism 70 comprising a differential unit 11 that functions as a continuously variable transmission unit or a first transmission unit and an automatic transmission unit 7 that functions as a stepped transmission unit or a first transmission unit.
  • Fig. 2 shows a collinear diagram that can represent on a straight line the relative relationship between the rotational speeds of the rotating elements that are connected in different gear stages.
  • the four vertical lines Y4, Y5, Y6, Y7 of the automatic transmission unit 7 2 in Fig. 9 correspond to the fourth rotation element (fourth element) R ⁇ 4 and are connected to each other in order from the left.
  • the first sun gear S 2 and the third sun gear S 3 correspond to the third carrier CA 3 corresponding to the fifth rotation element (fifth element) RE 5, and the sixth rotation element (sixth element) RE 6
  • the second carrier CA2 and the third ring gear R3 connected to each other represent the second ring gear R1 corresponding to the seventh rotation element (seventh element) RE7.
  • the fourth rotating element RE 4 is selectively connected to the transmission member 18 via the second clutch C 2 and is selectively connected to the case 12 via the first brake B 1.
  • the fifth rotating element RE 5 is selectively connected and connected to the case 12 via the second brake B 2 and the sixth rotating element RE 6 is connected to the output shaft 22 of the automatic transmission unit 72.
  • the seventh rotating element RE 7 is selectively coupled to the transmission member 18 via the first clutch C 1.
  • the vertical line Y indicating the rotational speed of the seventh rotating element RE 7 is obtained by engaging the first clutch C 1 and the second brake B 2.
  • the diagonal straight line L 1 passing through the intersection of the horizontal line X and the vertical line Y 5 indicating the rotation speed of the fifth rotating element RE 5 CA3
  • the rotational speed of the first speed output shaft 22 is shown at the intersection with the vertical line Y 6 indicating the rotational speed of the sixth rotational element RE 6 (CA2, R 3).
  • an oblique straight line L 2 determined by engaging the first clutch C 1 and the first brake B 1 and a vertical line indicating the rotational speed of the sixth rotating element RE 6 connected to the output shaft 2 2.
  • the rotation speed of the 2nd speed output shaft 2 2 is shown at the intersection with Y6, and the horizontal straight line L '3 and the output shaft 2 2 determined by engaging the first clutch C 1 and the second clutch C Rotating speed of output shaft 12 of the 3rd speed at the intersection with the vertical line Y 6 indicating the rotating speed of RE 6 Is shown.
  • the result shift clutch C 0 is that has been engaged, the power input from the differential unit 1 1 to the seventh rotary element RE 7 at the same speed as the engine speed N E Is done.
  • the switching brake B 0 is engaged instead of the switching clutch C 0, the power from the differential unit 1 1 is input at a rotational speed higher than the engine rotational speed N E.
  • the rotation speed of the output shaft 22 of the 4th speed is shown at the intersection with the vertical line Y6.
  • the speed change mechanism 70 of this embodiment also includes a differential part 11 that functions as a continuously variable transmission part or a first transmission part, and an automatic transmission part 7 2 that functions as a stepped transmission part or a first transmission part. Therefore, the same effect as the above-described embodiment can be obtained.
  • Fig. 20 shows the selection of switching between the differential state and non-differential state (locked state) of the power distribution mechanism 16 by manual operation, that is, switching between the continuously variable transmission state and the stepped transmission state of the transmission rod structure 10.
  • This is an example of a seesaw type switch 44 (hereinafter referred to as a switch 44) as a shift state manual selection device, and is provided in a vehicle so that it can be manually operated by a user.
  • This switch 44 allows the user to select vehicle travel in a desired speed change state, and is a continuously variable variable speed travel command button displayed as continuously variable of the switch 44 corresponding to continuously variable speed travel.
  • the continuously variable-speed travel that is, the speed change mechanism 1 0 can be operated as an electric continuously variable transmission. It is possible to select whether to enter a continuously variable transmission state, or a stepped transmission state, that is, a stepped transmission state in which the transmission mechanism 10 can operate as a stepped transmission.
  • the automatic switching control operation of the shift state of the speed change mechanism 10 based on the change of the vehicle state has been described from the relationship diagram of FIG. 7, for example.
  • the speed change state of the speed change mechanism 10 is controlled manually. That is, the switching control means 50 is connected to the switch 4 4
  • the transmission mechanism 10 is preferentially switched between the continuously variable transmission state and the stepped transmission state in accordance with the selection operation of the stepless transmission state or the stepped transmission state. For example, if the user desires to drive a continuously variable transmission with a fuel efficiency improvement effect, the transmission mechanism
  • Manual selection is performed so that 0 is set to a continuously variable transmission state.
  • the user selects by a manual operation as the transmission mechanism 1 0 is placed in the step-variable shifting state if desired changes in the rhythmic engine rotational speed N E due to the shifting of the stepped transmission.
  • the engine control condition is satisfied by the hybrid control means 52 even if the switching control means 50 is operated to select the switch 44 so that the speed change mechanism 10 is in the stepped speed change state.
  • a constant engine rotational speed region N ER is rapidly transit where the engine start stop control means 8 0 , Keep the shifting state of the differential unit 1 1 preferentially in the continuously variable shifting state, or release the switching clutch C 0 or the switching brake B 0 to give priority to the shifting state of the differential unit 1 1 (forced) To a continuously variable speed.
  • the switching control means 50 is satisfied with the hybrid stop!] Means 52.
  • the difference between the engine start / stop control means 80 and the engine start / stop control means 80 so that the predetermined engine speed region N ER can be quickly passed. Maintain the shifting state of the moving part 1 1 preferentially in the continuously variable shifting state, or release the switching clutch C 0 or the switching brake B 0 so that the shifting state of the differential part 1 1 is prioritized (forced). Set to the step shifting state.
  • the switch 44 when the switch 44 is provided with a neutral position in which neither continuously variable speed traveling nor stepped speed variable traveling is selected, it is desired that the switch 44 is in the neutral position, that is, desired by the user.
  • the speed change state to be selected is not selected, or when the desired speed change state is automatic switching, it is only necessary to execute the automatic speed change control operation of the speed change mechanism 10.
  • the stepped shift state determining means 8 6 determines whether or not the differential unit 11 is in the stepped shift state by the switching control means 50.
  • the speed change mechanism 1 0 is determined by whether there is a step-variable shifting state, for example stepped control based on the vehicle condition represented by Figure 7 shows to switching diagram with the vehicle speed V and the output torque T Omikuron'upushirontau You may determine by whether it is in an area
  • the continuously variable transmission state determining means 8 9 determines whether or not the differential section 11 is in the continuously variable transmission state by the switching control means 50. Judgment was made based on whether or not the transmission ⁇ 1 0 was in a continuously variable transmission state. For example, from the switching diagram shown in FIG. 7, continuously controlled based on the vehicle state represented by the vehicle speed V and output torque ⁇ . You may determine by whether it is in an area
  • the engine start / stop control means 80 is for starting and stopping the engine 8, but in the first embodiment, it functions as an engine start control means for starting at least the engine 8.
  • the engine stop control means for stopping the engine 8 may be provided separately from the engine start control means.
  • the engine start / stop control means 80 is for starting and stopping the engine 8, but in the second embodiment, it can function as at least an engine stop control means for stopping the engine 8.
  • the engine start control means for starting the engine 8 may be provided separately from the engine stop control means.
  • the engine start / stop control means 80 increased the engine speed N E using the first motor M l and started the engine, but increased the engine speed N E using a motor dedicated to engine start. The engine may be started.
  • the engine start / stop control means 80 reduced the engine rotation speed N E using the first motor M l and stopped the engine, but reduced the engine rotation speed NE using a motor dedicated to engine stop. You may stop the engine. Alternatively, the engine start / stop control means 80 may lower the engine rotation speed N E by lowering the first motor rotation speed N M , before the fuel cutlet. 6
  • the transmission mechanisms 10 and 70 in the above-described embodiment are configured so that the differential unit 11 (power distribution mechanism 16) can operate as an electric continuously variable transmission and the non-operation state. By switching to a non-differential state (locked state), it is possible to switch between a continuously variable transmission state and a stepped transmission state. 1 is switched between the differential state and the non-differential state.
  • the differential unit 1 1 does not necessarily need to be configured to be switchable between the continuously variable transmission state and the stepped transmission state, and the transmission mechanism 1 0, 7 0 (differential unit 1 1, power distribution mechanism 1 6) Can be switched between a differential state and a non-differential state, the present invention can be applied.
  • the first carrier CA 1 is connected to the engine 8, the first sun gear S 1 is connected to the first electric motor M 1, and the first ring gear R 1 is connected to the transmission member 1.
  • the connection relationship between them is not necessarily limited to that.
  • the engine 8, the first motor M l, and the transmission member 18 are composed of three elements CA of the first planetary gear unit 24. It can be connected to any one of 1, S 1 and R 1.
  • the engine 8 is directly connected to the input shaft 14.
  • the engine 8 only needs to be operatively connected via a gear, a belt, etc., and is disposed on a common shaft center. There is no need.
  • the first motor M 1 and the second motor M 2 are arranged concentrically with the input shaft 14, and the first motor M 1 is connected to the first sun gear S 1 and is connected to the second motor M 2. Is connected to the transmission member 18, but is not necessarily arranged as such.
  • the first motor M 1 is operatively connected to the first sun gear S 1 via a gear, a belt, a speed reducer, or the like.
  • the second electric motor M 2 may be connected to the transmission member 18.
  • the second electric motor M 2 is connected to the transmission member 18, but may be connected to the output shaft 12, or may be connected to the rotating member in the automatic transmission units 20, 72. Also good. 7
  • a configuration in which the second motor M 2 is connected to the transmission member 18, the output shaft 22, etc. via gears, belts, reduction gears, etc. is also provided in the power transmission path from the transmission member to the drive wheels. -A mode.
  • the power distribution mechanism 16 described above is provided with the switching clutch C 0 and the switching brake B 0, both the switching clutch C 0 and the switching brake B 0 are not necessarily provided.
  • the above-mentioned switching clutch CO selectively connects the sun gear S 1 and the carrier CA 1, but is connected between the sun gear S 1 and the ring gear R 1 or between the carrier CA 1 and the ring gear R 1. It may be one that selectively connects the gaps. In short, any one of the three elements of the first planetary gear unit 24 may be connected to each other.
  • the switching clutch C 0 is engaged when the neutral “N” is set, but it is not always necessary to be engaged.
  • the hydraulic friction engagement devices such as the switching clutch C 0 and the switching brake B 0 are magnetic powder type electromagnetic methods such as powder (magnetic powder) clutches, electromagnetic clutches, and meshing type dog clutches. It may be composed of a mechanical engagement device.
  • the first clutch C that constitutes a part of the automatic transmission units 20 and 72 as an engagement device that selectively switches the power transmission path between the power transmission enabled state and the power transmission cut-off state.
  • the first clutch C 1 and the second clutch C 2 were used, and the first clutch C 1 and the second clutch C 2 were disposed between the automatic transmission units 20 and 72 and the differential unit 11 1.
  • the first clutch C 1 and the second clutch C 2 are not necessarily required, and at least one engagement device that can selectively switch the power transmission path between the power transmission enabled state and the power transmission cut-off state is provided. That's fine.
  • the engaging device may be connected to the output shaft 22 or may be connected to a rotating member in the automatic transmission units 20 and 72. Further, the engaging device does not need to constitute part of the automatic transmission units 20 and 72, and may be provided separately from the automatic transmission unit 20.7.
  • the automatic transmission units 20, 7 are provided in the power transmission path between the differential member 11, that is, the transmission member 18, which is an output member of the power distribution mechanism 16, and the drive wheels 3, 8.
  • a continuously variable transmission which is a type of automatic transmission
  • An automatic transmission that is well-known as a dynamic transmission and is a continuously coupled parallel two-shaft type, but the gear stage can be automatically switched by a select cylinder and a shift cylinder.
  • Other types of power transmission devices (transmissions) such as a mating type manual transmission may be provided.
  • the power distribution mechanism 16 is brought into a constant speed change state, and the stepped speed change state is made as a whole.
  • the stepped speed change state means that power is transmitted exclusively through a mechanical transmission path without using an electric path.
  • a plurality of fixed gear ratios are stored in advance so as to correspond to the gear positions in the stepped transmission, and the automatic transmission unit 20 is used by using the plurality of fixed gear ratios. , 72 may be changed.
  • the present invention can be applied even if the automatic transmission units 20 and 72 are not necessarily provided.
  • the transmission gear 15 material 18 and the drive A power transmission path with the wheel 38 is provided with a single engagement device, and the power transmission path is switched between a power transmission enable state and a power transmission cutoff state by controlling the engagement and release of the engagement device.
  • the automatic transmission units 20 and 72 are connected in series with the differential unit 11 via the transmission member 18.
  • a counter shaft is provided in parallel with the input shaft 14.
  • the automatic transmission units 20 and 72 may be arranged concentrically on the counter shaft.
  • the differential unit 11 and the automatic transmission units 20 and 7 2 are connected via, for example, a pair of transmission members including a pair of gears as a transmission member 18 and a sprocket and a chain. Then, they are connected so that power can be transmitted.
  • the power distribution mechanism 16 as the differential mechanism of the above-described embodiment includes, for example, a pinion that is rotationally driven by an engine and a pair of bevel gears meshing with the pinion. It may be a differential gear unit operatively connected to the motor M2. '
  • the power distribution mechanism 16 of the above-described embodiment is composed of one set of planetary gear units, but is composed of two or more planetary gear units, and is 3 in the non-differential state (constant speed change state). It may function as a transmission having more than one stage.
  • the planetary gear The device is not limited to the single pinion type, and may be a double pinion type planetary gear device.
  • the switching device 90 of the above-described embodiment includes the shift lever 92 that is operated to select a plurality of types of shift positions.
  • a push button type This switch is a switch that can select multiple types of shift positions, such as a slide-type switch, or a device that can switch between multiple types of shift positions in response to the driver's voice regardless of manual operation and multiple operations by foot operation. A device that can switch several types of shift positions may be used.
  • the shift lever 92 is operated to the “M” position, the shift range is set, but the shift stage is set, that is, the highest speed shift stage of each shift range is set as the shift stage. May be.
  • the automatic transmission units 20 and 72 change gears and execute a shift.
  • the shift lever 9 2 is manually operated to the upshift position “10” or the downshift position “1” in the “M” position
  • the automatic transmission unit 20 has the first to fourth gears.
  • One of the stages is set according to the operation of the shift lever.
  • the switch 44 in the above-described embodiment is a seesaw type switch.
  • a push button type switch a single push button type switch that can hold a pressed state only, a lever Any switch that can switch at least between continuously variable shifting (differential state) and stepped variable shifting (non-differential state), such as a set switch or a slide switch, may be used.
  • a neutral position is provided in switch 44, a switch that can select whether the selection state of switch 44 is valid or invalid, that is, equivalent to the neutral position, is provided separately from switch 44. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Structure Of Transmissions (AREA)

Abstract

 係合装置(切換クラッチC0或いは切換ブレーキB0)を備えることで、変速機構10が無段変速状態と有段変速状態とに切り換えられて、電気的に変速比が変更させられる変速機の燃費改善効果と機械的に動力を伝達する歯車式伝動装置の高い伝達効率との両長所を兼ね備えた駆動装置が得られる。また、上記変速機構10において、エンジン始動に際して、切換制御手段50により差動部11が無段変速状態に維持されるか、或いは差動部11が優先的に無段変速状態とされるので、エンジン回転速度NEが所定エンジン回転速度NE’以上に速やかに引き上げられ、所定エンジン回転速度領域NERを速やかに通過され得て、エンジン始動時に車両の振動騒音の発生が抑制され得る。

Description

明細書 車両用駆動装置の制御装置 技術分野
本発明は、 車両用駆動装置の制御装置に係り、 差動作用が作動可能な差動機構 と電動機とを備える車両用駆動装置において、 特に、 電動機などを小型化する技 術に関するものである。
背景技術
エンジンの出力を第 1電動機および出力軸へ分配する差動機構と、 その差動機 構の出力軸と駆動輪との間に設けられた第 1電動機とを、 備えた車両用駆動装置 が知られている。 例えば、特開 2 0 0 3 _ 1 2 7 6 7 9号公報、特開平 9一 1 7 0 5 3 3号公報、特開 2 0 0 0— 3 1 6 2 0 5号公報、特開 2 0 0 3— 1 6 1 1 8 1号公報に記載されたハイブリッド車両用駆動装置がそれである。 このような ハイブリツド車両用駆動装置では差動機構が例えば遊星歯車装置で構成され、 そ の差動作用によりエンジンからの動力の主部を駆動輪へ機械的に伝達し、 そのェ ンジンからの動力の残部を第 1電動機から第 1電動機への電気ノ、。スを用いて電気 的に伝達することにより電気的に変速比が変更される変速機例えば電気的な無段 変速機として機能させられ、 エンジンを最適な作動状態に維持しつつ車両を走行 させるように制御装置により制御されて燃費が向上させられる。 一般に、 無段変速機は車両の燃費を良くする装置として知られている一方、有 段式自動変速機のような歯車式伝動装置は伝達効率が良い装置として知られてい る。 しかし、 それ等の長所を兼ね備えた動力伝達機構は未だ存在しなかった。 例 えば、 上記特許文献 1に示すようなハイブリッド車両用駆動装置では、 第 1電動 機から第 2電動機への電気工ネルギの電気パスすなわち車両の駆動力の一部を電 気エネルギで伝送する伝送路を含むため、 エンジンの高出力化に伴ってその第 1 電動機を大型化させねばならないとともに、 その第 1電動機から出力される電気 エネルギにより駆動される第 2電動機も大型化させねばならないので、 駆動装置 が大きくなるという問題があつた。 或いは、 ェンジンの出力の一部が一旦電気工 ネルギに変換されて駆動輪に伝達されるので、 高速走行などのような車両の走行 条件によつてはかえつて燃費が悪化する可能性があつた。 上記動力分配機構が電 気的に変速比が変更される変速機例えば電気的 C V Tと称されるような無段変速 機として使用される場合も、 同様の課題があった。
ところで、前記特開 2 0 0 3— 1 2 7 6 7 9号公報に示すようなハイブリッド 車両では、 第 1電動機に通電してその回転速度を引き上げることで、 すなわち第 1電動機をスター夕として機能させることで、 エンジンを回転駆動 (クランキン グ) し、所定エンジン回転速度以上で例えば自律回転可能なエンジン回転速度以 上で点火や燃料噴射などを行ってエンジンを始動している。
また、一般的に、 車両においては様々な振動や騒音が発生する。 例えば、 その 振動や騒音は、 エンジンの周期的な気筒点火 (爆発)やピストンの往復運動に伴 うエンジントルクの変動による回転変動が強制源(振動源、 振動強制力) となり 、 エンジンやトランスミッション (或いはトランスアクスル) などを結合したパ ワープラントとエンジンマウントとで構成されるエンジン懸架系、排気管系、 車 体系などの車両の振動系に伝達された振動がその車両の振動系の共振現象により 増幅されて、 車両各部に振動やこもり音が発生する現象である。
このような共振現象は、共振領域としての所定エンジン回転速度領域において 発生することが良く知られている。 例えば、 その共振領域はエンジン回転速度が アイドル回転速度未満の所定エンジン回転速度領域であり、 エンジン始動の際に 、 ェンジン回転速度を弓 [き上げる過程でその所定ェンジン回転速度領域に入るこ とにより上記共振現象が発生する可能性があつた。
そして、前記特開 2 0 0 3— 1 2 7 6 7 9号公報に示すようなハイブリッド車 両におけるエンジン始動時に、第 1電動機の回転速度を速やかに引き上げてェン ジン回転速度を速やかに所定エンジン回転速度以上に引き上げると、 アイドル回 転速度以下のェンジン回転速度領域における上記共振領域を速やかに通過できて 始動時の振動や騒音が抑制されると考えられる。
そこで、 上述したハイブリツド車両用駆動装置の課題を解決できるような車両 用駆動装置においても、 同様にエンジン始動時に車両に発生する振動や騒音が抑 制されることが望まれる。
或いはまた、 上述した共振現象は、 エンジン停止の際に、 エンジン回転速度を 零に向かってすなわちェンジンの回転停止に向かって弓 Iき下げる過程で所定ェン ジン回転速度領域に入ることにより発生する可能性があることから、 上述したハ イブリッド車両用駆動装置の課題を解決できるような車両用駆動装置において、 ェンジン停止時に車両に発生する振動や騒音が抑制されることが望まれる。 本発明は、 以上の事情を背景として為されたものであり、 その目的とするとこ ろは、 エンジンの出力を第 1電動機および出力軸へ分配する差動作用が作動可能 な差動機構とその差動機構から駆動輪への動力伝達経路に設けられた電動機とを 備える車両用駆動装置において、 その駆動装置を小型化できたり、 或いはまた燃 費が向上させられると共に、 エンジンの始動時或いは停止時に車両の振動および /または騒音の発生が抑制される制御装置を提供することにある。 発明の開示
すなわち、請求項 1に係る発明の要旨とするところは、 (a) エンジンと、 その エンジンの出力を第 1電動機および伝達部材へ分配する差動機構とその伝達部材 から駆動輪への動力伝達経路に設けられた第 I電動機とを有して電気的な無段変 速機として作動可能な無段変速部とを備えた車雨用駆動装置の制御装置であって 、 (b) 前記差動機構に備えられ、前記無段変速部を電気的な無段変速作動可能な 無段変速状態とするための解放状態と前記無段変速部を電気的な無段変速作動し ない非無段変速状態とするための係合状態とに選択的に切り換えられる差動状態 切換装置と、 (c)+前記エンジンの始動に際して、前記無段変速部を前記無段変速 状態とするエンジン始動時切換制御手段とを、含むことにある。
このようにすれば、差動状態切換装置により車両の駆動装置内の無段変速部が 、電気的な無段変速作動可能な無段変速状態とその電気的な無段変速作動しない 非無段変速状態例えば有段変速状態とに選択的に切り換えられることから、 電気 的に変速比が変更させられる変速機の燃費改善効果と機械的に動力を伝達する歯 車式伝動装置の高い伝達効率との両長所を兼ね備えた駆動装置が得られる。 例え ば、 車両の低中速走行および低中出力走行となるようなェンジンの常用出力域に おいて、 上記無段変速部が無段変速状態とされると車両の燃費性能が確保される が、 高速走行においてその無段変速部が非無段変速状態とされると専ら機械的な 動力伝達経路でェンジンの出力が駆動輪へ伝達され、電気的に変速比が変更させ られる変速機として作動させる場合に発生する動力と電気工ネルギとの間の変換 損失が抑制されるので、燃費が向上させられる。 また例えば、 高出力走行におい てその無段変速部が非無段変速状態とされると、 電気的に変速比が変更させられ る変速機として作動させる領域が車両の低中速走行および低中出力走行となって 、電動機が発生すべき電気的エネルギの最大値換言すれば電動機が伝える電気的 エネルギの最大値を小さくできてその電動機或いはそれを含む車両の駆動装置が 一層小型化される。
また、前記無段変速状態と前記非無段変速状態とに切換え可能に構成される無 段変速部を備えた上記駆動装置において、前記エンジンの始動に際して、 ェンジ ン始動時切換制御手段により前記無段変速部が前記無段変速状態とされるので、 ェンジン回転速度が車速に拘束されることがある無段変速部の非無段変速状態と 異なり、 ェンジン回転速度を所定ェンジン回転速度以上に例えば自律回転可能な エンジン回転速度以上に速やかに引き上げられ、共振現象が発生する共振領域と して良く知られたェンジンアイドル回転速度未満の所定ェンジン回転速度領域を 速やかに通過され得て、 エンジンの始動時に車両の振動および/または騒音の発 生が抑制され得る。
また、請求項 2に係る発明では、前記第 1電動機を用いてエンジン回転速度を 所定ェンジン回転速度以上に弓 Iき上げて、前記ェンジンの始動を行うェンジン始 動制御手段を更に含むものである。 このようにすれば、 エンジンの始動時に実際 のェンジン回転速度が上記所定ェンジン回転速度領域を速やかに通過され得る。 また、請求項 3に係る発明では、前記エンジン始動時切換制御手段は、前記ェ ンジンの始動の際に車両の振動および/または騒音が所定値以上となるときに、 前記無段変速部の変速状態を前記無段変速状態とするものである。 このようにす れば、 ェンジンの始動に際して車両の振動および/または騒音が所定値以上とな る共振現象が発生する上記所定エンジン回転速度領域を速やかに通過され得て、 ェンジンの始動時に車両の振動および/または騒音の発生が抑制され得る。 また、請求項 4に係る発明では、前記エンジン始動時切換制御手段は、前記ェ ンジンから前記駆動輪への動力伝達経路が動力伝達可能状態であるときに、 前記 無段変速部の変速状態を前記無段変速状態とするものである。 このようにすれば 、 動力伝達経路が動力伝達可能状態のときに無段変速部が非無段変速状態とされ てエンジン回転速度が車速に拘束される場合と異なり、 エンジン回転速度が上記 所定ェンジン回転速度領域を速やかに通過され得て、 ェンジンの始動時に車両の 振動および/または騒音の発生が抑制され得る。
また、請求項 5に係る発明では、前記エンジン始動時切換制御手段は、前記ェ ンジンの始動が完了されるまでは、前記無段変速部の変速状態を前記無段変速状 態とするものである。 このようにすれば、 エンジンの始動中はエンジン回転速度 が上記所定ェンジン回転速度領域を速やかに通過され得て、 ェンジンの始動時に 車両の振動および/または騒音の発生が抑制され得る。
また、請求項 6に係る発明では、前記エンジン始動時切換制御手段は、前記ェ ンジンの始動が開始されてからその始動に要する所定始動時間は、前記無段変速 部の変速状態を前記無段変速状態とするものである。 このようにすれば、 ェンジ ンの始動中はェンジン回転速度が上記所定ェンジン回転速,度領域を速やかに通過 され得て、 ェンジンの始動時に車両の振動および/または騒音の発生が抑制され 得る。
また、請求項 7に係る発明の要旨とするところは、 (a) エンジンと、 そのェン ジンの出力を第 1電動機および伝達部材へ分配する差動機構とその伝達部材から 駆動輪への動力伝達経路に設けられた第 電動機とを有する差動部とを備えた車 両用駆動装置の制御装置であって、 (b) 前記差動機構に備えられ、 その差動機構 を差動作用が働く非連結状態とその差動作用をしない連結状態とに選択的に切り 換えられる差動状態切換装置と、 (C) 前記エンジンの始動に際して、 前記差動機 構を非連結状態とするェンジン始動時切換制御手段とを、 含むことにある。 このようにすれば、 差動状態切換装置により差動作用が働く非連結状態とその 差動作用をしなレ、連結状態とに差動機構が選択的に切り換えられることから、 電 気的に変速比が変更させられる変速機の燃費改善効果と機械的に動力を伝達する 歯車式伝動装置の高い伝達効率との両長所を兼ね備えた駆動装置が得られる。 例 えば、 車両の低中速走行および低中出力走行となるようなェンジンの常用出力域 において、上記差動機構が非連結状態とされると車両の燃費性能が確保されるが 、 高速走行においてその差動機構が連結状態とされると専ら機械的な動力伝達経 路でェンジンの出力が駆動輪へ伝達され、 電気的に変速比が変更させられる変速 機として作動させる場合に発生する動力と電気工ネルギとの間の変換損失が抑制 されるので、 燃費が向上させられる。 また例えば、 高出力走行においてその差動 機構が連結状態とされると、電気的に変速比が変更させられる変速機として作動 させる領域が車雨の低中速走行および低中出力走行となって、電動機が発生すベ き電気的エネルギの最大値換言すれば電動機が伝える電気的エネルギの最大値を 小さくできてその電動機或いはそれを含む車両の駆動装置が一層小型化される。 また、前記非連結状態と前記連結状態とに切換え可能に構成される差動機構を 備えた上記駆動装置において、前記エンジンの始動に際して、 エンジン始動時切 換制御手段により前記差動機構が非連結状態とされるので、 エンジン回転速度が 車速に拘束されることがある差動機構の連結状態と異なり、 エンジン回転速度を 所定エンジン回転速度以上に例えば自律回転可能なエンジン回転速度以上に速や かに引き上げられ、共振現象が発生する共振領域として良く知られたエンジンァ ィドル回転速度未満の所定エンジン回転速度領域を速やかに通過され得て、 ェン ジンの始動時に車両の振動および/または騒音の発生が抑制され得る。
また、請求項 8に係る発明では、前記第 1電動機を用い "tエンジン回転速度を 所定ェンジン回転速度以上に弓 Iき上げて、 前記ェンジンの始動を行うェンジン始 動制御手段を更に含むものである。 このようにすれば、 エンジンの始動時に実際 のェンジン回転速度が上記所定ェンジン回転速度領域を速やかに通過され得る。 また、請求項 9に係る発明では、前記エンジン始動時切換制御手段は、 前記ェ ンジンの始動の際に車両の振動および/または騒音が所定値以上となるときに、 前記差動機構を非連結状態とするものである。 このようにすれば、エンジンの始 動に際して車両の振動および/または騒音が所定値以上となる共振現象が発生す る上記所定エンジン回転速度領域を速やかに通過され得て、 エンジンの始動時に 車両の振動および/または騒音の発生が抑制され得る。
また、請求項 1 0に係る発明では、前記エンジン始動時切換制御手段は、 前記 ェンジンから前記駆動輪への動力伝達経路が動力伝達可能状態であるときに、 前 記差動機構を非連結状態とするものである。 このようにすれば、動力伝達経路が 動力伝達可能状態のときに差動機構が連結状態とされてェンジン回転速度が車速 に拘束される場合と異なり、 エンジン回転速度が上記所定エンジン回転速度領域 を速やかに通過され得て、 ェンジンの始動時に車両の振動および/または騒音の 発生が抑制され得る。
また、請求項 1 1に係る発明では、前記エンジン始動時切換制御手段は、 前記 ェンジンの始動が完了されるまでは、 前記差動機構を非連結状態とするものであ る。 このようにすれば、 エンジンの始動中はエンジン回転速度が上記所定ェンジ ン回転速度領域を速やかに通過され得て、 ェンジンの始動時に車両の振動および /または騒音の発生が抑制され得る。
また、請求項 1 2に係る発明では、前記エンジン始動時切換制御手段は、 前記 ェンジンの始動が開始されてからその始動に要する所定始動時間は、前記差動機 構を非連結状態とするものである。 このようにすれば、 エンジンの始動中はェン ジン回転速度が上記所定ェンジン回転速度領域を速やかに通過され得て、 ェンジ ンの始動時に車両の振動および/または騒音の発生が抑制され得る。
また、請求項 1 3に係る発明の要旨とするところは、 (a) エンジンと、 そのェ ンジンの出力を第 1電動機および伝達部材へ分配する差動機構とその伝達部材か ら駆動輪への動力伝達経路に設けられた第 1電動機とを有して電気的な無段変速 機として作動可能な無段変速部とを備えた車両用駆動装置の制御装置であつて、 (b) 前記差動機構に備えられ、前記無段変速部を電気的な無段変速作動可能な無 段変速状態とするための解放状態と前記無段変速部を電気的な無段変速作動しな レ、非無段変速状態とするための係合状態とに選択的に切り換えられる差動状態切 換装置と、 (C) 前記エンジンの停止に際して、 前記無段変速部を前記無段変速状 態とするェンジン停止時切換制御手段とを、含むことにある。
このようにすれば、 差動状態切換装置により車雨の駆動装置内の無段変速部が 、電気的な無段変速作動可能な無段変速状態とその電気的な無段変速作動しない 非無段変速状態例えば有段変速状態とに選択的に切り換えられることから、 電気 的に変速比が変更させられる変速機の燃費改善効果と機械的に動力を伝達する歯 車式伝動装置の高い伝達効率との両長所を兼ね備えた駆動装置が得られる。 例え ば、 車両の低中速走行および低中出力走行となるようなエンジンの常用出力域に おいて、上記無段変速部が無段変速状態とされると車両の燃費性能が確保される が、 高速走行においてその無段変速部が非無段変速状態とされると専ら機械的な 動力伝達経路でェンジンの出力が駆動輪へ伝達され、 電気的に変速比が変更させ られる変速機として作動させる場合に発生する動力と電気工ネルギとの間の変換 損失が抑制されるので、 燃費が向上させられる。 また例えば、高出力走行におい てその無段変速部が非無段変速状態とされると、 電気的に変速比が変更させられ る変速機として作動させる領域が車両の低中速走行および低中出力走行となって 、 電動機が発生すべき電気的エネルギの最大値換言すれば電動機が伝える電気的 エネルギの最大値を小さくできてその電動機或いはそれを含む車両の駆動装置が 一層小型化される。
また、前記無段変速状態と前記非無段変速状態とに切 ぇ可能に構成される無 段変速部を備えた上記駆動装置において、前記エンジンの停止に際して、 ェンジ ン停止時切換制御手段により前記無段変速部が前記無段変速状態とされるので、 ェンジン回転速度が車速に拘束されることがある無段変速部の非無段変速状態と 異なり、 ェンジン回転速度を所定ェンジン回転速度領域以下に速やかに弓 Iき下げ られ得て、 例えば共振現象が発生する共振領域として良く知られたエンジンアイ ドル回転速度未満の所定ェンジン回転速度領域を速やかに通過され得て、 ェンジ ンの停止時に車両の振動および Zまたは騒音の発生が抑制され得る。 また、請求項 1 4に係る発明では、前記第 1電動機を用いてエンジン回転速度 を所定ェンジン回転速度以下に弓 Iき下げて、前記ェンジンの停止を行うェンジン 停止制御手段を更に含むものである。 このようにすれば、 ェンジンの停止時に実 際のェンジン回転速度が上記所定ェンジン回転速度領域を速やかに通過され得る。 また、前記エンジン停止時切換制御手段は、 前記エンジンの停止の際に車両の 振動および/または騒音が所定値以上となるときに、前記無段変速部の変速状態 を前記無段変速状態とするものである。 このようにすれば、 エンジンの停止に際 して車両の振動および/または騒音が所定値以上となる共振現象が発生する上記 所定ェンジン回転速度領域を速やかに通過され得て、 ェンジンの停止時に車両の 振動および/または騒音の発生が抑制され得る。
また、請求項 1 5に係る発明では、前記エンジン停止時切換制御手段は、前記 ェンジンから前記駆動輪への動力伝達経路が動力伝達可能状態であるときに、 前 記無段変速部の変速状態を前記無段変速状態とするものである。 このようにすれ ば、 動力伝達経路が動力伝達可能状態のときに無段変速部が非無段変速状態とさ れてエンジン回転速度が車速に拘束される場合と異なり、 エンジン回転速度が上 記所定ェンジン回転速度領域を速やかに通過され得て、ェンジンの停止時に車両 の振動および/または騒音の発生が抑制され得る。
また、請求項 1 6に係る発明では、前記エンジン停止時切換制御手段は、前記 ェンジンの停止が完了されるまでは、前記無段変速部の変速状態を前記無段変速 状態とするものである。 このようにすれば、 エンジンの停止中はエンジン回転速 度が上記所定ェンジン回転速度領域を速やかに通過され得て、 ェンジンの停止時 に車両の振動および/または騒音の発生が抑制され得る。
また、請求項 1 7に係る発明では、 前記エンジン停止時切換制御手段は、前記 ェンジンの停止が開始されてからその停止に要する所定停止時間は、 前記無段変 速部の変速状態を前記無段変速状態とするものである。 このようにすれば、 ェン ジンの停止中はェンジン回転速度が上記所定ェンジン回転速度領域を速やかに通 過され得て、 ェンジンの停止時に車両の振動および/または騒音の発生が抑制さ れ得る。 また、請求項 1 8に係る発明の要旨とするところは、 (a) エンジンと、 そのェ ンジンの出力を第 1電動機および伝達部材へ分配する差動機構とその伝達部材か ら駆動輪への動力伝達経路に設けられた第 2電動機とを有する差動部とを備えた 車両用駆動装置の制御装置であって、 (b) 前記差動機構に備えられ、 その差動機 構を差動作用が働く非連結状態とその差動作用をしなレ、連結状態とに選択的に切 り換えられる差動状態切換装置と、 (c) 前記エンジンの停止に際して、前記差動 機構を非連結状態とするェンジン停止時切換制御手段とを、 含むことにある。 このようにすれば、差動状態切換装置により差動作用が働く非連結状態とその 差動作用をしなレ、連結状態とに差動機構が選択的に切り換えられることから、 電 気的に変速比が変更させられる変速機の燃費改善効果と機械的に動力を伝達する 歯車式伝動装置の高い伝達効率との両長所を兼ね備えた駆動装置が得られる。 例 えば、 車両の低中速走行およぴ低中出力走行となるようなエンジンの常用出力域 において、上記差動機構が非連結状態とされると車両の燃費性能が確保されるが 、高速走行においてその差動機構が連結状態とされると専ら機械的な動力伝達経 路でェンジンの出力が駆動輪へ伝達され、 電気的に変速比が変更させられる変速 機として作動させる場合に発生する動力と電気工ネルギとの間の変換損失が抑制 されるので、 燃費が肉上させられる。 また例えば、高出力走行においてその差動 機構が連結状態とされると、電気的に変速比が変更させられる変速機として作動 させる領域が車両の低中速走行および低中出力走行となって、電動機が発生すベ き電気的エネルギの最大値換言すれば電動機が伝える電気的エネルギの最大値を 小さくできてその電動機或いはそれを含む車両の駆動装置が一層小型化される。 また、 前記非連結状態ど前記連結状態とに切換え可能に構成される差動機構を 備えた上記駆動装置において、前記エンジンの停止に際して、 エンジン停止時切 換制御手段により前記差動機構が非連結状態とされるので、 エンジン回転速度が 車速に拘束されることがある差動機構の連結状態と異なり、 エンジン回転速度を 所定エンジン回転速度以下に速やかに引き下げられ得て、 例えば共振現象が発生 する共振領域として良く知られたェンジンアイドル回転速度未満の所定ェンジン 回転速度領域を速やかに通過され得て、 エンジンの停止時に車両の振動および/ または騒音の発生が抑制され得る。
また、 請求項 1 9に係る発明では、 前記第 1電動機を用いてエンジン回転速度 を所定ェンジン回転速度以下に弓 Iき下げて、前記ェンジンの停止を行うェンジン 停止制御手段を更に含むものである。 このようにすれば、 ェンジンの停止時に実 際のェンジン回転速度が上記所定ェンジン回転速度領域を速やかに通過され得る。 また、 前記エンジン停止時切換制御手段は、前記エンジンの停止の際に車両の 振動および/または騒音が所定値以上となるときに、 前記差動機構を非連結状態 とするものである。 このようにすれば、 エンジンの停止に際して車両の振動およ び/または騒音が所定値以上となる共振現象が発生する上記所定ェンジン回転速 度領域を速やかに通過され得て、 エンジンの停止時に車両の振動および/または の発生が抑制され得る。
また、 請求項 2 0に係る発明では、 前記エンジン停止時切換制御手段は、前記 ェンジンから前記駆動輪への動力伝達経路が動力伝達可能状態であるときに、前 記差動機構を非連結状態とするものである。 このようにすれば、 動力伝達経路が 動力伝達可能状態のときに差動機構が連結状態とされてェンジン回転速度が車速 に拘束される場合と異なり、 ェンジン回転速度が上記所定ェンジン回転速度領域 を速やかに通過され得て、 エンジンの停止時に車両の振動および/または騒音の 発生が抑制され得る。
また、請求項 2 1に係る発明では、 前記エンジン停止時切換制御手段は、前記 エンジンの停止が完了されるまでは、 前記差動機構を非連結状態とするものであ る。 このようにすれば、 エンジンの停止中はエンジン回転速度が上記所定ェンジ ン回転速度領域を速やかに通過され得て、 エンジンの停止時に車両の振動および /または騒音の発生が抑制され得る。
また、 請求項 2 2に係る発明では、 前記エンジン停止時切換制御手段は、前記 ェンジンの停止が開始されてからその停止に要する所定停止時間は、前記差動機 構を非連結状態とするも.のである。 このようにすれば、 エンジンの停止中はェン ジン回転速度が上記所定ェンジン回転速度領域を速やかに通過され得て、 ェンジ ンの停止時に車両の振動および/または騒音の発生が抑制され得る。 ここで、好適には、 前記無段変速部は、前記差動状態切換装置により前記差動 機構が差動作用が働く非連結状態すなわち差動状態とされることで無段変速状態 とされ、 その差動作用をしない連糸吉状態すなわちロック状態とされることで 無 段変速状態例えば有段変速状態とされるものである。 このようにすれば、 無段変 速部が、 無段変速状態と非無段変速状態とに切り換えられる。
また、 好適には、前記差動機構は、前記エンジンに連結された第 1要素と前記 第 1電動機に連結された第 2要素と前記伝達部材に連結された第 3要素とを有す るものであり、 前記差動状態切換装置は、前記非連糸吉状態すなわち差動状態とす るためにその第 1要素乃至第 3要素を相互に相対回転可能とし、前記連結状態す なわちロック状態とするためにその第 1要素乃至第 3要素を共に一体回転させる か或いはその第 2要素を非回転状態とするものである。 このようにすれば、 差動 機構が差動状態とロック状態とに切り換えられるように構成される。
また、好適には、前記差動状態切換装置は、 前記第 1要素乃至第 3要素を共に 一体回転させるために前記第 1要素乃至第 3要素のうちの少なくとも 2つを相互 に連結するクラッチおよび Zまたは前記第 2要素を非回転状態とするために前記 第 2要素を非回転部材に連結する 'ブレーキを備えたものである。 このようにすれ ば、 差動機構が差動状態とロック状態とに簡単に切り換えられるように構成され る。
また、好適には、前記差動機構は、前記クラッチおよび前記ブレーキの解放に より前記第 1回転要素乃至第 3回転要素を相互に相対回転可能な差動状態とされ て電気的な差動装置とされ、前記クラッチの係合により変.速比が 1である変速機 とされるか、 或いは前記ブレーキの係合により変速比が 1より小さい増速変速機 とされるものである。 このようにすれば、 差動機構が差動状態とロック状態とに 切り換えられるように構成されるとともに、単段または複数段の定変速比を有す る変速機としても構成され得る。 '
また、好適には、前記差動機構動は遊星歯車装置であり、前記第 1要素はその 遊星歯車装置のキャリャであり、 前記第 2要素はその遊星歯車装置のサンギヤで あり、 前記第 3要素はその遊星歯車装置のリングギヤである。 このようにすれば 、前記差動機構の軸方向寸法が小さくなる。 また、 差動機構が 1つの遊星歯車装 置によって簡単に構成され得る。
また、 好適には、 前記遊星歯車装置はシングルピユオン型遊星歯車装置である 。 このようにすれば、 前記差動機構の軸方向寸法が小さくなる。 また、 差動機構 が 1つのシングルピニオン型遊星歯車装置によって簡単に構成される。
また、 好適には、前記切換制御手段は、 車両状態が前記差動機構を差動状態と して電気的に変速比が変更させられる変速機として作動させるための電動機等の 電気系の制御機器の故障や機能低下時のときに、 その差動機構を口ック状態に切 り換えるものである。 このようにすれば、 差動機構が通常は差動状態とされる場 合であっても優先的にロック状態とされることで、 ロック状態ではあるが差動状 態での走行と略同様の車両走行が確保される。
また、好適には、前記動力伝達経路の一部を構成する変速部を更に備え、 その 変速部の変速比と前記無段変速部の変速比とに基づいて前記車両用駆動装置の総 合変速比が形成されるものである。 このようにすれば、変速部の変速比を利用す ることによって駆動力が幅広く得られるようになるので、無段変速部における電 気的な無段変速制御としての制御の効率が一層高められる。
また、好適には、前記動力伝達経路の一部を構成する変速部を更に備え、 その 変速部の変速比と前記差動部の変速比とに基づいて前記車両用駆動装置の総合変 速比が形成されるものである。 このようにすれば、 変速部の変速比を利用するこ とによつて駆動力が幅広く得られるようになる。
また、好適には、前記変速部は有段式の自動変速機であ ¾。 このようにすれば 、 無段変速部の無段変速状態において無段変速部と変速部とで無段変速機が構成 され、無段変速部の非無段変速状態において無段変速部と変速部とで有段変速機 が構成される。
また、好適には、前記変速部は有段式の自動変速機である。 このようにすれば 、 差動機構の差動状態において差動機構と変速部とで無段変速機が構成され、差 動機構のロック状態において差動機構と変速部とで有段変速機が構成される。 図面の簡単な説明
図 1は、 本発明の一実施例であるハイプリッド車両の駆動装置の構成を説明す る骨子図である。
図 2は、 図 1の実施例のハイプリッド車両の駆動装置が無段或いは有段変速作 動させられる場合における変速作動とそれに用いられる油圧式摩擦係合装置の作 動の組み合わせとの関係を説明する作動図表である。
図 3は、 図 1の実施例のハイブリツド車両の駆動装置が有段変速作動させられ る場合における各ギヤ段の相対的回転速度を説明する共線図である。
図 4は、 図 1の実施例の駆動装置に設けられた電子制御装置の入出力信号を説 明する図である。
図 5は、 シフトレバ一を備えた複数種類のシフトポジションを選択するために 操作される切換装置の一例である。
図 6は、 図 4の電子制御装置の制御作動の要部を説明する機能プロック線図で ある。
図 7は、 車速と出力トルクとをパラメータとする同じ二次元座標に構成された 、 自動変速部の変速判断の基となる予め記憶された変速線図の一例と、変速機構 の変速状態の切換判断の基となる予め記憶された切換線図の一例と、 エンジン走 行とモ一夕走行とを切り換えるためのェンジン走行領域とモー夕走行領域との境 界線を有する予め記憶された駆動力源切換線図の一例とを示す図であつて、 それ ぞれの関係を示す図でもある。
図 8は、 車両の振動騒音が所定値以上となる振動発生領域と、 エンジン始動時 にその振動発生領域を第 1電動機を用いて通過する作動とを図 3に相当する共線 図上で説明する一例である。
図 9は、'無段制御領域と有段制御領域との境界線を有する予め記憶された関係 を示す図であつて、 図 7の破線に示す無段制御領域と有段制御領域との境界をマ ップ化するための概念図でもある。
図 1 0は、有段式変速機におけるアップシフトに伴うエンジン回転速度の変化 の一例である。 図 1 1は、 図 6の電子制御装置の制御作動すなわちエンジン始動時に所定値以 上の車両の振動騒音が発生しないようにする制御作動を説明するフローチャート である。
図 1 2は、 図 1 1のフローチャートに示す制御作動を説明するタイムチャート であり、 モータ走行中にアクセルペダルが大きく踏み込まれたことにより、 ェン ジン走行への切換えのためのェンジン始動と、差動部の無段変速状態から有段変 速状態への切換えとが判断された場合の例である。
図 1 3は、 図 4の電子制御装置の制御作動の要部を説明する機能プロック線図 であって、 図 6に相当する図である。
図 1 4は、 車両の振動騒音が所定値以上となる振動発生領域と、 エンジン停止 時にその振動発生領域を第 1電動機を用いて通過する作動とを図 3に相当する共 線図上で説明する一例である。
図 1 5は、 図 1 3の電子制御装置の制御作動すなわちエンジン停止時に所定値 以上の車両の振動騒音が発生しないようにする制御作動を説明するフローチヤ一 トである。
図 1 6は、 図 1 5のフローチャートに示す制御作動を説明するタイムチヤ一卜 であり、 差動部の有段変速状態におけるエンジン走行中にアクセルペダルが戻さ れたことにより、 フユ一エル力ットのためのェンジン停止が判断された場合の例 である。
図 1 7は、 本発明の他の実施例におけるハイブリッド車両の駆動装置の構成を 説明する骨子図であって、 図 1に相当する図である。 ,
図 1 8は、 図 1 7の実施例のハイプリッド車両の駆動装置が無段或いは有段変 速作動させられる場合における変速作動とそれに用いられる油圧式摩擦係合装置 の作動の組み合わせとの関係を説明する作動図表であって、 図 2に相当する図で ある。 '
図 1 9は、 図 1 7の実施例のハイブリツド車両の駆動装置が有段変速作動させ られる場合における各ギヤ段の相対的回転速度を説明する共線図であって、 図 3 に相当する図である。 図 2 0は、切換装置としてのシーソー型スィッチであって変速状態を選択する ためにユーザによつて操作される変速状態手動選択装置の一例である。 符号の説明
8 :エンジン
1 0、 7 0 :変速機構 (駆動装置)
1 1 :差動部(無段変速部)
1 6 :動力分配機構 (差動機構)
1 8 :伝達部材
3 8 :駆動輪
4 0 :電子制御装置 (制御装置)
5 0 :切換制御手段 (エンジン始動時切換制御手段、 エンジン停止時切換制御手 段)
8 0 :エンジン始動停止制御手段(エンジン始動制御手段、 エンジン停止制御手 段)
C O :切換クラッチ (差動状態切換装置)
B 0 :切換ブレーキ.(差動状態切換装置)
M 1 :第 1電動機
M :第 2電動機 発明を実施するための最良の形態
以下、本発明の実施例を図面を参照しつつ詳細に説明する。 [実施例 1 ]
図 1は、本発明の一実施例である制御装置が適用されるハイプリッド車両の駆 動装置の一部を構成する変速機構 1 0を説明する骨子図である。 図 1において、 変速機構 1 0は車体に取り付けられる非回転部材としてのトランスミッションケ —ス 1 2 (以下、 ケース 1 2という) 内において共通の軸心上に配設された入力 回転部材としての入力軸 1 4と、 この入力軸 1 4に直接に或いは図示しない脈動 吸収ダンパー (振動減衰装置) などを介して間接に連結された無段変速部として の差動部 1 1と、 その差動部 1 1と駆動輪 3 8との間の動力伝達経路で伝達部材 (伝動軸) 1 8を介して直列に連結されている有段式の変速機として機能する変 速部としての自動変速部 2 0と、 この自動変速部 2 0に連結されている出力回転 部材としての出力軸 2 2とを直列に備えている。 この変速機構 1 0は、 例えば車 両において縦置きされる F R (フロントエンジン · リヤドライブ)型車両に好適 に用いられるものであり、 入力軸 1 4に直接に或いは図示しない脈動吸収ダンバ —を介して直接的に連結された走行用の駆動力源として例えばガソリンエンジン やディーゼルエンジン等の内燃機関であるエンジン 8と一対の駆動輪 3 8との間 に設けられて、 図 6に示すようにエンジン 8からの動力を駆動装置の他の一部と して動力伝達経路の一部を構成する差動歯車装置 (終減速機) 3 6および一対の 車軸等を順次介して左右の駆動輪 3 8へ伝達する。
このように、 本実施例の変速機構 1 0においてはエンジン 8と差動部 1 1とは 直結されている。 この直結にはトルクコンバータやフルードカップリング等の流 体式伝動装置を介することなく連結されているということであり、例えば上記脈 動吸収ダンバ一などを介する連結はこの直結に含まれる。 なお、 変速機構 1 0は その軸心に対して対称的に構成されているため、 図 1の骨子図においてはその下 側が省略されている。 以下の各実施例についても同様である。
差動部 1 1は、 第 1電動機 M lと、 入力軸 1 4に入力されたエンジン 8の出力 を機械的に分配する機械的機構であってエンジン 8の出力を第 1電動機 M 1およ び伝達部材 1 8に分配する差動機構としての動力分配機構 1 6と、伝達部材 1 8 と一体的に回転するように設けられている第 2電動機 M 2とを備えている。 なお 、 この第 2電動機 M 2は伝達部材 1 8から駆動輪 3 8までの間の動力伝達経路を 構成するいずれの部分に設けられてもよい。 本実施例の第 1電動機 M 1および第 2電動機 M 2は発電機能をも有する所謂モータジェネレータであるが、第 1電動 機 M lは反力を発生させるためのジェネレータ (発電)機能を少なくとも備え、 第 1電動機 M 1は走行用の駆動力源として駆動力を出力するためのモータ (電動 機)機能を少なくとも備える。
動力分配機構 1 6は、例えば 「0 . 4 1 8」程度の所定のギヤ比 p 1を有する シングルピユオン型の第 1遊星歯車装置 2 4と、係合装置としての切換クラッチ C 0および切換ブレーキ B 0とを主体的に備えている。 この第 1遊星歯車装置 2 4は、第 1サンギヤ S 1、 第 1遊星歯車 P 1、 その第 1遊星歯車 P 1を自転およ び公転可能に支持する第 1キヤリャ C Aし 第 1遊星歯車 P 1を介して第 1サン ギヤ S 1と嚙み合う第 1 リングギヤ R 1を回転要素 (要素) として備えている。 第 1サンギヤ S 1の歯数を Z S 1、 第 1 リングギヤ R 1の歯数を Z R 1とすると 、上記ギヤ比 /0 1は Z S 1 /Z R 1である。 - ■ この動力分配機構 1 6においては、 第 1キヤリャ C A 1は入力軸 1 4すなわち エンジン 8に連結され、 第 1サンギヤ S 1は第 1電動機 M 1に連結され、第 1 リ ングギヤ R 1は伝達部材 1 8に連結されている。 また、切換ブレーキ B 0は第 1 サンギヤ S 1とケース 1 1との間に設けられ、切換クラッチ C 0は第 1サンギヤ S 1と第 1キヤリャ C A 1との間に設けられている。 それら切換クラッチ C 0お よび切換ブレーキ B 0が解放されるとすなわち解放状態へ切り換えられると、 動 力分配機構 1 6は第 1遊星歯車装置 2 4の 3要素である第 1サンギヤ S 1、第 1 キヤリャ C A 1、 第.1リングギヤ R 1がそれぞれ相互に相対回転可能とされて差 動作用が作動可能なすなわち差動作用が働く差動状態とされることから、 ェンジ ン 8の出力が第 1電動機 M 1と伝達部材 1 8とに分配されるとともに、 分配され たエンジン 8の出力の一部で第 1電動機 M 1から発生させられた電気工ネルギで 蓄電されたり第 2電動機 M 2が回転駆動されるので、 差動部 1 1 (動力分配機構 1 6 ) は電気的な差動装置として機能させられて例えば差動部 1 1は所謂無段変 速状態(電気的 C V T状態) とされて、 エンジン 8の所定回転に拘わらず伝達部 材 1 8の回転が連続的に変化させられる。 すなわち、 動力分配機構 1 6が差動状 態とされると差動部 1 1も差動状態とされ、 差動部 1 Ίはその変速比ァ 0 (入力 軸 1 4の回転速度 Z伝達部材 1 8の回転速度) が最小値ァ O minから最大値ァ 0 max まで連続的に変化させられる電気的な無段変速機として機能する無段変速状 態、とされる。 この状態で、 上記切換クラッチ C 0或いは切換ブレーキ B 0が係合されるとす なわち係合状態へ切り換えられると、 動力分配機構 1 6は前記差動作用をしない すなわち差動作用が不能な非差動状態とされる。 具体的には、 上記切換クラッチ C 0が係合させられて第 1サンギヤ S 1と第 1キヤリャ C A 1とが一体的に連結 させられると、 動力分配機構 1 6は第 1遊星歯車装置 2 4の 3要素である第 1サ ンギヤ S 1、 第 1キヤリャ C A 1、 第 1 リングギヤ R 1が共に回転すなわち一体 回転させられる連結状態すなわちロック状態とされて前記差動作用が不能な非差 動状態とされることから、 差動部 1 1も非差動状態とされる。 また、 エンジン 8 の回転と伝達部材 1 8の回転速度とが一致する状態となるので、 差動部 1 1 (動 力分配機構 1 6 ) は変速比ァ 0が 「 1」 に固定された変速機として機能する非無 段変速状態例えば定変速状態すなわち有段変速状態とされる。
次いで、 上記切換クラツチ C 0に替えて切換ブレーキ B 0が係合させられて第 1サンギヤ S 1がケース 1 2に連糸吉させられると、 動力分配機構 1 6は第 1サン ギヤ S 1が非回転状態とさせられる連結状態すなわちロック状態とされて前記差 動作用が不能な非差動状態とされることから、 差動部 1 1も非差動状態とされる 。 また、 第 1リングギヤ R 1は第 1キヤリャ C A 1よりも増速回転されるので、 動力分配機構 1 6は増速機構として機能するものであり、 差動部 1 1 (動力分配 機構 1 6 ) は変速比ァ 0が 「1」 より小さい値例えば 0 . 7程度に固定された増 速変速機として機能する非無段変速状態例えば定変速状態すなわち有段変速状態 とされる。
このように、本実施例では、 上記切換クラッチ C 0および切換ブレーキ B 0は 、差動部 1 1 (動力分配機構 1 6 ) の変速状態を差動状態すなわち非ロック状態 (非連結状態) と非差動状態すなわちロック状態 (連結状態) とに、 すなわち差 動部 1 1 '(動力分配機構 1 6 ) を電気的な差動装置として作動可能な差動状態例 えば変速比が連続的変化可能な無段変速機として作動する電気的な無段変速作動 可能な無段変速状態と、電気的な無段変速作動しない非無段変速状態例えば無段 変速機として作動させず無段変速作動を非作動として変速比変化を一定にロック するロック状態すなわち 1または 2種類以上の変速比の単段または複数段の変速 機として作動する電気的な無段変速作動しないすなわち電気的な無段変速作動不 能な定変速状態 (非差動状態) 、 換言すれば変速比が一定の 1段または複数段の 変速機として作動する定変速状態とに選択的に切換える差動状態切換装置として 機能している。 上記非連結状態には、切換クラッチ C 0および切換ブレーキ B 0 が完全に解放されている状態以外に、切換クラッチ C 0或いは切換ブレーキ B 0 が半係合 (スリップ)状態である場合も含めて良い。
自動変速部 2 0は、 シングルピニオン型の第 2遊星歯車装置 26、 シングルピ 二オン型の第 3遊星歯車装置 2 8、 およびシングルピニオン.型の第 4遊星歯車装 置 3 0を備えている。 第 2遊星歯車装置 2 6は、 第 2サンギヤ S 2、 第 2遊星歯 車 P 2、 その第 2遊星歯車 P 2を自転および公転可能に支持する第 2キヤリャ C A2、 第 2^gM歯車 P 2を介して第 2サンギヤ S 2と嚙み合う第 2リングギヤ R 2を備えており、例えば 「0. 5 6 2」程度の所定のギヤ比 2を有している。 第 3遊星歯車装置 28は、 第 3サンギヤ S 3、 第 3遊星歯車 P 3、 その第 3遊星 歯車 P 3を自転および公転可能に支持する第 3キヤリャ C A 3、第 3遊星歯車 P 3を介して第 3サンギヤ S 3と嚙み合う第 3リングギヤ R 3を備えており、 例え ば 「 0. 4 2 5」 程度の所定のギヤ比 p 3を有している。 第 4i 歯車装置 3 0 は、 第 4サンギヤ S.4、 第 4遊星歯車 P4、 その第 4遊星歯車 P 4を自転および 公転可能に支持する第 4キヤリャ CA4、 第 4遊星歯車 P 4を介して第 4サンギ ャ S 4と嚙み合う第 4リングギヤ R 4を備えており、例えば 「0. 4 2 1」 程度 の所定のギヤ比 ø 4を有している。 第 2サンギヤ S 2の歯数を ZS 2、第 2リン グギヤ R 2の歯数を ZR2、 第 3サンギヤ S 3の歯数を Z,S 3、第 3リングギヤ R 3の歯数を ZR 3、 第 4サンギヤ S 4の歯数を Z S 4、 第 4リングギヤ R 4の 歯数を ZR 4とすると、 上記ギヤ比 p 2は Z S 2/ZR 2、上記ギヤ比 p 3は Z S 3/ZR3、 上記ギヤ比 4は ZS 4/ZR4である。
自動変速部 2 0では、 第 2サンギヤ S 2と第 3サンギヤ S 3とが一体的に連結 されて第 2クラッチ C 2を介して伝達部材 1 8に選択的に連結されるとともに第 1ブレーキ B 1を介してケース 1 1に選択的に連結され、 第 2キヤリャ C A 2は 第 2ブレーキ B 2を介してケース 1 2に選択的に連結され、第 4リングギヤ R 4 は第 3ブレーキ B 3を介してケース 1 2に選択的に連結され、 第 2リングギヤ R 2と第 3キヤリャ C A 3と第 4キヤリャ C A 4とが一体的に連結されて出力軸 2 2に連結され、 第 3リングギヤ R 3と第 4サンギヤ S 4とが一体的に連結されて 第 1クラッチ C 1を介して伝達部材 1 8に選択的に連結されている。 このように 、 自動変速部 2 0と伝達部材 1 8とは自動変速部 2 0の変速段を成立させるため に用いられる第 1クラッチ C 1または第 2クラッチ C を介して選択的に連結さ れている。 言い換えれば、 第 1クラッチ C 1および第 2クラッチ C 2は、伝達部 材 1 8と自動変速部 2 0との間すなわち差動部 1 1 (伝達部材 1 8 ) と駆動輪 3 8との間の動力伝達経路を、 その動力伝達経路の動力伝達を可能とする動力伝達 可能状態と、 その動力伝達経路の動力伝達を遮断する動力伝達遮断状態とに選択 的に切り換える係合装置として機能している。 つまり、第 1クラッチ C 1および 第 2クラッチ C 2の少なくとも一方が係合されることで上記動力伝達経路が動力 伝達可能状態とされ、 或いは第 1クラッチ C 1および第 2クラッチ C 2が解放さ れることで上記動力伝達経路が動力伝達遮断状態とされる。
前記切換クラッチ C 0、 第 1クラッチ C 1、 第 2クラッチ C 2、切換ブレーキ B 0、第 1ブレーキ B 1、 第 2ブレーキ B 2、 および第 3ブレーキ B 3は従来の 車両用有段式自動変速機においてよく用いられている油圧式摩擦係合装置であつ て、 互いに重ねられた複数枚の摩擦板が油圧ァクチユエ一夕により押圧される湿 式多板型や、 回転するドラムの外周面に巻き付けられた 1本または 2本のバンド の一端が油圧ァクチユエ一夕によって引き締められるバンドブレーキなどにより 構成され、 それが介挿されている両側の部材を選択的に連結するためのものであ る。
以上のように構成された変速機構 1 0では、 例えば、 図 2の係合作動表に示さ れるように、前記切換クラッチ C 0、 第 1クラッチ C 1、第 2クラッチ C 2、切 換ブレーキ B 0、 第 1ブレーキ B l、 第 2ブレーキ B' 2、 および第 3ブレーキ B 3が選択的に係合作動させられることにより、 第 1速ギヤ段 (第 1変速段)乃至 第 5速ギヤ段(第 5変速段) のいずれか或いは後進ギヤ段(後進変速段) 或いは ニュートラルが選択的に成立させられ、 略等比的に変化する変速比ァ (=入力軸 T JP2006/304675 回転速度 N I N /出力軸回転速度 N0 UT ) が各ギヤ段毎に得られるようになつてい る。 特に、本実施例では動力分配機構 1 6に切換クラッチ C 0および切換ブレー キ B 0が備えられており、切換クラッチ C 0および切換ブレーキ B 0の何れかが 係合作動させられることによって、 差動部 1 1は前述した無段変速機として作動 する無段変速状態に加え、 変速比が一定の変速機として作動する定変速状態を構 成することが可能とされている。 したがって、 変速機構 1 0では、 切換クラッチ C 0および切換ブレーキ B 0の何れかを係合作動させることで定変速状態とされ た差動部 1 1と自動変速部 2 0とで有段変速機として作動する有段変速状態が構 成され、切換クラッチ C 0および切換ブレーキ B 0の何れも係合作動させないこ とで無段変速状態とされた差動部 1 1と自動変速部 2 0とで電気的な無段変速機 として作動する無段変速状態が構成される。 言い換えれば、 変速機構 1 0は、 切 換クラッチ C 0および切換ブレーキ B 0の何れかを係合作動させることで有段変 速状態に切り換えられ、切換クラッチ C 0および切換ブレーキ B 0
の何れも係合作動させないことで無段変速状態に切り換えられる。 また、差動部 1 1も有段変速状態と無段変速状態とに切り換え可能な変速機であると言える。 例えば、変速機構 1 0が有段変速機として機能する場合には、 図 2に示すよう に、 切換クラッチ C 0、 第 1クラッチ C 1および第 3ブレーキ B 3の係合により 、変速比ァ 1が最大値例えば「 3 . 3 5 7」 程度である第 1速ギヤ段が成立させ られ、切換クラッチ C 0、第 1クラッチ C 1および第 2ブレーキ B 2の係合によ り、 変速比ァ 2が第 1速ギヤ段よりも小さい値例えば「2 . 1 8 0」 程度である 第 2速ギヤ段が成立させられ、切換クラッチ C 0、第 1ク,ラッチ C 1および第 1 ブレーキ B 1の係合により、変速比ァ 3が第 2速ギヤ段よりも小さい値例えば 「 1 . 4 2 4 J程度である第 3速ギヤ段が成立させられ、切換クラッチ C 0、第 1 クラッチ C 1および第 2クラッチ C 2の係合により、変速比ァ 4が第 3速ギヤ段 よりも小さい値例えば 「 1 . 0 0 0」 程度である第 4速ギヤ段が成立させられ、 第 1クラッチ C 1、 第 2クラッチ C 2、 および切換ブレーキ B 0の係合により、 変速比ァ 5が第 4速ギヤ段よりも小さい値例えば 「 0 · 7 0 5」 程度である第 5 速ギヤ段が成立させられる。 また、第 2クラッチ C 2および第 3ブレーキ B 3の 係合により、 変速比ァ Rが第 1速ギヤ段と第 2速ギヤ段との間の値例えば 「3 . 2 0 9」 程度である後進ギヤ段が成立させられる。 なお、 ニュートラル 「N」 状 態とする場合には、例えば切換クラッチ C 0のみが係合される。
しかし、変速機構 1 0が無段変速機として機能する場合には、 図 2に示される 係合表の切換クラッチ C 0および切換ブレーキ B 0が共に解放される。 これによ り、差動部 1 1が無段変速機として機能し、 それに直列の自動変速部 2 0が有段 変速機として機能することにより、 自動変速部 2 0の第 1速、 第 2速、第 3速、 第 4速の各ギヤ段に対しその自動変速部 2 0に入力される回転速度すなわち伝達 部材 1 8の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得 られる。 したがって、 その各ギヤ段の間が無段的に連続変化可能な変速比となつ て変速機構 1 0全体としてのトータル変速比 (総合変速比) ァ Tが無段階に得ら れるようになる。
図 3は、無段変速部或いは第 1変速部として機能する差動部 1 1と有段変速部 或いは第 2変速部として機能する自動変速部 2 0とから構成される変速機構 1 0 において、 ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線 上で表すことができる共線図を示している。 この図 3の共線図は、各遊星歯車装 置 2 4、 2 6、 2 8、 3 0のギヤ比 /0の関係を示す横軸と、 相対的回転速度を示 す縦軸とから成る二次元座標であり、 3本の横線のうちの下側の横線 X 1が回転 速度零を示し、 上側の横線 X 2が回転速度 「1 . 0」 すなわち入力軸 1 4に連結 されたエンジン 8の回転速度 NE を示し、横線 X Gが伝達部材 1 8の回転速度を 示している。 ,
また、 差動部 1 1を構成する動力分配機構 1 6の 3つの要素に対応する 3本の 縦線 Y 1、 Y 2、 Y 3は、 左側から順に第 1回転要素 (第 2要素) R E 2に対応 する第 1サンギヤ S 1、第 1回転要素 (第 1要素) R E 1に対応する第 1キヤリ ャ C A 1、 第 3回転要素 (第 3要素) R E 3に対応する第 1 リングギヤ R 1の相 対回転速度を示すものであり、 それらの間隔は第 1遊星歯車装置 2 4のギヤ比 p 1に応じて定められている。 さらに、 自動変速部 2 0の 5本の縦線 Y 4、 Y 5、 Υ 6、 Ύ Ί、 Υ 8は、左から順に、 第 4回転要素 (第 4要素) R E 4に対応し且 つ相互に連結された第 2サンギヤ S 2および第 3サンギヤ S 3を、 第 5回転要素 (第 5要素) R E 5に対応する第 2キヤリャ C A 2を、 第 6回転要素 (第 6要素 ) R E 6に対応する第 4リングギヤ R 4を、 第 7回転要素 (第 7要素) R E 7に 対応し且つ相互に連結された第 2リングギヤ R 2、 第 3キヤリャ C A 3、 第 4キ ャリャ C A 4を、第 8回転要素 (第 8要素) R E 8に対応し且つ相互に連結され た第 3リングギヤ R 3、 第 4サンギヤ S 4をそれぞれ表し、 それらの間隔は第 2 、 第 3、第 4遊星歯車装置 2 6、 2 8、 3 0のギヤ比 p 2、 p 3 . p 4に応じて それぞれ定められている。 共線図の縦軸間の関係においてサンギヤとキヤリャと の間が 「1」 に対応する間隔とされるとキヤリャとリングギヤとの間が遊星歯車 装置のギヤ比 Pに対応する間隔とされる。 すなわち、 差動部 1 1では縦線 Y 1と Y 2との縦線間が 「 1」 に対応する間隔に設定され、縦線 Y 2と Y 3との間隔は ギヤ比; 0 1に対応する間隔に設定される。 また、 自動変速部 2 0では各第 2、 第 3、 第 4遊星歯車装置 2 6、 2 8、 3 0毎にそのサンギヤとキヤリャとの間が 「 1」 に対応する間隔に設定され、 キヤリャとリングギヤとの間が pに対応する間 隔に設定される。
上記図 3の共線図を用いて表現すれば、本実施例の変速機構 1 0は、 動力分配 機構 1 6 (差動部 1 1 ) において、第 1遊星歯車装置 2 4の第 1回転要素 R E 1 (第 1キヤリャ C A 1 ) が入力軸 1 すなわちェンジン 8に連結されるとともに 切換クラッチ C Oを介して第 2回転要素 (第 1サンギヤ S 1 ) R E 2と選択的に 連結され、 第 1回転要素 R E 2が第 1電動機 M 1に連結されるとともに切換ブレ ーキ B 0を介してケース 1 2に選択的に連結され、.第 3回転要素 (第 1 リングギ ャ R 1 ) R E 3が伝達部材 1 8および第 I電動機 M 2に連結されて、 入力軸 1 4 の回転を伝達部材 1 8を介して自動変速部(有段変速部) 0へ伝達する (入力 させる) ように構成されている。 このとき、 Y 2と X 2の交点を通る斜めの直線 L 0により第 1サンギヤ S 1の回転速度と第 1 リングギヤ R 1の回転速度との関 係が示される。
例えば、 上記切換クラッチ C 0および切換ブレーキ B 0の解放により無段変速 状態 (差動状態) に切換えられたときは、第 1電動機 M lの回転速度を制御する ことによって直線 L 0と縦線 Y 1との交点で示される第 1サンギヤ S 1の回転が 上昇或いは下降させられると、 車速 Vに拘束される第 1リングギヤ R 1の回転速 度が略一定である場合には、 直線 L 0と縦線 Y 2との交点で示される第 1キヤリ ャ C A 1の回転速度が上昇或いは下降させられる。 また、切換クラッチ C Oの係 合により第 1サンギヤ S 1と第 1キヤリャ C A 1とが連結されると、 動力分配機 構 1 6は上記 3回転要素が一体回転する非差動状態とされるので、 直線し 0は横 線 X 2と一致させられ、 エンジン回転速度 NE と同じ回転で伝達部材 1 8が回転 させられる。 或いは、 切換ブレーキ B 0の係合によって第 1サンギヤ S 1の回転 が停止させられると動力分配機構 1 6は増速機構として機能する非差動状態とさ れるので、 直線し 0は図 3に示す状態となり、 その直線 L 0と縦線 Y 3との交点 で示される第 1 リングギヤ R 1すなわち伝達部材 1 8の回転速度は、 エンジン回 転速度 NE よりも増速された回転で自動変速部 2 0へ入力される。
また、 自動変速咅 2 0において第 4回転要素 R E 4は第 2クラッチ C 2を介し て伝達部材 1 8に選択的に連結されるとともに第 1ブレーキ B 1を介してケース 1 2に選択的に連結され、 第 5回転要素 R E 5は第 2ブレーキ B 2を介してケー ス 1 2に選択的に連結され、 第 6回転要素 R E 6は第 3ブレーキ B 3を介してケ ース 1 2に選択的に連結され、 第 7回転要素 R E 7は出力軸 2 2に連結され、 第 8回転要素 R E 8は第 1クラッチ C 1を介して伝達部材 1 8に選択的に連結され ている。
自動変速部 2 0では、 図 3に示すように、 第 1クラッチ C 1と第 3ブレーキ B 3とが係合させられることにより、第 8回転要素 R E 8の回転速度を示す縦線 Y 8と横線 X 2との交点と第 6回転要素 R E 6の回転速度を示す縦線 Y 6と横線 X 1との交点とを通る斜めの直線 L 1と、 出力軸 2 2と連結された第 7回転要素 R E 7の回転速度を示す縦線 Y 7との交点で第 1速の出力軸 2 2の回転速度が示さ れる。 同様に、第 1クラッチ C 1と第 2ブレーキ B 2とが係合させられることに より決まる斜めの直線 L 1と出力軸 2 と連結された第 7回転要素 R E 7の回転 速度を示す縦線 Y 7との交点で第 2速の出力軸 2 2の回転速度が示され、第 1ク ラッチ C 1と第 1ブレーキ B 1とが係合させられることにより決まる斜めの直線 L 3と出力軸 2 2と連結された第 7回転要素 R E 7の回転速度を示す縦線 Y 7と の交点で第 3速の出力軸 I 2の回転速度が示され、第 1クラッチ C 1と第 2クラ ツチ C 2とが係合させられることにより決まる水平な直線 L 4と出力軸 2 2と連 結された第 7回転要素 R E 7の回転速度を示す縦線 Y 7との交点で第 4速の出力 軸 2 2の回転速度が示される。 上記第 1速乃至第 4速では、 切換クラッチ C 0が 係合させられている結果、 エンジン回転速度 N E と同じ回転速度で第 8回転要素 R E 8に差動部 1 1すなわち動力分配機構 1 6からの動力が入力される。 しかし 、 切換クラッチ C 0に替えて切換ブレーキ B 0が係合させられると、 差動部 1 1 からの動力がエンジン回転速度 N E よりも高い回転速度で入力されることから、 第 1クラッチ C 1、 第 2クラッチ C 2、 および切換ブレーキ B 0が係合させられ ることにより決まる水平な直線 L 5と出力軸 2 2と連結された第 7回転要素 R E 7の回転速度を示す縦線 Y 7との交点で第 5速の出力軸 2 2の回転速度が示され る。
図 4は、本実施例の変速機構 1 0を制御するための電子制御装置 4 0に入力さ れる信号及びその電子制御装置 4 0から出力される信号を例示している。 この電 子制御装置 4 0は、 C P U、 R O M. R A M. 及び入出力インターフェースなど から成る所謂マイクロコンピュータを含んで構成されており、 R AMの一時記憶 機能を利用しつつ R〇 Mに予め記憶されたプログラムに従つて信号処理を行うこ とによりエンジン 8、 第 1、 第 2電動機 M l、 M 2に関するハイブリツド駆動制 御、 自動変速部 2 0の変速制御等の駆動制御を実行するものである。
電子制御装置 4 0には、 図 4に示すような各センサやスィッチなどから、 ェン ジン水温 T E M PW を表す信号、 シフトレバ一 9 2 (図 5参照) の操作位置であ るシフトポジション P S Hを表す信号、 エンジン 8の回転速度であるエンジン回転 速度 N E を表す信号、 ギヤ比列設定値を表す信号、 Mモード (手動変速走行モー ド) を指令する信号、 エアコンの作動を表す信号、 出力軸 2 2の回転速度 Ν ουτ に対応する車速 Vを表す信号、 自動変速部 2 0の作動油温を表す信号、 サイドブ レーキ操作を表す信号、 フットブレーキ操作を表す信号、 触媒温度を表す信号、 運転者の出力要求量に対応するアクセルペダルの操作量であるアクセル開度 Acc を表す信号、 カム角を表す信号、 スノーモード設定を表す信号、 車両の前後加速 度 Gを表す信号、 ォ一トクルーズ走行を表す信号、 車両の重量 (車重) を表す信 号、各車輪の車輪速を表す信号、 変速機構 1 0を有段変速機として機能させるた めに差動部 1 1 (動力分配機構 1 6 ) を有段変速状態 (ロック状態) に切り換え るための有段スィッチ操作の有無を表す信号、変速機構 1 0を無段変速機として 機能させるために差動部 1 1 (動力分配機構 1 6 ) を無段変速状態(差動状態) に切り換えるための無段スィツチ操作の有無を表す信号、 第 1電動機 M 1の回転 速度 N M 1 (以下、 第 1電動機回転速度 N M Iという) を表す信号、 第 2電動機 M 2 の回転速度 N M 2 (以下、 第 2電動機回転速度 N M 2という) を表す信号、 エンジン 8の空燃比 AZ Fを表す信号、 蓄電装置 6 0 (図 6参照) の充電容量 (充電状態 ) S O Cを表す信号などが、 それぞれ供給される。
また、上記電子制御装置 4 0からは、 エンジン出力を制御するエンジン出力制 御装置 4 3 (図 6参照) への制御信号例えばエンジン 8の吸気管 9 5に備えられ た電子スロットル弁 9 6の開度 0 THを操作するスロットルァクチユエ一夕 9 7へ の駆動信号や燃料噴射装置 9 8によるエンジン 8の各気筒内への燃料供給量を制 御する燃料供給量信号や点火装置 9 9によるェンジン 8の点火時期を指令する点 火信号、 過糸合圧を調整するための過給圧調整信号、 電動エアコンを作動させるた めの電動エアコン駆動信号、電動機 M 1および M 2の作動を指令する指令信号、 シフトインジケ一夕を作動させるためのシフトポジション (操作位置)表示信号 、ギヤ比を表示させるためのギヤ比表示信号、 スノーモードであることを表示さ せるためのスノーモード表示信号、制動時の車輪のスリップを防止する A B Sァ クチユエ一夕を作動させるための A B S作動信号、 Mモードが選択されているこ とを表示させる Mモード表示信号、 差動部 1 1や自動変速部 2 0の油圧式摩擦係 合装置の油圧ァクチユエ一夕を制御するために油圧制御回路 4 2 (図 6参照) に 含まれる電磁弁を作動させるバルブ指令信号、 この油圧制御回路 4 2の油圧源で ある電動油圧ポンプを作動させるための駆動指令信号、 電動ヒータを駆動するた めの信号、 クル一ズコントロール制御用コンピュータへの信号等が、 それぞれ出 力される。 図 5は複数種類のシフトポジシヨン P S Hを人為的操作により切り換える切換装 置 9 0の一例を示す図である。 この切換装置 9 0は、 例えば運転席の横に配設さ れ、 複数種類のシフトポジション P S Hを選択するために操作されるシフトレバ一 9 2を備えている。 そのシフトレバ一 9 2は、 例えば図 2の係合作動表に示され るように第 1クラッチ C 1および第 2クラッチ C 2のいずれの係合装置も係合さ れないような変速機構 1 0内つまり自動変速部 2 0内の動力伝達経路が遮断され たニュートラル状態すなわち中立状態とし且つ自動変速部 2 0の出力軸 2 2を口 ックするための駐車ポジション 「P (パーキング) 」 、後進走行のための後進走 行ポジション 「R (リバース) 」 、変速機構 1 0内の動力伝達経路が遮断された 中立状態とする中立ポジション 「N (ニュートラル) 」 、前進自動変速走行ポジ シヨン 「D (ドライブ)」 、 または前進手動変速走行ポジション 「M (マユユア ル) 」 へ手動操作されるように設けられている。
例えば、 上記シフトレバー 9 2の各シフトポジションへの手動操作に連動して そのシフトレバー 9 に機械的に連結された油圧制御回路 4 2内のマニュアル弁 が切り換えられて、 図 2の係合作動表に示す後進ギヤ段 「R」 、 ニュートラル 「 N」 、前進ギヤ段 「D」等が成立するように油圧制御回路 4 2が機械的に切り換 えられる。 また、 「D」 または 「M」 ポジションにおける図 2の係合作動表に示 す 1st乃至 5thの各変速段は、 油圧制御回路 4 2内の電磁弁が電気的に切り換え られることにより成立させられる。
上記 「P」 乃至 「M」 ポジションに示す各シフトポジションにおいて、 「P」 ポジションおよび 「N」 ポジションは、車両を走 させないときに選択される非 走行ポジションであって、 例えば図 2の係合作動表に示されるように第 1クラッ チ C 1および第 2クラッチ C 2のいずれもが解放されるような自動変速部 2 0内 の動力伝達経路が遮断された車両を駆動不能とする第 1クラッチ C 1および第 2 クラッチ C 2による動力伝達経路の動力伝達遮断状態べの切換えを選択するため の 駆動ポジションである。 また、 「R」 ポジション、 「D」 ポジションおよび 「M」 ポジションは、 車両を走 ί亍させるときに選択される走行ポジションであつ て、 例えば図 2の係合作動表に示されるように第 1クラッチ C 1および第 2クラ ツチ C 2の少なくとも一方が係合されるような自動変速部 2 0内の動力伝達経路 が連結された車両を駆動可能とする第 1クラッチ C 1および/または第 2クラッ チ C 2による動力伝達経路の動力伝達可能状態への切換えを選択するための駆動 ポジションでもある。
具体的には、 シフトレバ一 9 2が 「P」 ポジション或いは 「N」 ポジションか ら 「R」 ポジションへ手動操作されることで、 第 2クラッチ C 2が係合されて自 動変速部 2 0内の動力伝達経路が動力伝達遮断状態から動力伝達可能状態とされ 、 シフトレバー 9 2が 「N」 ポジションから 「D」 ポジションへ手動操作される ことで、 少なくとも第 1クラッチ C 1が係合されて自動変速部 2 0内の動力伝達 経路が動力伝達遮断状態から動力伝達可能状態とされる。 また、 「D」 ポジショ ンは最高速走^1ポジシヨンでもあり、 「M」 ポジションにおける例えば 「 4」 レ ンジ乃至 「L」 レンジはエンジンブレーキ効果が得られるエンジンブレーキレン ジでもある。
上記 「M」 ポジションは、例えば車両の前後方向において上記 「D」 ポジショ ンと同じ位置において車両の幅方向に隣接して設けられており、 シフトレバ一 9 2が 「M」 ポジションへ操作されることにより、 「D」 レンジ乃至 「L」 レンジ の何れかがシフトレバー 9 2の操作に応じて変更される。 具体的には、 この 「M 」 ポジションには、 車両の前後方向にアップシフト位置 「十」 、 およびダウンシ フト位置 「一」 が設けられており、 シフトレバ一 9 2がそれ等のアップシフト位 置 「十」 またはダウンシフ卜位置「一」 へ操作されると、 「D」 レンジ乃至 「L 」 レンジの何れかが選択される。 例えば、 「M」 ポジショ,ンにおいて選択される 「D」 レンジ乃至 「L」 レンジの 5つの変速レンジは、変速機構 1 0の自動変速 制御が可能なトータル変速比ァ Tの変化範囲における高速側 (変速比が最小側) のトータル変速比ァ Tが異なる複数種類の変速レンジであり、 また自動変速部 2 0の変速が可能な最高速側変速段が異なるように変速段(ギヤ段) の変速範囲を 制限するものである。 また、 シフトレバ一 9 2はスプリング等の付勢手段により 上記アップシフト位置 「+」 およびダウンシフト位置 「一」 から、 「M」 ポジシ ヨンへ自動的に戻されるようになつている。 また、 切換装置 9 0にはシフトレバ 一 9 2の各シフトポジションを検出するための図示しないシフトポジションセン ザが備えられており、 そのシフトレバー 9 2のシフトポジション P S Hを表す信号 や 「M」 ポジションにおける操作回数等を電子制御装置 4 0へ出力する。
図 6は、 電子制御装置 4 0による制御機能の要部を説明する機能ブロック線図 である。 図 6において、有段変速制御手段 5 4は、 自動変速部 2 0の変速を行う 変速制御手段として機能するものである。 例えば、 有段変速制御手段 5 4は、記 憶手段 5 6に予め記憶された図 7の実線および一点鎖線に示す関係 (変速線図、 変速マップ) から車速 Vおよび自動変速部 2 0の要求出力トルク T0UT で示され る車両状態に基づいて、 自動変速部 2 0の変速を実行すべきか否かを判断し、す なわち自動変速部 2 0の変速すべき変速段を判断し、 その判断した変速段が得ら れるように自動変速部 2 0の変速を実行する。 このとき、有段変速制御手段 5 4 は、 例えば図 2に示す係合表に従つて変速段が達成されるように切換クラッチ C 0および切換ブレーキ B 0を除いた油圧式摩擦係合装置を係合および/または解 放させる指令(変速出力指令) を油圧制御回路 4 2へ出力する。
ハイブリツド制御手段 5 2は、変速機構 1 0の前記無段変速状態すなわち差動 部 1 1の差動状態においてエンジン: 8を効率のよい作動域で作動させる一方で、 エンジン 8と第 2電動機 M 2との駆動力の配分や第 1電動機 M 1の発電による反 力を最適になるように変化させて差動部 1 1の電気的な無段変速機としての変速 比ァ 0を制御する。 例えば、 そのときの走行車速において、 運転者の出力要求量 としてのアクセル開度 Accや車速 Vから車両の目標(要求) 出力を算出し、 その 車両の目標出力と充電要求値から必要なトータル目標出力を算出し、 そのトー夕 ル目標出力が得られるように伝達損失、 補機負荷、第 2電動機 M 2のアシストト ルク等を考慮して目標エンジン出力を算出し、 その目標エンジン出力が得られる エンジン回転速度 N E とエンジントルク T E となるようにエンジン 8を制御する とともに第 1電動機 M 1の発電量を制御する。 '
ハイブリツド制御手段.5 2は、その制御を動力性能や燃費向上などのために自 動変速部 2 0の変速段を考慮して実行する。 このようなハイブリツド制御では、 ェンジン 8を効率のよレ、作動域で作動させるために定まるエンジン回転速度 N E と車速 Vおよび自動変速部 2 0の変速段で定まる伝達部材 1 8の回転速度とを整 合させるために、 差動部 1 1が電気的な無段変速機として機能させられる。 例え ば、 ハイブリツド制御手段 5 2は、 エンジン回転速度 N E とエンジン 8の出力ト ルク (エンジントルク) T E とで構成される二次元座標内において無段変速走行 の時に運転性と燃費性とを両立するように予め実験的に求められた図示しないェ ンジン 8の最適燃費率曲線(燃費マップ、 関係) を予め記憶しており、 その最適 燃費率曲線に沿ってエンジン 8が作動させられるように、 例えば目標出力 (トー タル目標出力、要求駆動力) を充足するために必要なエンジン出力を発生するた めのエンジントルク T E とエンジン回転速度 N E となるように、 変速機構 1 0の トータル変速比ァ Tの目標値を定め、 その目標値が得られるように差動部 1 1の 変速比ァ 0を制御し、 トータル変速比ァ Tをその変速可能な変化範囲内例えば 1 3〜0 . 5の範囲内で制御する。
このとき、 ハイプリッド制御手段 5 2は、 第 1電動機 M 1により発電された電 気エネルギをインバ一タ 5 8を通して蓄電装置 6 0や第 2電動機 M 2へ供給する ので、 ェンジン 8の動力の主要部は機械的に伝達部材 1 8へ伝達されるが、 ェン ジン 8の動力の一部は第 1電動機 M 1の発電のために消費されてそこで電気エネ ルギに変換され、 インバー夕 5 8を通してその電気工ネルギが第 2電動機 M 2へ 供給され、 その第 2電動機 M 2が駆動されて第 2電動機 M 2から伝達部材 1 8へ 伝達される。 この電気エネルギの発生から第 2電動機 M 2で消費されるまでに関 連する機器により、 エンジン 8の動力の一部を電気工ネルギに変換し、 その電気 エネルギを機械的エネルギに変換するまでの電気パスが構成される。
ハイブリッド制御手段 5 2は、 スロットル制御のためにスロットルァクチユエ ータ 9 7により電子スロットル弁 9 6を開閉制御させる他、燃料噴射制御のため に燃料噴射装置 9 8による燃料噴射量や噴射時期を制御させ、 点火時期制御のた めにィグナイ夕等の点火装置 9 9による点火時期を制御させる指令を単独で或い は組み合わせてエンジン.出力制御装置 4 3に出力して必要なエンジン出力を発生 するようにェンジン 8の出力制御を実行するェンジン出力制御手段を機能的に備 えている。 例えば、 ハイブリツド制御手段 5 2は、基本的には図示しない予め記 憶された関係からアクセル開度 Accに基づいてスロットルァクチユエ一夕 6 0を 駆動し、 アクセル開度 Accが増加するほどスロットル弁開度 6 THを増加させるよ うにスロットル制御を実行する。 また、 このエンジン出力制御装置 4 3は、 ハイ ブリツド制御手段 5 2による旨令に従って、 スロットルァクチユエ一タ 9 7によ り電子スロットル弁 9 6を開閉する他、 燃料噴射装置 9 8により燃料噴射をし、 ィグナイ夕等の点火装置 9 9により点火する。
また、 ハイプリッド制御手段 5 2は、 エンジン 8の停止又はアイドル状態に拘 わらず、 差動部 1 1の電気的 C V T機能によってモ一夕走行させることができる 。 例えば、前記図 7の実線 Αは、 車両の発進/走行用 (以下、 走行用という) の 駆動力源をエンジン 8と電動機例えば第 2電動機 M 2とで切り換えるための、 言 い換えればエンジン 8を走行用の駆動力源として車両を発進/走行(以下、 走行 という) させる所謂ェンジン走行と第 2電動機 M 2を走行用の駆動力源として車 両を走行させる所謂モータ走行とを切り換えるための、 ェンジン走行領域とモー 夕走行領域との境界線である。 この図 7に示すェンジン走 ί亍とモータ走行とを切 り換えるための境界線(実線 Α ) を有する予め記憶された関係は、車速 Vと駆動 力関連値である出力トルク T OUT 'とをパラメ一夕とする二次元座標で構成された 駆動力源切換線図 (駆動力源マップ) の一例である。 この駆動力源切換線図は、 例えば同じ図 7中の実線および一点鎖線に示す変速線図 (変速マップ) と共に記 憶手段 5 6に予め記憶されている。
そして、 ハイブリッド制御手段 5 2は、例えば図 7の駆動力源切換線図から車 速 Vと要求出力トルク Τ ΟΥΤ とで示される車両状態に基づ,いてモータ走行領域と ェンジン走行領域との何れであるかを判断してモー夕走行或いはェンジン走行を 実行する。 このように、ハイプリッド制御手段 5 2によるモータ走行は、 図 7か ら明らかなように一般的にェンジン効率が高トルク域に比較して悪レ、とされる比 較的低出力トルク T OUT時すなわち低エンジントルク T e 時、或いは車速 Vの比 較的低車速時すなわち低負荷域で実行される。 よって、 車両発進に関しては、 通 常はモ一夕発進が実行される。 但し、 例えば図 7の駆動力源切換線図のモータ走 行領域を超える要求出力トルク T OUTすなわち要求エンジントルク T e とされる 程大きくァクセルべダルが踏込操作されるような車両状態によっては、 エンジン 発進も通常実行される。
ハイブリツド制御手段 5 2は、 このモータ走^1時には、 停止しているエンジン 8の引き摺りを抑制して燃費を向上させるために、差動部 1 1の電気的 C V T機 能 (差動作用) によって、 第 1電動機回転速度 NM 1を負の回転速度で制御例えば 空転させて、 差動部 1 1の差動作用により必要に応じてエンジン回転速度 N E を 零乃至略零に維持する。
ハイブリツド制御手段 5 2は、 エンジン走行とモー夕走行とを切り換えるため に、 エンジン 8の作動状態を運転状態と停止状態との間で切り換えるエンジン始 動停止制御手段 8 0を、 すなわちエンジン 8の始動および停止を行うエンジン始 動停止制御手段 8 0を備えている。 或いは、 ハイプリッド制御手段 5 2は、 シフ トレバー 9 2が 「P」 ポジションや 「N」 ポジションの車両停止状態であるとき に、 必要に応じてエンジン 8の作動状態を運転状態と停止状態との間で切り換え るエンジン始動停止制御手段 8 0を備えている。
ハイプリッド制御手段 5 2は、 エンジン始動条件成立判定手段として機能する ものであって、 エンジン 8を始動するためのエンジン始動条件が成立したか否か を判定する。 例えば、 ハイブリツド制御手段 5 2は、 図 7の実線 Bの点 a→点 b や点 a—点 cに示すように、 アクセルべダルが踏込操作されて要求出力トルク T
O UT が大きくなり車両状態がモータ走行領域からエンジン走行領域へ変化したと きに、 エンジン始動条件が成立したと判定する。 或いは、 ハイプリッド制御手段 5 2は、 アクセルオフの減速走 ί亍中の良く知られたフューエルカツト作動からの 復帰を、 アクセルペダルの踏込操作などに基づいて判断したときに、 エンジン始 動条件が成立したと判定する。 或いは、 ハイプリッド制御手段 5 2は、 上記車両 停止状態でのエンジン停止時に、蓄電装置 6 0の充電状態 S O Cを表す信号に基 づいて実際の充電状態 S 0 Cが規定値未満であることを判断したときに、 ェンジ ン始動条件が成立したと判定する。 或いは、 ハイブリツド制御手段 5 2は、上記 車両停止状態でのエンジン停止時に、 エンジン水温 T E M PW を表す信号や触媒 温度を表す信号に基づいてエンジン 8や触媒装置の暖機が必要であることを判断 したときに、エンジン始動条件が成立したと判定する。 上記充電状態 s〇cの規 定値は、 その規定値未満の充電状態 S 0 Cにおいてはェンジン 8を作動させて第 1電動機 M 1の発電による蓄電装置 6 0の充電が必要とされる充電状態 S 0 Cと して予め実験等により定められて記憶されている値である。
そして、前記エンジン始動停止制御手段 8 0は、 ハイブリツド制御手段 5 2に よりエンジン始動条件が成立したと判定された場合にはエンジン 8の始動を実行 するエンジン始動制御手段として機能する。 例えば、 エンジン始動停止制御手段 8 0は、 第 1電動機 M 1に通電して第 1電動機回転速度 NM 1を引き上げることで 、 すなわち第 1電動機 M 1をスター夕として機能させることで、 エンジン回転速 度 NE を所定エンジン回転速度 NE , 以上例えばアイドル回転速度 NE ,。し以上の 自律回転可能なエンジン回転速度 NE以上に引き上げ、燃料噴射装置 9 8により 燃料供給させ且つ点火装置 9 9により点火させるようにしてエンジン 8の始動を 行う。
このとき、エンジン始動停止制御手段 8 0は、 車両の振動および/または騒音 が所定値以上となる車両の振動系の共振が発生しやすい共振領域として良く知ら れたアイドル回転速度 NE 1 DL以下の所定エンジン回転速度領域 NE Rを速やかに通 過できて始動時の振動および/または騒音が抑制されるように、 このエンジン始 動時には、第 1電動機回転速度 NM!を速やかに弓 Iき上げることでェンジン回転速 度 NE を速やかに (すなわち急速に)所定エンジン回転速度 N E ' まで引き上げ る。 例えば、車両の振動および/または騒音が所定値以上とならないように、 予 め実験的に求められた速さでェンジン回転速度 NE を所定ェンジン回転速度 N E ' まで引き上げる。 本実施例では、以下、 振動および/または騒音を振動騒音と 表す。
上記車両の振動系の共振としては、例えばエンジン 8や変速機構 1 0などのパ ワープラントとェンジンマゥントとで構成されるエッジン懸架系の共振、駆動系 のねじり共振、排気系の共振、 エンジン補機類の共振、駆動系の曲げ共振、駆動 系の連成共振、車体系の共振、 サスペンション構成部材の共振などが想定される。 また、 上記所定エンジン回転速度領域 NERは、例えば予め実験的に求めて記憶 された車両の振動騒音が乗員の快適性の観点等を考慮した所定値以上とするよう な車両の振動系の共振が発生しやすいエンジン回転速度領域であって約 2 0 0〜 3 0 O rpm程度が想定される。 この所定エンジン回転速度領域 NE Rは、 エンジン 回転速度 N E はもちろんであるがそれに加えて、例えば車速 V、 エンジン 8の可 変気筒の状態すなわち稼働しているェンジン 8の気筒数、 電磁駆動弁に代表され る可変サイクルエンジンのサイクル数等で表される車両状態に基づいて定められ てもよい。 これは、 同じエンジン回転速度 N E や車速 V等であっても上記車両状 態の違いにより変速機構 1 0の共振が発生したりしなかったりするためであり、 変速機構 1 0の共振の発生に影響を与える様々な車両状態を考慮して所定ェンジ ン回転速度領域 NE Rが定められる。
図 8は、 上記所定ェンジン回転速度領域 NE Rすなわち車両の振動騒音が所定値 以上となる振動発生領域 Aと、 ェンジン始動時にその振動発生領域 Aを第 1電動 機 M 1を用いて通過する作動とを図 3に相当する共線図上で説明する一例である 。 この図 8の ( a ) は、変速機構 1 ?0の第 1速ギヤ段の場合の共線図であり、 ( b ) は、変速機構 1 0の後進ギヤ段の場合の共線図である。
図 8において、 直線 L O a はエンジン回転停止状態のモータ走行時を示してお り、 また直線 L O b はそのモーター走行からエンジン走行に切り換えるエンジン 始動時に、 実線 Bに示すように第 1電動機 M 1を用いて第 1電動機回転速度 NM 1 (第 1サンギヤ S 1の回転速度、縦線 Y 1の回転速度) が引き上げられ、 ェンジ ン回転速度 N E (第 1キヤリャ C A 1の回転速度、縦線 Y 2の回転速度) が所定 エンジン回転速度 NE , に向かって引き上げられる途中の!犬態を示している。 ま た、 図 8の斜線で示した領域 Aは上記振動発生領域 Aであって、 所定エンジン回 転速度 NE ' 以下に存在している。 また、 第 2電動機回転速度 NM 2 (第 1リング ギヤ R 1の回転速度、 縦線 Y 3の回転速度) は、 車速 Vと自動変速部 2 0の変速 比ァとで一意的に決定される為、第 2電動機 M 2を用いてエンジン回転速度 NE が速やかに引き上げられないことが分かる。 そして、 エンジン始動時には、 直線 L O aから直線 L O bへのエンジン回転速度 NE の変化の過程において、前記ェ ンジン始動停止制御手段 8 0によりその振動発生領域 Aを速やかに通過するよう に、第 1電動機 M 1を用いてエンジン回転速度 N E が急速に引き上げられる。 また、 ハイプリッド制御手段 5 2は、 エンジン停止条件成立判定手段として機 能するものであって、 ェンジン 8への燃料供給を停止してェンジン 8を停止する ためのエンジン停止条件が成立したか否かを判定する。 例えば、 ハイブリツド制 御手段 5 2は、 図 7の実線 Bの点 b→点 aや点 c→点 aに示すように、 アクセル ぺダルが戻されて要求出力トルク T 0UT が小さくなり車両状態がェンジン走行領 域からモータ走行領域へ変化したときに、 ェンジン停止条件が成立したと判定す る。 或いは、 ハイブリツド制御手段 5 2は、上記車両停止状態でのエンジン運転 時に、蓄電装置 6 0の充電状態 S O Cを表す信号に基づいて実際の充電状態 S〇 Cが規定値以上であることを判断したときに、ェンジン停止条件が成立したと判 定する。 或いは、 ハイブリツド制御手段 5 2は、上記車両停止状態でのエンジン 運転時に、 エンジン水温 T E M PW を表す信号や触媒温度を表す信号に基づいて エンジン 8や触媒装置の暖機が完了したことを判断したときに、 エンジン停止条 件が成立したと判定する。 或いは、 ハイブリツド制御手段 5 2は、 アクセル開度 Accに基づいてアクセルオフの減速走行であることを判断したときに、 エンジン 停止条件が成立したと判定する
そして、 前記エンジン始動停止制御手段 8 0は、 ハイブリツド制御手段 5 2に よりェンジン停止条件が成立したと判定された場合にはェンジン 8の停止を実行 するエンジン停止制御手段として機能する。 例えば、 エンジン始動停止制御手段 8 0は、燃料噴射装置 9 8により燃料供給を停止させるように、 すなわちフュー エルカット作動によりエンジン 8の停止を行う。 このよう.に、 エンジン 8への燃 料供給が停止されてエンジン停止状態とされると、 エンジントルク T E が出力さ れず第 1電動機 M 1は反力トルクが発生させられない空転状態とされるので、 ェ ンジン回転速度 N E はエンジン回転停止状態すなわちエンジン回転速度 N E が零 となるように低下する。 '
また、 ハイプリッド制御手段 5 2は、 エンジン走行領域であっても、上述した 電気パスによる第 1電動機 M 1からの電気工ネルギおよび/または蓄電装置 6 0 からの電気工ネルギを第 2電動機 M 2へ供給し、 その第 2電動機 M 2を駆動して 駆動輪 3 8にトルクを付与することにより、 エンジン 8の動力を補助するための 所謂トルクアシストが可能である。 よって、 本実施例のェンジン走行には、 ェン ジン走行 +モ一夕走行も含むものとする。
また、 ハイプリッド制御手段 5 は、車両の停止状態又は低車速状態に拘わら ず、 差動部 1 1の電気的 C V T機能によってエンジン 8の運転状態を維持させら れる。 例えば、 車両停止時に蓄電装置 6 0の充電容量 S O Cが低下して第 1電動 機 M 1による発電が必要となった場合には、 エンジン 8の動力により第 1電動機 M 1が発電させられてその第 1電動機 M 1の回転速度が引き上げられ、 車速 Vで 一意的に決められる第 2電動機回転速度 NM 2が車両停止状態により零 (略零) と なっても動力分配機構 1 6の差動作用によってエンジン回転速度 NE が自律回転 可能な回転速度以上に維持される。
また、 ハイプリッド制御手段.5 2は、車両の停止中又は走行中に拘わらず、 差 動部 1 1の電気的 C VT機能によって第 1電動機回転速度 NM 1および/または第
2電動機回転速度 NM 2を制御してェンジン回転速度 NE を一定に維持したり任意 の回転速度に回転制御させられる。 言い換えれば、 ハイブリツド制御手段 5 2は 、 エンジン回転速度 NE を一定に維持したり任意の回転速度に制御しつつ第 1電 動機回転速度 NM ,および/または第 2電動機回転速度 NM 2を任意の回転速度に回 転制御することができる。 例えば、 図 3の共線図からもわかるようにハイブリツ ド制御手段 5 2はエンジン回転速度 NE を引き上げる場合には、車速 V (駆動輪
3 8 ) に拘束される第 2電動機回転速度 NM 2を略一定に維持しつつ第 1電動機回 転速度 NM ,の引き上げを実行する。
また、 ハイブリッド制御手段 5 2は、第 1電動機 M 1を空転させることすなわ ち第 1電動機 M 1により反力を発生させないことで差動部 1 1をトルクの伝達が 不能な状態すなわち差動部 1 1内の動力伝達経路が遮断された動力伝達遮断状態
(ニュートラル状態) と同等の状態とすることができる。
増速側ギヤ段判定手段 6 2は、変速機構 1 0を有段変速状態とする際に切換ク ラッチ C 0および切換ブレーキ B 0のいずれを係合させるかを判定するために、 例えば車両状態に基づいて記憶手段 5 6に予め記憶された前記図 7に示す変速線 図に従って変速機構 1 0の変速されるべき変速段が増速側ギヤ段例えば第 5速ギ ャ段であるか否かを判定する。
切換制御手段 5 0は、 車両状態に基づいて前記係合装置 (切換クラッチ C 0、 切換ブレーキ B 0 ) の係合/解放を切り換えることにより、前記無段変速状態と 前記有段変速状態とを、 すなわち前記差動状態と前記口ック状態とを選択的に切 り換える。 例えば、切換制御手段 5 0は、 記憶手段 5 6に予め記憶された前記図 7の破線および二点鎖線に示す関係(切換線図、 切換マップ) から車速 Vおよび 要求出力トルク T OUT で示される車両状態に基づいて、 変速機構 1 0 (差動部 1
1 ) の変速状態を切り換えるべきか否かを判断して、 すなわち変速機構 1 0を無 段変速状態とする無段制御領域内であるか或いは変速機構 1 0を有段変速状態と する有段制御領域内であるかを判定することにより変速機構 1 0の切り換えるべ き変速状態を判断して、 変速機構 1 0を前記無段変速状態と前記有段変速状態と のいずれかに選択的に切り換える変速状態の切換えを実行する。
具体的には、切換制御手段 5 0は有段変速制御領域内であると判定した場合は 、 ハイブリッド制御手段 5 2に対してハイブリッド制御或いは無段変速制御を不 許可すなわち禁止とする信号を出力するとともに、 有段変速制御手段 5 4に対し ては、 予め設定された有段変速時の変速を許可する。 このときの有段変速制御手 段 5 4は、記憶手段 5 6に予め記憶された例えば図 7に示す変速線図に従って自 動変速部 2 0の自動変速を実行する。 例えば記憶手段 5 6に予め記憶された図 2 は、 このときの変速において選択される油圧式摩擦係合装置すなわち C 0、 C 1 、 C 2、 B 0、 B l、 B 2、 B 3の作動の組み合わせを示している。 すなわち、 変速機構 1 0全体すなわち差動部 1 1および自動変速部 2 0が所謂有段式自動変 速機として機能し、 図 に示す係合表に従って変速段が達成される。
例えば、'増速側ギヤ段判定手段 6 2により第 5速ギヤ段が判定される場合には 、 変速機構 1 0全体として変速比が 1 . 0より小さな増速側ギヤ段所謂オーバ一 ドライブギヤ段が得られるために切換制御手段 5 0は差動部 1 1が固定の変速比 r 0例えば変速比ァ 0が 0 . 7の副変速機として機能させられるように切換クラ ツチ C 0を解放させ且つ切換ブレーキ B 0を係合させる指令を油圧制御回路 4 2 へ出力する。 また、 増速側ギヤ段判定手段 6 2により第 5速ギヤ段でないと判定 される場合には、 変速機構 1 0全体として変速比が 1 . 0以上の減速側ギヤ段が 得られるために切換制御手段 5 0は差動部 1 1が固定の変速比ァ 0例えば変速比 ァ 0が 1の副変速機として機能させられるように切換クラッチ C 0を係合させ且 つ切換ブレーキ B 0を解放させる指令を油圧制御回路 4 2へ出力する。 このよう に、切換制御手段 5 0によって変速機構 1 0が有段変速状態に切り換えられると ともに、 その有段変速状態における 2種類の変速段のいずれかとなるように選択 的に切り換えられて、 差動部 1 1が副変速機として機能させられ、 それに直列の 自動変速部 2 0が有段変速機として機能することにより、変速機構 1 0全体が所 謂有段式自動変速機として機能させられる。
しカヽし、切換制御手段 5 0は、変速機構 1 0を無段変速状態に切り換える無段 変速制御領域内であると判定した場合は、 変速機構 1 0全体として無段変速状態 が得られるために差動部 1 1を無段変速状態として無段変速可能とするように切 換クラッチ Cひおよび切換ブレーキ B 0を解放させる指令を油圧制御回路 4 2へ 出力する。 同時に、 ハイプリッド制御手段 5 に対してハイプリッド制御を許可 する信号を出力するとともに、有段変速制御手段 5 4には、 予め設定された無段 変速時の変速段に固定する信号を出力するか、 或いは記憶手段 5 6に予め記憶さ れた例えば図 7に示す変速線図に従って自動変速部 2 0を自動変速することを許 可する信号を出力する。 この場合、有段変速制御手段 5 4により、 図 2の係合表 内において切換クラッチ C ϋおよび切換ブレーキ B 0の係合を除いた作動により 自動変速が行われる。 このように、 切換制御手段 5 0により無段変速状態に切り 換えられた差動部 1 1が無段変速機として機能し、 それに直列の自動変速部 2 0 が有段変速機として機能することにより、 適切な大きさの駆動力が得られると同 時に、 自動変速部 2 0 'の第 1速、第 2速、 第 3速、 第 4速の各ギヤ段に対しその 自動変速部 2 0に入力される回転速度すなわち伝達部材 1 8の回転速度が無段的 に変化させられて各ギヤ段は無段的な変速比幅が得られる。 したがって、 その各 ギヤ段の間が無段的に連続変化可能な変速比となって変速機構 1 0全体として無 段変速状態となりトータル変速比ァ Τが無段階に得られるようになる。 変速機構 1 0の変速状態の切換えと図 5に示すような切換装置 9 0におけるシ フトレバー 9 2の操作との関連を以下に説明する。 例えば、 シフトレバ一 9 2が 「D」 ポジションへ操作された場合には、 図 7に示す予め記憶された変速マップ や切換マップに基づいて切換制御手段 5 0により変速機構 1 0の変速状態の自動 切換制御が実行され、 ハイプリッド制御手段 5 2により動力分配機構 1 6の無段 変速制御が実行され、 有段変速制御手段 5 4により自動変速部 2 0の自動変速制 御が実行される。 例えば、変速機構 1 0が有段変速状態に切り換えられる有段変 速走行時には変速機構 1 0が例えば図 1に示すような第 1速ギヤ段乃至第 5速ギ ャ段の範囲で自動変速制御され、 或いは変速機構 1 0が無段変速状態に切り換え られる無段変速走行時には変速機構 1 0が動力分配機構 1 6の無段的な変速比幅 と自動変速部 2 0の第 1速ギヤ段乃至第 4速ギヤ段の範囲で自動変速制御される 各ギヤ段とで得られる変速機構 1 0の変速可能なトータル変速比ァ Tの変化範囲 内で自動変速制御される。 この 「D」 ポジションは変速機構 1 0の自動変速制御 が実行される制御様式である自動変速走行モード (自動モード) を選択するシフ トポジションでもある。
また、例えば、 シフトレバ一 9' 2が 「M」 ポジションへ操作された場合には、 変速レンジの最高速側変速段或いは変速比を越えないように、 切換制御手段 5 0 、 ハイプリッド制御手段 5 2、 および有段変速制御手段 5 4により変速機構 1 0 の各変速レンジで変速可能なトータル変速比ァ Tの範囲で自動変速制御される ¾ 例えば、変速機構 1 0が有段変速状態に切り換えられる有段変速走行時には変速 機構 1 0が各変速レンジで変速機構 1 0が変速可能なトータル変速比ァ Tの範囲 で自動変速制御され、 或いは変速機構 1 0が無段変速状態に切り換えられる無段 変速走行時には変速機構 1 0が動力分配機構 1 6の無段的な変速比幅と各変速レ ンジに応じた自動変速部 2 0の変速可能な変速段の範囲で自動変速制御される各 ギヤ段とで得られる変速機構 1 0の各変速レンジで変速可能なトータル変速比ァ Tの範囲で自動変速制御.される。 この 「M」 ポジションは変速機構 1 0の手動変 速制御が実行される制御様式である手動変速走行モード (手動モード) を選択す るシフトポジシヨンでもある。 尚、 差動部 1 1を電気的な無段変速機として作動させるための電動機等の電気 系の制御機器の故障や機能低下時、 例えば第 1電動機 M 1における電気工ネルギ の発生からその電気エネルギが機械的エネルギに変換されるまでの電気パスに関 連する機器の機能低下すなわち第 1電動機 M 1、 第 2電動機 M 1、 ィンバ一タ 5 8、蓄電装置 6 0、 それらを接続する伝送路などの故障 (フェイル) や、 故障と か低温による機能低下が発生したような車両状態となる場合には、無段制御領域 であっても車両走行を確保するために切換制御手段 5 0は変速機構 1 0を優先的 に有段変速状態としてもよい。
ここで前記図 7について詳述すると、 図 7は自動変速部 2 0の変速判断の基と なる記憶手段 5 6に予め記憶された関係 (変速線図、 変速マップ) であり、 車速
Vと駆動力関連値である要求出力トルク T0UT とをパラメ一夕とする二次元座標 で構成された変速線図の一例である。 図 7の実線はアップシフト線であり一点鎖 線はダウンシフト線である。
また、 図 7の破線は切換制御手段 5 0による有段制御領域と無段制御領域との 判定のための判定車速 V Iおよび判定出力トルク T 1を示している。 つまり、 図 7の破線はハイプリッド車両の高速走行を判定するための予め設定された高速走 行判定値である判定車速 V 1の連なりである高車速判定線と、 ハイプリッド車両 の駆動力に関連する駆動力関連値例えば自動変速部 2 0の出力トルク Τουτ が高 出力となる高出力走行を判定するための予め設定された高出力走行判定値である 判定出力トルク T 1の連なりである高出力走行判定線とを示している。 さらに、 図 7の破線に対して二点鎖線に示すように有段制御領域と無段制御領域との判定 にヒステリシスが設けられている。 つまり、 この図 7は判定車速 V 1および判定 出力トルク T 1を含む、 車速 Vと出力トルク Τουτ とをパラメータとして切換制 御手段 5 0により有段制御領域と無段制御領域とのいずれであるかを領域判定す るための予め記憶された切換線図 (切換マップ、 関係) である。 なお、 この切換 線図を含めて変速マップとして記憶手段 5 6に予め記憶されてもよい。 また、 こ の切換線図は判定車速 V 1および判定出力トルク T 1の少なくとも 1つを含むも のであってもよいし、車速 Vおよび出力トルク T0UT の何れかをパラメータとす る予め記憶された切換線であってもよい。
上記変速線図、切換線図、 或いは駆動力源切換線図等は、 マップとしてではな く実際の車速 Vと判定車速 V 1とを比較する判定式、 出力トルク T 0 UT と判定出 力トルク T 1とを比較する判定式等として記憶されてもよい。 この場合には、 切 換制御手段 5 0は、車両状態例えば実際の車速が判定車速 V 1を越えたときに変 速機構 1 0を有段変速状態とする。 また、切換制御手段 5 0は、 車両状態例えば 自動変速咅 0の出力トルク Τ Ο ΥΤ が判定出力トルク Τ 1を越えたときに変速機 構 1 0を有段変速状態とする。
前記判定車速 V 1は、 例えば高速走行において変速機構 1 0が無段変速状態と されるとかえつて燃費が悪化するのを抑制するように、 その高速走行において変 速機構 1 0が有段変速状態とされるように設定されている。 また、前記判定トル ク Τ 1は、 例えば車両の高出力走行において第 1電動機 Μ 1の反力トルクをェン ジン 8の高出力域まで対応させないで第 1電動機 Μ 1を小型化するために、 第 1 電動機 Μ 1からの電気工ネルギの最大出力を小さくして配設可能とされた第 1電 動機 Μ 1の特性に応じて設定されている。
前記駆動力関連値とは、 車両め駆動力に 1対 1に対応するパラメータであって 、 駆動輪 3 8での駆動トルク或いは駆動力のみならず、 例えば自動変速部 2 0の 出力トルク Τ ΟΥΤ 、 エンジントルク T E 、車両加速度 Gや、例えばアクセル開度
Acc或いはスロットル弁開度 0 TH (或いは吸入空気量、 空燃比、燃料噴射量) と エンジン回転速度 N E とに基づいて算出されるエンジントルク T E などの実際値 や、 アクセル開度 Acc或いはスロットル弁開度 0 TH等に基づいて算出される要求
(目標) エンジントルク T E 、 自動変速部 2 0の要求(目標) 出力トルク T OUT
、要求駆動力等の推定値であってもよい。 また、 上記駆動トルクは出力トルク T OUT等からデフ比、駆動輪 3 8の半径等を考慮して算出されてもよいし、例えば トルクセンサ等によって直接検出されてもよい。 上記他の各トルク等も同様であ る。
図 9は、 エンジン回転速度 N E とエンジントルク T E とをパラメータとして切 換制御手段 5 0により有段制御領域と無段制御領域とのいずれであるかを領域判 定するための境界線としてのエンジン出力線を有し、 例えば記憶手段 5 6に予め 記憶された切換線図 (切換マップ、 関係) である。 切換制御手段 5 0は、 図 7の 切換線図に替えてこの図 9の切換線図からェンジン回転速度 N E とエンジントル ク T E とに基づいて、 それらのエンジン回転速度 N E とエンジントルク T E とで 表される車両状態が無段制御領域内であるか或いは有段制御領域内であるかを判 定してもよい。 また、 この図 9は図 7の破線を作るための概念図でもある。 言い 換えれば、 図 7の破線は図 9の関係図 (マップ) に基づいて車速 Vと出力トルク
T OUT とをパラメ一夕とする二次元座標上に置き直された切換線でもある。
図 7の関係に示されるように、 出力トルク Τ Ο ΥΤ が予め設定された判定出力卜 ルク T 1以上の高トルク領域、 或いは車速 Vが予め設定された判定車速 V 1以上 の高車速領域が、有段制御領域として設定されているので有段変速走行がェンジ ン 8の比較的高トルクとなる高駆動トルク時、 或いは車速の比較的高車速時にお いて実行され、無段変速走行がエンジン 8の比較的低トルクとなる低駆動トルク 時、 或いは車速の比較的低車速時すなわちェンジン 8の常用出力域において実行 されるようになつている。
同様に、 図 9の関係に示される'ように、 エンジントルク T E が予め設定された 所定値 T E 1以上の高トルク領域、 エンジン回転速度 N E が予め設定された所定 値 N E 1以上の高回転領域、 或いはそれらエンジントルク T E およびエンジン回 転速度 N E から算出されるエンジン出力が所定以上の高出力領域が、有段制御領 域として設定されているので、有段変速走行がェンジン 8の比較的高トルク、 比 較的高回転速度、 或いは比較的高出力時において実行され,、無段変速走行がェン ジン 8の比較的低トルク、 比較的低回転速度、 或いは比較的低出力時すなわちェ ンジン 8の常用出力域において実行されるようになっている。 図 9における有段 制御領域ど無段制御領域との間の境界線は、 高車速判定値の連なりである高車速 判定線および高出力走行判定値の連なりである高出力走行判定線に対応している。 これによつて、 例えば、 車両の低中速走行および低中出力走行では、 変速機構 1 0が無段変速状態とされて車両の燃費性能が確保されるが、実際の車速 Vが前 記判定車速 V 1を越えるような高速走行では変速機構 1 0が有段の変速機として 作動する有段変速状態とされ専ら機械的な動力伝達経路でェンジン 8の出力が駆 動輪 3 8へ伝達されて電気的な無段変速機として作動させる場合に発生する動力 と電気工ネルギとの間の変換損失が抑制されて燃:費が向上させられる。
また、 出力トルク T OUT などの前記駆動力関連値が判定トルク T 1を越えるよ うな高出力走行では変速機構 1 0が有段の変速機として作動する有段変速状態と され専ら機械的な動力伝達経路でェンジン 8の出力が駆動輪 3 8へ伝達されて電 気的な無段変速機として作動させる領域が車両の低中速走行および低中出力走行 となって、第 1電動機 M 1が発生すべき電気的エネルギ換言すれば第 1電動機 M 1が伝える電気的エネルギの最大値を小さくできて第 1電動機 M 1或いはそれを 含む車両の駆動装置が一層小型化される。
つまり、前記所定値 T E 1が第 1電動機 M 1が反力トルクを受け持つことがで きるエンジントルク TE の切換判定値として予め設定されると、 エンジントルク TE がその所定値 T E 1を超えるような高出力走行では、 差動部 1 1が有段変速 状態とされるため、 第 1電動機 M lは差動部 1 1が無段変速状態とされていると きのようにエンジントルク TE に対する反力トルクを受け持つ必要が無いので、 第 1電動機 M 1の^ 化が防止されつつその耐久性の低下が抑制される。 言い換 えれば、本実施例の第 1電動機 M 1は、 その最大出力がエンジントルク TE の最 大値に対して必要とされる反力トルク容量に比較して小さくされることで、 すな わちその最大出力を上記所定値 T E 1を超えるようなエンジントルク TE に対す る反力トルク容量に対応させないことで、 小型化が実現されている。
尚、上記第 1電動機 M 1の最大出力は、 この第 1電動機 M 1の使用環境に許容 されるように実験的に求められて設定されている第 1電動機 M 1の定格値である 。 また、上記ェンジントルク T E の切換判定値は、第 1電動機 M 1が反力トルク を受け持づことができるエンジントルク TE の最大値またはそれよりも所定値低 い値であって、 第 1電動機 M 1の耐久性の低下が抑制されるように予め実験的に 求められた値である。
また、他の考え方として、 この高出力走行においては燃費に対する要求より運 転者の駆動力に対する要求が重視されるので、 無段変速状態より有段変速状態( 定変速状態) に切り換えられるのである。 これによつて、ュ一ザは、例えば図 1 0に示すような有段自動変速走行におけるアップシフトに伴うエンジン回転速度
NE の変化すなわち変速に伴うリズミカルなエンジン回転速度 N E の変化が楽し める。
このように、本実施例の変速機構 1 0 (差動部 1 1、 動力分配機構 1 6 ) は無 段変速状態 (差動状態) と非無段変速状態 (有段変速状態、 ロック状態) とに選 択的に切換え可能であって、前記切換制御手段 5 0により車両状態に基づいて差 動部 1 1の切り換えるべき変速状態が判断され、差動部 1 1が無段変速状態と非 無段変速状態 (有段変速状態) とのいずれかに選択的に切り換えられる。
そして、 差動部 1 1の無段変速状態においては、 その電気的 C V T機能によつ て車速 V換言すれば伝達部材 1 8の回転速度に拘束されることなくエンジン回転 速度 NE が制御され得る。 よって、 エンジン始動の際には、 前記エンジン始動停 止制御手段 8 0により所定エンジン回転速度領域 NE Rが速やかに通過されるよう に、第 1電動機 M lを用いてエンジン回転速度 NE が速やかに引き上げられ得る。 し力、し、 差動部 1 1の有段変速状態においては、 エンジン 8と駆動輪 3 8との 間の動力伝達経路が機械的に連結きれてェンジン回転速度 N E は車速 Vに拘束さ れるので、 エンジン回転速度 N E が自由に制御され得ない。 よって、差動部 1 1 の無段変速状態の場合と異なり、 ェンジン始動停止制御手段 8 0により所定ェン ジン回転速度領域 NE Rが速やかに通過されるように、 第 1電動機 M 1を用いてェ ンジン回転速度 NE が速やかに引き上げられ得ない為、 エンジン 8の始動時に、 所定値以上の車両の振動騒音が発生する可能性があった。 例えば、差動部 1 1の 有段変速状態における走行中例えば有段走行中のェンジン始動停止制御手段 8 0 によるフユ"^エルカツト作動から復帰するエンジン始動時や、 図 7の実線 Bの点 a→点 cに示すように無段変速状態から有段変速状態へ切り換えられるときのェ ンジン始動時に、 所定値以上の車両の振動騒音が発生する可能性があった。
そこで、 前記切換制御手段 5 0は、 前述の機能に加えて、 ハイプリッド制御手 段 5 2によりエンジン始動条件が成立したと判定されて前記エンジン始動停止制 御手段 8 0によるエンジン 8の始動に際して、 ェンジン始動停止制御手段 8 0に より所定エンジン回転速度領域 N E Kが速やかに通過されるように、差動部 1 1の 変速状態を無段変速状態に維持するか、 或いは切換クラッチ C 0または切換ブレ —キ B 0を解放し差動部 1 1の変速状態を優先的 (強制的) に無段変速状態とす るェンジン始動時切換制御手段として機能する。
但し、 ハイプリッド制御手段 5 2によりエンジン始動条件が成立したと判定さ れて前記エンジン始動停止制御手段 8 0によるエンジン 8の始動に際して、 ェン ジン 8から駆動輪 3 8への動力伝達経路が動力伝達遮断状態とされている場合に は、 たとえ差動部 1 1の変速状態が有段変速状態とされていても、 エンジン 8と 駆動輪 3 8との間の動力伝達経路が機械的に連結されずエンジン回転速度 N E は 車速 Vに拘束されることなくエンジン回転速度 N E が制御され得る。 よって、 動 力伝達経路が動力伝達遮断状態とされている場合でのエンジン始動の際には、 差 動部 1 1の変速状態が無段変速状態であるか有段変速状態であるかに拘わらず、 前記エンジン始動停止制御手段 8 0により所定エンジン回転速度領域 N E Rが速ゃ かに通過され得る。
シフトポジション判定手段 8 2は、 シフトポジション P S Hを表す信号に基づい て現在シフトレバ一 9 2がいずれのポジションとなっているか、 或いはシフ小レ バ一9 2がいずれのポジションへ操作されたかを判定する。 例えば、 シフトポジ ション判定手段 8 2は、 シフトポジション P S Hを表す信号に基づいてシフトレバ - 9 2が 「P」 ポジション或いは 「N」 ポジション、 すなわちエンジン 8から駆 動輪 3 8への動力伝達経路が動力伝達遮断状態とされる非駆動ポジションである か否かを判定する。 或いは、 シフトポジション判定手段 8 2は、 シフトポジショ ン P S Hを表す信号に基づいてシフトレバ一 9 2が 「R」 ポジション、 「D」 ポジ シヨン或いは 「M」 ポジション、 すなわちエンジン 8から駆動輪 3 8への動力伝, 達経路が動力伝達可能状態とされている駆動ポジションであるか否かを判定する。 そして、 前記切換制御手段 5 0は、 ハイプリッド制御手段 5 2によりエンジン 始動条件が成立したと判定されて前記エンジン始動停止制御手段 8 0によるェン ジン 8の始動に際して、 エンジン 8から駆動輪 3 8への動力伝達経路が動力伝達 可能状態であるときに、 すなわち上記シフトポジション判定手段 8 2によりシフ トレバー 9 2のシフトポジシヨン P S Hが前記駆動ポジションであると判定された ときに、 エンジン始動停止制御手段 8 0により所定エンジン回転速度領域 N E Rが 速やかに通過されるように、 差動部 1 1の変速状態を無段変速状態に維持するか 、 或いは切換クラッチ C 0または切換ブレーキ B 0を解放し差動部 1 1の変速状 態を優先的 (強制的) に無段変速状態とする。
ところで、 ハイブリツド制御手段 5 2によりエンジン始動条件が成立したと判 定されて前記ェンジン始動停止制御手段 8 0によりエンジン 8の始動が行われる 際に、所定値以上の車両の振動騒音が発生しないような場合には、 エンジン始動 停止制御手段 8 0により所定エンジン回転速度領域 N E Rが速やかに通過されるよ うに差動部 1 1の変速状態が優先的(強制的) に無段変速状態とされる必要はな い。
上記所定値以上の車両の振動騒音が発生しないような場合とは、例えば、 ェン ジン始動時にェンジン回転速度 N E が既に所定ェンジン回転速度領域 N E Rを超え ており、 エンジン始動停止制御手段 8 0によりエンジン回転速度 N E が所定ェン ジン回転速度 N E ' 以上に引き上げられる際に所定エンジン回転速度領域 N E Rを 通過しないような場合である。 言い換えれば、 エンジン始動時にエンジン回転速 度 N E が所定エンジン回転速度領域 N E Rを超えていない場合には、 エンジン始動 停止制御手段 8 0によりエンジン回転速度 N E が所定エンジン回転速度 N e , 以 上に引き上げられる際に所定エンジン回転速度領域 N E Rを通過する為、 車両の振 動騒音が所定値以上となる可能性がある。
振動発生領域判定手段 8 4は、 ハイプリッ ド制御手段 5 , 2によりエンジン始動 条件が成立したと判定されて前記エンジン始動停止制御手段 8 0によりエンジン 8の始動が行われるに際して、 車両の振動騒音を所定値以上とするような車両の 振動系の共振が発生するか否かを、例えば実際のエンジン回転速度 N E が振動発 生領域としての所定エンジン回転速度領域 N E Rを超えていないか否かで判定する。 そして、 前記切換制御手段 5 0は、ハイブリッド制御手段 5 2によりェンジン 始動条件が成立したと判定されて前記エンジン始動停止制御手段 8 0によるェン ジン 8の始動の際に車両の振動騒音が所定値以上となるときに、 すなわち上記振 動発生領域判定手段 8 4により実際のエンジン回転速度 NE が所定エンジン回転 速度領域 NERを超えていないと判定されたときに、 ェンジン始動停止制御手段 8 0により所定エンジン回転速度領域 NE Rが速やかに通過されるように、 差動部 1 1の変速状態を無段変速状態に維持するか、 或いは切換クラッチ C 0または切換 ブレーキ B 0を解放し差動部 1 1の変速状態を優先的 (強制的) に無段変速状態 とする。
ェンジン始動時にェンジン回転速度 N E が既に所定ェンジン回転速度領域 N ER を超えているときとは、 具体的には、 エンジン 8から駆動輪 3 8への動力伝達経 路が動力伝達可能状態であって、差動部 1 1の変速状態が有段変速状態とされて いるときに、車速 Vと自動変速部 2 0の変速比ァとで一意的に決定されるェンジ ン回転速度 NE 、 すなわち車速 Vに拘束されるエンジン回転速度 NE が所定ェン ジン回転速度領域 NERを超える程車速 Vが上昇しているようなときが想定される。 このとき、特に、 エンジン回転速度 N E が更に所定エンジン回転速度 N e , を 超えているようなときには、 エンジン始動停止制御手段 8 0は、 第 1電動機 M l を用いてエンジン回転速度 NE を所定エンジン回転速度 NE ' 以上に引き上げる 必要はなく、 そのまま燃料噴射装置 9 8により燃料供給させ且つ点火装置 9 9に より点火させるようにしてエンジン 8の始動を行う。
有段変速状態判定手段 8 6は、ハイプリッド制御手段 5 2によりエンジン始動 条件が成立したと判定されて前記エンジン始動停止制御手段 8 0によりエンジン 8の女台動が行われるに際して、 シフトポジション判定手段 8 2によりシフトレバ 一 9 2のシフトポジション P SHが前記駆動ポジションであ,ると判定されたときに は、 動力分配機構 1 6がロック状態 (連結状態) すなわち差動部 1 1が有段変速 状態とされているか否かを判定する。 有段変速状態判定手段 8 6は、 差動部 1 1 が有段変速状態とされている否かを、 例えば切換制御手段 5 0により変速機構 1 0が有段変速状態とされているか否かで判定する。 '
そして、前記振動発生領域判定手段 8 4は、 有段変速状態判定手段 8 6により 差動部 1 1が有段変速状態とされていると判定されたときに、 車両の振動騒音が 所定値以上となるか否かを判定する。 前記切換制御手段 5 0は、 エンジン 8の始動が行われる際に差動部 1 1の変速 状態を無段変速状態に維持するか、 或いは差動部 1 1の変速状態を優先的 (強制 的) に無段変速状態とするときは、 少なくとも所定期間 T s は差動部 1 1を無段 変速状態とする。 すなわち、少なくとも所定期間 T s は切換制御手段 5 0による 差動部 1 1の有段変速状態への切換えが禁止される。
例えば、 上記所定期間 T s は、 エンジン 8が実際に燃料供給され且つ始動点火 されるまでである。 或いは、上記所定期間 T s は、 エンジン 8の始動が開始され てからすなわち第 1電動機 M 1によるエンジン回転速度 N E の引上げが実行され てから、 エンジン回転速度 N E が所定エンジン回転速度 N E ' 以上に引き上げら れて燃料供給され且つ点火されるまでの始動に要する時間として予め実験的に求 められて記憶された所定始動時間 Aである。
具体的には、 切換制御手段 5 0は、 前記エンジン始動停止制御手段 8 0による エンジン 8の始動が完了されるまでは、 すなわちエンジン始動停止制御手段 8 0 によりエンジン回転速度 NE が所定エンジン回転速度 N E ' 以上に引き上げられ て実際にエンジン 8への燃料供給と点火が行われるまでは、少なくとも差動部 1 1の変速状態を無段変速状態とする。 或いは、切換制御手段 5 0は、 エンジン始 動停止制御手段 8 0によるエンジン 8の始動が開始されてから始動に要する所定 始動時間 Aは、 少なくとも差動部 1 1の変速状態を無段変速状態とする。
図 1 1は、電子制御装置 4 0の制御作動の要部すなわちエンジン始動時に所定 値以上の車両の振動騒音が発生しないようにする制御作動を説明するフローチヤ ートであり、 例えば数 m s e c乃至数十 m s e c程度の極めて短いサイクルタイ ムで繰り返し実行される。
また、 図 1 2は、 図 1 1のフローチャートに示す制御作動を説明するタイムチ ャ一トであり、例えばモータ走行中にァクセルペダルが大きく踏み込まれて車両 状態が図 7の実線 Bの点 a→点 cに示すように変化し ことにより、 エンジン走 行への切換えのためのエンジン始動と、 差動部 1 1の無段変速状態から有段変速 状態への切換えとが判断された場合の例である。
先ず、前記ハイプリッド制御手段 5 2に対応するステップ(以下、 ステップを 省略する) S 1において、 エンジン 8を始動するためのエンジン始動条件が成立 したか否かが判定される。 例えば、 図 7の実線 Bの点 a—点 cに示すように、 ァ クセルペダルが踏込操作されて要求出力トルク Τ ο υτ が大きくなり車両状態がモ
—夕走行領域からエンジン走行領域へ変化したときに、 エンジン始動条件が成立 したと判定される。 或いは、 車両が停止状態且つエンジン停止状態において、 図
7のモータ走行領域を超える要求出力トルク T 0 UT とされる程大きくアクセルべ ダルが踏込操作されるような車両状態となるようなェンジン急発進のときに、 ェ ンジン始動条件が成立したと判定される。
図 1 2の 時点は、 アクセルオンによりエンジン 8の始動条件が成立したと 判定され、 且つ図 1 1のフローチャートには示してないが切換制御手段 5 0によ り差動部 1 1の変速状態の有段変速状態への切換えが判断されたことを示してい る。
上記 S 1の判断が否定される場合は本ルーチンが終了させられるが、 肯定され る場合は前記シフトポジション判定手段 8 2に対応する S 2において、 シフトポ ジション P S Hを表す信号に基づいてシフトレバー 9 2が 「P」 ポジション或いは 「N」 ポジション、すなわちェシジン 8から駆動輪 3 8への動力伝達経路が動力 伝達遮断状態とされる非駆動ポジションであるか否かが判定される。
上記 S 2の判断が否定される場合は前記有段変速状態判定手段 8 6に対応する S 3において、 動力分配機構 1 6が口ック状態 (連結状態) すなわち差動部 1 1 が有段変速状態とされているか否かが、例えば切換制御手段 5 0により変速機構 1 0が有段変速状態とされているか否かで判定される。 ,
上記 S 3の判断が肯定される場合は前記振動発生領域判定手段 8 4に対応する S 4において、 車両の振動騒音を所定値以上とするような車両の振動系の共振が 発生するか否かが、例えば実際のエンジン回転速度 N E が振動発生領域としての 所定エンジン回転速度領域 N E Rを超えていないか否がで判定される。 この S 4の 判断が肯定される場合は前記切換制御手段 5 0に対応する S 5において、 切換ク ラッチ C 0または切換ブレーキ B 0を解放し差動部 1 1の変速状態が少なくとも 所定期間 T s は優先的 (強制的) に無段変速状態とされる。 前記 S 3の判断が否定される場合は前記切換制御手段 5 0に対応する図示しな いステップにおいて、 差動部 1 1の変速状態が無段変速状態に維持される。 この とき少なくとも前記所定期間 T s は切換制御手段 5 0による差動部 1 1の有段変 速状態への切換えが禁止される。
前記 S 2の判断が肯定されるか、前記 S 3の判断が否定されるか、 或いは前記 S 4の判断が否定される場合、 或いは前記 S 5に続いて前記エンジン始動停止制 御手段 8 0に対応する S 6において、 車両の振動騒音が所定値以上となる車両の 振動系の共振が発生しゃすい所定ェンジン回転速度領域 NERを速やかに通過でき て始動時の振動騒音が抑制されるように、 第 1電動機 M 1に通電して第 1電動機 回転速度 NM 1を速やかに引き上げることで、 エンジン回転速度 NE を急速に所定 エンジン回転速度 NE , 以上に引き上げ、 燃料噴射装置 9 8により燃料供給させ 且つ点火装置 9 9により点火させるようにしてエンジン 8の始動が行われる。 但し、前記 S 2の判断が肯定された場合は、 エンジン 8から駆動輪 3 8への動 力伝達経路が動力伝達遮断状態とされる為、 車両の振動系の共振が発生し難かつ たり、振動騒音が伝達され難い場合が考えられるので、 その場合にはエンジン回 転速度 NE を急速に所定エンジン回転速度 NE , 以上に引き上げる必要はない。 また、前記 S 4の判断が否定される場合に、 エンジン回転速度 NE が既に所定ェ ンジン回転速度 NE , を超えているようなときには、 第 1電動機 M lを用いてェ ンジン回転速度 N E を所定エンジン回転速度 N e , 以上に引き上げる必要はない ので、 そのまま燃料噴射装置 9 8により燃料供給させ且つ点火装置 9 9により点 火させるようにしてエンジン 8の始動が行われる。
図 1 2の 1 2 点乃至 1 4 時点は、差動部 1 1の有段変速状態への切換えが禁止 されている前記所定期間 T s であって、 その期間に第 1電動機回転速度 NM 1が速 やかに弓 Iき上げられてェンジン回転速度 N E が急速に所定ェンジン回転速度 N E , に引き上げられたことを示している。 そして、 t 4 時点に示すように、所定ェ ンジン回転速度 NE , で燃料供給且つ点火によりエンジン 8の始動が行われる。 これにより、エンジン始動時の振動騒音が抑制される。
図 1 2の実施例では上記所定期間 Ts は、 エンジン 8の始動が開始されてから すなわち第 1電動機 M 1によるエンジン回転速度 N E の引上げが実行されてから 、 エンジン 8の始動が完了されるまですなわち実際に燃料供給と点火が行われる までであるが、 図 1 1の破線 Bに示すようにェンジン 8の始動が完了されてから エンジン 8の運転状態が安定するまでの余裕の時間として予め実験的に求められ た所定時間 B経過後まででもよい。 また、 この所定期間 T s は、 エンジン 8の始 動が開始されてから始動に要する前記所定始動時間 Aであつてもよい。
上述のように、本実施例によれば、 ェンジン始動停止制御手段 8 0によるェン ジン 8の始動に際して、切換制御手段 5 0により差動部 1 1の変速状態が無段変 速状態に維持されるか、 或いは切換クラッチ C 0または切換ブレーキ B 0を解放 し差動部 1 1の変速状態が優先的(強制的) に無段変速状態とされるので、 ェン ジン回転速度 N E が車速 Vに拘束されることがある差動部 1 1の有段変速状態と 異なり、エンジン回転速度 NE が所定エンジン回転速度 NE ' 以上に速やかに引 き上げられ、所定エンジン回転速度領域 NE Rを速やかに通過され得て、 エンジン の始動時に車両の振動騒音の発生が抑制され得る。
また、本実施例によれば、前記ェンジン始動停止制御手段 8 0は、 第 1電動機 M 1を用いてエンジン回転速度 N'E を所定エンジン回転速度 NE ' 以上に引き上 げるので、 エンジン 8の始動時に実際のエンジン回転速度 NE が所定エンジン回 転速度領域 N E Rを速やかに通過され得る。
また、本実施例によれば、前記切換制御手段 5 0は、 エンジン 8の始動の際に 車両の振動騒音が所定値以上となるときに、 すなわちエンジン 8の始動の際に所 定ェンジン回転速度領域 N ERを通過するときに、 差動部 1. 1の変速状態を無段変 速状態とするので、 エンジン 8の始動に際してその所定エンジン回転速度領域 N E Rを速やかに通過され得て、 エンジン 8の始動時に車両の振動騒音の発生が抑制 され得る。'
また、本実施例によれば、前記切換制御手段 5 0は、 エンジン 8から駆動輪 3 8への動力伝達経路が動力伝達可能状態であるときに、差動部 1 1の変速状態を 無段変速状態とするので、 動力伝達経路が動力伝達可能状態のときに差動部 1 1 が有段変速状態とされてエンジン回転速度 NE が車速 Vに拘束される場合と異な り、 エンジン回転速度 NE が所定エンジン回転速度領域 N E Rを速やかに通過され 得て、 ェンジン 8の始動時に車両の振動騒音の発生が抑制され得る。
また、 本実施例によれば、前記切換制御手段 5 0は、前記エンジン始動停止制 御手段 8 0によるエンジン 8の始動が完了されるまでは、 差動部 1 1の変速状態 を無段変速状態とするので、 ェンジン 8の始動中はェンジン回転速度 NE が所定 ェンジン回転速度領域 N E Rを速やかに通過され得て、 ェンジンの始動時に車両の 振動騒音の発生が抑制され得る。
また、本実施例によれば、前記切換制御手段 5 0は、前記エンジン始動停止制 御手段 8 0によるエンジン 8の始動が開始されてからその始動に要する前記所定 始動時間 Aは、 差動部 1 1の変速状態を無段変速状態とするので、 エンジン 8の 始動中はェンジン回転速度 NE が所定ェンジン回転速度領域 NE Rを速やかに通過 され得て、 ェンジンの始動時に車両の振動騒音の発生が抑制され得る。
[実施例 2 ]
次に、本発明の他の実施例を説明する。 なお、以下の説明において実施例相互 に共通する部分には同一の符号を付して説明を省略する。
前述の実施例では、 ェンジン始動時に所定値以上の車両の振動騒音が発生しな いようにする制御作動を説明したが、本実施例ではエンジン停止時に、特に車両 走行中のェンジン停止時に所定値以上の車両の振動騒音が発生しないようにする 制御作動を説明する。
図 1 3は、 電子制御装置 4 0による制御機能の要部を説明する機能ブロック線 図であって、 図 6に相当する図である。
図 1 3において、 エンジン停止制御手段として機能する前記エンジン始動停止 制御手段 8' 0は、 ハイプリッド制御手段 5 2によりエンジン停止条件が成立した と判定された場合には、燃料噴射装置 9 8により燃料供給を停止させるようにす なわちフューエルカツト作動によりエンジン 8の停止を行ったが、 それに加えて 、 エンジン始動停止制御手段 8 0は、 前記所定エンジン回転速度領域 NERを速や かに通過できてエンジン回転停止時の振動および/または騒音が抑制されるよう に、 このエンジン停止時には、 第 1電動機 M 1に通電して第 1電動機回転速度 N M 1を速やかに引き下げることで積極的にエンジン回転速度 NE を速やかに所定ェ ンジン回転速度領域 NE R以下に引き下げる。 これにより、 フューエルカット作動 によるエンジン 8の停止によってエンジン回転速度 N E が回転停止状態すなわち 零となるように自然に低下する場合に比較して、 所定エンジン回転速度領域 N ER を速やかに通過できて停止時の振動騒音が抑制される。
図 1 4は、所定エンジン回転速度領域 NE Rすなわち車両の振動騒音が所定値以 上となる振動発生領域 Aと、 エンジン停止時にその振動発生領域 Aを第 1電動機 M 1を用いて通過する作動とを図 3に相当する共線図上で説明する一例であって 、 前記図 8に相当する。 この図 1 4は、変速機構 1 0の第 1速ギヤ段と第 4速ギ ャ段の場合の共線図である。
図 1 4において、 直線 L O b はそのモータ一走行に切り換えられる前のェンジ ン走行時を示しており、 直線 L O aはエンジン回転停止状態のモータ走行時を示 している。 また、 図 1 4の斜線で示した領域 Aは上記振動発生領域 Aであって、 前記所定エンジン回転速度 NE , 以下に存在している。 また、第 2電動機回転速 度 NM 2 (第 1リングギヤ R 1の回転速度、 縦線 Y 3の回転速度) は、 車速 Vと自 動変速部 2 0の変速比ァとで一意的に決定される為、 第 1電動機 M 2を用いてェ ンジン回転速度 NE が速やかに引き下げられないことが分かる。 そして、 ェンジ ン停止時には、 直線 L O b から直線 L O aへのエンジン回転速度 N E の変化の過 程において、前記エンジン始動停止制御手段 8 0によりその振動発生領域 Aを速 やかに通過するように、第 1電動機 M lを用いてエンジン回転速度 N E が積極的 に (急速に) 引き下げられる。
前述したように、本実施例の変速機構 1 0は無段変速状態と非無段変速状態と に選択的に切換え可能であって、前記切換制御手段 5 0により車両状態に基づい て差動部 1 1の切り換えるべき変速状態が判断され、 差動部 1 1が無段変速状態 と非無段変速状態(有段変速状態) とのいずれかに選択的に切り換えられる。 そして、 差動部 1 1の無段変速状態においては、 その電気的 C V T機能によつ て車速 V換言すれば伝達部材 1 8の回転速度に拘束されることなくェンジン回転 速度 NE が制御され得る。 よって、 エンジン停止の際には、 前記エンジン始動停 止制御手段 8 0により所定エンジン回転速度領域 N ERが速やかに通過されるよう に、第 1電動機 M 1を用いてエンジン回転速度 NE が速やかに引き下げられ得る。 し力、し、 差動部 1 1の有段変速状態においては、 エンジン 8と駆動輪 3 8との 間の動力伝達経路が機械的に連結されてエンジン回転速度 N E は車速 Vに拘束さ れるので、 エンジン回転速度 NE が自由に制御され得ない。 よって、差動部 1 1 の無段変速状態の場合と異なり、 エンジン始動停止制御手段 8 0により所定ェン ジン回転速度領域 NERが速やかに通過されるように、 第 1電動機 M lを用いてェ ンジン回転速度 NE が速やかに引き下げられ得ない為、 エンジン 8の停止時に、 所定値以上の車両の振動騒音が発生する可能性があった。 例えば、差動部 1 1の 有段変速状態における走行中にアクセルオフの減速走行とするときのェンジン停 止時に、所定値以上の車両の振動騒音が発生する可能性があつた。
そこで、前記切換制御手段 5 0は、前述のエンジン始動時切換制御手段として の機能に替えて或いは加えて、 ハイプリッド制御手段 5 2によりエンジン停止条 件が成立したと判定されて前記エンジン始動停止制御手段 8 0によるエンジン 8 の停止に際して、 エンジン始動停止制御手段 8 0により所定エンジン回転速度領 域 NERが速やかに通過されるように、 差動部 1 1の変速状態を無段変速状態に維 持するか、 或いは切換クラッチ C 0または切換ブレーキ B 0を解放し差動部 1 1 の変速状態を優先的 (強制的) に無段変速状態とするエンジン停止時切換制御手 段として機能する。
但し、 ハイブリツド制御手段 5 2によりエンジン停止条件が成立したと判定さ れて前記ェンジン始動停止制御手段 8 0によるエンジン 8の停止に際して、 ェン ジン 8から駆動輪 3 8への動力伝達経路が動力伝達遮断状態とされている場合に は、 たとえ差動部 1 1の変速状態が有段変速状態とされていても、 エンジン 8と 駆動輪 3 8との間の動力伝達経路が機械的に連結されずェンジン回転速度 N E は 車速 Vに拘束されることなくエンジン回転速度 NE が制御され得る。 よって、 動 力伝達経路が動力伝達遮断状態とされている場合でのエンジン停止の際には、 差 動部 1 1の変速状態が無段変速状態であるか有段変速状態であるかに拘わらず、 前記エンジン始動停止制御手段 8 0により所定エンジン回転速度領域 N E Rが速や かに通過され得る。 従って、 ここでの切換制御手段 5 0による差動部 1 1の無段 変速状態への切換えは、 車雨走行時のェンジン停止が想定される。
車両走行中判定手段 8 8は、 車両が走行中であるか否かを判定する。 例えば、 車両走行中判定手段 8 8は、 シフトレバ一 9 2が 「D」 ポジション或いは 「M」 ポジション、 すなわちェンジン 8から駆動輪 3 8への動力伝達経路が動力伝達可 能状態とされている駆動ポジションであって、且つ車速 Vが走行中であると判定 される為の予め定められた所定値以上であるか否かによつて、車両が走行中であ るか否かを判定する。
そして、 前記切換制御手段 5 0は、 ハイプリッ ド制御手段 5 2によりエンジン 停止条件が成立したと判定されて前記エンジン始動停止制御手段 8 0によるェン ジン 8の停止に際して、 上記車両走行中判定手段 8 8により車雨が走行中である と判定されたときに、 エンジン始動停止制御手段 8 0により所定エンジン回転速 度領域 N E Rが速やかに通過されるように、 差動部 1 1の変速状態を無段変速状態 に維持するか、 或いは切換クラッチ C 0または切換ブレーキ B 0を解放し差動部 1 1の変速状態を優先的 (強制的) に無段変速状態とする。
ところで、 ハイブリツド制御手段 5 2によりエンジン停止条件が成立したと判 定されて前記ェンジン始動停止制御手段 8 0によりエンジン 8の停止が行われる 際に、所定値以上の車両の振動騒音が発生しないような場合には、 エンジン始動 停止制御手段 8 0により所定エンジン回転速度領域 N E Rが速やかに通過されるよ うに差動部 1 1の変速状態が優先的 (強制的) に無段変速状態とされる必要はな い。
上記所定値以上の車両の振動騒音が発生し いような場合とは、例えば、 ェン ジン停止時にェンジン回転速度 N E が既に所定ェンジン回転速度領域 N E Rを下回 つており、 エンジン始動停止制御手段 8 0によりェン'ジン回転速度 N E が回転停 止状態に向かって引き下げられる際に所定エンジン回転速度領域 N E Rを通過しな いような場合である。 言い換えれば、 エンジン停止時にエンジン回転速度 N E が 所定ェンジン回転速度領域 N E Rを超えている場合には、 ェンジン始動停止制御手 段 8 0によりエンジン回転速度 NE が引き下げられる際に所定エンジン回転速度 領域 N ERを通過する為、 車両の振動騒音が所定値以上となる可能性がある。
前記振動発生領域判定手段 8 4は、 前述の機能に替えて或いは加えて、 ハイブ リッ ド制御手段 5 2によりエンジン停止条件が成立したと判定されて前記ェンジ ン始動停止制御手段 8 0によりエンジン 8の停止が行われるに際して、 車両の振 動騒音を所定値以上とするような車両の振動系の共振が発生するか否かを、 すな わちェンジン停止時に振動発生領域としての所定ェンジン回転速度領域 N E Rを通 過するか否かを、例えば実際のエンジン回転速度 N E が所定エンジン回転速度領 域 N E Rを超えているか否かで判定する。
そして、 前記切換制御手段 5 0は、 ハイブリッド制御手段 5 2によりエンジン 停止条件が成立したと判定されて前記ェンジン始動停止制御手段 8 0によるェン ジン 8の停止の際に車両の振動騒音が所定値以上となるときに、 すなわち上記振 動発生領域判定手段 8 4により実際のエンジン回転速度 NE が所定エンジン回転 速度領域 NE Rを超えていると判定されたときに、 エンジン始動停止制御手段 8 0 により所定エンジン回転速度領域 NE Rが速やかに通過されるように、 差動部 1 1 の変速状態を無段変速状態に維持するか、 或いは切換クラッチ C 0または切換ブ レーキ B 0を解放し差動部 1 1の変速状態を優先的 (強制的) に無段変速状態と する。
ェンジン停止時にェンジン回転速度 NE が既に所定ェンジン回転速度領域 N ER を下回っているときとは、 例えば、 エンジン 8から駆動輪 3 8への動力伝達経路 が動力伝達可能状態であって差動部 1 1の変速状態が有段変速状態とされている ときに、 すなわち有段変速走行時に、 車速 Vが低車速であったり、 トータル変速 比ァ 0が小さかったり (高車速側ギヤ比であったり) して、車速 Vに拘束される ェンジン回転速度 E が所定ェンジン回転速度領域 N E Rより低回転であるような 場合が想定される。 '
この場合には、 ェンジ.ン始動停止制御手段 8 0は、 第 1電動機 M 1を用いてェ ンジン回転速度 NE を強制的に引き上げる必要はなく、 そのまま燃料噴射装置 9 8により燃料供給を停止させてエンジン 8の停止を ί亍ぅ。 無段変速状態判定手段 8 9は、 ハイプリッド制御手段 5 2によりエンジン停止 条件が成立したと判定されて前記エンジン始動停止制御手段 8 0によりエンジン 8の停止が行われるに際して、前記車両走行中判定手段 8 8により車両が走行中 であると判定されたときには、 動力分配機構 1 6が差動状態すなわち差動部 1 1 が無段変速状態とされているか否かを判定する。 無段変速状態判定手段 8 9は、 差動部 1 1が無段変速状態とされている否かを、 例えば切換制御手段 5 0により 変速機構 1 0が無段変速状態とされているか否かで判定する。
そして、前記振動発生領域判定手段 8 4は、 上記無段変速状態判定手段 8 9に より差動部 1 1が無段変速状態とされていないと判定されたときに、 車両の振動 騒音が所定値以上となるか否かを判定する。
前記切換制御手段 5 0は、 エンジン 8の停止が行われる際に差動部 1 1の変速 状態を無段変速状態に維持するか、或いは差動部 1 1の変速状態を優先的 (強制 的) に無段変速状態とするときは、少なくとも所定時間 t D は差動部 1 1を無段 変速状態とする。 すなわち、少なくとも所定時間 t D は切換制御手段 5 0による 差動部 1 1の有段変速状態への切換えが禁止される。
例えば、上記所定時間 t D は、'エンジン 8の停止が開始されてからすなわち第 1電動機 M lによるエンジン回転速度 NE の引き下げが実行されてから、 ェンジ ン回転速度 N E が実際に回転停止状態とされるまでの停止に要する時間として予 め実験的に求められて記憶された所定停止時間 Aである。 或いは、 この所定時間 t D は、エンジン 8の停止が開始されてから、 エンジン回転速度 N E が実際に所 定エンジン回転速度領域 N ERを下回る回転速度へ引き下げられるまでの停止に要 する時間として予め実験的に求められて記憶された所定停止時間 Bであつても良 い。
つまり、切換制御手段 5 0は、 前記ェンジン始動停止制御手段 8 0によるェン ジン 8の停止が完了されるまでは、少なくとも差動部' 1 1の変速状態を無段変速 状態とする。
図 1 5は、電子制御装置 4 0の制御作動の要部すなわちエンジン停止時に所定 値以上の車両の振動騒音が発生しないようにする制御作動を説明するフローチヤ —トであり、 例えば数 m s e c乃至数十 m s e c程度の極めて短いサイクルタイ ムで繰り返し実行される。
また、 図 1 6は、 図 1 5のフローチャートに示す制御作動を説明するタイムチ ヤー卜であり、 例えば差動部 1 1の有段変速状態におけるエンジン走行中にァク セルペダルが戻されたことにより、 フユ一エル力ットのためのェンジン停止が判 断された場合の例である。
先ず、前記ハイプリッド制御手段 5 2に対応する S B 1において、 エンジン 8 を停止するためのエンジン停止条件が成立したか否かが判定される。 例えば、 ァ クセルぺダルが戻されてアクセルオフとされたときに、 ェンジン停止条件が成立 したと判定される。
図 1 6の t i 時点は、 アクセルオフによりエンジン 8の停止条件が成立したと 判定されたことを示している。
上記 S B 1の判断が否定される場合は本ルーチンが終了させられるが、肯定さ れる場合は前記車両走行中判定手段 8 8に対応する S B 2において、 車両が走行 中であるか否かが判定される。
上記 S B 2の判断が否定される場合は本ルーチンが終了させられるが、肯定さ れる場合は fl己無段変速状態判定手段 8 9に対応する S B 3において、 動力分配 機構 1 6が差動状態すなわち差動部 1 1が無段変速状態とされているか否かが、 例えば切換制御手段 5 0により変速機構 1 0が無段変速状態とされているか否か で判定される。
上記 S B 3の判断が否定される場合は前記振動発生領域判定手段 8 4に対応す る S B 4において、 車両の振動騒音を所定値以上とするような車両の振動系の共 振が発生するか否かが、例えば実際のエンジン回転速度 N E が所定エンジン回転 速度領域 N E Rを超えているか否かで判定される。
上記 S B 4の判断が肯定される場合は前記切換制御手段 5 0に対応する S B 5 において、 切換クラッチ C 0または切換ブレーキ B 0を解放し差動部 1 1の変速 状態が少なくとも所定時間 t D は優先的 (強制的) に無段変速状態とされる。 前記 S B 3の判断が肯定される場合は前記切換制御手段 5 0に対応する図示し ないステップにおいて、 差動咅 ΙΠ 1の変速状態が無段変速状態に維持される。 こ のとき少なくとも前記所定時間 t D は切換制御手段 5 0による差動部 1 1の有段 変速状態への切換えが禁止される。
前記 S B 3の判断が肯定されるか、 或いは前記 S B 4の判断が否定される場合 、或いは前記 S B 5に続いて前記エンジン始動停止制御手段 8 0に対応する S B 6において、 燃料噴射装置 9 8により燃料供給が停止されるように、 すなわちフ ユーエルカット作動によりエンジン 8の停止が行われる。 そして、 この S B 6に 続いて同じくェンジン始動停止制御手段 8 0に対応する S B 7において、前記所 定ェンジン回転速度領域 N E Rを速やかに通過できてエンジン回転停止時の振動お よび/または騒音が抑制されるように、 第 1電動機 M lに通電して第 1電動機回 転速度 NM 1を速やかに引き下げることで積極的にエンジン回転速度 N E を速やか に所定ェンジン回転速度領域 N E R以下に引き下げてェンジン 8の停止が行われる。 上記 S B 6において実行されたフューエル力ット作動は、前記 S B 2の判断が 肯定された場合に実行されても良い。 この場合には、 S B 6に続いて前記 S B 3 が実行される。
図 1 6の 2 時点は、 アクセル'オフによりエンジン 8の停止条件が成立してか ら予め定められた所定時間 t A経過後にェンジン 8のフユ一エル力ット作動が行 われたことを示している。 この図 1 6は、 図 1 5のフローチャートにおいて S B 2の判断が肯定された場合に S B 6のフューエルカツト作動が実行される場合の 実施例である。
また、 図 1 6の t 3 時点は、 エンジン 8のフューエルカツト作動が開始してか ら予め定められた所定時間 t B 経過後に差動部 1 1を無段変速状態へ切換える指 令が出力されたことを示している。
また、 図 1 6の t 4 時点は、 差動部 1 1を無段変速状態へ切換える指令が出力 されてから予め定められた所定時間 t c 経過後に第 1電動機 M 1によりエンジン 回転速度 N E を回転停止状態へ向かって積極的に低下させる指令がィンバ一夕 5 8に出力されたことを示している。 そして、 t 4 時点以降の差動部 1 1の変速状 態が無段変速状態に維持される前記所定時間 t D において、 第 1電動機回転速度 NM 1を速やかに引き下げることで積極的にエンジン回転速度 NE を速やかに所定 エンジン回転速度領域 NE R以下に引き下げてエンジン 8が回転停止される。 これ により、 ェンジン停止時の振動騒音が抑制される。
図 1 6の実施例では上記所定時間 t D は、 エンジン 8の停止が指示されてから すなわち第 1電動機 M 1によるエンジン回転速度 NE の引き下げが実行されてか らエンジン 8の停止が完了されるまでの所定停止時間 Aであるが、差動部 1 1を 無段変速状態へ切換える指令が出力されてからエンジン 8の停止が完了されるま での所定停止時間 Cであつても良い。
また、 図 1 6の 2 時点乃至 1 4 時点に示すように、 フューエル力ットされた エンジン 8の引き摺りによるポンピングロスなどを補償する為に第 I電動機 M 2 による出力トルクを増加させても良い。
上述のように、本実施例によれば、 エンジン始動停止制御手段 8 0によるェン ジン 8の停止に際して、切換制御手段 5 0により差動部 1 1の変速状態が無段変 速状態に維持されるか、 或いは切換クラッチ C 0または切換ブレーキ B 0を解放 し差動部 1 1の変速状態が優先的 (強制的) に無段変速状態とされるので、 ェン ジン回転速度 NE が車速 Vに拘束されることがある差動部 1 1の有段変速状態と 異なり、 エンジン回転速度 NE が所定エンジン回転速度領域 NE R以下に速やかに 弓 Iき下げられ、 その所定エンジン回転速度領域 N E Rを速やかに通過されて、 ェン ジンの停止時に車両の振動騒音の発生が抑制され得る。
また、本実施例によれば、前記エンジン始動停止制御手段 8 0は、 第 1電動機 M lを用いてエンジン回転速度 NE を所定エンジン回転速度領域 NER以下に引き 下げるので、 エンジン 8の停止時に実際のエンジン回転速度 NE が所定エンジン 回転速度領域 N ERを速やかに通過され得る。
また、 本実施例によれば、 前記切換制御手段 5 0は、 エンジン 8の停止の際に 車両の振動騒音が所定値以上となるときに、 すなわち ンジン 8の停止の際に所 定エンジン回転速度領域 NE Rを通過するときに、 差動部 1 1の変速状態を無段変 速状態とするので、 エンジン 8停止に際してその所定エンジン回転速度領域 NER を速やかに通過され得て、 ェンジン 8の停止時に車両の振動騒音の発生が抑制さ れ ί守
また、 本実施例によれば、前記切換制御手段 5 0は、 エンジン 8から駆動輪 3 8への動力伝達経路が動力伝達可能状態であるときに、例えば車両走行中に、 差 動部 1 1の変速状態を無段変速状態とするので、 動力伝達経路が動力伝達可能状 態のときに差動部 1 1が有段変速状態とされてェンジン回転速度 Ν Ε が車速 Vに 拘束される場合と異なり、 エンジン回転速度 Ν Ε が所定エンジン回転速度領域 Ν E Rを速やかに通過され得て、 エンジン 8の停止時に車両の振動騒音の発生が抑制 され得る。
また、本実施例によれば、 前記切換制御手段 5 0は、前記エンジン始動停止制 御手段 8 0によるエンジン 8の停止が完了されるまでは、 差動部 1 1の変速状態 を無段変速状態とするので、 エンジン 8の停止中はエンジン回転速度 Ν Ε が所定 ェンジン回転速度領域 N E Rを速やかに通過され得て、 ェンジンの停止時に車両の 振動騒音の発生が抑制され得る。
また、本実施例によれば、前記切換制御手段 5 0は、前記エンジン始動停止制 御手段 8 0によるエンジン 8の停止が開始されてからその停止に要する前記所定 停止時間 Αは、 差動部 1 1の変速状態を無段変速状態とするので、 エンジン 8の 停止中はェンジン回転速度 N E が所定ェンジン回転速度領域 NE Rを速やかに通過 され得て、 ェンジンの停止時に車両の振動騒音の発生が抑制され得る。 [実施例 3 ]
図 1 7は本発明の他の実施例における変速機構 7 0の構成を説明する骨子図、 図 1 8はその変速機構 7 0の変速段と油圧式摩擦係合装置の係合の組み合わせと の関係を示す係合表、 図 1 9はその変速機構 7 0の変速作動を説明する共線図で める。
変速機構 7 0は、前述の実施例と同様に第 1電動機 M 1、 動力分配機構 1 6、 および第 2電動機 M 2を備えている差動部 1 1と、 その差動部 1 1と出力軸 2 2 との間で伝達部材 1 8を介して直列に連結されている前進 3段の自動変速部 7 2 とを備えている。 動力分配機構 1 6は、例えば 「0 . 4 1 8」程度の所定のギヤ 比 /0 1を有するシングルピニオン型の第 1遊星歯車装置 2 4と切換クラッチ C 0 および切換ブレーキ B 0とを有している。 自動変速部 7 2は、 例えば 「0 . 5 3 2 J 程度の所定のギヤ比 p 2を有するシングルピニォン型の第 2遊星歯車装置 1 6と例えば「0 . 4 1 8」 程度の所定のギヤ比; 0 3を有するシングルピニオン型 の第 3遊星歯車装置 2 8とを備えている。 第 2遊星歯車装置 2 6の第 2サンギヤ S 2と第 3遊星歯車装置 2 8の第 3サンギヤ S 3とが一体的に連結されて第 2ク ラッチ C 2を介して伝達部材 1 8に選択的に連結されるとともに第 1ブレーキ B 1を介してケース 1 2に選択的に連結され、第 2遊星歯車装置 2 6の第 2キヤリ ャ C A 2と第 3遊星歯車装置 2 8の第 3リングギヤ R 3とがー体的に連結されて 出力軸 1 2に連結され、 第 2リングギヤ R 2は第 1クラッチ C 1を介して伝達部 材 1 8に選択的に連結され、第 3キヤリャ C A 3は第 2ブレーキ B 2を介してケ —ス 1 1に選択的に連結されている。
以上のように構成された変速機構 7 0では、 例えば、 図 1 8の係合作動表に示 されるように、 前記切換クラッチ C 0、 第 1クラッチ C 1、 第 2クラッチ C 2、 切換ブレーキ B 0、 第 1ブレーキ B 1、 および第 2ブレーキ B 2が選択的に係合 作動させられることにより、第 ί速ギヤ段(第 1変速段)乃至第 4速ギヤ段(第 4変速段) のいずれか或いは後進ギヤ段 (後進変速段)或いはニュートラルが選 択的に成立させられ、 略等比的に変化する変速比ァ (=入力軸回転速度 Ν Ι Ν /出 力軸回転速度 Ν ο υτ ) が各ギヤ段毎に得られるようになつている。 特に、本実施 例では動力分配機構 1 6に切換クラッチ C 0および切換ブレーキ Β 0が備えられ ており、 切換クラッチ C 0および切換ブレーキ Β 0の何れかが係合作動させられ ることによって、 差動部 1 1は前述した無段変速機として作動する無段変速状態 に加え、変速比が一定の変速機として作動する定変速状態を構成することが可能 とされている。 したがって、変速機構 7 0では、 切換クラッチ C 0および切換ブ レーキ Β 0の何れかを係合作動させることで定変速状態とされた差動部 1 1と自 動変速部 7 とで有段変速機として作動する有段変速状態が構成され、 切換クラ ツチ C 0および切換ブレーキ Β 0の何れも係合作動させないことで無段変速状態 とされた差動部 1 1と自動変速部 7 2とで電気的な無段変速機として作動する無 段変速状態が構成される。 言い換えれば、 変速機構 7 0は、 切換クラッチ C Oお よび切換ブレーキ B 0の何れかを係合作動させることで有段変速状態に切り換え られ、切換クラッチ C 0および切換ブレーキ B 0の何れも係合作動
させないことで無段変速状態に切り換えられる。
例えば、 変速機構 7 0が有段変速機として機能する場合には、 図 1 8に示すよ うに、切換クラッチ C 0、第 1クラッチ C 1および第 2ブレーキ B 2の係合によ り、 変速比ァ 1が最大値例えば 「 2 . 8 0 4」 程度である第 1速ギヤ段が成立さ せられ、切換クラッチ C 0、第 1クラッチ C 1および第 1ブレーキ B 1の係合に より、変速比ァ 2が第 1速ギヤ段よりも小さい値例えば 「 1 . 5 3 1」程度であ る第 2速ギヤ段が成立させられ、 切換クラッチ C 0、第 1クラッチ C 1および第 2クラッチ C 2の係合により、 変速比ァ 3が第 2速ギヤ段よりも小さい値例えば 「1 . 0 0 0」 程度である第 3速ギヤ段が成立させられ、 第 1クラッチ C 1、 第 2クラッチ C 2、 および切換ブレーキ B 0の係合により、 変速比ァ 4が第 3速ギ ャ段よりも小さい値例えば 「0 . 7 .0 5」 程度である第 4速ギヤ段が成立させら れる。 また、 第 2クラッチ C 2および第 2ブレーキ B 2の係合により、変速比ァ Rが第 1速ギヤ段と第 2速ギヤ段との間の値例えば 「 2 . 3 9 3」 程度である後 進ギヤ段が成立させられる。 なお、 ニュートラル 「N」 状態とする場合には、例 えば切換クラッチ C 0のみが係合される。
しカヽし、 変速機構 7 0が無段変速機として機能する場合には、 図 1 8に示され る係合表の切換クラッチ C 0および切換ブレーキ B 0が共に解放される。 これに より、差動部 1 1が無段変速機として機能し、 それに直列の自動変速部 7 2が有 段変速機として機能することにより、 自動変速部 7 2の第 1速、 第 2速、第 3速 の各ギヤ段に対しその自動変速部 7 2に入力される回転速度すなわち伝達部材 1 8の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる 。 したがって、 その各ギヤ段の間が無段的に連続変化可能な変速比となって変速 機構 7 0全体としてのトータル変速比 7 Tが無段階に得られるようになる。 図 1 9は、無段変速部或いは第 1変速部として機能する差動部 1 1と有段変速 部或いは第 1変速部として機能する自動変速部 7 から構成される変速機構 7 0 において、 ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線 上で表すことができる共線図を示している。 切換クラッチ C 0および切換ブレー キ B 0が解放される場合、 および切換クラッチ C 0または切換ブレーキ B 0が係 合させられる場合の動力分配機構 1 6の各要素の回転速度は前述の場合と同様で ある。
図 1 9における自動変速部 7 2の 4本の縦線 Y 4、 Y5、 Y6、 Y7は、 左か ら順に、 第 4回転要素(第 4要素) R Ε 4に対応し且つ相互に連結された第 1サ ンギヤ S 2および第 3サンギヤ S 3を、 第 5回転要素 (第 5要素) RE 5に対応 する第 3キヤリャ C A 3を、 第 6回転要素 (第 6要素) RE 6に対応し且つ相互 に連結された第 2キヤリャ CA2および第 3リングギヤ R 3を、第 7回転要素 ( 第 7要素) RE 7に対応する第 2リングギヤ R 1をそれぞれ表している。 また、 自動変速部 72において第 4回転要素 RE 4は第 2クラッチ C 2を介して伝達部 材 1 8に選択的に連結されるとともに第 1ブレーキ B 1を介してケース 1 2に選 択的に連結され、 第 5回転要素 RE 5は第 2ブレーキ B 2を介してケース 1 2に 選択的に連,結され、第 6回転要素 RE 6は自動変速部 72の出力軸 2 2に連結さ れ、 第 7回転要素 R E 7は第 1クラッチ C 1を介して伝達部材 1 8に選択的に連 結されている。
自動変速 ¾572では、 図 1 9に示すように、第 1クラッチ C 1と第 2ブレーキ B 2とが係合させられることにより、 第 7回転要素 RE 7 (R2) の回転速度を 示す縦線 Y 7と横線 X との交点と第 5回転要素 R E 5 (CA3) の回転速度を 示す縦線 Y 5と横線 X 1との交点とを通る斜めの直線 L 1.と、 出力軸 2 2と連結 された第 6回転要素 RE 6 (CA2, R 3) の回転速度を示す縦線 Y 6との交点 で第 1速の出力軸 2 2の回転速度が示される。 同様に、第 1クラッチ C 1と第 1 ブレーキ B 1とが係合させられることにより決まる斜めの直線 L 2と出力軸 2 2 と連結された第 6回転要素 RE 6の回転速度を示す縦線 Y6との交点で第 2速の 出力軸 2 2の回転速度が示され、 第 1クラッチ C 1と第 2クラッチ C とが係合 させられることにより決まる水平な直線 L' 3と出力軸 2 2と連結された第 6回転 要素 R E 6の回転速度を示す縦線 Y 6との交点で第 3速の出力軸 12の回転速度 が示される。 上記第 1速乃至第 3速では、切換クラッチ C 0が係合させられてい る結果、 エンジン回転速度 N E と同じ回転速度で第 7回転要素 R E 7に差動部 1 1からの動力が入力される。 し力、し、 切換クラッチ C 0に替えて切換ブレーキ B 0が係合させられると、 差動部 1 1からの動力がエンジン回転速度 N E よりも高 い回転速度で入力されることから、第 1クラッチ C 1、 第 2クラッチ C 2、 およ び切換ブレーキ B 0が係合させられることにより決まる水平な直線 L 4と出力軸 2 2と連結された第 6回転要素 R E 6の回転速度を示す縦線 Y 6との交点で第 4 速の出力軸 2 2の回転速度が示される。
本実施例の変速機構 7 0においても、無段変速部或いは第 1変速部として機能 する差動部 1 1と、有段変速部或いは第 1変速部として機能する自動変速部 7 2 とから構成されるので、前述の実施例と同様の効果が得られる。
[実施例 4 ]
図 2 0は、手動操作により動力分配機構 1 6の差動状態と非差動状態 (ロック 状態) すなわち変速棒構 1 0の無段変速状態と有段変速状態との切換えを選択す るための変速状態手動選択装置としてのシーソー型スィッチ 4 4 (以下、 スイツ チ 4 4と表す) の一例でありユーザにより手動操作可能に車両に備えられている 。 このスィッチ 4 4は、 ユーザが所望する変速状態での車両走行を選択可能とす るものであり、無段変速走行に対応するスィッチ 4 4の無段と表示された無段変 速走行指令釦或いは有段変速走行に対応する有段と表示された有段変速走行指令 釦がユーザにより押されることで、 それぞれ無段変速走行すなわち変速機構 1 0 を電気的な無段変速機として作動可能な無段変速状態とするか、 或いは有段変速 走行すなわち変速機構 1 0を有段変速機として作動可能な有段変速状態とするか が選択可能とされる。
前述の実施例では、 例えば図 7の関係図から車両状態の変化に基づく変速機構 1 0の変速状態の自動切換制御作動を説明したが、 その自動切換制御作動に替え て或いは加えて例えばスィツチ 4 4が手動操作されたことにより変速機構 1 0の 変速状態が手動切換制御される。 つまり、切換制御手段 5 0は、 スィッチ 4 4の 無段変速状態とするか或いは有段変速状態とするかの選択操作に従つて優先的に 変速機構 1 0を無段変速状態と有段変速状態とに切り換える。 例えば、 ユーザは 無段変速機のフィ一リングゃ燃費改善効果が得られる走行を所望すれば変速機構
1 0が無段変速状態とされるように手動操作により選択する。 またユーザは有段 変速機の変速に伴うリズミカルなエンジン回転速度 N E の変化を所望すれば変速 機構 1 0が有段変速状態とされるように手動操作により選択する。
但し、前記切換制御手段 5 0は、変速機構 1 0を有段変速状態とするようにス イッチ 4 4の選択操作が行われたとしても、 ハイブリツド制御手段 5 2によりェ ンジン始動条件が成立したと判定されて前記ェンジン始動停止制御手段 8 0によ りエンジン 8の始動が行われる際には、 エンジン始動停止制御手段 8 0により所 定エンジン回転速度領域 N E Rが速やかに通過されるように、 差動部 1 1の変速状 態を優先的に無段変速状態に維持するか、 或いは切換クラッチ C 0または切換ブ レーキ B 0を解放し差動部 1 1の変速状態を優先的 (強制的) に無段変速状態と する。 或いは、 切換制御手段 5 0は、 変速機構 1 0を有段変速状態とするように スィッチ 4 4の選択操作が行われたとしても、 ハイブリツド制徒!]手段 5 2により エンジン停止条件が成立したと判定されて前記エンジン始動停止制御手段 8 0に よりエンジン 8の停止が行われる際には、 エンジン始動停止制御手段 8 0により 所定エンジン回転速度領域 N E Rが速やかに通過されるように、 差動部 1 1の変速 状態を優先的に無段変速状態に維持するか、 或いは切換クラッチ C 0または切換 ブレーキ B 0を解放し差動部 1 1の変速状態を優先的(強制的) に無段変速状態 とする。
また、 スィッチ 4 4に無段変速走行或いは有段変速走行の何れも選択されない 状態である中立位置が設けられる場合には、 スィッチ 4 4がその中立位置の状態 であるときすなわちユーザによつて所望する変速状態が選択されていないときや 所望する変速状態が自動切換のときには、 変速機構 1 0の変速状態の自動切換制 御作動が実行されればよい。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の 態様においても適用される。 例えば、 前述の実施例では有段変速状態判定手段 8 6 (図 1 1のステップ S 3 ) は、差動部 1 1が有段変速状態とされている否かを、 切換制御手段 5 0により 変速機構 1 0が有段変速状態とされているか否かで判定したが、 例えば図 7に示 す切換線図から車速 Vと出力トルク Τουτ とで表される車両状態に基づいて有段 制御領域内であるか否かによって判定してもよい。 或いは、 スィッチ 4 4の選択 操作に基づいて車両が有段変速走行中であるか否かを判定してもよい。
また、前述の実施例では無段変速状態判定手段 8 9 (図 1 5のステップ S B 3 ) は、差動部 1 1が無段変速状態とされている否かを、 切換制御手段 5 0により 変速機搆 1 0が無段変速状態とされているか否かで判定したが、 例えば図 7に示 す切換線図から車速 Vと出力トルク Τουτ とで表される車両状態に基づいて無段 制御領域内であるか否かによって判定してもよい。 或いは、 スィッチ 4 4の選択 操作に基づいて車両が無段変速走行中であるか否かを判定してもよい。
また、前述の実施例では、 エンジン始動停止制御手段 8 0は、 エンジン 8の始 動および停止を行うものであつたが、 実施例 1においては少なくともエンジン 8 の始動を行うエンジン始動制御手段として機能するものであればよく、 エンジン 8の停止を行うェンジン停止制御手段がそのェンジン始動制御手段とは別に備え られてもよい。 或いは、 エンジン始動停止制御手段 8 0は、 エンジン 8の始動お よび停止を行うものであつたが、 実施例 2においては少なくともエンジン 8の停 止を行うエンジン停止制御手段として機能するものであればよく、 エンジン 8の 始動を行うェンジン始動制御手段がそのェンジン停止制御手段とは別に備えられ てもよい。 また、 エンジン始動停止制御手段 8 0は、 第 1電動機 M lを用いてェ ンジン回転速度 NE を引き上げてエンジン始動を実行したが、 エンジン始動専用 の電動機を用いてエンジン回転速度 NE を引き上げてエンジン始動を実行しても よい。 或いは、 エンジン始動停止制御手段 8 0は、 第 1電動機 M lを用いてェン ジン回転速度 NE を引き下げてエンジン停止を実行したが、 エンジン停止専用の 電動機を用いてエンジン回転速度 N E を引き下げてェンジン停止を実行してもよ い。 或いは、 エンジン始動停止制御手段 8 0は、 フューエルカツ卜より先に、 第 1電動機回転速度 NM ,を引き下げてェンジン回転速度 N E を引き下げてもよい。 6 また、前述の実施例の変速機構 1 0、 7 0は、 差動部 1 1 (動力分配機構 1 6 ) が電気的な無段変速機として作動可能な差動状態とそれを非作動とする非差動 状態 (ロック状態) とに切り換えられることで無段変速状態と有段変速状態とに 切り換え可能に構成され、 この無段変速状態と有段変速状態との切換えは差動部 1 1が差動状態と非差動状態とに切換えられることによって行われていたが、例 えば差動部 1 1が差動状態のままであっても差動部 1 1の変速比を連続的ではな く段階的に変化させることにより有段変速機として機能させられ得る。 言い換え れば、 差動部 1 1の差動状態/非差動状態と、変速機構 1 0、 7 0の無段変速状 態/有段変速状態とは必ずしも一対一の関係にある訳ではないので、差動部 1 1 は必ずしも無段変速状態と有段変速状態とに切換可能に構成される必要はなく、 変速機構 1 0、 7 0 (差動部 1 1、 動力分配機構 1 6 ) が差動状態と非差動状態 とに切換え可能に構成されれば本発明は適用され得る。
また、前述の実施例の動力分配機構 1 6では、 第 1キヤリャ C A 1がエンジン 8に連結され、 第 1サンギヤ S 1が第 1電動機 M 1に連結され、 第 1 リングギヤ R 1が伝達部材 1 8に連結されていたが、 それらの連結関係、は、 必ずしもそれに 限定されるものではなく、 エンジン 8、 第 1電動機 M l、 伝達部材 1 8は、 第 1 遊星歯車装置 2 4の 3要素 C A 1、 S l、 R 1のうちのいずれと連結されていて も差し支えない。
また、前述の実施例では、 エンジン 8は入力軸 1 4と直結されていたが、例え ばギヤ、 ベルト等を介して作動的に連結されておればよく、共通の軸心上に配置 される必要もない。
また、前述の実施例では、 第 1電動機 M 1および第 2電動機 M 2は、 入力軸 1 4に同心に配置されて第 1電動機 M 1は第 1サンギヤ S 1に連結され第 2電動機 M 2は伝達部材 1 8に連結されていたが、必ずしもそのように配置される必要は なく、 例えばギヤ、 ベルト、 減速機等を介して作動的に第 1電動機 M 1は第 1サ ンギヤ S 1に連結され、第 2電動機 M 2は伝達部材 1 8に連結されてもよい。 ま た、 第 2電動機 M 2が伝達部材 1 8に連結されていたが、 出力軸 1 2に連結され ていてもよいし、 自動変速部 2 0、 7 2内の回転部材に連結されていてもよい。 7 第 2電動機 M 2がギヤ、 ベルト、 減速機等を介して伝達部材 1 8や出力軸 2 2等 に連結される様な形態も、 伝達部材から駆動輪への動力伝達経路に設けられたー 態様である。
また、前述の動力分配機構 1 6には切換クラッチ C 0および切換ブレーキ B 0 が備えられていたが、 切換クラッチ C 0および切換ブレーキ B 0は必ずしも両方 備えられる必要はない。 また、 上記切換クラッチ C Oは、 サンギヤ S 1とキヤリ ャ C A 1とを選択的に連結するものであつたが、 サンギヤ S 1とリングギヤ R 1 との間や、 キヤリャ C A 1とリングギヤ R 1との間を選択的に連糸吉するものであ つてもよい。 要するに、 第 1遊星歯車装置 2 4の 3要素のうちのいずれか 2つを 相互に連結するものであればよい。
また、 前述の実施例の変速機構 1 0、 7 0では、 ニュートラル 「N」 とする場 合には切換クラッチ C 0が係合されていたが、 必ずしも係合される必要はない。 また、前述の実施例では、 切換クラッチ C 0および切換ブレーキ B 0などの油 圧式摩擦係合装置は、 パウダ一 (磁粉) クラッチ、電磁クラッチ、 嚙み合い型の ドグクラッチなどの磁粉式、電磁式、.機械式係合装置から構成されていてもよい。 また、 前述の実施例では、 動力伝達経路を、 動力伝達可能状態と動力伝達遮断 状態とに選択的に切り換える係合装置として自動変速部 2 0、 7 2の一部を構成 する第 1クラッチ C 1および第 2クラッチ C 2が用いられ、 その第 1クラッチ C 1および第 2クラッチ C 2は自動変速部 2 0、 7 2と差動部 1 1との間に配設さ れていたが、必ずしも第 1クラッチ C 1および第 2クラッチ C 2である必要はな く動力伝達可能状態と動力伝達遮断状態とに動力伝達経路を選択的に切り換えら れる係合装置が少なくとも 1つ備えられておればよい。 例えばその係合装置は出 力軸 2 2に連結されていてもよいし自動変速部 2 0、 7 2内の回転部材に連結さ れていてもよい。 また、 上記係合装置は自動変速部 2 0、 7 2の一部を構成する 必要もなく自動変速部 2 0 . 7 2とは別に備えられて'もよい。
また、 前述の実施例では、 差動部 1 1すなわち動力分配機構 1 6の出力部材で ある伝達部材 1 8と駆動輪 3 ·8との間の動力伝達経路に、 自動変速部 2 0、 7 2 が介挿されていたが、例えば自動変速機の一種である無段変速機 ( C V T ) 、 手 動変速機としてよく知られた常時嚙合式平行 2軸型ではあるがセレクトシリンダ およびシフトシリンダによりギヤ段が自動的に切り換えられることが可能な自動 変速機、手動操作により変速段が切り換えられる同期嚙み合い式の手動変速機等 の他の形式の動力伝達装置(変速機) が設けられていてもよい。 その無段変速機 ( C V T ) の場合には、 動力分配機構 1 6が定変速状態とされることで全体とし て有段変速状態とされる。 有段変速状態とは、 電気パスを用いないで専ら機械的 伝達経路で動力伝達することである。 或いは、上記無段変速機は有段変速機にお ける変速段に対応するように予め複数の固定された変速比が記憶され、 その複数 の固定された変速比を用いて自動変速部 2 0、 7 2の変速が実行されてもよい。 或いは、 自動変速部 2 0、 7 2は必ずしも備えられてなくとも本発明は適用され 得る。 この場合のように自動変速部 2 0、 7 2が無段変速機 ( C V T ) である場 合或いは自動変速部 2 0、 7 2が備えられない場合には、 伝達咅 15材 1 8と駆動輪 3 8との動力伝達経路に係合装置が単独で備えられその係合装置の係合と解放と を制御することで動力伝達経路が動力伝達可能状態と動力伝達遮断状態とに切り 換えられる。
また、前述の実施例では、 自動変速部 2 0、 7 2は伝達部材 1 8を介して差動 部 1 1と直列に連結されていたが、 入力軸 1 4と平行にカウンタ軸が設けられそ のカウンタ軸上に同心に自動変速部 2 0、 7 2が配設されてもよい。 この場合に は、差動部 1 1と自動変速部 2 0、 7 2とは、 例えば伝達部材 1 8としてのカウ ン夕ギヤ対、 スプロケットおよびチヱーンで構成される 1組の伝達部材などを介 して動力伝達可能に連結される。
また、前述の実施例の差動機構としての動力分配機構 1 6は、 例えばエンジン によつて回転駆動されるピニォンと、 そのピニォンに嚙み合う一対のかさ歯車が 第 1電動機 M 1および第 2電動機 M 2に作動的に連結された差動歯車装置であつ てもよい。 '
また、前述の実施例の動力分配機構 1 6は、 1組の遊星歯車装置から構成され ていたが、 2以上の遊星歯車装置から構成されて、 非差動状態 (定変速状態) で は 3段以上の変速機として機能するものであってもよい。 また、 その遊星歯車装 置はシングルピニォン型に限られたものではなくダブルピニォン型の遊星歯車装 置であってもよい。
また、 前述の実施例の切換装置 9 0は、 複数種類のシフトポジションを選択す るために操作されるシフトレバー 9 2を備えていたが、 そのシフトレバー 9 2に 替えて、 例えば押しボタン式のスィッチゃスライド式スィッチ等の複数種類のシ フトポジションを選択可能なスィツチ、或いは手動操作に因らず運転者の音声に 反応して複数種類のシフトポジションを切り換えられる装置や足の操作により複 数種類のシフトポジションを切り換えられる装置等であってもよい。 また、 シフ トレバー 9 2が 「M」 ポジションへ操作されることにより、変速レンジが設定さ れるものであつたが変速段が設定されることすなわち各変速レンジの最高速変速 段が変速段として設定されてもよい。 この場合、 自動変速部 2 0、 7 2では変速 段が切り換えられて変速が実行される。 例えば、 シフトレバー 9 2が 「M」 ポジ シヨンにおけるアップシフト位置 「十」 またはダウンシフト位置 「一」 へ手動操 作されると、 自動変速部 2 0では第 1速ギヤ段乃至第 4速ギヤ段の何れかがシフ トレバ一 9 2の操作に応じて設定される。
また、前述の実施例のスィッチ 4 4はシーソー型のスィッチであつたが、例え ば押しボタン式のスィッチ、 択一的にのみ押した状態が保持可能な 1つの押しボ タン式のスィッチ、 レバ一式スィッチ、 スライド式スィッチ等の少なくとも無段 変速走行 (差動状態) と有段変速走行(非差動状態) とが択一的に切り換えられ るスィッチであればよい。 また、 スィッチ 4 4に中立位置が設けられる場合にそ の中立位置に替えて、 スィッチ 4 4の選択状態を有効或いは無効すなわち中立位 置相当が選択可能なスィツチがスィツチ 4 4とは別に設けられてもよい。 また、 スィッチ 4 4に替えて或いは加えて、手動操作に因らず運転者の音声に反応して 少なくとも'無段変速走行 (差動状態) と有段変速走ネ亍(非差動状態) とが択一的 に切り換えられる装置や足の操作により切り換えられ 装置等であつてもよい。 なお、 上述したのはあくまでも一実施形態であり、 本発明は当業者の知識に基 づレヽて種々の変更、改良を加えた態様で実施することができる。

Claims

請求の範囲
1 . エンジンと、 該エンジンの出力を第 1電動機および伝達部材へ分配する差動機 構と該伝達部材から駆動輪への動力伝達経路に設けられた第 1電動機とを有して 電気的な無段変速機として作動可能な無段変速部とを備えた車両用駆動装置の制 御装置であって、
前記差動機構に備えられ、前記無段変速部を電気的な無段変速作動可能な無段 変速状態とするための解放状態と前記無段変速部を電気的な無段変速作動しない 非無段変速状態とするための係合状態とに選択的に切り換えられる差動状態切換 装置と、
前記ェンジンの始動に際して、前記無段変速咅を前記無段変速状態とするェン ジン始動時切換制御手段と
を、 含むことを特徴とする車両用駆動装置の制御装置。
2 . 前記第 1電動機を用いてェンジン回転速度を所定ェンジン回転速度以上に弓 Iき 上げて、前記ェンジンの始動を行ぅェンジン始動制御手段を更に含むものである 請求項 1の車両用駆動装置の制御装置。
3 . 前記エンジン始動時切換制御手段は、 前記エンジンの始動の際に車両の振動お よび Zまたは騒音が所定値以上となるときに、前記無段変速部の変速状態を前記 無段変速状態とするものである請求項 1または 2の車両用駆動装置の制御装置。
4 . 前記エンジン始動時切換制御手段は、前記エンジンから前記駆動輪への動力伝 達経路が動力伝達可能状態であるときに、前記無段変速部の変速状態を前記無段 変速状態とするものである請求項 1乃至 3のいずれかの車両用駆動装置の制御装 置。
5 . 前記エン ン始動時切換制御手段は、前記エンジンの始動が完了されるまでは 、 前記無段変速部の変速状態を前記無段変速状態とするものである請求項 1乃至
4のいずれかの車両用駆動装置の制御装置。
6 . 前記エンジン始動時切換制御手段は、 前記エンジンの始動が開始されてから該 始動に要する所定始動時間は、前記無段変速部の変速状態を前記無段変速状態と するものである請求項 1乃至 5のいずれかの車両用駆動装置の制御装置。
7 . エンジンと、 該エンジンの出力を第 1電動機および伝達部材へ分配する差動機 構と該伝達部材から駆動輪への動力伝達経路に設けられた第 1電動機とを有する 差動部とを備えた車両用駆動装置の制御装置であつて、
前記差動機構に備えられ、該差動機構を差動作用が働く非連結状態と該差動作 用をしない連結状態とに選択的に切り換えられる差動状態切換装置と、
前記ェンジンの始動に際して、前記差動機構を非連結状態とするエンジン始動 時切換制御手段と
を、含むことを特徴とする車両用駆動装置の制御装置。
8 . 前記第 1電動機を用いてエンジン回転速度を所定エンジン回転速度以上に引き 上げて、前記ェンジンの始動を行ぅェンジン始動制御手段を更に含むものである 請求項 7の車両用駆動装置の制御装置。
9 . 前記エンジン始動時切換制御手段は、前記エンジンの始動の際に車両の振動お よび/または騒音が所定値以上となるときに、前記差動機構を非連結状態とする ものである請求項 7または 8の車両用駆動装置の制御装置。
1 0 . 前記エンジン始動時切換制御手段は、前記エンジンから前記駆動輪への動力 伝達経路が動力伝達可能状態であるときに、前記差動機構を非連結状態とするも のである請求項 7乃至 9のいずれかの車両用駆動装置の制御装置。
1 1 . 前記エンジン始動時切換制御手段は、 前記ヱンジンの始動が完了されるまで 〖ま、前記差動機構を非連結状態とするものである請求項 7乃至 1 0のいずれかの 車両用駆動装置の制御装置。
1 2 . 前記エンジン始動時切換制御手段は、 前記エンジンの始動が開始されてから 該始動に要する所定始動時間は、前記差動機構を非連結状態とするものである請 求項 7乃至 1 1のいずれかの車両用駆動装置の制御装置。
1 3 . エンジンと、 該エンジンの出力を第 1電動機およ 伝達部材へ分配する差動 機構と該伝達部材から駆動輪への動力伝達経路に設けられた第 2電動機とを有し て電気的な無段変速機として作動可能な無段変速部とを備えた車両用駆動装置の 制御装置であつて、 前記差動機構に備えられ、前記無段変速部を電気的な無段変速作動可能な無段 変速状態とするための解放状態と前記無段変速咅を電気的な無段変速作動しない 非無段変速状態とするための係合状態とに選択的に切り換えられる差動状態切換 装置と、
前記エンジンの停止に際して、前記無段変速部を前記無段変速状態とするェン ジン停止時切換制御手段と
を、 含むことを特徴とする車両用駆動装置の制御装置。
1 4 . 前記第 1電動機を用いてエンジン回転速度を所定エンジン回転速度以下に引 き下げて、 前記エンジンの停止を行うエンジン停止制御手段を更に含むものであ る請求項 1 3の車両用駆動装置の制御装置。
1 5 . 前記エンジン停止時切換制御手段は、前記エンジンから前記駆動輪への動力 伝達経路が動力伝達可能状態であるときに、前記無段変速部の変速状態を前記無 段変速状態とするものである請求項 1 3または 1 4の車両用駆動装置の制御装置。
1 6 . 前記エンジン停止時切換制御手段は、前記エンジンの停止が完了されるまで は、前記無段変速部の変速状態を前記無段変速状態とするものである請求項 1 3 乃至 1 5のいずれかの車両用駆 装置の制御装置。
1 7 . 前記エンジン停止時切換制御手段は、前記エンジンの停止が開始されてから 該停止に要する所定停止時間は、前記無段変速部の変速状態を前記無段変速状態 とするものである請求項 1 3乃至 1 6のいずれかの車両用駆動装置の制御装置。
1 8 . エンジンと、該エンジンの出力を第 1電動機および伝達部材へ分配する差動 機構と該伝達部材から駆動輪への動力伝達経路に設けられた第 2電動機とを有す る差動部とを備えた車両用駆動装置の制御装置であつて、
前記差動機構に備えられ、該差動機構を差動作用が働く非連結状態と該差動作 用をしない連結状態とに選択的に切り換えられる差動状態切換装置と、
前記ェンジンの停止に際して、前記差動機構を非連 ί吉状態とするェンジン停止 時切換制御手段と
を、 含むことを特徴とする車両用駆動装置の制御装置。
1 9 . 前記第 1電動機を用いてエンジン回転速度を所定エンジン回転速度以下に引 き下げて、前記ェンジンの停止を行ぅェンジン停止制御手段を更に含むものであ る請求項 1 8の車両用駆動装置の制御装置。
0 . 前記エンジン停止時切換制御手段は、 前記エンジンから前記駆動輪への動力 伝達経路が動力伝達可能状態であるときに、 前記差動機構を非連結状態とするも のである請求項 1 8または 1 9の車両用駆動装置の制御装置。
1 . 前記エンジン停止時切換制御手段は、 前記エンジンの停止が完了されるまで は、 前記差動機構を非連結状態とするものである請求項 1 8乃至 2 0のいずれか の車両用駆動装置の制御装置。
2 . 前記エンジン停止時切換制御手段は、前記エンジンの停止が開始されてから 該停止に要する所定停止時間は、前記差動機構を非連結状態とするものである請 求項 1 8乃至 2 1のいずれかの車両用駆動装置の制御装置。
PCT/JP2006/304675 2005-03-04 2006-03-03 車両用駆動装置の制御装置 WO2006093356A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112006000524.3T DE112006000524B4 (de) 2005-03-04 2006-03-03 Steuervorrichtung für eine Antriebsvorrichtung für ein Fahrzeug
CN2006800071250A CN101133268B (zh) 2005-03-04 2006-03-03 车用驱动设备的控制设备
US11/817,726 US7771309B2 (en) 2005-03-04 2006-03-03 Control device for vehicle drive device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-061570 2005-03-04
JP2005061570 2005-03-04
JP2005184437A JP4259494B2 (ja) 2005-03-04 2005-06-24 車両用駆動装置の制御装置
JP2005-184437 2005-06-24

Publications (1)

Publication Number Publication Date
WO2006093356A1 true WO2006093356A1 (ja) 2006-09-08

Family

ID=36941375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304675 WO2006093356A1 (ja) 2005-03-04 2006-03-03 車両用駆動装置の制御装置

Country Status (5)

Country Link
US (1) US7771309B2 (ja)
JP (1) JP4259494B2 (ja)
CN (1) CN101133268B (ja)
DE (1) DE112006000524B4 (ja)
WO (1) WO2006093356A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8007402B2 (en) * 2007-04-20 2011-08-30 Toyota Jidosha Kabushiki Kaisha Control apparatus for hybrid vehicle drive system
US8052570B2 (en) * 2007-09-14 2011-11-08 Toyota Jidosha Kabushiki Kaisha Control device for vehicular power transmitting apparatus

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840135B2 (ja) * 2006-12-30 2011-12-21 トヨタ自動車株式会社 車両用駆動装置の制御装置
DE102007003923B4 (de) * 2007-01-26 2016-06-23 Zf Friedrichshafen Ag Verfahren zur Ansteuerung eines Automatgetriebes eines Fahrzeuges
JP4862687B2 (ja) * 2007-02-21 2012-01-25 トヨタ自動車株式会社 内燃機関装置および動力出力装置並びにこれらの制御方法
JP4586813B2 (ja) * 2007-03-19 2010-11-24 トヨタ自動車株式会社 車両用駆動装置の制御装置
US7463968B2 (en) * 2007-05-03 2008-12-09 Gl Global Technology Operations, Inc. Method and apparatus to control engine stop for a hybrid powertrain system
CN101868601A (zh) * 2007-11-23 2010-10-20 卢克摩擦片和离合器两合公司 具有可变转速的压缩机驱动装置
JP5167851B2 (ja) 2008-02-18 2013-03-21 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP4697254B2 (ja) * 2008-04-02 2011-06-08 トヨタ自動車株式会社 車両挙動制御装置
CN102057155B (zh) * 2008-06-10 2013-07-10 日产自动车株式会社 内燃机控制器
US8292012B2 (en) * 2008-06-30 2012-10-23 GM Global Technology Operations LLC Apparatus and method for a quick start engine and hybrid system
US9764726B2 (en) 2009-01-02 2017-09-19 Ford Global Technologies, Llc Methods and systems for assisted direct start control
JP4726966B2 (ja) * 2009-01-30 2011-07-20 エンパイア テクノロジー ディベロップメント エルエルシー ハイブリッド車両用駆動装置、ハイブリッド車両及び駆動方法
WO2010106671A1 (ja) * 2009-03-19 2010-09-23 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
DE112009004807B4 (de) * 2009-05-26 2016-02-04 Toyota Jidosha Kabushiki Kaisha Schaltsteuerungsgerät für ein fahrzeugleistungsübertragungssystem
WO2013030921A1 (ja) * 2011-08-29 2013-03-07 トヨタ自動車株式会社 車両制御システム
EP2809540B1 (en) * 2012-02-03 2019-12-18 GE Hybrid Technologies, LLC Apparatus for delivering power in a hybrid vehicle
US11161403B2 (en) 2012-02-03 2021-11-02 Ge Hybrid Technologies, Llc Apparatus and method for delivering power in a hybrid vehicle
JP5255712B1 (ja) 2012-03-06 2013-08-07 三菱電機株式会社 エンジン自動停止再始動装置
EP2829448B1 (en) * 2012-03-21 2018-06-27 Toyota Jidosha Kabushiki Kaisha Drive control device for hybrid vehicle
EP2832609A1 (en) * 2012-03-26 2015-02-04 Toyota Jidosha Kabushiki Kaisha Drive control device for hybrid vehicle
US20140014054A1 (en) * 2012-07-10 2014-01-16 Caterpillar Inc. Engine Starting Strategy to Avoid Resonant Frequency
WO2014076754A1 (ja) * 2012-11-13 2014-05-22 本田技研工業株式会社 車両の停止制御装置
US9031722B2 (en) 2012-12-10 2015-05-12 Ford Global Technologies, Llc Method and system for improving hybrid vehicle shifting
JP6114563B2 (ja) * 2013-02-04 2017-04-12 本田技研工業株式会社 無段変速機の制御装置
JP5874748B2 (ja) * 2013-04-03 2016-03-02 トヨタ自動車株式会社 ハイブリッド車両の制御システム
JP6304079B2 (ja) * 2015-03-12 2018-04-04 トヨタ自動車株式会社 多気筒内燃機関の制御装置
US9969402B2 (en) 2015-09-28 2018-05-15 Caterpillar Inc. Transmission system having efficiency-based speed control
JP6658229B2 (ja) * 2016-04-07 2020-03-04 トヨタ自動車株式会社 ハイブリッド車両の駆動制御装置
MX2019007707A (es) 2017-01-20 2020-02-07 Polaris Inc Sistemas y metodos de diagnostico de una transmision variable continuamente.
JP6852696B2 (ja) * 2018-02-26 2021-03-31 トヨタ自動車株式会社 車両のエンジン始動制御装置
DE102019101314A1 (de) * 2019-01-18 2020-07-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vorrichtung und Verfahren zur Nutzung von Komponenten eines Fahrzeugs
JP7192659B2 (ja) * 2019-05-29 2022-12-20 トヨタ自動車株式会社 ハイブリッド車両
US11846085B2 (en) 2020-02-17 2023-12-19 Deere & Company Energy management system for a hybrid vehicle with an electrically powered hydraulic system
US20210356361A1 (en) * 2020-05-15 2021-11-18 Deere & Company Fault detection technique for a bearing
US11613246B2 (en) 2021-01-21 2023-03-28 Deere & Company Power control system with engine throttle shift function
US11628822B2 (en) 2021-02-09 2023-04-18 Deere & Company Power control system with stall prevention clutch modulation function
US11820361B2 (en) 2021-11-30 2023-11-21 Deere & Company Transmission assembly with electrical machine unit for improved shift quality
US11585412B1 (en) 2021-12-22 2023-02-21 Deere & Company Electronically-variable, dual-path power shift transmission for work vehicles
US11607948B1 (en) 2021-12-22 2023-03-21 Deere & Company Electronically-variable power shift transmission for work vehicles
US11913528B1 (en) 2022-10-28 2024-02-27 Deere & Company Multi-mode continuously variable transmission assembly with drop set arrangement
CN117780888B (zh) * 2023-12-27 2024-07-26 山东卫禾传动股份有限公司 拖拉机hmt机械液压无级变速箱

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932707A (ja) * 1995-07-24 1997-02-04 Hino Motors Ltd エンジンの強制停止装置
JPH1182088A (ja) * 1997-09-04 1999-03-26 Hino Motors Ltd ハイブリッド自動車のエンジン停止方法および装置
JP2000006676A (ja) * 1998-06-23 2000-01-11 Honda Motor Co Ltd ハイブリッド車両
JP2000209706A (ja) * 1999-01-13 2000-07-28 Toyota Motor Corp 動力出力装置およびハイブリッド車両並びにその制御方法
JP2003127679A (ja) * 2001-10-22 2003-05-08 Toyota Motor Corp クランキング支持トルク増大手段付きhv駆動構造および方法
JP2004042834A (ja) * 2002-07-15 2004-02-12 Nissan Motor Co Ltd 車両の駆動制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3045019B2 (ja) 1994-10-21 2000-05-22 トヨタ自動車株式会社 ハイブリッド電気自動車の発電制御装置
JP3129204B2 (ja) 1995-10-18 2001-01-29 トヨタ自動車株式会社 ハイブリッド駆動装置
JP3456329B2 (ja) * 1995-12-08 2003-10-14 アイシン・エィ・ダブリュ株式会社 車両用駆動装置の制御装置
JP3554435B2 (ja) * 1996-06-27 2004-08-18 本田技研工業株式会社 車両のアンチロックブレーキ制御装置
JP4171948B2 (ja) 1999-04-27 2008-10-29 株式会社デンソー 車両用動力装置
JP3747842B2 (ja) 2001-11-27 2006-02-22 トヨタ自動車株式会社 変速機を備えたハイブリッド車駆動構造の運転方法
JP3815401B2 (ja) 2002-08-09 2006-08-30 アイシン・エィ・ダブリュ株式会社 ハイブリッド車用の制御装置
JP4193623B2 (ja) 2003-07-29 2008-12-10 トヨタ自動車株式会社 駆動装置およびその制御方法並びに自動車
US6953409B2 (en) 2003-12-19 2005-10-11 General Motors Corporation Two-mode, compound-split, hybrid electro-mechanical transmission having four fixed ratios
US7607220B2 (en) 2004-03-22 2009-10-27 Gm Global Technology Operations, Inc. Method for establishing electrical connections in a hybrid electro-mechanical transmission
US7276006B2 (en) 2004-03-22 2007-10-02 General Motors Corporation Transmission case for lube return and method
US7129595B2 (en) 2004-03-22 2006-10-31 General Motors Corporation Hybrid electro-mechanical vehicular transmission having multiple modular motor/generators assembled from like components
US7810622B2 (en) 2004-03-22 2010-10-12 Gm Global Technology Operations, Inc. Transmission clutches
US7255021B2 (en) 2004-03-22 2007-08-14 General Motors Corporation Apparatus for selectively configuring a hybrid electro-mechanical vehicular transmission
JP4192911B2 (ja) * 2005-03-29 2008-12-10 トヨタ自動車株式会社 車両用駆動装置の制御装置
WO2006123841A1 (ja) * 2005-05-19 2006-11-23 Toyota Jidosha Kabushiki Kaisha 車両用駆動装置の制御装置
JP4998164B2 (ja) * 2007-09-14 2012-08-15 トヨタ自動車株式会社 車両用動力伝達装置の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932707A (ja) * 1995-07-24 1997-02-04 Hino Motors Ltd エンジンの強制停止装置
JPH1182088A (ja) * 1997-09-04 1999-03-26 Hino Motors Ltd ハイブリッド自動車のエンジン停止方法および装置
JP2000006676A (ja) * 1998-06-23 2000-01-11 Honda Motor Co Ltd ハイブリッド車両
JP2000209706A (ja) * 1999-01-13 2000-07-28 Toyota Motor Corp 動力出力装置およびハイブリッド車両並びにその制御方法
JP2003127679A (ja) * 2001-10-22 2003-05-08 Toyota Motor Corp クランキング支持トルク増大手段付きhv駆動構造および方法
JP2004042834A (ja) * 2002-07-15 2004-02-12 Nissan Motor Co Ltd 車両の駆動制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8007402B2 (en) * 2007-04-20 2011-08-30 Toyota Jidosha Kabushiki Kaisha Control apparatus for hybrid vehicle drive system
US8052570B2 (en) * 2007-09-14 2011-11-08 Toyota Jidosha Kabushiki Kaisha Control device for vehicular power transmitting apparatus

Also Published As

Publication number Publication date
DE112006000524B4 (de) 2017-02-02
US20090048050A1 (en) 2009-02-19
JP2006273305A (ja) 2006-10-12
CN101133268B (zh) 2013-03-27
JP4259494B2 (ja) 2009-04-30
US7771309B2 (en) 2010-08-10
CN101133268A (zh) 2008-02-27
DE112006000524T5 (de) 2008-04-30

Similar Documents

Publication Publication Date Title
WO2006093356A1 (ja) 車両用駆動装置の制御装置
JP4998164B2 (ja) 車両用動力伝達装置の制御装置
JP4215092B2 (ja) ハイブリッド車両のエンジン起動装置
JP4155244B2 (ja) 車両用駆動装置の制御装置
JP4957475B2 (ja) 車両用動力伝達装置の制御装置
JP4165526B2 (ja) 車両用駆動装置の制御装置
JP4258521B2 (ja) 車両用駆動装置
JP4320649B2 (ja) 車両用駆動装置の制御装置
JP4320650B2 (ja) 車両用駆動装置の制御装置
JP4192911B2 (ja) 車両用駆動装置の制御装置
JP5003314B2 (ja) ハイブリッド車両用駆動装置の制御装置
JP4973277B2 (ja) 車両の電動オイルポンプ制御装置
WO2006046770A1 (ja) 車両用駆動装置の制御装置
JP4600421B2 (ja) 車両用動力伝達装置の制御装置
JP4858310B2 (ja) 車両用動力伝達装置の制御装置
US20090151491A1 (en) Power transmission apparatus for vehicle
JP2010070008A (ja) 車両用駆動装置の制御装置
JP2008260490A (ja) ハイブリッド車両用駆動装置の制御装置
JP4941194B2 (ja) 車両用油圧制御装置
JP4333636B2 (ja) 車両用駆動装置の制御装置
JP5195376B2 (ja) 車両用駆動装置の制御装置
JP4723931B2 (ja) 車両用駆動装置の制御装置
JP4306646B2 (ja) 車両用駆動装置
JP5018272B2 (ja) 車両用動力伝達装置の制御装置
JP4483892B2 (ja) ハイブリッド車両用駆動装置の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680007125.0

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11817726

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120060005243

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715496

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112006000524

Country of ref document: DE

Date of ref document: 20080430

Kind code of ref document: P