WO2006088189A1 - 管状物体及びその製造方法 - Google Patents

管状物体及びその製造方法 Download PDF

Info

Publication number
WO2006088189A1
WO2006088189A1 PCT/JP2006/302978 JP2006302978W WO2006088189A1 WO 2006088189 A1 WO2006088189 A1 WO 2006088189A1 JP 2006302978 W JP2006302978 W JP 2006302978W WO 2006088189 A1 WO2006088189 A1 WO 2006088189A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
fluorine resin
tubular object
layer
tubular
Prior art date
Application number
PCT/JP2006/302978
Other languages
English (en)
French (fr)
Inventor
Hiroshi Yamada
Chisaka Aoyama
Takanobu Sandaiji
Kae Fujiwara
Kenji Hioki
Original Assignee
I.S.T Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I.S.T Corporation filed Critical I.S.T Corporation
Priority to EP06714118A priority Critical patent/EP1852751A1/en
Publication of WO2006088189A1 publication Critical patent/WO2006088189A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2053Structural details of heat elements, e.g. structure of roller or belt, eddy current, induction heating
    • G03G15/2057Structural details of heat elements, e.g. structure of roller or belt, eddy current, induction heating relating to the chemical composition of the heat element and layers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/20Details of the fixing device or porcess
    • G03G2215/2003Structural features of the fixing device
    • G03G2215/2009Pressure belt
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/20Details of the fixing device or porcess
    • G03G2215/2003Structural features of the fixing device
    • G03G2215/2016Heating belt
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/20Details of the fixing device or porcess
    • G03G2215/2003Structural features of the fixing device
    • G03G2215/2016Heating belt
    • G03G2215/2035Heating belt the fixing nip having a stationary belt support member opposing a pressure member
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/20Details of the fixing device or porcess
    • G03G2215/2003Structural features of the fixing device
    • G03G2215/2048Surface layer material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • Y10T428/1393Multilayer [continuous layer]

Definitions

  • the present invention relates to a tubular object made of a heat-resistant resin for heat-fixing an unfixed toner image in an image forming apparatus using an electrophotographic system such as a copying machine, a printer, and a facsimile machine.
  • the present invention relates to a highly durable tubular body having a reduced coefficient of dynamic friction on the inner and outer surfaces thereof and a method for producing the same.
  • Polyimide resin has excellent properties such as heat resistance, dimensional stability, mechanical properties, and electrical properties, and is used in a wide range of fields such as electronic and electrical equipment and insulating materials! It has been done.
  • electrophotographic image forming apparatuses are used as many members in electrophotographic processes such as charging, photosensitivity, intermediate transfer and fixing.
  • a polyimide tubular object used as a fixing member of an image forming apparatus will be described with an example.
  • image forming apparatuses such as copying machines and laser beam printers
  • the toner image on a sheet-like transfer material such as paper is heated and melted and fixed on the transfer material in the final stage of printing or copying.
  • the heater substantially directly heats the toner through a polyimide tubular object (fixing belt) having an extremely thin film-like film, so that the heating unit instantaneously reaches a predetermined fixing temperature and supplies power.
  • a polyimide tubular object fixing belt
  • the heating unit instantaneously reaches a predetermined fixing temperature and supplies power.
  • the fixing device includes a rotatable fixing roll 54 having a drive source having a heat source 55, a pressure belt 51 (polyimide resin tubular object) pressed against the roll, and the pressure belt.
  • the pressing node 53 and the pressing guide 52 are arranged on the inner side of the fixing roller.
  • the pressing belt is pressed against the surface of the fixing roll, and the pressing belt is rotated by the driving force of the fixing roll.
  • the copy paper 57 on which toner images are formed is sequentially fed and the toner image 56 is heat-fixed on the surface of the fixing roll.
  • the polyimide resin tubular body used in these applications is generally formed from a polyimide precursor solution obtained by reacting tetracarboxylic dianhydride and diamine in a polar polymerization solvent, and imidized. It can be obtained from Kotoko.
  • Patent Documents 5 to 6 a method for producing a tubular body from the polyimide precursor solution is obtained by molding a polyimide precursor solution with a predetermined thickness on the outer surface or inner surface of a molding die. After that, a method has been proposed in which imidization is completed by heating or chemical separation and separation from a mold to obtain a tubular object.
  • the fixing belt or pressure belt has a two-layer structure in which a release layer such as fluorine resin is formed on the outer surface of the polyimide tubular object (the surface in contact with the toner), or the polyimide tubular object and the fluorine resin layer.
  • a three-layer belt with a primer layer to improve adhesion is used.
  • OA equipment is a fixing belt to meet such demands for miniaturization and high speed.
  • the dynamic friction coefficient of the inner surface is low as well as the releasability of the outer surface of the belt. Or high characteristics such as thermal conductivity are required.
  • the fixing belt shown in FIG. 6 or the pressure belt shown in FIG. 7 is a pressure roll having a driving source or a mechanism that is transmitted and rotated by the fixing roll.
  • a roll having a drive source and a belt come into direct contact with such a mechanism, the rotational force of the drive roll is transmitted to the belt as it is and rotates relatively smoothly.
  • the rotational force to the belt is transmitted to the belt via the drive roll force transfer paper. Slip is likely to occur on the surface of the transfer paper and belt.
  • the outermost layer of the fixing or pressure belt has adhesion of molten toner (offset phenomenon).
  • offset phenomenon molten toner
  • a release layer such as fluorine resin is laminated, the coefficient of dynamic friction is low, and the slip is more likely to occur as the copying machine or printer becomes faster.
  • the release layer on the belt surface is worn by the copy paper due to repeated small slips on the copy paper and the belt surface. The surface of the layer becomes rough, causing an offset.
  • polyimide resin and fluorine resin laminated on the outer surface have a low thermal conductivity and a multi-layer structure. It has become.
  • Patent Documents 7 to 9 have been proposed.
  • Patent Document 7 the inner surface of a polyimide tubular object is roughened to hold a lubricant.
  • a polyimide resin is added with a heat conductive inorganic filler and a fluorine resin powder such as polytetrafluoroethylene, heated at 250 ° C, and then coated on the outer surface with a fluorine resin to form a film. ing.
  • a polyimide precursor added with fluorine resin powder is applied to the inner peripheral surface of a cylindrical mold and spread, and heated to cause a curing reaction.
  • Patent Documents 7 to 9 of the above-mentioned conventional proposals all aim to reduce the frictional resistance of the inner surface of the tubular object, and the surface in contact with the paper on the surface layer is a fluorine-resin layer of conventional strength.
  • the force of adopting the release layer as it is or not improved.
  • it has a two-layer structure with a polyimide tubular body and a fluorine resin release layer, or a three-layer structure with a primer layer between the polyimide layer and the fluorine resin layer, especially when used in the fixing device of FIG. Therefore, the thickness is thick and the thermal conductivity is reduced.
  • the manufacturing method requires three different raw materials and three different processes, making the manufacturing process cumbersome and between the layers formed of each material. There was also a problem with adhesion.
  • Patent Document 1 JP-A-7-178741
  • Patent Document 2 Japanese Patent Laid-Open No. 3-25471
  • Patent Document 3 Japanese Patent Laid-Open No. 6-258969
  • Patent Document 4 Japanese Patent Laid-Open No. 11-133776
  • Patent Document 5 JP-A-6-23770
  • Patent Document 6 Japanese Patent Application Laid-Open No. 1-156017
  • Patent Document 7 Japanese Patent Laid-Open No. 2001-341143
  • Patent Document 8 Japanese Patent Laid-Open No. 2001-040102
  • Patent Document 9 Japanese Patent Laid-Open No. 2001-056615
  • the present invention solves the problem of the conventional example, and the inner surface of the tubular object has low friction resistance, and at the same time, the outer surface of the tubular object has sufficient releasability as a fixing belt and a pressure belt and is durable.
  • a tubular object and a method for manufacturing the same are provided.
  • the tubular object of the present invention is a tubular object obtained by molding and heat-curing a mixture containing polyimide and fluorocoagulant particles, and at least a part of the fluorocoagulant particles present in the vicinity of the surface layer of the tubular object. Is characterized by being melt-flowed and deposited on the outer surface or inner / outer surface of the tubular body, and forming a fluoro-resin film partially or entirely.
  • a mixed solution of a polyimide precursor solution and melt-flowing fluorine resin particles is applied to the outer surface of a mold, cast-molded to a predetermined thickness, heated to imidize, By setting the maximum temperature of the imidizer to a temperature exceeding the melting point of the fluorine resin, and separating the mold and the tubular object after cooling, at least a part of the fluorine resin present in the vicinity of the surface layer of the tubular object is obtained.
  • the particles are melt-flowed and deposited on the outer surface or inner / outer surface of the tubular body, and a fluorine resin film is formed partially or entirely.
  • FIG. 1 is a schematic cross-sectional view of a tubular object before completion of imidation in one embodiment of the present invention.
  • Fig. 2 is a schematic cross-sectional view of a tubular object after completion of imido in one embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing film formation when FEP is added in one example of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a comparative formation when FEP and PTFE are mixed and added in an example of the present invention.
  • FIG. 5 is a cross-sectional view showing a cast molding method in one embodiment of the present invention.
  • FIG. 6 is a schematic sectional view showing a laser beam printer fixing device used in one embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing a laser beam printer fixing device used in another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a casting method according to another embodiment of the present invention.
  • FIG. 9 is a photomicrograph of the outer surface of the polyimide tubular object in Example 1 of the present invention.
  • FIG. 10 is a photomicrograph of the inner surface of the polyimide tubular object in Example 1 of the present invention.
  • FIG. 11 is a photomicrograph of the outer surface of a polyimide tubular object in Example 5 of the present invention.
  • FIG. 12 is a schematic cross-sectional view showing a dynamic friction coefficient measuring apparatus used in one example of the present invention.
  • the basic components of the tubular body of the present invention are polyimide and fluorocoagulant particles. There is no compatibility between the polyimide and the fluorinated resin particles, and the fluorinated resin melts and precipitates on the outer surface or inner and outer surfaces of the polyimide tubular body, and the melted and precipitated surface forms a film that flows on the surface.
  • the surface of the fluororesin coating has a granular pattern caused by the fluororesin particles. This is observed in the form of fine bubbles on the surface, with some of the fluorocoagulant particles remaining.
  • the fluororesin particles include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl butyl ether copolymer (PFA), polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl butyl ether copolymer
  • PCTFE polychlorotrifluoroethylene
  • tetrafluoroethylene tetrafluoroethylene
  • it is at least one fluorine resin selected from fluoroethylene monohexafluoropropylene copolymer (FEP) and tetrafluoroethylene ethylene copolymer (PETFE).
  • Fluorine resin deposited on the surface of the tubular body is thermally flowed to form a fluorine resin film
  • thermoplastic fluorine resin such as PFA and FEP is preferred.
  • fluorocarbon resins flow at a temperature equal to or higher than the melting point, and can be formed as a film-like film on the inner and outer surfaces of the tubular object.
  • the inner and outer surfaces of the tubular object are in the state of polyimide in the sea state.
  • Such a structure is optimal for applications such as an intermediate transfer belt used in an image forming apparatus.
  • the transfer belt is a belt that is used for the purpose of intermediately transferring a toner image from a photosensitive member and then retransferring the toner image onto a copy paper.
  • the toner powder remaining slightly on the surface is scraped off and removed with a blade, the sliding resistance with the blade is low and the structure is preferable.
  • the polyimide used in the present invention is a thermosetting resin, and a mixed solution of a polyimide precursor solution and a fluorine resin is cast on, for example, the outer surface or the inner surface of a mold, dried and heated, and imidized.
  • a polyimide 'fluorine-resin composite tubular object in which fluorine resin is deposited on at least the outer surface or the inner and outer surfaces of the tubular object.
  • fluorine resin easily melts and precipitates on the surface where the coating is in contact with air. That is, the fluorinated resin powder exists in a mixed and dispersed state in the polyimide precursor solution.
  • the polyimide resin solution obtained by imidizing the aromatic tetracarboxylic dianhydride and the polyimide precursor solution also having an aromatic diamine power has a large thermal contraction rate in order to melt and precipitate fluorine resin.
  • the polyimide precursor solution was cast on a glass plate, dried, heated to 300 ° C in steps, and then progressed through W, then the polyimide film was peeled off from the glass plate after cooling, and the fluorine was removed from 300 ° C.
  • the heat shrinkage rate is large when heated to a temperature higher than the melting point of the resin, for example, 400 ° C, and the fluorine resin easily melts and precipitates in the polyimide.
  • the thermal contraction rate was measured using “TMA-50” manufactured by Shimadzu Corporation.
  • the polyimide film was cast on a glass plate with a polyimide precursor solution with the above monomer strength so that the thickness upon completion of imidization was 50 ⁇ m, dried at a temperature of 150 ° C for 40 minutes, and then at 200 ° C. 40 minutes, Sarako 20 minutes at 250 ° C, 20 minutes at 300 ° C A polyimide film was prepared.
  • This film was cut into a strip shape having a length of 10 mm and a width of 3.5 mm, and a load of 2. Og was applied to one of the films, and the film was attached to "TMA-50". The state of heat shrinkage was observed from room temperature to 400 ° C at a heating rate of 10 ° CZ, and the heat shrinkage rate at 400 ° C was also calculated for 300 ° C force.
  • the phenomenon in which fluorine resin is deposited on the inner and outer surfaces of the tubular body of the present invention is that the melting point of the fluorine resin, the imidization temperature of the polyimide precursor, etc. are selected and set to predetermined conditions. This makes it possible to deposit fluorine resin on both surfaces of the tubular object.
  • the tubular object of the present invention may be a single layer or may be formed in multiple layers as necessary.
  • the inner layer does not contain fluorine resin particles, or the abundance of the inner layer can be relatively less than that of the outer layer to form a polyimide layer, which can further improve the mechanical properties of the tubular object. it can.
  • the type of polyimide resin can be multilayered by changing the mixing amount of fluorine resin.
  • the temperature during the imide reaction can be controlled to melt and precipitate fluorine resin only on the outer surface of the tubular object. There is also a force that may be required to improve the frictional property only on the surface of the outer layer, such as in an intermediate transfer belt.
  • the fluorine-resin mixed polyimide precursor solution includes boron nitride, potassium titanate, My strength, titanium oxide, talc, calcium carbonate, aluminum nitride, alumina, silicon carbide, silicon, silicon nitride, silica, graph Heat conductive fillers such as eye, carbon fiber, metal powder, beryllium oxide, magnesium and magnesium oxide can be added. Addition of these heat conductive fillers is preferable because the thermal conductivity of the tubular object coating is improved and high-speed fixing can be supported.
  • the fluorine resin can be used alone or in combination with fluorine resin such as PTFE, PFA, FEP, CPTFE.
  • fluorine resin such as PTFE, PFA, FEP, CPTFE.
  • PTFE, PFA and FEP are preferable materials that have excellent heat resistance and releasability and can be used in the present invention.
  • fluorine A conductive material such as carbon black, carbon fiber, metal powder, or an antistatic agent can be added to the combined polyimide precursor solution.
  • the mixing amount of the fluorine resin is preferably set to 10 to 90% by mass with respect to the solid content of the polyimide precursor solution. Especially preferably, it is 20-80 mass%.
  • the above-mentioned fluorocob is a preferable form in which a powdery one is easily mixed, and the average particle diameter is preferably in the range of 0.1 to 100 / ⁇ ⁇ . A more preferable average particle diameter is in the range of 0.5 to 50 m. Within such a range, it is preferable because the particles can be dispersed uniformly with little aggregation.
  • the average particle size of the fluorinated resin powder is measured by a laser diffraction particle size analyzer (ASLD-2100: manufactured by Shimadzu Corporation) or a laser diffraction Z scattering particle size distribution analyzer (LA-920: Horiba). (Manufactured by Seisakusho Co., Ltd.).
  • the mixed solution is filtered through a filter. It is preferable to remove coarse particles of sallow particles.
  • the tubular body of the present invention is a tubular body mainly composed of polyimide, and is obtained by mixing a fluorine resin and a polyimide precursor solution, casting them seamlessly, and then heating imidization.
  • the polyimide precursor solution can be obtained by reacting approximately equimolar amounts of aromatic tetracarboxylic dianhydride and aromatic diamine in an organic polar solvent.
  • Typical examples of the aromatic tetracarboxylic dianhydride include 3, 3 ', 4, 4' ben Zophenone tetracarboxylic dianhydride, pyromellitic dianhydride, 2, 3, 3 ', 4-biphenyl tetracarboxylic dianhydride, 3, 3', 4, 4'-biphenyl tetracarboxylic dianhydride Anhydrous, 1, 2, 5, 6 Naphthalene tetracarboxylic dianhydride, 1, 4, 5, 8 Naphthalene tetracarboxylic dianhydride, 2, 3, 6, 7 Naphthalene tetracarboxylic dianhydride, 2, 2 'bis (3,4-dicarboxyphenyl) propane dianhydride, perylene 3, 4, 9, 10- tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether Anhydride, bis (3,4-dicarboxyphenyl) sulfon-
  • aromatic diamine examples include 4,4'-diaminodiphenyl ether, p-phenylenediamine, m-phenylenediamine, 1,5 diaminonaphthalene, 3,3'dichloro.
  • Mouth Benzidine 3, 3 '— Diaminodiphenylmethane, 4, 4'-Diaminodiphenylmethane, 3, 3' — Dimethyl-4,4'-biphenyldiamine, 4, 4'-Diaminodiphenylsulfide 1, 3'-Diaminodiphenyl Sulfone, benzidine, 3, 3 '— dimethylbenzidine, 4, 4' — diaminophenylsulfone, 4, 4 '— diaminodiphenylpropane, m xylylenediamine, hexamethylenediamine, diamino Propyltetramethylene, 3-methylheptamethylenediamine, and the like.
  • aromatic tetracarboxylic dianhydrides and aromatic diamines can be used alone or in combination. It is also possible to complete the polyimide precursor solution and use it by mixing these precursors.
  • a combination of biphenyl tetracarboxylic dianhydride and para-phenylenediamine is preferable.
  • the polyimide obtained with this precursor strength has a rigid polymer structure and can easily extrude the fluorine resin at the melting temperature of the fluorine resin.
  • Examples of the organic polar solvent for reacting the aromatic tetracarboxylic dianhydride and the aromatic diamine include N-methyl-2-pyrrolidone, N, N dimethylformamide, N, N dimethylacetamide, N, N jetylformamide N, N jetylacetamide, dimethyl sulfoxide, hexamethyl phosphortriamide, pyridine, dimethyltetramethylene sulfone, tetramethylene sulfone and the like.
  • These organic polar solvents can be mixed with phenol, xylene, hexane, toluene and the like.
  • the polyimide precursor solution is obtained by reacting the aromatic tetracarboxylic dianhydride and the aromatic diamine in an organic polar solvent, usually at 90 ° C or lower, and the solid solution in the solvent.
  • the concentration can be set according to the final polyimide tubular object specifications and processing conditions, but is 10-30% by mass.
  • the viscosity of the solution increases depending on the polymerization state, but when used, it is diluted to a predetermined viscosity.
  • the temperature at which the fluorine resin layer can be deposited on at least the outer surface of the tubular body needs to be heated to a temperature exceeding the melting point of the fluorine resin. It is preferable that the imidization is completed at a maximum temperature of imidization that is at least 10 ° C higher than the melting point of the mixed fluorine resin.
  • the heating time required for precipitating the fluorine resin on the inner and outer surfaces of the tubular body is a time within 30 minutes after the maximum temperature of the imido resin reaches a temperature exceeding the melting point of the fluorine resin. It is preferable that If the heating time is longer than 30 minutes, the thermal decomposition of fluorine resin and the mechanical properties of polyimide may be reduced.
  • the tubular object of the present invention can be obtained, for example, by the following method. Apply a fluororesin mixed polyimide precursor solution to the mold surface of a predetermined outer diameter (diameter corresponding to the inner diameter of the tubular object), cast using a die on the outside, lead to a heating device, 100-150 The polymerization solvent is dried at a relatively low temperature of ° C, and then the imidization reaction proceeds. Finally, the imidization is completed by heating for a predetermined time at a temperature exceeding the melting point of the fluorine resin. Thereafter, the tube is cooled and the tubular object is removed from the mold.
  • a fluorine precursor (PTFE) powder is mixed with a polyimide precursor solution, cast-molded, and a schematic enlarged cross section of the tubular object 10 when the polyimide imidization temperature is 300 ° C.
  • Figure 1 shows the figure. Up to this stage, the fluorine resin powder 12 is dispersed inside the polyimide film layer 11, and the surface layer is almost covered with the polyimide layer. At this stage, the water contact angle is also low. 15 is a mold.
  • Fig. 3 is a schematic enlarged cross section of a tubular object when only FEP (melting point 260 ° C) particles are mixed alone with the polyimide precursor solution, cast molding, and the polyimide imidizing temperature is 400 ° C. It is a figure.
  • the FEP powder 22 is dispersed inside the polyimide film layer 21, and FEP melts and flows out on the outer surface layer surface to form a fluororesin coating 23 partially or entirely.
  • 30 is FEP resin melt-deposited on the inner surface. 28 is a mold.
  • FIG. 4 shows a mixture of PTFE (melting point: 327 ° C) particles and FEP (melting point: 260 ° C) particles in a ratio of 50:50, cast molding, and polyimide imidization temperature of 400 ° C.
  • FIG. 2 is a schematic enlarged cross-sectional view of a tubular object when C is used.
  • the FEP powder 22 and PTFE powder 24 are dispersed inside the polyimide film layer 21, and FEP and PTFE are melt-flowed and deposited on the surface layer, and a fluororesin coating (23, 25) is applied partially or entirely.
  • Forming. 28 is a mold.
  • the fluorine resin particles present in the vicinity of the surface layer of the tubular object is melted and precipitated on the outer surface or the inner and outer surfaces of the tubular object. Since the coated film is formed integrally and fluidized on the surface of the tubular object, the dynamic friction coefficient of the inner surface of the tubular object is low, and the outer surface of the tubular object is also formed of a fluorine resin film.
  • the fixing member of an image forming apparatus can be a transfer belt, or an intermediate transfer / heat fixing belt. Can be used for etc.
  • a mixed solution obtained by adding fluorine resin particles to the polyimide precursor solution is applied to the outer surface or inner surface of the molding die, cast-molded to a predetermined thickness, heated to imidize, and the maximum temperature for imidization is increased.
  • the temperature is set to exceed the melting point of the fluorine resin, at least a part of the fluorine resin particles present in the vicinity of the surface layer of the tubular object can be melted and deposited on at least the outer surface of the tubular object.
  • Molded products with a structure in which fluorine resin is melted and precipitated on one or both sides of a polyimide substrate are heat resistant sliding materials and release films in the form of films, or fluorine It has the chemical stability of fat and the mechanical properties of polyimide, and can be suitably used in the field of medical applications and various medical tubes inserted into the body.
  • biphenyltetracarboxylic dianhydride is "BPDA
  • PPD Para-phenylenediamine
  • PM pyromellitic dianhydride
  • DA 4, 4, 1-diaminodiphenyl ether is abbreviated as “ODA”, and N-methyl-2-pyrrolidone is abbreviated as “NMP”.
  • a test film 62 having a width of 80 mm and a length of 200 mm was fixed on a horizontal table 64.
  • a test film 62 fixed to a size of 63 mm in width and 63 mm in length (area 40 cm 2 ) is stacked on top of it, and a test film 61 of the same material as that of the test film 62, and further 63 mm in width and 63 mm in length (area 40 cm 2 )
  • a weight 63 with a weight of 200 g was placed, the stacked test films were slid horizontally at a speed of lOO mmZ, the load (dynamic friction force) was measured, and the dynamic friction coefficient was calculated by the following formula.
  • 65 is a wire
  • 66 is a pulley
  • 67 is a tension tester load cell, and is wound in the Z direction.
  • PPD39 parts by mass with 100 parts by mass of BPDA dissolved in NMP in a flask The polyimide precursor solution was obtained by reacting at a temperature of 23 ° C. with stirring for 6 hours.
  • the rotational viscosity of this polyimide precursor solution was 1200 boise.
  • the rotational viscosity is a value measured with a B-type viscometer at a temperature of 23 ° C.
  • PTFE powder having an average particle size of 3.0 ⁇ m (melting point: 327 ° C., trade name “Zonyl MP1100” manufactured by DuPont) was added to the polyimide precursor solution with respect to the solid content in the polyimide precursor solution.
  • the surface of an aluminum mold having an outer diameter of 24 mm and a length of 500 mm was coated with an oxide coating material by a dubbing method and baked to coat the oxide film.
  • a ring-shaped die 2 having an inner diameter of 25 mm is formed.
  • the cast film 3 having a thickness of 500 m was formed on the surface of the mold by being inserted and run from the upper part of the mold.
  • each mold 1 is placed in an oven at 120 ° C, dried for 60 minutes, heated to 200 ° C for 40 minutes, held at that temperature for 20 minutes, and 250 as the final imidation treatment. After heating at a temperature of 10 ° C for 10 minutes, the temperature was raised to a temperature of 400 ° C in 15 minutes, heating at the same temperature for 10 minutes to complete imidization, cooling to room temperature (25 ° C), gold The tubular object was removed from the mold.
  • the thickness of the obtained tubular object was 55 ⁇ m, and both ends were cut to obtain a tubular object having a length of 240 mm (A4 size) and an inner diameter of 24 mm.
  • Table 1 shows the measurement results of the dynamic friction coefficients of the inner and outer surfaces of this tubular object.
  • Fig. 9 shows a photograph of the external surface observed with a digital microscope (VHX-100, manufactured by Keyence Corporation) at a magnification of 1000 times. The part of the outer surface that appears white and spotted is PTFE resin particles, and is a partial force FEP resin that precipitates in a state of flowing around it. As a whole, it can be confirmed that the coating surface of the fluorine resin has a granular pattern due to the fluorine resin particles.
  • Fig. 10 shows the same picture of the inner surface of this tubular object. The black spots are the PTFE resin deposits, and the white parts around the FEP resin melt and flow.
  • a polyimide tubular body was obtained under the same conditions as in Example 1 except that the fluorine resin powder was not mixed with the polyimide precursor solution under the conditions of Example 1.
  • Table 1 below shows the measurement results of the dynamic friction coefficient of the inner surface of this tubular object.
  • the FEP powder (trade name “532-8110” manufactured by DuPont) with an average particle size of 35 m was added to the polyimide precursor single solution prepared in Example 1 as a fluorine resin powder.
  • the mixture was added and mixed so as to have a proportion of 23% by mass with respect to the solid content of the above, and a fluorine resin mixed polyimide precursor solution was prepared.
  • a polyimide precursor solution was applied to the surface of the mold in the same manner as in Example 1, cast, and imidized in the same manner as in Example 1.
  • the final imidizing treatment was performed at a temperature of 250 ° C. After heating at 100 ° C. for 10 minutes, the temperature was raised to 300 ° C. in 5 minutes, heated at 350 ° C. for 15 minutes, and cooled to obtain a polyimide tubular body.
  • Table 1 shows the measurement results of the dynamic friction coefficient of this tubular body. Also, 10 images can be fixed per minute as shown in Fig. 6. As a result of fixing the image as a fixing belt of a laser beam printer, a good image was obtained.
  • 31 is a fixing belt (polyimide resin tubular body)
  • 32 is a belt guide
  • 33 is a ceramic heater
  • 34 is a pressure roll having a driving source
  • 35 is a thermistor
  • 36 is a core metal of the pressure roll
  • 37 is a copy paper
  • 38 is a toner image before fixing
  • 39 is a toner image after fixing
  • N is a minus point.
  • the PFA resin powder (product name: PFA manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.) having an average particle size of 28 ⁇ m as a fluorine resin powder was added to the polyimide precursor single-unit solution prepared in Example 1 BPDAZPPD. Only MP102) was added and mixed at a ratio of 24% by mass with respect to the solid content in the polyimide precursor solution to prepare a fluorine resin mixed polyimide precursor solution.
  • Example 2 Thereafter, a mold surface polyimide precursor solution was cast and molded in the same manner as in Example 1 and treated at a maximum temperature of imidization at 400 ° C. under the same conditions as in Example 1 to obtain a polyimide tubular body. However, a mold having an outer diameter of 30 mm was used as the mold.
  • Table 1 shows the measurement results of the dynamic friction coefficient of this tubular object.
  • 51 is a pressure belt
  • 52 is a pressure guide
  • 53 is a pressure pad
  • 54 is a fixing roll
  • 55 is a heat source
  • 56 is a toner image before fixing
  • 57 is a copy paper.
  • a polyimide precursor solution was liquid molded on the surface of the mold. Then, it is dried in an oven at 120 ° C for 60 minutes, heated to 200 ° C in 20 minutes, heated at the same temperature for 20 minutes, and heated at 250 ° C for 10 minutes as the final imidization treatment, The temperature was raised to 400 ° C in 10 minutes, heated at 400 ° C for 10 minutes, and cooled to obtain a polyimide tubular body.
  • Table 1 shows the measurement results of the dynamic friction coefficient of this tubular object.
  • Example 1 Same as Example 1 except that the final imid temperature was changed to 250 ° C under the conditions of Example 1. A polyimide tubular body was obtained under the conditions. Table 1 shows the measurement results of the dynamic friction coefficient of the inner and outer surfaces of this tubular body.
  • the fluororesin mixed polyimide precursor solution prepared in each example and each comparative example was cast to a thickness of 80 ⁇ m on a 300 mm mD (length: 300 mm, width: 300 mm) glass plate.
  • the imidizers were completed at the maximum imidization temperature shown in Table 1 to obtain a polyimide film.
  • Table 1 shows the results of measuring the contact angle of each film against pure water.
  • the molding slit is formed into a discharge slit head 70 having a discharge slit opening width of 1.4 mm with an inner diameter of 230.2 mm of the discharge slit portion 72 of the polyimide precursor. Attached to.
  • an aluminum mold with an outer diameter of 229 mm and a length of 500 mm was prepared as a mold 71, and the mold surface was coated with a key oxide coating agent by the date pinning method, baked, and coated with a key oxide film.
  • the average surface roughness of the mold was (Rz) 2.2 ⁇ m.
  • PTFE powder having an average particle size of 3.0 ⁇ m (melting point: 327 ° C., trade name “Zonyl MP 1100”) manufactured by DuPont was added to the polyimide precursor simple substance solution made of BPDAZPPD prepared in Example 1. It was added to a solid content in the polyimide precursor solution at a ratio of 23% by mass, stirred and dispersed uniformly. After that, coarse foreign matters were filtered using a 250 mesh stainless steel wire mesh to prepare a PTFE powder mixed polyimide precursor solution.
  • the PTFE powder mixed polyimide precursor solution was further added to acidic carbon black (trade name “MA78” manufactured by Mitsubishi Chemical Corporation), DBP absorption: 70 cm 3 , specific surface area 100 m 2 volatile matter per Zg: 2 6 wt%) was added to 14.5 mass% of the polyimide resin, and a polyimide precursor was prepared by mixing and dispersing the three components of polyimide, PTF E, and carbon black.
  • acidic carbon black trade name “MA78” manufactured by Mitsubishi Chemical Corporation
  • the PTFE mixed precursor solution 74 is charged into the storage tank 73, the slurry pump 77 is rotated, a predetermined amount of the polyimide precursor solution is distributed to 24 locations by the branch unit 78, and pipes 79, 80 ( The other pipes (not shown) were connected to the pipe connector of the discharge slit head 70 and were pumped to the opening of the discharge slit.
  • the mold is raised vertically in the direction of arrow Y, and the position force of 50 mm downward from the top of mold 71 is passed through the discharge slit.
  • the polyimide precursor solution 81 was pumped from the slurry pump 77, and the polyimide precursor solution 81 having a thickness of 600 ⁇ m was cast on the outer surface of the mold 71.
  • 75 is a liquid feeding pipe, and 76 is a valve.
  • the pumping speed of the slurry pump 77 and the rising speed of the mold 71 were calculated in advance from data such as the viscosity of the polyimide precursor solution, the outer diameter of the mold 71, and the liquid molding thickness, and predetermined conditions were set.
  • the pumping from the slurry pump was stopped, and liquid molding was completed on the surface of the mold 71 with a length of about 400 mm. Thereafter, the mold was placed in an oven as it was, dried at 120 ° C. for 60 minutes, heated to 200 ° C. over 40 minutes, and held at that temperature for 20 minutes. Next, heat up to 300 ° C in 20 minutes, hold for 30 minutes, further heat up to 340 ° C in 15 minutes, and heat at that temperature for 20 minutes. Demolded to produce a polyimide resin tubular body.
  • the thickness of this tubular object is, and the volume resistivity at an applied voltage of 500 v is 1.1.
  • FIG. 11 shows an observation photograph of the outer surface of the tubular object with a digital microscope (VHX-100 manufactured by Keyence Corporation) at a magnification of 1000 times. It can be confirmed that the white spots appear to be PTFE resin particles and have a granular pattern due to the fluorine resin particles.
  • Table 1 shows the measurement results of the dynamic friction coefficient and the contact angle of this tubular object.
  • this tubular object as an intermediate transfer belt for a full-color tandem laser beam printer, the color toner image formed on the belt surface is transferred to copy paper, and then the toner remaining on the transfer belt is removed by a urethane rubber blade.
  • the remaining toner having a low sliding resistance between the blade and the surface of the transfer belt can be surely removed, and a clear image and sufficient durability can be obtained.
  • a reliable rotation can be transmitted between the driving rolls arranged on the inner surface of the transfer belt without slipping, and the image blurring is not disturbed. Was able to be prevented.
  • the volume resistivity is measured according to the method of JIS C2151, digital super high resistance / micro ammeter R83 manufactured by Advantest. Measurement was performed using 40 / R8340A with an application time of 30 seconds.
  • Boron nitride powder (Mitsui Chemicals Co., Ltd. MBN-010T) was mixed with the polyimide precursor simple solution having BPDAZPPD force prepared in Example 1 in an amount of 30% by mass based on the solid content concentration of the polyimide precursor solution.
  • a boron nitride powder mixed polyimide precursor solution was prepared.
  • V apply to the surface of the mold used in Example 1 using a ring die so that the film thickness after imidization is 35 ⁇ m, cast mold, dry at 120 ° C and 250 ° C.
  • the intermediate treatment of imido was carried out at a temperature, and the first layer of a tubular object made of a polyimide film mixed with boron nitride powder was formed.
  • SP-Powdered PTFE manufactured by CORPORATION
  • CORPORATION carbon fiber
  • VGCF-H manufactured by Showa Denko KK
  • foreign matters were filtered using a 250 mesh stainless steel wire mesh to prepare a fluorine resin powder and a carbon fiber mixed polyimide precursor solution.
  • the film thickness after imidization of the fluororesin powder and carbon fiber mixed polyimide precursor solution prepared in (2) above on the surface of the first layered tubular object manufactured in (1) above is 20 ⁇ m.
  • a primary imidizing treatment is performed at a temperature of 250 ° C, and the temperature is further raised to a temperature of 400 ° C in 15 minutes. Heating at the same temperature for 20 minutes to complete imidization, a two-layer polyimide tubular body having an inner layer in which boron nitride powder is mixed with polyimide and an outer layer in which fluorine resin powder and carbon fiber are mixed in polyimide Got.
  • the tubular body had an inner diameter of 24 mm and a total thickness of 54 ⁇ m, and the first and second layers were firmly bonded by imido and could not be peeled off.
  • the mixed fluorine resin is melted and deposited on the outer surface of the tubular object. It had excellent releasability and low frictional properties of fluorine resin.
  • Table 1 shows the measurement results of the dynamic friction coefficient of the inner and outer surfaces of this tubular body.
  • This tubular object has a structure in which the first layer and the second layer of force S imidi are integrated.
  • the first layer (inner layer) has the mechanical properties required for a tubular object, and the second layer (outer layer). In this case, a large amount of fluorinated resin was melted and deposited, and a release layer having a sufficient thickness was obtained, resulting in excellent durability.
  • the thermal conductivity in the thickness direction of the tubular body is improved by the boron nitride mixed in the first layer and the carbon fiber mixed in the second layer, and at the same time, the fluorine resin layer deposited on the outermost layer.
  • the surface resistance of the printer is 800 ⁇ Z port, which can fix 14 sheets per minute. As a result of fixing the image as a fixing belt of the laser single-beam printer shown in Fig. 6 was gotten.
  • Example 1 To the polyimide precursor simple substance solution prepared in Example 1 such as BPDA / PPD, PTFE powder having an average particle size of 3.0 m (melting point: 327 ° C., trade name “Zonyl” manufactured by DuPont)
  • Example 3 S35 m The thickness of the film after imidization using a ring die on the surface of the mold used in Example 3 S35 m was applied, cast-molded, dried at 120 ° C., and subjected to an intermediate treatment for imidization at a temperature of 250 ° C. to form a first-layer coating comprising the mixed solution.
  • Fluorine soot prepared in the above item (2) is applied to the surface of the first layer tubular object manufactured in the above item (1).
  • the film is cast using a ring die and dried at a temperature of 120 ° C.
  • the primary imidization treatment was performed at a temperature, and the temperature was further increased to 400 ° C in 15 minutes, followed by heating at the same temperature for 20 minutes to complete imidization, and the same as the inner layer in which fluorine resin was mixed with polyimide.
  • a two-layered polyimide tubular body having an outer layer in which a polyimide resin powder and carbon fiber were mixed together was obtained.
  • This tubular body had an inner diameter of 24 mm and a total thickness of 55 ⁇ m, and the first and second layers were firmly bonded by imido.
  • fluorine resin is melted and deposited on the outer surface and inner surface of the tubular body, and the mold release property of the fluorine resin is excellent and low!
  • Has friction characteristics! Table 1 shows the measurement results of the dynamic friction coefficient of the inner and outer surfaces of this tubular object.
  • the surface resistance of the fluororesin layer deposited on the outermost layer of this tubular object is 815 ⁇ , and it was used as a pressure belt for a laser beam printer equipped with the fixing device shown in Fig. 7. A good image was obtained without any occurrence.
  • the tubular body of the present invention had a low coefficient of dynamic friction and a low contact angle of the film-like molded product. Moreover, it was confirmed from the observation result by an electron micrograph that fluorine resin was deposited on the surface of the polyimide tubular body. In addition, as a fixing belt for laser beam printers and image fixing, good images can be obtained.

Abstract

 ポリイミドとフッ素樹脂粒子とを含む混合物が成形され加熱硬化された管状物体(31)であって、前記管状物体(31)の表層近傍に存在する少なくとも一部のフッ素樹脂粒子は、前記管状物体の外面又は内外面に溶融流動して析出し、部分的又は全面にフッ素樹脂被膜を形成している。この管状物体(31)は、ポリイミド前駆体溶液にフッ素樹脂粒子を添加した混合溶液を金型外面に塗布し所定の厚みにキャスト成形し、加熱してイミド化し、前記イミド化の最高温度をフッ素樹脂の融点を越える温度とし、冷却後、前記金型と管状物体を分離することにより製造できる。これにより、管状物体のとくに外面の動摩擦係数を下げ、耐久性が高く、製造コストの安い管状物体及びその製造方法を提供する。

Description

管状物体及びその製造方法
技術分野
[0001] 本発明は複写機、プリンター、ファクシミリなどの電子写真方式を利用した画像成形 装置において、未定着のトナー像を熱定着するための耐熱樹脂からなる管状物体に 関し、さらに詳しくは管状物体の内外面の動摩擦係数を下げ、耐久性の高い管状物 体及びその製造方法に関するものである。
背景技術
[0002] ポリイミド榭脂は耐熱性、寸法安定性、機械的特性、電気的特性など優れた特性を 有し電子 ·電気機器や絶縁材料、ある!、は航空宇宙などの幅広!ヽ分野で使用されて いる。その用途の一例として、電子写真方式の画像形成装置では帯電、感光、中間 転写および定着などの電子写真プロセスの中でも多くの部材として使用されている。
[0003] ここで画像形成装置の定着部材として使用されるポリイミド管状物体にっ 、て例を 挙げて説明する。複写機'レーザービームプリンターなどの画像形成装置において、 印刷や複写の最終段階では紙をはじめとするシート状転写材上のトナー像を、加熱 溶融して転写材上に定着させて 、る。
[0004] ポリイミド榭脂管状物体を画像形成装置の定着ベルトとして使用する一例を挙げる と、特許文献 1〜3等で提案されているベルト定着方式があり、図 6に示すように複写 紙上に形成したトナー像を、熱定着するための定着ベルトとして使用されている。こ の用途では定着ベルト 31 (ポリイミド榭脂管状物体)の内側にベルトガイド 32とセラミ ックヒーター 33を備え、ヒーターと圧接した駆動源を持つ加圧ロール 34との間にトナ 一像を形成した複写紙 37を順次送り込みながらトナー 38を加熱溶融させ複写紙上 に定着させるものである。前記ベルト定着方式では極めて薄 ヽフィルム状の被膜を有 するポリイミド管状物体 (定着ベルト)を介して、ヒーターが実質的に直接トナーを加熱 するため、加熱部が瞬時に所定の定着温度に達し電源の投入から定着可能状態に 達するまでの待ち時間がなぐまた消費電力も小さく優れた特徴がある。
[0005] またフルカラー画像形成装置においてポリイミド管状物体を定着機の加圧ベルトと して使用する一例が特許文献 4で提案されている。この定着装置は図 7に示すよう〖こ 、熱源 55を有する駆動源を持つ回転可能な定着ロール 54と、このロールに圧接した 加圧ベルト 51 (ポリイミド榭脂管状物体)と、この加圧ベルトの内側に配置された押圧 ノ ッド 53、押圧ガイド 52からなる構成であり、定着ロールの表面に加圧ベルトを押圧 し、定着ロールの駆動力により加圧ベルトを回転させ、この挟接部にトナー画像が形 成された複写紙 57を順次、送りこみトナー像 56を定着ロール表面で熱定着する方法 である。これらの用途で使用されるポリイミド榭脂管状物体は、一般に極性重合溶媒 中でテトラカルボン酸二無水物とジァミンを反応させて得られるポリイミド前駆体溶液 から管状物体を成形し、これをイミド化すること〖こより得ることができる。
[0006] 前記ポリイミド前駆体溶液から管状物体を製造する方法は、特許文献 5〜6で知ら れて 、るように、成形金型の外面や内面に所定の厚みでポリイミド前駆体溶液を成形 した後、加熱あるいは化学的にイミド化を完結させ、金型から分離して管状物体を得 る方法が提案されている。
[0007] 前記定着ベルトあるいは加圧ベルトはポリイミド管状物体の外面(トナーと接する面 )にフッ素榭脂などの離型層が形成された 2層構造、あるいは前記ポリイミド管状物体 とフッ素榭脂層の間に接着性を向上させるためのプライマー層を有する 3層構造の ベルトが使用されている。
[0008] 近年、 OA機器は小型化、高速化の要求が高ぐこうした要求に対応するための定 着ベルトある 、は加圧ベルトではベルト外面の離型性と共に、内面の動摩擦係数が 低 、こと、あるいは高 、熱伝導性などの特性が要求される。
[0009] すなわち、前記図 6の定着ベルトあるいは図 7の加圧ベルトは、それぞれ駆動源を 持つ加圧ロールある 、は定着ロールによって伝達され回転する機構になって 、る。こ のような機構で駆動源を持つロールとベルトが直接接触して ヽる場合は、駆動ロール の回転力はそのままベルトに伝わり、比較的円滑に回転する。しかしながら、駆動口 ールとベルトの間に複写紙が挿入され、実質的にトナーの定着が行われる時は、ベ ルトへの回転力は駆動ロール力 転写紙を介してベルトに伝達されるため、転写紙と ベルトの表面でスリップが発生しやすくなる。
[0010] 特に定着あるいは加圧ベルトの最外層は溶融したトナーの付着 (オフセット現象)を 防止するためにフッ素榭脂等の離型層が積層されており動摩擦係数も低くすべり易 ぐさらに複写機やプリンターが高速ィ匕になるほどスリップが発生しやすい。前記のよ うに定着面 (二ップ部)でスリップが発生すると、複写紙とベルト表面の微小なスリップ の繰り返しにより、ベルト表面の離型層が複写紙で磨耗されることになり毛羽立ち離 型層表面が粗くなり、オフセットの原因になっている。
[0011] またポリイミド榭脂やその外面に積層されているフッ素榭脂はもともと熱伝導性が低 ぐ且つ多層構造になっているため高速ィ匕に対応するための熱伝導性に乏しいこと も問題になっている。
[0012] これらの要求特性に対応するため、例えば特許文献 7〜9等の提案がされている。
特許文献 7は、ポリイミド管状物体の内側表面を粗面化して潤滑剤を保持させるもの である。特許文献 8は、ポリイミド前駆体に熱伝導性無機質充填剤とポリテトラフルォ 口エチレン等のフッ素榭脂粉末を添加し、 250°Cで加熱し、その後外表面にフッ素榭 脂をコーティングして被膜形成している。特許文献 9は、ポリイミド前駆体にフッ素榭 脂粉末を添加したものを、円筒金型の内周面に塗布して展延し、加熱して硬化反応 をさせている。
[0013] しかし、前記従来の提案の特許文献 7〜9は、いずれも管状物体内面の摩擦抵抗 を下げることを目的としており、表層の紙と接触する面は従来力ゝらのフッ素榭脂層の 離型層をそのまま採用している力 又は改良されていない。また、ポリイミド管状物体 とフッ素榭脂離型層を有する 2層構造あるいはポリイミド層とフッ素榭脂層間にプライ マー層を有する 3層構造であり特に図 6の定着装置で使用する場合には多層構造で あるため厚みが厚く熱伝導性が低下し、また、その製造方法も 3種類の原料と、 3つ のそれぞれ異なる工程が必要となり製造工程が煩雑で、かつ、各材料で形成された 層間の接着力にも問題があった。
特許文献 1 :特開平 7— 178741号公報
特許文献 2:特開平 3— 25471号公報
特許文献 3:特開平 6 - 258969号公報
特許文献 4:特開平 11— 133776号公報
特許文献 5:特開平 6 - 23770号公報 特許文献 6:特開平 1― 156017号公報
特許文献 7:特開 2001— 341143号公報
特許文献 8:特開 2001— 040102号公報
特許文献 9 :特開 2001— 056615号公報
発明の開示
[0014] 本発明は前記従来例の問題を解決し、管状物体の内面が低!ヽ摩擦抵抗を持ち同 時に管状物体外面も定着ベルトや加圧ベルトとしての十分な離型性を有し耐久性が 高く、製造コストの低!、管状物体及びその製造方法を提供する。
[0015] 本発明の管状物体は、ポリイミドとフッ素榭脂粒子とを含む混合物が成形され加熱 硬化された管状物体であって、前記管状物体の表層近傍に存在する少なくとも一部 のフッ素榭脂粒子は、前記管状物体の外面又は内外面に溶融流動して析出し、部 分的又は全面にフッ素榭脂被膜を形成していることを特徴とする。
[0016] 本発明の管状物体の製造方法は、ポリイミド前駆体溶液と溶融流動するフッ素榭脂 粒子との混合溶液を金型外面に塗布し所定の厚みにキャスト成形し、加熱してイミド 化し、前記イミドィ匕の最高温度をフッ素榭脂の融点を越える温度とし、冷却後、前記 金型と管状物体を分離することにより、前記管状物体の表層近傍に存在する少なくと も一部のフッ素榭脂粒子を前記管状物体の外面又は内外面に溶融流動して析出さ せ、部分的又は全面にフッ素榭脂被膜を形成させることを特徴とする。
図面の簡単な説明
[0017] [図 1]図 1は本発明の一実施例におけるイミドィ匕完結前の管状物体の概略断面図。
[図 2]図 2は本発明の一実施例におけるイミドィ匕完結後の管状物体の概略断面図。
[図 3]図 3は本発明の一実施例における FEP添加の場合の被膜形成を示す概略断 面図。
[図 4]図 4は本発明の一実施例における FEPと PTFE混合添加の場合の比較形成を 示す概略断面図。
[図 5]図 5は本発明の一実施例におけるキャスト成形の方法を示す断面図。
[図 6]図 6は本発明の一実施例で用いたレーザービームプリンター定着装置を示す 概略断面図。 [図 7]図 7は本発明の別の実施例で用いたレーザービームプリンター定着装置を示 す概略断面図。
[図 8]図 8は本発明の別の実施例におけるキャスト成形の方法を示す断面図。
[図 9]図 9は本発明の実施例 1におけるポリイミド管状物体の外表面の顕微鏡写真。
[図 10]図 10は本発明の実施例 1におけるポリイミド管状物体の内表面の顕微鏡写真
[図 11]図 11は本発明の実施例 5におけるポリイミド管状物体の外表面の顕微鏡写真
[図 12]図 12は本発明の一実施例で用いた動摩擦係数の測定装置を示す概略断面 図。
発明を実施するための最良の形態
[0018] 本発明の管状物体の基本的成分は、ポリイミドとフッ素榭脂粒子である。ポリイミドと フッ素榭脂粒子との相溶性はなくポリイミド管状物体の外面又は内外面にフッ素榭脂 が溶融析出し、且つ前記溶融析出面はその表面で流動した被膜を形成して 、る。
[0019] そして、金型の外面にキャスト成形されたフッ素榭脂粒子を含むポリイミド前駆体溶 液を加熱してイミド化させる際に、イミド化の最高温度をフッ素榭脂の融点を越える温 度とする。これにより、フッ素榭脂粒子がポリイミドの少なくとも外面に溶融析出し、こ れにより低摩擦係数を有する内面と高い離型性を有する外面特性を持つポリイミド管 状物体を得ることができる。
[0020] 前記フッ素榭脂被膜面は、フッ素榭脂粒子に起因する粒状模様を有して ヽることが 好ましい。これはフッ素榭脂粒子が一部残存しており、表面が細かな泡の状態として 観察される。
[0021] 前記フッ素榭脂粒子は、ポリテトラフルォロエチレン (PTFE)、テトラフルォロェチレ ンーパーフルォロアルキルビュルエーテル共重合体(PFA)、ポリクロ口トリフルォロ エチレン(PCTFE)、テトラフルォロエチレン一へキサフルォロプロピレン共重合体( FEP)、テトラフルォロエチレン エチレン共重合体(PETFE)から選ばれる少なくと も一つのフッ素榭脂であることが好まし 、。
[0022] 管状物体の表面に析出したフッ素榭脂を熱的に流動させ、フッ素榭脂被膜を形成 させるためには PFAや FEPのような熱可塑性フッ素榭脂が好まし 、。これらのフッ素 榭脂は、融点以上の温度で流動し、管状物体の内外面にフィルム状の被膜として形 成することができる。
[0023] また PTFE榭脂のように、融点以上の温度に加熱しても溶融粘度が高く熱流動しに くいフッ素榭脂を混合した場合、管状物体の内外表面の状態は、ポリイミドが海状、 フッ素榭脂粒子が島状で存在する、いわゆる海島構造である。このような構造は、画 像形成装置に用いる中間転写ベルトなどの用途に最適な構造である。すなわち、前 記転写ベルトは、感光体からトナー像を中間的に転写させ、その後トナー像を複写 紙に再転写する目的に使用されるベルトであり、複写紙に再転写したのち転写ベル ト表面にわずかに残存しているトナー粉末をブレードで搔き取り除去する場合に、ブ レードとの摺動抵抗が低く好ま ヽ構造である。
[0024] 本発明で使用するポリイミドは、熱硬化性榭脂であり、ポリイミド前駆体溶液とフッ素 榭脂の混合溶液を、例えば金型の外面あるいは内面にキャスティング成形し、乾燥 及び加熱してイミドィ匕を完結させ、管状物体の少なくとも外面又は内外面にフッ素榭 脂が析出したポリイミド 'フッ素榭脂複合管状物体を製作することができる。
[0025] 前記方法で製作した管状物体は、その被膜が空気に接している面にフッ素榭脂が 溶融析出し易い。すなわち、フッ素榭脂粉末はポリイミド前駆体溶液中では混合され 分散した状態で存在する。しかし、加熱処理により、イミド化を進行させる過程でフッ 素榭脂の融点を超える温度まで加熱処理することにより、溶融したフッ素榭脂が管状 物体の厚み方向で、空気に接して 、る最外層に向力つて移動して 、くことが考えられ る。
[0026] フッ素榭脂が前記管状物体の中で移動していく現象の詳細なメカニズムは不明で あるが、本発明者らは数多くの実験と研究を継続した結果、前記のポリイミド前駆体 溶液とフッ素榭脂の混合溶液をガラス板上に流延し、キャスティング成形し、乾燥及 び加熱してイミドィ匕を完結させ、ポリイミド 'フッ素榭脂複合フィルムの製作において、 前記フィルムがガラス面に接触している面にも、フッ素榭脂が溶融析出することを見 出し、本発明の管状物体において確認実験を行った。
[0027] その結果、空気層に全く接していない管状物体の内面にも、フッ素榭脂を析出させ ることができることを見出した。また、管状物体の両面にフッ素榭脂が析出してくる現 象は、フッ素榭脂の種類の違いやイミドィ匕工程の温度の違いによって異なることを見 出した。
[0028] すなわち、フッ素榭脂が析出する現象は、フッ素榭脂の融点とポリイミド前駆体のィ ミドィ匕温度の影響を受ける。詳細な実験結果では、芳香族テトラカルボン酸二無水物 としてビフエ-ルテトラカルボン酸二無水物(BPDA)と、芳香族ジァミンとしてバラフ ェ-レンジァミン (PPD)を用いた剛直なポリイミドに、フッ素榭脂を混合した場合、イミ ド化の最高温度がフッ素榭脂の融点未満では、フッ素榭脂は管状物体のいずれの 面にも顕著に現れないが、フッ素榭脂の融点以上まで温度を上げると、管状物体の 内面、外面の両面にフッ素榭脂が溶融して析出し、低い摩擦抵抗を有する管状物体 を得ることができた。
[0029] また、前記芳香族テトラカルボン酸二無水物と芳香族ジァミン力もなるポリイミド前駆 体溶液単体をイミドィ匕して得られるポリイミドの熱収縮率が大きいことがフッ素榭脂を 溶融析出させるために好まし 、ことを見出した。すなわちポリイミド前駆体溶液をガラ ス板上にキャスティング成形し乾燥後、段階的に 300°Cまで加熱 Wミドィ匕を進行さ せた後、冷却後ポリイミドフィルムをガラス板より剥がし、 300°Cからフッ素榭脂の融点 以上の温度、例えば 400°Cまで加熱したときの熱収縮率の大き 、ポリイミドにお 、て フッ素榭脂が溶融析出しやす 、。
[0030] 前記テストの結果、芳香族テトラカルボン酸二無水物成分として BPDAと芳香族ジ ァミン成分として PPD力 なるポリイミド前駆体力 作製したフィルムの熱収縮率は 0. 9%であり、 PMDAと ODAを用いたポリイミド前駆体より得られたフィルムの熱収縮率 は 0. 09%であった。ポリイミドフィルムの熱収縮率の値とフッ素榭脂が溶融析出する 現象の関係は、 300°C〜400°Cにおける熱収縮率が大きいほどポリイミド被膜中から フッ素榭脂が析出しやすい現象を見出した。
[0031] 前記熱収縮率の詳細なテスト方法を下記に説明する。熱収縮率の測定は島津製 作所社製" TMA— 50"を用いた。ポリイミドフィルムは前記モノマー力も得られたポリ イミド前駆体溶液をガラス板上にイミド化完結時の厚みが 50 μ mになるよう流延し 15 0°Cの温度で 40分乾燥後 200°Cで 40分、さら〖こ 250°Cで 20分、 300°Cで 20分加熱 しポリイミドフィルムを作製した。
[0032] このフィルムを長さ 10mm幅 3. 5mmの短冊状に切断し、その片方に 2. Ogの荷重 をかけ" TMA— 50"に装着した。熱収縮の状態は室温から 400°Cまで 10°CZ分の 昇温速度で観察し 300°C力も 400°Cにおける熱収縮率を算出した。
[0033] また、 PTFE (融点: 327°C)よりも融点の低 、FEP (融点: 250°C)を用いたポリイミ ド前駆体溶液で実験した結果では、イミド化の最高温度が 300°Cの温度で、管状物 体の内外面にフッ素榭脂 (FEP)が析出し、且つその表面は熱流動し被膜の状態を 形成し、低 、摩擦抵抗を有する管状物体を得ることができた。
[0034] このように本発明の管状物体の内外面にフッ素榭脂が析出する現象は、フッ素榭 脂の融点、ポリイミド前駆体のイミド化温度等を選定し、所定の条件に設定することに より、管状物体の両面にフッ素榭脂を析出させることが可能になった。
[0035] 本発明の管状物体は、単体層でも良いし、必要に応じて多層で形成しても良い。多 層の場合、内層はフッ素榭脂粒子を含まないか又は外層よりもその存在量を相対的 に少なくしてポリイミド層を成形することもでき、管状物体の機械的特性をさらに向上 させることができる。またポリイミドゃフッ素榭脂の種類やある!/、はフッ素榭脂の混合 量を変えた層で多層にすることもできる。さらにフッ素榭脂を混合したポリイミド前駆体 を用い金型にキャスト成型した後、イミド反応時の温度を制御し、管状物体の外面の みにフッ素榭脂を溶融析出することもできる。中間転写ベルトなどの用途のように、外 層の表面のみ摩擦特性を良好にすれば良い場合もある力もである。
[0036] また、前記フッ素榭脂混合ポリイミド前駆体溶液には窒化ホウ素、チタン酸カリウム、 マイ力、酸化チタン、タルク、炭酸カルシウム、窒化アルミニウム、アルミナ、炭化珪素 、珪素、窒化珪素、シリカ、グラフアイト、カーボンファイバー、金属粉末、酸化ベリリウ ム、マグネシウム、酸ィ匕マグネシウム等の熱伝導性フイラ一等を添加できる。これらの 熱伝導性フイラ一を添加することによって管状物体被膜の熱伝導性が改善され高速 定着に対応でき好ましい。
[0037] 本発明において前記フッ素榭脂は PTFE, PFA, FEP, CPTFE等のフッ素榭脂 を単体で、あるいは混合して使用することができる。 PTFE, PFA、 FEPは耐熱性、 離型性に優れ本発明で使用できる好ましい材料である。また、前記フッ素榭脂を混 合したポリイミド前駆体溶液中にはカーボンブラック、カーボンファイバー、金属粉末 などの導電性物質や帯電防止剤を添加することができる。
[0038] 導電性あるいは帯電防止剤を混合分散したフッ素榭脂を用いることによって、画像 形成プロセスの中で発生する静電オフセットなどによる画質の低下あるいは、画像上 ゴーストとなってしまう状態を改善でき好ま 、。
[0039] また前記フッ素榭脂の混合量はポリイミド前駆体溶液の固形分に対して 10〜90質 量%に設定することが好ましい。特に好ましくは 20〜80質量%である。
[0040] 上記フッ素榭脂の含有量が 10質量%未満であると、溶融析出してくるフッ素榭脂 が少なく摩擦抵抗を低下させる効果が少なくなる傾向となり、また 90質量%を超える と、機械強度が低くなり、管状物体表面の平滑性も損なわれ割れが生じやすくなる傾 向となる。
[0041] また、前記フッ素榭脂は粉末状のものが混合しやすく好ましい形態であり、平均粒 径は、 0. 1〜100 /ζ πιの範囲が好ましい。より好ましい平均粒子径は、 0. 5〜50 mの範囲である。このような範囲内であると粒子の凝集が少なく均一に分散できるた め好ましい。
[0042] なお、前記平均粒径が 0. 1 μ m未満であると粒子が二次凝集しやすぐ 100 μ mを 超えると管状物体の内面あるいは外面に、フッ素榭脂粒子に起因する凹凸が生じや すいため好ましくない。なお、上記フッ素榭脂粉末の平均粒径の測定方法はレーザ 回析式粒度測定装置 (ASLD— 2100:島津製作所社製)やレーザ回析 Z散乱式粒 度分布測定装置 (LA— 920:堀場製作所社製)で測定することが出来る。
[0043] 前記のフッ素榭脂粒子の大きさを整えるため、ポリイミド前駆体溶液とフッ素榭脂粒 子との混合溶液を金型外面に塗布する前に、前記混合溶液をフィルターで濾過し、 フッ素榭脂粒子の粗大粒子を除去することが好まし 、。
[0044] また、本発明の管状物体は、ポリイミドを主成分とする管状物体であり、フッ素榭脂 とポリイミド前駆体溶液を混合しシームレス状にキャスティング成形後、加熱イミドィ匕し たものである。前記ポリイミド前駆体溶液は、芳香族テトラカルボン酸二無水物と芳香 族ジァミンとの略等モルを有機極性溶媒中で反応させて得ることができる。
[0045] 前記、芳香族テトラカルボン酸二無水物の代表例としては、 3, 3' , 4, 4' ベン ゾフエノンテトラカルボン酸二無水物、ピロメリット酸二無水物、 2, 3, 3' , 4ービフエ -ルテトラカルボン酸二無水物、 3, 3' , 4, 4' ービフエ-ルテトラカルボン酸二無 水物、 1, 2, 5, 6 ナフタレンテトラカルボン酸二無水物、 1, 4, 5, 8 ナフタレンテ トラカルボン酸二無水物、 2, 3, 6, 7 ナフタレンテトラカルボン酸二無水物、 2, 2' ビス(3, 4 ジカルボキシフエ-ル)プロパン二無水物、ペリレン 3, 4, 9, 10— テトラカルボン酸二無水物、ビス(3, 4—ジカルボキシフエ-ル)エーテル二無水物、 ビス(3, 4—ジカルボキシフエ-ル)スルホン二無水物等があげられる。
[0046] また、前記芳香族ジァミンの代表例としては、 4, 4' ージアミノジフエニルエーテル 、 p—フエ二レンジァミン、 m—フエ二レンジァミン、 1, 5 ジァミノナフタレン、 3, 3' ージクロ口べンジジン、 3, 3' —ジアミノジフエ二ノレメタン、 4, 4' ージアミノジフエ二 ルメタン、 3, 3' —ジメチルー 4, 4' ービフエ二ルジァミン、 4, 4' ージアミノジフエ ニルスルフイド一 3, 3' —ジアミノジフエニルスルホン、ベンジジン、 3, 3' —ジメチ ルベンジジン、 4, 4' —ジァミノフエニルスルホン、 4, 4' —ジアミノジフエニルプロ パン、 m キシリレンジァミン、へキサメチレンジァミン、ジァミノプロピルテトラメチレン 、 3—メチルヘプタメチレンジァミン、等があげられる。
[0047] これら芳香族テトラカルボン酸二無水物及び芳香族ジァミンは、単独であるいは混 合して使用することができる。またポリイミド前駆体溶液まで完成させてそれらの前駆 体を混合して使用することもできる。
[0048] 前記芳香族テトラカルボン酸二無水物と芳香族ジァミンの組み合わせの中では、ビ フエ-ルテトラカルボン酸二無水物とパラフエ-レンジァミンの組み合わせが好ましい 。この前駆体力も得られたポリイミドは、ポリマーの構造がリジッドであり、フッ素榭脂の 溶融温度でフッ素榭脂を外側に押出しやすい構造となる。
[0049] 前記芳香族テトラカルボン酸二無水物と芳香族ジァミンを反応させる有機極性溶媒 としては、 N—メチルー 2—ピロリドン、 N, N ジメチルホルムアミド、 N, N ジメチル ァセトアミド、 N, N ジェチルホルムアミド、 N, N ジェチルァセトアミド、ジメチルス ルホキシド、へキサメチルホスホルトリアミド、ピリジン、ジメチルテトラメチレンスルホン 、テトラメチレンスルホン等があげられる。これらの有機極性溶媒はフエノール、キシレ ン、へキサン、トルエン等を混合することもできる。 [0050] 上記、ポリイミド前駆体溶液は、前記芳香族テトラカルボン酸二無水物と芳香族ジ ァミンとを有機極性溶媒中で通常は 90°C以下で反応させることによって得られ、溶媒 中の固形分濃度は、最終のポリイミド管状物体の仕様や加工条件によって設定する ことができるが 10〜30質量%である。
[0051] また、有機極性溶媒中で芳香族テトラカルボン酸二無水物と芳香族ジァミンとを反 応させると、その重合状況によって溶液の粘度が上昇するが、使用に際しては所定 の粘度に希釈して使用することができる。製造条件や作業条件によって通常 1〜500 0ボイズの粘度で使用される。
[0052] 本発明の製造方法において、管状物体の少なくとも外面にフッ素榭脂層を析出さ せることができる温度は、フッ素榭脂の融点を越える温度に加熱する必要がある。イミ ド化の最高温度は、混合したフッ素榭脂の融点より 10°C以上高い温度でイミドィ匕を 完成させることが好ましい。
[0053] また、前記管状物体の内外面にフッ素榭脂を析出させるために必要な加熱時間は 、イミドィ匕の最高温度がフッ素榭脂の融点を越える温度に到達してから 30分以内の 時間であることが好ましい。 30分以上の加熱時間になると、フッ素榭脂の熱分解や、 ポリイミドの機械的特性が低下するおそれがある。
[0054] 本発明の管状物体は例えば次のような方法で得ることができる。所定の外径 (管状 物体の内径に相当する径)の金型表面にフッ素榭脂混合ポリイミド前駆体溶液を塗 布し、外側にダイスを用いてキャスト成形し、加熱装置に導き、 100〜150°Cの比較 的低い温度で重合溶媒を乾燥させ、その後、イミド化反応を進め、最終的にはフッ素 榭脂の融点を越える温度で所定時間加熱してイミドィ匕を完成させる。その後冷却して 、前記金型から管状物体を取り外す。
[0055] 本発明の一実施例においてポリイミド前駆体溶液にフッ素榭脂 (PTFE)粉末を混 合し、キャスト成形し、ポリイミドのイミドィ匕温度が 300°Cのときの管状物体 10の概略 拡大断面図を図 1に示す。この段階まではポリイミドフィルム層 11の内部にフッ素榭 脂粉末 12は分散されており、表層面はほとんどポリイミド層で覆われている。この段 階では水の接触角も低い。 15は金型である。
[0056] 次に、イミドィ匕温度を 400°Cにすると、図 2に示すように、フッ素榭脂粉末は溶融し、 ポリイミド表面力も染み出すように空気側表面層に析出する。 13は溶融して染み出し たフッ素榭脂である。 14は金型側の内表面側に溶融して析出したフッ素榭脂である 。この状態になると水の接触角は高くなる。フッ素榭脂はポリイミドとの関係において は、非相溶で海島構造 (海がポリイミド、島がフッ素榭脂)であり、かつ溶融したフッ素 榭脂はポリイミド表面力も部分的に析出している。
[0057] 図 3はポリイミド前駆体溶液に FEP (融点 260°C)粒子のみを単独で混合し、キャス ト成形し、ポリイミドのイミドィ匕温度を 400°Cにしたときの管状物体の概略拡大断面図 である。ポリイミドフィルム層 21の内部に FEP粉末 22は分散されており、外表層面に FEPが溶融流動して析出し、部分的又は全面にフッ素榭脂被膜 23を形成している。 30は内表面に溶融析出した FEP榭脂である。 28は金型である。
[0058] 図 4はポリイミド前駆体溶液に PTFE (融点 327°C)粒子と FEP (融点 260°C)粒子 を 50 : 50の割合で混合し、キャスト成形し、ポリイミドのイミド化温度を 400°Cにしたと きの管状物体の概略拡大断面図である。ポリイミドフィルム層 21の内部に FEP粉末 2 2と PTFE粉末 24は分散されており、表層面に FEPと PTFEが溶融流動して析出し、 部分的又は全面にフッ素榭脂被膜 (23, 25)を形成している。 28は金型である。
[0059] 本発明は、管状物体の表層近傍に存在する少なくとも一部のフッ素榭脂粒子は、 管状物体の外面又は内外面に溶融して析出し、この溶融析出したフッ素榭脂はポリ イミドと一体ィ匕し、且つ前記管状物体表面で流動した被膜を形成しているので、管状 物体内面の動摩擦係数が低ぐまた管状物体の外面もフッ素榭脂被膜で形成されて いるため、溶融したトナーの離型性も高ぐ従来の定着ベルトのようにフッ素榭脂離型 層を別工程で新に成型する必要もなぐ画像形成装置の定着部材ゃ転写ベルト、あ るいは中間転写兼加熱定着ベルトなどに使用できる。さらに、ポリイミド前駆体溶液に フッ素榭脂粒子を添加した混合溶液を成形金型外面又は内面に塗布し、所定の厚 みにキャスト成形し、加熱してイミドィ匕し、前記イミド化の最高温度をフッ素榭脂の融 点を越える温度とすることにより、管状物体の表層近傍に存在する少なくとも一部の フッ素榭脂粒子を管状物体の少なくとも外面に溶融して析出させることができる。ポリ イミド基材の片面あるいは両面にフッ素榭脂が溶融析出した構造の成形物はフィル ム状では耐熱摺動材料や離型性フィルム、あるいはチューブ形状としてはフッ素榭 脂の化学的な安定性及びポリイミドの機械的特性などを持ち合わせ医療用分野の力 テーテルや体内に挿入する医療用の各種チューブなどにも好適に使用できる。 実施例
[0060] 以下、実施例に基づき本発明を更に詳細に説明する。なお、本発明は下記の実施 例に限定されるものではない。
[0061] 下記実施例及び比較例にお!、て、ビフエ-ルテトラカルボン酸二無水物は「BPDA
」と略記し、パラフエ-レンジアミンは「PPD」と略記し、ピロメリット酸二無水物は「PM
DA」と略記し、 4, 4,一ジアミノジフエ-ルエーテルは「ODA」と N—メチル 2 ピロ リドンは「NMP」と略記する。
[0062] また、本発明で得られた管状物体の動摩擦係数及び、これらの材料で得たフィルム の純水に対する接触角は下記の方法で測定した。
( 1 )動摩擦係数の測定方法 (図 12に示す)
動摩擦係数の測定 «JISK7125に準じて行った。水平なテーブル 64の上に幅 80 mm長さ 200mmの大きさの試験フィルム 62を固定した。その上に幅 63mm、長さ 63 mm (面積 40cm2)の大きさで固定した試験フィルム 62と同材質の試験フィルム 61を 重ね、さらにその上に幅 63mm、長さ 63mm (面積 40cm2)、重さ 200gの重り 63を置 き、重ねた試験フィルムを lOOmmZ分の速度で水平に滑らし、その荷重 (動摩擦力 )を測定し下記の式により動摩擦係数を計算した。 65はワイヤ、 66は滑車、 67は引 つ張り試験機のロードセルで Zの方向に巻き上げる。
動摩擦係数 =F /¥
D D P
F :動摩擦力(N)
D
F:すべり片の質量によって生じる方線力( = 1. 96N)
P
(2)接触角の測定
協和界面化学 (株)製" FACE CA— Z"測定器を用いて、 23°Cの純水に対する接 触角を測定した。
[0063] (実施例 1)
(1)フッ素榭脂混合ポリイミド前駆体溶液の製作
BPDA100質量部に対して PPD39質量部をフラスコ中で NMPに溶解(モノマー 濃度 18. 2質量%)し、 23°Cの温度で 6時間攪拌しながら反応させてポリイミド前駆体 溶液を得た。このポリイミド前駆体溶液の回転粘度は 1200ボイズであった。なお、回 転粘度は温度 23°Cにおいて B型粘度計で測定した値である。次に、前記ポリイミド前 駆体溶液に平均粒子径 3. 0 μ mの PTFE粉末 (融点 327°C:デュポン社製商品名 " Zonyl MP1100")をポリイミド前駆体溶液中の固形分に対して 20質量%の割合に なるように添加して攪拌し、さらに平均粒子径 mの FEP粉末 (融点 260°C :デュ ボン社製商品名" 532— 8110")をポリイミド前駆体溶液中の固形分に対して 4. 0質 量%の割合になるように添加して攪拌し、均一に分散させた。その後 250メッシュのス テンレス金網を用いて粗!ヽ異物を濾過し、フッ素榭脂粉末混合ポリイミド前駆体溶液 を用意した。
(2)管状物体の製作
外径が 24mm、長さ 500mmのアルミニウム製金型の表面に酸化ケィ素コーティン グ剤をデイツビング法によりコーティングし焼付け、酸ィ匕ケィ素膜を被覆した。
[0064] 次いで図 5に示すように、前記のフッ素榭脂粉末混合ポリイミド前駆体溶液 4に金型 1を先端カゝら 400mm部分まで浸漬し、塗布したのち、内径 25mmのリング状ダイス 2 を前記金型の上部から挿入し走行させ、前記金型の表面に 500 mの厚みのキャス ト膜 3を成形した。
[0065] その後、前記金型 1ごと 120°Cのオーブンに入れ 60分間乾燥後、 200°Cの温度ま で 40分間で昇温させ、同温度で 20分間保持し、最終イミド化処理として 250°Cの温 度で 10分間加熱した後、 400°Cの温度まで 15分で昇温し、同温度で 10分間加熱し てイミドィ匕を完了させ、室温 (25°C)に冷却後、金型から管状物体を取り外した。
[0066] 得られた管状物体の厚みは 55 μ mであり両端部をカットし、長さ 240mm (A4サイ ズ)とし内径 24mmの管状物体を得た。
[0067] この管状物体の内外面の動摩擦係数の測定結果を後の表 1に示す。また、デジタ ルマイクロスコープ(キーエンス社製 VHX— 100)による 1000倍の外面の観察写真 を図 9に示す。外面の白く斑点状に見える部分が PTFE榭脂粒子であり、そのまわり に流動したような状態で析出して 、る部分力FEP榭脂である。全体としてフッ素榭脂 被膜面は、フッ素榭脂粒子に起因する粒状模様を有していることが確認できる。また 、この管状物体の内面の同写真を図 10に示す。黒く斑点状に見える部分は PTFE 榭脂が析出ものであり、まわりの白く見える部分は FEP榭脂が溶融して流動している 部分である。
[0068] このポリイミド管状物体を図 6に示す毎分 10枚の定着が可能なレーザービームプリ ンターの定着ベルトとして装着し画像定着を行った結果、良好な画像が得られた。
[0069] (比較例 1)
実施例 1の条件でポリイミド前駆体溶液にフッ素榭脂粉末を混合しない以外は実施 例 1と同様の条件でポリイミド管状物体を得た。この管状物体の内面の動摩擦係数の 測定結果を後の表 1に示す。
[0070] (実施例 2)
実施例 1で調合した BPDAZPPDカゝらなるポリイミド前駆体単体溶液にフッ素榭脂 粉末として平均粒子径 35 mの FEP粉末 (デュポン社製商品名" 532— 8110")の みをポリイミド前駆体溶液中の固形分に対して 23質量%の割合になるように添加し 混合しフッ素榭脂混合ポリイミド前駆体溶液を用意した。
[0071] その後実施例 1と同様に金型の表面にポリイミド前駆体溶液を塗布し、キャスト成形 し、実施例 1と同様にイミド化処理を実施し、最終イミドィ匕処理として 250°Cの温度で 1 0分加熱した後、 300°Cの温度まで 5分で昇温させ 350°Cの温度で 15分間加熱し、 冷却してポリイミド管状物体を得た。
[0072] この管状物体の動摩擦係数の測定結果を表 1に示す。また、図 6に示す毎分 10枚 の定着が可能レーザービームプリンターの定着ベルトとして装着し画像定着を行った 結果、良好な画像が得られた。図 6において、 31は定着ベルト (ポリイミド榭脂管状物 体)、 32はベルトガイド、 33はセラミックヒーター、 34は駆動源を持つ加圧ロール、 35 はサーミスタ、 36は加圧ロールの芯金、 37は複写紙、 38は定着前のトナー像、 39は 定着後のトナー像、 Nは-ップ点である。
[0073] (実施例 3)
実施例 1で調合した BPDAZPPDカゝらなるポリイミド前駆体単体溶液にフッ素榭脂 粉末として平均粒子径 28 μ mの PFA榭脂粉末 (三井デュポンフロロケミカル社製商 品名 PFA MP102)のみをポリイミド前駆体溶液中の固形分に対して 24質量%の割合になるよ うに添加し混合しフッ素榭脂混合ポリイミド前駆体溶液を用意した。
[0074] その後実施例 1と同様に金型表面ポリイミド前駆体溶液をキャスト成型し実施例 1と 同様の条件でイミド化の最高温度を 400°Cで処理してポリイミド管状物体を得た。た だし、前記金型は外径 30mmの金型を使用した。
[0075] この管状物体の動摩擦係数の測定結果を表 1に示す。また、図 7に示す毎分 6枚の 定着が可能レーザービームプリンターの加圧ベルトとして装着し画像定着を行った結 果、良好な画像が得られた。図 7において、 51は加圧ベルト、 52は押圧ガイド、 53は 押圧パッド、 54は定着ロール、 55は熱源、 56は定着前のトナー像、 57は複写紙で ある。
[0076] (実施例 4)
PMDA100質量部に対して ODA75質量部をフラスコ中で NMPに溶解(モノマー 濃度 18. 0質量%)し、 23°Cの温度で 6時間攪拌しながら反応させてポリイミド前駆体 溶液を得た。このポリイミド前駆体溶液の回転粘度は 1500ボイズであった。回転粘 度は温度 23°Cにおいて B型粘度計で測定した値である。次に平均粒子径 35 mの FEP粉末 (融点 270°Cデュポン社製商品名" 532— 8110")のみをポリイミド前駆体 溶液中の固形分に対して 26質量%の割合になるように添加し混合しフッ素榭脂混合 ポリイミド前駆体溶液を用意した。
[0077] その後実施例 1と同様に金型の表面にポリイミド前駆体溶液を液状成形した。その 後 120°Cのオーブンで 60分間乾燥し、 200°Cまで 20分間で昇温し、同温度で 20分 間加熱し、最終イミドィ匕処理として 250°Cの温度で 10分加熱した後、 400°Cの温度ま で 10分で昇温させ 400°Cの温度で 10分間加熱し、冷却してポリイミド管状物体を得 た。
[0078] この管状物体の動摩擦係数の測定結果を表 1に示す。また、図 6に示す毎分 6枚の 定着が可能レーザービームプリンターの定着ベルトとして装着し画像定着を行った結 果、良好な画像が得られた。
[0079] (比較例 2)
実施例 1の条件で最終のイミドィ匕温度を 250°Cに変更した以外は実施例 1と同様の 条件でポリイミド管状物体を得た。この管状物体の内外面の動摩擦係数の測定結果 を表 1に示す。
[0080] 各実施例および各比較例で調整したフッ素榭脂混合ポリイミド前駆体溶液を 300m mD (縦: 300mm、横: 300mm)のガラス板上に 80 μ mの厚みになるようキャスト成 形し、表 1の最高イミド化温度でイミドィ匕を完成させポリイミドフィルムを得た。その後、 各フィルムの純水に対する接触角を測定した結果を表 1に示す。
[0081] (実施例 5)
図 8に示す管状物体の成形装置を用い、ポリイミド前駆体の吐出スリット部分 72の 内径力 230. 2mmで、吐出スリット開口幅 1. 4mmの吐出口を有する吐出スリットへッ ド 70を前記成形装置に装着した。また成形金型 71として外径 229mm、長さ 500m mのアルミニウム製金型を用意し、金型表面に酸化ケィ素コーティング剤をデイツピン グ法によりコーティングし焼付け、酸化ケィ素膜で被覆した金型を用い、金型の上端 が吐出スリット部の内側にくるように設置した。前記金型の平均表面粗度は (Rz) 2. 2 μ mであった。
[0082] 次に実施例 1で調合した BPDAZPPDよりなるポリイミド前駆体単体溶液に平均粒 子径 3. 0 μ mの PTFE粉末(融点 327°C:デュポン社製商品名 "Zonyl MP 1100" )をポリイミド前駆体溶液中の固形分に対して 23質量%の割合になるように添加して 攪拌し、均一に分散させた。その後 250メッシュのステンレス金網を用いて粗い異物 を濾過し、 PTFE粉末混合ポリイミド前駆体溶液を用意した。
[0083] その後前記 PTFE粉末混合ポリイミド前駆体溶液にさらに、酸性カーボンブラック( 三菱化学 (株)製、商品名「MA78」、 DBP吸収量: 70cm3、比表面積 100m2Zg当り の揮発分: 2. 6重量%)をポリイミド榭脂に対して 14. 5質量%添加しポリイミド、 PTF E,及びカーボンブラックの 3成分を混合分散させたポリイミド前駆体を製作した。
[0084] その後前記 PTFE混合前駆体溶液 74を貯蔵タンク 73に投入し、スラリーポンプ 77 を回転させ、所定量のポリイミド前駆体溶液を分岐ユニット 78で 24箇所に分配し、配 管 79, 80 (他の配管は図示せず)を用いて吐出スリツドヘッド 70の配管コネクターに 接続し、吐出スリット開口部まで圧送した。同時に金型を矢印 Yの方向に垂直に上昇 させ金型 71の最上部から下方向に 50mmの位置力 吐出スリット部を通過した時点 でスラリーポンプ 77からポリイミド前駆体溶液を圧送させ、金型 71の外表面に 600 μ mの厚みでポリイミド前駆体溶液 81をキャスト成形した。 75は送液パイプ、 76はバル ブである。スラリーポンプ 77の圧送速度と、金型 71の上昇速度は予め実験によりポリ イミド前駆体溶液の粘度、金型 71の外径、液状成形厚み等のデータから算出し所定 の条件を設定した。金型 71の最下端部から 50mmの位置が吐出スリット部を通過し た時点でスラリーポンプからの圧送を停止し、金型 71の表面に約 400mmの長さで 液状成形を完了させた。その後、前記金型をそのままオーブンに入れ 120°Cで 60分 間乾燥後、 200°Cの温度まで 40分間で昇温させ同温度で 20分間保持した。次いで 300°Cまで 20分間で昇温させ 30分間保持しさらに 340°Cまで 15分間で昇温し、同 温度で 20分間加熱 Wミドィ匕を完了させた後オーブンから取出し冷却後、金型から 脱型してポリイミド榭脂管状物体を作製した。
[0085] この管状物体の厚さは であり、印加電圧 500vにおける体積抵抗率は 1. 1
X 108 Ω 'cmであった。また前駆体溶液に混合した前記 PTFE榭脂は管状物体の内 外面に溶融析出していたが、動摩擦係数のデータでは内面よりも外面に多く析出し ている結果が得られた。
[0086] この管状物体につ!、て、デジタルマイクロスコープ(キーエンス社製 VHX— 100) による 1000倍の外面の観察写真を図 11に示す。白く斑点状に見える部分が PTFE 榭脂粒子であり、フッ素榭脂粒子に起因する粒状模様を有していることが確認できる
[0087] この管状物体の動摩擦係数及び接触角の測定結果を表 1に示す。この管状物体を フルカラーのタンデム型レーザービームプリンターの中間転写ベルトとして使用した 結果、ベルト表面に形成したカラートナー像を複写紙に転写した後、転写ベルト上に 残存するトナーをウレタンゴム製ブレードにより除去する場合、前記ブレードと転写べ ルト表面の摺動抵抗が低く残存するトナーを確実に除去でき、鮮明な画像と十分な 耐久性が得られた。また前記管状物体の内面にはフッ素榭脂の析出が少ないため、 転写ベルトの内面に配置している駆動ロール間でスリップもなく確実な回転が伝達で き、トナー像が乱れることがなぐ画像ぶれの発生が防止できた。体積抵抗率は、 JIS C2151の方法に従って、アドバンテスト社製のデジタル超高抵抗/微少電流計 R83 40/R8340Aを使用し、印加時間 30秒で測定した。
(実施例 6)
(1)多層構造管状物体の 1層目(内層)の製作
実施例 1で調製した BPDAZPPD力もなるポリイミド前駆体単体溶液に、窒化ホウ 素粉末 (三井ィ匕学 (株) MBN— 010T)を前記ポリイミド前駆体溶液の固形分濃度に 対して 30質量%混合して窒化ホウ素粉末混合ポリイミド前駆体溶液を作製した。次 V、で実施例 1で用いた金型の表面に、リング状ダイスを用いイミド化後の被膜厚みが 35 μ mになるよう塗布しキャスト成形し、 120°Cで乾燥後 250°Cの温度でイミドィ匕の 中間処理を行い、窒化ホウ素粉末が混合されたポリイミド被膜からなる管状物体の 1 層目の被膜成形を行った。
(2)多層構造管状物の 2層目(外層)に用いるポリイミド前駆体溶液の製作 実施例 1で調製した BPDA/PPDカゝらなるポリイミド前駆体単体溶液に、平均粒子 径 3. 0 μ mの PTFE粉末(融点 327°C : SUMMIT PRECISION POLYMERS
CORPORATION製" SP-Powdered PTFE")をポリイミド前駆体溶液中の固形分に対し て 70質量%、とカーボンファイバー(昭和電工社製" VGCF-H")を 5質量%の割合で 添加して攪拌し、均一に分散させた。その後 250メッシュのステンレス金網を用いて ヽ異物を濾過し、フッ素榭脂粉末とカーボンファイバー混合ポリイミド前駆体溶液 を用意した。
(3)多層構造管状物体の 2層目(外層)の成形及びイミド化の完結
前記(1)項で製作した 1層目の管状物体の表面に前記 (2)項で調製したフッ素榭 脂粉末とカーボンファイバー混合ポリイミド前駆体溶液をイミドィ匕後の被膜厚みが 20 μ mになるようにリング状ダイスを用いてキャスト成形し、 120°Cの温度で乾燥した後 、 250°Cの温度で一次イミドィ匕処理を行い、さらに、 400°Cの温度まで 15分で昇温し 、同温度で 20分間加熱してイミドィ匕を完了させ、ポリイミドに窒化ホウ素粉末を混合し た内層と、同じくポリイミドにフッ素榭脂粉末とカーボンファイバーを混合した外層を有 する 2層構造のポリイミド管状物体を得た。この管状物体の内径は 24mmで総厚みは 54 μ mであり、 1層目と 2層目はイミドィ匕によって強固に接着され剥離することはでき なかった。また、管状物体の外面には、混合したフッ素榭脂が溶融して析出しており 、フッ素榭脂の優れた離型性及び低い摩擦特性を有していた。この管状物体の内外 面の動摩擦係数の測定結果を表 1に示す。この管状物体は 1層目と 2層目力 Sイミドィ匕 によって一体化された構造であり、 1層目(内層)は管状物体として必要とされる機械 的特性を有し、 2層目(外層)は多量に混合したフッ素榭脂が溶融して析出し、十分 な厚みの離型層が得られ優れた耐久性が得られた。
[0089] また、 1層目に混合した窒化ホウ素と、 2層目に混合したカーボンファイバーによつ て管状物体の厚み方向の熱伝導性が改良され、同時に最外層に析出したフッ素榭 脂層の表面抵抗は 800 Ω Z口であり、毎分 14枚の定着が可能な図 6に示すレーザ 一ビームプリンターの定着ベルトとして装着し、画像定着を行った結果、オフセットの 発生もなく良好な画像が得られた。
[0090] (実施例 7)
(1)多層構造管状物体の 1層目(内層)の製作
実施例 1で調製した BPDA/PPDカゝらなるポリイミド前駆体単体溶液に、平均粒子 径 3. 0 mの PTFE粉末(融点 327°C:デュポン社製商品名 "Zonyl
MP1100")を 15質量%混合してフッ素榭脂とポリイミド前駆体の混合溶液を調合した 。次 、で実施例 3で用いた金型の表面にリング状ダイスを用いイミド化後の被膜厚み 力 S35 mになるように塗布し、キャスト成形し、 120°Cで乾燥後 250°Cの温度でイミド 化の中間処理を行い、前記混合溶液カゝらなる 1層目の被膜を成形した。
(2)多層構造管状物の 2層目(外層)に用いるポリイミド前駆体溶液の製作 実施例 1で調製した BPDAZPPDカゝらなるポリイミド前駆体単体溶液に平均粒子 径 3. O /z mの PTFE粉末(融点 327°C : SUMMIT PRECISION
POLYMERS CORPORATION製" SP- Powdered PTFE"をポリイミド前駆体溶液中の 固形分に対して 55質量%、カーボンファイバー(昭和電工社製" VGCF-H")を 5質量 %の割合になるように添加して攪拌し、均一に分散させた。その後 250メッシュのステ ンレス金網を用いて粗!ヽ異物を濾過し、フッ素榭脂粉末とカーボンファイバー混合ポ リイミド前駆体溶液を用意した。
(3)多層構造管状物体の 2層目(外層)の成形、及びイミドィ匕の完結
前記(1)項で製作した 1層目の管状物体の表面に前記 (2)項で調合した、フッ素榭 脂粉末とカーボンファイバー混合ポリイミド前駆体溶液をイミドィ匕後の被膜厚みが 20 /z mになるように、リング状ダイスを用いてキャスト成形し、 120°Cの温度で乾燥した 後、 250°Cの温度で一次イミドィ匕処理を行い、さらに、 400°Cの温度まで 15分で昇温 し、同温度で 20分間加熱してイミドィ匕を完了させ、ポリイミドにフッ素榭脂を混合した 内層と、同じくポリイミドにフッ素榭脂粉末とカーボンファイバーを混合した外層を有 する 2層構造のポリイミド管状物体を得た。この管状物体の内径は 24mmで総厚みは 55 μ mであり、 1層目と 2層目はイミドィ匕によって強固に接着されていた。また、管状 物体の外面、及び内面にもフッ素榭脂が溶融して析出しており、フッ素榭脂の優れた 離型性及び低!、摩擦特性を有して!/、た。この管状物体の内外面の動摩擦係数の測 定結果を表 1に示す。この管状物体の最外層に析出したフッ素樹脂層の表面抵抗は 815 Ω Ζ口であり、図 7に示す定着装置を装着したレーザービームプリンターの加圧 ベルトとして用い、画像定着を行った結果、オフセットの発生もなく良好な画像が得ら れた。
[表 1]
Figure imgf000023_0001
表 1から明らかなとおり、本発明の管状物体は、動摩擦係数が低く、フィルム状成形 物の接触角も低力つた。また、電子顕微鏡写真による観察結果から、ポリイミド管状 物体の表面にフッ素榭脂が析出していることが確認できた。さらに、レーザービーム プリンターの定着ベルトとして装着し、画像定着を行った結果、良好な画像が得られ

Claims

請求の範囲
[1] ポリイミドとフッ素榭脂粒子とを含む混合物が成形され加熱硬化された管状物体で あって、
前記管状物体の表層近傍に存在する少なくとも一部のフッ素榭脂粒子は、前記管 状物体の外面又は内外面に溶融流動して析出し、部分的又は全面にフッ素榭脂被 膜を形成して!/、ることを特徴とする管状物体。
[2] 前記フッ素榭脂被膜面は、フッ素榭脂粒子に起因する粒状模様を有して!/、る請求 項 1に記載の管状物体。
[3] 前記管状物体は、ポリイミドとフッ素榭脂粒子を含む単体層である請求項 1に記載 の管状物体。
[4] 前記管状物体は、フッ素榭脂粒子を含まない内層、又は、外層よりもフッ素榭脂の 存在量が少ない内層と、前記内層よりもフッ素榭脂の存在量が大きい外層で形成さ れて 、る請求項 1に記載の管状物体。
[5] 前記ポリイミドとフッ素榭脂粒子とを含む層のフッ素榭脂粒子の存在量は、 10〜90 質量%である請求項 1に記載の管状物体。
[6] 前記フッ素榭脂粒子は、ポリテトラフルォロエチレン (PTFE)、テトラフルォロェチレ ンーパーフルォロアルキルビュルエーテル共重合体(PFA)、ポリクロ口トリフルォロ エチレン(PCTFE)、テトラフルォロエチレン一へキサフルォロプロピレン共重合体( FEP)、テトラフルォロエチレン エチレン共重合体(PETFE)から選ばれる少なくと も一つのフッ素榭脂である請求項 1に記載の管状物体。
[7] 前記フッ素榭脂の平均粒子径は、 0. 1〜: LOO /z mである請求項 1に記載の管状物 体。
[8] 前記ポリイミドは、少なくとも 1種の芳香族テトラカルボン酸二無水物と、少なくとも 1 種の芳香族ジァミン力もなるポリイミド前駆体溶液を加熱イミドィ匕したポリイミドである 請求項 1に記載の管状物体。
[9] ポリイミド前駆体溶液と溶融流動するフッ素榭脂粒子との混合溶液を金型外面に塗 布し所定の厚みにキャスト成形し、
加熱してイミドィ匕し、前記イミド化の最高温度をフッ素榭脂の融点を越える温度とし 冷却後、前記金型と管状物体を分離することにより、
前記管状物体の表層近傍に存在する少なくとも一部のフッ素榭脂粒子を前記管状 物体の外面又は内外面に溶融流動して析出させ、部分的又は全面にフッ素榭脂被 膜を形成させることを特徴とする管状物体の製造方法。
[10] 前記混合溶液を金型外面に塗布して所定の厚みにキャスト成形する前に、予め金 型外面にポリイミド前駆体溶液を塗布し所定の厚みにキャスト成形しておき、 イミド化する前又は完結後に、前記混合溶液を金型外面に塗布し所定の厚みにキ ャスト成形する請求項 9に記載の管状物体の製造方法。
[11] 前記ポリイミドとフッ素榭脂粒子とを含む層のフッ素榭脂粒子の存在量は、 10〜90 質量%である請求項 9に記載の管状物体の製造方法。
[12] 前記フッ素榭脂粒子は、ポリテトラフルォロエチレン (PTFE)、テトラフルォロェチレ ンーパーフルォロアルキルビュルエーテル共重合体(PFA)、ポリクロ口トリフルォロ エチレン(PCTFE)、テトラフルォロエチレン一へキサフルォロプロピレン共重合体(
FEP)、テトラフルォロエチレン エチレン共重合体(PETFE)から選ばれる少なくと も一つのフッ素榭脂である 9に記載の管状物体の製造方法。
[13] 前記フッ素榭脂の平均粒子径は、 0. 1〜: L00 μ mである請求項 9に記載の管状物 体の製造方法。
[14] 前記ポリイミドは、少なくとも 1種の芳香族テトラカルボン酸二無水物と、少なくとも 1 種の芳香族ジァミン力もなるポリイミド前駆体溶液を加熱イミドィ匕したポリイミドである 請求項 9に記載の管状物体の製造方法。
[15] 前記ポリイミドは、ビフエニルテトラカルボン酸二無水物と、パラフエ-レンジアミンか らなるポリイミド前駆体溶液を加熱イミドィ匕したポリイミドである請求項 14に記載の管 状物体の製造方法。
PCT/JP2006/302978 2005-02-21 2006-02-20 管状物体及びその製造方法 WO2006088189A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06714118A EP1852751A1 (en) 2005-02-21 2006-02-20 Tubing and process for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-044426 2005-02-21
JP2005044426 2005-02-21

Publications (1)

Publication Number Publication Date
WO2006088189A1 true WO2006088189A1 (ja) 2006-08-24

Family

ID=36916585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302978 WO2006088189A1 (ja) 2005-02-21 2006-02-20 管状物体及びその製造方法

Country Status (5)

Country Link
US (1) US20080149211A1 (ja)
EP (1) EP1852751A1 (ja)
KR (1) KR20070104898A (ja)
CN (1) CN101120289A (ja)
WO (1) WO2006088189A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136467A1 (ja) * 2007-04-27 2008-11-13 I.S.T. Corporation コーティング用塗料、積層体および円筒積層体の製造方法
JP2017071686A (ja) * 2015-10-07 2017-04-13 株式会社森清化工 パーフルオロゴム成形体
CN108363284A (zh) * 2017-01-26 2018-08-03 株式会社东芝 定影装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101437179B1 (ko) * 2008-09-03 2014-09-03 코오롱인더스트리 주식회사 무솔기 벨트
JP4685172B2 (ja) * 2009-01-20 2011-05-18 シャープ株式会社 定着装置およびそれを備えた画像形成装置
DE102010062097A1 (de) * 2010-11-29 2012-05-31 Siemens Aktiengesellschaft Druckfeste Fluidkapselung
US10906277B2 (en) * 2014-08-07 2021-02-02 I.S.T. Corporation Low-friction member, image-forming device, and agent for forming low-friction coating film
JP6681212B2 (ja) * 2015-11-30 2020-04-15 株式会社潤工社 ポリウレタンチューブ
US9873774B1 (en) * 2016-09-01 2018-01-23 International Business Machines Corporation Shape memory thermal interface materials
US9937662B2 (en) 2016-09-01 2018-04-10 International Business Machines Corporation Shape memory thermal interface materials
JP7131117B2 (ja) * 2018-06-21 2022-09-06 京セラドキュメントソリューションズ株式会社 定着ベルトおよび定着装置並びに画像形成装置
CN110292663A (zh) * 2019-06-28 2019-10-01 脉通医疗科技(嘉兴)有限公司 一种医疗管材的制备方法及医疗管材
EP4011939A4 (en) * 2019-08-08 2022-12-14 Mitsubishi Gas Chemical Company, Inc. FLAME RETARDANT POLYIMIDE MOLDING MATERIAL AND MOLDING
CN112574565B (zh) * 2020-12-08 2023-04-25 黄山金石木塑料科技有限公司 低热膨胀芳香类冷压型聚酰亚胺树脂及其合成方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298952A (ja) * 1993-04-16 1994-10-25 Nitto Denko Corp 管状物
JP2000298411A (ja) * 1999-04-15 2000-10-24 Canon Inc ハード定着ローラ、その製造方法およびそれを用いる定着装置
JP2004355004A (ja) * 2003-05-28 2004-12-16 Xerox Corp フューザ部材

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4238538A (en) * 1978-12-21 1980-12-09 E. I. Du Pont De Nemours And Company Method of and apparatus for ram-extrusion of aromatic polyimide and polyamide resins, and shaped articles formed using such method and apparatus
JPS6225030A (ja) * 1985-07-25 1987-02-03 Ube Ind Ltd ポリイミド粉末の連続成形法
US5083168A (en) * 1988-11-15 1992-01-21 Canon Kabushiki Kaisha Fixing device and fixing heater for use in the same
US5411779A (en) * 1989-07-21 1995-05-02 Nitto Denko Corporation Composite tubular article and process for producing the same
US5471288A (en) * 1993-03-05 1995-11-28 Canon Kabushiki Kaisha Image heating apparatus and heating film
JP3054010B2 (ja) * 1993-11-15 2000-06-19 株式会社アイ.エス.テイ ポリイミド複合管状物とその製造方法及び製造装置
JPH11133776A (ja) * 1997-10-30 1999-05-21 Fuji Xerox Co Ltd 定着装置および画像形成装置
US6927006B2 (en) * 2001-09-07 2005-08-09 Xerox Corporation Fuser member having fluorocarbon outer layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298952A (ja) * 1993-04-16 1994-10-25 Nitto Denko Corp 管状物
JP2000298411A (ja) * 1999-04-15 2000-10-24 Canon Inc ハード定着ローラ、その製造方法およびそれを用いる定着装置
JP2004355004A (ja) * 2003-05-28 2004-12-16 Xerox Corp フューザ部材

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136467A1 (ja) * 2007-04-27 2008-11-13 I.S.T. Corporation コーティング用塗料、積層体および円筒積層体の製造方法
EP2143770A1 (en) * 2007-04-27 2010-01-13 I.S.T. Corporation Coating material, layered product, and process for producing cylindrical layered product
EP2143770A4 (en) * 2007-04-27 2012-10-03 Ist Corp COATING MATERIAL, LAMINATE PRODUCT AND PROCESS FOR PRODUCING LAMINATE LAMINATE PRODUCT
JP2017071686A (ja) * 2015-10-07 2017-04-13 株式会社森清化工 パーフルオロゴム成形体
CN108363284A (zh) * 2017-01-26 2018-08-03 株式会社东芝 定影装置

Also Published As

Publication number Publication date
US20080149211A1 (en) 2008-06-26
CN101120289A (zh) 2008-02-06
EP1852751A1 (en) 2007-11-07
KR20070104898A (ko) 2007-10-29

Similar Documents

Publication Publication Date Title
WO2006088189A1 (ja) 管状物体及びその製造方法
JP5491031B2 (ja) ポリイミドチューブ、その製造方法、ポリイミドワニスの製造方法、及び定着ベルト
JP4680979B2 (ja) ポリイミドチューブ、その製造方法、及び定着ベルト
JP5200278B2 (ja) 発熱定着ベルト及び画像定着装置
JP2006256323A (ja) 管状物体及びその製造方法
JP2007030501A (ja) ポリイミド複合フィルム及びその製造方法
US8422922B2 (en) Tubular body, tubular body supporting apparatus, image fixing apparatus, and image forming apparatus
JP3240435B2 (ja) 熱伝導性ポリイミド系フィルム、その製造方法及びその使用
JP2006259248A (ja) 転写定着ベルト
JP5129059B2 (ja) ポリイミド管状体及びその製造方法
JP5768725B2 (ja) 無端状発熱体、発熱ベルト及び定着装置
JP2011209578A (ja) 管状体およびその製造方法
JP2000147928A (ja) 複合管状物
JP2001040102A (ja) 管状物
JP5101137B2 (ja) ポリイミドベルト及びその製造方法
JP2983484B2 (ja) 定着用フィルム
JP2004279458A (ja) 定着ベルト
JP2012225990A (ja) ポリイミドチューブ及び定着ベルト
JP2001215821A (ja) 定着ベルト及びその製造方法
JP2005017720A (ja) 熱伝導性シームレスベルト
JP2006301196A (ja) シームレスベルト
JP2000338797A (ja) 定着ベルト
JP2003177630A (ja) 転写定着ベルト
JP2003280406A (ja) 転写定着ベルト
WO2023127209A1 (ja) ポリイミドチューブ及び定着ベルト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077017720

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006714118

Country of ref document: EP

Ref document number: 11883595

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680005293.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006714118

Country of ref document: EP