WO2023127209A1 - ポリイミドチューブ及び定着ベルト - Google Patents

ポリイミドチューブ及び定着ベルト Download PDF

Info

Publication number
WO2023127209A1
WO2023127209A1 PCT/JP2022/035413 JP2022035413W WO2023127209A1 WO 2023127209 A1 WO2023127209 A1 WO 2023127209A1 JP 2022035413 W JP2022035413 W JP 2022035413W WO 2023127209 A1 WO2023127209 A1 WO 2023127209A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
polyimide resin
exfoliated graphite
layer
polyimide tube
Prior art date
Application number
PCT/JP2022/035413
Other languages
English (en)
French (fr)
Inventor
晋吾 中島
雅晃 山内
大樹 窪
一浩 木澤
勇介 内場
Original Assignee
住友電気工業株式会社
住友電工ファインポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工ファインポリマー株式会社 filed Critical 住友電気工業株式会社
Publication of WO2023127209A1 publication Critical patent/WO2023127209A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat

Definitions

  • the present disclosure relates to polyimide tubes and fixing belts.
  • This application claims priority from Japanese Patent Application No. 2021-214006 filed on December 28, 2021. All the contents described in the Japanese patent application are incorporated herein by reference.
  • a toner image is formed on a transfer material such as recording paper through an exposure process, a development process, and a transfer process.
  • a fixing step is performed to fix the unfixed toner image on the transfer material.
  • a fixing method a method of heating and pressurizing an unfixed toner image to fuse it onto a transfer material is generally used.
  • a heating means and a pressure means a fixing roller and a pressure roller are opposed to each other, and a transfer material on which an unfixed toner image is placed is passed between the two rollers. A method of heating with a heat source is widely adopted.
  • a SUS tube is known as a fixing roller, but SUS tubes tend to have high material and processing costs. In addition, the SUS tube lacks flexibility and tends to crack easily at the ends and the like. Therefore, in recent years, as shown in FIG. A method of forming a fixed toner image 6 by applying pressure with a pressure roller 3 has been developed.
  • Polyimide resins which are excellent in heat resistance, mechanical strength, tear strength, flexibility, etc., are widely used as base materials for such fixing belts. Then, the thermal conductivity of the tube made of polyimide resin (hereinafter sometimes referred to as "polyimide tube") is improved to improve fixability, shorten the waiting time after turning on the power, and reduce power consumption.
  • a known method is to incorporate a filler having excellent thermal conductivity (high thermal conductivity filler) in order to achieve a reduction, a high fixing speed, and the like.
  • the polyimide tube according to the present disclosure is A polyimide tube made of a polyimide resin composition,
  • the polyimide resin composition contains a polyimide resin and exfoliated graphite,
  • the thickness of the exfoliated graphite is 0.70 ⁇ m or less,
  • the blending ratio of the exfoliated graphite is 5% by volume or more and 25% by volume or less with respect to the polyimide resin composition.
  • FIG. 1 is an explanatory diagram showing a fixing method using a fixing belt.
  • FIG. 2 is a schematic cross-sectional view showing a polyimide tube according to this embodiment.
  • FIG. 3 is an explanatory diagram showing a coating method using a dispenser method.
  • FIG. 4 is a schematic cross-sectional view showing the layer structure of an example of the fixing belt according to this embodiment.
  • FIG. 5 is a schematic cross-sectional view showing the layer structure of another example of the fixing belt according to this embodiment.
  • FIG. 6 is an SEM image of the cross section of the polyimide tube according to the present embodiment.
  • FIG. 7 is a schematic cross-sectional view showing another example of the layer structure of the fixing belt according to this embodiment.
  • FIG. 8 is a schematic cross-sectional view showing another example of the layer structure of the fixing belt according to this embodiment.
  • Inorganic fillers such as carbon black, silicon carbide, silica, boron nitride, and carbon nanotubes have been proposed as highly thermally conductive fillers.
  • the fixing belt has excellent fixability, high thermal conductivity, excellent compressive strength, offset property, etc., and, for example, high rigidity. A property that can effectively suppress crushing and the like is desired.
  • the present disclosure has been made in view of the above circumstances, and aims to provide a polyimide tube having excellent thermal conductivity and excellent folding endurance.
  • the polyimide tube according to the present disclosure is A polyimide tube made of a polyimide resin composition,
  • the polyimide resin composition contains a polyimide resin and exfoliated graphite,
  • the thickness of the exfoliated graphite is 0.70 ⁇ m or less,
  • the blending ratio of the exfoliated graphite is 5% by volume or more and 25% by volume or less with respect to the polyimide resin composition.
  • the polyimide tube By containing exfoliated graphite, the polyimide tube has improved thermal conductivity and folding endurance compared to conventional polyimide tubes. That is, the polyimide tube has excellent thermal conductivity and excellent folding endurance due to the structure described above.
  • the average particle size of the exfoliated graphite may be 3 ⁇ m or more and 40 ⁇ m or less. By doing so, it is possible to provide a polyimide tube which is further excellent in thermal conductivity and folding resistance and excellent in surface smoothness.
  • the ratio d/t of the average particle diameter d of the exfoliated graphite to the thickness t of the exfoliated graphite may be 10 or more.
  • the polyimide resin may be a thermosetting polyimide resin. By doing so, it is possible to provide a polyimide tube having even better folding resistance.
  • thermosetting polyimide resin is a structural unit derived from pyromellitic dianhydride, a structure derived from 3,3′,4,4′-diphenyltetracarboxylic dianhydride It may contain units or both, structural units derived from 4,4′-diaminodiphenyl ether, structural units derived from p-phenylenediamine, or both. By doing so, it is possible to provide a polyimide tube having even better folding resistance.
  • the fixing belt according to the present disclosure is a cylindrical belt base material; A fluororesin layer provided directly or via an intermediate layer on the outer peripheral surface of the belt base material; A fusing belt comprising:
  • the belt base material is the polyimide tube.
  • the intermediate layer may include at least one layer selected from the group consisting of an adhesive layer and a silicone rubber layer.
  • the fixing belt in [6] or [7] above uses the polyimide tube according to the present disclosure as a belt base material. Therefore, the fixing belt has excellent fixing properties and is resistant to crushing due to torsional deformation or buckling during driving. In addition, the fixing belt is excellent in that it does not tear or tear even after repeated paper feeding.
  • this embodiment An embodiment of the present disclosure (hereinafter referred to as "this embodiment") will be described below. However, this embodiment is not limited to this.
  • the notation of the form "A to Z” means the upper and lower limits of the range (that is, from A to Z), and if no unit is described at A and only a unit is described at Z, then A and the unit of Z are the same.
  • the polyimide tube according to the present disclosure is A polyimide tube made of a polyimide resin composition,
  • the polyimide resin composition contains a polyimide resin and exfoliated graphite,
  • the thickness of the exfoliated graphite is 0.70 ⁇ m or less,
  • the blending ratio of the exfoliated graphite is 5% by volume or more and 25% by volume or less with respect to the polyimide resin composition.
  • FIG. 2 is a schematic cross-sectional view showing the polyimide tube according to this embodiment.
  • the shape of the polyimide tube 11 according to this embodiment is generally cylindrical.
  • the thickness, outer diameter, length, etc. of the polyimide tube can be appropriately selected according to the desired mechanical strength, application, and the like.
  • the thickness of the polyimide tube means the shortest distance between the outer peripheral surface and the inner peripheral surface of the polyimide tube.
  • the thickness of the polyimide tube may be 10 to 150 ⁇ m, preferably 20 to 120 ⁇ m. may be 30 to 100 ⁇ m.
  • the outer diameter of the polyimide tube may be 5-100 mm, or 10-50 mm.
  • the length of the polyimide tube can be appropriately set according to, for example, the size of the material to be transferred such as copy paper.
  • the polyimide resin composition according to this embodiment contains a polyimide resin and exfoliated graphite.
  • thermosetting polyimide resin also referred to as a “condensation polyimide resin”
  • thermoplastic polyimide resin can be used as the polyimide resin.
  • the polyimide resin may be a thermosetting polyimide resin.
  • the polyimide resin may be a homopolymer or a copolymer.
  • the thermosetting polyimide resin may be a condensation type wholly aromatic polyimide resin.
  • the condensation-type wholly aromatic polyimide resin include acid dianhydrides such as pyromellitic dianhydride, 3,3′,4,4′-diphenyltetracarboxylic dianhydride, and oxydiphthalic dianhydride. and 4,4'-diaminodiphenyl ether, p-phenylenediamine, 4,4'-diaminobenzanilide, resorcinoxydianiline, and other diamines are polymerized in an organic solvent to synthesize a polyimide precursor, which is then heated. can be dehydrated and ring-closed.
  • the thermosetting polyimide resin is a structural unit derived from pyromellitic dianhydride, a structural unit derived from 3,3',4,4'-diphenyltetracarboxylic dianhydride.
  • it may contain both of these, a structural unit derived from 4,4′-diaminodiphenyl ether, a structural unit derived from p-phenylenediamine, or both.
  • a repeating unit composed of a structural unit derived from 3,3′,4,4′-diphenyltetracarboxylic dianhydride and a structural unit derived from p-phenylenediamine is represented by formula (A) described later. expressed.
  • a repeating unit composed of a structural unit derived from pyromellitic dianhydride and a structural unit derived from 4,4'-diaminodiphenyl ether is represented by formula (B) described later.
  • thermosetting polyimide resin is derived from structural units derived from pyromellitic dianhydride and 3,3',4,4'-diphenyltetracarboxylic dianhydride. It may contain a structural unit, a structural unit derived from 4,4′-diaminodiphenyl ether, and a structural unit derived from p-phenylenediamine.
  • exfoliated graphite means obtained by exfoliating and pulverizing raw material graphite (for example, flake graphite, expanded graphite) in the thickness direction (lamination direction of graphene sheets).
  • the exfoliated graphite can also be understood as a graphene sheet laminate that is thinner than the raw material graphite.
  • flake graphite, plate graphite, and the like have been mainly used as graphite added to polyimide resin compositions.
  • the exfoliated graphite described above as the graphite added to the polyimide resin composition. Under such circumstances, the present inventors discovered that by adding exfoliated graphite to a polyimide resin composition, a polyimide tube having superior thermal conductivity and superior folding endurance can be obtained. I found it for the first time.
  • the thickness (t) of the exfoliated graphite is 0.70 ⁇ m or less, may be 0.20 ⁇ m or more and 0.70 ⁇ m or less, may be 0.20 ⁇ m or more and 0.60 ⁇ m or less, or may be 0.30 ⁇ m or more. It may be 0.50 ⁇ m or less.
  • the thickness of the exfoliated graphite can be determined by observing the cross section of the polyimide tube with an SEM. Specifically, it is as follows.
  • the cross section of the polyimide tube is observed by SEM.
  • the cross section at this time is a cross section perpendicular to the longitudinal direction of the polyimide tube (eg, FIG. 6).
  • the observation magnification is, for example, 5000 times.
  • the dark gray portion is the polyimide resin
  • the light gray portion is the exfoliated graphite.
  • the thickness of the exfoliated graphite is obtained from the observation image obtained by the SEM. Such measurements are performed for at least 10 (preferably 30 or more) pieces of exfoliated graphite, and the average value of the obtained values is taken as the thickness (t) of the exfoliated graphite.
  • the average particle size (d) of the exfoliated graphite may be 3 ⁇ m or more and 40 ⁇ m or less, 5 ⁇ m or more and 30 ⁇ m or less, or 10 ⁇ m or more and 20 ⁇ m or less.
  • the exfoliated graphite may have an average particle size (d) of 15 ⁇ m or more and 25 ⁇ m or less. It can be determined by observing the cross section of the polyimide tube with an SEM. Specifically, it is as follows.
  • the cross section of the polyimide tube is observed by SEM.
  • the cross section at this time is a cross section perpendicular to the longitudinal direction of the polyimide tube (eg, FIG. 6).
  • the observation magnification is, for example, 5000 times.
  • the dark gray portion is the polyimide resin
  • the light gray portion is the exfoliated graphite.
  • the particle size (major axis) of the exfoliated graphite is obtained from the observation image obtained by the SEM.
  • the average value of the values obtained by performing such measurements on at least 10 (preferably 30 or more) exfoliated graphite is taken as the average particle size (d) of the exfoliated graphite.
  • the ratio d/t of the average particle diameter d of the exfoliated graphite to the thickness t of the exfoliated graphite may be 10 or more, 20 or more, or 30 or more. Although the upper limit of the ratio d/t is not particularly limited, it may be 100 or less, 50 or less, or 37.5 or less. In one aspect of the present embodiment, the ratio d/t of the average particle diameter d of the exfoliated graphite to the thickness t of the exfoliated graphite may be 37.5 or more and 50 or less.
  • the blending ratio of the exfoliated graphite is 5% by volume or more and 25% by volume or less, may be 7.5% by volume or more and 22.5% by volume or less, or 10% by volume with respect to the polyimide resin composition. It may be more than 20% by volume or less.
  • the blending ratio of the exfoliated graphite can be obtained by measuring the weight of graphite by thermal analysis (TG measurement) or the like.
  • the exfoliated graphite can be produced by the following method. First, physically pulverized graphite or sulfuric acid-treated graphite is heated to form expanded graphite. After that, the obtained expanded graphite is pulverized to obtain exfoliated graphite.
  • exfoliated graphite may be used as a commercially available product as it is.
  • examples of commercially available exfoliated graphite include FS-15 and FS-25 manufactured by Fuji Graphite Industry Co., Ltd., and GR-15 and UP-15N manufactured by Nippon Graphite Industry Co., Ltd.
  • the polyimide resin composition may further contain other components as long as the effects of the present disclosure are exhibited.
  • Other components include, for example, high thermal conductive fillers (excluding the exfoliated graphite), conductive fillers, and wear-resistant fillers.
  • high thermal conductivity fillers examples include boron nitride, carbon nanotubes, flake graphite, alumina, silicon carbide, and metallic silicon.
  • the blending ratio of the high thermal conductive filler is not particularly limited within the range where the effects of the present disclosure are exhibited, but for example, 5% by volume or more and 25% by volume with respect to the polyimide resin composition % or less.
  • Examples of conductive fillers include carbon black, ketjen black, and metal powders (eg, nickel, aluminum, copper, silver, etc.).
  • the mixing ratio of the conductive filler is not particularly limited as long as the effects of the present disclosure are exhibited, but may be, for example, 5% by volume or more and 25% by volume or less with respect to the polyimide resin composition.
  • wear-resistant fillers examples include ceramic fillers such as titanium oxide, acicular titanium oxide, boron nitride, spherical alumina, plate-like alumina, and silicon carbide.
  • the blending ratio of the wear-resistant filler is not particularly limited as long as the effects of the present disclosure are exhibited, but may be, for example, 5% by volume or more and 25% by volume or less with respect to the polyimide resin composition.
  • the polyimide tube according to this embodiment can be manufactured, for example, by the method described below.
  • a polyimide precursor also referred to as “polyamic acid” or “polyamic acid”
  • polyimide precursor varnish an organic solvent solution
  • the prepared polyimide varnish is shaped into a tube shape.
  • the polyimide precursor is dehydrated and ring-closed by heating to form a polyimide.
  • a commercially available product can be used in addition to the one synthesized independently.
  • a method of shaping into the shape of a tube a method of applying polyimide varnish to the outer surface of a cylindrical core and drying it can be mentioned. After drying the coating layer of polyimide varnish, it may be heat-cured (imidized) in a state attached to the core surface, or when solidified to a strength that can hold the structure as a tubular object, from the core surface The coating layer may be removed and heat-cured in the next step.
  • the polyimide precursor is heated to a maximum temperature of 350° C. to 450° C., polyamic acid undergoes dehydration ring closure to form a polyimide.
  • FIG. 3 is an explanatory diagram showing a coating method using a dispenser method. A description will be given below with reference to FIG.
  • the dispenser method includes: Bringing the discharge port 22 of the dispenser supply unit 21 close to or in contact with the outer surface of the cylindrical core 24 (hereinafter sometimes referred to as "core 24"), While rotating the core 24 and moving the discharge port 22 parallel to the rotation axis direction of the core 24, a step of continuously supplying polyimide varnish onto the outer surface of the cylindrical core body 24 from the discharge port 22 to form a coating layer 23; a step of solidifying or curing the coating layer 23 after forming the coating layer 23; and a step of demolding the coating layer 23 from the core body 24 after the solidification or curing; It can also be understood to include: Bringing the discharge port 22 of the dispenser supply unit 21 close to or in contact with the outer surface of the cylindrical core 24 (hereinafter sometimes referred to as "core 24"), While rotating the core 24 and moving the discharge port 22 parallel to the rotation axis direction of the core 24, a step of continuously supplying polyimide varnish onto the outer surface of the cylindrical core body 24 from the discharge port 22 to form a coating layer 23;
  • a cylindrical core body can be used instead of the cylindrical core body 24.
  • the polyimide varnish can be supplied to the outer surface of the core body, or the inner surface of the core body is brought into contact with the discharge port of the supply part of the dispenser, and the inner surface of the core body is coated with the polyimide varnish.
  • Polyimide varnish can also be supplied.
  • the supplied polyimide varnish is spirally wound. It is turned to form the coating layer 23 .
  • the rotation speed of the core body 24 and the movement speed of the discharge port 22 are such that the polyimide varnish is applied to the surface of the core body 24 without gaps, and the adjacent portions of the spirally wound polyimide varnish are combined to achieve uniform coating.
  • the speed should be such that a layer can be formed.
  • the applied polyimide varnish that is, the coating layer 23
  • the coating layer 23 is heat-cured (imidized) by a conventional method to form a strong thin tubular film.
  • a polyimide tube can be obtained by removing the tube from the core.
  • the solidified tube is demolded until the coating layer 23 has at least the strength to retain the structure as a tube without being completely imidized, and after demolding, the tube is heat-cured. (imidation).
  • the polyimide varnish used in this production method may have a viscosity of 100 to 15000 poise at 25°C. If the viscosity of the polyimide varnish is too high, the portions where the spirally wound polyimide varnish is in contact with each other and connected become thinner than the other portions, and the surface of the coating layer 23 tends to become uneven. If the viscosity of the polyimide varnish is too low, it tends to drip or repel during application or drying, making it difficult to form a polyimide tube.
  • the shape of the core used may be columnar or cylindrical.
  • the material of the core is not particularly limited, but examples thereof include metals, ceramics, and heat-resistant resins.
  • the fixing belt according to this embodiment is a cylindrical belt base material; A fluororesin layer provided directly or via an intermediate layer on the outer peripheral surface of the belt base material; A fusing belt comprising:
  • the belt base material is the polyimide tube.
  • "provided through an intermediate layer” means a mode in which the intermediate layer is sandwiched between the outer peripheral surface of the belt base material and the fluororesin layer.
  • the intermediate layer may be provided in contact with the outer peripheral surface of the belt base material, the fluororesin layer, or both of them, or may be provided with another layer interposed therebetween.
  • the intermediate layer may be composed of a single layer, or may be composed of two or more layers.
  • FIG. 4 is a schematic cross-sectional view showing the layer structure of one example of the fixing belt according to this embodiment.
  • the fixing belt 1 in FIG. 4 includes a polyimide tube 11 as a belt base material and a fluororesin layer 13 directly provided on the outer peripheral surface of the polyimide tube 11 .
  • the fixing belt 1 can also be understood as a two-layer structure fixing belt.
  • the fluororesin layer 13 is provided to give the fixing belt 1 releasability and prevent the toner on the transfer material such as recording paper from adhering to the surface of the fixing belt.
  • the fluororesin forming the fluororesin layer preferably has excellent heat resistance so that the fixing belt can be used continuously at high temperatures.
  • fluororesins include tetrafluoroethylene (PTFE), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene/hexafluoropropylene copolymer (FEP).
  • the fixing belt can be manufactured by forming a fluororesin layer on the outer peripheral surface of a heat-cured (imidized) polyimide tube directly or via an intermediate layer (for example, an adhesive layer).
  • an intermediate layer for example, an adhesive layer.
  • the solvent is dried and removed in the manufacturing process of the polyimide tube to produce a solidified tube, and directly or an intermediate layer (for example, After the fluororesin layer is formed via the adhesive layer, the polyimide tube may be cured by heating at the same time as the fluororesin is sintered.
  • a method of covering a fluororesin tube can also be employed.
  • the thickness of the fluororesin layer is usually 1 to 30 ⁇ m, and may be about 5 to 15 ⁇ m.
  • the fluororesin layer can be formed using only fluororesin, but may contain a conductive filler in order to prevent offset due to charging.
  • a conductive filler include, but are not particularly limited to, conductive carbon black such as Ketjenblack, metal powder such as aluminum, and the like.
  • FIG. 5 is a schematic cross-sectional view showing the layer structure of another example of the fixing belt according to this embodiment.
  • the fixing belt 1 in FIG. 5 includes a polyimide tube 11 as a belt base material, and a fluororesin layer 13 provided on the outer peripheral surface of the polyimide tube 11 via an adhesive layer 12 (intermediate layer 15).
  • the fixing belt 1 includes a polyimide tube 11 as a belt base material, an adhesive layer 12 directly provided on the outer peripheral surface of the polyimide tube 11, and a fluororesin layer directly provided on the outer peripheral surface of the adhesive layer 12. 13 can also be grasped.
  • the fixing belt 1 can also be understood as a three-layer structure fixing belt.
  • the adhesive layer 12 is an intermediate layer 15 provided to improve adhesion between the polyimide tube 11 and the fluororesin layer 13 .
  • the adhesive layer 12 may contain a conductive filler.
  • the adhesive layer 12 is preferably made of a heat-resistant resin.
  • the resin constituting the adhesive layer 12 is not particularly limited, for example, a mixture of a fluororesin and a polyamide-imide resin, a mixture of a fluororesin and a polyethersulfone resin, and the like are preferable.
  • the intermediate layer may include at least one layer selected from the group consisting of an adhesive layer and a silicone rubber layer.
  • the intermediate layer 15 may be the adhesive layer 12 (eg, FIG. 5) or the silicone rubber layer 14 (eg, FIG. 7).
  • the intermediate layer 15 may be a layer in which the adhesive layer 12, the silicone rubber layer 14 and the intermediate layer 12 are laminated in this order (eg, FIG. 8).
  • the fixing belt includes: a cylindrical belt base material; a silicone rubber layer provided directly or via an adhesive layer on the outer peripheral surface of the belt base;
  • the fixing belt may include a fluororesin layer provided directly or via an adhesive layer on the outer peripheral surface of the silicone rubber layer.
  • the belt base material is the polyimide tube according to the present embodiment.
  • a polyimide tube made of a polyimide resin composition The polyimide resin composition contains a polyimide resin and exfoliated graphite, The thickness of the exfoliated graphite is 0.70 ⁇ m or less, The polyimide tube, wherein the proportion of the exfoliated graphite is 5% by volume or more and 25% by volume or less with respect to the polyimide resin composition.
  • Appendix 2 The polyimide tube according to Appendix 1, wherein the exfoliated graphite has an average particle size of 3 ⁇ m or more and 40 ⁇ m or less.
  • thermosetting polyimide resin includes a structural unit derived from pyromellitic dianhydride, a structural unit derived from 3,3′,4,4′-diphenyltetracarboxylic dianhydride, or both; 4.
  • the polyimide tube according to Appendix 4 comprising a structural unit derived from 4'-diaminodiphenyl ether, a structural unit derived from p-phenylenediamine, or both.
  • Appendix 6 a cylindrical belt base material; A fluororesin layer provided directly or via an adhesive layer on the outer peripheral surface of the belt base material; A fusing belt comprising: A fixing belt, wherein the belt base material is the polyimide tube according to any one of Appendices 1 to 5.
  • (Appendix 7) a cylindrical belt base material; a silicone rubber layer provided directly or via an adhesive layer on the outer peripheral surface of the belt base; A fixing belt comprising a fluorine resin layer provided directly or via an adhesive layer on the outer peripheral surface of the silicone rubber layer, A fixing belt, wherein the belt base material is the polyimide tube according to any one of Appendices 1 to 5.
  • nozzle discharge port set in the supply portion of the dispenser was brought into contact with the outer surface of the core body, which was a metal column having an outer diameter of 30 mm, the outer surface of which was coated with ceramics.
  • the polyimide varnish is supplied from the nozzle to the outer surface of the core in a fixed amount to obtain the polyimide varnish. was applied (step of forming a coating layer). After the polyimide varnish was applied, the polyimide varnish was cured by stepwise heating to 400° C. while rotating the core (a step of solidifying or curing the coating layer).
  • the coating layer of the cured polyimide resin was demolded from the core to form a polyimide tube (step of demolding the coating layer from the core).
  • the polyimide tube thus obtained had a thickness of 60 ⁇ m, an outer diameter of 30 mm and a length of 240 mm.
  • thermal conductivity The thermal diffusivity, density and specific heat capacity of each polyimide tube were measured by the following method and multiplied to obtain the thermal conductivity (W / mk) (Table 1 to Table 5 column of thermal conductivity in ).
  • Thermal diffusivity Ai-phase mobile 1u (trade name) manufactured by i-Phase Co., Ltd. was used to measure the thermal diffusivity of the polyimide tube. The measurement temperature was 23°C.
  • Density The density of the polyimide tube was measured according to the JIS K 7112:1999 A-method submerged method. Ethanol was used as the immersion liquid.
  • Specific heat capacity The specific heat capacity of the polyimide tube was measured by input-compensated differential scanning calorimetry according to JIS K 7123:2012.
  • the polyimide tubes of Examples (Samples 2 to 7, 10, 11, and 21 to 23) all had a thermal conductivity of 0.3 W/mk or more, an MIT count of 100 times or more, and an inner surface roughness of 4.0 ⁇ m or less. had good performance in
  • the polyimide tubes of samples 1, 9, 13 and 17 had thermal conductivity of less than 0.3 W/mk.
  • the polyimide tubes of Samples 8, 12 and 16 had an MIT count of 10 times or less and an inner surface roughness of 4.11 ⁇ m or more.
  • Samples 19 and 20 had an inner surface roughness of 4.25 ⁇ m or more.
  • the polyimide tubes of Samples 14, 15 and 18 had a smaller number of MITs and a larger inner surface roughness than the polyimide tubes of Examples (for example, Samples 2, 4 and 10) having similar thermal conductivity. rice field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

ポリイミド樹脂組成物からなるポリイミドチューブであって、上記ポリイミド樹脂組成物は、ポリイミド樹脂と薄片化黒鉛とを含み、上記薄片化黒鉛の厚みは、0.70μm以下であり、上記薄片化黒鉛の配合割合は、上記ポリイミド樹脂組成物に対して、5体積%以上25体積%以下である、ポリイミドチューブ。

Description

ポリイミドチューブ及び定着ベルト
 本開示は、ポリイミドチューブ及び定着ベルトに関する。本出願は、2021年12月28日に出願した日本特許出願である特願2021-214006号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 一般に、電子写真方式を利用した複写機、レーザービームプリンタ等における画像形成プロセスでは、まず露光工程、現像工程、転写工程を通してトナー像を記録紙等の被転写材上に形成する。その後、この未定着トナー像を被転写材に定着する定着工程が行われる。定着方式としては、未定着トナー像を加熱・加圧して被転写材上に融着させる方法が一般的である。加熱手段及び加圧手段としては、定着ローラと加圧ローラとを対向させて、その間に未定着トナー像を載せた被転写材を通過させ、両ローラ間で加圧する共に定着ローラ内に設けられた加熱源により加熱する方法が広く採用されている。
 定着ローラとしては、SUSチューブが知られているが、SUSチューブは、材料費、加工費がともに高い傾向がある。また、SUSチューブは、可撓性に乏しく端部等に割れが発生しやすい傾向があった。そこで、近年、図1に示すような、薄いエンドレスベルト1(定着ベルト1)を介して、加熱手段2(ヒータ2)により、被転写材4上の未定着トナー像5を加熱するとともに、加圧ローラ3により加圧して定着トナー像6を形成する方式が開発されている。
 このような定着ベルトの基材としては、耐熱性、機械的強度、引裂強度、可撓性等に優れているポリイミド樹脂が汎用されている。そして、ポリイミド樹脂からなるチューブ(以下、「ポリイミドチューブ」と表記する場合がある。)の熱伝導性を改良して、定着性を向上させるとともに、電源投入後の待ち時間の短縮、消費電力の低減、定着速度の高速化等を達成させるために、熱伝導性に優れたフィラー(高熱伝導性フィラー)を含有させる方法が知られている。
特開2012-225990号公報
 本開示に係るポリイミドチューブは、
 ポリイミド樹脂組成物からなるポリイミドチューブであって、
 上記ポリイミド樹脂組成物は、ポリイミド樹脂と薄片化黒鉛とを含み、
 上記薄片化黒鉛の厚みは、0.70μm以下であり、
 上記薄片化黒鉛の配合割合は、上記ポリイミド樹脂組成物に対して、5体積%以上25体積%以下である。
図1は、定着ベルトを用いた定着方式を示す説明図である。 図2は、本実施形態に係るポリイミドチューブを示す模式断面図である。 図3は、ディスペンサー法による塗布法を示す説明図である。 図4は、本実施形態に係る定着ベルトの一例の層構成を示す模式断面図である。 図5は、本実施形態に係る定着ベルトの他の一例の層構成を示す模式断面図である。 図6は、本実施形態に係るポリイミドチューブの断面をSEMで観察した画像である。 図7は、本実施形態に係る定着ベルトの別の他の一例の層構成を示す模式断面図である。 図8は、本実施形態に係る定着ベルトの別の他の一例の層構成を示す模式断面図である。
[本開示が解決しようとする課題]
 高熱伝導性フィラーとしては、カーボンブラック、シリコンカーバイド、シリカ、窒化ホウ素、カーボンナノチューブ等の無機フィラーが提案されている。
 しかし近年、定着ベルトに対する要請はさらに高度となっている。上記定着ベルトは、優れた定着性、高熱伝導性、優れた圧縮強度及びオフセット性等とともに、例えば、剛性が高く、定着ベルトを基材として用いた場合における、駆動時のねじれ変形又は座屈による潰れ等を効果的に抑制できる性質が望まれている。また、通紙を繰返しても裂け及び破れが生じない性質についてもより高度なものが望まれている。
 本開示は、上記事情に鑑みてなされたものであり、優れた熱伝導性及び優れた耐折性を有するポリイミドチューブを提供することを目的とする。
[本開示の効果]
 本開示によれば、優れた熱伝導性及び優れた耐折性を有するポリイミドチューブを提供することが可能になる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 [1]本開示に係るポリイミドチューブは、
 ポリイミド樹脂組成物からなるポリイミドチューブであって、
 上記ポリイミド樹脂組成物は、ポリイミド樹脂と薄片化黒鉛とを含み、
 上記薄片化黒鉛の厚みは、0.70μm以下であり、
 上記薄片化黒鉛の配合割合は、上記ポリイミド樹脂組成物に対して、5体積%以上25体積%以下である。
 上記ポリイミドチューブは、薄片化黒鉛を含むことによって、従来のポリイミドチューブと比較して熱伝導性及び耐折性が向上している。すなわち、上記ポリイミドチューブは、上述のような構成を備えることによって、優れた熱伝導性及び優れた耐折性を有する。
 [2]上記[1]において、上記薄片化黒鉛の平均粒子径は、3μm以上で40μm以下であってもよい。このようにすることで、熱伝導性及び耐折性に更に優れ、かつ表面平滑性に優れたポリイミドチューブを提供することが可能になる。
 [3]上記[1]又は[2]において、上記薄片化黒鉛の厚みtに対する、上記薄片化黒鉛の平均粒子径dの比d/tは、10以上であってもよい。このようにすることで、熱伝導性及び耐折性に更に優れたポリイミドチューブを提供することが可能になる。
 [4]上記[1]から[3]のいずれかにおいて、上記ポリイミド樹脂は、熱硬化型ポリイミド樹脂であってもよい。このようにすることで、耐折性に更に優れたポリイミドチューブを提供することが可能になる。
 [5]上記[4]において、上記熱硬化型ポリイミド樹脂は、ピロメリット酸二無水物に由来する構造単位、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物に由来する構造単位又はこれらの両方と、4,4’-ジアミノジフェニルエーテルに由来する構造単位、p-フェニレンジアミンに由来する構造単位又はこれらの両方と、を含んでもよい。このようにすることで、耐折性に更に優れたポリイミドチューブを提供することが可能になる。
 [6]本開示に係る定着ベルトは、
 円筒状のベルト基材と、
 上記ベルト基材の外周面に、直接または中間層を介して設けられているフッ素樹脂層と、
を備える、定着ベルトであって、
 上記ベルト基材は、上記ポリイミドチューブである。
 [7]上記[6]において、上記中間層は、接着層およびシリコーンゴム層からなる群より選ばれる少なくとも1層を含んでいてもよい。
 上記[6]又は[7]における定着ベルトは、本開示に係るポリイミドチューブをベルト基材として用いている。そのため、上記定着ベルトは、定着性に優れ、駆動時のねじれ変形又は座屈による潰れ等にも耐性がある。また、上記定着ベルトは、通紙を繰返しても裂け及び破れが生じない性質に優れている。
 [本開示の実施形態の詳細]
 以下、本開示の一実施形態(以下「本実施形態」と記す。)について説明する。ただし、本実施形態はこれに限定されるものではない。本明細書において「A~Z」という形式の表記は、範囲の上限下限(すなわちA以上Z以下)を意味し、Aにおいて単位の記載がなく、Zにおいてのみ単位が記載されている場合、Aの単位とZの単位とは同じである。
 ≪ポリイミドチューブ≫
 本開示に係るポリイミドチューブは、
 ポリイミド樹脂組成物からなるポリイミドチューブであって、
 上記ポリイミド樹脂組成物は、ポリイミド樹脂と薄片化黒鉛とを含み、
 上記薄片化黒鉛の厚みは、0.70μm以下であり、
 上記薄片化黒鉛の配合割合は、上記ポリイミド樹脂組成物に対して、5体積%以上25体積%以下である。
 図2は、本実施形態に係るポリイミドチューブを示す模式断面図である。本実施形態に係るポリイミドチューブ11の形状は、通常、円筒状である。
 上記ポリイミドチューブの厚み、外径、長さ等は、所望の機械的強度や用途等に応じて適宜選択することができる。ここでポリイミドチューブの厚みとは、ポリイミドチューブの外周面と内周面との最短距離を意味する。本実施形態に係るポリイミドチューブを、電子写真方式の画像形成装置における定着ベルトの基材として使用する場合には、ポリイミドチューブの厚みは、10~150μmであってもよく、20~120μmであってもよく、30~100μmであってもよい。ポリイミドチューブの外径は、5~100mmであってもよく、10~50mmであってもよい。ポリイミドチューブの長さは、例えば、コピー用紙等の被転写材の大きさに応じて、適宜設定することができる。
 <ポリイミド樹脂組成物>
 本実施形態に係るポリイミド樹脂組成物は、ポリイミド樹脂と薄片化黒鉛とを含む。
 (ポリイミド樹脂)
 上記ポリイミド樹脂は、熱硬化型ポリイミド樹脂(「縮合型ポリイミド樹脂」ともいう)及び熱可塑性ポリイミド樹脂のいずれも用いることができる。耐熱性、引張強度、引張弾性率等の観点から、上記ポリイミド樹脂は、熱硬化型ポリイミド樹脂であってもよい。また、上記ポリイミド樹脂は、単独重合体であっても、共重合体であってもよい。
 熱硬化型ポリイミド樹脂としては、耐熱性や機械的強度等の観点から縮合型の全芳香族ポリイミド樹脂であってもよい。当該縮合型の全芳香族ポリイミド樹脂としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物、オキシジフタル酸二無水物等の酸二無水物と、4,4’-ジアミノジフェニルエーテル、p-フェニレンジアミン、4,4’-ジアミノベンズアニリド、レゾルシンオキシジアニリン等のジアミンとを有機溶媒中で重合反応させてポリイミド前駆体を合成し、加熱して脱水閉環したものを挙げることができる。
 本実施形態の一側面において、上記熱硬化型ポリイミド樹脂は、ピロメリット酸二無水物に由来する構造単位、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物に由来する構造単位又はこれらの両方と、4,4’-ジアミノジフェニルエーテルに由来する構造単位、p-フェニレンジアミンに由来する構造単位又はこれらの両方と、を含んでいてもよい。例えば、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物に由来する構造単位とp-フェニレンジアミンに由来する構造単位とから構成される繰り返し単位は、後述する式(A)で表される。また、ピロメリット酸二無水物に由来する構造単位と4,4’-ジアミノジフェニルエーテルに由来する構造単位とから構成される繰り返し単位は、後述する式(B)で表される。
 本実施形態の他の側面において、上記熱硬化型ポリイミド樹脂は、ピロメリット酸二無水物に由来する構造単位と、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物に由来する構造単位と、4,4’-ジアミノジフェニルエーテルに由来する構造単位と、p-フェニレンジアミンに由来する構造単位と、を含んでいてもよい。
 (薄片化黒鉛)
 本実施形態において「薄片化黒鉛」とは、原料となる黒鉛(例えば、鱗片状黒鉛、膨張黒鉛)を厚み方向(グラフェンシートの積層方向)に剥離及び粉砕して得られるものを意味する。上記薄片化黒鉛は、原料となる黒鉛よりも薄いグラフェンシート積層体と把握することもできる。従来、ポリイミド樹脂組成物に加えられる黒鉛としては、主に鱗片状黒鉛、板状黒鉛等が用いられていたが、所望の熱伝導率になりにくい等の課題があった。また、ポリイミド樹脂組成物に加える黒鉛として上述の薄片化黒鉛を用いるという発想は、なかった。このような事情のもと、本発明者らは、薄片化黒鉛をポリイミド樹脂組成物に加えることで、従来よりも優れた熱伝導性及び優れた耐折性を有するポリイミドチューブが得られることを初めて見いだした。
 上記薄片化黒鉛の厚み(t)は、0.70μm以下であり、0.20μm以上0.70μm以下であってもよく、0.20μm以上0.60μm以下であってもよく、0.30μm以上0.50μm以下であってもよい。上記薄片化黒鉛の厚みは、上記ポリイミドチューブの断面をSEMで観察することによって求めることができる。具体的には、以下の通りである。
 まず、ポリイミドチューブの断面をSEMによって観察する。このときの断面は、ポリイミドチューブの長手方向に直交する断面とする(例えば、図6)。観察倍率は、例えば、5000倍である。図6における5000倍の観察画像において、濃い灰色の部分がポリイミド樹脂であり、薄い灰色の部分が薄片化黒鉛である。SEMによって得られた観察画像において、上記薄片化黒鉛の厚みを求める。このような測定を少なくとも10個(好ましくは30個以上)の上記薄片化黒鉛について行い、求められた値の平均値を当該薄片化黒鉛の厚み(t)とする。
 上記薄片化黒鉛の平均粒子径(d)は、3μm以上で40μm以下であってもよく、5μm以上で30μm以下であってもよく、10μm以上で20μm以下であってもよい。本実施形態の一側面において、上記薄片化黒鉛の平均粒子径(d)は、15μm以上25μm以下であってもよい。上記ポリイミドチューブの断面をSEMで観察することによって求めることができる。具体的には、以下の通りである。
 まず、ポリイミドチューブの断面をSEMによって観察する。このときの断面は、ポリイミドチューブの長手方向に直交する断面とする(例えば、図6)。観察倍率は、例えば、5000倍である。図6における5000倍の観察画像において、濃い灰色の部分がポリイミド樹脂であり、薄い灰色の部分が薄片化黒鉛である。SEMによって得られた観察画像において、上記薄片化黒鉛の粒子径(長径)を求める。このような測定を少なくとも10個(好ましくは30個以上)の上記薄片化黒鉛について行い求められた値の平均値を当該薄片化黒鉛の平均粒子径(d)とする。
 上記薄片化黒鉛の厚みtに対する、上記薄片化黒鉛の平均粒子径dの比d/tは、10以上であってもよく、20以上であってもよく、30以上であってもよい。比d/tの上限は、特に制限されないが、100以下であってもよいし、50以下であってもよいし、37.5以下であってもよい。本実施形態の一側面において、上記薄片化黒鉛の厚みtに対する、上記薄片化黒鉛の平均粒子径dの比d/tは、37.5以上50以下であってもよい。
 上記薄片化黒鉛の配合割合は、上記ポリイミド樹脂組成物に対して、5体積%以上25体積%以下であり、7.5体積%以上22.5体積%以下であってもよく、10体積%以上20体積%以下であってもよい。上記薄片化黒鉛の配合割合は、熱分析(TG測定)などによって黒鉛の重量を測定することで求めることができる。
 上記薄片化黒鉛は、以下の方法によって製造することができる。まず、物理的に粉砕した黒鉛又は硫酸処理した黒鉛を加熱して、膨張黒鉛とする。その後、得られた膨張黒鉛を粉砕して、薄片化黒鉛を得る。
 また、上記薄片化黒鉛は、市販品をそのまま用いてもよい。市販品の薄片化黒鉛としては、例えば、富士黒鉛工業株式会社製のFS-15、及びFS-25、並びに、日本黒鉛工業株式会社製のGR-15及びUP-15Nが挙げられる。
 (その他の成分)
 本実施形態の一側面において、上記ポリイミド樹脂組成物は、本開示の効果が奏される範囲において、その他の成分を更に含んでいてもよい。その他の成分としては、例えば、高熱伝導性フィラー(上記薄片化黒鉛を除く)、導電性フィラー、耐摩耗性フィラーが挙げられる。
 高熱伝導性フィラーとしては、例えば、ボロンナイトライド、カーボンナノチューブ、鱗片状黒鉛、アルミナ、シリコンカーバイド、及び金属シリコンが挙げられる。上記高熱伝導性フィラー(上記薄片化黒鉛を除く)の配合割合は、本開示の効果が奏される範囲において特に制限されないが、例えば、上記ポリイミド樹脂組成物に対して、5体積%以上25体積%以下であってもよい。
 導電性フィラーとしては、例えば、カーボンブラック、ケッチェンブラック、及び金属粉(例えば、ニッケル、アルミニウム、銅、銀等)が挙げられる。上記導電性フィラーの配合割合は、本開示の効果が奏される範囲において特に制限されないが、例えば、上記ポリイミド樹脂組成物に対して、5体積%以上25体積%以下であってもよい。
 耐摩耗性フィラーとしては、例えば、酸化チタン、針状酸化チタン、ボロンナイトライド、球状アルミナ、板状アルミナ、シリコンカーバイドといったセラミック系フィラーが挙げられる。上記耐摩耗性フィラーの配合割合は、本開示の効果が奏される範囲において特に制限されないが、例えば、上記ポリイミド樹脂組成物に対して、5体積%以上25体積%以下であってもよい。
 ≪ポリイミドチューブの製造方法≫
 本実施形態に係るポリイミドチューブは、例えば、以下に示す方法により製造できる。まず、ポリイミド前駆体(「ポリアミド酸」または「ポリアミック酸」ともいう。)の有機溶媒溶液(以下、「ポリイミド前駆体ワニス」という。)に、薄片状黒鉛等を添加して分散させたもの(以下、「ポリイミドワニス」という。)を準備する。その後、準備したポリイミドワニスをチューブの形状に賦形する。その後、加熱してポリイミド前駆体を脱水閉環してポリイミド化する。ポリイミド前駆体ワニスとしては、独自に合成したものの他、市販品を用いることができる。
 チューブの形状に賦形する方法としては、円柱状芯体の外面にポリイミドワニスを塗布し、乾燥する方法を挙げることができる。ポリイミドワニスの塗布層を乾燥後、芯体表面に付着した状態で加熱硬化(イミド化)してもよいし、又は管状物としての構造を保持し得る強度まで固化した時点で、芯体表面から塗布層を取り外し、次の工程で加熱硬化してもよい。ポリイミド前駆体は、最高温度350℃から450℃まで加熱すると、ポリアミド酸が脱水閉環してポリイミド化する。
 ポリイミドワニスを、円柱状芯体の外面に塗布する方法としては、例えば、ディスペンサーを用いて、塗布層を形成する方法(ディスペンサー法)を挙げることができる。図3は、ディスペンサー法による塗布法を示す説明図である。以下、図3を用いて説明する。
 本実施形態の一側面において、上記ディスペンサー法は、
 円柱状芯体24(以下、「芯体24」と表記する場合がある。)の外面に、ディスペンサー供給部21の吐出口22を近接又は接触し、
 前記芯体24を回転させながら、かつ前記吐出口22を芯体24の回転軸方向に対して平行に移動させながら、
 前記吐出口22より、前記円柱状芯体24の外面上に、ポリイミドワニスを連続的に供給して塗布層23を形成する工程、
 前記塗布層23の形成後、前記塗布層23を固化又は硬化する工程、及び
 前記固化又は硬化後、前記芯体24から塗布層23を脱型する工程、
を含むと把握することもできる。
 なお、芯体としては、円柱状芯体24の代わりに、円筒状芯体を用いることもできる。この場合も図3で示す場合と同様に、芯体の外面にポリイミドワニスを供給することもできるし、芯体の内面に、ディスペンサーの供給部の吐出口を接触させて、芯体の内面にポリイミドワニスを供給することもできる。
 ポリイミドワニスを、ディスペンサーの供給部21の吐出口22から連続的に供給するとともに上記吐出口22を芯体24の回転軸方向に対して平行に移動させると、供給したポリイミドワニスが螺旋状に巻回されて塗布層23が形成される。上記芯体24の回転速度及び上記吐出口22の移動速度は、芯体24の表面に隙間無くポリイミドワニスが塗布され、螺旋状に巻回されたポリイミドワニスの隣接部分が結合して均一な塗布層を形成できる速度とする。
 この塗布層23を形成する工程の後、常法により、塗布したポリイミドワニス(すなわち、塗布層23)を加熱硬化(イミド化)すると、強固な薄いチューブ状のフィルムが生成する。その後、上記芯体からチューブを取り出すことにより、ポリイミドチューブを得ることができる。塗布層23を形成する工程後、完全にイミド化することなく、塗布層23が少なくともチューブとしての構造を保持しうる強度を有するまで固化したチューブを脱型し、脱型後に該チューブを加熱硬化(イミド化)させてもよい。
 この製造方法に用いられるポリイミドワニスの25℃での粘度は、100~15000ポイズであってもよい。ポリイミドワニスの粘度が高すぎると、螺旋状に巻回塗布されたポリイミドワニスが互いに接触してつながる部分が他の部分より薄くなり、塗布層23の表面に凹凸が生じる傾向がある。ポリイミドワニスの粘度が低すぎると、塗布時または乾燥時に液だれ又ははじきが生じ、ポリイミドチューブを形成しにくくなる傾向がある。
 使用する芯体の形状は、円柱状であってもよいし、円筒状であってもよい。本実施形態において上記芯体の材質としては、特に制限されないが、例えば、金属、セラミックス、耐熱樹脂が挙げられる。
 ≪定着ベルト≫
 本実施形態に係る定着ベルトは、
 円筒状のベルト基材と、
 上記ベルト基材の外周面に、直接または中間層を介して設けられているフッ素樹脂層と、
を備える、定着ベルトであって、
 上記ベルト基材は、上記ポリイミドチューブである。ここで、「中間層を介して設けられている」とは、当該中間層が上記ベルト基材の外周面および上記フッ素樹脂層に挟まれて設けられている態様を意味する。このとき、上記中間層は、上記ベルト基材の外周面、上記フッ素樹脂層またはこれらの両方と接して設けられていてもよいし、他の層が介在して設けられていてもよい。上記中間層は、単一の層から構成されていてもよいし、2層以上の層から構成されていてもよい。
 図4は、本実施形態に係る定着ベルトの一例の層構成を示す模式断面図である。図4における定着ベルト1は、ベルト基材であるポリイミドチューブ11と、上記ポリイミドチューブ11の外周面に直接設けられているフッ素樹脂層13とを備える。当該定着ベルト1は、二層構造の定着ベルトと把握することもできる。上記フッ素樹脂層13は、定着ベルト1に離型性を付与し、記録紙等の被転写材上のトナーが定着ベルト表面に付着しないようにするために設けられる。
 フッ素樹脂層を形成するフッ素樹脂としては、定着ベルトの高温での連続使用を可能とするために、耐熱性に優れたものが好ましい。フッ素樹脂の具体例としては、例えば、テトラフルオロエチレン(PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)が挙げられる。
 上記定着ベルトは、加熱硬化(イミド化)したポリイミドチューブの外周面に、直接または中間層(例えば、接着層)を介して、フッ素樹脂層を形成することにより製造することができる。フッ素樹脂層の形成に際し、高温でフッ素樹脂の焼結を行う場合には、ポリイミドチューブの製造工程で溶媒を乾燥除去して固化したチューブを作製し、その上に、直接または中間層(例えば、接着層)を介してフッ素樹脂層を形成した後、フッ素樹脂の焼結と同時にポリイミドチューブを加熱硬化させてもよい。フッ素樹脂層を形成する他の方法として、フッ素樹脂チューブを被覆する方法を採用することもできる。フッ素樹脂層の厚みは、通常1~30μmであり、5~15μm程度であってもよい。
 フッ素樹脂層は、フッ素樹脂のみを用いて形成することができるが、帯電によるオフセットを防止するために、導電性フィラーを含有させてもよい。導電性フィラーとしては、特に限定されないが、ケッチェンブラック等の導電性カーボンブラック、アルミニウム等の金属粉等を挙げることができる。
 図5は、本実施形態に係る定着ベルトの他の一例の層構成を示す模式断面図である。図5における定着ベルト1は、ベルト基材であるポリイミドチューブ11と、上記ポリイミドチューブ11の外周面に、接着層12(中間層15)を介して設けられているフッ素樹脂層13と、を備える。当該定着ベルト1は、ベルト基材であるポリイミドチューブ11と、上記ポリイミドチューブ11の外周面に直接設けられている接着層12と、上記接着層12の外周面に直接設けられているフッ素樹脂層13とを備えると把握することもできる。当該定着ベルト1は、三層構造の定着ベルトと把握することもできる。上記接着層12は、ポリイミドチューブ11とフッ素樹脂層13との間の接着性を向上させるために設けられる中間層15である。上記接着層12には、所望により、導電性フィラーを含有させることができる。接着層12は、耐熱性の観点から、耐熱性樹脂により構成することが好ましい。接着層12を構成する樹脂としては、特に限定されないが、例えば、フッ素樹脂とポリアミドイミド樹脂との混合物、フッ素樹脂とポリエーテルスルホン樹脂との混合物等が好ましい。
 さらに、本開示の効果を奏する範囲において、中間層に、接着層以外の樹脂層またはゴム層(例えば、シリコーンゴム層)を付加的に配置してもよい。すなわち、本実施形態の一側面において、上記中間層は、接着層およびシリコーンゴム層からなる群より選ばれる少なくとも1層を含んでいてもよい。上記中間層15は、接着層12であってもよいし(例えば、図5)、シリコーンゴム層14であってもよい(例えば、図7)。上記中間層15は、接着層12、シリコーンゴム層14および中間層12がこの順に積層された層であってもよい(例えば、図8)。
 本実施形態の他の側面において、上記定着ベルトは、
 円筒状のベルト基材と、
 上記ベルト基材の外周面に、直接または接着層を介して設けられているシリコーンゴム層と、
 上記シリコーンゴム層の外周面に、直接または接着層を介して設けられているフッ素樹脂層と、を備える、定着ベルトであってもよい。上記ベルト基材は、本実施形態に係る上記ポリイミドチューブである。
 以上の説明は、以下に付記する特徴を含む。
(付記1)
 ポリイミド樹脂組成物からなるポリイミドチューブであって、
 上記ポリイミド樹脂組成物は、ポリイミド樹脂と薄片化黒鉛とを含み、
 上記薄片化黒鉛の厚みは、0.70μm以下であり、
 上記薄片化黒鉛の配合割合は、上記ポリイミド樹脂組成物に対して、5体積%以上25体積%以下である、ポリイミドチューブ。
(付記2)
 上記薄片化黒鉛の平均粒子径は、3μm以上で40μm以下である、付記1に記載のポリイミドチューブ。
(付記3)
 上記薄片化黒鉛の厚みに対する、上記薄片化黒鉛の平均粒子径の比d/tは、10以上である、付記1又は付記2に記載のポリイミドチューブ。
(付記4)
 上記ポリイミド樹脂は、熱硬化型ポリイミド樹脂である、付記1から付記3のいずれかに記載のポリイミドチューブ。
(付記5)
 上記熱硬化型ポリイミド樹脂は、ピロメリット酸二無水物に由来する構造単位、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物に由来する構造単位又はこれらの両方と、4,4’-ジアミノジフェニルエーテルに由来する構造単位、p-フェニレンジアミンに由来する構造単位又はこれらの両方と、を含む、付記4に記載のポリイミドチューブ。
(付記6)
 円筒状のベルト基材と、
 上記ベルト基材の外周面に、直接または接着層を介して設けられているフッ素樹脂層と、
を備える、定着ベルトであって、
 上記ベルト基材は、付記1から付記5のいずれかに記載のポリイミドチューブである、定着ベルト。
(付記7)
 円筒状のベルト基材と、
 上記ベルト基材の外周面に、直接または接着層を介して設けられているシリコーンゴム層と、
 上記シリコーンゴム層の外周面に、直接または接着層を介して設けられているフッ素樹脂層と、を備える、定着ベルトであって、
 上記ベルト基材は、付記1から付記5のいずれかに記載のポリイミドチューブである、定着ベルト。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 ≪ポリイミドチューブの作製≫
<ポリイミドワニスの製造>
 下記「使用原料」の欄に示すポリイミド前駆体ワニスに、表1から表5に記載の配合割合で薄片化黒鉛及びその他のフィラーを加えて、撹拌機により予備撹拌し、3本ロールミルで配合後、真空脱泡を行い、ポリイミドワニスを得た。
「使用原料」
[ポリイミド前駆体ワニス]
 宇部興産社製「U-ワニスS-301」、比重1.446:下記式(A)で表される繰り返し単位を有するポリイミドを形成するポリイミド前駆体を、溶剤(N-メチルピロリドン)に濃度18%で溶解したワニス(以下、「UワニスS」との略号で示す。)と、I.S.T社製「Pyre ML RC-5019」:下記式(B)で表される繰り返し単位を有するポリイミドを形成するポリイミド前駆体を、溶剤(N-メチルピロリドン)に濃度15%で溶解したワニス(以下、「Pyre ML」との略号で示す。)を、80:20(重量比)で混合したワニス。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 [薄片状黒鉛]
 富士黒鉛工業株式会社製:FS-15(平均粒子径15μm、厚み0.40μm)
 富士黒鉛工業株式会社製:FS-25(平均粒子径25μm、厚み0.50μm)
 [その他のフィラー]
 株式会社中越黒鉛工業所製:BF-3AK(平均粒子径3μm、厚み0.80μm、鱗片状黒鉛)
 株式会社中越黒鉛工業所製:BF-10AK(平均粒子径10μm、厚み0.80μm、鱗片状黒鉛)
 株式会社中越黒鉛工業所製:BF-15AK(平均粒子径15μm、厚み0.80μm、鱗片状黒鉛)
 株式会社中越黒鉛工業所製:BF-23AK(平均粒子径20μm、厚み0.80μm、鱗片状黒鉛)
<ポリイミドチューブの作製>
 まず、ディスペンサーの供給部にセットしたノズル(吐出口)を、外面にセラミックスをコーティングした外径30mmφの金属製円柱である芯体の外面に接触させた。次に、上記芯体を回転させるとともに、ノズルを上記芯体の回転軸方向に対して平行に一定速度で移動させながら、ノズルから上記ポリイミドワニスを芯体の外面に定量供給し、上記ポリイミドワニスの塗布を行った(塗布層を形成する工程)。上記ポリイミドワニスを塗布した後、芯体を回転させながら400℃まで段階的に加熱して上記ポリイミドワニスを硬化した(塗布層を固化又は硬化する工程)。常温まで冷却した後、硬化したポリイミド樹脂の塗布層を芯体から、ポリイミドチューブとして脱型した(芯体から塗布層を脱型する工程)。このようにして得られたポリイミドチューブの厚みは60μmであり、外径は30mmで、長さは240mmであった。
 得られたポリイミドチューブについて、下記の方法で、熱伝導率の算出、MIT試験(耐折性試験)、及び内面粗度の測定を行った。その結果を表1から表5に示す。表1から表5において、試料2から7、10、11、及び21から23は、実施例に相当する。試料1、8、9及び12から20は、比較例に対応する。
(1)熱伝導率の算出
 以下の方法で各ポリイミドチューブの熱拡散率、密度及び比熱容量を測定し、それを掛け合わせて、熱伝導率(W/mk)とした(表1から表5における熱伝導率の欄)。
 i)熱拡散率
 株式会社アイフェイズ製 ai-phase mobile 1u(商品名)を用いてポリイミドチューブの熱拡散率を測定した。測定温度は、23℃とした。
 ii)密度
 JIS K 7112:1999 A法の水中置換法に準じて、ポリイミドチューブの密度を測定した。浸漬液はエタノールを使用した。
 iii)比熱容量
 JIS K 7123:2012における入力補償示差走査熱量測定で、ポリイミドチューブの比熱容量を測定した。
(2)MIT試験(耐折性試験)
 MIT耐折疲労試験機(株式会社東洋精機製作所製、商品名:MIT-DA)を用いて各ポリイミドチューブに曲げ動作を与え、繰り返し屈曲により破断に至るまでの回数を測定した(表1から表5におけるMIT回数の欄)。MIT回数が多い程、耐折性に優れるポリイミドチューブと評価することができる。
 (MIT試験の測定条件)
 荷重:9.8N
 折り曲げ先端角:R0.38mm
 折り曲げ角度:片側135度
 温度:23℃
(3)内面粗度の測定
 表面粗さ測定器(株式会社東京精密製、商品名:サーフコム480A)を用いて各ポリイミドチューブの内面における十点平均粗さRzを測定した(表1から表5における内面粗度の欄)。内面粗度が大きすぎるとチューブ回転時に不具合を生じる恐れがある。
 (内面粗度の測定条件)
 測定速度:0.3mm/s
 測定長:5.0mm
 温度:23℃
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 (結果)
 実施例のポリイミドチューブ(試料2から7、10、11、及び21から23)は、いずれも熱伝導率が0.3W/mk以上、MIT回数が100回以上、内面粗度が4.0μm以下で良好な性能を有していた。
 一方、試料1、9、13及び17のポリイミドチューブは、熱伝導率が0.3W/mkを下回っていた。試料8、12及び16のポリイミドチューブは、MIT回数が10回以下であり、かつ内面粗度が4.11μm以上であった。試料19及び20は、内面粗度が4.25μm以上であった。
 試料14、15及び18のポリイミドチューブは、同程度の熱伝導率を有する実施例のポリイミドチューブ(例えば、試料2、4及び10)と比較して、MIT回数が少なく、かつ内面粗度が大きかった。
 以上のように本発明の実施形態及び実施例について説明を行なったが、上述の各実施形態及び各実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態及び実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態及び実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 1  定着ベルト、 2  ヒータ(加熱手段)、 3  加圧ローラ、 4  被転写材、 5  未定着トナー像、 6  定着トナー像、 11 ポリイミドチューブ、 12 接着層、 13 フッ素樹脂層、14 シリコーンゴム層、15 中間層、 21 ディスペンサーの供給部、 22 吐出口、 23 塗布層、 24 芯体

Claims (7)

  1.  ポリイミド樹脂組成物からなるポリイミドチューブであって、
     前記ポリイミド樹脂組成物は、ポリイミド樹脂と薄片化黒鉛とを含み、
     前記薄片化黒鉛の厚みは、0.70μm以下であり、
     前記薄片化黒鉛の配合割合は、前記ポリイミド樹脂組成物に対して、5体積%以上25体積%以下である、ポリイミドチューブ。
  2.  前記薄片化黒鉛の平均粒子径は、3μm以上で40μm以下である、請求項1に記載のポリイミドチューブ。
  3.  前記薄片化黒鉛の厚みtに対する、前記薄片化黒鉛の平均粒子径dの比d/tは、10以上である、請求項1又は請求項2に記載のポリイミドチューブ。
  4.  前記ポリイミド樹脂は、熱硬化型ポリイミド樹脂である、請求項1から請求項3のいずれか一項に記載のポリイミドチューブ。
  5.  前記熱硬化型ポリイミド樹脂は、ピロメリット酸二無水物に由来する構造単位、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物に由来する構造単位又はこれらの両方と、4,4’-ジアミノジフェニルエーテルに由来する構造単位、p-フェニレンジアミンに由来する構造単位又はこれらの両方と、を含む、請求項4に記載のポリイミドチューブ。
  6.  円筒状のベルト基材と、
     前記ベルト基材の外周面に、直接または中間層を介して設けられているフッ素樹脂層と、
    を備える、定着ベルトであって、
     前記ベルト基材は、請求項1から請求項5のいずれか一項に記載のポリイミドチューブである、定着ベルト。
  7.  前記中間層は、接着層およびシリコーンゴム層からなる群より選ばれる少なくとも1層を含む、請求項6に記載の定着ベルト。
PCT/JP2022/035413 2021-12-28 2022-09-22 ポリイミドチューブ及び定着ベルト WO2023127209A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-214006 2021-12-28
JP2021214006 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127209A1 true WO2023127209A1 (ja) 2023-07-06

Family

ID=86998628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035413 WO2023127209A1 (ja) 2021-12-28 2022-09-22 ポリイミドチューブ及び定着ベルト

Country Status (1)

Country Link
WO (1) WO2023127209A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156965A (ja) * 2007-12-25 2009-07-16 Sumitomo Electric Ind Ltd ポリイミドチューブ、その製造方法、及び定着ベルト
JP2011248190A (ja) * 2010-05-28 2011-12-08 Konica Minolta Business Technologies Inc 定着装置用発熱ベルトと画像形成装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156965A (ja) * 2007-12-25 2009-07-16 Sumitomo Electric Ind Ltd ポリイミドチューブ、その製造方法、及び定着ベルト
JP2011248190A (ja) * 2010-05-28 2011-12-08 Konica Minolta Business Technologies Inc 定着装置用発熱ベルトと画像形成装置

Similar Documents

Publication Publication Date Title
JP4680979B2 (ja) ポリイミドチューブ、その製造方法、及び定着ベルト
JP5491031B2 (ja) ポリイミドチューブ、その製造方法、ポリイミドワニスの製造方法、及び定着ベルト
US9335689B2 (en) Polyimide tube, method for producing same, and fixing belt
JP5109168B2 (ja) 発熱定着ベルト及びその製造方法並びに画像定着装置
EP1852751A1 (en) Tubing and process for production thereof
US20110003118A1 (en) Member for image forming apparatus, image forming apparatus, and unit for image forming apparatus
JP3240435B2 (ja) 熱伝導性ポリイミド系フィルム、その製造方法及びその使用
JP5636818B2 (ja) 画像形成装置用の無端ベルト及び画像形成装置
WO2023127209A1 (ja) ポリイミドチューブ及び定着ベルト
JP2005258432A (ja) 複合管状物
JP6069518B2 (ja) 定着ベルト用ポリイミドチューブ
JP2012225990A (ja) ポリイミドチューブ及び定着ベルト
JPH0880580A (ja) 定着用ベルト
JP3352134B2 (ja) 定着用ベルト
JP2010066509A (ja) 定着用ベルト
JP2003177630A (ja) 転写定着ベルト
JP5434486B2 (ja) 画像形成装置用の無端ベルト、その製造方法、及び画像形成装置
JP2983484B2 (ja) 定着用フィルム
JP2022192011A (ja) 電子写真用ベルト、電子写真画像形成装置、定着装置及びワニス
JP5953973B2 (ja) 面状発熱体およびそれを具備する画像定着装置
JP2018130843A (ja) 無端ベルトの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023570656

Country of ref document: JP

Kind code of ref document: A