WO2006070632A1 - 酢酸の製造方法 - Google Patents

酢酸の製造方法 Download PDF

Info

Publication number
WO2006070632A1
WO2006070632A1 PCT/JP2005/023268 JP2005023268W WO2006070632A1 WO 2006070632 A1 WO2006070632 A1 WO 2006070632A1 JP 2005023268 W JP2005023268 W JP 2005023268W WO 2006070632 A1 WO2006070632 A1 WO 2006070632A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetic acid
reaction
concentration
reactor
low
Prior art date
Application number
PCT/JP2005/023268
Other languages
English (en)
French (fr)
Inventor
Hidetaka Kojima
Hiroyuki Miura
Original Assignee
Daicel Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries, Ltd. filed Critical Daicel Chemical Industries, Ltd.
Priority to EP05816451.8A priority Critical patent/EP1832569B1/en
Priority to US10/567,900 priority patent/US7683212B2/en
Priority to CN2005800451448A priority patent/CN101090880B/zh
Priority to KR1020077017250A priority patent/KR101314027B1/ko
Publication of WO2006070632A1 publication Critical patent/WO2006070632A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • B01J27/13Platinum group metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing acetic acid by reacting methanol with carbon monoxide in the presence of a rhodium catalyst.
  • alkyl iodide such as hexyl iodide, which degrades the palladium catalyst used in producing butyl acetate from acetic acid and ethylene, is also increased.
  • the hexyl iodide is a product derived from acetonitrile.
  • Japanese Patent No. 3244385 discloses a method for producing acetic acid by continuously reacting methanol and carbon monoxide in the presence of a rhodium catalyst, an iodide salt and methyl iodide.
  • a process for producing high-purity acetic acid characterized in that the reaction is carried out while maintaining the aldehyde concentration at 400 ppm or less, is disclosed.
  • This document describes the removal of acetonitrile from the process liquid circulating in the reactor, thereby removing the acetonitrile in the reaction liquid. It specifically describes how to keep the dehydride concentration below 400 ppm.
  • JP-T-2003-508363 discloses a method for producing acetic acid by reacting methanol with carbon monoxide in the presence of a rhodium catalyst.
  • a technique for reducing impurities by setting the pressure in the range of ⁇ 4psia (0.7-7.27 kPa) is disclosed.
  • Japanese Examined Patent Publication No. 8-5839 shows that acetic acid production rate decreases at low hydrogen partial pressure of 40 psi (276 kPa) or less.
  • WO 2004/60846 discloses an acetic acid production process that provides an acetic acid production rate (STY) of 15 mol / L'hr or more at a moisture content of 2 wt% or less and a rhodium concentration of lOOOppm or more. According to this document, when the water content in the reaction system is 5% by weight or less, the methane production reaction (CH OH + H ⁇
  • Japanese Patent Application Laid-Open No. 6-40999 discloses a method for producing acetic acid, in which a reaction solution obtained by reacting with holding up to about 10% by weight of water and at least 2% by weight of methyl acetate is distilled. It is disclosed. This document states that as the methyl acetate concentration increases, the amount of propionic acid by-product decreases, and when the methyl acetate concentration is 2% by weight, the propionic acid concentration in the reaction solution is less than 500 ppm. However, as described above, under the low hydrogen partial pressure due to low moisture, the rate of hydrogenation reaction of acetaldehyde slows down and the amount of propionic acid produced by the carbonylation of ethanol decreases.
  • the pamphlet of WO 2002/62740 states that in an energy-saving process using up to two distillation columns, the product stream has low levels of propionic acid impurities and the product stream
  • the level of aldehyde impurities in the reactor is (i) maintaining a hydrogen partial pressure of less than about 6 psia (41.3 kPa) at a total pressure in the reactor of about 15-40 atm (l. 5-4 MPa), or ( ii)
  • a process is disclosed that is controlled by maintaining the methyl iodide concentration in the reaction solution below about 5% by weight, or (iii) removing aldehyde impurities.
  • reducing the hydrogen partial pressure increases the by-product of the successive reaction of acetoaldehyde including the condensation reaction of acetoaldehyde, thereby deteriorating the acetic acid quality.
  • the reduction in methyl iodide concentration has the disadvantage of reducing the production rate of acetic acid as well as acetaldehyde, as shown in the examples of the pamphlet (Table 3). That is, it reduces the production efficiency of acetic acid, which is not industrially and economically preferable.
  • Patent Document 1 Japanese Patent Publication No. 47-3334
  • Patent Document 2 JP-A-60-54334
  • Patent Document 3 Japanese Patent Application Laid-Open No. 60-239434
  • Patent Document 4 Japanese Patent No. 3244385
  • Patent Document 5 Special Table 2003—508363
  • Patent Document 6 Japanese Patent Publication No. 8-5839
  • Patent Document 7 Pamphlet of International Publication No. 2004/60846
  • Patent Document 8 Japanese Patent Laid-Open No. 6-40999
  • Patent Document 9 Pamphlet of International Publication No. 2002Z62740
  • Patent ⁇ l3 ⁇ 4 Applied Homogeneous atalysis with Organometallic Compounds (2nd Edition) (2002), Volume 1, 104-136 (Celanese)
  • the object of the present invention is to reduce the amount of by-products generated without reducing the reaction rate even when the water concentration in the reaction system is low and the hydrogen partial pressure is low, and high-quality acetic acid is efficiently produced. It is to provide a method of manufacturing.
  • Another object of the present invention is to provide a simple and efficient process for producing acetic acid by increasing the productivity of acetic acid and suppressing the by-product of sequential reaction products of acetoaldehyde and acetoaldehyde. .
  • a bigger problem under low hydrogen partial pressure is that the condensation reaction rate of the acetoaldehyde in the sequential reaction of acetoaldehyde increases, and the production of reducing substances such as crotonaldehyde and 2_ethyl crotonaldehyde increases. Reducing the potassium permanganate test value and degrading the quality of acetic acid.
  • the method of reducing the production of acetonitrile by reducing the methyl iodide concentration reduces not only the acetonitrile but also the production rate of acetic acid, which reduces the production efficiency of acetic acid. It is not preferable. [0014] Therefore, the present inventor has analyzed the reaction rate in detail with respect to the production of acetic acid, which is the main reaction product, and acetonitrile, hydrogen (and carbon dioxide), which are the main side reaction products.
  • an increase in the reaction temperature increases the rate of acetic acid formation, but increases the rate of formation of acetatealdehyde more than the rate of increase.
  • Increasing the hydrogen partial pressure increases the rate of acetic acid production slightly, but increases the rate of acetate aldehyde generation more than the rate of increase.
  • Increasing the methyl iodide concentration increases the rate of acetic acid production, but increases the rate of acetate aldehyde formation to the same degree or more.
  • Increasing the water concentration slightly increases the rate of acetic acid production, but increases the rate of acetate aldehyde formation to the same extent.
  • Increasing the rhodium concentration increases the rate of acetic acid production, but increases the rate of acetate aldehyde formation to the same extent. Care must be taken because increasing the concentration of mouthwater can significantly affect the rate of production of these products.
  • Increasing the concentration of lithium iodide increases the rate of acetic acid formation, but increases the rate of formation of cetaldehyde as much as the rate of increase.
  • the increase in lithium iodide concentration It is necessary to stabilize the rhodium complex catalyst and increase the production rate, but also increases side reactions. Only the partial pressure of CO and the concentration of methyl acetate have the effect of promoting the main reaction while suppressing side reactions.
  • methanol and carbon monoxide are continuously reacted in the presence of a rhodium catalyst, an iodide salt, sodium methyl chloride, methyl acetate and water, and the acetonitrile concentration in the reaction solution is reduced to 500 ppm or less.
  • This is a method for producing acetic acid at a production rate of l lmol / L'hr or more, while maintaining the condition where the partial pressure of carbon monoxide in the gas phase of the reactor is 1.05 MPa or more, or methyl acetate in the reaction solution.
  • a method for producing acetic acid characterized in that the reaction is carried out at a concentration of 2% by weight or more, and the rate of acetate aldehyde formation is maintained at 1/1500 or less of the rate of acetic acid production.
  • the hydrogen partial pressure in the gas phase part of the reactor is preferably lOOkPa or less, more preferably 70 kPa or less. It is also preferable to carry out the reaction under conditions where the hydrogen partial pressure in the gas phase of the reactor is 70 kPa or less and the methyl acetate concentration in the reaction solution is 3.1 wt% or more. Furthermore, the water concentration in the reaction solution is more preferably 3% by weight or less.
  • acetic acid is produced at a production rate of 15 molZL'hr or higher. In another preferred embodiment, acetic acid is produced while maintaining the production rate of cetaldehyde at 1/2500 or less of the acetic acid production rate.
  • the method may include a step of recycling the remaining components to the reactor, and a step of separating and removing carbonyl impurities from the process liquid recycled to the reactor.
  • the reaction solution is separated by distillation into a volatile component containing acetic acid, water, methyl acetate and methyl iodide and a low volatile component containing a rhodium catalyst and an iodide salt.
  • step ( D) Acetic acid separation process in which acetic acid is separated from the high boiling point components obtained in step (B) and (B) by distillation.
  • step (F) obtained in process (F)
  • the step (B), step (D) and step (F) may be performed using a total of three or less distillation columns.
  • the present invention even when the water concentration in the reaction system is low and the hydrogen partial pressure is low, the production of by-products can be reduced without reducing the reaction rate. Therefore, high quality acetic acid can be produced efficiently. Furthermore, the production of acetic acid is high and production of acetic aldehyde and sequential reaction products of acetoaldehyde is suppressed, so that acetic acid can be efficiently produced with simple processes and equipment.
  • FIG. 1 is a production flow diagram showing an example of the production method of the present invention.
  • FIG. 2 is a production flow diagram showing another example of the production method of the present invention.
  • acetic acid is produced by continuously reacting methanol and carbon monoxide using a rhodium catalyst.
  • the rhodium catalyst usually exists as a rhodium complex in the reaction solution. Therefore, the rhodium catalyst may be any rhodium complex that can be dissolved in the reaction solution under the reaction conditions or the rhodium complex.
  • rhodium iodine complexes such as Rhl and [Rh (CO) I] —, rhodium carbonyl complexes, and the like are preferably used as the mouth catalyst.
  • the amount of the rhodium catalyst used is a concentration in the reaction solution, for example, 200 to 3000 ppm, preferably 300 to 1000 ppm, more preferably about 400 to 900 ppm.
  • the rhodium catalyst is usually used by recycling the rhodium catalyst used in the reaction.
  • the iodide salt is used for stabilization of a rhodium catalyst, acceleration of acetic acid formation reaction, etc., particularly under low moisture.
  • the iodide salt may be anything that produces iodide in the reaction solution, for example, alkali metal iodide salts such as Lil, Nal, KI, Rbl, Csl; Examples include alkaline earth metal iodide salts such as Bel, Mgl and Cal; and aluminum group metal iodide salts such as BI and All.
  • the iodide salt may be an organic iodide salt in addition to the above metal iodide salt.
  • quaternary phosphonium iodide salt for example, methyl iodide addition of phosphines such as tributylphosphine and triphenylphosphine.
  • Products, hydrogen iodide adducts, etc. quaternary ammonium iodide salts (for example, methyl iodide adducts or hydrogen iodide adducts of nitrogen-containing compounds such as tertiary amines, pyridines, imidazoles, imides, etc.) )
  • alkali metal iodide salts such as Lil are particularly preferable.
  • the amount of iodide salt used is, for example, about 0 ⁇ 07 to 2.5 mol / L, preferably about 0 ⁇ 25 to about 1.5 mol / L as iodide ions in the reaction solution. Is about 3 to 40% by weight, preferably about 4.5 to 30% by weight. Iodide salt is usually used by recycling the iodide salt used in the reaction.
  • methyl iodide is used as a catalyst promoter.
  • concentration of methyl iodide in the reaction solution is, for example, about 5 to 20% by weight, preferably about 11 to 16% by weight.
  • Yowi ⁇ Mechinole is usually used by recycling methyl iodide used in the reaction.
  • the water concentration in the reaction solution in the present invention is usually 15 wt% or less (for example, 0.1 to 15 wt%), preferably 10 wt% or less (for example, 0.3 to 10 wt%), More preferably, it is 5% by weight or less (for example, 0.5 to 5% by weight), and particularly preferably 3% by weight or less (for example, 0.7 to 3% by weight). If the water concentration is too high, the energy load for separating water in the purification system increases, and a large purification facility is required.
  • the reaction was carried out under conditions where the CO partial pressure was 1.05 MPa or more or the methyl acetate concentration in the reaction solution was 2% by weight or less, and the cetaldehyde production rate was 1/1500 of the acetic acid production rate. Since the concentration of acetoaldehyde in the reaction solution is maintained at 500 ppm or less, the quality of acetic acid can be maintained without lowering the productivity of acetic acid.
  • the methyl acetate concentration in the reaction solution is 2% by weight or more, preferably 3.1% by weight or more, and more preferably 3.5% by weight or more.
  • the reaction in the case where the reaction is carried out under the condition that the C 0 partial pressure in the gas phase of the reactor is 1.05 MPa or more, it may be in the range of, for example:! To 2% by weight, but preferably 2% by weight. % Or more.
  • the upper limit of the methyl acetate concentration in the reaction solution is, for example, 30% by weight, preferably 15% by weight, and more preferably 10% by weight.
  • Methyl acetate is produced by reacting raw material methanol with acetic acid.
  • methyl acetate concentration in the reaction solution By maintaining the methyl acetate concentration in the reaction solution at a high level, by-products such as acetonitrile, hydrogen, and methane can be suppressed while increasing the production rate of acetic acid.
  • methyl acetate the methyl acetate used in the reaction or produced by the reaction is usually recycled.
  • the remaining main component in the reaction solution is acetic acid which is a product and a reaction solvent.
  • the typical reaction temperature for carbonylation in the present invention is about 150-250 ° C, preferably 180-220 ° C, more preferably 182-195 ° C.
  • the CO partial pressure in the gas phase part of the reactor is 1.05 MPa or more, preferably 1.1 OMPa or more, more preferably 1.15 MPa or more.
  • the reaction is carried out under the condition that the methyl acetate concentration in the reaction solution is 2% by weight or more, it is not limited to this.
  • it may be in the range of 0.8 to 1.05 MPa, but preferably 1 More than 05MPa.
  • the upper limit of C0 partial pressure is, for example, 3 MPa, preferably 2.5 MPa.
  • Increasing the partial pressure of C in the gas phase of the reactor can improve the stability of the rhodium catalyst and suppress by-products such as acetonitrile, hydrogen and methane while increasing the production rate of acetic acid.
  • the hydrogen partial pressure in the gas phase part of the reactor is usually 200 kPa or less, preferably 10 kPa or less, more preferably 70 kPa or less.
  • hydrogen partial pressure is high, methane formation reaction (CH OH + H ⁇ CH + H 0), acetoaldehyde formation reaction (CH OH + CO
  • the reaction is carried out under the condition that the C0 partial pressure is 1.05 MPa or more or the methyl acetate concentration in the reaction solution is 2% by weight or less, and the acetonitrile formation rate is maintained at 1/1500 or less of the acetic acid production rate.
  • the strength of acetic aldehyde in the reaction solution is kept below 500ppm, so the quality of acetic acid can be maintained without lowering the productivity of acetic acid.
  • the lower limit of the hydrogen partial pressure is, for example, about 5 kPa, usually about 1 OkPa.
  • hydrogen may be introduced into the system together with the raw material carbon monoxide.
  • the total pressure in the reactor is usually 1 because of the partial pressure of CO and hydrogen, the partial pressure of other by-products (methane, carbon dioxide, nitrogen), and the vapor pressure of the reaction solution components.
  • the range is 5 to 5 MPa.
  • acetic acid is maintained at 1 lmol / L ⁇ hr (preferably 15 mol / L ⁇ hr) while maintaining the production rate of cetaldehyde at 1/1500 or less than that of acetic acid.
  • Manufacture at high production speed In general, in order to produce acetic acid at a high production rate, it is necessary to increase the reaction temperature and the concentration of rhodium catalyst, iodide salt and methyl iodide, and as a result, a large amount of acetonitrile is produced as a by-product. To do.
  • the reaction is carried out under the condition where the CO partial pressure is 1.05 MPa or more or the methyl acetate concentration in the reaction solution is 2% by weight or less. Ratio can be reduced to 1/1500 or less.
  • the ratio of the rate of production of cetaldehyde and acetic acid is preferably 1Z1800 or less, more preferably 1/2000 or less, and particularly preferably 1Z2500 or less.
  • the reaction is carried out while maintaining the acetaldehyde concentration in the reaction solution at 500 ppm or less.
  • by-products derived from the acetaldehyde for example, reducing substances such as crotonanolaldehyde and 2-ethyl crotonaldehyde, hexyl iodide, etc. Power of alkyl iodide, propionic acid, etc. Byproducts such as rubonic acid can be remarkably suppressed.
  • the reaction since the reaction is carried out under the condition that the C0 partial pressure is 1.05 MPa or more or the methyl acetate concentration in the reaction solution is 2% by weight or less, the production rate of cetaldehyde can be remarkably reduced. Therefore, acetic acid was recovered from the reaction solution. It is possible to recycle the remaining low-boiling components (including water, methyl acetate, yowi-methinole, and acetoaldehyde) into the reactor as they are, but the concentration of acetoaldehyde in the reaction solution should be as low as possible.
  • the concentration of acetoaldehyde in the reaction solution should be as low as possible.
  • the concentration of acetonitrile in the reaction solution is preferably 450 ppm or less, more preferably 400 ppm or less.
  • the reaction solution is subjected to a purification step, and acetic acid is separated and recovered.
  • the rhodium catalyst, iodide salt, methyl iodide, methyl acetate and water are usually recycled to the reactor.
  • By-product carbonyl impurities such as acetaldehyde (especially acetoaldehyde) are preferably removed from the process liquid circulating in the reactor in order to suppress the formation of various by-products due to the sequential reaction of the carbonyl impurities.
  • acetic acid to ensure removal of alkyl iodides, such as Kishinore to iodide, at least 10/0 of the active site is replaced with a silver-based or mercury-based that is contacted with Les, Ru cation exchange resin I like it.
  • Acetic acid subjected to such treatment is suitable as a raw material for acetic acid derivatives such as butyl acetate produced using a metal catalyst because it does not poison the metal catalyst.
  • the reaction solution is separated by distillation into a volatile component containing acetic acid, water, methyl acetate and methyl iodide and a low volatile component containing a rhodium catalyst and an iodide salt.
  • Catalyst separation step (A) the volatile component is separated by distillation into a high boiling point component containing acetic acid and a low boiling point component containing water, methyl acetate and methyl iodide (B), Catalyst recycling step (C) for recycling the low-volatile components to the reactor, and carbonyl impurity removal step (D) and step (D) for separating and removing carbonyl impurities from the low-boiling components obtained in step (B).
  • the low-boiling point component recycling step (E) in which the residual components from which carbonyl impurities have been removed are recycled to the reactor, the acetic acid separation step (F) in which acetic acid is separated from the high-boiling point component obtained in step (B) by distillation, and Acetic acid obtained in step (F) It can consist of a cation exchange resin treatment step (G) in which it is treated with a silver or mercury exchange cation exchange resin.
  • FIG. 1 is a production flow diagram showing an example of the production method of the present invention.
  • carbonization reactor 3 is continuously fed with carbon monoxide 1, methanol 2, and water as needed, and the liquid content in reactor 3 is automatically maintained at a constant level. Is done.
  • Carbon monoxide 1 Is preferably introduced directly under the stirrer provided in the reactor 3.
  • Gaseous purge stream 4 is discharged from the reactor to prevent the accumulation of gaseous by-products and maintain the set carbon monoxide partial pressure at a constant total reactor pressure.
  • the reactor temperature is automatically controlled.
  • Liquid product (reaction solution) 5 is removed from reactor 3 at a rate sufficient to maintain a constant liquid level and introduced into the middle of the top and bottom of evaporator (flasher) 6 for evaporation.
  • Low-boiling component Acetic acid separation Distillate 9 from the distillation column (overhead) 10 (mainly containing a little water and acetic acid in addition to methyl iodide and methyl acetate) is the carbonyl impurity removal step 11 [Step (D)]. After that, it is returned to the reactor 3 through the line (reactor recycling line) 12 [process (E)].
  • Low-boiling components High-boiling components 13 removed from the side (or bottom) of the acetic acid separation distillation column 9 are introduced from the side of the acetic acid distillation column 14 and subjected to distillation. Crude acetic acid 15 is removed from the side [Step (F)].
  • Water and other low-boiling components 16 are discharged from the top of the acetic acid distillation column 14, and components 17 having a higher boiling point than acetic acid are discharged from the bottom. Low boiling point components 16 are recycled to reactor 3. It is also possible to provide a distillation column for distilling water before the acetic acid distillation column 14 and supply the bottom stream to the acetic acid distillation column 14. Crude acetic acid 15 is further supplied to a treatment tank 18 filled with silver or mercury exchange cation exchange resin [Step (G)]. Here, alkyl iodides such as hexyl iodide contained in trace amounts in acetic acid are efficiently separated and removed, and high-quality acetic acid (product) 19 is obtained.
  • distillate (or overhead) of low boiling component monoacetic acid separation distillation column 9 10 carbonyl impurities including acetoaldehyde (acetoaldehyde, crotonanolide, butyraldehyde, etc.) 20 are removed. Is done.
  • the removal of the carbonyl impurity can be performed, for example, by the method described in Japanese Patent No. 3244385.
  • distillate 10 in the low boiling component acetic acid separation distillation column 9 is separated, Is obtained by subjecting the upper layer and z or lower layer, or a carbonyl impurity concentrate thereof (hereinafter, simply referred to as “process solution”) to distillation, extraction or a combination thereof, extractive distillation, etc.
  • process solution a carbonyl impurity concentrate thereof
  • the carbonyl impurity can be removed.
  • the remaining components (all or a part) from which the carbonyl impurities have been removed contain useful components such as methyl iodide and methyl acetate, and are returned to reactor 3 via line 12.
  • Specific methods for separating carbonyl impurities including acetoaldehyde include a method in which a process liquid containing acetoaldehyde is separated by distillation in a single distillation column, and a low boiling point composed of acetoaldehyde and methyl iodide. First, the components are separated from the other components by distillation, and then methyl iodide and acetoaldehyde are further separated by distillation. Utilizing the property that acetoaldehyde mixes well with water and methyl iodide is difficult to mix with water. And a method using water extraction for separation of methyl iodide and acetoaldehyde.
  • the amount of aldehyde to be removed in the carbonyl impurity removal step 11 is an amount capable of maintaining the acetaldehyde concentration in the reaction solution in the steady continuous reaction at 500 ppm or less (preferably 450 ppm or less, more preferably 400 ppm or less). It is.
  • FIG. 2 is a production flow diagram showing another example of the production method of the present invention.
  • the liquid product (reaction liquid) 5 from the reactor 3 is introduced into the side of the distillation column 9 ′ and subjected to distillation [step (A) and step (B)].
  • the distillate (overhead) 10 ' (mainly methyl iodide and acetic acid methanol and water contains a small amount of acetic acid) is added to the carbonyl impurity removal step 11 [Step (D)]. After that, it is returned to the reactor 3 through the line 12 [Step (E)].
  • the carbonyl impurity removal step 11 is performed in the same manner as in FIG.
  • the catalyst solution is withdrawn as a bottom stream 7 (mainly acetic acid containing rhodium catalyst and iodide salt together with a small amount of methyl acetate, methyl iodide and water) into reactor 3. Returned [Step (C)].
  • the high boiling point component 13 ′ taken out from the side of the distillation column 9 ′ is introduced from the side of the acetic acid distillation column 14 and subjected to distillation, and crude acetic acid 15 is taken out from the side near the bottom [Step (F) ].
  • Water and other low-boiling components 16 are discharged from the top of the acetic acid distillation column 14, and components 17 having a higher boiling point than acetic acid are discharged from the bottom. Low boiling point component 16 is recycled to reactor 3.
  • the crude purified acetic acid 15 is further supplied to a treatment tank 18 filled with silver or mercury exchange cation exchange resin [Step (G)], and is contained in a trace amount in acetic acid. But Efficient separation and removal yields high-quality acetic acid 19.
  • the cation exchange resin treatment using the silver or mercury exchange cation exchange resin is a known method, for example, Japanese Patent Publication No. 5-21031, Japanese Patent Application Laid-Open No. 4-282339, Japanese Patent Application Laid-Open No. 5-301839. It can be carried out by the method described in Japanese Patent Publication No. 7-14488 or Japanese Patent Laid-Open No. 9-291059.
  • crude purified acetic acid 15 is preferably used which uses a cation exchange resin in which at least 1% of the active sites are exchanged into silver form or mercury form. When contacting with the cation exchange resin, it is preferable to raise the temperature stepwise.
  • the flow rate of the crude purified acetic acid 15 is preferably 0.5 to 40 bed volumes per hour, and the processing temperature is preferably 17 to 120 ° C.
  • better results can be obtained by contacting with the cation exchange resin at 17 to 35 ° C in the initial stage of operation, and then increasing the temperature stepwise. In this way, the content of alkyl iodide such as hexinoyl iodide in acetic acid can be reduced to 1 wt ppb or less.
  • step (B), (D) and ( F) can be carried out using a total of 3 or fewer distillation columns.
  • step (A) and step (B) can be performed with a single distillation column as shown in FIG.
  • step (D) one distillation column may be used to recover the cetaldehyde.
  • high-quality acetic acid can be produced even if the total number of distillation columns is 3 or less.
  • Acetic acid was produced according to the production flow shown in Fig. 1. In units of pressure, G indicates gauge pressure and A indicates absolute pressure.
  • Reactor 3 contains reaction raw materials (methanol 2 and carbon monoxide 1), rhodium catalyst solution 7 (including rhodium catalyst, iodide salt and acetic acid) recycled from the purification system, and low-boiling component 12 (methyl iodide, Continuous supply of methyl acetate and water), reaction pressure 3.0 MPaG, carbon monoxide (CO) partial pressure 1.3 MPaA, hydrogen (H) partial pressure 0.03 MPaA, reaction temperature 188 ° C
  • Acetic acid (purity of acetic acid 99.5% by weight or more) 15 was obtained.
  • the low-boiling component 10 is subjected to an extraction treatment using water, 50 mol% of acetoaldehyde (AD) in the low-boiling component 10 is removed out of the system, and the remaining low-boiling component is removed via the line 12. And recycled to reactor 3.
  • the low boiling point component 16 obtained from the top of the distillation column 14 was also recycled to the reactor 3.
  • the water concentration in the reaction solution was 1.2% by weight, the methyl iodide (Mel) concentration was 14.3% by weight, and the acetonitrile concentration was 400 ppm by weight.
  • the acetic acid production rate (acetic acid STY) is 19.4 mol / L'hr, and the aldehyde formation rate (AD—STY) is 4.3 mmol / L'hr.
  • the acetoaldehyde production rate is the acetic acid production rate.
  • the value divided by degrees (AD / AC) was 1/4500.
  • the concentration of propionic acid (PA) in crude acetic acid 15 was 75 ppm by weight, the concentration of crotonaldehyde (CrD) was 0.2 ppm by weight, and the potassium permanganate test value (permanganate time) was 190 minutes.
  • Reactor 3 contains reaction raw materials (methanol 2 and carbon monoxide 1), rhodium catalyst solution 7 (including rhodium catalyst, iodide salt, acetic acid) and low-boiling components 1 recycled from the purification system. 2 (including methyl iodide, methyl acetate and water) are continuously supplied, reaction pressure 2.7 MPaG, carbon monoxide partial pressure 1.2 MPaA, hydrogen partial pressure 0.031 MPaA, reaction temperature 186 ° C, reaction solution The reaction was carried out under the conditions of a methyl acetate concentration of 5.5 wt%, a rhodium concentration of 650 wt ppm, and a lithium iodide concentration of 9.9 wt%.
  • the reaction liquid 5 was flushed by the evaporator 6, and the high boiling point component (rhodium catalyst solution 7) containing the catalyst component was pressurized with a pump and recycled to the reactor 3.
  • the flash component 8 is supplied to the low boiling component monoacetic acid separation distillation column 9 to be separated into the low boiling point component 10 and the high boiling point component 13, and the high boiling point component 13 is supplied to the distillation column 14 as a side stream near the bottom.
  • Crude acetic acid (acetic acid purity 99.5 wt% or more) 15 was obtained.
  • the low boiling point component 10 is subjected to extraction treatment using water, 30 mol% of the acetoaldehyde in the low boiling point component 10 is removed from the system, and the remaining low boiling point component is reacted via the line 12.
  • the production rate of acetic acid is 11.6 mol / L'hr
  • the production rate of acetoaldehyde is 3.2 mmol / L'hr
  • the value obtained by dividing the production rate of acetoaldehyde by the production rate of acetic acid is 1/3600. there were.
  • the concentration of propionic acid in crude acetic acid 15 was 75 ppm by weight
  • the concentration of crotonaldehyde was 0.2 ppm by weight
  • the concentration of hexyl iodide (Hexl) was 28 ppb
  • the test value for potassium permanganate was 190 minutes.
  • Example 3 Reactor 3 contains reaction raw materials (methanol 2 and carbon monoxide 1), rhodium catalyst solution 7 (including rhodium catalyst, iodide salt and acetic acid) recycled from the purification system, and low-boiling component 12 (methyl iodide, (Including methyl acetate and water), reaction pressure 3.5 MPaG, carbon monoxide partial pressure 1.8 MPaA, hydrogen partial pressure 0.03 MPaA, reaction temperature 188 ° C, methyl acetate concentration in the reaction solution 5 The reaction was carried out under the conditions of 3 wt%, rhodium concentration 800 wtppm, and lithium iodide concentration 10.9 wt%.
  • the reaction solution 5 was flushed by the evaporator 6, and the high boiling point component (rhodium catalyst solution 7) containing the catalyst component was pressurized with a pump and recycled to the reactor 3.
  • Flush component 8 is supplied to low-boiling component acetic acid separation distillation column 9 and separated into low-boiling component 10 and high-boiling component 13, and high-boiling component 13 is supplied to distillation column 14 to make a rough sidestream near the bottom.
  • Acetic acid (purity of acetic acid 99.5% by weight or more) 15 was obtained.
  • the low-boiling point component 10 is subjected to an extraction treatment using water, 25 mol% of the acetoaldehyde in the low-boiling point component 10 is removed from the system, and the remaining low-boiling point component is removed via the line 12 to the reactor. Recycled to 3.
  • the low boiling point component 16 obtained from the top of the distillation column 14 was also recycled to the reactor 3.
  • the water concentration in the reaction solution was 1.7% by weight, the methyl iodide concentration was 14% by weight, and the acetonitrile concentration was 400 ppm by weight.
  • the acetic acid production rate is 23.5 mol / L'hr, and the acetoaldehyde production rate is 2.3 mmol / L'hr.
  • the value obtained by dividing the cetaldehyde production rate by the acetic acid production rate is 1/1000 0 Met.
  • the propionic acid concentration was 65 ppm by weight
  • the crotonaldehyde concentration was 0.3 ppm by weight
  • the potassium permanganate test value was 190 minutes.
  • Reactor 3 contains reaction raw materials (methanol 2 and carbon monoxide 1), rhodium catalyst solution 7 (including rhodium catalyst, iodide salt and acetic acid) recycled from the purification system, and low-boiling component 12 (methyl iodide, (Including methyl acetate and water), reaction pressure 2.8 MPaG, carbon monoxide partial pressure 0.97 MPaA, hydrogen partial pressure 0.14 MPaA, reaction temperature 187 ° C, methyl acetate concentration in the reaction solution 1
  • the reaction was conducted under the conditions of 6 wt%, rhodium concentration 650 wtppm, and lithium iodide concentration 5.0 wt%.
  • the reaction solution 5 was flushed by the evaporator 6, and the high boiling point component (rhodium catalyst solution 7) containing the catalyst component was pressurized with a pump and recycled to the reactor 3.
  • the flash component 8 is supplied to the low boiling component acetic acid separation distillation column 9 to be separated into the low boiling point component 10 and the high boiling point component 13, and the high boiling point component 13 is supplied to the distillation column 14 to be roughened as a side stream near the bottom.
  • Acetic acid (acetic acid purity 99.5 wt% or more) 15 was obtained.
  • the low boiling point component 10 is subjected to extraction treatment with water, 66 mol% of the acetoaldehyde in the low boiling point component 10 is removed out of the system, and the remaining low boiling point component is reacted via the line 12. Recycled to vessel 3.
  • the low boiling point component 16 obtained from the top of the distillation column 14 was also recycled to the reactor 3.
  • the water concentration in the reaction solution was 8.0% by weight, the methyl iodide concentration was 13.0% by weight, and the acetonitrile concentration was 300 ppm by weight.
  • the production rate of acetic acid was 11.7 mol / L'hr, the production rate of acetoaldehyde was 10 mmol / L • hr, and the value obtained by dividing the production rate of acetoaldehyde by the production rate of acetic acid was 1Z1200.
  • the concentration of propionic acid in crude acetic acid 15 was 350 ppm by weight, the concentration of crotonaldehyde was 1.0 ppm by weight, the concentration of hexyl iodide was 30 ppb, and the test value of potassium permanganate was 140 minutes.
  • reaction raw material methanol 2 and carbon monoxide 1
  • purification system Recycled from reaction raw material (methanol 2 and carbon monoxide 1) and purification system to reactor 3
  • rhodium catalyst solution 7 including rhodium catalyst, iodide salt, acetic acid
  • low-boiling components 1 2 including methyl iodide, methyl acetate, water
  • reaction pressure 2.8 MPaG
  • hydrogen partial pressure 0.175 MPaA reaction temperature 188 ° C
  • methyl acetate concentration in the reaction solution 1.3 wt%, rhodium concentration 660 wtppm, lithium iodide concentration 22.9 wt%
  • the reaction was carried out.
  • the reaction solution 5 was flushed by the evaporator 6, and the high boiling point component (rhodium catalyst solution 7) containing the catalyst component was pressurized with a pump and recycled to the reactor 3.
  • the flash component 8 is supplied to the low boiling component monoacetic acid separation distillation column 9 to be separated into the low boiling point component 10 and the high boiling point component 13, and the high boiling point component 13 is supplied to the distillation column 14 as a side stream near the bottom. Crude acetic acid (acetic acid purity 99.5 wt% or more) 15 was obtained.
  • the low boiling point component 10 was recycled to reactor 3 via line 12 (without removing the acetonitrile).
  • Low boiling point component 16 obtained from the top of distillation column 14 was also recycled to reactor 3.
  • the water concentration in the reaction solution was 4.0% by weight, the methyl iodide concentration was 14.5% by weight, and the acetonitrile concentration was 980 direct weight ppm.
  • the acetic acid production rate was 25.5 mol / L'hr
  • the cetaldehyde production rate was 35 mmol / Lhr
  • the value obtained by dividing the cetaldehyde production rate by the acetic acid production rate was 1/600.
  • the propionic acid concentration was 1800 ppm by weight
  • the crotonaldehyde concentration was 4.9 ppm by weight
  • the hexyl iodide concentration was 720 ppm by weight.
  • CH—STY is the rate of methane formation (unit: mmol / L'hr)
  • AD concentration a means the concentration of acetaldehyde in the reaction liquid when the low-boiling component 10 is recycled to the reactor 3 without removing the acetonitrile from the low boiling point component 10.
  • b means the concentration of acetoaldehyde in the reaction liquid when the residue obtained by removing a predetermined amount of acetoaldehyde from the low boiling point component 10 is recycled to the reactor 3.
  • crude acetic acid a means crude acetic acid when it is recycled to the reactor 3 without removing acetonitrile from the low-boiling component 10, and “crude acetic acid b” is derived from the low-boiling component 10. It means crude acetic acid when the residue after removing a predetermined amount of aldehyde is recycled to reactor 3.
  • Hexl * 2 GC-MS analysis value As shown in the column of crude acetic acid a in Table 2, when low-boiling components were recycled to the reactor without removing acetoaldehyde, Examples:! To 3 The ratio of the rate of formation of acetoaldehyde and the rate of formation of acetic acid is very small, 1/1500 or less, so that the by-product of successive reaction products of acetoaldehyde is remarkably suppressed, and propionic acid in crude acetic acid a Concentration and crotonaldehyde concentration are remarkably reduced to about 1/2 to 1Z10 as compared with Comparative Examples 1 and 2.
  • the amount of by-products produced can be reduced without reducing the reaction rate, and high-quality acetic acid can be produced efficiently.
  • Power S can be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 酢酸の製造方法は、ロジウム触媒、ヨウ化物塩、ヨウ化メチル、酢酸メチル及び水の存在下、連続的にメタノールと一酸化炭素とを反応させ、反応液中のアセトアルデヒド濃度を500ppm以下に保ちつつ、酢酸を11mol/L・hr以上の生成速度で製造する方法であって、反応器気相部の一酸化炭素分圧が1.05MPa以上の条件、又は反応液中の酢酸メチル濃度が2重量%以上の条件で反応を行い、アセトアルデヒドの生成速度を酢酸の生成速度の1/1500以下に維持することを特徴とする。

Description

明 細 書
酢酸の製造方法
技術分野
[0001] 本発明は、ロジウム触媒の存在下でメタノールと一酸化炭素とを反応させて酢酸を 製造する方法に関する。
背景技術
[0002] 酢酸の最も優れた工業的製造法として、水の存在下、ロジウム触媒とヨウ化メチルを 用いて、メタノールと一酸化炭素とを連続的に反応させて酢酸を製造する方法が知ら れている(特許文献 1参照)。しかし、当初の方法では、反応液中の水分含量が高か つたため、精製工程において水を除去するのに多大のエネルギーを必要としていた 。反応液中の水分濃度を低くすると、ロジウム触媒が不活性化し酢酸の生産性が低 下するという問題があった。
[0003] そこで、ロジウム触媒を不活性化させることなく反応液中の水分濃度を低下する方 法が検討され、ヨウ化物塩等の触媒安定化剤を反応系内に添加する方法が提案さ れた (特許文献 2、 3参照)。この改良法によれば、ロジウム触媒が安定化するとともに 、二酸化炭素やプロピオン酸等の副生物が減少するという利点がある。しかし、その 一方で、ァセトアルデヒドやァセトアルデヒドのアルドール縮合等による逐次反応生成 物(クロトンアルデヒド、 2 _ェチルクロトンアルデヒド等)などのカルボ二ル基を有する 還元性不純物の副生量が増大して酢酸の品質が悪化するという問題が生じた。また 、酢酸とエチレンから酢酸ビュルを製造する際に用いるパラジウム触媒を劣化させる ヨウ化へキシル等のヨウ化アルキルの副生量も増加する。前記ヨウ化へキシルはァセ トアルデヒド由来の生成物である。
[0004] 特許第 3244385号公報には、ロジウム触媒、ヨウ化物塩およびヨウ化メチルの存 在下、連続的にメタノールと一酸化炭素を反応させて酢酸を製造する方法において 、反応液中のァセトアルデヒド濃度を 400ppm以下に保って反応を行うことを特徴と する高純度酢酸の製造方法が開示されている。そして、この文献には、反応器に循 環するプロセス液からァセトアルデヒドを除去することにより、反応液中のァセトアル デヒド濃度を 400ppm以下に保つ方法が具体的に記載されている。しかし、アルデヒ ドの生成抑制につレ、ては詳細に記載されてレ、なレ、。
[0005] 一方、特表 2003— 508363号公報には、ロジウム触媒の存在下でメタノールと一 酸化炭素とを反応させて酢酸を製造する方法において、低い水濃度下、水素分圧を 0.:!〜 4psia (0. 7-27. 6kPa)の範囲に設定することで、不純物を低減する技術が 開示されている。しかし、水素分圧を極端に低くすると、一般に十分な酢酸製造の触 媒活性が得られにくくなる。特公平 8— 5839号公報には、 40psi (276kPa)以下の 低水素分圧下では酢酸生成速度が低下することが示されている。また、水素分圧を 極めて低い値にするには、水素混入量の極めて少ない高純度の一酸化炭素が必要 となるため、一酸化炭素精製設備の増強、一酸化炭素製造コストの上昇などの問題 が生じる。さらに、我々はこの方法においても反応系のァセトアルデヒド濃度、及び他 の副生物の生成量を必ずしも十分に低減できないことを確認した。
[0006] 国際公開第 2004/60846号パンフレットには、水分 2重量%以下且つロジウム濃 度 lOOOppm以上で酢酸生成速度(STY) 15mol/L'hr以上をもたらす酢酸製造 プロセスが開示されている。この文献によると、反応系の水分が 5重量%以下では、 水性ガスシフト反応(CO + H〇→CO +H )よりもメタン生成反応(CH OH + H→
CH +H〇)が優先するため、系内に水が生成、蓄積する。これを回避するため、上 記プロセスでは、化学的水分調整法として、酢酸メチルを反応系に添加している。添 カロされた酢酸メチルは系内の水と接触して加水分解され酢酸とメタノールを生成し、 このメタノールは酢酸合成の原料として利用されている。しかし、系内のロジウム濃度 を高めることは、酢酸の生成速度だけでなく副生ァセトアルデヒドの生成速度も増加 させてしまう欠点がある。酢酸及びァセトアルデヒドの増加はロジウム濃度の増加比 率に比例して起こる。すなわち、酢酸とほぼ同じ比率でァセトアルデヒドの生成が増 加する。そして、低水分下では、水性ガスシフト反応速度が遅くなり水素分圧が低下 する。低水素分圧下では、ァセトアルデヒドの水素添加反応(CH CHO + H→CH
CH OH等)の速度が遅くなり反応液中のァセトアルデヒド濃度が高くなり、ァセトアル デヒドの縮合反応速度が速くなる。その結果として、ァセトアルデヒドの逐次反応によ るクロトンアルデヒド、 2—ェチルクロトンアルデヒドなどの還元性物質の生成量が増 加し、製品酢酸の過マンガン酸カリウム試験値を悪化させることを検討の結果我々は 確認した。逆に、ある程度高い水素分圧、例えば上記パンフレットの実施例に記載さ れているような水素分圧:!:!〜 14psi (75. 8〜96. 5kPa)に設定すると、メタン副生 時に生成する水の除去を行わなければならず、水の除去のための余分なエネルギ 一や水の除去剤が必要となり、生産効率が悪い。また、この時、還元性物質であり過 マンガン酸カリウム試験値を低下させるギ酸の副生量が増加するので好ましくない。
[0007] Applied Homogeneous Catalysis with Organometalhc Compounds (2na Edition) (20 02), Volume 1, 104-136 (Celanese)には、低水分酢酸合成技術に関し、ヨウ化リチウ ムの添加によりロジウム錯体の安定性が向上すること、低水分領域では酢酸メチル濃 度増加によりカルボニル化反応速度が顕著に増加すること、及びヨウ化物塩により力 ルポニル化反応速度が向上することが記載されている。しかし、ァセトアルデヒド抑制 に関しては記載がない。また、我々はロジウム錯体の安定性を向上させるために行う ヨウ化リチウムの添加は、酢酸生成速度を増加させるものの、それ以上にァセトアル デヒド生成速度を増加させるという欠点があることを見出した。
[0008] 特開平 6— 40999号公報には、約 10重量%までの水分、少なくとも 2重量%の濃 度の酢酸メチルを保持させて反応して得られる反応液を蒸留する酢酸の製造法が開 示されている。この文献には、酢酸メチル濃度が増加すると、プロピオン酸の副生が 減少し、酢酸メチル 2重量%の時に反応液中のプロピオン酸濃度が 500ppm未満に なると記載されている。しかし、上述のように、低水分による低水素分圧下では、ァセ トアルデヒドの水素添加反応の速度が遅くなつて、エタノールのカルボニル化による プロピオン酸の生成量は減少する力 反応液中のァセトアルデヒド濃度が高くなり、 ァセトアルデヒドの縮合反応速度が速くなる。その結果、ァセトアルデヒドの縮合反応 物の増大により酢酸の品質が悪化する。省資源、省エネルギーの効率のよい酢酸製 造プロセスにするためには、ァセトアルデヒドとァセトアルデヒドの逐次反応生成物( 縮合反応生成物、プロピオン酸、ヨウ化へキシル等)の両方の副生を効果的に抑制 する必要がある。
[0009] 国際公開第 2002/62740号パンフレットには、 2本までの蒸留塔を用いる省エネ ルギープロセスにおいて、製品流が低レベルのプロピオン酸不純物を持ち、製品流 中のアルデヒド不純物のレベルが、(i)反応器内の全圧が約 15〜40atm (l . 5〜4 MPa)において水素分圧を約 6psia (41. 3kPa)より少なく維持する、或いは、(ii)反 応液中ヨウ化メチル濃度を約 5重量%より少なく維持する、或いは、 (iii)アルデヒド不 純物を除去することによって制御されるプロセスが開示されている。しかし、水素分圧 を低下させることは、上述のように、ァセトアルデヒドの縮合反応を含むァセトアルデヒ ドの逐次反応の生成物の副生が増大し、酢酸品質を悪化させる。ヨウ化メチル濃度 の低下は、該パンフレットの実施例(表 3)が示すように、ァセトアルデヒドだけでなく酢 酸の生成速度を低下させるという欠点がある。すなわち、酢酸の生成効率を低下させ るものであり、工業的、経済的に好ましくない。
[0010] 特許文献 1 :特公昭 47— 3334号公報
特許文献 2:特開昭 60— 54334号公報
特許文献 3:特開昭 60— 239434号公報
特許文献 4:特許第 3244385号公報
特許文献 5 :特表 2003— 508363号公報
特許文献 6:特公平 8— 5839号公報
特許文献 7:国際公開第 2004/60846号パンフレット
特許文献 8:特開平 6— 40999号公報
特許文献 9:国際公開第 2002Z62740号パンフレット
特許乂 l¾ : Applied Homogeneousし atalysis with Organometallic Compounds (2n d Edition) (2002), Volume 1, 104-136 (Celanese)
発明の開示
発明が解決しょうとする課題
[0011] 従って、本発明の目的は、反応系の水濃度が低く水素分圧が低くても、反応速度 を低下させることなく副生成物の生成量を低減でき、高品質の酢酸を効率よく製造す る方法を提供することにある。
本発明の他の目的は、酢酸の生産性を高め、且つァセトアルデヒド及びァセトアル デヒドの逐次反応生成物の副生を抑制し、シンプルで効率のょレ、酢酸製造プロセス を提供することにある。 課題を解決するための手段
[0012] 本発明者は、ロジウム触媒の存在下でメタノールをカルボ二ルイ匕して酢酸を製造す る方法について種々検討した結果、以下のような知見を得た。すなわち、反応系の 水濃度が低ぐ水素分圧が低くなると、活性な Rh[I]錯体の濃度が低くなり、特に水 素分圧 4psi (27. 6kPa)未満にすると顕著に酢酸生成速度が低下することが分かつ た。また、水素分圧を 4psi (27. 6kPa)未満にするには、水素混入量 0. 01mol%未 満の純度の高い一酸化炭素(CO)原料が必要であるため、 CO精製設備及び CO製 造コストが高くなる。ロジウム濃度を高めることは、酢酸だけでなく副生ァセトアルデヒ ドの生成速度も比例して増加させる。低水素分圧下でのさらに大きな問題は、ァセト アルデヒドの逐次反応のうちァセトアルデヒドの縮合反応速度が増大して、クロトンァ ノレデヒド、 2 _ェチルクロトンアルデヒドなどの還元性物質の生成量が多くなり、過マ ンガン酸カリウム試験値を低下させ、酢酸の品質を悪化させることである。酢酸の品 質を維持向上させるためには、ァセトアルデヒド類の化学的処理及び/又は分離に よる除去が必要となる。メタンの生成速度が二酸化炭素の生成速度よりも速くなるよう なある程度高い水素分圧を設定すると、メタン副生時に発生する水の除去を行わな ければならず、余分なエネルギーや水の除去剤の添カ卩が必要となり、生産効率が悪 く、酢酸製造コストが増加する。また、この時、還元性物質であり、過マンガン酸力リウ ム試験値を低下させるギ酸の副生量も増加するので好ましくない。
[0013] 省資源 ·省エネルギーを達成する効率のよい酢酸製造プロセスにするためには、ァ セトアルデヒド及びァセトアルデヒドの逐次反応生成物(プロピオン酸;ヨウ化へキシ ル;クロトンアルデヒド等のァセトアルデヒドの縮合反応生成物;該縮合反応生成物の 逐次反応生成物など)の副生を積極的に抑制する必要がある。ァセトアルデヒドの逐 次反応生成物の生成を積極的に抑制するには、ァセトアルデヒドを化学的に処理し て濃度を低下させる方法もあるが、ァセトアルデヒドを系外に除去することが効果的で ある。しかし、より望ましいのは、反応においてァセトアルデヒドの生成を抑制すること である。ヨウ化メチル濃度を低下させてァセトアルデヒドの生成を低減する方法は、ァ セトアルデヒドだけでなく酢酸の生成速度も低下させ、酢酸の生産効率を低下させる ことになるので、工業的、経済的に好ましくない。 [0014] そこで、本発明者は、主反応生成物である酢酸、主な副反応生成物であるァセトァ ルデヒド、水素 (及び二酸化炭素)、メタンの生成に関して反応速度を詳細に解析し た。その結果、下記表 1に示すように、反応に関わる因子 [反応温度、反応器気相部 の CO分圧及び水素分圧、反応液中のヨウ化メチル濃度、酢酸メチル濃度、水濃度、 ロジウム濃度及びヨウ化リチウム濃度(ヨウ化物塩) ]のうち、反応器気相部の CO分圧 と反応液中の酢酸メチル濃度のみが、副反応を抑制しながら主反応を促進する効果 があることを見出した。なお、表 1において、 +が多いほど生成に大きく寄与すること を意味し、 が多いほど生成を抑制する働きが強レ、ことを意味する。
[0015] [表 1] 表 1
Figure imgf000007_0001
[0016] 表 1をより詳しく説明すると、反応温度の増加は、酢酸の生成速度を増加させるが、 その増加割合よりも大きくァセトアルデヒドの生成速度を増加させる。水素分圧の増 カロは、酢酸の生成速度をやや増加させるが、その増加割合よりも大きくァセトアルデ ヒドの生成速度を増加させる。ヨウ化メチル濃度の増加は、酢酸の生成速度を増加さ せるが、その増加割合と同程度以上大きくァセトアルデヒドの生成速度を増加させる 。水濃度の増加は、酢酸の生成速度をやや増加させるが、その増加割合と同程度ァ セトアルデヒドの生成速度を増加させる。ロジウム濃度の増加は、酢酸の生成速度を 増加させるが、その増加割合と同程度ァセトアルデヒドの生成速度を増加させる。口 ジゥム濃度の増加はこれら生成物の生成速度に著しく影響するため、注意を要する。 ヨウ化リチウム濃度の増加は、酢酸の生成速度を増加させるが、その増加割合と同程 度以上大きくァセトアルデヒドの生成速度を増加させる。ヨウ化リチウム濃度の増加は ロジウム錯体触媒を安定化させ、且つ生成速度も増加させるが、副反応も増大させる ので注意を要する。副反応を抑制しながら主反応を促進する効果のあるものは、 CO 分圧と酢酸メチル濃度だけである。そして、水素分圧によらず、 co分圧及び Z又は 酢酸メチル濃度を高めることによりァセトアルデヒドの副生を抑制しながら、酢酸の生 成速度を向上できることが明らかとなった。 c〇分圧又は酢酸メチル濃度を高めるとァ セトアルデヒドの生成速度が低下することはこれまで知られていない。
[0017] これらの関係に基づいて、より好ましい反応条件を設定することにより、ァセトアル デヒドの逐次反応生成物(アルデヒド類、アルコール類、ヨウ化アルキル類、カルボン 酸類、カルボン酸エステル類)や、さらにその逐次反応生成物(アルデヒド類、アルコ ール類、ヨウ化アルキル類、カルボン酸類、カルボン酸エステル類)の生成を抑制し ながら、酢酸の生産性の向上を達成でき、その結果、上記不純物の分離精製のため の設備及びエネルギーが不要となり、低コストで高純度酢酸が製造できることになる。 本発明は、これらの知見及び考察に基づいて完成されたものである。
[0018] すなわち、本発明は、ロジウム触媒、ヨウ化物塩、ョウイヒメチル、酢酸メチル及び水 の存在下、連続的にメタノールと一酸化炭素とを反応させ、反応液中のァセトアルデ ヒド濃度を 500ppm以下に保ちつつ、酢酸を l lmol/L'hr以上の生成速度で製造 する方法であって、反応器気相部の一酸化炭素分圧が 1. 05MPa以上の条件、又 は反応液中の酢酸メチル濃度が 2重量%以上の条件で反応を行い、ァセトアルデヒ ドの生成速度を酢酸の生成速度の 1/1500以下に維持することを特徴とする酢酸 の製造方法を提供する。
[0019] この製造方法において、反応器気相部の水素分圧は lOOkPa以下であるのが好ま しぐ 70kPa以下であるのがより好ましい。また、反応器気相部の水素分圧が 70kPa 以下で且つ反応液中の酢酸メチル濃度が 3. 1重量%以上の条件で反応を行うのが 好ましレ、。さらに、反応液中の水濃度はより好ましくは 3重量%以下である。
[0020] この製造方法の好ましい態様では、酢酸を 15molZL'hr以上の生成速度で製造 する。また、他の好ましい態様では、ァセトアルデヒドの生成速度を酢酸の生成速度 の 1/2500以下に維持しつつ酢酸を製造する。
[0021] 本発明では、精製工程として、反応液から酢酸を分離回収する工程、酢酸を回収し た残りの成分を反応器にリサイクルする工程、及び反応器にリサイクルするプロセス 液からカルボニル不純物を分離除去する工程を有していてもよい。
[0022] 好ましい態様では、精製工程として、反応液を、蒸留により、酢酸、水、酢酸メチル 及びヨウ化メチルを含む揮発性成分と、ロジウム触媒及びヨウ化物塩を含む低揮発 性成分とに分離する触媒分離工程 (A)、前記揮発性成分を、蒸留により、酢酸を含 む高沸点成分と、水、酢酸メチル及びヨウ化メチルを含む低沸点成分とに分離する 低沸点成分分離工程 (B)、前記低揮発性成分を反応器にリサイクルする触媒リサィ クルエ程(C)、工程 (B)で得られた低沸点成分からカルボニル不純物を分離除去す るカルボニル不純物除去工程(D)、工程(D)におレ、てカルボニル不純物を除去した 残成分を反応器にリサイクルする低沸点成分リサイクル工程 (E)、工程 (B)で得られ た高沸点成分から蒸留により酢酸を分離する酢酸分離工程 (F)、工程 (F)で得られ た酢酸を、銀又は水銀交換陽イオン交換樹脂で処理する陽イオン交換樹脂処理工 程 (G)を有する。前記工程 (B)、工程 (D)及び工程 (F)を合計 3本以下の蒸留塔を 用いて行ってもよい。
発明の効果
[0023] 本発明によれば、反応系の水濃度が低く水素分圧が低くても、反応速度を低下さ せことなく副生成物の生成を低減できる。したがって、高品質の酢酸を効率よく製造 できる。さらに、酢酸の生産性が高ぐ且つァセトアルデヒド及びァセトアルデヒドの逐 次反応生成物の生成が抑制され、シンプルな工程及び設備で効率よく酢酸を製造 すること力 Sできる。
図面の簡単な説明
[0024] [図 1]本発明の製造方法の一例を示す製造フロー図である。
[図 2]本発明の製造方法の他の例を示す製造フロー図である。
符号の説明
[0025] 1 一酸化炭素
2 メタノーノレ
3 B L^
4 ガス状パージ流 5 液体生成物(反応液)
6 蒸発器
7 底部流
8 オーバーヘッド
9 低沸成分一酢酸分離蒸留塔
10 留出液(又はオーバーヘッド)
11 カルボニル不純物除去工程
12 ライン (リサイクルライン)
13 高沸点成分
14 酢酸蒸留塔
15 粗酢酸
16 低沸点成分
17 酢酸より高沸点の成分
18 陽イオン交換樹脂処理槽
19 酢酸 (製品)
20 カルボニル不純物
9' 蒸留塔
10' 留出液
13' 高沸点成分
発明を実施するための最良の形態
本発明では、ロジウム触媒を用いてメタノールと一酸化炭素とを連続的に反応させ て酢酸を製造する。ロジウム触媒は反応液中で通常ロジウム錯体として存在する。従 つて、ロジウム触媒としては、反応条件下で反応液に溶解するロジウム錯体又は該ロ ジゥム錯体を生成可能なものであればどのようなものであってもよい。具体的には、口 ジゥム触媒として、 Rhl、 [Rh (CO) I ]—等のロジウムヨウ素錯体、ロジウムカルボニル 錯体などが好ましく用いられる。ロジウム触媒の使用量は、反応液中の濃度で、例え ば 200〜3000ppm、好ましくは 300〜1000ppm、さらに好ましくは 400〜900ppm 程度である。ロジウム触媒は、通常、反応で用いたロジウム触媒をリサイクルして用い る。
[0027] 本発明において、ヨウ化物塩は、特に低水分下でのロジウム触媒の安定化と酢酸 生成反応促進等のために用いられる。このヨウ化物塩は、反応液中で、ヨウ化物ィォ ンを生成するものであればいかなるものであってもよぐ例えば、 Lil、 Nal、 KI、 Rbl、 Csl等のアルカリ金属ヨウ化物塩; Bel、 Mgl、 Cal等のアルカリ土類金属ヨウ化物 塩; BI、 All等のアルミニウム族金属ヨウ化物塩などが例示される。また、ヨウ化物塩 は、上記金属ヨウ化物塩以外に、有機物ヨウ化物塩でもよぐ例えば、第四級ホスホ ニゥムヨウ化物塩(例えば、トリブチルホスフィン、トリフエニルホスフィンなどのホスフィ ン類のヨウ化メチル付加物又はヨウ化水素付加物等)、第四級アンモニゥムヨウ化物 塩 (例えば、第三級ァミン、ピリジン類、イミダゾール類、イミド類等の含窒素化合物の ヨウ化メチル付加物又はヨウ化水素付加物等)などが挙げられる。これらの中でも、特 に Lil等のアルカリ金属ヨウ化物塩が好ましい。ヨウ化物塩の使用量としては、反応液 中のヨウ化物イオンとして、例えば 0· 07〜2. 5mol/L、好ましくは 0· 25〜: 1. 5mol /L程度であり、反応液中の濃度としては、 3〜40重量%、好ましくは 4. 5〜30重量 %程度である。ヨウ化物塩は、通常、反応で用いたヨウ化物塩をリサイクルして用いる
[0028] 本発明において、ヨウ化メチルは触媒促進剤として使用される。ヨウ化メチルの反応 液中の濃度は、例えば 5〜20重量%、好ましくは 11〜: 16重量%程度である。ヨウィ匕 メチノレは、通常、反応で用いたヨウ化メチルをリサイクルして用いる。
[0029] 本発明における反応液中の水分濃度は、通常 15重量%以下(例えば 0. 1〜: 15重 量%)、好ましくは 10重量%以下(例えば 0. 3〜: 10重量%)、さらに好ましくは 5重量 %以下(例えば 0. 5〜5重量%)であり、特に 3重量%以下(例えば 0. 7〜3重量%) であるのが好ましい。水分濃度が高すぎると、精製系で水を分離する際のエネルギ 一負荷が増大するとともに大きな精製設備が必要となる。なお、水分濃度が低いと、 水性ガスシフト反応速度が遅くなり水素分圧が低下し、その結果、一般にァセトアル デヒドの縮合反応生成物の副生が増大して酢酸の製品を悪化させるが、本発明によ れば、 CO分圧を 1. 05MPa以上の条件または反応液中の酢酸メチル濃度を 2重量 %以下の条件で反応を行い、ァセトアルデヒド生成速度を酢酸生成速度の 1/1500 以下に維持し、し力 反応液中のァセトアルデヒド濃度を 500ppm以下に保持するの で、酢酸の生産性を下げることなく酢酸の品質を保持できる。
[0030] 本願発明において、反応液中の酢酸メチル濃度は 2重量%以上であり、好ましくは 3. 1重量%以上、さらに好ましくは 3. 5重量%以上である。但し、反応器気相部の C 〇分圧が 1. 05MPa以上の条件で反応を行う場合はこの限りでなぐ例えば:!〜 2重 量%の範囲であってもよいが、好ましくは 2重量%以上である。反応液中の酢酸メチ ル濃度の上限は、例えば 30重量%、好ましくは 15重量%、さらに好ましくは 10重量 %である。酢酸メチルは原料メタノールが酢酸と反応して生成する。反応液中の酢酸 メチル濃度を高いレベルに保持することにより、酢酸の生成速度を高めつつ、ァセト アルデヒド、水素、メタン等の副生物の副生を抑制できる。酢酸メチルとしては、通常 、反応で使用した或いは反応で生成した酢酸メチルをリサイクルして用いる。
[0031] 反応液中の残りの主成分は、生成物であり且つ反応溶媒でもある酢酸である。本発 明におけるカルボニル化の典型的な反応温度は約 150〜250°Cであり、好ましくは 1 80〜220°C、さらに好ましくは 182〜195°Cである。
[0032] 本発明において、反応器気相部の CO分圧は 1. 05MPa以上であり、好ましくは 1 . lOMPa以上、さらに好ましくは 1. 15MPa以上である。但し、反応液中の酢酸メチ ル濃度が 2重量%以上の条件で反応を行う場合はこの限りでなぐ例えば 0. 8〜: 1. 05MPaの範囲であってもよレ、が、好ましくは 1. 05MPa以上である。 C〇分圧の上限 は、例えば 3MPa、好ましくは 2. 5MPaである。反応器気相部の C〇分圧を高くする と、ロジウム触媒の安定性を向上できるとともに、酢酸の生成速度を高めつつ、ァセト アルデヒド、水素、メタン等の副生を抑制できる。
[0033] 本発明において、反応器気相部の水素分圧は、通常 200kPa以下であるが、好ま しくは lOOkPa以下、さらに好ましくは 70kPa以下である。水素分圧が高いと、メタン 生成反応(CH OH + H→CH +H 0)、ァセトアルデヒド生成反応(CH OH + CO
+ H→CH CHO + H〇)、プロピオン酸生成反応(CH CHO + H→CH CH OH
、 CH CH〇H + HI→CH CH I + H 0、 CH CH I + CO + H 0→CH CH COO
H + HI)が促進されるので、水素分圧を低くすることによりこれらの反応を抑制できる 。なお、水素は主として水性ガスシフト反応(CO + H〇→CO +H )により生成する 。従って、水素分圧は反応液中の水分濃度を下げることにより低下させることができる 。上述したように、水素分圧を低くすると、一般にァセトアルデヒドの縮合反応生成物 の副生が増大して酢酸の製品を悪化させるが、本発明によれば、水素分圧を低くし ても、 C〇分圧を 1. 05MPa以上の条件または反応液中の酢酸メチル濃度を 2重量 %以下の条件で反応を行い、ァセトアルデヒド生成速度を酢酸生成速度の 1/1500 以下に維持し、し力 反応液中のァセトアルデヒド濃度を 500ppm以下に保持するの で、酢酸の生産性を下げることなく酢酸の品質を保持できる。なお、水素分圧の下限 は、例えば 5kPa程度、通常 lOkPa程度である。水素は水性ガスシフト反応により生 成するもののほか、原料一酸化炭素とともに系内に導入される場合がある。
[0034] 反応器の全圧は、前記 CO分圧及び水素分圧と、他の副生ガス等 (メタン、二酸化 炭素、窒素)の分圧と、反応液成分の蒸気圧のため、通常 1. 5〜5MPaの範囲であ る。
[0035] 本発明では、ァセトアルデヒドの生成速度を酢酸の生成速度の 1/1500以下に維 持しつつ、酢酸を 1 lmol/L · hr (好ましくは 15mol/L · hr)とレ、う高生産速度で製 造する。一般に、酢酸を高生産速度で生産するには、反応温度を高くし、ロジウム触 媒、ヨウ化物塩及びヨウ化メチルの濃度を高くする必要があるが、そうするとァセトァ ルデヒドもそれに伴って多く副生する。本発明では、上記のように、 CO分圧を 1. 05 MPa以上の条件または反応液中の酢酸メチル濃度を 2重量%以下の条件で反応を 行うため、ァセトアルデヒド生成速度と酢酸生成速度の比を 1/1500以下に低減で きる。ァセトアルデヒド生成速度と酢酸生成速度の比は、好ましくは 1Z1800以下、さ らに好ましくは 1/2000以下、特に好ましくは 1Z2500以下である。
[0036] さらに、本発明では、反応液中のァセトアルデヒド濃度を 500ppm以下に保ちつつ 反応を行う。反応液中のァセトアルデヒド濃度を 500PPm以下に保持することにより、 ァセトアルデヒドに由来する副生物、例えば、クロトンァノレデヒド、 2_ェチルクロトンァ ルデヒド等の還元性物質、ヨウ化へキシル等のヨウ化アルキル、プロピオン酸等の力 ルボン酸などの副生を顕著に抑制できる。本発明では、 C〇分圧を 1. 05MPa以上 の条件または反応液中の酢酸メチル濃度を 2重量%以下の条件で反応を行うため、 ァセトアルデヒドの生成速度を著しく低減できる。従って、反応液から酢酸を回収した 後の残りの低沸点成分 (水、酢酸メチル、ヨウィ匕メチノレ、ァセトアルデヒドを含む)をそ のまま反応器にリサイクルすることも可能であるが、反応液中のァセトアルデヒド濃度 をできるだけ低く保っため、前記低沸点成分力 ァセトアルデヒドの少なくとも一部を 分離除去した残りの成分を反応器にリサイクルするのが好ましい。反応液中のァセト アルデヒド濃度は、好ましくは 450ppm以下、さらに好ましくは 400ppm以下である。
[0037] 反応液は精製工程に供され、酢酸が分離回収される。この際、原料コストを低減す るため、通常、ロジウム触媒、ヨウ化物塩、ヨウ化メチル、酢酸メチル及び水は反応器 にリサイクルされる。副生したァセトアルデヒド等のカルボニル不純物(特にァセトアル デヒド)は、該カルボニル不純物の逐次反応による種々の副生物の生成を抑制する ため、反応器に循環するプロセス液から除去するのが好ましい。また、酢酸は、ヨウ化 へキシノレ等のヨウ化アルキルを確実に除去するため、活性部位の少なくとも 10/0が銀 系又は水銀系に交換されてレ、る陽イオン交換樹脂と接触させるのが好ましレ、。このよ うな処理を施した酢酸は、金属触媒を被毒しないので、例えば金属触媒を用いて製 造される酢酸ビュル等の酢酸誘導体の原料として好適である。
[0038] 精製工程は、例えば、反応液を、蒸留により、酢酸、水、酢酸メチル及びヨウ化メチ ルを含む揮発性成分と、ロジウム触媒及びヨウ化物塩を含む低揮発性成分とに分離 する触媒分離工程 (A)、前記揮発性成分を、蒸留により、酢酸を含む高沸点成分と 、水、酢酸メチル及びヨウ化メチルを含む低沸点成分とに分離する低沸点成分分離 工程 (B)、前記低揮発性成分を反応器にリサイクルする触媒リサイクル工程 (C)、ェ 程 (B)で得られた低沸点成分からカルボニル不純物を分離除去するカルボニル不 純物除去工程 (D)、工程 (D)においてカルボニル不純物を除去した残成分を反応 器にリサイクルする低沸点成分リサイクル工程 (E)、工程 (B)で得られた高沸点成分 から蒸留により酢酸を分離する酢酸分離工程 (F)、及び工程 (F)で得られた酢酸を、 銀又は水銀交換陽イオン交換樹脂で処理する陽イオン交換樹脂処理工程 (G)で構 成できる。
[0039] 図 1は本発明の製造方法の一例を示す製造フロー図である。この例では、カルボ二 ル化反応器 3に、一酸化炭素 1、メタノール 2、及び必要に応じて水が連続的に供給 され、反応器 3中の液体内容物は自動的に一定レベルに維持される。一酸化炭素 1 は、反応器 3中に備えられている撹拌機のすぐ下に導入するのが好ましい。ガス状パ ージ流 4を反応器力 排出して、ガス状副生成物の蓄積を防止し、一定総反応器圧 における設定一酸化炭素分圧を維持する。反応器温度は自動的に制御される。液 体生成物(反応液) 5は反応器 3から一定の液レベルを維持するために十分な速度 で取り出されて、蒸発器 (フラッシャー) 6の頂部と底部との中間部に導入され、蒸発 に付される [工程 (A) ]。蒸発器 6では、触媒溶液が底部流 7 (主として、ロジウム触媒 とヨウィ匕物塩とを、少量の酢酸メチル、ヨウ化メチル及び水とともに含む酢酸)として取 り出され、反応器 3に戻される [工程(C) ]。蒸発器 6のオーバーヘッド 8は、主として 生成物である酢酸を、ヨウ化メチル、酢酸メチル及び水とともに含む。このオーバーへ ッド 8は低沸成分 酢酸分離蒸留塔 (低沸成分 酢酸スプリツターカラム) 9の底部、 底部近ぐ又は側部に導入され、蒸留に付される [工程 (B) ]。低沸成分 酢酸分離 蒸留塔 9の留出液(オーバーヘッド) 10 (主としてヨウ化メチルと酢酸メチルのほかに 若干の水と酢酸とを含む)は、カルボニル不純物除去工程 11 [工程 (D) ]を経た後、 ライン (反応器リサイクルライン) 12を介して反応器 3に戻される [工程 (E) ]。低沸成 分 酢酸分離蒸留塔 9の底部近くの側部(又は底部)から取り出される高沸点成分 1 3は、酢酸蒸留塔 14の側部から導入されて蒸留に付され、底部又は底部近くの側部 から粗酢酸 15が取り出される [工程 (F) ]。酢酸蒸留塔 14の頂部からは水その他の 低沸点成分 16が、底部からは酢酸より高沸点の成分 17が排出される。低沸点成分 1 6は反応器 3にリサイクルされる。なお、酢酸蒸留塔 14の前に水を留去するための蒸 留塔を設け、その底部流を酢酸蒸留塔 14に供給することもできる。粗酢酸 15は、さら に銀又は水銀交換陽イオン交換樹脂を充填した処理槽 18に供される [工程 (G) ]。 ここで酢酸中に微量含まれているヨウ化へキシル等のヨウ化アルキルが効率よく分離 除去され、高品質の酢酸 (製品) 19が得られる。
前記カルボニル不純物除去工程 11では、低沸成分一酢酸分離蒸留塔 9の留出液 (又はオーバーヘッド) 10力 ァセトアルデヒドを含むカルボニル不純物(ァセトアル デヒド、クロトンァノレデヒド、ブチルアルデヒド等) 20が除去される。カルボニル不純物 の除去は、例えば、特許第 3244385号明細書に記載の方法により行うことができる 。例えば、低沸成分 酢酸分離蒸留塔 9の留出液 10、該留出液 10が分液するとき はその上層及び z又は下層、或いはこれらのカルボニル不純物濃縮液(以下、これ らを単に「プロセス液」と称する場合がある)を、蒸留、抽出或いはこれらの組み合わ せ、抽出蒸留等に付すことにより、カルボニル不純物を除去することができる。カルボ ニル不純物を除去した残りの成分 (全部又は一部)は、ヨウ化メチル、酢酸メチル等 の有用成分を含んでいるため、ライン 12を介して反応器 3に戻される。
[0041] ァセトアルデヒドを含むカルボニル不純物を分離する具体的方法としては、ァセトァ ルデヒドを含むプロセス液を一本の蒸留塔で蒸留分離する方法、ァセトアルデヒドとョ ゥ化メチルからなる沸点の低い成分をまず蒸留で他の成分と分離した後、さらにヨウ 化メチルとァセトアルデヒドを蒸留分離する方法、ァセトアルデヒドが水とよく混じり、ョ ゥ化メチルが水と混じり難いという性質を利用し、ヨウ化メチルとァセトアルデヒドの分 離に水抽出を用いる方法等が挙げられる。
[0042] カルボニル不純物除去工程 11で除去すべきアルデヒドの量は、定常連続反応中 の反応液中のァセトアルデヒド濃度を 500ppm以下(好ましくは 450ppm以下、さら に好ましくは 400ppm以下)に保持できる量である。
[0043] 図 2は本発明の製造方法の他の例を示す製造フロー図である。この例では、反応 器 3からの液体生成物 (反応液) 5は蒸留塔 9'の側部に導入され、蒸留に付される [ 工程 (A)及び工程 (B) ]。蒸留塔 9 'の留出液 (オーバーヘッド) 10' (主としてヨウ化メ チノレと酢酸メチノレと水のほ力に、若干の酢酸を含む)は、カルボニル不純物除去ェ 程 11 [工程 (D) ]を経た後、ライン 12を介して反応器 3に戻される [工程 (E) ]。カルボ ニル不純物除去工程 11は図 1の場合と同様にして行われる。蒸留塔 9'の底部から は、触媒溶液が底部流 7 (主として、ロジウム触媒とヨウ化物塩とを、少量の酢酸メチ ル、ヨウ化メチル及び水とともに含む酢酸)として取り出され、反応器 3に戻される [ェ 程 (C) ]。蒸留塔 9 'の側部から取り出される高沸点成分 13'は、酢酸蒸留塔 14の側 部から導入されて蒸留に付され、底部近くの側部から粗酢酸 15が取り出される [工程 (F) ]。酢酸蒸留塔 14の頂部からは水その他の低沸点成分 16が、底部からは酢酸よ り高沸点の成分 17が排出される。低沸点成分 16は反応器 3にリサイクルされる。粗 精製酢酸 15は、さらに銀又は水銀交換陽イオン交換樹脂を充填した処理槽 18に供 され [工程 (G) ]、酢酸中に微量含まれてレ、るヨウ化へキシノレ等のヨウ化アルキルが 効率よく分離除去され、高品質の酢酸 19が得られる。
[0044] 前記銀又は水銀交換陽イオン交換樹脂を用いた陽イオン交換樹脂処理は、公知 の方法、例えば、特公平 5— 21031号公報、特開平 4一 282339号公報、特開平 5 — 301839号公報、特公平 7— 14488号公報又は特開平 9— 291059号公報に記 載の方法により行うことができる。特に、特開平 9— 291059号公報に記載されている ように、活性部位の少なくとも 1 %が銀形又は水銀形に交換されている陽イオン交換 樹脂を用いるのが好ましぐ粗精製酢酸 15を該陽イオン交換樹脂に接触させる際に は、段階的に温度を上昇させるのが好ましい。この方法において、粗精製酢酸 15の 流速は、毎時 0. 5〜40床容積が好ましぐ処理温度は 17〜120°Cの範囲が好まし レ、。また、運転の初期において 17〜35°Cで前記陽イオン交換樹脂と接触させ、その 後、温度を段階的に上昇させるとより良好な結果が得られる。こうして、酢酸中のヨウ 化へキシノレ等のヨウ化アルキルの含有量を 1重量 ppb以下とすることができる。
[0045] 本発明の製造方法では、反応中で生成するァセトアルデヒドの生成量及びァセトァ ルデヒドの逐次反応生成物の生成量が極めて少ないため、前記工程(B)、工程(D) 及び工程 (F)を合計 3本以下の蒸留塔を用いて行うことができる。例えば、工程 (A) と工程 (B)は図 2に示されるように 1本の蒸留塔により行うことができる。工程 (D)では ァセトアルデヒドを回収するために蒸留塔を 1本使用してもよい。本発明によれば、蒸 留塔の数が合計で 3本以下であっても、高品質の酢酸を製造可能である。
実施例
[0046] 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実 施例により限定されるものではない。なお、酢酸の製造は図 1の製造フローにより行つ た。圧力の単位において、 Gはゲージ圧を、 Aは絶対圧を示す。
[0047] 実施例 1
反応器 3に、反応原料 (メタノール 2及び一酸化炭素 1)、及び精製系からリサイクル するロジウム触媒溶液 7 (ロジウム触媒、ヨウ化物塩、酢酸を含む)及び低沸点成分 1 2 (ヨウ化メチル、酢酸メチル、水を含む)を連続的に供給し、反応圧力 3. 0MPaG、 一酸化炭素(CO)分圧 1. 3MPaA、水素(H )分圧 0. 03MPaA、反応温度 188°C
、反応液中の酢酸メチル (MA)濃度 5. 5重量%、ロジウム (Rh)濃度 800重量 ppm、 ヨウ化リチウム (Lil)濃度 9. 6重量%の条件で反応を行った。反応液 5を蒸発器 6に よりフラッシュさせ、触媒成分を含む高沸点成分 (ロジウム触媒溶液 7)をポンプで昇 圧して反応器 3にリサイクルした。フラッシュ成分 8を低沸成分一酢酸分離蒸留塔 9に 供給して低沸点成分 10と高沸点成分 13とに分離し、高沸点成分 13を蒸留塔 14に 供給し、底部近くの側流として粗酢酸 (酢酸の純度 99. 5重量%以上) 15を得た。低 沸点成分 10を、水を用いた抽出処理に付し、該低沸点成分 10中のァセトアルデヒド (AD)の 50モル%を系外に除去し、残りの低沸点成分をライン 12を介して反応器 3 にリサイクルした。蒸留塔 14の塔頂から得られる低沸点成分 16も反応器 3にリサイク ルした。反応液中の水濃度は 1. 2重量%、ヨウ化メチル (Mel)濃度は 14. 3重量% 、ァセトアルデヒド濃度は 400重量 ppmであった。
酢酸の生成速度(酢酸 STY)は 19· 4mol/L'hr、ァセトアルデヒドの生成速度(A D— STY)は 4. 3mmol/L'hrであり、ァセトアルデヒドの生成速度を酢酸の生成速 度で除した値(AD/AC)は 1/4500であった。粗酢酸 15中のプロピオン酸(PA) 濃度は 75重量 ppm、クロトンアルデヒド(CrD)濃度は 0. 2重量 ppm、過マンガン酸 カリウム試験値 (過マンガン酸時間)は 190分であった。
粗酢酸 15を活性部位に銀を担持させた巨大網状構造を持つ強酸性陽イオン交換 樹脂(ロームアンドハース社製、商品名「アンバーリスト 15」)を充填した充填槽 18 (3 3°C)に毎時 7. 2床容積の流速で供給し、イオン交換樹脂処理を施した。得られた製 品酢酸 19中にヨウ化へキシル(Hexl)は検出されなかった。なお、ヨウ化へキシルの 検出限界は 0. 2重量 ppbである。
なお、低沸点成分 10からァセトアルデヒドを除去することなくそのままそれをライン 1 2を介して反応器 3にリサイクルした以外は上記と同様の操作を行ったところ、反応液 中のァセトアルデヒド濃度は 1050重量 ppm、粗酢酸中のプロピオン酸 (PA)濃度は 180重量 ppm、クロトンアルデヒド(CrD)濃度は 1. 6重量 ppm、過マンガン酸力リウ ム試験値 (過マンガン酸時間)は 40分であった。
実施例 2
反応器 3に、反応原料 (メタノール 2及び一酸化炭素 1)、及び精製系からリサイクル するロジウム触媒溶液 7 (ロジウム触媒、ヨウ化物塩、酢酸を含む)及び低沸点成分 1 2 (ヨウ化メチル、酢酸メチル、水を含む)を連続的に供給し、反応圧力 2. 7MPaG、 一酸化炭素分圧 1. 2MPaA、水素分圧 0. 031MPaA、反応温度 186°C、反応液中 の酢酸メチル濃度 5. 5重量%、ロジウム濃度 650重量 ppm、ヨウ化リチウム濃度 9. 9 重量%の条件で反応を行った。反応液 5を蒸発器 6によりフラッシュさせ、触媒成分を 含む高沸点成分(ロジウム触媒溶液 7)をポンプで昇圧して反応器 3にリサイクルした 。フラッシュ成分 8を低沸成分一酢酸分離蒸留塔 9に供給して低沸点成分 10と高沸 点成分 13とに分離し、高沸点成分 13を蒸留塔 14に供給し、底部近くの側流として 粗酢酸 (酢酸の純度 99. 5重量%以上) 15を得た。低沸点成分 10を、水を用いた抽 出処理に付し、該低沸点成分 10中のァセトアルデヒドの 30モル%を系外に除去し、 残りの低沸点成分をライン 12を介して反応器 3にリサイクルした。蒸留塔 14の塔頂か ら得られる低沸点成分 16も反応器 3にリサイクルした。反応液中の水濃度は 1. 8重 量%、ヨウ化メチル濃度は 12. 1重量%、ァセトアルデヒド濃度は 400重量 ppmであ つた。
酢酸の生成速度は 11. 6mol/L'hr、ァセトアルデヒドの生成速度は 3. 2mmol/ L'hrであり、ァセトアルデヒドの生成速度を酢酸の生成速度で除した値は 1/3600 であった。粗酢酸 15中のプロピオン酸濃度は 75重量 ppm、クロトンアルデヒド濃度は 0. 2重量 ppm、ヨウ化へキシル(Hexl)濃度は 28重量 ppb、過マンガン酸カリウム試 験値は 190分であった。
粗酢酸 15を活性部位に銀を担持させた巨大網状構造を持つ強酸性陽イオン交換 樹脂(ロームアンドハース社製、商品名「アンバーリスト 15」)を充填した充填槽(33。C )に毎時 7. 2床容積の流速で供給し、イオン交換樹脂処理を施した。得られた製品 酢酸中にヨウ化へキシルは検出されなかった。
なお、低沸点成分 10からァセトアルデヒドを除去することなくそのままそれをライン 1 2を介して反応器 3にリサイクルした以外は上記と同様の操作を行ったところ、反応液 中のァセトアルデヒド濃度は 820重量 ppm、粗酢酸中のプロピオン酸 (PA)濃度は 1 20重量 ppm、クロトンアルデヒド(CrD)濃度は 0. 5重量 ppm、過マンガン酸カリウム 試験値 (過マンガン酸時間)は 160分であった。
実施例 3 反応器 3に、反応原料 (メタノール 2及び一酸化炭素 1)、及び精製系からリサイクル するロジウム触媒溶液 7 (ロジウム触媒、ヨウ化物塩、酢酸を含む)及び低沸点成分 1 2 (ヨウ化メチル、酢酸メチル、水を含む)を連続的に供給し、反応圧力 3. 5MPaG、 一酸化炭素分圧 1. 8MPaA、水素分圧 0. 03MPaA、反応温度 188°C、反応液中 の酢酸メチル濃度 5. 3重量%、ロジウム濃度 800重量 ppm、ヨウ化リチウム濃度 10. 9重量%の条件で反応を行った。反応液 5を蒸発器 6によりフラッシュさせ、触媒成分 を含む高沸点成分 (ロジウム触媒溶液 7)をポンプで昇圧して反応器 3にリサイクルし た。フラッシュ成分 8を低沸成分 酢酸分離蒸留塔 9に供給して低沸点成分 10と高 沸点成分 13とに分離し、高沸点成分 13を蒸留塔 14に供給し、底部近くの側流とし て粗酢酸 (酢酸の純度 99. 5重量%以上) 15を得た。低沸点成分 10を、水を用いた 抽出処理に付し、該低沸点成分 10中のァセトアルデヒドの 25モル%を系外に除去し 、残りの低沸点成分をライン 12を介して反応器 3にリサイクルした。蒸留塔 14の塔頂 から得られる低沸点成分 16も反応器 3にリサイクルした。反応液中の水濃度は 1. 7 重量%、ヨウ化メチル濃度は 14重量%、ァセトアルデヒド濃度は 400重量 ppmであつ た。
酢酸の生成速度は 23. 5mol/L'hr、ァセトアルデヒドの生成速度は 2. 3mmol/ L'hrであり、ァセトアルデヒドの生成速度を酢酸の生成速度で除した値は 1/1000 0であった。粗酢酸 15中のプロピオン酸濃度は 65重量 ppm、クロトンアルデヒド濃度 は 0. 3重量 ppm、過マンガン酸カリウム試験値は 190分であった。
粗酢酸 15を活性部位に銀を担持させた巨大網状構造を持つ強酸性陽イオン交換 樹脂(ロームアンドハース社製、商品名「アンバーリスト 15」)を充填した充填槽(33。C )に毎時 7. 2床容積の流速で供給し、イオン交換樹脂処理を施した。得られた製品 酢酸中にヨウ化へキシルは検出されなかった。
なお、低沸点成分 10からァセトアルデヒドを除去することなくそのままそれをライン 1 2を介して反応器 3にリサイクルした以外は上記と同様の操作を行ったところ、反応液 中のァセトアルデヒド濃度は 710重量 ppm、粗酢酸中のプロピオン酸 (PA)濃度は 1 15重量 ppm、クロトンアルデヒド(CrD)濃度は 1. 4重量 ppm、過マンガン酸カリウム 試験値 (過マンガン酸時間)は 80分であった。 [0050] 比較例 1
反応器 3に、反応原料 (メタノール 2及び一酸化炭素 1)、及び精製系からリサイクル するロジウム触媒溶液 7 (ロジウム触媒、ヨウ化物塩、酢酸を含む)及び低沸点成分 1 2 (ヨウ化メチル、酢酸メチル、水を含む)を連続的に供給し、反応圧力 2. 8MPaG、 一酸化炭素分圧 0. 97MPaA、水素分圧 0. 14MPaA、反応温度 187°C、反応液中 の酢酸メチル濃度 1. 6重量%、ロジウム濃度 650重量 ppm、ヨウ化リチウム濃度 5. 0 重量%の条件で反応を行った。反応液 5を蒸発器 6によりフラッシュさせ、触媒成分を 含む高沸点成分(ロジウム触媒溶液 7)をポンプで昇圧して反応器 3にリサイクルした 。フラッシュ成分 8を低沸成分 酢酸分離蒸留塔 9に供給して低沸点成分 10と高沸 点成分 13とに分離し、高沸点成分 13を蒸留塔 14に供給し、底部近くの側流として 粗酢酸 (酢酸の純度 99. 5重量%以上) 15を得た。低沸点成分 10を、水を用いた抽 出処理に付し、該低沸点成分 10中のァセトアルデヒドの 66モル%を系外に除去し、 残りの低沸点成分をライン 12を介して反応器 3にリサイクルした。蒸留塔 14の塔頂か ら得られる低沸点成分 16も反応器 3にリサイクルした。反応液中の水濃度は 8. 0重 量%、ヨウ化メチル濃度は 13. 0重量%、ァセトアルデヒド濃度は 300重量 ppmであ つた。
酢酸の生成速度は 11. 7mol/L'hr、ァセトアルデヒドの生成速度は 10mmol/L •hrであり、ァセトアルデヒドの生成速度を酢酸の生成速度で除した値は 1Z1200で あった。粗酢酸 15中のプロピオン酸濃度は 350重量 ppm、クロトンアルデヒド濃度は 1. 0重量 ppm、ヨウ化へキシル濃度は 30重量 ppb、過マンガン酸カリウム試験値は 1 40分であった。
なお、低沸点成分 10からァセトアルデヒドを除去することなくそのままそれをライン 1 2を介して反応器 3にリサイクルした以外は上記と同様の操作を行ったところ、反応液 中のァセトアルデヒド濃度は 800重量 ppm、粗酢酸中のプロピオン酸(PA)濃度は 6 00重量 ppm、クロトンアルデヒド(CrD)濃度は 3. 0重量 ppm、ヨウ化へキシル濃度は 100重量 ppb、過マンガン酸カリウム試験値 (過マンガン酸時間)は 30分であった。
[0051] 比較例 2
反応器 3に、反応原料 (メタノール 2及び一酸化炭素 1)、及び精製系からリサイクル するロジウム触媒溶液 7 (ロジウム触媒、ヨウ化物塩、酢酸を含む)及び低沸点成分 1 2 (ヨウ化メチル、酢酸メチル、水を含む)を連続的に供給し、反応圧力 2. 8MPaG、 一酸化炭素分圧 1. 0MPaA、水素分圧 0. 175MPaA、反応温度 188°C、反応液中 の酢酸メチル濃度 1. 3重量%、ロジウム濃度 660重量 ppm、ヨウ化リチウム濃度 22. 9重量%の条件で反応を行った。反応液 5を蒸発器 6によりフラッシュさせ、触媒成分 を含む高沸点成分 (ロジウム触媒溶液 7)をポンプで昇圧して反応器 3にリサイクルし た。フラッシュ成分 8を低沸成分一酢酸分離蒸留塔 9に供給して低沸点成分 10と高 沸点成分 13とに分離し、高沸点成分 13を蒸留塔 14に供給し、底部近くの側流とし て粗酢酸 (酢酸の純度 99. 5重量%以上) 15を得た。低沸点成分 10をそのまま(ァ セトアルデヒドを除去することなく)ライン 12を介して反応器 3にリサイクルした。蒸留 塔 14の塔頂から得られる低沸点成分 16も反応器 3にリサイクルした。反応液中の水 濃度は 4. 0重量%、ヨウ化メチル濃度は 14. 5重量%、ァセトアルデヒド濃度は 980 直重 ppmであつた。
酢酸の生成速度は 25. 5mol/L'hr、ァセトアルデヒドの生成速度は 35mmol/L •hrであり、ァセトアルデヒドの生成速度を酢酸の生成速度で除した値は 1/600であ つた。粗酢酸 15中のプロピオン酸濃度は 1800重量 ppm、クロトンアルデヒド濃度は 4 . 9重量 ppm、ヨウ化へキシル濃度は 720重量 ppbであった。
[0052] 以上の結果をまとめて表 2に示す。表中、「CO _ STY」は二酸化炭素の生成速度
2
(単位: mmol/L'hr)、「CH— STY」はメタンの生成速度(単位: mmol/L'hr)を
4
示す。表中の「AD濃度 a」は低沸点成分 10からァセトアルデヒドを除去することなくそ のままそれを反応器 3にリサイクルした場合の反応液中のァセトアルデヒド濃度を意 味し、「AD濃度 b」は低沸点成分 10からァセトアルデヒドを所定量除去した残りを反 応器 3にリサイクルした場合の反応液中のァセトアルデヒド濃度を意味する。また、「 粗酢酸 a」は低沸点成分 10からァセトアルデヒドを除去することなくそのままそれを反 応器 3にリサイクルした場合の粗酢酸を意味し、「粗酢酸 b」は低沸点成分 10からァセ トアルデヒドを所定量除去した残りを反応器 3にリサイクルした場合の粗酢酸を意味 する。
[0053] [表 2] 表 2
Figure imgf000023_0001
Hexl *1 : ECD- GC分析値
Hexl *2 : GC- MS分析値 表 2の粗酢酸 aの欄に示されるように、ァセトアルデヒドを除去することなく低沸点成 分を反応器にリサイクルした場合、実施例:!〜 3ではァセトアルデヒドの生成速度と酢 酸の生成速度の比が 1/1500以下と非常に小さいため、ァセトアルデヒドの逐次反 応生成物の副生が顕著に抑制され、粗酢酸 a中のプロピオン酸濃度及びクロトンアル デヒド濃度が比較例 1〜2と比較して約 1/2〜1Z10と著しく低減する。そして、表 2 の粗酢酸 bの欄に示されるように、実施例 1〜3ではさらに低沸点成分からァセトアル デヒドを 25〜50モル%除去して残りを反応器にリサイクルし、反応液中のァセトアル デヒド濃度を 500ppm以下に保持するので、粗酢酸 b中のプロピオン酸濃度及びクロ トンアルデヒド濃度が極めて低くなり、これらに由来する副生物の生成も抑制されるの で高い過マンガン酸時間を示す。一方、比較例 1では、ァセトアルデヒドの生成速度 と酢酸の生成速度の比が 1/1200と大きいため、脱ァセトアルデヒド率が 66モル% と実施例より高いにもかかわらず、粗酢酸 b中のプロピオン酸濃度及びクロトンアルデ ヒド濃度が高ぐ過マンガン酸時間も低い値となる。
産業上の利用可能性
本発明の方法によれば、反応系の水濃度が低く水素分圧が低くても、反応速度を 低下させることなく副生成物の生成量を低減でき、高品質の酢酸を効率よく製造する こと力 Sできる。

Claims

請求の範囲
[1] ロジウム触媒、ヨウ化物塩、ヨウィ匕メチル、酢酸メチル及び水の存在下、連続的にメ タノールと一酸化炭素とを反応させ、反応液中のァセトアルデヒド濃度を 500ppm以 下に保ちつつ、酢酸を l lmol/L'hr以上の生成速度で製造する方法であって、反 応器気相部の一酸化炭素分圧が 1. 05MPa以上の条件、又は反応液中の酢酸メチ ル濃度が 2重量%以上の条件で反応を行い、ァセトアルデヒドの生成速度を酢酸の 生成速度の 1/1500以下に維持することを特徴とする酢酸の製造方法。
[2] 反応器気相部の水素分圧が lOOkPa以下の条件で反応を行う請求の範囲第 1項 記載の酢酸の製造方法。
[3] 反応器気相部の水素分圧が 70kPa以下の条件で反応を行う請求の範囲第 1項記 載の酢酸の製造方法。
[4] 反応器気相部の水素分圧が 70kPa以下で且つ反応液中の酢酸メチル濃度が 3. 1 重量%以上の条件で反応を行う請求の範囲第 1項記載の酢酸の製造方法。
[5] 反応液中の水濃度が 3重量%以下の条件で反応を行う請求の範囲第 1項〜第 4項 の何れかの項に記載の酢酸の製造方法。
[6] 酢酸を 15molZ hr以上の生成速度で製造する請求の範囲第 1項〜第 5項の何 れかの項に記載の酢酸の製造方法。
[7] ァセトアルデヒドの生成速度を酢酸の生成速度の 1/2500以下に維持する請求の 範囲第 1項〜第 6項の何れかの項に記載の酢酸の製造方法。
[8] 精製工程として、反応液から酢酸を分離回収する工程、酢酸を回収した残りの成分 を反応器にリサイクルする工程、及び反応器にリサイクルするプロセス液からカルボ ニル不純物を分離除去する工程を有する請求の範囲第 1項〜第 7項の何れかの項 に記載の酢酸の製造方法。
[9] 精製工程として、反応液を、蒸留により、酢酸、水、酢酸メチル及びヨウ化メチルを 含む揮発性成分と、ロジウム触媒及びヨウ化物塩を含む低揮発性成分とに分離する 触媒分離工程 (A)、前記揮発性成分を、蒸留により、酢酸を含む高沸点成分と、水、 酢酸メチル及びヨウ化メチルを含む低沸点成分とに分離する低沸点成分分離工程( B)、前記低揮発性成分を反応器にリサイクルする触媒リサイクル工程(C)、工程 ) で得られた低沸点成分からカルボニル不純物を分離除去するカルボニル不純物除 去工程 (D)、工程 (D)においてカルボニル不純物を除去した残成分を反応器にリサ イタルする低沸点成分リサイクル工程 (E)、工程 (B)で得られた高沸点成分から蒸留 により酢酸を分離する酢酸分離工程 (F)、工程 (F)で得られた酢酸を、銀又は水銀 交換陽イオン交換樹脂で処理する陽イオン交換樹脂処理工程 (G)を有する請求の 範囲第 1項〜第 7項の何れかの項に記載の酢酸の製造方法。
工程 (B)、工程 (D)及び工程 (F)を合計 3本以下の蒸留塔を用レ、て行う請求の範 囲第 9項記載の酢酸の製造方法。
PCT/JP2005/023268 2004-12-27 2005-12-19 酢酸の製造方法 WO2006070632A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05816451.8A EP1832569B1 (en) 2004-12-27 2005-12-19 Method for producing acetic acid
US10/567,900 US7683212B2 (en) 2004-12-27 2005-12-19 Methods for producing acetic acid
CN2005800451448A CN101090880B (zh) 2004-12-27 2005-12-19 醋酸的制造方法
KR1020077017250A KR101314027B1 (ko) 2004-12-27 2005-12-19 아세트산의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-377223 2004-12-27
JP2004377223A JP4526381B2 (ja) 2004-12-27 2004-12-27 酢酸の製造方法

Publications (1)

Publication Number Publication Date
WO2006070632A1 true WO2006070632A1 (ja) 2006-07-06

Family

ID=36614751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023268 WO2006070632A1 (ja) 2004-12-27 2005-12-19 酢酸の製造方法

Country Status (10)

Country Link
US (1) US7683212B2 (ja)
EP (1) EP1832569B1 (ja)
JP (1) JP4526381B2 (ja)
KR (1) KR101314027B1 (ja)
CN (1) CN101090880B (ja)
MY (1) MY142914A (ja)
SA (1) SA05260439B1 (ja)
SG (1) SG174045A1 (ja)
TW (1) TWI358404B (ja)
WO (1) WO2006070632A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220522A1 (ja) * 2018-05-15 2019-11-21 株式会社ダイセル 酢酸の製造方法
WO2019229859A1 (ja) * 2018-05-29 2019-12-05 株式会社ダイセル 酢酸の製造方法
WO2019229858A1 (ja) * 2018-05-29 2019-12-05 株式会社ダイセル 酢酸の製造方法
WO2019229856A1 (ja) * 2018-05-29 2019-12-05 株式会社ダイセル 酢酸の製造方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153708A2 (en) * 2007-05-21 2008-12-18 Celanese International Corporation Reaction product of rhodium-catalyzed methanol carbonylation
CN101503346B (zh) * 2009-03-19 2012-01-11 北京泽华化学工程有限公司 一种甲醇低压羰基化合成醋酸的方法及其装置
US9663437B2 (en) 2011-09-13 2017-05-30 Celanese International Corporation Production of acetic acid with high conversion rate
JP5995995B2 (ja) * 2012-02-08 2016-09-21 セラニーズ・インターナショナル・コーポレーション 高転化率での酢酸の製造
US8969613B2 (en) * 2012-10-31 2015-03-03 Lyondellbasell Acetyls, Llc Removal of aldehydes in acetic acid production
CN103520944A (zh) * 2013-07-30 2014-01-22 天津渤海化工有限责任公司天津碱厂 一种贵金属催化剂循环母液的冷却方法
CN106715379B (zh) 2014-10-02 2020-05-19 国际人造丝公司 用于生产乙酸的方法
US9260369B1 (en) 2014-11-14 2016-02-16 Celanese International Corporation Processes for producing acetic acid product having low butyl acetate content
US9540304B2 (en) * 2014-11-14 2017-01-10 Celanese International Corporation Processes for producing an acetic acid product having low butyl acetate content
MY181654A (en) 2014-11-14 2020-12-31 Celanese Int Corp Processes for improving acetic acid yield by removing iron
US9695101B2 (en) 2014-11-14 2017-07-04 Celanese International Corporation Processes for producing acetic acid with decanter control
RS60539B1 (sr) * 2014-11-14 2020-08-31 Celanese Int Corp Postupci za proizvodnju sirćetne kiseline iz reakcionog medijuma koji ima nizak sadržaj etil jodida
US9561994B2 (en) 2015-01-30 2017-02-07 Celanese International Corporation Processes for producing acetic acid
US9487464B2 (en) 2015-01-30 2016-11-08 Celanese International Corporation Processes for producing acetic acid
US9505696B2 (en) 2015-02-04 2016-11-29 Celanese International Corporation Process to control HI concentration in residuum stream
US10413840B2 (en) 2015-02-04 2019-09-17 Celanese International Coporation Process to control HI concentration in residuum stream
US9512056B2 (en) * 2015-02-04 2016-12-06 Celanese International Corporation Process to control HI concentration in residuum stream
US9302974B1 (en) * 2015-07-01 2016-04-05 Celanese International Corporation Process for producing acetic acid
KR101701908B1 (ko) 2015-10-15 2017-02-02 삼성중공업 주식회사 분리기
US9908835B2 (en) 2015-11-13 2018-03-06 Celanese International Corporation Processes for purifying acetic and hydrating anhydride
US9957216B2 (en) * 2015-11-13 2018-05-01 Celanese International Corporation Processes for producing acetic acid
EP3369721B1 (en) 2017-01-18 2019-10-16 Daicel Corporation Method for producing acetic acid
WO2018135015A1 (ja) 2017-01-18 2018-07-26 株式会社ダイセル 酢酸の製造方法
US10428004B2 (en) 2017-01-18 2019-10-01 Daicel Corporation Method for producing acetic acid
US10207977B2 (en) 2017-01-18 2019-02-19 Daicel Corporation Method for producing acetic acid
BR112019014643A2 (pt) * 2017-01-18 2020-06-02 Daicel Corporation Método para produzir um ácido acético
MX2019010645A (es) * 2017-03-08 2019-10-15 Daicel Corp Metodo para la produccion de acido acetico.
US10550058B2 (en) 2017-03-08 2020-02-04 Daicel Corporation Method for producing acetic acid
US10710953B2 (en) 2018-03-23 2020-07-14 Lyondellbasell Acetyls, Llc Method for purification of GAA
US10584087B2 (en) 2018-03-23 2020-03-10 Lyondellbasell Acetyls, Llc Removal of permanganate reducing compounds from intermediate GAA process streams
WO2019229857A1 (ja) 2018-05-29 2019-12-05 株式会社ダイセル 酢酸の製造方法
CN109908947B (zh) * 2019-03-14 2021-03-30 厦门大学 一种合成气高选择性转化制乙酸的催化剂及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820555A (ja) * 1994-07-06 1996-01-23 Daicel Chem Ind Ltd 酢酸および/または無水酢酸の製造法
JP2002508759A (ja) * 1997-06-16 2002-03-19 ビーピー ケミカルズ リミテッド カルボン酸の製造方法
JP2003508363A (ja) * 1999-08-31 2003-03-04 セラニーズ・インターナショナル・コーポレーション 改良された不純物特性をもつメタノールカルボニル化法のためのロジウム/無機ヨウ化物触媒系
JP2004277297A (ja) * 2003-03-13 2004-10-07 Chiyoda Corp 不均一系触媒を用いた酢酸の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4252741A (en) * 1978-10-06 1981-02-24 Halcon Research & Development Corp. Carbonylation with Group VIII noble metal catalysts
JPS6054334A (ja) 1983-09-02 1985-03-28 Daicel Chem Ind Ltd カルボン酸の製造法
CA1228867A (en) 1984-05-03 1987-11-03 G. Paull Torrence Methanol carbonylation process
CN1014407B (zh) * 1985-02-08 1991-10-23 赛拉尼斯公司 改进的甲醇羰基化方法
CA1299195C (en) 1986-06-16 1992-04-21 G. Paull Torrence Addition of hydrogen to carbon monoxide feed gas in producing acetic acid by carbonylation of methanol
GB9211671D0 (en) 1992-06-02 1992-07-15 Bp Chem Int Ltd Process
US5364963A (en) * 1993-04-30 1994-11-15 Chiyoda Corporation Supported rhodium catalyst, method of preparing same and process of producing acetic acid by methanol carbonylation using same
JP3244385B2 (ja) 1994-06-15 2002-01-07 ダイセル化学工業株式会社 高純度酢酸の製造方法
SG44317A1 (en) * 1994-06-15 1997-12-19 Daicel Chem Process for producing high purity acetic acid
JP3332594B2 (ja) * 1994-08-12 2002-10-07 ダイセル化学工業株式会社 酢酸の精製方法
GB9503382D0 (en) * 1995-02-21 1995-04-12 Bp Chem Int Ltd Process
US6066762A (en) * 1996-12-30 2000-05-23 Chiyoda Corporation Process for the production of carbonyl compound
AU3703199A (en) * 1998-03-31 1999-10-18 Haldor Topsoe A/S Process for production of acetic acid
GB9926854D0 (en) * 1999-11-12 2000-01-12 Bp Chem Int Ltd Process
GB9926855D0 (en) * 1999-11-12 2000-01-12 Bp Chem Int Ltd Process
US6657078B2 (en) 2001-02-07 2003-12-02 Celanese International Corporation Low energy carbonylation process
US7005541B2 (en) * 2002-12-23 2006-02-28 Celanese International Corporation Low water methanol carbonylation process for high acetic acid production and for water balance control
MY141209A (en) * 2003-03-13 2010-03-31 Chiyoda Corp Method of manufacturing acetic acid
US7223886B2 (en) * 2004-03-02 2007-05-29 Celanese International Corporation Removal of permanganate reducing compounds from methanol carbonylation process stream

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820555A (ja) * 1994-07-06 1996-01-23 Daicel Chem Ind Ltd 酢酸および/または無水酢酸の製造法
JP2002508759A (ja) * 1997-06-16 2002-03-19 ビーピー ケミカルズ リミテッド カルボン酸の製造方法
JP2003508363A (ja) * 1999-08-31 2003-03-04 セラニーズ・インターナショナル・コーポレーション 改良された不純物特性をもつメタノールカルボニル化法のためのロジウム/無機ヨウ化物触媒系
JP2004277297A (ja) * 2003-03-13 2004-10-07 Chiyoda Corp 不均一系触媒を用いた酢酸の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1832569A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220522A1 (ja) * 2018-05-15 2019-11-21 株式会社ダイセル 酢酸の製造方法
CN110546128A (zh) * 2018-05-15 2019-12-06 株式会社大赛璐 乙酸的制备方法
US10696616B2 (en) 2018-05-15 2020-06-30 Daicel Corporation Method for producing acetic acid
KR20210008512A (ko) * 2018-05-15 2021-01-22 주식회사 다이셀 아세트산의 제조 방법
TWI791826B (zh) * 2018-05-15 2023-02-11 日商大賽璐股份有限公司 醋酸之製造方法
KR102588334B1 (ko) 2018-05-15 2023-10-12 주식회사 다이셀 아세트산의 제조 방법
WO2019229859A1 (ja) * 2018-05-29 2019-12-05 株式会社ダイセル 酢酸の製造方法
WO2019229858A1 (ja) * 2018-05-29 2019-12-05 株式会社ダイセル 酢酸の製造方法
WO2019229856A1 (ja) * 2018-05-29 2019-12-05 株式会社ダイセル 酢酸の製造方法
JP6626987B1 (ja) * 2018-05-29 2019-12-25 株式会社ダイセル 酢酸の製造方法
US10752572B2 (en) 2018-05-29 2020-08-25 Daicel Corporation Method for producing acetic acid
US10815181B2 (en) 2018-05-29 2020-10-27 Daicel Corporation Method for producing acetic acid

Also Published As

Publication number Publication date
JP2006182691A (ja) 2006-07-13
KR20070095365A (ko) 2007-09-28
EP1832569A1 (en) 2007-09-12
EP1832569B1 (en) 2017-04-05
TWI358404B (en) 2012-02-21
MY142914A (en) 2011-01-31
JP4526381B2 (ja) 2010-08-18
CN101090880A (zh) 2007-12-19
EP1832569A4 (en) 2009-11-04
SG174045A1 (en) 2011-09-29
US7683212B2 (en) 2010-03-23
SA05260439B1 (ar) 2012-03-24
US20070093676A1 (en) 2007-04-26
TW200631935A (en) 2006-09-16
KR101314027B1 (ko) 2013-10-01
CN101090880B (zh) 2011-04-06

Similar Documents

Publication Publication Date Title
WO2006070632A1 (ja) 酢酸の製造方法
TWI410403B (zh) 醋酸之製造方法
JP6506657B2 (ja) メタノールのカルボニル化工程のストリームからの過マンガン酸還元性化合物の除去
JP4971128B2 (ja) 酢酸を製造する方法
EP2621881B1 (en) Production of acetic acid with high conversion rate
JP7108385B2 (ja) 低い酢酸ブチル含量を有する酢酸生成物の製造方法
EP2220022B1 (en) Method and apparatus for making acetic acid with improved productivity
JP5995853B2 (ja) ハロゲン促進剤を回収し、且つ過マンガン酸塩還元性化合物を除去するためのプロセス
KR20120132586A (ko) 메탄올 카보닐화 공정 스트림으로부터 퍼망가네이트 환원 화합물의 제거 방법
EP2621882B1 (en) Production of acetic acid with high conversion rate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007093676

Country of ref document: US

Ref document number: 10567900

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 10567900

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2005816451

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005816451

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3991/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200580045144.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077017250

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005816451

Country of ref document: EP