WO2006064948A1 - モータ用回転子およびその製造方法 - Google Patents

モータ用回転子およびその製造方法 Download PDF

Info

Publication number
WO2006064948A1
WO2006064948A1 PCT/JP2005/023284 JP2005023284W WO2006064948A1 WO 2006064948 A1 WO2006064948 A1 WO 2006064948A1 JP 2005023284 W JP2005023284 W JP 2005023284W WO 2006064948 A1 WO2006064948 A1 WO 2006064948A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
magnetic
soft magnetic
powder
rotor
Prior art date
Application number
PCT/JP2005/023284
Other languages
English (en)
French (fr)
Inventor
Masahiro Masuzawa
Masahiro Mita
Keiko Kikuti
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to EP05816555.6A priority Critical patent/EP1830451A4/en
Priority to CN2005800431285A priority patent/CN101080862B/zh
Priority to KR1020077013793A priority patent/KR100908424B1/ko
Priority to US11/721,956 priority patent/US8039998B2/en
Publication of WO2006064948A1 publication Critical patent/WO2006064948A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • H01F41/028Radial anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • H02K1/2733Annular magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors

Definitions

  • the present invention relates to a bonded magnet rotor for a motor integrated with a soft magnetic yoke for the purpose of achieving high efficiency such as a motor and a generator using a permanent magnet.
  • the first method is a so-called surface permanent magnet (SPM) rotor in which permanent magnets are arranged on the surface of the magnetic pole as shown in FIGS. 2 (a) to 2 (c) and (f).
  • the second method is an interior permanent magnet (IPM) rotor in which permanent magnets are arranged inside the rotor as shown in Figs. 2 (d) and 2 (e).
  • the former SPM rotor is a type in which a permanent magnet placed on the rotor surface faces the stator with an air gap in between, and has the advantage that it is easier to design and manufacture than the latter IPM rotor.
  • the latter IPM rotor has excellent structural reliability and is easy to obtain reluctance torque.
  • the abduction-type magnet rotor shown in Fig. 2 (f) has a low risk of magnetite scattering, so it often has an SPM structure.
  • an insulating laminated product of silicon steel sheet is conventionally manufactured by forging, forging, etc.
  • an adhesive has conventionally been used. It is common to use.
  • a protective ring 3 for structural reinforcement that can also be used, such as non-magnetic stainless steel or reinforced plastic fiber fiber, is used as a magnet. It is often wrapped around the outer peripheral surface of 101 to supplement the strength. In such a case, however, the effective air gap widens, making it difficult for the magnetic flux to reach the stator and lowering the motor output. Furthermore, in a metal protective ring such as stainless steel, eddy current loss occurs and the motor efficiency is lowered.
  • Patent Document 2 003-32931 Patent Document 2 003-32931 (Patent Document 2) cited as comparative examples in which a magnet and a soft magnetic yoke are integrally formed are also frames for structural reinforcement. It is clear that a sufficient joint strength between the magnet and the soft magnetic yoke is obtained.
  • Patent Document 3 Japanese Patent Laid-Open No. 5-326232 (Patent Document 3) is also characterized in that a wedge shape is provided on the ring magnet to prevent the yoke from being pulled out by the macro appearance of the magnet so that it does not come off from the soft magnetic yoke.
  • Patent Document 4 also stated that the magnet is limited to the ring shape and description of the manufacturing method, so that sufficient bonding strength between the magnet and the soft magnetic yoke was not obtained, only the internal pressure of the ring magnet. It is clear that V holds the soft magnetic yoke.
  • Patent Document 5 a ring-shaped magnet is formed by performing temporary compression molding and main molding. The bonding force between the ring-shaped magnet and the soft magnetic yoke is bonding, which is insufficient in terms of bonding strength and reliability.
  • Isotropic magnets have a magnetic property that is about 20% lower than that of anisotropic magnets, but they have the advantage of being easy to manufacture because they do not require a magnetic field to be applied during compression molding of magnetic powder.
  • An anisotropic magnet puts unmagnetized raw material powder with an easy magnetization axis into a mold and applies a strong magnetic field to this by an appropriate method to align the easy magnetization axis in a specific direction. It can be compressed and sintered in the state, or hardened with a thermosetting resin, and its properties will hardly change and it will function as a permanent magnet. I will become.
  • magnet powder 6 is placed in a mold that is magnetically applied as shown in Fig. 4 (in the figure, arrow A indicates the pressing direction). Compression molding. As a result, the magnetized magnet powder 6 becomes a particle magnet having N and S magnetic poles in the direction of the easy magnetization axis, and is almost aligned in the direction of the external magnetic field like a magnetic needle. When compression molding is performed in this state, a green compact with easy magnetization axes is obtained.
  • the anisotropic magnet is demagnetized in the last step of forming in a magnetic field by applying a reverse magnetic field or an alternating decay magnetic field.
  • the green compact is premixed with a thermosetting resin, which is thermoset to form a bonded magnet.
  • a magnet having the same easy axis is called an anisotropic magnet.
  • An anisotropic magnet provides excellent magnetic properties only in the direction in which the easy axis of magnetization is aligned.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-95185
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-32931
  • Patent Document 3 Japanese Patent Laid-Open No. 5-326232
  • Patent Document 4 JP-A-7-169633
  • Patent Document 5 Japanese Patent Laid-Open No. 2001-052921
  • rare-earth bonded magnets such as NdFeB require an orientation magnetic field strength of about 1600 kAZm.
  • the above-mentioned magnetic field strength can be obtained when it is possible to run the coil many times spatially.
  • a magnetic field of about 800 kAZm cannot be generated. Therefore, for magnets that require a high magnetic field of 1600 kAZm or more, a method of instantaneously (pulsingly) supplying a high-voltage large current charged in a capacitor is used.
  • a forced air cooling or forced water cooling mechanism that generates a large amount of heat in the coil section to prevent insulation breakdown of the conductor due to heat generation in the coil section.
  • FIG. 5 is a longitudinal sectional view of a magnetic field forming apparatus for radial orientation.
  • FIG. 6 (a) is a cross-sectional view of the magnetic field forming apparatus in the quadrupole anisotropic orientation.
  • the magnetic field force from the electromagnets arranged above and below is collected at the center of the yoke portion as indicated by the gray arrows, and spreads radially outward at the magnet position.
  • the orientation magnetic field it is desirable that a sufficiently strong magnetic field is uniformly distributed in the magnet position.
  • the orientation magnetic field strength in the vicinity of the upper and lower end surfaces is inferior to that in the vicinity of the center in the axial direction of the ring magnet, or that the radial direction component is disturbed in the vicinity of the upper and lower end surfaces of the magnet.
  • an electromagnet is arranged as close as possible to the magnet to generate a strong magnetic field, and the magnetic path surrounding the electromagnet has as high a saturation flux density as possible. It is desirable to use a magnetic material having a relative magnetic permeability and to have a closed magnetic circuit. However, due to manufacturing constraints, both are often difficult to implement. For example, electromagnets must be arranged avoiding piping that feeds magnet powder, piping that cools coils, etc., and the electromagnet moves further away due to clearance with the press forming punch that is a movable part. It will be kept away.
  • the mold magnetic circuit surrounding the electromagnet also has a configuration far from the closed magnetic circuit due to the necessity of a magnet extraction opening.
  • mechanical strength must be given priority over magnetic properties so that the die material can withstand the high pressure force during compression molding.
  • the magnetic saturation of the mold magnetic path is a limitation, and a desired magnetic field may not be obtained even when a large current is passed.
  • the smaller the inner diameter of the magnet the more limited the magnetic saturation at the tip of the yoke, so that a sufficient orientation magnetic field cannot be obtained, and orientation in the desired direction becomes difficult.
  • NS magnetizing to a desired number of poles is possible with a magnetizing device having a structure similar to that of the molding device of Fig. 6 (a). wear.
  • the coil corresponding to the desired number of poles (4 poles in Fig. 6) was wound.
  • a magnetic field is applied as shown by the gray arrow.
  • arrow B indicates the magnetic field direction
  • arrow C indicates the magnetization direction
  • the molded body has four magnetic poles magnetized in the radial direction.
  • the molded product can be formed with four magnetic poles magnetized in the polar direction: radial oriented magnet and polar anisotropic oriented magnet
  • the magnetization pattern is different because it is magnetized following the orientation direction of the molded body.
  • the present invention provides a surface magnet type rotor and an internal magnet type rotor that have high strength and safety even in high-speed rotation applications in which the bonding strength between the bonded magnet portion and the soft magnetic yoke portion is high. It aims at providing the manufacturing method.
  • the present invention can easily perform stable orientation with little disturbance regardless of the number of poles, dimensions and shape of the magnet, and magnetization, and the magnetic pole can be formed only by radial (radial) or polar anisotropic 1
  • a first invention of the present application includes a bonded magnet portion made of a magnet powder including a binder and a binder.
  • a soft magnetic yoke part made of soft magnetic powder, and the bonded magnet part and the soft magnetic yoke part are compression-molded while the magnet powder and the soft magnetic powder mesh with each other on the joint surface.
  • the present invention relates to a bonded magnet rotor for a motor integrated with a soft magnetic yoke.
  • a mixture of ferrite magnets or rare earth magnets and thermosetting resin, and high permeability soft magnetic materials such as atomized iron powder, Fe-Co alloy powder, nanocrystal powder and thermosetting resin is provided with a rotor for a motor in which a bonded magnet and a soft magnetic yoke are made into a single body by subjecting the product to a hardening treatment at 250 ° C. or lower after being integrally molded with pressure.
  • a configuration in which the bonded magnet portion and / or the soft magnetic yoke portion are formed at a plurality of portions can be employed.
  • an isotropic and / or anisotropic rare earth bonded magnet for the bonded magnet section. In order to obtain high magnetic properties, it is more desirable to use an anisotropic bonded magnet.
  • the present invention is not limited to a rotary motor, and can be applied to general magnetic circuit components using both a magnet and a soft magnetic yoke, such as a linear actuator, a magnetic sensor, and a speaker.
  • a magnetic circuit can be formed by using a nonmagnetic compound in which a binder is mixed with a nonmagnetic powder such as Cu for a part or all of the soft magnetic part.
  • the present invention has an anisotropic bonded magnet portion mainly composed of magnetic powder and binder having magnetic anisotropy, and a soft magnetic portion mainly composed of soft magnetic powder and binder. And a rotor for a motor that is formed into a substantially cylindrical shape by compression molding means so that magnetic poles having different polarities are alternately generated on the magnetically acting surface portion of the anisotropic bonded magnet portion having a substantially parallel orientation. It is preferable to form in conjunction with.
  • a magnet unit configured to form one magnetic pole by combining a plurality of permanent magnets oriented in parallel magnetic fields is connected so that magnetic poles having different polarities are alternately generated on the magnetic action surface portion.
  • a magnet unit having a magnetic pole formed by joining a pair of permanent magnets so that their magnetic directions are symmetric with respect to the joint surface is provided on the magnetic action surface portion. It is preferable that anisotropic permanent magnets are formed so as to form poles, and the magnetization direction of the permanent magnets is a direction having an inclination angle with respect to the radial direction passing through the joint surface. Angle of inclination More preferably, the angle is 20 ° ⁇ 10 °, preferably 5 to 35 °.
  • the magnetic powder preferably has an average particle size of 50 to 200 ⁇ m, and the soft magnetic powder has an average particle size of 1 to 100 m.
  • the bonding strength between the bonded magnet portion and the soft magnetic portion increases, and a rotor that can suppress voids and cracks can be manufactured.
  • a more preferable magnet powder has an average particle size of 80 to 150 ⁇ m, and a more preferable soft magnetic powder has an average particle size of 5 to 50 ⁇ m.
  • the magnet powder is preferably an anisotropic R-Fe-B magnet powder or Sm-Fe-N magnet powder.
  • the magnet powder is preferably an anisotropic R-Fe-B magnet powder or Sm-Fe-N magnet powder.
  • the residual magnetic flux density Br is less than 0.4 T as in a ferrite-based bonded magnet, it is not possible to obtain a necessary and sufficient torque as a motor. Therefore, it is more desirable to use rare earth bonded magnets with Br ⁇ 0.8T and coercive force Hcj ⁇ 600kAZm.
  • the soft magnetic powder uses atomized iron powder, Fe-Co iron powder, Fe-based nanocrystalline magnetic powder, etc., and the electrical conductivity is 20 kSZm or less, the magnetic properties are saturation magnetic flux density Bm ⁇ l. It is desirable to set the magnetic force Hc ⁇ 800AZm.
  • the electrical conductivity is less than 20 kSZm, the eddy current loss can be reduced in substantially the same manner as an insulating laminated product such as a silicon steel plate, which is used as a soft magnetic yoke in the conventional bonding method.
  • Bm is low, the necessary and sufficient magnetic flux cannot be obtained, and the yoke must be extremely enlarged.
  • a rare earth bonded magnet with Br ⁇ 0.8T is used as in the present invention, this problem becomes apparent.
  • He is too high, the hysteresis loss during motor rotation becomes significant and the motor efficiency drops significantly.
  • Patent Document 1 the material has high fluidity due to its manufacturing method. Therefore, magnet materials must be mixed with soft magnetic materials and a large amount of grease. For this reason, the mass% of soft magnetic materials is about 60%, and although it has the advantage of being lightweight, only low magnetic properties can be obtained. On the other hand, since the present invention is compression molding, the mass% of the soft magnetic material can be increased to about 98%, and there is a feature that higher magnetic properties can be obtained.
  • the soft magnetic powder it is also preferable to coat the soft magnetic powder with an insulating film. Alternatively, it is also preferable to form an insulating coating on the rare earth magnet powder. Insulating coating By applying, the electric resistance increases, and eddy current loss during motor rotation can be reduced.
  • a resin binder (binder) is added to the magnet powder and the soft magnetic powder.
  • the binder it is desirable to contain a thermosetting resin in an amount of 1 to 5% by mass for a magnetic powder compound and 0.1 to 3% by mass for a soft magnetic powder compound.
  • the binder is preferably a thermosetting resin.
  • the content with respect to the magnet powder mass is preferably 0.1 to 5 mass%, more preferably 1.0 to 4 mass%.
  • the content of the soft magnetic powder is preferably 0.1 to 3% by mass, more preferably 0.5 to 2% by mass. If the binder content is too low, the mechanical strength is significantly reduced, and if the binder content is too high, the magnetic properties are significantly reduced.
  • a soft magnetic powder and a binder, or magnet powder (particularly, rare earth magnet powder) and a binder are mixed to form a compound.
  • This compound may contain an antioxidant and a lubricant.
  • Antioxidants contribute to preventing the magnetic powder from being deteriorated by preventing the magnetic powder from being oxidized. Further, it contributes to the improvement of thermal stability during compound kneading and molding, and good moldability can be maintained with a small amount of binder added.
  • the antioxidant known ones can be used.
  • metal ions such as tocopherol, amine compound, amino acid compound, nitrocarboxylic acid, hydrazine compound, cyanide compound, sulfide, etc., particularly Fe component
  • chelating agents that form chelate compounds can be used.
  • the lubricant improves the fluidity during the kneading and molding of the compound, the same characteristics can be obtained with a smaller amount of binder added.
  • known ones can be used.
  • stearic acid or a metal salt thereof, fatty acid, silicone oil, various waxes, fatty acid and the like can be used.
  • additives such as stabilizers and molding aids may be added.
  • the compound is mixed using a mixer or stirrer.
  • the second invention of the present application is a method of manufacturing a magnetic circuit component comprising an anisotropic bonded magnet part and a soft magnetic part, wherein the anisotropic bonded magnet part mainly comprises a binder and magnet powder. Pre-molded in a magnetic field using a magnetic powder compound, and then molded in a magnetic field so as to be integrated with a soft magnetic powder compound mainly composed of soft magnetic powder, and then heat-cured. It is the manufacturing method of the components for magnetic circuits characterized.
  • the third invention of the present application is to preform a magnet powder containing a binder to prepare a preform, and load the preform and a soft magnetic powder containing a binder into a cavity,
  • a method for producing a component for a magnetic circuit comprising compression-molding a molded body and the soft magnetic powder in a direction parallel to a boundary surface formed by mutual contact at a molding pressure higher than a preforming pressure.
  • a soft magnetic powder containing a binder is preformed to prepare a preform, and the preform and a magnet powder containing a binder are loaded into a cavity,
  • a method for manufacturing a magnetic circuit component wherein the molded body and the magnet powder are compression-molded at a molding pressure higher than a pre-molding pressure in a direction parallel to a boundary surface formed by mutual contact.
  • FIG. 7 (in the figure, I is a magnet pre-molding process, II is a preform assembly process, III is an integral molding process, IV shows the thermosetting process, V shows the magnetizing process, (i) shows the pre-forming in the magnetic field, (ii) shows the main forming in the non-magnetic field, (iii) shows the top view, and (iv) Will be described in detail using side views).
  • a magnetic powder compound mainly composed of a binder and a magnetic powder having an average particle diameter of 50 to 200 m is filled in a compression molding apparatus dedicated to magnet preforming and preformed at a molding pressure of 200 to 400 MPa. The reason for lowering the molding pressure in the preliminary molding is to increase the adhesion between the magnet powder and the soft magnetic powder during the main molding. If the bonded magnet is anisotropic, preforming is performed while applying a magnetic field with an electromagnet or the like.
  • a plurality of bonded magnet preforms are assembled into the cylindrical cavity, and the average particle size of the binder, atomized iron powder, Fe-Co alloy powder, nanocrystal powder, etc. is 1 to: L00 Soft magnetic powder compound mainly composed of ⁇ m high permeability soft magnetic material powder is fed, and the bond magnet part and soft magnetic yoke part are simultaneously higher than the pre-forming pressure 600 ⁇ : Integrated with molding pressure of LOOOMPa The main molding is performed. The reason for lowering the molding pressure in the preliminary molding is to increase the adhesion between the magnet powder and the soft magnetic powder during the main molding.
  • the preform formed in the cavity and the magnet powder or soft magnetic powder supplied into the cavity later are applied at a molding pressure higher than the preforming pressure in a direction parallel to the boundary surface formed by mutual contact.
  • the boundary area is reduced by compression.
  • the particles constituting the preform and the particles supplied into the cavity afterward enter the mating region, and the boundary surface has a shape having irregularities in its cross section. This unevenness provides sufficient mechanical coupling at the interface.
  • the mechanical bond strength increases as the unevenness of the interface increases.
  • the soft magnetic yoke portion may be preformed at a low pressure in advance, and the preforms of the bond magnet and the soft magnetic yoke may be combined in the cavity to perform the main molding.
  • a bonding material or an adhesive may be applied in advance to the joint surface of the preform.
  • the bonding material and the adhesive are melted and penetrate into the bonded magnet portion and the soft magnetic yoke portion to strengthen the joint surface.
  • the upper and lower punches for the bond magnet part and the soft magnetic yoke part can be moved separately, it becomes possible to pressurize simultaneously without breaking the shape of the punch contact surface of the preform. . After integral molding, cure at 250 ° C or less, and after applying surface treatment such as epoxy resin coating if necessary, press-fit or adhesively fix the rotating shaft.
  • the magnetic pole part is magnetized to form a magnet rotor.
  • a motor rotating shaft 13 having a flat surface 16 can be set in advance in the main molding cavity, and the motor rotating shaft and the magnet rotor can be integrated together.
  • the motor shaft length is long, a plurality of magnet rotors can be stacked and used. Furthermore, it is easy to provide a skew angle by stacking while shifting the magnetic pole pitch.
  • the shear stress is always stable and becomes lOMPa or more, and further 15 MPa or more.
  • rotational torque is generated in the rotor.
  • the rotor generates stress tangential to the rotational direction, but shear stress is mainly applied to the bonded interface between the bonded magnet portion and the soft magnetic yoke portion.
  • tensile stress is also applied to the joint interface.
  • the joint interface formed according to the present invention has a high strength that is almost equivalent to both shear stress and tensile stress.
  • the shear strength of the joint interface is used as an index of the joint strength. It was.
  • Fig. 11 (a) the correlation between the preforming pressure and the shear strength at the joint interface is shown in Fig. 11 (a) (in Fig. 11 (a), i represents the shear strength of the interface between the isotropic bonded magnet and the soft magnetic yoke). From FIG. 11 (a), it can be seen that the lower the preforming pressure of the isotropic bonded magnet, the higher the shear strength of the joint surface 110 after being integrally formed with the soft magnetic powder.
  • the preforming pressure is 200 MPa or less, the shape of the preform cannot be maintained, and the productivity is significantly reduced. Since the residual magnetic flux density of the magnet is isotropic, there is no correlation with the preforming pressure.
  • Fig. 11 (b) shows the correlation between the pressure and the shear strength of the bond interface, and the residual magnetic flux density of the magnet section (in Fig. 11 (b), ii represents the shear strength of the bonded surface of the anisotropic bonded magnet and the soft magnetic yoke). And iii represent Br (%) of the anisotropic bonded magnet, respectively).
  • the integral molding process does not apply a magnetic field, and the lower the preforming pressure, the greater the compression width during main molding.
  • the preforming pressure is preferably in the range of 250 to 500 MPa from the viewpoint of achieving both the magnetic properties of the magnet and the bonding force. More preferably, the pressure is about 300 to 400 MPa.
  • the shear strength is measured with the bonded magnet section. Apply shear stress in the same direction as the compression direction at the time of main molding to the region including the joint interface with the magnetic part, and gradually increase the shear stress to cause shear stress and joining. It can be determined from the area of the interface.
  • Fig. 12 and Fig. 13 show photographs of the joint surface appearance of the cross section in the pressing direction of the integrally molded product obtained after the main molding when the preforming pressure is changed.
  • Fig. 13 shows a further enlargement of the joint surface in Fig. 12.
  • the vertical direction in the photograph is the pressing direction during molding.
  • FIGS. 12 and 13 it is observed that both the isotropic bond magnet and the anisotropic bond magnet have a larger amount of unevenness at the joint interface as the preforming pressure is lower.
  • the pre-forming pressure and the main forming pressure are the same, there are almost no irregularities at the bonding interface.
  • a strong bonding force of 15 MPa or more is achieved by creating a state in which the magnet powder and soft magnetic powder mesh with each other in the vicinity of the interface with an unevenness amount of about 50 to LOO m. You can see how they are getting.
  • Fig. 11 shows the relationship between the preforming pressure and the shear strength of the joint interface.
  • Fig. 16 shows the position of the fracture surface when the shear strength was obtained.
  • Pre-forming pressure is 200MPa and 40 In OMPa, the breakage occurs at the position entering the soft magnetic yoke (A) side from the joint surface. It does not break at the joint surface.
  • the pre-forming pressure was 600MPa, the same as the main forming pressure, fracture occurred on the joint surface. This phenomenon was the same regardless of whether an isotropic bonded magnet or an anisotropic bonded magnet was used as the permanent magnet.
  • the shear strength of the joint interface itself is lower than the shear strength of the soft magnetic yoke (A), isotropic bond magnet (B), and anisotropic bond magnet (C), regardless of the preforming pressure. Nevertheless, the reason why fracture occurs on the soft magnetic yoke (A) side is considered as follows.
  • the compact released from the molding pressure tries to return to its original state, although it is slight due to the springback phenomenon.
  • the amount that the bonded magnet part tries to return is larger than the amount that the soft magnetic part tries to return, so it is considered that tensile stress is generated near the joint interface of the soft magnetic part. It is presumed that it is easy to break at the position where this tensile stress is generated. As shown in Fig. 15, when the pre-forming pressure and the main forming pressure are the same, the bond magnet powder and soft magnetic powder are less likely to be mixed on the joint surface! Therefore, regardless of the bow I tension stress Break at the joint surface.
  • the magnets can be oriented in a sufficient magnetic field one unit at a time in the preforming process, stable orientation and magnetization can be easily performed regardless of the number of poles and dimensions of the magnets.
  • the anisotropic bonded magnet part mainly comprises a binder and a magnet powder having an average particle size of 50 to 200 ⁇ m. Pre-molded in a magnetic field using a magnetic powder compound, and then integrated with a soft magnetic powder compound mainly composed of soft magnetic powder having an average particle size of 1 to 100 m in the absence of a magnetic field.
  • Adopted manufacturing method characterized by main molding and thermosetting it can.
  • the metal mold for the main molding is made of carbide or other material that emphasizes mechanical strength characteristics rather than magnetic characteristics so that it can withstand high pressures of 500 to 1000 MPa, and has a thickness that is more than a certain degree. There is a need to. For this reason, it becomes difficult to transmit the magnetic field generated by the electromagnet to the magnet forming part without waste.
  • a steel material with high saturation magnetic flux density and high relative permeability that emphasizes magnetic properties can be used for the mold material, and furthermore, a thin wall can be used, so the distribution is uniform.
  • an orientation magnetic field with high strength can be generated in the magnet molding part. For example, when a radially anisotropic ring magnet is oriented, a magnet with a higher degree of orientation and less magnetic variation can be obtained by orienting with a preforming mold.
  • the pre-forming press of about 300 MPa is more compact than the main forming press, and the constituent materials of the press can be selected from materials that emphasize magnetic properties.
  • a closed magnetic circuit connected by a back yoke can be configured, and the electromagnet can be placed near the magnet powder.
  • Fig. 8 (b) in the figure, arrow B indicates the direction of the magnetic field
  • the magnet's magnetic axis is made easier by tilting the magnet that compresses the magnet against a uniform parallel magnetic field. It can be aligned in any direction.
  • Fig. 8 (c) in the figure, arrow B indicates the direction of the magnetic field
  • the magnetic easy axis can be bent by devising the shape of the yoke tip and the arrangement of the electromagnet.
  • it is possible to control a more complicated orientation magnetic field by making a complicated magnetic path in a mold for preforming a magnet, or by making a permanent magnet function as a secondary magnetic path.
  • the density when compression-molded at a high pressure of LOOOMPa is, for example, 5.5 to 6.5 MgZm 3 and R—Fe— It is 5.3 to 6.2 MgZm 3 for the N-based bonded magnet part, and 6.0 to 6.8 Mg / m for the bonded soft magnetic part of Fe powder.
  • a rotor in which many permanent magnets having complicated shapes and orientations as shown in Fig. 1 are installed cannot be manufactured by the conventional technology as shown in Figs. 5 and 6, but the manufacturing method of the present invention is used. Manufacturing It becomes possible.
  • a magnet unit comprising a pair of permanent magnets 1A, IB so that their magnetic directions are axisymmetric with respect to each other's joint surface 100 constitutes a magnetic pole.
  • anisotropic magnets are formed in such a way that magnetic poles of different polarities are alternately generated, high characteristics are expected.
  • the generated magnetic field can be efficiently concentrated at the center position of the magnetic pole as compared with the structure in which one magnetic pole is formed by a single magnet as shown in FIG.
  • the angle ⁇ in Fig. 9, that is, the inclination angle with respect to the radial direction of the joint surface is preferably 5 to 35 °. In particular, a range of 20 ° ⁇ 10 ° is more preferable.
  • the induced voltage is normalized in a comparative example (conventional method: Fig. 3).
  • the present invention integrally forms a rotor with a bonded magnet powder containing a binder such as a resin binder and a soft magnetic powder, so that the bonding strength between the bonded magnet portion and the soft magnetic yoke portion is increased. Therefore, it is possible to provide a magnet rotor with high structural reliability even in high-speed applications.
  • the compression molding manufacturing process is divided into low-pressure pre-forming and high-pressure main forming, and the magnet's easy axis is aligned in a sufficient magnetic field in the pre-forming process. Regardless of the number of poles and dimensions of the rotor, it is possible to obtain a magnet rotor that has a stable magnetic pitch and a small magnetic canopy.
  • epoxy resin is 3% by mass with respect to magnet powder and 1. with respect to soft magnetic powder.
  • the outer diameter of the rotor is 50 mm, the thickness in the magnetization direction of the bond magnet part 1 is 10 mm, and the length in the direction of the rotation axis is 20 mm.
  • a 0.3 mm thick Ti-based protective ring was used.
  • Table 1 is a table showing the relationship between the induced voltage of the motor and the rotational speed for both rotors.
  • the voltage is 100% of the value of lOOOrpm (number of revolutions per minute) of Comparative Example 1
  • the induced voltage at lOOOOrpm is that the effective air gap can be narrowed by the amount of the absence of the protective ring in Example 1 compared to Comparative Example 1, although the residual magnetic flux density (Br) of the magnet is 30% lower.
  • the induced voltage drop is only 4%.
  • the induced voltage increases almost in proportion to the number of revolutions.
  • Comparative Example 1 the eddy current loss in the protective ring portion becomes more noticeable and the generated linear voltage decreases as the speed increases.
  • Example 1 an induced voltage almost proportional to the rotational speed is obtained up to 20,000 rpm.
  • Example 1 did not cause problems such as magnet breakage or bond peeling between the magnet part and the soft magnetic part.
  • the safety factor of about 20,000 rpm was satisfied about 5 times.
  • FIG. 1 is a schematic cross-sectional view of a permanent magnet rotor according to another embodiment of the present invention.
  • one magnetic pole is composed of two magnets 1A and 1B, a yoke 2 made of a soft magnetic material, and a shaft 13.
  • the production method of the present invention makes it possible to install a large number of permanent magnets having such complicated shapes and orientations.
  • N (S) in the figure.
  • the generated magnetic field can be efficiently concentrated at the center position of the magnetic pole, and high magnetic characteristics can be obtained compared to a structure in which one magnetic pole is composed of a single magnet as shown in Fig. 2.
  • the concentration of the generated magnetic field is related to the tilt angle of magnetization.
  • the dimensions of the magnet material are the same as in Example 1.
  • FIG. 9 is a diagram showing the relationship between the induced voltage and the tilt angle in Example 2.
  • the induced voltage was specified with the value at lOOOrpm as the value of Comparative Example 1 as 100%. From Fig. 9, it can be seen that by adopting the structure shown in Fig. 1, motor characteristics higher than those of Comparative Example 1 using the conventional segment bonding method can be obtained. From FIG. 9, it can be seen that, in order to improve the voltage, the inclination angle is preferably 5 to 40 °, more preferably 5 to 35 °, and particularly preferably 20 ° ⁇ 10 °. Also in Example 2, a generated voltage almost proportional to the number of revolutions can be obtained up to 20,000 rpm, and it can be seen from Table 1 that the structure is more advantageous at high speeds.
  • FIG. 10 is a schematic cross-sectional view of a permanent magnet rotor according to another embodiment of the present invention.
  • the magnet having a large thickness in the magnetic field direction is difficult to be oriented or multipolar.
  • the magnet pole Stable orientation and magnetization can be easily performed regardless of the number and size.
  • one pole can be composed of three magnets 1A ⁇ : LC force, and the generated magnetic field can be concentrated efficiently at the magnetic pole center position.
  • FIG. 17 is a schematic cross-sectional view of a permanent magnet rotor according to another embodiment of the present invention.
  • Fig. 17 (a) shows the difference between the four poles integrated with the soft magnetic yoke by combining the magnets with the magnetic axis easy bent using the magnetic field orientation device shown in Fig. 8 (c). This is an example of isotropic magnetization.
  • Fig. 17 (b) shows an example of a 12-pole magnetic pole concentrated type with 1 magnetic pole, 2 magnets 1A, and IB force. is there. In this way, a multi-pole magnet rotor can be easily realized by combining a plurality of preformed magnets with soft magnetic powder and integrating them together.
  • FIG. 17 (a) shows the difference between the four poles integrated with the soft magnetic yoke by combining the magnets with the magnetic axis easy bent using the magnetic field orientation device shown in Fig. 8 (c). This is an example of isotropic magnetization.
  • Fig. 17 (b) shows an example of a
  • FIG. 17C shows an embodiment in which the nonmagnetic compound 15 is sandwiched between the magnet 1 and the magnet 1 and the soft magnetic yoke 2 is integrated.
  • FIG. 17 (d) shows an embodiment in which the thickness of the magnet in the magnetic field direction is changed along the circumferential direction.
  • FIGS. 17 (e) and (f) show an example of an embedded magnet type.
  • a bonded magnet rotor for a motor integrated with a soft magnetic yoke is provided.
  • FIG. 1 is a schematic cross-sectional view of a surface magnet permanent magnet rotor (a) and a reluctance effect combined surface magnet permanent magnet rotor (b) according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view illustrating a conventional permanent magnet rotor system.
  • FIG. 3 is a schematic cross-sectional view of a surface magnet type permanent magnet rotor of a comparative example.
  • FIG. 4 is a schematic cross-sectional view showing the principle of forming in a magnetic field.
  • FIG. 5 is a schematic cross-sectional view of a conventional method for manufacturing a radial anisotropic orientation type ring magnet.
  • FIG.6 Schematic cross-sectional view of polar anisotropic ring magnet magnetization method in conventional method (a), magnetization of radial anisotropic ring magnet (b), and polar anisotropic ring magnet It is a schematic cross section showing the principle of magnetization (c).
  • FIG. 7 is a flowchart of a rotor manufacturing method according to the present invention.
  • FIG. 8 is a schematic cross-sectional view of a magnetic field application method during preforming in the present invention.
  • FIG. 9 is a diagram showing a voltage-one-magnetization tilt angle showing a measurement result of an induced voltage according to another example of the present invention.
  • FIG. 10 is a schematic cross-sectional view of a permanent magnet rotor according to another embodiment of the present invention.
  • FIG. 11 is a diagram showing the pre-forming pressure of the magnet in the present invention and the shear strength after integral molding with soft magnetic powder.
  • FIG. 12 is a view showing an appearance photograph of a pressure-direction bonded surface after integral molding with a magnet pre-forming pressure and soft magnetic powder in the present invention.
  • FIG. 13 An enlarged view of the photograph of FIG.
  • FIG. 14 is a photograph showing the structure for explaining the definition of the unevenness of the joint surface.
  • FIG. 15 is a diagram showing the pre-forming pressure of the magnet in the present invention, the shear strength after integral molding with soft magnetic powder, and the unevenness of the joint surface.
  • FIG. 16 is a photograph showing the position of the fracture surface when the shear strength was obtained in FIG.
  • FIG. 17 is a schematic cross-sectional view of a permanent magnet rotor according to another embodiment of the present invention.
  • FIG. 18 is a schematic sectional view showing an integral part of a motor rotating shaft according to another embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

 磁石部と軟磁性ヨーク部との接合強度が高く、高速用途においても構造信頼性が高く、モータ特性の良好な表面磁石型および内部磁石型の回転子とその製造方法を提供する。異方性ボンド磁石部と軟磁性部から回転子を構成し、異方性ボンド磁石部は磁界中で予備成形後、無磁場中で軟磁性部と一体化する様に本成形し、熱硬化させることにより、表面磁石型の回転子を製造する。一対の永久磁石をその磁化方向が接合面に対して対称となるように接合して磁極を構成した磁石ユニットを、磁気作用表面部に交互に異なる極性の磁極が生じるように連ねて異方性磁石体を形成し、前記永久磁石の磁化方向を前記接合面を通る径方向に対して角度5~35°にすることにより、良好なモータ特性が得られる。

Description

モータ用回転子およびその製造方法
技術分野
[0001] 本発明は、永久磁石を使用したモータ、発電機などの高効率ィ匕を図ることを目的と した、軟磁性ヨーク一体のモータ用ボンド磁石回転子に関するものである。
背景技術
[0002] 従来、モータ用磁石回転子には様々な構造が考案されてきたが、それらは大きく 2 つの方式に分類される。第一の方式は、図 2 (a)〜(c)、および (f)のように永久磁石 を磁極の表面に配置したいわゆる表面磁石(Surface Permanent Magnet、以 下 SPM)回転子である。これに対し第二の方式は、図 2 (d) (e)のように永久磁石を 回転子内部に配置した磁石埋設(Interior Pemanent Magnet、以下 IPM)回転 子である。前者の SPM回転子は、回転子表面に配置した永久磁石がエアギャップを 挟んで固定子に対向する形式であり、後者の IPM回転子に比べて設計や製造が容 易という特長がある。また、後者の IPM回転子は構造信頼性に優れ、さらにリラクタン ストルクを得易いという特長がある。なお、図 2 (f)に示す外転型の磁石回転子は、磁 石が飛散する恐れが低 、ことから SPM構造をとることが多 、。
[0003] 図 2のような永久磁石回転子において、珪素鋼板の絶縁積層品ゃ铸造、鍛造など 力 成る軟磁性ヨークの表面、もしくは内部に永久磁石を固定する方法としては従来 から、接着剤を使用するのが一般的である。
[0004] 磁石回転子をモータに組込み回転させると、回転に伴う遠心力や、固定子との間に 磁気的な吸引や反発力を発生する。さらに、回転に伴う振動なども発生する。ここで 、回転子を形成する磁石ゃ軟磁性ヨーク各々、また磁石と軟磁性ヨーク間の接合強 度が不充分であると、磁石の剥離や破壊が発生する。遠心力は回転速度のほぼ二 乗に比例して増加するため、高速回転するほどこの問題は深刻化する。この問題は 、図 2のようなセグメント磁石を用いた場合、特に図 2 (a)〜(c)のように磁石が回転子 外径部に配置される内転型の SPM回転子で著しい。さらに、単一磁石で複数の磁 極が構成可能なリング磁石を用いる場合であっても、回転子が温度変化した際に磁 石と軟磁性ヨークとの線膨張率の違いにより、磁石が破損するのを避ける目的で、接 着層のクリアランスを大きくし、さらに柔らかい接着剤を使用することが多い。なお、接 着層のクリアランスは接着強度のノ ツキ増大や接着位置ズレなどの原因になる。ま た、柔らかい接着剤は一般的に熱安定性や接着力に劣る。このように磁石の形状に よらず、磁石回転子の接着作業には多くの技術課題がある。
[0005] 以上の様な接着強度に対する懸念から、内転型 SPM回転子の強度対策として図 3 のように非磁性ステンレス鋼や強化プラスチック繊維ファイバーなど力もなる構造補 強用の保護リング 3を磁石 101の外周面に巻いて、強度を補う場合が多い。しかしこ のような場合、実効的なエアギャップが拡がり、磁石力 の磁束が固定子に到達し難 くなりモータ出力が低下してしまう。さらに、ステンレス鋼など金属製の保護リングでは 、渦電流損が発生してモータ効率を低下させてしまう。なお、磁石と軟磁性ヨークとを 一体成形する比較例として挙げる特開 2001— 95185号公報 (特許文献 1)ゃ特開 2 003— 32931号公報 (特許文献 2)においても、構造補強用のフレームや保護リング の使用が前提になっていることから、磁石と軟磁性ヨーク間に充分な接合強度を得て V、なのは明らかである。また特開平 5— 326232号公報 (特許文献 3)ではリング磁石 にくさび形状を設けて磁石のマクロ的外観形状によりヨークにくい込ませ軟磁性ョー クとの抜けを防止している点から、また特開平 7— 169633号公報 (特許文献 4)でも 磁石をリング形状に限定している点や製法に関する記述から、磁石と軟磁性ヨーク間 に充分な接合強度は得ておらず、リング磁石の内圧だけで軟磁性ヨークを保持して V、るのは明らかである。特開 2001— 052921号公報 (特許文献 5)では仮圧縮成形 と本成形を行ってリング状磁石を形成して ヽる。し力 リング状磁石と軟磁性ヨークと の接合は接着であり接合強度や信頼性の点で不充分である。
[0006] ところで、永久磁石には等方性と異方性の 2種類が存在する。等方性磁石は、異方 性に比べて磁気特性が 2割ほど低 ヽものの、磁粉を圧縮成形する過程で磁場を与え る必要がないことから製造が容易という特長がある。一方、異方性磁石は磁化容易軸 を有する無着磁状態の原料粉を金型内へ投入し、これに適切な方法で強磁場を与 えることで磁化容易軸を特定方向に揃え、その状態のまま圧縮成形し焼結、あるいは 熱硬化性の樹脂で固めることでその性質が殆ど変化せず永久磁石として機能するよ うになる。ここで、フェライト系や希土類系の異方性ボンド磁石では原料を粉砕後、図 4 (図中、矢印 Aはプレス方向を示す)のように磁場をかけた金型の中で磁石粉末 6を 圧縮成形する。これにより、磁化された磁石粉末 6は磁化容易軸方向に N、 Sの磁極 をもつ粒子磁石になり、磁針のように外部磁場の方向にほぼ揃う。この状態で圧縮成 形すると磁化容易軸が揃った圧粉体となる。なお、異方性磁石は磁場中成形の最後 の工程で、逆方向磁場や交流減衰磁場などを与えて脱磁処理を行なう。この圧粉体 には予め熱硬化性の榭脂を混合しており、これを熱硬化することでボンド磁石とする 。このように磁ィ匕容易軸が揃っている磁石を異方性磁石という。異方性磁石は磁化容 易軸が揃えられた方向にのみ優れた磁気特性が得られる。
特許文献 1 :特開 2001— 95185号公報
特許文献 2:特開 2003 - 32931号公報
特許文献 3:特開平 5— 326232号公報
特許文献 4:特開平 7— 169633号公報
特許文献 5:特開 2001— 052921号公報
発明の開示
発明が解決しょうとする課題
[0007] さて、永久磁石にこのように磁性を持たせるには、大きなエネルギーを必要とする。
例えば NdFeBをはじめとする希土類系ボンド磁石には、 1600kAZm程度の配向 磁場強度が必要である。電磁石に直流電流を流す方式では、コイルを多数回卷くこ とが空間的に可能な場合には上記の磁場強度が得られるが、少数回し力卷けない 場合にはコイル発熱の制約から通常、 800kAZm程度の磁場し力発生できない。そ こで 1600kAZm以上の高磁場を必要とする磁石には、コンデンサーに充電した高 電圧大電流を瞬間的 (パルス的)に流す方式が一般に用いられている。また、このよ うに大電流を流すためコイル部の発熱が大きぐ強制空冷や強制水冷の機構を付カロ し、コイル部の発熱による導線の絶縁破壊などを防止する必要がある。
[0008] 単純な直方体磁石を長手方向に配向(磁化)する場合には、図 4のように圧縮成形 時に容易に配向できる。しかし、リング型磁石に放射 (ラジアル)状に N、 S、 N、 Sと多 極配向する場合は、先ず図 5 (図中、矢印 Aはプレス方向を、太線矢印 Bは磁界方向 を、それぞれ示す)のような専用の装置で磁場中圧縮成形し磁石の磁化容易軸を放 射状に揃える必要がある。図 5はラジアル配向用の磁場成形装置の縦断面図である 。また、リング型磁石の極異方配向も同様に、図 6 (a) (図中、矢印 Bは磁界方向を示 す)のようなコイル磁場を用いて磁極数に対応する様に磁ィ匕配向する必要がある。図 6 (a)は 4極の極異方配向における磁場成形装置の横断面図である。
[0009] 図 5では、上下に配置された電磁石からの磁界力 灰色矢印のようにヨーク部中央 に集められ、磁石位置で放射状に外側へ拡がっていく。この時配向磁場としては、充 分な強度の磁場が、磁石位置にムラなく分布することが望ましい。例えば、リング磁石 の軸方向中央付近に比べて上下端面近傍での配向磁場強度が劣っていたり、磁石 の上下端面近傍でラジアル方向成分が乱れていたりすることは望ましくない。
[0010] このような理想的な配向磁場を得るためには、磁石のなるべく近傍に電磁石を配置 して強い磁場を発生させること、また、電磁石を囲む磁路はなるべく高い飽和磁束密 度、高い比透磁率の磁性体で構成し且つ閉磁路とすることが望ましい。しかしながら 製造上の制約により、両者とも実現が困難な場合が多い。例えば、磁石粉などを給 粉する配管、コイルを冷却する配管などを避けて電磁石は配置せざるを得ず、また可 動部であるプレス成形用パンチとのクリアランスなどにより、電磁石はさらに遠方へ遠 ざけられることになる。
[0011] 一方、電磁石を囲む金型磁気回路についても、磁石取出し用開口部の必要性など から、閉磁路とは程遠い構成になる。また、金型材質についても圧縮成形時の高圧 力に耐え得る様に、磁気特性よりも機械強度を優先せざるを得ない。さらに磁石寸法 によっては、金型磁路の磁気飽和が制約となり大電流を流しても所望磁場が得られ ないことが生じる。例えば、磁石内径が小さいほど、ヨーク先端部の磁気飽和が制約 となり、充分な配向磁場が得られず、所望の方向への配向が困難となってしまう。ま た、図 6 (a)に示す極異方配向の電磁石においても、前述のとおりコイルを多数回卷 くことが困難なため所望の配向磁場強度を確保し 1 、さらに複数の磁場を均等に発 生させるのが困難で、磁場分布のバラツキが履歴として磁ィ匕配向した磁石に残り、極 ピッチや磁力バラツキの大きい磁石を生む原因となる。
[0012] 図 6 (a)の成形装置と同様の構造の着磁装置で所望の極数に NS着磁することがで きる。図 5の装置で磁化容易軸を放射 (ラジアル)状に揃えた成形体を熱硬化性の榭 脂で固めた後に、所望の極数(図 6では 4極)に対応するコイルを卷線した図 6 (a)と 同様の構成の電磁石を用いて、灰色矢印のように磁場を印加する。図 6 (b) (図中、 矢印(図中、矢印 Bは磁界方向を、矢印 Cは着磁方向を、それぞれ示す)に示す様に 成形体には径方向に着磁された 4つの磁極を形成することができる。図 6 (a)の装置 で磁化容易軸を極方向に揃えた成形体を熱硬化性の樹脂で固めた後に、所望の極 数(図 6では 4極)に対応するコイルを卷線した図 6 (a)と同様の構成の電磁石を用い て、灰色矢印のように磁場を印加する。図 6 (c) (図中、矢印(図中、矢印 Bは磁界方 向を、矢印 Cは着磁方向を、それぞれ示す)に示す様に成形体には極方向に着磁さ れた 4つの磁極を形成することができる。ラジアル配向磁石と極異方配向磁石とでは 、印加する着磁磁場が同じであっても成形体の配向方向に倣って着磁されるため着 磁パターンが異なるのである。
[0013] 着磁工程においても、磁ィ匕配向の工程と同様、パルス電源の採用やコイル発熱の 冷却対策が必要である。一方、空間的な制約から、多極ィ匕するほどコイル卷数が減 少し、充分な着磁磁場を得ることが困難となる。なお、磁場中成形の工程で揃えた磁 化容易軸を、着磁の工程で向きを変えるのはほぼ不可能なため、極ピッチゃ磁カバ ラツキの少ない磁石回転子を得るためには、着磁の工程以上に、配向の工程が重要 となる。しかし、前記の理由によりラジアル配向にしろ多極配向にしろ、異方性磁石回 転子として一度に磁ィ匕容易軸をバラツキなく揃えるのは、極めて困難である。
[0014] 本発明は上記した問題点に鑑み、ボンド磁石部と軟磁性ヨーク部との接合強度が 高ぐ高速回転用途においても強度的安全性の高い表面磁石型および内部磁石型 の回転子とその製造方法を提供することを目的とする。また、本発明は、磁石の極数 や寸法 ·形状に依らず安定した乱れの少ない配向および着磁を容易に行なうことが 可能で、放射 (ラジアル)状、極異方状のみでなぐ磁極 1極が両端部まで略平行な 配向など、より複雑な磁極パターンが実現可能な永久磁石の製造方法を提供するこ とを目的とする。
課題を解決するための手段
[0015] 本願第一の発明は、結合材を含む磁石粉末からなるボンド磁石部と結合材を含む 軟磁性粉末カゝらなる軟磁性ヨーク部とを備え、磁石粉末と軟磁性粉末とを、接合面に おいて互いにかみ合わせながらボンド磁石部と軟磁性ヨーク部とがー体的に圧縮成 形することを特徴とする、軟磁性ヨーク一体のモータ用ボンド磁石回転子に関するも のである。つまり、フェライト磁石および、または希土類磁石と熱硬化性榭脂の混鍊物 と、アトマイズ鉄粉や Fe— Co合金粉末、ナノ結晶粉末などの高透磁率軟磁性材料と 熱硬化性榭脂の混練物とを、一体的に加圧成形後 250°C以下で硬化処理すること により、ボンド磁石と軟磁性ヨークとがー体となったモータ用回転子を提供するもので ある。
[0016] 本発明にお 、て、ボンド磁石部および、または軟磁性ヨーク部が複数の部位で形 成される構成を採用することができる。
[0017] ボンド磁石部には、等方性および、または異方性の希土類ボンド磁石を使用するこ とが望ましい。高い磁気特性を得るためには、異方性ボンド磁石を使用することがより 望ましい。また、本発明は回転式モータに限らず、リニアァクチユエータ、磁気センサ 、スピーカなど、磁石と軟磁性ヨークとを併用する磁気回路用部品全般に適用可能 である。さらに、軟磁性部の一部、または全部に Cuなどの非磁性粉末に結合材を混 合した非磁性コンパゥンドを使用して、磁気回路を形成することもできる。
[0018] 本発明にお ヽては、磁気異方性を有する磁石粉末および結合材を主とする異方性 ボンド磁石部と、軟磁性粉末および結合材を主とする軟磁性部とを有し、圧縮成形 手段により各々を一体ィ匕し略円柱状にしたモータ用回転子であって、略平行配向の 異方性ボンド磁石部を磁気作用表面部に交互に異なる極性の磁極が生じるように連 ねて形成することが好まし 、。
[0019] 本発明においては、平行磁場配向した永久磁石を複数個組み合わせて一磁極を 形成するように構成した磁石ユニットを、磁気作用表面部に交互に異なる極性の磁 極が生じるように連ねた構成とすることが好ま 、。
[0020] 本発明では、一対の永久磁石をその磁ィ匕方向が接合面に対して対称となるように 接合して磁極を構成した磁石ユニットを、磁気作用表面部に交互に異なる極性の磁 極が生じるように連ねて異方性永久磁石を形成し、前記永久磁石の磁化方向を、該 接合面を通る径方向に対して傾斜角度を有する方向とすることが好ましい。傾斜角 度は 5〜35° が好ましぐ 20° ± 10° の角度とすることが更に好ましい。
[0021] 磁石粉末の平均粒径が 50〜200 μ mであり、前記軟磁性粉末の平均粒径が 1〜1 00 mであるものが好ましい。相互に粒径を変えることでボンド磁石部と軟磁性部の 接合強度が高まり、ボイドゃクラック等を抑制できる回転子を製造できる。さらに好ま しい磁石粉末の平均粒径は 80〜 150 μ mであり、さらに好ましい軟磁性粉末の平均 粒径は 5〜50 μ mである。
[0022] 磁石粉末は、異方性の R—Fe— B系磁石粉末あるいは Sm—Fe— N系磁石粉末 であることが望ましい。例えばフェライト系ボンド磁石の様に残留磁束密度 Brが 0. 4 T未満であると、モータとして必要充分なトルクを得ることができない。したがって、 Br ≥0. 8T、保磁力 Hcj≥600kAZmの希土類ボンド磁石を使用することがより望まし い。
[0023] 一方、軟磁性粉末はアトマイズ鉄粉、 Fe— Co鉄粉、 Fe基ナノ結晶磁性粉末などを 用いて、電気伝導率は 20kSZm以下、磁気特性は飽和磁束密度 Bm≥l. 4T、保 磁力 Hc≤800AZmにすることが望ましい。電気伝導率が 20kSZm未満であると、 従来接着方式で軟磁性ヨークとして用いられて 、る珪素鋼板などの絶縁積層品と略 同等に、渦電流損を低減することができる。また、 Bmが低いと必要充分な磁束が得 られず、極端にヨークを大型化する必要などが発生する。特に本発明のように Br≥0 . 8Tの希土類ボンド磁石を用いる場合は、この問題点が顕在化する。また Heが高す ぎるとモータ回転時のヒステリシス損が顕著になりモータ効率が著しく低下する。
[0024] 生産性や組立て精度の観点から、磁石と軟磁性ヨークとを一体成形する技術も種 々開発されているが、インサート成形 (特許文献 1)ではその製法上、原料に高い流 動性が要求されるため、磁石材料ゃ軟磁性材料に多量の榭脂を混ぜなければなら ない。このため、磁石材料ゃ軟磁性材料の質量%は 6割程度となり、軽量というメリッ トはあるものの、低い磁気特性しか得られない。一方、本発明は圧縮成形であるため 、軟磁性材の質量%を 98%程度まで上げることが可能であり、より高い磁気特性が 得られるという特長がある。
[0025] また軟磁性粉末に、絶縁皮膜のコーティングをなすことも好ま U、。あるいは希土類 磁石粉末に、絶縁皮膜コーティングをなすことも好ましい。絶縁皮膜のコーティングを 施すことで電気抵抗が増加して、モータ回転時の渦電流損を低減することができる。
[0026] ボンド磁石と軟磁性ヨーク一体の、磁石回転子成形用の原料としては、磁石粉末お よび軟磁性粉末に榭脂バインダー (結合剤)を添加する。結合剤としては熱硬化性榭 脂を、磁石粉末コンパゥンドであれば 1〜5質量%、軟磁性粉末コンパゥンドであれ ば 0. 1〜3質量%含むことが望ましい。結合剤は熱硬化性榭脂が好ましい。例えば エポキシ榭脂、フエノール榭脂、ユリア榭脂、メラミン榭脂、ポリエステル榭脂等が適 宜使用できる。磁石粉末質量に対する含有量は、 0. 1〜5質量%が好ましぐ 1. 0〜 4質量%がより好ましい。軟磁性粉末に対する含有量は 0. 1〜3質量%が好ましぐ 0 . 5〜2質量%がより好ましい。結合剤の含有量が少なすぎると機械強度が著しく低 下し、結合剤の含有量が多すぎると磁気特性が著しく低下する。
[0027] 軟磁性粉末と結合剤、もしくは磁石粉末 (特に希土類磁石粉末)と結合剤を調合し てコンパウンドとする。このコンパウンド中には、酸化防止剤や潤滑剤が含まれていて もよい。酸化防止剤は、磁石粉末の酸化を防止して磁石の磁気特性の低下を防ぐの に寄与する。また、コンパゥンドの混練'成形の際に熱的安定性の向上に寄与し、少 ない結合剤添加量で良好な成形性を保てる。酸化防止剤は、既知のものを使用でき 、例えば、トコフエロール、アミン系化合物、アミノ酸系化合物、ニトロカルボン酸類、ヒ ドラジンィ匕合物、シアンィ匕合物、硫化物等の、金属イオン、特に Fe成分に対しキレー ト化合物を生成するキレート化剤などが使用できる。
[0028] 潤滑剤は、コンパゥンドの混練'成形の際に流動性を向上させるため、より少ない結 合剤添加量で同等の特性を得ることができる。潤滑剤は既知のものを使用でき、例え ば、ステアリン酸またはその金属塩、脂肪酸、シリコーンオイル、各種ワックス、脂肪酸 などが使用できる。
[0029] また、他に安定化剤、成形助剤等の各種添加剤を添加することもできる。コンパゥ ンドは混合機や攪拌機を用いて混合する。
[0030] 本願第二の発明は、異方性ボンド磁石部と軟磁性部とを備える磁気回路用部品の 製造方法であって、前記異方性ボンド磁石部は結合材および磁石粉末を主とする磁 石粉末コンパゥンドを用いて磁界中で予備成形し、その後、無磁場中で軟磁性粉末 を主とする軟磁性粉末コンパゥンドと一体ィ匕する様に本成形し、熱硬化させることを 特徴とする磁気回路用部品の製造方法である。
[0031] 本願第三の発明は、結合材を含む磁石粉末を予備成形して予備成形体を作製し、 前記予備成形体と結合材を含む軟磁性粉末とをキヤビティ内に装填し、前記予備成 形体と前記軟磁性粉末とを互 ヽが接触して形成する境界面と平行方向に予備成形 圧力より高い成形圧力で圧縮成形することを特徴とする磁気回路用部品の製造方法 である。
[0032] 本願第四の発明は、結合材を含む軟磁性粉末を予備成形して予備成形体を作製 し、前記予備成形体と結合材を含む磁石粉末とをキヤビティ内に装填し、前記予備 成形体と前記磁石粉末とを互 ヽが接触して形成する境界面と平行方向に予備成形 圧力より高い成形圧力で圧縮成形することを特徴とする磁気回路用部品の製造方法 である。
[0033] ここで、ボンド磁石と軟磁性ヨークの一体成形手段について、図 7 (図中、 Iは磁石予 備成形工程を、 IIは予備成形体組付け工程を、 IIIは一体成形工程を、 IVは熱硬化 工程を、 Vは着磁工程を、(i)は磁場中予備成形を、(ii)は無磁場中本成形を、それ ぞれ示す。(iii)は上面図、(iv)は側面図を、それぞれ示す)を用いて詳細に説明す る。結合材および平均粒径が 50〜200 mの磁石粉末を主とする磁石粉末コンパゥ ンドを、磁石予備成形専用の圧縮成形装置に充填して、成形圧力 200〜400MPa で予備成形する。予備成形で成形圧力を低めるのは、本成形の際に磁石粉と軟磁 性粉との密着性を高めるためである。なお、ボンド磁石が異方性の場合には、電磁石 などによって磁場を与えながら予備成形を行なう。
[0034] 次に、複数のボンド磁石の予備成形体を円筒キヤビティ内へ組付け、そこに結合材 およびアトマイズ鉄粉や Fe— Co合金粉末、ナノ結晶粉末などの平均粒径が 1〜: L00 μ mの高透磁率軟磁性材料粉末を主とする軟磁性粉末コンパゥンドを給粉し、ボン ド磁石部と軟磁性ヨーク部とを同時に予備成形圧力より高い 600〜: LOOOMPaの成 形圧力で一体的に本成形する。予備成形で成形圧力を低めるのは、本成形の際に 磁石粉と軟磁性粉との密着性を高めるためである。キヤビティ内に装填した予備成形 体と後からキヤビティ内へ供給される磁石粉または軟磁性粉とが、互 ヽが接触して形 成する境界面と平行方向に予備成形圧力より高い成形圧力で加圧されると、両者は 同時に圧縮されて境界面の面積が小さくなる。その際に予備成形体を構成する粒子 と後からキヤビティ内へ供給された粒子とが境界面にぉ 、て互いに相手側領域に入 り込み、境界面はその断面において凹凸を有する形状となる。この凹凸により境界面 における機械的結合が十分に行なわれる。境界面の凹凸量が大きいほど機械的結 合強度は大きくなる。なお、軟磁性ヨーク部も予め低圧力で予備成形を行ない、ボン ド磁石と軟磁性ヨークの予備成形体どうしをキヤビティ内で組合せて力ゝら本成形して も良い。さら〖こ、予備成形体の接合面に予め結合材ゃ接着剤などを塗布しておいて も良い。本成形後に行う加熱硬化処理により結合材ゃ接着剤が溶けてボンド磁石部 と軟磁性ヨーク部とに浸透して接合面を強化する。
[0035] また、ボンド磁石部と軟磁性ヨーク部用の上下パンチを別々に可動できる様にして おくと、予備成形体のパンチ接触面の形状を崩すことなぐ同時に加圧することが可 能となる。なお、一体成形後には 250°C以下で硬化処理を行ない、さらに必要に応じ てエポキシ榭脂塗装などの表面処理を施してから、回転軸を圧入または接着固定し
、最後に磁極部を着磁して磁石回転子となる。また、図 18に示す様に、フラット面 16 を有するモータ回転軸 13を本成形キヤビティ内へ予めセットしておき、モータ回転軸 と磁石回転子を一体ィ匕することもできる。また、モータの軸長が長いときには、複数の 磁石回転子を積み重ねて使用することができる。さらに、磁極ピッチをずらしながら積 み重ねることで、スキュー角を設けることも容易である。
[0036] 予備成形と本成形とに分けて成形することで、ボンド磁石部と軟磁性ヨーク部の接 合力を高めることが可能である。これは粒径の粗い磁石粉末を先に予備成形すること で、後から充填される粒径の細かな軟磁性粉末が一部ボンド磁石部側へかみ込み、 圧着力を高めるためである。従来の接着剤による接合では、接着層の厚みがばらつ いたり、接着面の状態によって接着強度が変わるなど、安定した接着強度を得ること は難しい。 20MPa以上の接着強度を有する接着剤を使用しても、接着面積が 1Z3 程度しか確保できず、平均すると実質 5MPa以下の接着強度し力得られないことが 多い。これに対して本発明では、ボンド磁石部と軟磁性部の圧着力は接合面の全域 で確保されるため、常に安定してせん断応力で lOMPa以上、さらには 15MPa以上 となる。ステータコイルに励磁電流が供給されると回転子に回転トルクが生じる。この とき回転子には回転方向に対して接線方向の応力が生じるが、ボンド磁石部と軟磁 性ヨーク部との接合界面には主にせん断応力が加わる。回転速度が大きくなるにつ れて接合界面には引張応力も加わる。本発明により形成された接合界面はせん断応 力および引張応力の何れに対してもほぼ同等の高い強度を有する。本発明を例え ばモータ回転子に適用して実施した場合、接合界面に大きなせん断応力が加わる 場合が多いことが想定されるため、後述する実施例では接合界面のせん断強度を接 合強度の指標とした。
[0037] ここで、等方性ボンド磁石粉の予備成形圧力を 200〜600MPaまで変化させ、各 々の条件に対して、軟磁性粉と組合せた後の本成形圧力を 600MPaにした時の、 予備成形圧力と接合界面のせん断強度の相関を図 11 (a)に示す (図 11 (a)中、 iは 等方性ボンド磁石と軟磁性ヨーク接合面のせん断強度を示す)。図 11 (a)より、等方 性ボンド磁石の予備成形圧力が低いほど、軟磁性粉と組合せて一体成形した後の、 接合面 110のせん断強度は高くなる様子がわかる。これは予備成形圧力が低いほど 本成形時の圧縮幅が大きくなり圧縮時に接合界面におけるボンド磁石粉と軟磁性粉 との嚙み合いが起こりやすいためである。 なお、予備成形圧力が 200MPa以下では 、予備成形体の形状が保てなくなり、生産性が著しく低下する。磁石部の残留磁束 密度は等方性であるため予備成形圧力との相関関係はな 、。
[0038] 次に、異方性ボンド磁石の予備成形圧力を 200〜600MPaまで変化させ、各々の 条件に対して、軟磁性粉と組合せた後の本成形圧力を 600MPaにした時の、予備 成形圧力と接合界面のせん断強度、および磁石部の残留磁束密度の相関を図 11 ( b)に示す(図 11 (b)中、 iiは異方性ボンド磁石と軟磁性ヨーク接合面のせん断強度を 、 iiiは異方性ボンド磁石の Br (%)を、それぞれ示す)。図 7に示す様に、一体成形の 工程では磁場を与えないことと、予備成形圧力が低いほど本成形時の圧縮幅が大き くなることから予備成形圧力が低いほど予備成形時に与えた磁石の配向が本成形時 に乱され易ぐ残留磁束密度が低下すると考えられる。従って、異方性ボンド磁石に おいて磁場中予備成形、および無磁場中本成形を行なう際、磁石の磁気特性と接 合力の両立という観点で、予備成形圧力は 250〜500MPaの範囲が好ましぐ 300 〜400MPa程度にすることが更に望ましい。せん断強度の測定はボンド磁石部と軟 磁性部との接合界面を含む領域に接合界面と平行であり且つ本成形時の圧縮方向 と同じ方向のせん断応力を加え、せん断応力を徐々に大きくして破断が生じたときの せん断応力と接合界面の面積から求めることができる。
[0039] ここで、予備成形圧力を変化させた時の、本成形後に得られる一体成形品の加圧 方向断面部の接合面外観写真を図 12,図 13に示す。図 12の接合面を更に拡大し たものを図 13に示す。写真における上下方向が成形時の加圧方向である。図 12, 1 3に示す様に、等方性ボンド磁石および異方性ボンド磁石とも、予備成形圧力が低 いほど、接合界面の凹凸量が多い様子が観察される。予備成形圧力と本成形圧力 が同じ場合、接合界面の凹凸はほとんど認められない。図 15 (a) (図 15 (a)中、 iは等 方性ボンド磁石と軟磁性ヨーク接合面のせん断強度を、 iiは接合面の凹凸量を、そ れぞれ示す。 )に等方性ボンド磁石の予備成形圧力とせん断強度および接合面の凹 凸量の相関を、図 15 (b) (図 15 (b)中、 iiは接合面の凹凸量を、 iiiは異方性ボンド磁 石と軟磁性ヨーク接合面のせん断強度を、それぞれ示す。 )に異方性ボンド磁石の 予備成形圧力とせん断強度および接合面の凹凸量の相関を示す。図 12および図 1 3に示す様に、本発明では磁石粉と軟磁性粉とが界面近傍において 50〜: LOO m 程度の凹凸量をもってかみ合う状態をつくることで、 15MPa以上の強固な接合力を 得ている様子がわかる。
[0040] 接合面における磁石粉と軟磁性粉との凹凸量を図 14を用いて説明する。断面写真 において磁石粉と軟磁性粉との接触箇所をつなぐと一本の曲線を書くことができる。 これが接合面である。接合面の凹凸のほぼ中心を縫うように一本の曲線を書く。この 曲線は当該曲線と接合面とによって囲まれる面積が当該曲線の左右で等しくなるよう に書かれ、これを中心線とする。中心線を接合面の最大ピークと接する位置まで平行 移動する。反対方向にも同様に平行移動する。平行移動で書かれた 2本の平行線の 間隔が凹凸量である。この作業は接合面の長さ lmmの視野において行う。(図 14中 、 iは接合面を、 iiは接合面の凸凹量を、 iiiは中心線を、 Sはボンド磁石側の凹凸面 積を、 Sは軟磁性ヨーク側の凹凸面積を、それぞれ示す。 )
2
[0041] 図 11では予備成形圧力と接合界面のせん断強度の関係を示したが、そのせん断 強度を求めた際の破断面の位置を図 16に示す。予備成形圧力が 200MPa及び 40 OMPaのとき破断が生じるのは接合面より軟磁性ヨーク (A)側に入った位置である。 接合面では破断しない。これに対して予備成形圧力が本成形圧力と同じ 600MPa のときは接合面で破断が生じた。この現象は永久磁石として等方性ボンド磁石と異方 性ボンド磁石の何れを用いる場合でも同様であった。接合界面自体のせん断強度は 予備成形圧力にかかわらず軟磁性ヨーク (A)、等方性ボンド磁石 (B)、異方性ボンド 磁石 (C)のそれぞれの持つせん断強度より低 、。それにも拘わらず軟磁性ヨーク (A )側で破断が生じる理由は次のように考えられる。本成形圧力から開放された成形体 はスプリングバック現象により僅かであるが元に戻ろうとする。このときボンド磁石部が 戻ろうとする量は軟磁性部が戻ろうとする量より大きいため軟磁性部の接合界面の近 傍では引張応力が生じていると考えられる。この引張応力が生じている位置で破断し やすいものと推察される。図 15に示したとおり予備成形圧力と本成形圧力とが同じ場 合は接合面でのボンド磁石粉と軟磁性粉との嚙み合!、が少な!、ため弓 I張応力にか かわらず接合面で破断する。
[0042] このようにボンド磁石部と軟磁性ヨーク部とで高 、接合力が得られるため、従来の接 着方式や一体成形方式 (特許文献 1〜特許文献 2)にお 、ては不可欠であった構造 補強用の保護リングを廃止することが可能である。さら〖こ、本発明では磁石と軟磁性 ヨークとの接合面 110全域で高い圧着力が得られるため、磁石部をリング形状に限 定したり、リング磁石の内圧だけで軟磁性ヨークを保持したり(特許文献 3〜4)するこ とがない。ボンド磁石部どうしの接合面 100においても予備成形圧力より高い圧力で 圧縮成形することにより磁石と軟磁性ヨークとの接合面 110と同様に高い接合力が得 られる。
[0043] 本発明では、予備成形の工程で磁石を 1ユニットずつ充分な磁場中で配向できる ので、磁石の極数や寸法に依らず安定した配向および着磁を容易に行なうことが可 能となる。すなわち、異方性ボンド磁石部と軟磁性ヨーク部力もなる磁気回路用部品 の製造方法として、前記異方性ボンド磁石部は結合材および平均粒径が 50〜200 μ mの磁石粉末を主とする磁石粉末コンパゥンドを用いて磁場中で予備成形し、そ の後、無磁場中で平均粒径が 1〜100 mの軟磁性粉末を主とする軟磁性粉末コン パウンドと一体ィ匕する様に本成形し、熱硬化させることを特徴とする製造方法が採用 できる。なお、本成形用の金型には、 500〜1000MPaの高圧力に耐え得る様に、 磁気特性よりも機械強度特性を重視した超硬などの材質を用い、さらにある程度以 上の肉厚で構成する必要がある。このため、電磁石で発生する磁場を磁石成形部へ 無駄なく伝えるのが困難となる。しかしながら、 300MPa程度の予備成形圧力におい ては、金型材に磁気特性を重視した飽和磁束密度が高ぐまた比透磁率の高い鋼材 を採用でき、さらに薄肉ィ匕も可能なことから、分布が均一でかつ強度も高い配向磁場 を磁石成形部で発生することができる。例えば、ラジアル異方性のリング磁石を配向 させる場合にも、予備成形用の金型で配向させることで、より配向度が高ぐ磁力バラ ツキの少な 、磁石を得ることができる。
[0044] また製造設備面でも 300MPa程度の予備成形用プレス機は、本成形用プレス機に 比べてコンパクトであり、プレス機の構成材もより磁気特性重視の材料を選択できる。 また、図 8 (a) (図中、矢印 Bは磁界方向を示す)に示すようにバックヨークでつながつ た閉磁路が構成できる、電磁石を磁石粉の近くに配置できるという面で、図 5や図 6 の様な従来の成形機に比べて磁場配向面で有利である。
[0045] このように比透磁率 μ及び飽和磁束密度 Bsが高 、材料で磁気回路を形成すること により、様々な磁化パターンが実現可能となる。例えば図 8 (b) (図中、矢印 Bは磁界 方向を示す)に示す様に、磁石を圧縮成形するキヤビティを一様平行磁界に対して 傾斜させることで、磁石の磁ィ匕容易軸を自由な方向へ揃えることができる。また図 8 ( c) (図中、矢印 Bは磁界方向を示す)に示す様に、ヨーク先端部の形状や電磁石の 配置を工夫することにより、磁ィ匕容易軸を曲げることもできる。あるいは、磁石を予備 成形する金型自体に複雑な磁路を形成したり、永久磁石を副磁路として機能させる などの工夫によって、より複雑な配向磁場の制御が可能となる。
[0046] 製造の最終工程で 500〜: LOOOMPaの高圧力で圧縮成形した場合の密度は、例 えば R— Fe— B系のボンド磁石部で 5. 5〜6. 5MgZm3、 R— Fe— N系のボンド磁 石部で 5. 3〜6. 2MgZm3であり、 Fe粉のボンド軟磁性部であれば 6. 0〜6. 8Mg / m (?め。。
[0047] 図 1のような複雑な形状および配向の永久磁石を多数設置する回転子は、図 5や 図 6の様な従来技術では製造不可能であつたが、本発明の製造法を用いれば製造 可能となる。図 1のように、一対の永久磁石 1A, IBをその磁ィ匕方向が互いの接合面 100に対して線対称となるように接合して磁極を構成した磁石ユニットを、磁気作用 側表面部に交互に異なる極性の磁極が生じるように連ねて異方性磁石体を形成した 場合、高い特性が期待される。すなわち、図 2のような単一の磁石で 1磁極を構成す る構造に比べ、磁極中央位置に発生磁場を効率良く集中させられる。発生磁場の集 中は、図 9中の角度 Θ、つまり接合面の径方向に対する傾斜角にして 5〜35° が好 ましい。特に、 20° ± 10° の範囲がより好ましい。(図 9において、誘起電圧は、比 較例 (従来方式:図 3)で規格化した。 )
発明の効果
[0048] 本発明は、上記のように榭脂バインダー等の結合剤を含むボンド磁石粉と軟磁性 粉とで回転子を一体成形することで、ボンド磁石部と軟磁性ヨーク部との圧着強度が 高ぐ高速用途においても構造信頼性の高い磁石回転子を提供することができる。ま た、圧縮成形の製造工程を低圧力な予備成形と、高圧力な本成形とに分け、予備成 形の工程で必要充分な磁場中で磁石の磁ィヒ容易軸が揃えられるので、回転子の極 数や寸法に依らず、安定して極ピッチゃ磁カノ ツキが少な 、磁石回転子を得るこ とができる。さらにラジアル着磁ゃ極異方性着磁のみでなぐ磁極 1極が両端部まで 略平行な着磁や、より複雑な着磁制御が可能で、従来技術では実現困難な磁極パ ターンを磁石回転子に形成し、モータの高出力化や高効率ィ匕に貢献することができ る。
発明を実施するための最良の形態
[0049] 以下、本発明の永久磁石回転子を用いたモータの実施例を、図面を参照して説明 する。なお、図中の参照符号については、明細書の文末で説明している。
実施例 1,比較例 1
先ず、本発明の製法上の特長であるボンド磁石部と軟磁性ヨーク部の接合強度の 高さを活かし、保護リング廃止の効果を調べた。セグメント磁石を接着する従来方式 では (比較例 1)、図 3に示すように保護リングが必須である。これに対し本発明の製 法で作製した回転子(図 1 (a) )を用いると、希土類ボンド磁石部と、軟磁性粉末よりな る軟磁性ヨーク部とを強固に一体ィ匕することができるため保護リングが不要となり、固 定子と回転子の間のギャップを小さくできるため比較例 1よりも磁石の磁束を有効に 活用することができる。また高い周波数領域での保護リングにおける渦電流損失に伴 う出力低下も回避できる。さらに接着や組立ての工程が不要なことから、従来よりも低 コストで製造できる。
[0050] 結合材としてエポキシ榭脂を磁石粉末に対して 3質量%、軟磁性粉末に対して 1.
1質量%添加した。磁石材としては、比較例 1は Nd系焼結磁石 (Br= l. 3T)、実施 例 1は Nd系異方性ボンド磁石(Br=0. 9T)を用いた。回転子の外径は 50mm、ボ ンド磁石部 1の磁化方向厚みは 10mm、回転軸方向の長さは 20mmである。また比 較例 1では、 0. 3mm厚の Ti系保護リングを用いた。
[0051] 表 1は、両者の回転子について、モータの誘起電圧と回転数との関係を示す表で ある。ここで、電圧は比較例 1の lOOOrpm (毎分あたりの回転数)の値を 100%とした
[0052] [表 1]
Figure imgf000018_0001
[0053] lOOOrpmでの誘起電圧は、比較例 1に対して実施例 1は磁石の残留磁束密度 (Br )が 3割低いにも関わらず、保護リングが無い分だけ有効エアギャップを狭くできること から、誘起電圧の低下は 4%に留まる。また、誘起電圧は回転数にほぼ比例して増 加するが、比較例 1では高速回転になるほど、主として保護リング部の渦電流損失が 顕著となり発生電圧は比例直線力も低下している。一方実施例 1では、 2万 rpmまで ほぼ回転数に比例する誘起電圧が得られている。
[0054] また 2万 rpmまでの回転数に対し、実施例 1は磁石破損もしくは磁石部と軟磁性部 との接合剥れ等の問題は発生しなかった。有限要素法により遠心力に対する構造信 頼性をシミュレーションした所、 2万 rpmでは約 5倍の安全率を満足して 、る。 [0055] 実施例 2
図 1は、本発明の他の実施例による永久磁石回転子の模式断面図である。図 1は 1 磁極を 2個の磁石 1A, 1B、軟磁性材料からなるヨーク 2、シャフト 13から構成した。 本発明の製造方法により、このような複雑な形状、配向の永久磁石を多数設置するこ とが可能となる。図 1のように、磁石の磁ィ匕方向を接合面 100 (図中の N、 Sを結ぶ破 線)に対して線対称となるように接合すると、図中に N (S)で示した磁極中央位置に 発生磁場を効率良く集中させられ、図 2のような単一の磁石で 1磁極を構成する構造 に比べ、高い磁気特性が得られる。発生磁場の集中量は、磁化の傾き角に関連する 。磁石材ゃ寸法などは、実施例 1と同一条件である。
[0056] 図 9は、実施例 2について、誘起電圧と傾き角との関係を示す図である。ここで、誘 起電圧は lOOOrpmでの値を、比較例 1の値を 100%として規格ィ匕した。図 9より、図 1のような構造をとることにより、従来のセグメント接着方式による比較例 1より高いモ ータ特性が得られることが分る。図 9より電圧を向上させるためには、傾き角は 5〜40 ° 、更には 5〜35° が好ましぐ特に、 20° ± 10° の範囲が好ましいことが分る。ま た実施例 2でも、 2万 rpmまでほぼ回転数に比例する発生電圧が得られ、表 1より高 速回転時にはさらに有利な構造であることが分る。
[0057] 実飾 13
図 10は、本発明の他の実施例による永久磁石回転子の模式断面図である。従来 のリング磁石製造法では、図 10 (a)のように磁石の磁ィ匕方向厚みが大きいものの配 向や、多極配向が困難であつたが、本発明の製造方法では、磁石の極数や寸法に 依らず安定した配向や着磁を容易に行なうことが可能である。また、図 10 (b)や図 10 (c)のように、 1極を 3個の磁石 1A〜: LC力 構成し、磁極中央位置に発生磁場を効 率良く集中することも可能である。
[0058] 実施例 4
図 17は、本発明の他の実施例による永久磁石回転子の模式断面図である。図 17 ( a)は、図 8 (c)に示す磁場配向装置を用いて磁石の磁ィ匕容易軸を曲げた状態のもの を組合せて、軟磁性ヨークと一体ィ匕した 4極の極異方性着磁の実施例である。図 17 ( b)は、 1磁極を 2個の磁石 1A、 IB力も構成した磁極集中タイプの 12極の実施例で ある。この様に複数の予備成形磁石と軟磁性粉とを組合せて一体ィ匕することで、多極 の磁石回転子も容易に実現できる。図 17 (C)は、磁石 1と磁石 1の間に非磁性コンパ ゥンド 15を挟みつつ、軟磁性ヨーク 2と一体ィ匕した実施例である。図 17 (d)は、磁石 の磁ィ匕方向の厚みを周方向に沿って変化させた実施例を示すものである。図 17 (e) および (f)は、磁石埋め込みタイプの実施例である。このように、本発明によると磁石 の形状や磁ィ匕方向が複雑な回転子も、容易に実現可能である。
図中の参照符号は、以下の内容を示す。
1、 1A〜1C ボンド磁石部
2 軟磁性部
3 保護リング
4 圧縮成形用パンチ
5, 5A, 5B 金型
6 磁石粉
7 電磁石
8 軟磁性粉
9 熱硬化炉
10 バックヨーク (磁性体)
11 ヨーク先端
12 軟磁性体もしくは磁石
13 シャフト(モータ回転軸)
14 径方向
15 非磁性体
16 フラット言
17 空隙
100 ボンド磁石部どうしの接合面
101 セグメント磁石
102 軟磁性ヨーク
110 ボンド磁石部と軟磁性部との接合面 産業上の利用可能性
[0060] 軟磁性ヨークと一体のモータ用ボンド磁石回転子を提供する。
図面の簡単な説明
[0061] [図 1]本発明の一実施例に関わる表面磁石型永久磁石回転子 (a)とリラクタンス効果 併用型の表面磁石型永久磁石回転子 (b)の模式断面図である。
[図 2]従来の永久磁石回転子の方式を説明する模式断面図である。
[図 3]比較例の表面磁石型永久磁石回転子の模式断面図である。
[図 4]磁界中成形の原理を示す模式断面図である。
[図 5]従来方式におけるラジアル異方性配向型リング磁石製造法の模式断面図であ る。
[図 6]従来方式における極異方性配向型リング磁石着磁法の模式断面図(a)、ラジア ル異方性配向型リング磁石の着磁 (b)および極異方性配向型リング磁石の着磁 (c) の原理を示す模式断面図である。
[図 7]本発明における回転子製造法の流れ図である。
[図 8]本発明における予備成形時磁界印加法の模式断面図である。
[図 9]本発明の他の実施例による誘起電圧の測定結果を示す電圧一磁化傾き角を 示す図である。
[図 10]本発明の他の実施例に関わる永久磁石回転子の模式断面図である。
[図 11]本発明における磁石の予備成形圧力と、軟磁性粉との一体成形後のせん断 強度を示す図である。
[図 12]本発明における磁石の予備成形圧力と、軟磁性粉との一体成形後の加圧方 向接合面外観写真を示す図である。
[図 13]図 12の写真を更に拡大したものである。
[図 14]接合面の凹凸量の定義を説明するための組織を示す写真である。
[図 15]本発明における磁石の予備成形圧力と、軟磁性粉との一体成形後のせん断 強度および接合面の凹凸量を示す図である。
[図 16]図 11でせん断強度を求めた際の破断面の位置を示す写真である。
[図 17]本発明の他の実施例に関わる永久磁石回転子の模式断面図である。 [図 18]本発明の他の実施例に関わるモータ回転軸との一体ィ匕を示す模式断面図で ある。

Claims

請求の範囲
[1] 結合材を含む磁石粉末からなるボンド磁石部と結合材を含む軟磁性粉末からなる 軟磁性ヨーク部とを備え、磁石粉末と軟磁性粉末とが、接合面においてかみ合う状態 でボンド磁石部と軟磁性ヨーク部とがー体的に圧縮成形されて 、るモータ用回転子。
[2] 請求項 1に記載の回転子にお!、て、ボンド磁石部および Zまたは軟磁性ヨーク部 が複数の部位で形成されて 、るモータ用回転子。
[3] 請求項 1および 2に記載の回転子において、ボンド磁石部が磁気異方性を有する 磁石粉末および結合材を主とする異方性ボンド磁石力 なり、圧縮成形手段により各 々を一体ィ匕し略円柱状にしたモータ用回転子であって、略平行配向の異方性ボンド 磁石部を磁気作用表面部に交互に異なる極性の磁極が生じるように連ねて形成して 成るモータ用回転子。
[4] 平行磁場配向した永久磁石を複数個組み合わせて一磁極を形成するように構成し た磁石ユニットを、磁気作用表面部に交互に異なる極性の磁極が生じるように連ねて なる請求項 2に記載のモータ用回転子。
[5] 一対の永久磁石をその磁化容易方向が接合面に対して線対称となるように接合し て磁極を構成した磁石ユニットを、磁気作用表面部に交互に異なる極性の磁極が生 じるように連ねて形成し、前記永久磁石の磁化容易方向が該接合面を通る径方向に 対して傾斜角を有することを特徴とする請求項 2に記載のモータ用回転子。
[6] 前記傾斜角が角度 5〜35° である請求項 5に記載のモータ用回転子。
[7] 前記磁石粉末の平均粒径が 50〜200 μ mであり、前記軟磁性粉末の平均粒径が 1〜: LOO mである請求項 1から請求項 6までのいずれ力 1項に記載のモータ用回転 子。
[8] 前記軟磁性部の電気伝導率が 20kSZm以下であり、かつ Bm≥ 1. 4T、 Hc≤80 OAZmである請求項 1から請求項 7までの 、ずれか 1項に記載のモータ用回転子。
[9] 前記異方性ボンド磁石部が Br≥0. 8T、Hcj≥600kAZmの圧縮成形磁石である 請求項 1から請求項 5までの 、ずれか 1項に記載のモータ用回転子。
[10] 前記ボンド磁石部と前記軟磁性部とのせん断強度が lOMPa以上である請求項 1 から請求項 5までの 、ずれか 1項に記載のモータ用回転子。
[11] 結合材を含む磁石粉末と結合材を含む軟磁性粉末とが、互いが接触して形成する 接合面においてかみ合う状態で一体的に成形されていることを特徴とする磁気回路 用部品。
[12] 異方性ボンド磁石部と軟磁性部からなる磁気回路用部品の製造方法であって、前 記異方性ボンド磁石部は結合材および磁石粉末を主とする磁石粉末コンパゥンドを 用いて磁界中で予備成形する段階、その後、無磁場中で軟磁性粉末を主とする軟 磁性粉末コンパゥンドと一体化する様に本成形する段階、および、成形品を加熱硬 化させる段階を含む磁気回路用部品の製造方法。
[13] 結合材を含む磁石粉末を予備成形して予備成形体を作製し、前記予備成形体と 結合材を含む軟磁性粉末とをキヤビティ内に装填し、前記予備成形体と前記軟磁性 粉末とを互いが接触して形成する境界面と平行方向に予備成形圧力より高い成形 圧力で圧縮成形することを特徴とする磁気回路用部品の製造方法。
[14] 結合材を含む軟磁性粉末を予備成形して予備成形体を作製し、前記予備成形体 と結合材を含む磁石粉末とをキヤビティ内に装填し、前記予備成形体と前記磁石粉 末とを互いが接触して形成する境界面と平行方向に予備成形圧力より高い成形圧 力で圧縮成形することを特徴とする磁気回路用部品の製造方法。
PCT/JP2005/023284 2004-12-17 2005-12-19 モータ用回転子およびその製造方法 WO2006064948A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05816555.6A EP1830451A4 (en) 2004-12-17 2005-12-19 ROTOR FOR A MOTOR AND METHOD FOR THE PRODUCTION THEREOF
CN2005800431285A CN101080862B (zh) 2004-12-17 2005-12-19 电动机用转子及其制造方法
KR1020077013793A KR100908424B1 (ko) 2004-12-17 2005-12-19 자기 회로용 부품 및 그 제조 방법
US11/721,956 US8039998B2 (en) 2004-12-17 2005-12-19 Rotor for motor and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-365955 2004-12-17
JP2004365955 2004-12-17
JP2005-232835 2005-08-11
JP2005232835 2005-08-11

Publications (1)

Publication Number Publication Date
WO2006064948A1 true WO2006064948A1 (ja) 2006-06-22

Family

ID=36587988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023284 WO2006064948A1 (ja) 2004-12-17 2005-12-19 モータ用回転子およびその製造方法

Country Status (4)

Country Link
US (1) US8039998B2 (ja)
EP (1) EP1830451A4 (ja)
KR (1) KR100908424B1 (ja)
WO (1) WO2006064948A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008049721A2 (de) * 2006-10-25 2008-05-02 Robert Bosch Gmbh Äusserer stator eines elektromotors
JP2008182825A (ja) * 2007-01-25 2008-08-07 Mitsubishi Electric Corp 同期電動機の回転子の製造方法
JP2008209340A (ja) * 2007-02-28 2008-09-11 Hitachi Metals Ltd 磁石回転子及びこれを用いた回転角度検出装置
JP2008282909A (ja) * 2007-05-09 2008-11-20 Tdk Corp リング状磁石の製造方法
US7714466B2 (en) 2006-07-24 2010-05-11 Hitachi Industrial Equipment Systems Co., Ltd. Claw-teeth-type rotating electrical machine
JP2012080097A (ja) * 2010-09-10 2012-04-19 Tdk Corp 弓形磁石及び磁場成形用金型
WO2015102047A1 (ja) * 2014-01-06 2015-07-09 三菱電機株式会社 永久磁石型回転電機
WO2018123839A1 (ja) * 2016-12-28 2018-07-05 日本電産株式会社 ロータ及びモータ

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101092321B1 (ko) * 2005-12-21 2011-12-09 주식회사 동서전자 Lspm 동기모터의 로터
WO2011126026A1 (ja) * 2010-04-05 2011-10-13 愛知製鋼株式会社 ケース一体型ボンド磁石およびその製造方法
CN103329411B (zh) * 2011-01-26 2017-03-01 株式会社牧田 用于电动工具的无刷马达
JP5464604B2 (ja) * 2011-09-20 2014-04-09 シナノケンシ株式会社 モータ回転子及びその製造方法、並びにインナーロータ型ブラシレスモータ及びその製造方法
JP5752273B2 (ja) * 2011-12-27 2015-07-22 三菱電機株式会社 電動機
CN104094368A (zh) 2012-01-30 2014-10-08 三菱电机株式会社 磁路
EP2722855A1 (en) * 2012-10-19 2014-04-23 Siemens Aktiengesellschaft Nd-Fe-B permanent magnet without Dysprosium, rotor assembly, electromechanical transducer, wind turbine
KR101587423B1 (ko) * 2013-08-23 2016-02-03 한국전기연구원 토크 맥동 저감을 위한 비대칭 자극 형상을 가지는 전기기기
DE102014203528A1 (de) * 2014-02-27 2015-08-27 Volkswagen Aktiengesellschaft Magnetanordnung, insbesondere für eine elektrische Maschine, sowie elektrische Maschine mit einer Magnetanordnung
EP2991195A1 (de) * 2014-09-01 2016-03-02 Siemens Aktiengesellschaft Permanenterregte dynamoelektrische Maschine
EP2999089B1 (de) * 2014-09-19 2017-03-08 Siemens Aktiengesellschaft Reluktanzläufer
US9583244B2 (en) 2014-09-30 2017-02-28 Nichia Corporation Bonded magnet, bonded magnet component, and bonded magnet production method
DE102014224151A1 (de) * 2014-11-26 2016-06-02 Mahle International Gmbh Vorrichtung zur berührungslosen Übertragung von Drehbewegungen
US9520752B1 (en) 2015-09-30 2016-12-13 Faraday & Future Inc. Interior permanent magnet machine for automotive electric vehicles
CN109792174B (zh) 2016-10-05 2020-11-10 三菱电机株式会社 电动机以及空气调节装置
US10084410B2 (en) * 2016-12-15 2018-09-25 Bose Corporation Moving magnet motor and transducer with moving magnet motor
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
JP6885328B2 (ja) 2017-07-21 2021-06-16 株式会社デンソー 回転電機
CN113991960B (zh) 2017-07-21 2023-09-29 株式会社电装 旋转电机
CN111566904B (zh) 2017-12-28 2023-04-28 株式会社电装 旋转电机
DE112018006694T5 (de) 2017-12-28 2020-09-10 Denso Corporation Rotierende elektrische Maschine
JP7006541B2 (ja) 2017-12-28 2022-01-24 株式会社デンソー 回転電機
JP6922868B2 (ja) * 2017-12-28 2021-08-18 株式会社デンソー 回転電機システム
JP6927186B2 (ja) 2017-12-28 2021-08-25 株式会社デンソー 回転電機
JP6939750B2 (ja) 2017-12-28 2021-09-22 株式会社デンソー 回転電機
DE112018006699T5 (de) 2017-12-28 2020-09-10 Denso Corporation Rotierende elektrische Maschine
EP3567701B1 (en) * 2018-05-09 2023-02-01 Siemens Gamesa Renewable Energy A/S Magnet module for a permanent magnet machine
CN109412298B (zh) * 2018-05-14 2022-04-05 滨州学院 一种永磁电机
US10790721B2 (en) 2018-06-04 2020-09-29 Abb Schweiz Ag Bonded rotor shaft
JP7169170B2 (ja) * 2018-11-15 2022-11-10 株式会社ミツバ ロータ、モータ及びブラシレスモータ
JP7180479B2 (ja) * 2019-03-20 2022-11-30 トヨタ自動車株式会社 モータコアの製造方法
JP7525794B2 (ja) * 2019-05-31 2024-07-31 愛知製鋼株式会社 界磁子の製造方法
CN113692690B (zh) 2020-03-05 2024-08-23 株式会社电装 旋转电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278919A (ja) * 1999-03-19 2000-10-06 Denso Corp 磁石部材及びその製造方法
JP2000295797A (ja) * 1999-04-08 2000-10-20 Toshiba Corp 永久磁石モータ及びその製造方法
JP2003319620A (ja) * 2002-04-18 2003-11-07 Toyota Motor Corp 電動機ロータの製造方法
JP2004023085A (ja) * 2002-06-20 2004-01-22 Aichi Steel Works Ltd モータ用異方性ボンド磁石の配向処理方法
JP2004146542A (ja) * 2002-10-23 2004-05-20 Asahi Kasei Chemicals Corp 磁石用固形材料及びその製造方法
JP2004248496A (ja) * 2003-02-14 2004-09-02 Minebea Co Ltd ブラシレスモータ及びそのブラシレスモータ用ロータの製造方法
JP2004253697A (ja) * 2003-02-21 2004-09-09 Hitachi Metals Ltd 永久磁石材料及び永久磁石

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694115A (en) * 1967-11-09 1972-09-26 Magnetfab Bonn Gmbh Molding apparatus for making anisotropic ring-shaped magnets with zones having a preferred radial direction
US3891879A (en) * 1974-06-25 1975-06-24 Mitsubishi Steel Mfg Rotor for a hysteresis motor
DE2730142C2 (de) * 1977-07-04 1988-01-21 Papst-Motoren GmbH & Co KG, 7742 St Georgen Kollektorloser Gleichstrommotor der zweisträngigen Bauart
EP0128508B1 (en) * 1983-06-08 1991-04-10 Hitachi Metals, Ltd. Method and apparatus for producing anisotropic magnets
JP2543489Y2 (ja) * 1991-11-21 1997-08-06 マブチモーター株式会社 回転電機用ロータ
JPH05308768A (ja) * 1992-04-28 1993-11-19 Minebea Co Ltd ステッピングモータ用ステータヨーク
JPH05326232A (ja) 1992-05-18 1993-12-10 Matsushita Electric Ind Co Ltd 磁気回路部品およびその製造方法
JPH07169633A (ja) 1993-12-15 1995-07-04 Kanegafuchi Chem Ind Co Ltd ヨーク一体型永久磁石の製造方法並びに当該製造方法により作製したヨーク一体型永久磁石
JP3060104B2 (ja) 1997-12-19 2000-07-10 愛知製鋼株式会社 ラジアル配向した磁気異方性樹脂結合型磁石及びその製造方法
JP2000348921A (ja) * 1999-03-31 2000-12-15 Hitachi Metals Ltd 等方性ボンド磁石
JP2001052921A (ja) 1999-08-05 2001-02-23 Nippon Densan Corp 永久磁石型モータ用マグネットおよびそれの成形装置
US20030094873A1 (en) * 1999-08-27 2003-05-22 Michael Kim Permanent magnet array and magnet holder for flywheel motor/generator
JP2001095185A (ja) 1999-09-20 2001-04-06 Toshiba Corp 電動機の回転子
US6423264B1 (en) * 1999-10-14 2002-07-23 Delphi Technologies, Inc. Process for forming rotating electromagnets having soft and hard magnetic components
US6903641B2 (en) * 2001-01-19 2005-06-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Dust core and method for producing the same
JP2002354721A (ja) * 2001-05-29 2002-12-06 Hitachi Ltd 永久磁石式回転子を備えた回転電機
JP2003032931A (ja) 2001-07-11 2003-01-31 Daido Steel Co Ltd モータ
JP4746789B2 (ja) * 2001-08-01 2011-08-10 株式会社ブリヂストン 樹脂磁石成型用金型および樹脂磁石成型品の製造方法
JP2003124019A (ja) * 2001-10-18 2003-04-25 Yaskawa Electric Corp 永久磁石とそれを用いた回転形モータのロータ
JP4087609B2 (ja) * 2002-01-25 2008-05-21 有限会社Tesプラン プラスチック極配向磁石の成形金型およびこれを用いたプラスチック極配向磁石の製造装置並びに製造方法
JP2004140951A (ja) 2002-10-18 2004-05-13 Asmo Co Ltd 永久磁石埋め込みモータ
JP3861288B2 (ja) * 2002-10-25 2006-12-20 株式会社デンソー 軟磁性材料の製造方法
US6765319B1 (en) * 2003-04-11 2004-07-20 Visteon Global Technologies, Inc. Plastic molded magnet for a rotor
GB0310639D0 (en) * 2003-05-08 2003-06-11 Corac Group Plc Rotary electric machine
JP4826704B2 (ja) * 2003-10-15 2011-11-30 日立金属株式会社 極集中型磁気回路および磁気分離装置
WO2005101614A1 (ja) * 2004-04-06 2005-10-27 Hitachi Metals, Ltd. 回転子及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278919A (ja) * 1999-03-19 2000-10-06 Denso Corp 磁石部材及びその製造方法
JP2000295797A (ja) * 1999-04-08 2000-10-20 Toshiba Corp 永久磁石モータ及びその製造方法
JP2003319620A (ja) * 2002-04-18 2003-11-07 Toyota Motor Corp 電動機ロータの製造方法
JP2004023085A (ja) * 2002-06-20 2004-01-22 Aichi Steel Works Ltd モータ用異方性ボンド磁石の配向処理方法
JP2004146542A (ja) * 2002-10-23 2004-05-20 Asahi Kasei Chemicals Corp 磁石用固形材料及びその製造方法
JP2004248496A (ja) * 2003-02-14 2004-09-02 Minebea Co Ltd ブラシレスモータ及びそのブラシレスモータ用ロータの製造方法
JP2004253697A (ja) * 2003-02-21 2004-09-09 Hitachi Metals Ltd 永久磁石材料及び永久磁石

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1830451A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7714466B2 (en) 2006-07-24 2010-05-11 Hitachi Industrial Equipment Systems Co., Ltd. Claw-teeth-type rotating electrical machine
CN101114777B (zh) * 2006-07-24 2011-03-16 株式会社日立产机系统 爪齿型旋转电机
WO2008049721A2 (de) * 2006-10-25 2008-05-02 Robert Bosch Gmbh Äusserer stator eines elektromotors
WO2008049721A3 (de) * 2006-10-25 2008-08-28 Bosch Gmbh Robert Äusserer stator eines elektromotors
JP2008182825A (ja) * 2007-01-25 2008-08-07 Mitsubishi Electric Corp 同期電動機の回転子の製造方法
JP2008209340A (ja) * 2007-02-28 2008-09-11 Hitachi Metals Ltd 磁石回転子及びこれを用いた回転角度検出装置
JP2008282909A (ja) * 2007-05-09 2008-11-20 Tdk Corp リング状磁石の製造方法
JP2012080097A (ja) * 2010-09-10 2012-04-19 Tdk Corp 弓形磁石及び磁場成形用金型
WO2015102047A1 (ja) * 2014-01-06 2015-07-09 三菱電機株式会社 永久磁石型回転電機
US9515528B2 (en) 2014-01-06 2016-12-06 Mitsubishi Electric Corporation Permanent magnet rotary electric machine
WO2018123839A1 (ja) * 2016-12-28 2018-07-05 日本電産株式会社 ロータ及びモータ

Also Published As

Publication number Publication date
US20080218007A1 (en) 2008-09-11
EP1830451A4 (en) 2016-03-23
KR20070086385A (ko) 2007-08-27
KR100908424B1 (ko) 2009-07-21
US8039998B2 (en) 2011-10-18
EP1830451A1 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
WO2006064948A1 (ja) モータ用回転子およびその製造方法
JP4900775B2 (ja) モータ用回転子およびその製造方法
WO2006064589A1 (ja) モータ用回転子およびその製造方法
US7847460B2 (en) Yoke-integrated bonded magnet and magnet rotator for motor using the same
US7981359B2 (en) Rotor and process for manufacturing the same
US7967919B2 (en) Process for producing self-assembled rare earth-iron bonded magnet and motor utilizing the same
JP2005020991A (ja) 回転子およびその製造方法
JP2005064448A (ja) 積層極異方複合磁石の製造方法
KR100981218B1 (ko) 영구자석 회전자 및 이것을 사용한 모터
JP3060104B2 (ja) ラジアル配向した磁気異方性樹脂結合型磁石及びその製造方法
JP2009111418A (ja) 異方性磁石の製造に用いる金型、成形機、方法及び得られる磁石
JP3714662B2 (ja) ロータ用圧粉磁心の製造方法
JP4605317B2 (ja) 希土類異方性ボンド磁石の製造方法、磁石成形体の配向処理方法および磁場中成形装置
JP4425682B2 (ja) 異方性磁石の製造に用いる金型、成形機、方法及び得られる磁石
JP2017070031A (ja) ロータ
JP2013172585A (ja) シャフト型リニアモータ可動子、永久磁石、リニアモータ、磁場中成形装置、シャフト型リニアモータ可動子の製造方法
JP4300525B2 (ja) 磁極面球状ボンド磁石およびその製造方法
JP2015104243A (ja) 永久磁石埋込型回転子の製造方法
JP3538762B2 (ja) 異方性ボンド磁石の製造方法および異方性ボンド磁石
JPH06330103A (ja) 磁性粉末成形用金型
JP2005210803A (ja) 円弧状永久磁石の製造方法、埋め込み磁石型の回転子の製造方法
JP2006311661A (ja) 4極dcブラシモータ
CN115244636A (zh) 压缩粘结磁铁及其制造方法以及磁场元件
JPH1083926A (ja) ラジアル異方性ボンド磁石の製造方法およびボンド磁石
KR100249968B1 (ko) 희토류계 영구자석의 착자요크

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2005816555

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005816555

Country of ref document: EP

Ref document number: 200580043128.5

Country of ref document: CN

Ref document number: 11721956

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077013793

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005816555

Country of ref document: EP