WO2006049149A1 - 油田随伴水中の有機物の除去方法および除去装置 - Google Patents

油田随伴水中の有機物の除去方法および除去装置 Download PDF

Info

Publication number
WO2006049149A1
WO2006049149A1 PCT/JP2005/020073 JP2005020073W WO2006049149A1 WO 2006049149 A1 WO2006049149 A1 WO 2006049149A1 JP 2005020073 W JP2005020073 W JP 2005020073W WO 2006049149 A1 WO2006049149 A1 WO 2006049149A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
oilfield
associated water
organic matter
water
Prior art date
Application number
PCT/JP2005/020073
Other languages
English (en)
French (fr)
Inventor
Toshiaki Arato
Hidehiro Iizuka
Akira Mochizuki
Tomoko Suzuki
Akio Honji
Shigesaburo Komatsu
Hisashi Isogami
Hiroshi Sasaki
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to CA2586487A priority Critical patent/CA2586487C/en
Priority to EP05800428.4A priority patent/EP1813577B1/en
Priority to JP2006542387A priority patent/JP5098334B2/ja
Priority to US11/718,524 priority patent/US7662295B2/en
Publication of WO2006049149A1 publication Critical patent/WO2006049149A1/ja
Priority to NO20072268A priority patent/NO20072268L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3408Regenerating or reactivating of aluminosilicate molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3416Regenerating or reactivating of sorbents or filter aids comprising free carbon, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3458Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]

Definitions

  • the present invention relates to a method and apparatus for treating oil field associated water produced by separation and production from a mixture of crude oil and salt water in an oil field, and particularly, organic substances such as oil droplets contained in the oil field associated water and dissolved therein.
  • the present invention relates to a method and apparatus for effectively removing organic compounds.
  • Oilfield associated water contains considerable oil droplets and dissolved organic compounds, so returning it to the sea or lake as it is can lead to environmental destruction.
  • COD chemical oxygen demand
  • Japanese Patent Application Laid-Open No. 2004-275884 describes that activated carbon powder is added to oilfield-associated water to adsorb a COD component, and a flocculant is added thereto to agglomerate and separate the activated carbon powder.
  • a flocculant is added thereto to agglomerate and separate the activated carbon powder.
  • Japanese Patent Application Laid-Open No. 2004-255290 describes that an organic polymer flocculant is added to oil field-associated water, and a polymer flocculant and an oxidizing agent are further added to decompose the oil. It is also described that excess oxidant is adsorbed and removed by activated carbon, and hypochlorous acid generated by electrolysis is used as the oxidant.
  • Japanese Patent Application Laid-Open No. 2000-93957 discloses a technology for purifying water containing a small amount of organic matter such as drinking water with a water purification membrane containing zeolite. It is not a technique for treating such poor water containing a large amount of oil or organic compounds.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-144805
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-275884
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-255290
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2000-093957
  • Non-patent document 1 “Experience of Produced Water Treatment m the Nort Sea, Marine Pollution Bulletin, Vol. 29, No. 6— 12, (1994), p. 312-316
  • the present invention performs oil separation treatment of oil field associated water obtained by separating crude oil from a mixture of crude oil and salt water mined in an oil field, and dissolves oil field associated water subjected to oil removal treatment
  • oil separation treatment of oil field associated water obtained by separating crude oil from a mixture of crude oil and salt water mined in an oil field, and dissolves oil field associated water subjected to oil removal treatment
  • Provided is a method and apparatus for effectively removing oil and dissolved organic compounds by contacting an adsorbent that adsorbs and removes organic compounds with the oil field accompanying water.
  • FIG. 1 is a diagram showing a schematic configuration of a treatment system for oilfield associated water according to one embodiment of the present invention.
  • FIG. 2 is a diagram showing a schematic configuration of a treatment system for oilfield associated water according to another embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a configuration example of an adsorption tower used in the present invention.
  • FIG. 4 is an X-ray diffraction pattern of the adsorbent used in the present invention.
  • FIG. 5 is an external view showing a configuration example of an adsorption tower of a treatment system according to an embodiment of the present invention.
  • FIG. 6 is a graph showing the relationship between the heating temperature of the adsorbent and the concentration of the desorbed gas component during the temperature desorption of the adsorbent used in the present invention.
  • FIG. 7 is a graph showing the relationship between the regeneration temperature of the adsorbent carrying the catalytic component used in the present invention and the concentration of carbon remaining in the adsorbent after regeneration.
  • FIG. 8 The relationship between the regeneration temperature of the adsorbent and the COD values before and after adsorption in the examples of the present invention.
  • FIG. 9 A graph showing the relationship between the concentration of the catalytic component Co and the carbon concentration remaining after heating and regeneration at 400 ° C for 1 hour after using an adsorbent carrying Co.
  • FIG. 10 is a graph showing the relationship between the concentration of the catalytic component Mn and the carbon concentration remaining after heating and regeneration at 400 ° C. for 1 hour after using an adsorbent supporting Mn.
  • FIG. 11 is a graph showing the relationship between the adsorbent operating temperature and the COD reduction rate of treated water after treatment.
  • FIG. 12 is a schematic diagram showing the structure of an aeration tank arranged in place of the potential generator and the electrolysis tank in FIG. 1 in Example 6.
  • the present invention removes oil droplets and the like in the oil field accompanying water and adsorbs and removes the dissolved organic compound in the accompanying water, and a magnetic separation method is particularly suitable as a method for removing the oil droplets and the like. is there.
  • a method for removing dissolved organic compounds adsorption removal using an adsorbent is indispensable.
  • an electrolysis method or the like can be used as a pretreatment for force adsorption treatment. In the following, some items will be described in detail regarding the adsorption removal method important in the present invention.
  • [I] Content example of dissolved organic compounds Table 1 shows the contents of salt and dissolved organic compounds in the water associated with typical Japanese crude oil. Table 2 also shows the components and concentrations of water associated with typical foreign crude oil. The type and content of these organic compounds can vary depending on the oil field. Normal and sputum or isobutyric acid, normal and sputum or isovaleric acid are causative agents of malodor.
  • the COD component adsorption characteristics of synthetic zeolite can be removed vigorously.
  • the adsorption performance can be easily recovered to the same level as before use by heating and regeneration. It is less complex and can reduce wastewater treatment costs.
  • proton type zeolite as the adsorbent.
  • a synthetic zeolite having a high molar ratio of silica Z alumina of 5 or more is excellent in hydrophobicity and suitable for selectively adsorbing organic components in wastewater.
  • the COD removal system is operated in consideration of the amount of water to be treated, the amount of adsorbent, the adsorption treatment time per adsorption tower, etc., so that the COD value of treated water is below the emission standard of 120 mgZL. Is managed and operated.
  • the various data are stored in the storage unit of the control apparatus, and the method and apparatus are controlled based on the data as necessary.
  • the associated water treatment apparatus can treat components such as an organic solvent contained in the oil field associated water to a high degree regardless of its concentration, and also requires a large-scale facility or the like. Since it is possible to reduce the size of the device itself, it is possible to treat the oilfield associated water at low cost.
  • various organic components are dissolved in the oilfield accompanying water, which is a causative substance for increasing COD.
  • the problem to be solved by the present invention is to reduce such oil separation water to a COD below the drainage standard. It also provides a COD removal system that maintains adsorption activity and durability over a long period of time.
  • Oil field-associated hydropower Adsorbents that remove organic solvents by adsorption can be realized with carbon-based adsorbents (active charcoal) and inorganic-based adsorbents.
  • carbon-based adsorbents active charcoal
  • inorganic-based adsorbents Although activated carbon has good adsorption performance, there is a problem that regeneration is not easy, and it is important to take a method of use that solves this problem.
  • Typical COD components of the accompanying water of petroleum produced in Japan are acetone, methyl ethyl ketone, acetic acid, propionic acid, butyric acid, valeric acid, trichloroethylene, tetrachloroethylene, benzene, toluene, ethylbenzene, xylene, phenol, creso-one. Nore, xylenenole, hexachlorobenzene, carbon disulfide, methanol, ethanol, succinic acid, lactic acid.
  • the adsorptivity of the synthetic zeolite to the COD component is specific.
  • a plurality of types of synthetic zeolite can be mixed or used together.
  • adsorbents having different pore sizes pore sizes
  • acetic acid Organic compounds have a small pore size! / Are adsorbed with an adsorbent, and have a large molecular weight.
  • Valeric acid and aromatic compounds are adsorbed on an adsorbent with a large pore size.
  • adsorbents include powders, granules, pellets, rods and fibers, as well as plates, Hercum and Raschig rings. From the viewpoints of economy and environmental protection, it is extremely important to regenerate the used adsorbent and use it repeatedly. Therefore, the adsorbent is used in a form that can be easily regenerated or used. For example, even in the form of powder, granules, pellets, etc., this can be easily separated from the water to be treated and regenerated. It's important to.
  • the adsorbents of these different forms are installed in the adsorption tower by being sandwiched between meshes or perforated plates so that the adsorption tower power does not flow out and the treated hydropower can be easily separated.
  • an installation method that considers regeneration is adopted.
  • an oil / water separation tank for removing oil suspended and suspended in waste water and insoluble particles, and an electric component for decomposing organic component molecules from the primary treated water that has passed through the oil / water separation tank.
  • An adsorption removal tank that adsorbs and removes organic components from the secondary treated water that has passed through the electrolysis tank, and a combustor that burns and exhausts the organic compound that desorbs the adsorbing and removing agent filled in the adsorption removal tank.
  • An apparatus for treating water associated with oil fields is provided.
  • an oil / water separation tank for removing oil suspended and suspended in the waste water and insoluble particles
  • an electrolysis tank for decomposing molecules of organic components in the primary treated water that has passed through the oil / water separation tank
  • a separation / removal tank for separating and removing organic components from the secondary treated water that has passed through the electrolysis tank
  • an adsorption removal tank for adsorbing and removing organic components from the tertiary treated water that has passed through the separation / removal tank
  • the separation and removal There is provided a treatment apparatus for oilfield associated water having a combustor that combusts and exhausts an organic component separated and removed in a tank and an organic component separated and removed by the adsorption removal tank. It is preferable that the oil / water separation tank is a magnetic separation tank.
  • an inorganic adsorption removal agent is preferable.
  • the inorganic adsorbent has a crystal structure containing silicic acid and aluminum oxide, and the abundance ratio of silicic acid and aluminum oxide is 5 or more in terms of SiO ZA1 O molar ratio.
  • the inorganic adsorbent contains at least one component of silicic acid, aluminum oxide and sodium oxide, and the abundance ratio of silicic acid and aluminum oxide is SiO 2 / A.
  • the molar ratio of 1 O is 5 or more, and the adsorbent contains Pt, Pd, Ru, Rh, Ni, Fe, Cu, Mn
  • the inorganic-based adsorption / removal agent after the organic component is adsorbed and removed be heated and repeatedly regenerated and used in an atmospheric atmosphere of 100 ° C to 600 ° C.
  • the separation / removal tank may be a separation / removal tank that separates and removes volatile organic compounds by aeration of the primary treated water.
  • the present invention provides a magnetic separator for removing oil and insoluble particles suspended and suspended in waste water.
  • the electrolysis process for electrolyzing the oil-separated water separated by magnetic separation, the secondary treatment hydropower of the electrolysis process force, the separation / removal process for separating and removing volatile organic compounds, and the separation / removal tank power
  • a treatment method comprising an adsorption removal step of adsorbing and removing organic components from the tertiary treated water, and a step of combusting and exhausting volatile organic compounds discharged together with the vapor from the separation and removal tank.
  • the magnetic separation device which is the raw material
  • the aeration tank which is the raw material
  • the evaporative concentration device the hypochlorous acid reactor, and the Z or electrolysis reactor
  • a method of removing COD components by an adsorption method using a catalytic adsorbent until the COD value is below the environmental emission standard value is appropriate.
  • zeolite is suitable for the catalytic adsorbent.
  • synthetic zeolite having a high silicon Z alumina ratio and hydrophobicity is effective.
  • the COD component can be removed by an adsorption method using zeolite as an adsorbent, and the adsorption characteristics due to the adsorbed substance are reduced.
  • the most important feature is recovery by combustion and decomposition in the atmosphere.
  • synthetic zeolite is particularly suitable as a substance that makes use of the characteristics of the present invention, and among them, the SiO ratio is in molar ratio.
  • Synthetic zeolite having 2 3 5 or more and having a hydrophobic property is most suitable.
  • ZSM-5 is an adsorbent that serves the purpose of the present invention.
  • the organic component adsorbed on the adsorbent remains as a carbon component. Normally, carbon cannot be removed unless heated to 600 ° C or higher in the atmosphere. However, in the actual water accompanying the oil field, sodium chloride sodium is dissolved in the same level as the seawater concentration. Therefore, when regenerated repeatedly at 600 ° C, SiO, which is the main component of zeolite, reacts with Na of sodium chloride in a short time to form an adsorbent.
  • the organic matter on the surface of the adsorbent is decomposed and oxidized and burned at a temperature of 500 ° C or lower, and under the best conditions of 400 ° C or lower, and the adsorbent is returned to its original active state. Can be recovered.
  • synthetic zeolite is the main component of the adsorbent, and the organic component adsorbed on the surface of the adsorbent is oxidized and burned by the catalytic effect of the catalytic component coated and supported on the surface of the synthetic zeolite. It is possible to recover to the extent.
  • the catalytic component can be a similar effect with noble metals such as Pt, Pd, Rh, Au and Ag, and transition metals such as Fe, Ni, Mn, Mn and Co.
  • noble metals such as Pt, Pd, Rh, Au and Ag
  • transition metals such as Fe, Ni, Mn, Mn and Co.
  • the regeneration operation is possible only by removing the treated water while it is filled with the adsorbent. Therefore, there is an advantage from the viewpoint that the operational complexity is reduced and the wastewater treatment cost can be reduced.
  • an adsorbent in which a catalytic component is supported on the surface of synthetic zeolite maintains the adsorption performance.
  • the adsorbed organic components can be decomposed into oxygen and the carbon content can be oxidized and burned.
  • COD was measured by chemical oxygen demand (COD) with potassium permanganate in the JIS K 0102 factory effluent test method.
  • the wastewater treatment apparatus 10 is also configured with a magnetic separation apparatus 11 that separates oil in the oilfield-associated water, an electrolysis tank 14, a COD adsorption tank 17, and an exhaust combustion tower 16 force.
  • oilfield associated water 1 is stored in the raw water tank 2.
  • the oil is dispersed as an emulsion.
  • Oilfield water contains very fine mud, sand, and other solid substances in addition to organic components and inorganic ions such as sodium.
  • oilfield-associated water 1 is sent to agglomeration tank 3 and used with aggregating agents such as ferric sulfate or polysalt-aluminum and magnetic particles such as magnetite (Fe 2 O 3) and ⁇ -matite (Fe 2 O 3).
  • aggregating agents such as ferric sulfate or polysalt-aluminum
  • magnetic particles such as magnetite (Fe 2 O 3) and ⁇ -matite (Fe 2 O 3).
  • the raw water containing floc is sent to the rotary filtration device 4 to remove oil and floc.
  • the rotary filtration device 4 is provided with a rotary filtration membrane 5 and a rotary cylinder 6, and a magnetic field generator such as an electromagnet (not shown) is provided inside the rotary cylinder 6.
  • the raw water is filtered by the rotary filtration membrane 5 and the oil and floc 7 are separated from the raw water.
  • Rotating filtration membrane 5 ⁇ The accumulated oil and floc are removed from the rotating cylindrical body 6 by spraying washing water and squeezing off by the scooping plate 8, and are discharged to the outside of the rotating filtration device 11.
  • the filtered water 90 is sent to the electrolysis tank 14.
  • Electrodes 91 and 92 are installed in the electrolysis tank 14. Electrodes 91 and 92 are connected to potential generator 13. After entering the electrolysis tank 14, the organic matter in the filtered water 90 is decomposed by continuous electrolysis, and becomes an organic matter having a smaller molecular weight. The oil accompanying water dissolves a high concentration of sodium chloride and is advantageous for the progress of the electrolytic reaction. The exhaust gas component in the electrolysis tank 14 is analyzed by a gas analyzer 31 '.
  • the electrolysis tank 14 a hydrocarbon generation reaction also occurs by energization, and volatile organic components are generated. Accordingly, the electrolysis tank 14 is exhausted from the exhaust pipe 15 for recovering volatile organic components.
  • An exhaust combustion tower 16 for burning and removing volatile organic components is installed at the tip of the exhaust pipe 15, and combustion exhaust gas is released from the duct 30 into the atmosphere.
  • the electrode material used for electrolysis is preferably Fe, Ni, Al, Au, Pt, SUS or the like. If it is an electrode material that can obtain a high current density, a reaction in which a carboxylic acid having two molecular weights and two protons are combined to mainly produce hydrocarbons occurs. For this reason, high current density conditions are desirable, and the present inventors have devised that among the above electrode materials, materials in which Pt or Pt is coated in a thin film form are suitable.
  • the filtered water 90 can continuously flow into the electrolysis tank 14.
  • Organic components that are not decomposed in the electrolysis tank 14 or organic components that have been partially decomposed are sent to either the COD adsorption tank 17 or 19 through the drainage supply pipe 18 as components in the secondary treated water 180.
  • the COD adsorption tank is composed of a first COD adsorption tank 17 and a second COD adsorption tank 19. Normal luck The first COD adsorption tank 17 is used at the time of rotation, and the second COD adsorption tank 19 is installed as a spare, or the first and second adsorption towers are used alternately. Therefore, the configurations of the first COD adsorption tank and the second COD adsorption tank are the same. The overall configuration of the adsorption tank will be described below based on the first COD adsorption tank 17.
  • Adsorbent 21 was filled with ZSM-5 particles, a kind of synthetic zeolite.
  • the ZSM-5 particles were loaded with catalyst components.
  • the Ni component was supported at 0.5 wt% in terms of the unit weight of ZSM-5.
  • mordenite has the same adsorption performance as the component of adsorbent 21.
  • the COD adsorption tank container of this example has a cylindrical shape made of SUS304.
  • the material of the adsorption tank container is not limited to SUS304.
  • the COD adsorption tank 17 is arranged inside the heating furnace 20 so that the adsorbent 21 can be heated together with the COD adsorption tank 17.
  • the COD adsorption tank 17 is provided with a hot air blower 22 and a drain pipe 23.
  • the drain pipe 23 is attached to the lower part of the adsorption tank together with the drain valve 24.
  • the flow path of the water to be treated is switched to the adsorption tower 19, the water draining nozzle 24 of the adsorption tower 17 is opened, and the water in the COD adsorption tank 17 is drained. Subsequently, the hot air blower 22 is operated and hot air of about 100 to 120 ° C. is blown into the COD adsorption tank 17 to dry the adsorbent 21. It is desirable to have a structure where the upper force is blown and the COD adsorption tank lower force is exhausted along with draining.
  • the moisture content of the adsorbent 21 in the entire COD adsorption tank 17 was reduced to 10% or less.
  • the blowing time varies depending on the tank length of the COD adsorption tank 17 and the air supply temperature, and is not limited to this embodiment.
  • a moisture meter 29 may be provided in the blower pipe 28 at the bottom of the adsorption tank.
  • the secondary treated water 25 that has passed through the COD adsorption tank 17 is stored in the water storage tank 27 and then drained 28.
  • a COD monitor 26 is installed before and after the water tank, and is used especially for the control of the COD value of wastewater (COD ⁇ 120mg / L).
  • a hot air blower that raises the temperature to the same temperature may be used. So In this case, it is desirable that the hot air atmosphere is an atmospheric component.
  • FIG. 3 shows a configuration example of an adsorption tower used in the embodiment of the present invention.
  • Fig. 3 (a)
  • an electric furnace or microwave furnace 61 is installed around the adsorption tower packed with OD adsorbent.
  • the downward force of the adsorption tower also supplies raw water (containing COD) 62 and becomes treated water 63 which is discharged from the adsorption tower.
  • raw water containing COD
  • treated water 63 which is discharged from the adsorption tower.
  • combustion air 64 is supplied from below the adsorption tower
  • combustion exhaust gas (containing C02, CO, CH) 65 is introduced into the combustor 66 and combusted. .
  • Fig. 3 (b) is substantially the same as Fig. 3 (a), but adsorbs high-temperature air or high-temperature gas (T ⁇ 600 ° C) 68 without installing a surrounding heating furnace in the adsorption tower. Also supplies the downward force of the tower. Combustion exhaust gas 69 is introduced into the combustor 66.
  • the gas turbine exhaust gas 70 is supplied also with the upward force of the adsorption tower, the combustion air 68 is supplied from below the adsorption tower, and the combustion exhaust gas 69 is discharged. It goes without saying that the configurations of these adsorption towers are merely examples, and can be applied to cases other than the above embodiment.
  • Example 2 is an example of a test result using the apparatus shown in Example 1.
  • Table 3 shows the measurement results of COD values in the electrolysis process and the adsorption process.
  • the primary treated water in Table 3 is the analysis result sampled in the primary treated water sampling line 31 in Fig. 1.
  • the secondary treated water is in the electrolyzer 14 of the electrolyzer. Treated by applying an electric field between the electrode 91 and the electrode 92 installed inside using the electric field applying device 13 It is.
  • the analysis sample can be collected from the middle of the drainage supply pipe 18, and the analysis result of the collected secondary treated water 180 is shown.
  • (+) means proton
  • the material of the electrodes 91 and 92 used in the present invention is Pt (platinum).
  • the entire force electrode material need not be Pt.
  • Similar results can be obtained with SUS, Fe, Al, Ti, etc. with Pt coated on the surface.
  • Methods for coating Pt on the surface of SUS, Fe, Al, Ti, etc. include ion plating, vapor deposition, and sputtering, and any of them is effective as an electrode material.
  • the adsorbent 21 will be described. As characteristics of the adsorbent 21, the following results were found as a result of experiments by the inventors. As a component of the adsorbent, the molar ratio of SiO / Al 2 O is 5 or more
  • the SiO 2 / Al 2 O ratio is 80 or more in molar ratio.
  • the aperture diameter of the pores contributing to adsorption be 0.5-0.6 nm. It is desirable that the pores contributing to the adsorption are formed in a three-dimensional structure.
  • the adsorbent packed in the adsorption tower has no problem as long as the adsorbent has the above-mentioned adsorption performance, such as in the form of particles or powder, but in the case of powder, the flow path during water flow may not be dispersed. Pressure loss increases during the heat regeneration process. Therefore, it is desirable to form the powdery adsorbent in advance in the form of particles, or to place the powdery adsorbent on a carrier such as a honeycomb and place it in the COD adsorption removal tank.
  • FIG. 1 A specific example of the adsorption tower in the embodiment of the present invention is shown in FIG.
  • a plurality of COD adsorption towers 70 are arranged in series with the flow of the accompanying water 85, and the treated water 90 is discharged from the head of the last adsorption tower.
  • Each adsorption tower 70 is equipped with a heating furnace 75 used for regeneration of the adsorbent.
  • Each adsorption tower is equipped with a hot air blower system 80 for drying the adsorbent during regeneration!
  • FIG. 6 shows the results for regeneration of the adsorbent of the present invention. That is, the figure shows the relationship between the heating temperature and the amount of CO, CO, and hydrocarbons generated from the adsorbent during repeated regeneration.
  • adsorption under the same conditions is performed using adsorbents carrying various concentrations of catalyst dig components, and thermal desorption tests are performed under the same conditions.
  • the optimum type and concentration range of the catalyzed component can be determined.
  • Fig. 7 and Fig. 8 the adsorption performance was evaluated using the following method. Weighed 300 mL of oil field-associated water, put it in a beaker, and charged the adsorbent precisely weighed into the beaker. After sealing, the reaction was sufficiently performed by shaking mixing for a predetermined time or rotating mixing with a stirrer. After completion of the reaction, the adsorbent was immediately filtered and separated from the treated water. Minute particles If it cannot be separated, fine particles are separated from the treated water by a centrifuge. The liquid obtained as described above was subjected to analysis.
  • FIG. 7 shows the concentration of carbon remaining in the adsorbent and the adsorption performance of the regenerated adsorbent when heated in an air atmosphere while heating at a rate of 10 ° C. per minute.
  • the adsorbent is a catalyst obtained by supporting 0.2 wt% of Pt in a zeolite weight ratio.
  • Zeolite is ZSM-5 particles 3 mm in diameter and 5-20 mm in length produced by an extrusion method.
  • Pt was obtained by immersing the ZSM-5 particles in a Pt aqueous solution diluted with purified water to the above concentration using dinitrodiamin Pt (II) nitric acid solution as a raw material.
  • the water was evaporated at 120 ° C, and after the water was completely evaporated, it was heated in the atmosphere at 600 ° C for 1 hour.
  • the oil-field-associated water was brought into contact in a beaker and stirred for 10 minutes.
  • the COD value of the oil field associated water before entering the beaker was 600 mg / L.
  • the stirring time was determined after confirming that the COD value of the treated water hardly changed after 10 minutes.
  • the treated water and the adsorbent were separated, and the adsorbent was dried with a hot air blower and heated at a temperature of 300 to 550 ° C for 1 hour, and the carbon concentration in the adsorbent after heating was quantitatively analyzed.
  • the horizontal axis of FIG. 7 is the regeneration heating temperature of the catalyzed adsorbent, which corresponds to the regeneration temperature of the adsorbent of the present invention.
  • the value on the vertical axis is the residual carbon concentration in the adsorbent. Residual C concentration is 0 if regeneration temperature power is less than 00 ° C. Conversely, if it is 400 ° C or higher, the remaining C concentration is 0.1 lwt% or less.
  • Figure 8 shows how much this residual C affects the adsorption performance, based on changes in the COD value of oily water.
  • the vertical axis in Fig. 8 represents the adsorption reaction of oilfield-associated water.
  • COD value of treated water after 10 times and after 10 times of regeneration COD value of raw water 600
  • the COD component in the oilfield associated water is adsorbed by the adsorbent and has a regeneration process in order to maintain the adsorbent adsorption capacity. It becomes possible to remove components.
  • Figure 9 shows the results when determining the optimum Co content for Co, which is one of the catalytic components of the adsorbent.
  • the adsorbent is a catalyst obtained by supporting Co up to a maximum of 3wt% by weight of zeolite.
  • Zeolite is a 3 mm diameter, 5 mm long: LOmm ZSM-5 particle made by extrusion.
  • Co was obtained by immersing the ZSM-5 particles in an aqueous Co solution diluted with purified water so that the catalytic concentration was obtained, using an aqueous cobalt nitrate hexahydrate solution.
  • the horizontal axis of Fig. 9 represents the Co concentration supported on the ZSM-5 support.
  • the vertical axis shows the concentration of C remaining in the adsorbent as a ratio.
  • the denominator of the residual C concentration ratio on the vertical axis is the residual C concentration in the adsorbent after adsorption, drying and heating at 400 ° C for 1 hour with an adsorbent (ZSM-5 particles) that does not contain the catalytic component Co. is there.
  • the lowest residual C concentration ratio means the concentration range most effective as the catalyst component. Therefore, it can be seen that the optimum loading of Co is about 1 to 2 wt% for loading Co as a catalyst component on ZSM-5 particles.
  • the wastewater treatment system of the present invention is applied to the treatment of oilfield associated water in a crude oil well
  • the present invention is not limited to this.
  • the oilfield associated water treatment system shown in Fig. 2 the oilfield associated water 100 is accommodated in the raw water tank 106.
  • the oil In the water accompanying the oil field, the oil is dispersed as an emulsion.
  • Oilfield water contains very fine mud, sand, and other solids in addition to organic components and sodium. For this reason, the raw water that is associated with the oil field is sent to a coagulation tank 107, where a coagulant such as ferric sulfate or polysalt-aluminum and magnetite (Fe 2 O 3)
  • a coagulant such as ferric sulfate or polysalt-aluminum and magnetite (Fe 2 O 3)
  • Y Use hematite (Fe 2 O 3) and other magnetic particles to agglomerate suspended matter to form a floc
  • the raw water containing floc is sent to the rotary filtration device 108 to remove oil and floc.
  • the rotary filtration device 108 is provided with a rotary filtration membrane 109 and a rotary cylinder 111, and a magnetic field generator such as an electromagnet (not shown) is provided inside the rotary cylinder 111! / ⁇
  • a magnetic field generator such as an electromagnet (not shown) is provided inside the rotary cylinder 111! / ⁇
  • the raw water is filtered by the rotary filter membrane 109, and oil and floc are separated from the raw water.
  • the filtered water 110 is sent to the wastewater treatment system of the present invention described later. Oil and floc accumulated on the rotary filter membrane 109 are removed from the rotary cylinder 111 by spraying the cleaning water and scraping off by the scraping plate 112 and are discharged to the outside of the rotary filter device 108.
  • the filtered water 110 is sent to one of the adsorption towers 115a and 115b through the drainage supply pipe 114.
  • two adsorption towers are provided, but more adsorption towers may be provided.
  • the two units are provided so that when the adsorption treatment is performed in one of the adsorption towers, the regeneration treatment is performed in the other adsorption tower so that the waste water treatment is continuously performed.
  • the adsorption tower is switched by opening and closing the valves 117a and 117b.
  • the adsorption towers 115a and 115b are filled with inorganic type adsorbents 116a and 116b, respectively.
  • the adsorbent is preferably made from fine particles in order to increase the adsorption surface area. Since the fine particles themselves are caused to flow out by running water, the force that is complicated to manage them is formed into a fixed shape and fired.
  • the shape of the molded body may be a columnar shape, a pellet shape, a cylindrical shape, a her cam or a mesh shape.
  • Various adsorbent fine particles may be supported on various shaped body carriers. As a hard cam or mesh carrier, it is necessary to withstand repeated regeneration. It is desirable to use an inorganic substance or a metal.
  • the waste water supply pipe 104 is connected with an analyzer 130 for analyzing the sodium concentration of the waste water, and the treated water discharge pipes 121 and 122 at the outlet of the adsorption tower are connected with the sodium concentration of the treated water. Analyzing devices 140a and 140b for analysis are connected.
  • the adsorption towers 115a, 115b are provided with heating devices 118a, 118b for heating the adsorbent, and air blow pipes 120a, 120b are attached via valves.
  • the air duct is connected to an air supply device (not shown).
  • These heating devices and air blow pipes are used when regenerating the adsorbent in the adsorption tower.
  • the adsorption operation is temporarily stopped, air is sent into the adsorption tower from the air blow pipe, and the adsorbent is heated to a high temperature by the heating device. Heat and burn off organic components adsorbed on the adsorbent.
  • the heating temperature at this time is such that the vitrification of the adsorbent proceeds more easily as the temperature becomes higher. Therefore, the heating temperature is preferably as low as possible within a range where the organic components can be removed by combustion. Specifically, a temperature of 500 ° C or lower is particularly preferable, and a temperature of 400 ° C or lower is particularly preferable.
  • the valve 119a or 119b installed at the outlet side of the adsorption tower in which the operation is being performed is kept closed.
  • the analysis devices 130, 140a, and 140b analyze the sodium concentration continuously or at arbitrary time intervals, and transmit the analysis data to the data accumulation device 151 of the control device 150 using a communication line or the like.
  • the data accumulated in the data accumulation device 151 is sent to the arithmetic device 152.
  • the arithmetic unit 152 the data of the analytical device 130 and the data of the analytical devices 140a and 140b are compared, and if they become the predetermined conditions set in advance, the adsorbent is sodium. It is determined that the valve has been poisoned and the life has been exhausted, and a signal for closing one of the valves performing the adsorption operation, that is, the valves 117a and 117b, is issued.
  • the conditions for closing valves 117a and 117b are when the sodium concentration measured by analyzers 140a and 140b exceeds the sodium concentration measured by analyzer 130, or by analyzers 14 Oa and 140b. This is when the measured sodium concentration becomes a predetermined ratio with respect to the sodium concentration measured by the analyzer 130.
  • an absorptiometer, an ion chromatograph, a flame atomic absorption analyzer, or the like can be used as the analyzers 130, 140a, 140b.
  • control device 150 If the control device 150 outputs a signal to close the valve 117a or the valve 117b and the wastewater supply to the adsorption tower is stopped, the adsorbent filled in the adsorption tower is replaced, or A treatment is performed to remove sodium.
  • the function performed in the control device 150 can be performed by reading a program having the function. It is also possible to record the program on a recording medium, read it into a control device, and perform its function.
  • oilfield-associated waters include acetic acid, propionic acid, butyric acid, valeric acid, succinic acid, lactic acid, acetone, methyl ethyl ketone, trichloroethylene, tetrachloroethylene, benzene, tolenene, ethynolebenzene, xylene, phenol, cresol, xylenol, hexane mouth.
  • Benzene, carbon disulfide, etc. are included, both of which are factors that increase COD.
  • Table 4 shows the COD reduction amount of treated water. The higher the COD component reduction amount, the smaller the amount of organic components adsorbed by the adsorbent, and the smaller the amount of organic components contained in the treated wastewater.
  • the second stock solution shown in Table 4 and the synthetic zeolite shown in No. 7 in Table 5 were placed in a reagent bottle and mixed and stirred for 1 hour. Thereafter, the second stock solution was replaced with a new one and mixed and stirred again for 1 hour. After the stock solution was exchanged 5 times, the reagent bottle force adsorbent was taken out and heated to a high temperature. The heating temperature was changed in four ways within the range of 120-700 ° C. Then, the carbon content and specific surface area of the adsorbent were measured. The carbon content was measured by the high frequency combustion infrared absorption method, and the specific surface area was measured by the BET method. Table 6 shows the measurement results.
  • the experiment was conducted. In the experiment, the adsorbent and the first stock solution shown in Table 3 were placed in the reagent bottle, stirred and mixed for 1 hour, then the adsorbent was taken out and heated to 600 ° C for regeneration, and again the adsorbent was added to the reagent bottle. The first stock solution was added, and the same operation was repeated thereafter.
  • Figure 4 shows the X-ray diffraction peaks of the adsorbent before it was used for adsorption, that is, a new adsorbent, adsorbent when adsorption and heating regeneration were performed 20 times, and adsorbent when adsorption and regeneration were performed 50 times each. Indicates.
  • the X-ray diffraction pattern was measured by powder X-ray diffraction method.
  • FIG. 11 shows how the COD reduction rate and sodium concentration of treated wastewater change with increasing adsorbent usage time.
  • the arrow in the figure means that the numerical value increases in the direction, for example, the concentration of Na in wastewater increases.
  • the interval between measurement points is approximately 10 hours.
  • regeneration is performed every time the adsorption is performed for 1 hour, and therefore, adsorption and regeneration are performed 10 times each during the 10 hours.
  • the COD reduction rate decreased with increasing usage time, while the concentration of sodium in wastewater increased with increasing usage time. This confirms that even if adsorption and regeneration are repeated, sodium accumulates in the adsorbent as the usage time increases, and the adsorption removal rate of organic components decreases. Therefore, measuring sodium concentration in waste water before and after contact with the adsorbent is extremely effective in determining the life of the adsorbent.
  • Example 6 (Example 6)
  • the downward force of the filler 113 filled in the aeration tank 12 is not reduced by electrolysis of the treated water without performing electrolysis of the water to be treated. Is supplied. Since the other points are the same as those in FIG. 1, description will be made using the same reference numerals.
  • the wastewater treatment apparatus 10 according to an embodiment of the present invention is also configured with a magnetic separation device 11 that separates oil in oil field-associated water, an aeration tank 12, a COD component adsorption tank 17, and an exhaust combustion tower 16 force.
  • oilfield associated water 1 is stored in raw water tank 2. In the water accompanying the oil field, the oil is emulsified and dispersed. Oilfield The associated water contains extremely fine mud, sand, and other solid substances in addition to organic components and sodium. For this reason, oilfield-associated water 1 is sent to agglomeration tank 3, where aggregating agents such as ferric sulfate or polysalt-aluminum, and magnetite (Fe 2 O 3), ⁇ -matite (
  • Fe O Fe O
  • other magnetic particles are used to agglomerate suspended matter to form a floc.
  • the raw water containing floc is sent to the rotary filtration device 4 to remove oil and floc.
  • the rotary filtration device 4 is provided with a rotary filtration membrane 5 and a rotary cylinder 6, and a magnetic field generator such as an electromagnet (not shown) is provided inside the rotary cylinder 6.
  • the raw water is filtered by the rotary filtration membrane 5 and the oil and floc 7 are separated from the raw water.
  • Rotating filtration membrane 5 ⁇ Accumulated oil and floc are removed from the rotating cylinder 6 by spraying the washing water and squeezing off the scooping plate 8, and discharged outside the magnetic separator 11.
  • the filtered water 90 is sent to the aeration tank 12.
  • the aeration tank 12 is filled with a filler 113 inside the tower, and a blower 114 is installed so that air is blown by the lower force of the filler.
  • volatile organic components are exhausted from an exhaust pipe 15 installed at the top of the tower.
  • An exhaust combustion tower 16 for burning and removing volatile organic components is installed at the tip of the exhaust pipe 15. According to the analysis, volatile organic components exhausted from the aeration tank 12 were ketones such as acetone and benzenes.
  • the component that hardly volatilizes is the first COD adsorption tank 17 or the second COD adsorption tank 19 in the first COD adsorption tank 17 through the drainage supply pipe 18 from the lower part of the ventilation tank 12 as the aeration treatment water 180 Sent to one or the other.
  • This aerated treated water 180 is a secondary treated water.
  • the COD adsorption tank includes a first COD adsorption tank 17 and a second COD adsorption tank 19. The first during normal operation The COD adsorption tank 17 is used, and the second COD adsorption tank 19 is installed as a spare.
  • the configuration of the first COD adsorption tank and the second COD adsorption tank is the same.
  • the overall configuration of the adsorption tank will be described below based on the first COD adsorption tank 17.
  • two COD adsorption tanks are provided, but more adsorption tanks may be provided.
  • Adsorbent 21 was filled with particles of ZSM-5, which is a kind of synthetic zeolite.
  • the ZSM-5 particles supported a catalyst component.
  • the Pt component was supported at 0.2 wt% in terms of the unit weight of ZSM-5.
  • mordenite has the same level of adsorption performance.
  • the COD adsorption tank container of this example is a cylindrical shape made of SUS304.
  • the material of the adsorption tank container is not limited to SUS304.
  • the COD adsorption tank 17 is arranged inside the heating furnace 20 so that the adsorbent 21 can be heated together with the COD adsorption tank 17.
  • the COD adsorption tank 17 is provided with a hot air blower 22 and a drain pipe 23.
  • the drain pipe 23 is attached to the lower part of the adsorption tank together with the drain valve 24.
  • the moisture content of the adsorbent 21 in the entire COD adsorption tank 17 was reduced to 10% or less.
  • the blowing time varies depending on the tank length of the COD adsorption tank 17 and the air supply temperature, and is not limited to this embodiment.
  • the treated water 25 that has passed through the COD adsorption tank 17 is stored in the water tank 27 and then drained 28.
  • COD monitors 26 are installed in front of and behind the water tank to manage the COD value of wastewater (COD
  • a vacuum distillation apparatus an electrolysis apparatus, or a hypochlorous acid reactor may be used instead of the aeration tank 12. good.
  • an electrolyzer may be provided in the preceding stage of the aeration tank 12 which is a separation and removal device.
  • the blower 114 can be provided downstream of the electrodes 91 and 92 of the electrolyzer, and the electrolyzer tank 14 and the aeration tank 12 can be integrated.
  • an aeration tank may be placed in the front stage and an electric decomposition tank may be installed in the rear stage.
  • the COD component in the oilfield-associated water is adsorbed by the adsorbent and has the regeneration step in order to maintain the adsorbent adsorption capacity, it can be removed for a long time.
  • the present invention can be applied to the detoxification treatment of oil field associated water obtained by recovering crude oil from a mixture of crude oil and salt water mined in an oil field or the like, and the treated water satisfies environmental emission standards. Is possible.

Abstract

 原油と塩水との混合物から原油を分離して得られた油田随伴水と吸着剤を接触して、油濁水中の溶存有機物を吸着除去し、吸着剤を再生することを特徴とする油田随伴水中の溶存有機物の除去方法、除去装置。

Description

明 細 書
油田随伴水中の有機物の除去方法および除去装置
技術分野
[0001] 本発明は、油田地帯において原油と塩水との混合物から分離、生産される油田随 伴水の処理方法および処理装置に関し、特に油田随伴水に含まれる油滴等の有機 物及び溶存する有機化合物を効果的に除去する方法および装置に関する。
背景技術
[0002] 油田地帯においては、原油と塩水が混合した状態の混合物が採掘され、この混合 物から原油と塩水を分離し、油田随伴水を生成する。油田随伴水は、かなりの油滴と 溶存有機化合物を含んでいるため、そのまま海や湖沼に戻すことは環境の破壊に繋 がる†具がある。
[0003] 従来、油田地帯において生産される油田随伴水に含まれる油分を分離、除去する ために、種々の方法が検討されてきた。例えば、特開 2003— 144805号公報にお いては、油田随伴水中の油分をェマルジヨンィ匕し、これに磁性粉及び凝集剤を添カロ して磁性フロックを形成し、磁性フロックを磁気吸引して分離することが開示されてい る。
[0004] ま 7こ「Experience of Produced Water Treatment m tne North Sea, Marine Pollution Bulletin, Vol. 29、 No. 6— 12, (1994) , p. 312— 316で は、液体サイクロンを用いて油滴を分離することが記載されて 、る。
[0005] ところが、油田随伴水の油滴を除去したとしても、油田随伴水にはかなり多量の有 機化合物例えば酢酸、プロピオン酸、吉草酸などが溶存し、これが悪臭や環境に対 するダメージの原因であるとして、その除去が検討されている。前記溶存有機化合物 の含有量を測る指標は COD (化学的酸素要求量)と称される値である。そのため前 記油田随伴中の溶存水有機化合物を通称 COD成分と呼ぶ。
[0006] 特開 2004— 275884号公報においては、油田随伴水に活性炭粉末を添カ卩して、 COD成分を吸着し、これに凝集剤を添加して活性炭粉末を凝集分離することが記 載されている。 [0007] 特開 2004— 255290号公報においては、油田随伴水に有機高分子凝集剤を添 加し、更に高分子凝集剤と酸化剤を添加して油分を分解することが記載されている。 余剰の酸化剤を活性炭で吸着して除去することや、電気分解により生成する次亜塩 素酸などを酸化剤とすることも記載されて ヽる。
[0008] 上記の各種公知文献に記載の技術は、油田随伴水中の油分および今後問題とな る溶存有機化合物の適切な処理および分離された有機化合物の処理という点で問 題がある。例えば、有機物等を吸着した活性炭を凝集剤で沈殿させる方法において はその大量の沈殿物の処理が大きな問題となる。次亜塩素酸などの酸化剤で油分 はある程度分解できる力もしれないが、溶存有機化合物を効果的に減少できるかどう か不明である。
[0009] なお、特開 2000— 93957号公報には、飲料水等の少量の有機物を含有する水を 、ゼォライトを含む浄水膜により浄ィ匕する技術が開示されているが、油田随伴水のよ うな多量の油分や有機化合物を含む劣悪な水を処理する技術ではない。
[0010] 特許文献 1 :特開 2003— 144805号公報
特許文献 2:特開 2004 - 275884号公報
特許文献 3:特開 2004— 255290号公報
特許文献 4:特開 2000— 093957号公報
非特干文献 1:「Experience of Produced Water Treatment m the Nort h Sea, Marine Pollution Bulletin, Vol. 29、 No. 6— 12, (1994) , p. 312 - 316
発明の開示
発明が解決しょうとする課題
[0011] 従って、油田随伴水中の油分および溶存有機化合物を効果的に分離、除去し、か つその後処理において、設備、コストおよび環境等への負荷が少ない、油田随伴水 の処理方法および装置が望まれる。
課題を解決するための手段
[0012] 本発明は、油田で採掘された原油と塩水との混合物から原油を分離して得られた 油田随伴水の油分分離処理を行うこと及び油分除去処理された油田随伴水の溶存 有機化合物を吸着、除去する吸着剤を、上記油田随伴水と接触することにより、油分 及び溶存有機化合物を効果的に除去する方法及び装置を提供する。
図面の簡単な説明
[0013] [図 1]本発明の 1実施例による油田随伴水の処理システムの概略構成を示す線図。
[図 2]本発明の他の実施例による油田随伴水の処理システムの概略構成を示す線図
[図 3]本発明にお ヽて使用される吸着塔の構成例を示す断面略図。
[図 4]本発明にお 、て用いられる吸着剤の X線回折パターンを示す図。
[図 5]本発明における実施例よる処理システムの吸着塔の構成例を示す外観図。
[図 6]本発明において用いられる吸着剤の昇温脱着時の吸着剤の加熱温度と脱離ガ ス成分の濃度との関係を示すグラフ。
[図 7]本発明にお ヽて用いられる触媒化成分を担持した吸着剤の再生温度と、再生 後の吸着剤に残留した炭素濃度との関係を示すグラフ。
[図 8]本発明の実施例における吸着剤の再生温度と吸着前後の COD 値の関係を
Mn
示すグラフ。
[図 9]触媒化成分 Coの濃度と、 Coを担持した吸着剤を使用後、 400°Cで 1時間加熱 再生した後に残留した炭素濃度との関係を示すグラフ。
[図 10]触媒化成分 Mnの濃度と、 Mnを担持した吸着剤を使用後、 400°Cで 1時間加 熱再生した後に残留した炭素濃度との関係を示すグラフ。
[図 11]吸着剤の使用温度と処理後の処理水の COD低減率の関係を示すグラフ。
[図 12]実施例 6において、図 1中の電位発生装置及び電気分解槽の代わりに配置さ れたばつ気槽の構造を示す概略図。
符号の説明
[0014] 1…油田随伴水、 2…原水タンク、 3· ··凝集槽、 4…回転濾過装置、 5…回転濾過膜 、 6…回転円筒体、 7· ··フロック、 8…搔き落とし板、 10· ··排水処理装置、 11…磁気 分離装置、 13…電発生装置、 14…電気分解槽、 15…排気管、 16…排気燃焼塔、 1 7、 19 COD吸着槽、 18· ··排水供給管、 20…加熱炉、 21…吸着剤、 22…熱風ブ ロア、 23· ··水抜き管、 24· ··ノ レブ、 25· ··2次処理水、 26- CODモニター、 27· ··貯 水槽、 28…送風配管、 29· ··水分計、 30…ダクト、 31…サンプリング口、 31'…ガス分 析計、 91、 92· ··電極、 180· ··2次処理水。
発明を実施するための最良の形態
[0015] 本発明は、油田随伴水中の油滴等を除去し、かつ随伴水中の溶存有機化合物を 吸着除去するものであるが、油滴等の除去方法としては、磁気分離法が特に好適で ある。また、溶存有機化合物の除去法としては吸着剤を用いた吸着除去が必須であ る力 吸着処理の前処理として、電気分解法等を利用することもできる。以下におい ては、本発明において重要な吸着除去法に関して、いくつかの項目を詳しく説明す る。
〔I〕溶存有機化合物の含有量例;表 1は典型的な日本産出原油の随伴水の塩及び 溶存有機化合物の含有量を示すものである。また、表 2は典型的な外国産原油の随 伴水の成分及び濃度を示す。油田によってこの有機化合物の種類、含有量は種々 変化しうる。ノルマル及び Ζ又はイソ酪酸、ノルマル及び Ζ又はイソ吉草酸は悪臭の 原因物質である。
[0016] [表 1]
(表 1 )
Figure imgf000007_0001
]
(表 2 )
Figure imgf000008_0001
〔II〕COD処理法比較
種々の COD除去処理法について実験によりその有効性を確認したところ、以下の ような結果が得られた。即ち、本発明で用いるゼォライト吸着剤のような易再生型無 機吸着剤を使用する方法以外は、実用上問題があることがわ力 た。
(1)活性汚泥処理法;塩素の影響で生物は阻害を受ける。処理時間が長い。
(2)次亜塩素酸ナトリウム添加; COD低減効果が殆どな ヽ。
(3)次亜塩素酸発生 (電気分解); COD低減効果が殆どな ヽ。
(4)フェントン酸ィ匕; COD低減効果が殆どな 、。
(5)減圧濃縮 (蒸留);水と沸点が大きく異なる物質のみ分離可能。濃縮液の処理が 問題である。 (6)活性炭; CODは低減できるが、再生が困難である。大量の活性炭が必要でコスト が高い。
[0018] 本発明で利用される好ましい易再生型無機吸着剤の性状は以下のとおりである。
(a)吸着容量が大きい。
(b)吸着 ·脱着の速度が大き!/、。
(c)再生が可能である (再生に伴う吸着剤の消耗が少ない)。
(d)機械的強度が十分に大き!、。
(e)吸着剤の細孔径が適切である。
(f)吸着剤の表面性質が対象の被吸着物質と適合して!/、る。
[0019] 本発明の特に好ましい COD除去プロセスの実施形態において、油水分離法と電 気分解法と吸着除去法を組み合わせることによって、合成ゼォライトの COD成分吸 着特性を生力して除去することができる。また、水溶性の有機化合物成分が充分量 吸着し、吸着性能が低下した後にも加熱再生することで容易に吸着性能を使用前と 同程度に回復することが可能であることから、操作上の複雑さがなぐかつ排水処理 コストを低減しうるものである。
[0020] 本発明において、吸着剤としてプロトン型ゼオライトを使用することが望ましい。特に シリカ Zアルミナの比が高ぐモル比で 5以上の合成ゼォライトを使用することが望ま しい。このようにシリカ/アルミナの比が高い合成ゼォライトは疎水性が優れており、 排水中の有機成分を選択的に吸着するのに適する。
[0021] 処理水の COD値が排出基準の 120mgZL以下となるように、被処理水の量と吸着 剤の量、吸着塔 1基あたりの吸着処理時間等を考慮して、 COD除去装置の運転を 管理、運用する。本発明の実施形態による COD除去方法及び装置において、上記 各種データを制御装置の記憶部に格納し、必要に応じてそのデータに基づいて方 法及び装置を制御する。
[0022] 本発明の一実施形態による随伴水処理装置は、油田随伴水に含まれる有機溶媒 等の成分をその濃度にかかわらず高度に処理することが出来る上に、大規模な設備 等の必要がなぐ装置自体をコンパクトにすることが可能であることから、低コストで油 田随伴水を処理しうる。 [0023] 既に述べたように、油田随伴水には、種々の有機成分が溶解しており、 COD上昇 の原因物質となっている。本発明が解決しょうとする課題は、このような油分離水を排 水基準以下の CODまで低下させることにある。また長時間にわたって吸着活性,耐 久性を維持する COD除去システムを提供するものである。
[0024] 油田随伴水力 有機溶媒を吸着により除去する吸着剤としては炭素系吸着剤 (活 性炭)と無機物系吸着剤により実現が可能である。但し、活性炭は吸着性能はよいが 、再生が容易でないという問題点があり、これを解決するような使用方法を取ることが 大切である。
[0025] 典型的な日本産出石油の随伴水の COD成分はアセトン,メチルェチルケトン,酢 酸,プロピオン酸,酪酸、吉草酸、トリクロロエチレン,テトラクロロエチレン,ベンゼン ,トルエン,ェチルベンゼン,キシレン,フエノール,クレゾ一ノレ,キシレノーノレ,へキサ クロ口ベンゼン,二硫化炭素、メタノール、エタノール、コハク酸、乳酸などである。
[0026] 上記の COD成分に対する合成ゼォライトの吸着性には特異性がある。複数種類の 合成ゼォライト同士を混合又は併用して用いることができる。特に異なった細孔径 (ポ ァサイズ)の吸着剤を組み合わせることにより、分子量の小さい有機化合物力 分子 量の大きい有機化合物までを、効果的に吸着することができる。例えば酢酸などの分
Figure imgf000010_0001
、有機化合物は細孔径の小さ!/、吸着剤で吸着させ、分子量の大き!、吉 草酸や芳香族化合物は細孔径の大きい吸着剤に吸着させる。このようにするのは、 1 種類の吸着剤では吸着し得ない分子量の化合物が随伴水に残存する可能性がある 力 である。このように、吸着剤を充填した複数の吸着塔を、被処理水の流れに対し 並列又は直列に配置する力、異なった細孔径の吸着剤を混合して 1つの吸着塔に 充填しても、段階的に各吸着剤が得意とする成分を吸着することでも効率よく COD 成分を除去しうることがわ力つた。
[0027] 吸着剤の形状としては種々考えられ、粉状、粒状、ペレット状、棒状、繊維状の他、 板状、ハ-カムやラシヒリングなどの成形体がある。経済的及び環境保護などの観点 から、使用した吸着剤を再生し、繰り返し使用することがきわめて重要である。そのた め、吸着剤は再生容易な形態もしくは使用方法で使用される。例えば、粉状、粒状、 ペレット状のような形態でも、これを被処理水から容易に分離し、再生処理を適用す ることが重要である。従って、これらのバラバラな形態の吸着剤は、吸着塔力も流出し な!、でかつ被処理水力 簡単に分離できるように、メッシュや多孔板などで挟んで吸 着塔に設置する。その他の形状の場合も、再生を考慮した設置方法を採用する。
[0028] 本発明によれば、排水中に浮遊懸濁する油分と不溶解粒子を除去する油水分離 槽と、該油水分離槽を通過した 1次処理水中から有機成分の分子を分解する電気分 解槽と、該電気分解槽を通過した 2次処理水から有機成分を吸着除去する吸着除去 槽と、該吸着除去槽に充填された吸着除去剤力 脱離する有機化合物を燃焼排気 する燃焼器を有する油田随伴水の処理装置が提供される。
[0029] また、排水中に浮遊懸濁する油分と不溶解粒子を除去する油水分離槽と、該油水 分離槽を通過した 1次処理水中の有機成分の分子を分解する電気分解槽と、該電 気分解槽を通過した 2次処理水から有機成分を分離除去する分離除去槽と、該分離 除去槽を通過した 3次処理水から有機成分を吸着除去する吸着除去槽と、該分離除 去槽で分離除去された有機成分と該吸着除去槽によって分離除去された有機成分 とを合わせて燃焼排気する燃焼器を有する油田随伴水の処理装置が提供される。前 記油水分離槽が磁気分離槽であることが好ま ヽ。
[0030] また、前記吸着除去槽に用いられる吸着除去剤としては無機物系吸着除去剤が好 ましい。前記無機物系吸着剤が珪酸と酸ィ匕アルミニウムを含有する結晶構造がゼォ ライトであって、珪酸と酸化アルミニウムの存在比が SiO ZA1 Oモル比で 5以上で
2 2 3
ある天然ゼォライト又は合成ゼォライトが好適である。特に疎水性の高 、合成ゼオラ イトが好ましい。また、前記無機物系吸着剤が珪酸と酸化アルミニウムと酸化ナトリウ ムのうち少なくとも 1成分以上を含有し、珪酸と酸ィ匕アルミニウムの存在比が SiO /A
2
1 Oのモル比で 5以上であるとともに、吸着剤に Pt, Pd, Ru, Rh, Ni, Fe, Cu, Mn
2 3
, Coのうち少なくとも 1種類の成分を含有して 、るものが好まし!/、。
[0031] また、有機成分を吸着除去した後の無機物系吸着除去剤を 100°C〜600°Cの大 気雰囲気下にお ヽて加熱して繰り返し再生して使用することが好ま ヽ。
[0032] 前記分離除去槽が、前記 1次処理水を曝気することによって揮発性有機化合物を 分離除去する分離除去槽であることができる。
[0033] また、本発明は、排水中に浮遊懸濁する油分と不溶解粒子を除去する磁気分離ェ 程と、磁気分離された油田随伴水を電気分解する電気分解工程と、前記電気分解 工程力 の 2次処理水力 揮発性有機化合物を分離除去する分離除去工程と、前 記分離除去槽力 排出される 3次処理水中から有機成分を吸着除去する吸着除去 工程と、前記分離除去槽カゝら蒸気とともに排出される揮発性有機化合物を燃焼排気 する工程を有する処理方法を提供する。
[0034] 原料である油田随伴水の COD値に応じて磁気分離装置,ばつ気槽,蒸発濃縮装 置,次亜塩素酸反応装置及び Z又は電気分解反応装置を併用しつつ、最終的には 環境排出基準値以下の COD値になるまで触媒ィ匕吸着剤を用いた吸着法によって C OD成分を除去する方式が適当であり、そのためには触媒ィ匕吸着剤にはゼオライトが 適している。なかでも特に珪素 Zアルミナ比が高ぐ疎水性を持つ合成ゼォライトが 有効である。
[0035] 触媒吸着処理法は比較的システム化が容易である反面、触媒の寿命および交換 頻度が処理コストに大きく関係するため、吸着剤の性能とともに再生が容易であること が重要である。
[0036] 有機溶媒等の有機物が吸着した吸着剤を再生するには、加熱法により吸着した炭 素分を酸化燃焼して除去する方法、いわゆる乾式加熱法が有効である。しかし、炭 素系吸着剤はそれ自体が燃焼,消耗するために、繰り返しの再生には限界があり、 消耗した分の追加充填設備を必要とするなど効率の良い COD除去システムが構築 できないという欠点がある。また海上油田の場合には輸送コストの面力も可能な限り 吸着剤を追加供給することを避けるほうが好ましい。
[0037] 本発明によれば、油田随伴水力もの COD成分の除去に関し、 COD成分をゼオラ イトを吸着剤に用いた吸着法によって除去することができ、かつ被吸着物質による吸 着特性の低下を大気中などでの燃焼,分解などにより、回復することを最も主要な特 徴とする。
[0038] 既に述べたように、ゼォライトのなかでも、特に合成ゼォライトが本発明の特徴を生 かす物質として適しており、さらにその中でも SiO 比がモル比で
2 ZA1 Oの
2 3 5以上で あって、性状が疎水性を有する合成ゼォライトが最も適している。特に ZSM— 5が本 発明の目的にかなう吸着剤である。 [0039] 吸着した有機物に起因する炭素成分がそのまま吸着剤表面に残留すれば、吸着 剤の表面活性を低下させる。したがって吸着剤の活性が低下したならば炭素成分を 除去して活性を回復させなければならな!/、。
[0040] 吸着剤に吸着した有機物成分は炭素分として残留する。通常大気中で 600°C以上 に加熱しなければ炭素分は除去できない。しかし、実際の油田随伴水には海水濃度 と同程度の塩ィ匕ナトリウムが溶解している。よって 600°Cで繰り返し再生したのでは、 ゼォライトの主成分である SiOと塩ィ匕ナトリウムの Naが短時間で反応し、吸着剤とし
2
ての機能を低下させてしまう。そのために 600°Cより出来るだけ低 、温度での加熱が 望ましい。
[0041] 触媒化成分の担持によって、 500°C以下の温度、最も優れた条件では 400°C以下 という低温で、吸着剤表面の有機物を分解,酸化燃焼し、吸着剤を元の活性状態に 回復することができる。
[0042] 本発明によれば、従来技術に比べて吸着剤の消耗を防ぎつつ、よって廉価な運転 コストによって油田随伴水中の有機成分濃度を低減することが可能である。
[0043] また、以下の点で本発明は従来法に勝る利点を有する。すなわち、合成ゼォライト を吸着剤の主成分とし、前記合成ゼォライトの表面に被覆担持した触媒化成分の触 媒効果によって、吸着剤表面に吸着した有機物成分を酸化燃焼し、吸着性能を使用 前と同程度に回復することが可能である。
[0044] 触媒化成分は、 Pt, Pd, Rh, Au, Agなどの貴金属のほカゝ、 Fe, Ni, Mn, Mn, C oなどの遷移金属類でも同様の効果を有する。
[0045] 再生操作は、吸着剤を充填したままで処理水を除くだけで可能なため、操作上の 複雑さがなぐかつ排水処理コストを低減しうる観点からも利点がある。
[0046] 油田随伴水力ゝら COD成分を除去する目的で油田随伴水と合成ゼォライトを接触さ せた結果、吸着性能が発揮されて目標の排水基準以下の COD濃度以下に低減さ せることができた。さらに長時間使用によって吸着性能が低下したものは、吸着剤を 加熱することで有機物由来の炭素成分が燃焼,除去されて活性が回復し、長時間に わたり繰り返し油田随伴水中の COD系分を除去することに効果がある。
[0047] 特に合成ゼォライト表面に触媒化成分を担持させた吸着剤は、吸着性能を維持し つつ、かつ 500°C以下の比較的低温で加熱するだけで、吸着した有機成分を酸ィ匕 分解し、炭素分を酸化燃焼することが可能である。
実施例
[0048] 以下、本発明を実施例により具体的に更に詳細に説明する。なお、本発明の実施 例にお 1、ては以下の手法を用いて性能評価を行った。
吸着性能評価
lOOmLビーカに吸着剤を 1. Og精秤して入れる。その中に油田随伴水 lOOmLを 精秤し入れる。攪拌子をいれてマグネチックスターラにより攪拌し、所定時間吸着を 行わせる。終了後、微細な粒子が分離できない場合には遠心分離機によって処理水 から微細粒子を速やかに分離した後、液を分析に供する。遠心分離機によって、吸 着剤と液とを速やかに分離後、液を COD分析に供する。
排水中の COD濃度の測定
CODの測定は、 JIS K 0102工場排水試験法の過マンガン酸カリウムによる化学 的酸素要求量 (COD )によって行った。
Mn
排水の酢酸およびプロピオン酸濃度の定量
酢酸濃度およびプロピオン酸濃度の定量はイオンクロマトグラフィーによって行った
[0049] (実施例 1)
以下に、本発明の一実施形態を図 1に基づいて説明する。本発明の一実施形態で ある排水処理装置 10は、油田随伴水中の油分を分離する磁気分離装置 11と電気 分解槽 14と COD吸着槽 17と排気燃焼塔 16力も構成されている。
[0050] 排水処理装置の操作について以下に説明する。まず、油田随伴水 1は原水タンク 2 に収容される。油田随伴水において、油はェマルジヨンィ匕して分散している。油田随 伴水には有機成分及びナトリウムで代表される無機イオンのほかに、極めて微小な 泥、砂、そのほかの固形物が含まれている。このため、油田随伴水 1は、凝集槽 3に 送られ、硫酸第二鉄あるいはポリ塩ィ匕アルミニウム等の凝集剤およびマグネタイト (Fe O )、 γ マタイト (Fe O )等の磁性粒子を用いて、浮遊物を凝集させてフロック
3 4 2 3
化する処理が行われる。 [0051] フロックを含む原水は、回転濾過装置 4に送られ、油分とフロックが除去される。回 転濾過装置 4には回転濾過膜 5と回転円筒体 6が備えられており、回転円筒体 6の内 部には図示しないが電磁石等の磁場発生装置が設けられている。原水は回転濾過 膜 5によって濾過され、油分およびフロック 7が原水から分離される。回転濾過膜 5〖こ 堆積した油分およびフロックは洗浄水の吹き付けおよび搔き落し板 8による搔き落し によって回転円筒体 6から除去され、回転濾過装置 11の外部に排出される。濾過水 90は電気分解槽 14に送られる。
[0052] 電気分解槽 14内には電極 91および 92が設置されている。電極 91および 92は電 位発生装置 13に接続されている。電気分解槽 14に入った後、連続的に電解を受け ることで濾過水 90中の有機物は分解し、より分子量の小さい有機物となる。油田随伴 水には高濃度の塩ィ匕ナトリウムが溶解しているので電解反応の進行には有利である 。電気分解槽 14の排ガス成分をガス分析計 31'により分析する。
[0053] 電気分解槽 14内では通電によって炭化水素生成反応も起こり、揮発性有機成分 が発生する。したがって電気分解槽 14上部には揮発性有機成分を回収する排気管 15から排気される。排気管 15の先端には揮発性有機成分を燃焼除去するための排 気燃焼塔 16が設置され、ダクト 30から燃焼排ガスが大気中に放出される。
[0054] 分析によると、電気分解槽 14から排気される揮発性の有機成分はェタン、エチレン 、シクロプロパン等の飽和炭化水素類であった。電気分解槽 14において、電解に用 いる電極の材料は Fe, Ni, Al, Au, Pt, SUSなどが好適である。高い電流密度を 得ることが出来る電極材料であれば、 2分子量のカルボン酸と 2個のプロトンが結合し て炭化水素が主として生成する反応が起こる。そのために高い電流密度条件が望ま しく、上記電極材料の中でもとくに Ptもしくは Ptを薄膜状に被覆した材料が適して ヽ ることが本発明者の検討でわ力つた。
[0055] 電気分解槽 14では電解反応を完結させる必要はなぐそのために濾過水 90が連 続的に電気分解槽 14中に流入可能である。電気分解槽 14で分解されない有機成 分もしくは途中まで分解された有機成分は 2次処理水 180中の成分として排水供給 管 18を通って COD吸着槽 17もしくは 19のどちらか一方に送られる。
[0056] COD吸着槽は、第 1の COD吸着槽 17と第 2の COD吸着槽 19からなる。通常の運 転時には第 1の COD吸着槽 17を使用し、第 2の COD吸着槽 19は予備として設置 するか、第 1と第 2の吸着塔を交互に使用する。よって、第 1の COD吸着槽と第 2の C OD吸着槽の構成は同一である。吸着槽全体の構成を第 1の COD吸着槽 17をもと に以下に説明する。
[0057] 本実施例では、 COD吸着槽を 2基備えているが、さらに多くの吸着槽を備えるよう にしても良 、。吸着剤 21には合成ゼォライトの 1種である ZSM - 5の粒子を充填した 。 ZSM— 5の粒子にはあら力じめ触媒ィ匕成分を担持した。本実施例の場合には Ni 成分を ZSM— 5の単位重量あたりに換算して 0. 5wt%となるように担持した。吸着 剤 21の成分としては ZSM— 5のほかにはモルデナイトも同程度の吸着性能を有する
[0058] 本実施例の COD吸着槽容器は SUS304製の円筒状である。吸着槽容器の材質 は SUS304に限定されない。 COD吸着槽 17は加熱炉 20内部に配置されて、 COD 吸着槽 17ごと吸着剤 21を加熱できる構造である。 COD吸着槽 17には熱風ブロワ 2 2と水抜き管 23を設けている。水抜き管 23は水抜きバルブ 24とともに吸着槽下部に ついている。
[0059] 吸着剤の吸着性能が低下したときは、被処理水の流路を吸着塔 19に切替え、吸着 塔 17の水抜きノ レブ 24を開き COD吸着槽 17内の水を抜く。続いて熱風ブロワ 22 を作動して COD吸着槽 17内に 100〜 120°C程度の熱風を吹き込み、吸着剤 21を 乾燥させる。上部力 送風して COD吸着槽下部力 水抜きとともに排気する構造が 望ましい。
[0060] 熱風ブロワ 22により約 30分間送風することで、 COD吸着槽 17内全体の吸着剤 21 の含水率が 10%以下に低減した。なお送風時間は COD吸着槽 17の槽長および送 風温度によって変化し、本実施例の限りではない。
[0061] 吸着剤の含水率を制御管理するために吸着槽下部の送風配管 28に水分計 29を 設けておくとよい。 COD吸着槽 17を通過した 2次処理水 25はー且貯水槽 27に貯留 した後排水 28される。貯水槽の前後には CODモニター 26を設置し、特に排水の C OD値の管理(COD≤ 120mg/L)に用いる。
[0062] 上記の加熱炉 20の代りに同じ温度まで昇温する熱風ブロアを使用しても良い。そ の場合には熱風の雰囲気は大気成分であることが望ましい。
[0063] 図 3は本発明の実施形態において使用される吸着塔の構成例を示す。図 3 (a)はじ OD吸着剤を充填した吸着塔の周囲に電気炉又はマイクロ波炉 61を設けたものであ る。吸着塔の下方力も原水 (COD含有) 62を供給し、処理水 63となって吸着塔から 排出される。吸着塔の再生に際し、塔内残量水 67を排出し、燃焼用空気 64を吸着 塔の下方から供給し、燃焼排ガス (C02, CO, CH含有) 65を燃焼器 66に導入して 燃焼する。
[0064] 図 3 (b)も図 3 (a)と略同じであるが、吸着塔の周隨こ加熱炉を設けないで、高温空 気又は高温ガス (T≤600°C) 68を吸着塔の下方力も供給する。燃焼排ガス 69を燃 焼器 66に導入する。
[0065] 図 3 (c)は、ガスタービン排ガス 70を吸着塔の上方力も供給し、燃焼空気 68を吸着 塔の下方から供給し、燃焼排ガス 69を排出する。これらの吸着塔の構成は例示であ つて、上記実施形態以外の場合にも適用できることはいうまでもない。
[0066] (実施例 2)
実施例 2は実施例 1に示す装置による試験結果の一例である。
[0067] 表 3は、電気分解過程および吸着過程での COD 値の測定結果を示す。
Mn
[0068] [表 3]
Figure imgf000017_0001
I " 爭 11* 。 / JL* 表 3の 1次処理水は図 1の 1次処理水サンプリングロ 31でサンプリングした分析結 果である。 2次処理水は電気分解装置の電気分解槽 14の中に設置した電極 91と電 極 92との間に、電場印加装置 13を用いて電場を与えることによって処理されたもの である。図 1には表記していないが、排水供給管 18の途中から分析サンプルを採取 できるようにしてあり、採取した 2次処理水 180の分析結果である。
[0069] 電気分解装置を通過したのちには、 COD 値は 116mgZL低下した。酢酸濃度
Mn
は 540mgZL低下し、かつプロピオン酸濃度が約 170mgZL低下した。逆にメタノ ールが発生し、メタノール濃度が 150mgZLとなった。このように油田産出水中に電 場を与えて、油田産出水中の有機酸類の濃度が変化した結果は Kolbe反応が進行 したことを意味している。
[0070] COD 値が電気分解によって低下したのは、酢酸が(1)式に示す Kolbe反応によ
Mn
つてエタン C Hを発生して気体となって 2次処理水力 雰囲気中に放出したためで
2 6
ある。
2CH COO" + 2 ( + )→CH CH + 2CO (1)
3 3 3 2
ここで(+)はプロトンを意味する。
[0071] 電気分解槽 14の上部に設置した排気管 15の途中に設置したガス分析計 31で分 祈した結果にもェタンの濃度上昇が認められた。
[0072] 本発明の上記実施例でメタノールが発生した結果は(2)式で示す反応が進行した ことを示すものである。
CH COO" + OH" + 2 ( + )→CH OH + CO (2)
3 3 2
本発明で使用した電極 91および 92の材質は Pt (白金)である力 電極材全体が Pt である必要はない。表面に Ptを被覆した SUS, Fe, Al, Tiなどでも同様の結果を得 ることができる。 SUS, Fe, Al, Tiなどの表面に Ptを被覆する方法は、イオンプレー ティング、蒸着、あるいはスパッタリングなどの方法があり、いずれでも電極材として有 効である。
[0073] 次に吸着剤 21について説明する。吸着剤 21の特徴として、本発明者の実験の結 果、以下のことが判明した。吸着剤の成分としては SiO /Al O比がモル比で 5以上
2 2 3
であれば良 、が、とくに油田随伴水中の水溶性有機物を効率よく吸着するためには 、 SiO /Al O比がモル比で 80以上あることがより望ましい。吸着質の有機物の種
2 2 3
類で比較した場合、有機物の炭素数が増大すると同じ吸着剤では吸着量が下がる 傾向にあるため、吸着に寄与する細孔の開口径が 0. 5-0. 6nmであることが望まし ぐかつ吸着に寄与する細孔が 3次元構造に形成されていることが望ましい。
[0074] 吸着塔に充填する吸着剤は粒子状、粉末状など上記の吸着性能を有するものであ れば問題ないが、粉末状の場合は通水時の流路が分散しない恐れがあり、加熱再 生過程では圧損上昇につながる。そこで、粉末状の吸着剤はあらかじめ粒子状に成 形するか、あるいはハニカム等の担体に粉末状の吸着剤を担持して COD吸着除去 槽に設置することが望ましい。
[0075] 本発明の実施形態における吸着塔の具体例を図 5に示す。図において、複数の C OD吸着塔 70は随伴水 85の流れに対し直列に配置されており、処理水 90は最後の 吸着塔の頭部力 排出される。各々の吸着塔 70は吸着剤の再生のために使用され る加熱炉 75を備えている。また、それぞれの吸着塔に再生時の吸着剤乾燥のために 熱風ブロアシステム 80を備えて!/、る。
[0076] (実施例 3)
図 6は、本発明の吸着剤の再生に係る結果を示す。すなわち繰り返し再生時の吸 着剤から発生した CO、 COおよび炭化水素の発生量と加熱温度との関係を示す図
2
である。
[0077] 図 6に示すように、種々の濃度の触媒ィヒ成分を担持した吸着剤を用いて同一条件 の吸着を行い、同一条件で昇温脱離試験を行い、 CO
2及び Zあるいは COのガス発 生ピーク温度を比較することによって、最適な触媒化成分の種類と濃度範囲を決定 することができる。
[0078] 図 6の結果を得るための試験条件を以下に示す。吸着剤として合成ゼォライト ZSM
5で310 ZA1 O比が 90のものを用いた。まず上記吸着剤を 200mLビーカ内に
2 2 3
5. Og入れ、さらに油田随伴水の 2次処理水を 50mL入れて 10分間攪拌した。この 操作が吸着過程に相当する。その後遠心分離機等による固液分離操作を行い吸着 剤のみを採取する。この吸着剤を大気中で約 100°Cで加熱して乾燥する。
[0079] 図 7及び図 8においては以下の手法を用いて吸着性能評価を行った。油田随伴水 300mLを量り、ビーカに入れ、更にビーカに精秤した吸着剤を投入した。密栓後、 所定時間振とう混合あるいはスターラによる回転混合によって反応を十分に行わせ た。反応終了後、速やかに吸着剤をろ過して処理水から分離した。微細な粒子が分 離できない場合には遠心分離機によって処理水から微細粒子を分離する。上記のよ うにして得た液を分析に供した。
[0080] 次に図 7に、毎分 10°Cの昇温速度で加熱しながら大気雰囲気中で加熱したときと 吸着剤に残留した炭素の濃度と再生した吸着剤の吸着性能を示す。
[0081] 吸着剤は Ptをゼオライト重量比で 0. 2wt%担持して触媒ィ匕したものである。ゼオラ イトは押し出し成形法で作製した直径 3mm、長さ 5〜20mmの ZSM— 5粒子である 。 Ptはジニトロジァミン Pt (II)硝酸液を原料にして、上記濃度になるように精製水で 希釈した Pt水溶液に上記 ZSM— 5粒子を浸漬した。
[0082] Pt溶液を粒子全体に満遍なく付着含浸した後、 120°Cで水分を蒸発し、水分が完 全に蒸発した後に、 600°Cで 1時間大気中で加熱した。
[0083] 上記方法で作製した触媒化吸着剤を用 ヽてビーカ内で油田随伴水を接触させ、 1 0分間攪拌した。ビーカに入れる前の油田随伴水の COD値は 600mg/Lであった。 攪拌時間は、 10分以降では処理後の水の COD値がほとんど変化しなくなることを確 認したうえで決定した。攪拌終了後、処理水と吸着剤を分離し、吸着剤を熱風ブロワ で乾燥し、 300〜550°Cの温度で 1時間加熱し、加熱後の吸着剤中の炭素濃度を定 量分析した。
[0084] 図 7の横軸は触媒化吸着剤の再生加熱温度で、本発明の吸着剤の再生温度に相 当する。縦軸の値は吸着剤中の残留炭素濃度である。再生温度力 00°C以下なら ば残留 C濃度は 0.
Figure imgf000020_0001
逆に 400°C以上であれば残留する C濃度は 0 . lwt%以下である。この残留 Cが吸着性能にどの程度影響を及ぼすかを油濁水の COD 値の変化で求めたのが、図 8である。図 8の縦軸は油田随伴水の吸着反応を
Mn
10回及び再生を 10回行った後の処理水の COD値である。原水の COD 値力 600
Mn mgZLであったの力 300°Cと 350°Cでの再生を繰り返した ZSM— 5粒子吸着剤の 吸着で COD値は低下するものの、環境基準値である、 COD 値≤ 120mgZLを満
Mn
足しなかった。再生温度を 400°Cおよび 500°Cとすると、原水濃度 600mgZLが 10 5〜: L lOmgZLまで低下し、環境基準値を満足した。これは、 350°C以下の温度で の再生は、吸着剤表面に燃え残った炭素濃度が高いために、原水中の COD成分が 吸着しに《なり吸着性能を低下させたと推測される。図 8から、 380°C程度の温度で の再生により、環境基準を満足する再生ができることがわかる。
[0085] 本発明の上記実施形態によると、油田随伴水中の COD成分を吸着剤で吸着しな がら、かつ吸着剤の吸着能を維持するために再生工程を有するため、長時間にわた り COD成分を除去することが可能となる。
実施例 4
図 9は吸着剤の触媒化成分の 1種である Coについて Co含有量の最適含有量を決 定するときの結果を示す。
[0086] 吸着剤は Coをゼオライト重量比で最大で 3wt%まで担持して触媒ィ匕したものであ る。ゼォライトは押し出し成形法で作製した直径 3mm、長さ 5〜: LOmmの ZSM— 5粒 子である。 Coは硝酸コバルト六水和物水溶液を原料にして、上記触媒化濃度になる ように精製水で希釈した Co水溶液に上記 ZSM— 5粒子を浸漬した。
[0087] Co溶液を粒子全体に満遍なく付着含浸した後、 100〜120°Cで水分を完全に蒸 発した後に、 600°Cで 1時間大気中で加熱した。
[0088] 上記方法で作製した Co含浸吸着剤を用いてビーカ内で油田随伴水を接触させ 10 分間攪拌した。ビーカに入れる前の油田随伴水の COD値は 450mg/Lであった。 攪拌時間は実施例と同様の理由で 10分とした。攪拌終了後、処理水と吸着剤を分 離し、吸着剤を恒温乾燥機の中で乾燥し、その後 400°Cで 1時間大気中においてカロ 熱して、加熱後の吸着剤中に残留した炭素濃度を定量分析した。
[0089] 図 9の横軸は ZSM— 5担体に担持させた Co濃度を示す。縦軸は吸着剤中に残留 する C濃度を比で示したものである。縦軸の残留 C濃度比の分母に当たるものは、触 媒化成分 Coを含有しない吸着剤 (ZSM— 5粒子)による吸着、乾燥及び 400°C1時 間加熱後の吸着剤中の残留 C濃度である。
[0090] 図 9から明らかなように、残留 C濃度比が最も低いときが、最も触媒成分として有効 な濃度範囲であることを意味している。よって、 ZSM— 5粒子に Coを触媒成分として 担持するには、 Co担持量は約 l〜2wt%が最適であることがわかる。
[0091] 触媒成分が Mnの場合にも Coの結果と同様に残留 C濃度が最低になる Mn濃度範 囲の存在が認められた。 Mnの場合には吸着剤を再生するのに最適な濃度範囲は 0 . 3〜0. 6wt%であった。 [0092] (実施例 5)
本発明の排水処理システムを原油採掘井における油田随伴水の処理に適用した 実施例について、図 2を用いて説明する。ただし、本発明はこれに限定されるもので はない。図 2に示す油田随伴水の処理システムにおいて、油田随伴水 100は原水タ ンク 106に収容される。油田随伴水において、油はェマルジヨンィ匕して分散している 。油田随伴水には有機成分およびナトリウムのほかに、極めて微小な泥、砂、その他 の固形物が含まれている。このため、油田随伴水である原水は、凝集槽 107に送ら れ、硫酸第二鉄或いはポリ塩ィ匕アルミニウム等の凝集剤およびマグネタイト (Fe O )
3 4
y 一へマタイト (Fe O )等の磁性粒子を用いて、浮遊物を凝集させてフロック化す
2 3
る処理が行われる。フロックを含む原水は、回転濾過装置 108に送られ、油分とフロ ックが除去される。
[0093] 回転濾過装置 108には回転濾過膜 109と回転円筒体 111が備えられており、回転 円筒体 111の内部には図示しな ヽが電磁石等の磁場発生装置が設けられて!/ヽる。 原水は回転濾過膜 109によって濾過され、油分およびフロックが原水から分離される 。濾過水 110は後述する本発明の排水処理システムに送られる。回転濾過膜 109に 堆積した油分及びフロックは洗浄水の吹き付け及び搔き落とし板 112による搔き落と しによつて回転円筒体 111から除去され、回転濾過装置 108の外部へ排出される。
[0094] 濾過水 110は、排水供給管 114を通って吸着塔 115a、 115bのどちらか一方に送 られる。本実施例では、吸着塔が 2基備えられているが、更に多くの吸着塔を備える ようにしてもよい。 2基備えたのは、一方の吸着塔で吸着処理を行っているときに、他 方の吸着塔で再生処理を行うようにして、排水処理が連続的に行われるようにするた めである。吸着塔の切替えは、弁 117a, 117bを開閉することによって行われる。吸 着塔 115a, 115bには、それぞれ無機物系吸着剤 116a, 116bが充填されている。 吸着剤は吸着表面積を大きくとるために微粒子を原料とすることが望ましい。微粒子 自体は、流水により流出が起こるために、その管理が煩雑である力 これを一定形状 に成形し、焼成したものは、使い易い。成形体の形状は、柱状、ペレット状、円筒状、 ハ-カム或いは網目状でも良 、。種々の成形体担体に吸着剤微粒子を担持させた ものでもよい。ハ-カム或いは網目状担体としては、繰り返し再生に耐える必要から 無機物或いは金属を使用することが望ましい。
[0095] 排水供給管 104には、排水のナトリウム濃度を分析するための分析装置 130が接 続されており、また、吸着塔出口の処理水排出管 121, 122には処理水のナトリウム 濃度を分析するための分析装置 140a, 140bが接続されて 、る。
[0096] 吸着塔 115a, 115bには、吸着剤を加熱するための加熱装置 118a, 118bが備え られており、また、空気送風管 120a, 120bが弁を介して取り付けられている。空気送 風管は図示しない空気供給装置に接続されている。これらの加熱装置と空気送風管 は、吸着塔内の吸着剤を再生するときに使用される。つまり、吸着剤の有機成分吸着 量が多くなり、吸着能力が低下したならば、一旦、吸着操作を停止し、吸着塔内へ空 気送風管より空気を送り込み、加熱装置により吸着剤を高温に加熱し、吸着剤に吸 着されている有機成分を燃焼除去する。このときの加熱温度は、高温になるほど吸着 剤のガラス化が進みやす 、ことから、有機成分を燃焼除去できる範囲でなるべく低!ヽ 温度がよい。具体的には 500°C以下の温度がよぐ特に 400°C以下が好ましい。吸 着剤が再生処理されているときには、その操作が行われている吸着塔の出口側に設 けられて 、る弁 119a或!、は弁 119bは閉の状態にしておく。
[0097] 分析装置 130, 140a, 140bでは、連続的或いは任意の時間間隔でナトリウム濃度 の分析を行い、その分析データを制御装置 150のデータ集積装置 151に通信回線 等を利用して送信する。データ集積装置 151に集積されたデータは演算装置 152に 送られる。演算装置 152では、分析装置 130のデータと分析装置 140a, 140bのデ ータを比較し、それらが、あら力じめ設定しておいた所定の条件になったならば、吸 着剤がナトリウムによって被毒され寿命が尽きたと判断して、吸着操作を行っている 方の弁すなわち弁 117a, 117bのいずれかを閉じる信号を出す。弁 117a, 117bを 閉じるときの条件は、一例として分析装置 140a, 140bで測定されたナトリウム濃度が 分析装置 130で測定されたナトリウム濃度を超えた場合であり、或いは、分析装置 14 Oa, 140bで測定されたナトリウム濃度が分析装置 130で測定されたナトリウム濃度に 対して所定の比率になったときである。なお、分析装置 130, 140a, 140bには、吸 光光度計、イオンクロマトグラフある 、はフレーム原子吸光分析装置などを用いること ができる。 [0098] 制御装置 150により弁 117aあるいは弁 117bを閉じる信号が出され、吸着塔への 排水供給が中止されたならば、吸着塔内に充填されている吸着剤を交換するか、あ るいはナトリウムを除去するための処理を行う。制御装置 150にて行われる機能は、 その機能を有するプログラムを読み込ませることによって行うことができる。また、その プログラムを記録媒体に記録させ、それを制御装置に読み込ませて、その機能を行 わせることちでさる。
[0099] 次に各種の実験結果について説明する。
(実験 1)
油田随伴水 300ミリリットルをポリエチレン試薬ビンに入れ、その中に吸着剤を投入 して密栓し、試薬ビンを約 30分間振動させて油田随伴水と吸着剤を攪拌混合した。 その後、濾紙を用いて吸着剤と水分を分離し、水中の COD成分の低減率を分析し た。 COD低減率の測定は、 JIS K 0102の工場排水試験法の過マンガン酸力リウ ムによる COD分析法によって行った。吸着剤には、表 5に示すシリカ Zアルミナのモ ル比と比表面積が異なる No. 1〜8の 8種類の合成ゼォライトを用いた。また、油田随 伴水として、表 4に示す第 1原液、第 2原液の 2種類を用いた。これらの油田随伴水に は、酢酸、プロピオン酸、酪酸、吉草酸、コハク酸、乳酸、アセトン、メチルェチルケト ン、トリクロロエチレン、テトラクロロエチレン、ベンゼン、トノレェン、ェチノレベンゼン、キ シレン、フエノール、クレゾール、キシレノール、へキサクロ口ベンゼン、二硫化炭素な どが含まれており、いずれも CODを高める要因となっている。処理水の COD低減量 を表 4に示す。 COD成分の低減量が高いほど、吸着剤に吸着される有機成分量が 多ぐ処理後の排水に含まれる有機成分量が少ないことになる。
[0100] [表 4] (表 4 )
Figure imgf000025_0001
[表 5]
(表 5 )
Figure imgf000025_0002
No. 1 8のゼオライトの中では、 No. 6と No. 7のゼオライト力 第 1原液及び第 2 原液の ヽずれに対しても高 ヽ COD低減率を示した。シリカ Zアルミナのモル比と比 表面積は COD低減率に対して、それほど大きな影響を与えて!/、な!/、。
(実験 2)
表 4に示す第 2原液と、表 5の No. 7に示す合成ゼォライトを試薬ビンに入れて 1時 間混合攪拌した。その後、第 2原液を新しいものと交換して再び 1時間混合攪拌し、 原液の交換を 5回繰り返した後、試薬ビン力 吸着剤を取り出して高温に加熱した。 加熱温度は 120〜700°Cの範囲内で 4通りに変えた。そして、吸着剤の炭素含有量 と比表面積を測定した。炭素含有量は高周波燃焼赤外線吸収法により測定し、比表 面積は BET法により測定した。測定結果を表 6に示す。
[表 6]
( ^¾ D )
Figure imgf000026_0001
表 6において、原料と表示されているのは実験に使用する前の状態を意味し、使用 後とは吸着再生を 5回繰り返した後の状態を意味する。加熱温度が 500°Cおよび 70 0°Cのときには、吸着剤に残留する炭素含有量はきわめて少なぐ使用前の状態とほ ぼ同じになっていた。一方、加熱温度が 120°Cおよび 300°Cのときには、炭素含有 量が多くなり、有機成分が燃焼しきれずに残留する割合が高くなつた。これらの結果 から、有機成分を効果的に燃焼させるには 500°C以上に加熱することが望ましい。し かし、加熱温度が高くなると吸着剤がガラス化しやすくなることからすると、加熱温度 はできるだけ低い方が好ましぐ触媒化成分を担持して 400°C以下の温度に加熱し て有機成分が燃焼できるようにすることが望ましい。 500°C以下、具体的には 400〜 450°Cの範囲が最も望ま U、。 [0103] 比表面積は、加熱温度が 120〜700°Cの範囲内では、ほとんど変化しておらず、こ の温度範囲では加熱温度の影響は少な 、。
(実験 3)
吸着剤として、 X線回折パターンにおける回折ピーク強度力 図 4に示すように、吸 着を行う前には 2 Θ = 22. 98° のところにある合成ゼォライトを用いて、吸着と加熱 再生を繰り返す実験を行った。実験は、試薬ビンに吸着剤と表 3に示す第 1原液を入 れ、 1時間攪拌混合した後、吸着剤を取り出して 600°Cに加熱して再生し、再び試薬 ビンに吸着剤を新しい第 1原液を入れ、以後、同様の操作を繰り返す方法で行った。 図 4に、吸着に使用する前すなわち新品の吸着剤と、吸着と加熱再生を各 20回行つ たときの吸着剤と吸着と再生を各 50回行ったときの吸着剤の X線回折ピークを示す。 X線回折パターンの測定は粉末 X線回折法にて行った。図 4において、 2 0 = 22. 9 8° のピーク位置は、この吸着剤が SiOを含むことを示している。吸着と再生を繰り
2
返すと、 2 Θ = 21. 68° のところにもピークが現れるようになり、この位置の強度は吸 着再生回数が多くなるにつれて高くなる。この位置はナトリウムが存在すること、つまり ガラス化が起こっていることを示している。図 4より、ガラス化の程度は吸着再生回数 が多くなるにつれて増大することがわかる。
[0104] 図 11に吸着剤使用時間の増大に伴って、処理後の排水の COD低減率およびナト リウム濃度が変化する様子を示す。なお、図中の矢印は、その方向に行くに従い数 値が高くなること、たとえば排水中 Na濃度が高くなることを意味する。測定点の間隔 はおよそ 10時間である。実際には、 1時間吸着を行う毎に再生を行っているので、こ の 10時間の間で各 10回の吸着と再生が行われていることになる。 COD低減率は使 用時間の増加に伴って低下し、一方、排水中のナトリウム濃度は使用時間の増加に 伴って高くなることがわ力つた。これより、吸着と再生を繰り返していても、使用時間の 増大とともに吸着剤中にはナトリウムが蓄積していき、有機成分の吸着除去率は低下 していくことが確認された。したがって、吸着剤に接触させる前と接触させた後の排水 中のナトリウム濃度を計測することは、吸着剤の寿命を判断する上で極めて有効であ る。
[0105] (実施例 6) 以下に、本発明の他の実施形態を図 12及び図 1に基づいて説明する。本実施形 態においては、図 1とは異なり、図 12に示すように、被処理水の電気分解を行わずに 、ばつ気槽 12内に充填された充填剤 113の下方力もブロアにより空気 114が供給さ れる。その他の点は図 1と同じであるので、同一符号を用いて説明する。本発明の一 実施形態である排水処理装置 10は、油田随伴水中の油分を分離する磁気分離装 置 11とばつ気槽 12と COD成分吸着槽 17と排気燃焼塔 16力も構成されている。
[0106] 排水処理装置 10の操作について以下に説明する。まず、油田随伴水 1は原水タン ク 2に収容される。油田随伴水において、油はェマルジヨン化して分散している。油田 随伴水には有機成分及びナトリウムのほかに、極めて微小な泥,砂,そのほかの固 形物が含まれている。このため、油田随伴水 1は、凝集槽 3に送られ、硫酸第二鉄あ るいはポリ塩ィ匕アルミニウム等の凝集剤およびマグネタイト (Fe O ) , γ マタイト(
3 4
Fe O )等の磁性粒子を用いて、浮遊物を凝集させてフロック化する処理が行われる
2 3
。フロックを含む原水は、回転濾過装置 4に送られ、油分とフロックが除去される。回 転濾過装置 4には回転濾過膜 5と回転円筒体 6が備えられており、回転円筒体 6の内 部には図示しないが電磁石等の磁場発生装置が設けられている。原水は回転濾過 膜 5によって濾過され、油分およびフロック 7が原水から分離される。回転濾過膜 5〖こ 堆積した油分およびフロックは洗浄水の吹き付けおよび搔き落し板 8による搔き落し によって回転円筒体 6から除去され、磁気分離装置 11の外部に排出される。
[0107] 濾過水 90は、ばつ気槽 12に送られる。ばつ気槽 12内は充填剤 113がタワー内部 に充填され、充填剤下部力も空気が送風されるようにブロワ 114が設置されて 、る。 濾過水 90は、ばつ気槽 12に入った後、揮発性の有機成分がタワーの上部に設置さ れた排気管 15から排気される。排気管 15の先端には揮発性有機成分を燃焼除去 するための排気燃焼塔 16が設置されている。分析によると、ばつ気槽 12から排気さ れる揮発性の有機成分はアセトン等のケトン類とベンゼン類であった。
[0108] 濾過水 90中の揮発しにくい成分はばつ気槽 12の下部からばつ気処理水 180とし て排水供給管 18を通って第 1の COD吸着槽 17もしくは第 2の COD吸着槽 19のど ちらか一方に送られる。このばつ気処理水 180は 2次処理水である。 COD吸着槽は 、第 1の COD吸着槽 17と第 2の COD吸着槽 19からなる。通常の運転時には第 1の COD吸着槽 17を使用し、第 2の COD吸着槽 19は予備として設置する。よって、第 1 の COD吸着槽と第 2の COD吸着槽の構成は同一である。吸着槽全体の構成を第 1 の COD吸着槽 17をもとに以下に説明する。本実施例では、 COD吸着槽を 2基備え て 、るが、さらに多くの吸着槽を備えるようにしても良 、。
[0109] 吸着剤 21には合成ゼォライトの 1種である ZSM— 5の粒子を充填した。 ZSM— 5 の粒子にはあらカゝじめ触媒ィ匕成分を担持した。本実施例の場合には Pt成分を ZSM —5の単位重量あたりに換算して 0. 2wt%となるように担持した。吸着剤 21の成分と しては ZSM— 5のほかにはモルデナイトも同程度の吸着性能を有する。
[0110] 本実施例の COD吸着槽容器は SUS304製の円筒状である。吸着槽容器の材質 は SUS304に限定されない。 COD吸着槽 17は加熱炉 20内部に配置されて、 COD 吸着槽 17ごと吸着剤 21を加熱できる構造である。 COD吸着槽 17には熱風ブロワ 2 2と水抜き管 23を設けている。水抜き管 23は水抜きバルブ 24とともに吸着槽下部に ついている。
[0111] 吸着剤の吸着性能が低下したときは、水抜きバルブ 24を開き COD吸着槽 17内の 水を抜く。続いて COD吸着槽 17内を乾燥させるためである。熱風ブロワ 22を作動し て COD吸着槽 17内に 100〜120°C程度の熱風を吹き込み、吸着剤 21を乾燥させ る。上部から送風して COD吸着槽下部力も水抜きとともに排気する構造が望ま 、。
[0112] 熱風ブロワ 22により約 30分間送風することで、 COD吸着槽 17内全体の吸着剤 21 の含水率が 10%以下に低減した。なお送風時間は COD吸着槽 17の槽長および送 風温度によって変化し、本実施例の限りではない。
[0113] 吸着剤の含水率を制御管理するために吸着槽下部の送風配管 28に水分計 29を 設けておくとよい。
[0114] COD吸着槽 17を通過した処理水 25はー且貯水槽 27に貯留した後排水 28される
。貯水槽の前後には CODモニター 26を設置し、特に排水の COD値の管理 (COD
≤120mg/L)に用いる。
[0115] 上記の排水処理装置 10ではばっ気槽 12を用いた力 原水の性質によっては、ば っ気槽 12の代りに減圧蒸留器あるいは電気分解装置あるいは次亜塩素酸反応器で あっても良い。 [0116] また、分離除去装置であるばっ気槽 12の前段に、電気分解装置を設けても良い。 この際、電気分解装置の電極 91、 92よりも下流にブロア 114を設けて、電気分解槽 14とばつ気槽 12とを一体ィ匕することもできる。また、ばつ気槽を前段に置き、電気分 解槽を後段に設置しても良い。
[0117] 本発明によると、油田随伴水中の COD成分を吸着剤で吸着しながら、かつ吸着剤 の吸着能を維持するために再生工程を有するため、長時間にわたり除去することが 可能となる。
産業上の利用可能性
[0118] 本発明は、油田等で採掘される原油と塩水との混合物から原油を回収して得た油 田随伴水の無害化処理に適用でき、その処理水は環境排出基準を満足することが できる。

Claims

請求の範囲
[I] 原油と塩水との混合物から原油を分離して得られた油田随伴水と吸着剤を接触し て、油田随伴水中の溶存有機物を吸着除去し、該吸着剤から被吸着物を脱着し吸 着剤を再生することを特徴とする油田随伴水中の溶存有機物の除去方法。
[2] 油田随伴水と吸着剤を接触するに先立って、油田随伴水を油水分離することを特 徴とする請求項 1記載の油田随伴水中の溶存有機物の除去方法。
[3] 油田随伴水を磁気分離によって油田随伴水中の油滴を分離することを特徴とする 請求項 1記載の油田随伴水中の溶存有機物の除去方法。
[4] 吸着剤が粒状、ペレット状、棒状、繊維状、板状、成形品又はそれらの組み合わせ であることを特徴とする請求項 1記載の油田随伴水中の溶存有機物の除去方法。
[5] 吸着剤を油田随伴水中で一定区画内に保持して、油田随伴水から容易に分離可 能な状態に保つことを特徴とする請求項 1記載の油田随伴水中の溶存有機物の除 去方法。
[6] 吸着剤が粉状、ペレット状、棒状又はそれらの組み合わせであってその平均径が 1 〜: LOmmであることを特徴とする請求項 5記載の油田随伴水中の溶存有機物の除去 方法。
[7] 吸着剤が、 SiO -A1 O又は SiO -A1 O— Na Oを主成分とする無機吸着剤で
2 2 3 2 2 3 2
あることを特徴とする請求項 6記載の油田随伴水中の溶存有機物の除去方法。
[8] 前記無機吸着剤が他の金属元素を担持することを特徴とする請求項 7記載の油田 随伴水中の溶存有機物の除去方法。
[9] 吸着剤が活性炭であることを特徴とする請求項 1記載の油田随伴水中の溶存有機 物の除去方法。
[10] 吸着剤の空孔サイズの大きさの異なる少なくとも 2種類であることを特徴とする請求 項 1記載の油田随伴水中の溶存有機物の除去方法。
[II] 空孔サイズが約 7オングストローム以下の吸着剤と、約 7オングストロームより大きい 吸着剤の 2種類であることを特徴とする請求項 10記載の油田随伴水中の溶存有機 物の除去方法。
[12] 吸着剤を酸化雰囲気中で加熱して吸着剤を脱着、再生することを特徴とする請求 項 1記載の油田随伴水中の溶存有機物の除去方法。
[13] 吸着剤の脱着物を加熱して、脱着物中の有機物を分解又は燃焼することを特徴と する請求項 1記載の油田随伴水中の溶存有機物の除去方法。
[14] 吸着剤層に空気を供給して脱着することを特徴とする請求項 1記載の油田随伴水 中の溶存有機物の除去方法。
[15] 吸着剤と油田随伴水を接触処理するに先立って、油田随伴水に凝集剤を添加して 浮遊物を除去するステップを有することを特徴とする請求項 1記載の油田随伴水中 の溶存有機物の除去方法。
[16] 吸着剤と油田随伴水を接触処理するに先立って、油田随伴水を電場を印加した電 極間に流し、油田随伴水中の溶存有機物分子を分解するステップを有することを特 徴とする請求項 1記載の油田随伴水中の溶存有機物の除去方法。
[17] 有機成分とナトリウムを含む排水を無機物系吸着剤に接触させることによって前記 排水中の有機成分を除去する排水処理方法であり、前記無機物系吸着剤に接触さ せる前の排水のナトリウム濃度および接触させた後の排水のナトリウム濃度に基づい て前記無機物系吸着剤による排水処理を継続するか否カゝ判断するようにしたことを 特徴とする請求項 1記載の油田随伴水中の溶存有機物の除去方法。
[18] 前記吸着剤がプロトン型ゼオライトであることを特徴とする請求項 7記載の油田随伴 水中の溶存有機物の除去方法。
[19] 前記無機物系吸着剤へ有機成分を吸着させる吸着工程と前記無機物系吸着剤に 吸着した有機成分を脱着させる脱着工程とを繰り返しながら排水を処理し、その過程 で前記無機物系吸着剤に接触させる前の排水のナトリウム濃度と前記無機物系吸着 剤に接触させた後の排水のナトリウム濃度を計測し、両者の計測値に基づいて前記 無機物系吸着剤へ排水を接触させるカゝ否かを決定するようにしたことを特徴とする請 求項 17記載の油田随伴水中の溶存有機物の除去方法。
[20] 油田随伴水中に浮遊懸濁する油分と不溶解粒子を除去する油水分離工程と、該 油水分離工程を通過した処理水中の溶存有機物を電気分解する工程と、電気分解 工程力 の 2次処理水力 有機成分を分離除去する分離除去工程と、該分離除去 工程を通過した 3次処理水から有機成分を吸着除去する吸着除去工程と、該分離除 去工程で分離除去された有機成分と該吸着除去工程によって分離除去された有機 成分とを合わせて燃焼排気する燃焼工程を有することを特徴とする油田随伴水中の 溶存有機物の除去方法。
[21] 前記吸着除去工程に無機物系吸着除去剤を用い、有機成分を吸着除去した後の 前記無機物系吸着除去剤を 380〜600°Cの大気雰囲気下において脱着、再生して 繰り返し使用することを特徴とする請求項 20記載の油田随伴水中の溶存有機物の 除去方法。
[22] 原油と塩水との混合物から原油を分離して油田随伴水を生成する手段と、油田随 伴水の溶存有機物に対する吸着性を有する吸着剤を保持する手段と、前記油田随 伴水と前記吸着剤とを接触する手段と、前記溶存有機物を吸着した吸着剤を再生す る手段とを備えたことを特徴とする油田随伴水中の溶存有機物の除去装置。
[23] 前記接触する手段が、吸着剤を充填した複数の吸着塔であることを特徴とする請 求項 22記載の油田随伴水中の溶存有機物の除去装置。
[24] 前記複数の吸着塔が、処理すべき油田随伴水の流れに対して並列に配置されて いることを特徴とする請求項 23記載の油田随伴水中の溶存有機物の除去装置。
[25] 異なる種類の吸着剤が被処理油田随伴水の流れ方向に直列又は並列に配列され ていることを特徴とする請求項 22記載の油田随伴水中の溶存有機物の除去装置。
[26] 前記吸着剤が、吸着剤を加熱するためのマイクロ波加熱装置を備えていることを特 徴とする請求項 22記載の油田随伴水中の溶存有機物の除去装置。
[27] 原油と原油に同伴する塩水とを磁気分離する手段を備えたことを特徴とする請求項 22記載の油田随伴水中の溶存有機物の除去装置。
[28] 塩水の塩濃度を検出する検出手段と、該検出手段からの信号に基づいて前記除 去装置を制御する制御手段を有することを特徴とする請求項 22記載の油田随伴水 中の溶存有機物の除去システム。
[29] 有機成分およびナトリウムを含む排水を無機物系吸着剤と接触させることによって 排水中に含まれる溶存有機成分を除去する排水処理システムであって、前記無機物 系吸着剤に接触させる排水および前記無機物系吸着剤力 排出される排水のナトリ ゥム濃度に基づいて前記無機物系吸着剤への排水の供給を停止する制御装置を備 えたことを特徴とする油田随伴水中の溶存有機物の除去システム。
[30] 前記無機物系吸着剤に接触させる排水の一部を採取してナトリウム濃度を分析す る分析装置と、前記無機物系吸着剤から排出された排水のナトリウム濃度を分析する 分析装置を備えたことを特徴とする請求項 29記載の油田随伴水中の溶存有機物の 除去システム。
[31] 前記制御装置が、 2つの前記分析装置で計測された分析データを集積するデータ 集積装置と、前記データ集積装置に蓄積されたデータに基づいて前記無機物系吸 着剤への排水供給を中止する信号を出す演算装置を具備することを特徴とする請求 項 30記載の油田随伴水中の溶存有機物の除去システム。
[32] 排水中に浮遊懸濁する油分と不溶解粒子を除去する油水分離槽と、該油水分離 槽を通過した排水中の有機成分を電気分解する電気分解手段と、該電気分解手段 を通過した 2次処理水から有機成分を分離除去する分離除去槽と、該分離除去槽を 通過した 3次処理水力 有機成分を無機物系吸着剤に吸着させて除去する吸着除 去槽と、該分離除去槽で分離除去された有機成分と該吸着除去槽によって分離除 去された有機成分とを合わせて燃焼排気する燃焼器を有することを特徴とする油田 随伴水中の溶存有機物の除去システム。
[33] 前記無機物系吸着剤を、有機成分を吸着除去した後 380°C〜600°Cの大気雰囲 気下において加熱、再生して繰り返し使用することを特徴とする請求項 32記載の油 田随伴水中の溶存有機物の除去システム。
[34] 前記油水分離槽が磁気分離槽と電気分解槽を兼ねることを特徴とする請求項 32 記載の油田随伴水中の溶存有機物の除去システム。
[35] 前記無機物系吸着除去剤が珪酸と酸ィ匕アルミニウムを含み、珪酸と酸ィ匕アルミ-ゥ ムの存在比が SiO ZA1 Oモル比で 5以上であり、かつ吸着細孔が 3次元構造を有
2 2 3
することを特徴とする請求項 32記載の油田随伴水中の溶存有機物の除去システム。
[36] 前記分離除去槽が、前記 2次処理水を曝気することによって揮発性有機化合物を 分離除去する分離除去槽であることを特徴とする請求項 32記載の油田随伴水中の 溶存有機物の除去システム。
PCT/JP2005/020073 2004-11-05 2005-11-01 油田随伴水中の有機物の除去方法および除去装置 WO2006049149A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2586487A CA2586487C (en) 2004-11-05 2005-11-01 Method for removing organic material in oilfield produced water and a removal device therefor
EP05800428.4A EP1813577B1 (en) 2004-11-05 2005-11-01 Method and apparatus for removing organic substance from oily water from oilfield
JP2006542387A JP5098334B2 (ja) 2004-11-05 2005-11-01 油田随伴水中の有機物の除去方法および除去装置
US11/718,524 US7662295B2 (en) 2004-11-05 2005-11-01 Method for removing organic material in oilfield produced water and a removal device therefor
NO20072268A NO20072268L (no) 2004-11-05 2007-04-30 Fremgangsmate og apparat for a fjerne organisk materiale fra oljeholdig vann fr et oljefelt

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004321782 2004-11-05
JP2004-321782 2004-11-05
JP2005087480 2005-03-25
JP2005-087480 2005-03-25

Publications (1)

Publication Number Publication Date
WO2006049149A1 true WO2006049149A1 (ja) 2006-05-11

Family

ID=36319155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020073 WO2006049149A1 (ja) 2004-11-05 2005-11-01 油田随伴水中の有機物の除去方法および除去装置

Country Status (8)

Country Link
US (1) US7662295B2 (ja)
EP (1) EP1813577B1 (ja)
JP (1) JP5098334B2 (ja)
KR (1) KR20070063028A (ja)
CA (1) CA2586487C (ja)
NO (1) NO20072268L (ja)
RU (1) RU2385296C2 (ja)
WO (1) WO2006049149A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283203A (ja) * 2006-04-17 2007-11-01 Hitachi Ltd 油田随伴水の処理方法及び処理装置
WO2009001676A1 (ja) * 2007-06-22 2008-12-31 Hitachi, Ltd. 油濁水再利用システム
EP1997782A3 (en) * 2007-04-09 2009-01-28 Hitachi, Ltd. An apparatus, a system and a treatment method for organic compounds included in waste water
US7621330B1 (en) 2008-05-07 2009-11-24 Halliburton Energy Services, Inc. Methods of using a lower-quality water for use as some of the water in the forming and delivering of a treatment fluid into a wellbore
JP2012045522A (ja) * 2010-08-30 2012-03-08 Hitachi Ltd 汚水浄化方法、凝集剤、並びに汚水浄化装置及びそれを用いた油分抽出システム
JP2013010084A (ja) * 2011-06-30 2013-01-17 Hitachi Ltd 水処理プロセス及びその浄水装置
JP2013071057A (ja) * 2011-09-28 2013-04-22 Toshiba Corp 水処理装置
JP2013091057A (ja) * 2011-10-03 2013-05-16 Tosoh Corp パラジウム化合物吸着剤およびその用途
JP2013184123A (ja) * 2012-03-08 2013-09-19 Toshiba Corp 水処理装置、及び水処理方法
JP2013208595A (ja) * 2012-03-30 2013-10-10 Toshiba Corp 油分吸着材と水処理方法
JP2014064968A (ja) * 2012-09-25 2014-04-17 Toshiba Corp 吸着剤を用いたフェノール及び重金属を含むかん水の処理方法、並びに吸着剤の再生方法
WO2015178356A1 (ja) * 2014-05-20 2015-11-26 独立行政法人石油天然ガス・金属鉱物資源機構 有機物含有水の処理装置及び方法
JP2016043338A (ja) * 2014-08-26 2016-04-04 清水建設株式会社 水処理方法
JP6078345B2 (ja) * 2011-02-18 2017-02-08 水ing株式会社 排液の処理方法および装置
CN105865884B (zh) * 2016-03-31 2018-09-04 山东嘉源检测技术有限公司 一种环境监测实验室水样前处理装置
CN109467154A (zh) * 2018-12-07 2019-03-15 铜陵泰富特种材料有限公司 焦化废水的净化方法
JP2020507467A (ja) * 2017-02-16 2020-03-12 サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company 水質浄化用の塩素化補助凝固プロセス
JP2020157219A (ja) * 2019-03-26 2020-10-01 清水建設株式会社 含油排水処理システム及び含油排水処理方法
JP2023502028A (ja) * 2019-12-25 2023-01-20 浙江工▲業▼大学 高濃度有機廃水の連続処理プロセス及び装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100905796B1 (ko) * 2007-10-12 2009-07-02 한국화학연구원 연속적인 흡착 및 탈착공정으로 폐극성용매의 처리방법
US7621329B1 (en) 2008-05-07 2009-11-24 Halliburton Energy Services, Inc. Methods of pumping fluids having different concentrations of particulate at different average bulk fluid velocities to reduce pump wear and maintenance in the forming and delivering of a treatment fluid into a wellbore
US7621328B1 (en) 2008-05-07 2009-11-24 Halliburton Energy Services, Inc. Methods of pumping fluids having different concentrations of particulate with different concentrations of hydratable additive to reduce pump wear and maintenance in the forming and delivering of a treatment fluid into a wellbore
US9067807B2 (en) * 2009-10-20 2015-06-30 Soane Energy, Llc Treatment of wastewater
CA2719268A1 (en) * 2009-10-23 2011-04-23 C-Micro Systems Inc. Microwave process and apparatus for breaking emulsions
WO2011097727A1 (en) * 2010-02-10 2011-08-18 Queen's University At Kingston Water with switchable ionic strength
CN101913677A (zh) * 2010-08-27 2010-12-15 上海交通大学 基于连续界面吸附介质的有机废水循环处理方法
IT1402866B1 (it) * 2010-11-05 2013-09-27 Univ Roma Procedimento per il trattamento di acqua contaminata comprendente composti organici disciolti ed olio disperso o in emulsione
BR112013014972B1 (pt) 2010-12-15 2020-12-29 Queen's University At Kingston método para remover um soluto da solução aquosa ou para concentrar a solução aquosa diluida através da modulação da força iônica de uma solução aquosa
CN102242263B (zh) * 2011-06-15 2013-02-27 金川集团有限公司 一种硫酸镍溶液的除油装置与方法
CN102557180A (zh) * 2012-01-19 2012-07-11 中国科学院广州地球化学研究所 基于微孔矿物吸附耦合微波降解的有机污染物去除方法
GB201218103D0 (en) * 2012-10-09 2012-11-21 Lystek Internat Inc Process for removal of chemical contaminants from biological wastes
CA2797496C (en) 2012-11-30 2021-07-27 General Electric Company Produced water treatment to remove organic compounds
FR2999170B1 (fr) * 2012-12-12 2015-01-16 Total Sa Procede d'oxydation d'eaux de production
US9694303B2 (en) 2014-04-25 2017-07-04 Saudi Arabian Oil Company Method for killing and removing microorganisms and scale using separation unit equipped with rotating magnets
US10375901B2 (en) 2014-12-09 2019-08-13 Mtd Products Inc Blower/vacuum
CN106694224B (zh) * 2017-01-11 2019-04-05 中国科学院过程工程研究所 一种全流程连续化气助磁分离系统
RU189420U1 (ru) * 2018-11-06 2019-05-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный университет" Коалесцентный фильтр с электролизером для очистки сточных вод на нефтяных предприятиях
CN111003744A (zh) * 2019-12-16 2020-04-14 山东省环保产业股份有限公司 一种用于污水厂深度处理的活性炭原位循环吸附再生工艺
CN111348717A (zh) * 2020-03-30 2020-06-30 广东石油化工学院 一种高浓度氨氮污水吸附脱氮预处理工艺及其流水线
CN113044907A (zh) * 2021-02-03 2021-06-29 广东卓信环境科技股份有限公司 一种高盐度有机废水的处理方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730546A (en) * 1980-07-31 1982-02-18 Mitsubishi Heavy Ind Ltd Adsorbing agent for organic material in water
JPS59228904A (ja) * 1983-06-10 1984-12-22 Kurita Water Ind Ltd 吸着装置
JPS60501495A (ja) * 1983-06-09 1985-09-12 ゼオル アクチ−ボラグ 空気中又は水中における炭化水素含量を減少させる方法
JPH01155946A (ja) * 1987-12-14 1989-06-19 Idemitsu Kosan Co Ltd ハロゲン化低級炭化水素除去用吸着剤
JPH02122885A (ja) * 1988-11-02 1990-05-10 Ind Res Inst Japan 水中のアンモニア除去方法
JPH08253313A (ja) * 1995-03-14 1996-10-01 Tosoh Corp 合成ゼオライト物質
JPH11253931A (ja) * 1998-03-11 1999-09-21 Sharp Corp 浄化剤及びそれを用いた浄水装置
JP2000140828A (ja) * 1998-11-13 2000-05-23 Canon Inc 揮発性汚染物質を含む排水の浄化方法および装置
JP2001170622A (ja) * 1999-12-16 2001-06-26 Nikkiso Co Ltd 吸着物質の脱着方法、濃縮器、及び濃縮方法
JP2003047826A (ja) * 2001-08-07 2003-02-18 Toshiji Nibe 悪臭ガスを酸化剤溶液で接触洗浄することによる消臭方法
JP2003144805A (ja) * 2001-11-19 2003-05-20 Hitachi Ltd 油水分離装置
JP2003326264A (ja) * 2002-05-09 2003-11-18 Kurita Water Ind Ltd 有害物質の濃縮分解方法
JP2004066209A (ja) * 2002-08-05 2004-03-04 Kikuya Tamura 木炭粉末と各種人工ゼオライトを混合製造した物が飲料水やその他の水浄化用に最適するスイ・ゼオ資材の製造方法及び使用方法。
JP2004533322A (ja) * 2001-06-28 2004-11-04 エニテクノロジー、ソシエタ、ペル、アチオニ ゼオライトの使用に基づいた汚染水の処理方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3132091A (en) * 1960-09-26 1964-05-05 Union Oil Co Hydrocracking process with reactivation of the catalyst
US4302323A (en) * 1980-05-12 1981-11-24 Mobil Oil Corporation Catalytic hydroconversion of residual stocks
US4366063A (en) * 1981-06-17 1982-12-28 Romec Environmental Research & Development, Inc. Process and apparatus for recovering usable water and other materials from oil field mud/waste pits
US4482459A (en) * 1983-04-27 1984-11-13 Newpark Waste Treatment Systems Inc. Continuous process for the reclamation of waste drilling fluids
SE8402393D0 (sv) 1983-06-09 1984-05-03 Sten Andersson Sett att rena luft och vatten fran kolveten
US4855521A (en) * 1987-01-23 1989-08-08 Mobil Oil Corporation Fluidized bed process for upgrading diene-containing light olefins
WO1991002699A1 (en) * 1989-08-22 1991-03-07 Commonwealth Scientific And Industrial Research Organisation Microwave method
US5135656A (en) * 1989-12-15 1992-08-04 Nalco Chemical Company Process for removing water soluble organic compounds from produced water
US5104545A (en) * 1989-12-15 1992-04-14 Nalco Chemical Company Process for removing water soluble organic compounds from produced water
WO1991016971A1 (en) * 1990-05-02 1991-11-14 Seibu Giken Co., Ltd. Gas adsorbent element
AU5851394A (en) * 1992-12-23 1994-07-19 Union Oil Company Of California Removal of hydrocarbons by countercurrent extraction
WO1995033562A1 (en) * 1994-06-03 1995-12-14 Akzo Nobel N.V. Hydrocracking catalyst comprising coated craking component particles
US5730882A (en) * 1995-03-29 1998-03-24 Union Oil Company Of California Method for remediation of water containing emulsified oils
IL118655A0 (en) 1995-07-18 1996-10-16 Tarim Associates For Scient Mi Process for recovery of lithium and other metals and salts from brines
US5922206A (en) 1997-09-15 1999-07-13 Amcol International Corporation Process for treating water for removal of oil and water-soluble petroleum oil components
JP2000093957A (ja) 1998-09-18 2000-04-04 Toray Ind Inc 浄水膜及び浄水方法
US6294077B1 (en) * 2000-02-02 2001-09-25 Mobil Oil Corporation Production of high viscosity lubricating oil stock with improved ZSM-5 catalyst
CN1199886C (zh) * 2003-01-23 2005-05-04 魏松岳 电解与填料式过滤净化的水处理工艺
US6706196B2 (en) * 2003-02-23 2004-03-16 Herbert W. Holland Method and apparatus for preventing scale deposits and removing contaminants from fluid columns
JP2004255290A (ja) 2003-02-26 2004-09-16 Toshikatsu Hamano 高分子凝集剤と酸化剤を用いた原油含有排水の廃水処理方法
JP4169614B2 (ja) 2003-03-14 2008-10-22 東京電力株式会社 排水処理方法
DE602006012441D1 (de) * 2006-03-06 2010-04-08 Akzo Nobel Nv Verwendung eines Adsorbens zur Entfernung von flüssigen, gasförmigen und/oder gelösten Inhaltsstoffen aus Prozessströmen

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730546A (en) * 1980-07-31 1982-02-18 Mitsubishi Heavy Ind Ltd Adsorbing agent for organic material in water
JPS60501495A (ja) * 1983-06-09 1985-09-12 ゼオル アクチ−ボラグ 空気中又は水中における炭化水素含量を減少させる方法
JPS59228904A (ja) * 1983-06-10 1984-12-22 Kurita Water Ind Ltd 吸着装置
JPH01155946A (ja) * 1987-12-14 1989-06-19 Idemitsu Kosan Co Ltd ハロゲン化低級炭化水素除去用吸着剤
JPH02122885A (ja) * 1988-11-02 1990-05-10 Ind Res Inst Japan 水中のアンモニア除去方法
JPH08253313A (ja) * 1995-03-14 1996-10-01 Tosoh Corp 合成ゼオライト物質
JPH11253931A (ja) * 1998-03-11 1999-09-21 Sharp Corp 浄化剤及びそれを用いた浄水装置
JP2000140828A (ja) * 1998-11-13 2000-05-23 Canon Inc 揮発性汚染物質を含む排水の浄化方法および装置
JP2001170622A (ja) * 1999-12-16 2001-06-26 Nikkiso Co Ltd 吸着物質の脱着方法、濃縮器、及び濃縮方法
JP2004533322A (ja) * 2001-06-28 2004-11-04 エニテクノロジー、ソシエタ、ペル、アチオニ ゼオライトの使用に基づいた汚染水の処理方法
JP2003047826A (ja) * 2001-08-07 2003-02-18 Toshiji Nibe 悪臭ガスを酸化剤溶液で接触洗浄することによる消臭方法
JP2003144805A (ja) * 2001-11-19 2003-05-20 Hitachi Ltd 油水分離装置
JP2003326264A (ja) * 2002-05-09 2003-11-18 Kurita Water Ind Ltd 有害物質の濃縮分解方法
JP2004066209A (ja) * 2002-08-05 2004-03-04 Kikuya Tamura 木炭粉末と各種人工ゼオライトを混合製造した物が飲料水やその他の水浄化用に最適するスイ・ゼオ資材の製造方法及び使用方法。

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1813577A4 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283203A (ja) * 2006-04-17 2007-11-01 Hitachi Ltd 油田随伴水の処理方法及び処理装置
EP1997782A3 (en) * 2007-04-09 2009-01-28 Hitachi, Ltd. An apparatus, a system and a treatment method for organic compounds included in waste water
EP2113487A2 (en) * 2007-04-09 2009-11-04 Hitachi Ltd. An apparatus, a system and a treatment method for organic compounds included in waste water from a bitumen collecting system
EP2113487A3 (en) * 2007-04-09 2009-12-30 Hitachi Ltd. An apparatus, a system and a treatment method for organic compounds included in waste water from a bitumen collecting system
US7722773B2 (en) 2007-04-09 2010-05-25 Hitachi, Ltd. Method of treating organic compounds in wastewater
US7993529B2 (en) 2007-04-09 2011-08-09 Hitachi, Ltd. Treatment apparatus of organic compounds included in waste water, and a treatment system of organic compounds included in waste water
WO2009001676A1 (ja) * 2007-06-22 2008-12-31 Hitachi, Ltd. 油濁水再利用システム
JP2009000656A (ja) * 2007-06-22 2009-01-08 Hitachi Ltd 油濁水再利用システム
US7621330B1 (en) 2008-05-07 2009-11-24 Halliburton Energy Services, Inc. Methods of using a lower-quality water for use as some of the water in the forming and delivering of a treatment fluid into a wellbore
JP2012045522A (ja) * 2010-08-30 2012-03-08 Hitachi Ltd 汚水浄化方法、凝集剤、並びに汚水浄化装置及びそれを用いた油分抽出システム
JP6078345B2 (ja) * 2011-02-18 2017-02-08 水ing株式会社 排液の処理方法および装置
JP2013010084A (ja) * 2011-06-30 2013-01-17 Hitachi Ltd 水処理プロセス及びその浄水装置
JP2013071057A (ja) * 2011-09-28 2013-04-22 Toshiba Corp 水処理装置
JP2013091057A (ja) * 2011-10-03 2013-05-16 Tosoh Corp パラジウム化合物吸着剤およびその用途
JP2013184123A (ja) * 2012-03-08 2013-09-19 Toshiba Corp 水処理装置、及び水処理方法
JP2013208595A (ja) * 2012-03-30 2013-10-10 Toshiba Corp 油分吸着材と水処理方法
JP2014064968A (ja) * 2012-09-25 2014-04-17 Toshiba Corp 吸着剤を用いたフェノール及び重金属を含むかん水の処理方法、並びに吸着剤の再生方法
US10160668B2 (en) 2014-05-20 2018-12-25 Japan Oil, Gas And Metals National Corporation Device and method for treating organic-material-containing water
WO2015178356A1 (ja) * 2014-05-20 2015-11-26 独立行政法人石油天然ガス・金属鉱物資源機構 有機物含有水の処理装置及び方法
JP2016043338A (ja) * 2014-08-26 2016-04-04 清水建設株式会社 水処理方法
CN105865884B (zh) * 2016-03-31 2018-09-04 山东嘉源检测技术有限公司 一种环境监测实验室水样前处理装置
JP2020507467A (ja) * 2017-02-16 2020-03-12 サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company 水質浄化用の塩素化補助凝固プロセス
CN109467154A (zh) * 2018-12-07 2019-03-15 铜陵泰富特种材料有限公司 焦化废水的净化方法
JP2020157219A (ja) * 2019-03-26 2020-10-01 清水建設株式会社 含油排水処理システム及び含油排水処理方法
JP7272838B2 (ja) 2019-03-26 2023-05-12 清水建設株式会社 含油排水処理方法
JP2023502028A (ja) * 2019-12-25 2023-01-20 浙江工▲業▼大学 高濃度有機廃水の連続処理プロセス及び装置
JP7283833B2 (ja) 2019-12-25 2023-05-30 浙江工▲業▼大学 高濃度有機廃水の連続処理プロセス及び装置

Also Published As

Publication number Publication date
JPWO2006049149A1 (ja) 2008-05-29
JP5098334B2 (ja) 2012-12-12
CA2586487C (en) 2012-08-07
EP1813577A4 (en) 2011-04-13
US7662295B2 (en) 2010-02-16
US20080023401A1 (en) 2008-01-31
RU2385296C2 (ru) 2010-03-27
EP1813577B1 (en) 2017-01-04
KR20070063028A (ko) 2007-06-18
EP1813577A1 (en) 2007-08-01
CA2586487A1 (en) 2006-05-11
RU2007117763A (ru) 2008-11-20
NO20072268L (no) 2007-06-25

Similar Documents

Publication Publication Date Title
JP5098334B2 (ja) 油田随伴水中の有機物の除去方法および除去装置
Singh et al. Efficient removal of arsenic using plastic waste char: Prevailing mechanism and sorption performance
Alvarez et al. Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol
JP3383302B2 (ja) 水からのシアニドの除去
Narbaitz et al. Electrochemical regeneration of field spent GAC from two water treatment plants
US20090261042A1 (en) Method for adsorption of fluid contaminants and regeneration of the adsorbent
Pi et al. In-situ regeneration of tetracycline-saturated hierarchical porous carbon by peroxydisulfate oxidation process: Performance, mechanism and application
JP6372849B2 (ja) 多孔質機能材料の製造方法および多孔質機能材料を用いた環境汚染物質除去方法
Ren et al. Alum sludge as an efficient sorbent for hydrogen sulfide removal: Experimental, mechanisms and modeling studies
Varghese et al. Kinetic and equilibrium characterization of phenols adsorption onto a novel activated carbon in water treatment
Zhao et al. TPO–TPD study of an activated carbon-supported copper catalyst–sorbent used for catalytic dry oxidation of phenol
Cao et al. Insight into atrazine removal by fallen leaf biochar prepared at different pyrolysis temperatures: Batch experiments, column adsorption and DFT calculations
JP2007283203A (ja) 油田随伴水の処理方法及び処理装置
CA2248298A1 (en) Process for the recovery of volatile low molecular compounds
Hsu et al. Novel applications of vacuum distillation for heavy metals removal from wastewater, copper nitrate hydroxide recovery, and copper sulfide impregnated activated carbon synthesis for gaseous mercury adsorption
CN101048347A (zh) 油田含油水中有机物的除去方法以及除去装置
EP3810549B1 (en) Modified activated carbon and methods of using same
Ibrahim et al. Effectiveness of biochar from hydrothermal carbonization of wetland biomass for sorption of ammonia
Jiménez-Jiménez et al. Hybrid porous phosphate heterostructures as adsorbents of Hg (II) and Ni (II) from industrial sewage
Pereira da Silva et al. Optimization of the Production Parameters of Composites from Sugarcane Bagasse and Iron Salts for Use in Dye Adsorption
Bao et al. Persulfate oxidation enhanced extraction to improve the removal of high concentration phenol wastewater
JP6140326B1 (ja) 揮発性有機化合物の吸着剤の再生処理方法
Jalalvandi et al. Removal of H2S and mercaptan from outlet gases of kermanshah refinery using modified adsorbents (bentonite and sludge)
Das Regeneration potential of activated petroleum coke for application in oil sands process-affected water
TW201806659A (zh) 從流體除去重金屬的方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006542387

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2586487

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2005800428

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580036851.0

Country of ref document: CN

Ref document number: 2005800428

Country of ref document: EP

Ref document number: 1494/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11718524

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077010250

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005800428

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11718524

Country of ref document: US