WO2006045570A1 - Verfahren zum herstellen eines korrosionsgeschützten stahlblechs - Google Patents

Verfahren zum herstellen eines korrosionsgeschützten stahlblechs Download PDF

Info

Publication number
WO2006045570A1
WO2006045570A1 PCT/EP2005/011387 EP2005011387W WO2006045570A1 WO 2006045570 A1 WO2006045570 A1 WO 2006045570A1 EP 2005011387 W EP2005011387 W EP 2005011387W WO 2006045570 A1 WO2006045570 A1 WO 2006045570A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
steel sheet
cooling medium
aqueous
coated
Prior art date
Application number
PCT/EP2005/011387
Other languages
English (en)
French (fr)
Inventor
Monika Riemer
Ingo Rogner
Bernd Schuhmacher
Christian Schwerdt
Original Assignee
Thyssenkrupp Steel Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssenkrupp Steel Ag filed Critical Thyssenkrupp Steel Ag
Priority to US11/577,981 priority Critical patent/US20100040783A9/en
Priority to BRPI0517630-1A priority patent/BRPI0517630A/pt
Priority to EP05796770A priority patent/EP1805342A1/de
Priority to JP2007538319A priority patent/JP2008518100A/ja
Priority to AU2005298896A priority patent/AU2005298896A1/en
Publication of WO2006045570A1 publication Critical patent/WO2006045570A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Definitions

  • the invention relates to a method for producing a corrosion-protected steel sheet for coating with an organic coating agent, in which the coated with a coating of zinc or a zinc alloy corrosion-protected steel sheet in vacuum coated with at least one additional metal or metal alloy, then a thermal
  • the galvanizing of steel body panels for the purpose of corrosion protection has largely prevailed in the last decades.
  • the galvanized steel plates in the hot dip process or by means of electrolytic deposition are characterized by a good adhesion of the zinc layer to the steel sheet / and a good processability, in particular Umformbarköit from.
  • DE 100 39 375 A1 describes a process for producing a corrosion-protected steel sheet, in which a layer of metals, in particular alkaline earth metals, magnesium or aluminum or their alloys, in a continuous steel sheet provided with a zinc or zinc alloy coating
  • this heat treatment which consists of a heating and a holding phase, it comes in the areas of the surface in which in the vacuum coating multiphase alloys between the vapor-deposited layer and the zinc or zinc alloy layer with a melting temperature lower than that of the zinc or zinc alloy layer, locally to the welds, in which case the vapor-deposited metal or vapor-deposited alloy also penetrates into deeper layers of the zinc coating heat treatment is the steel sheet in cooled an unchanged oxygen-poor atmosphere, the fusions solidify.
  • the corrosion resistance of the galvanized steel sheet is positively influenced by the dissolution of the Zinküberzmgs is slowed down by the stabilizing effect of the vapor deposited and penetrated by the melts ia the zinc coating metal greatly.
  • DE 195 27 515 C1 describes another method for producing a corrosion-protected steel sheet.
  • one or more of Zirxk different metals, in particular Fe, Mn, Cu, Ni and Mg, or their alloys by vacuum coating applied to a provided with a zinciferous steel sheet and then without intermediate exposure to oxidizing atmosphere of a thermal
  • the invention is therefore based on the object of specifying a method for producing a corrosion-protected steel sheet for coating with an organic coating agent, which in comparison to the generic state of the art by excellent adhesion of the organic coating composition and by a high corrosion resistance in the coated state of the sheet distinguished.
  • the object is achieved by a method according to the preamble of claim 1, characterized in that the cooling is carried out with an aqueous cooling medium under normal atmospheric conditions.
  • a steel sheet is first provided in a known manner with a coating of zinc or a Zinklegieri ⁇ ng. This takes place in a known manner in the melt-dip process (hot-dip galvanizing) or by electrolytic deposition.
  • the galvanized steel sheet is coated in vacuum with an additional metal.
  • a thermal diffusion treatment in which atoms of the metal layer applied in a vacuum diffuse into the underlying zinc or zinc alloy. Due to the residual gas content in the vacuum and during the thermal diffusion treatment, a native oxide layer forms on the surface of the coated steel sheet, which passivates the surface and thus increases its corrosion resistance.
  • the "finished steel sheet after the thermal diffusion treatment is cooled with an aqueous cooling medium.
  • Another advantage of cooling by means of an aqueous cooling medium is that in subregions of the coated surface, in which no native oxide layer is formed, ie where the bare metallic coating is exposed, water molecules are decomposed from the coolant, with anti-corrosive, partially form sparingly soluble hydroxides. These hydroxides or: the resulting oxides in the subsequent drying improve significantly the adhesion of organic coatings on the surface of the steel sheet.
  • the applied in vacuum on the galvanized sheet surface layer may be composed of one or more metals.
  • those metals are used which form mixed phases with the zinc of the zinc or zinc alloy layer. This results in a good connection of both layers, and the corrosion resistance is increased.
  • Particularly suitable are reactive metals, such as magnesium, aluminum, iron or manganese or their alloys.
  • a predetermined temperature control in the sense of a defined starting temperature of the finished steel sheet zi ⁇ onset of cooling, a preset temperature of the cooling medium and a specified cooling time sowor ⁇ l shortening the treatment time and the quality of the corrosion protection layer can be improved in terms of higher corrosion resistance.
  • the starting temperature of the steel sheet at the beginning of Abkühlumg is preferably 250 to 35O 0 C, in particular 290 to 310 0 C.
  • the setting of the starting temperature can technically! done in different ways.
  • the use of cooling rolls is just as possible as the use of gas cooling.
  • the duration of the cooling is preferably 1 to LO s.
  • the temperature of the cooling medium should not be set too high, since in this case the metal coating of the steel sheet by the coolant is strong is attacked.
  • the temperature of the coolant should not exceed 42 ° C.
  • the final temperature of the steel sheet after cooling is preferably 20 b> is 120 0 C, in particular 40 to 60 0 C. This results in a wide working range. An increase in the final temperature beyond 12O 0 C addition does not make sense, otherwise it can lead to damage of subsequent rubberized rollers for the removal of the cooling medium.
  • the cooling can be carried out in a dip.
  • the coated steel sheet can also be sprayed, wherein the spraying is preferably carried out under high pressure, since in this case a particularly rapid cooling and Passivierrung the surface can be achieved.
  • hot sheet metal surfaces in this way are formed directly on the OberfLowne forming Wasserschampfschichit which greatly reduces the heat transfer between the steel sheet and the cooling medium (Leidenfrost effect).
  • aqueous cooling medium should be removed immediately after cooling from the surface of the coated steel sheet.
  • the removal of the cooling medium can be done by squeezing or durrch a gas jet.
  • the corrosion resistance and the adhesion of the organic coating to be applied can be further improved by further measures.
  • soluble salts can be added to the aqueous cooling medium. These set free suitable divalent metal ions or hydroxide ions and thus shift the solution equilibrium to the undissociated oxide according to the equation
  • buffering substances in particular acetate, phosphate, borate, carbonate, or citrate ions, can be added to the aqueous cooling medium, by means of which an optimum pH in the sense of minimum hydrolysis of amphoteric native metal oxides can be set.
  • the pH value should be neither in the weakly acidic range (pH ⁇ 5) nor in the strongly basic range (pH> 12.5).
  • the drawing shows a plant for the continuous refining and subsequent painting of a steel strip.
  • a substrate in the form of a steel strip 1 is first passed through one or more cells 2 and coated in a electrolytic deposition process with a zinc layer.
  • galvanizing in the hot dip process is possible.
  • the steel strip 1 enters a Vakuumkanxmer 3 a.
  • the band 1 with one from the state coating technique known in the art, for example by means of PVD, with an additional metal, preferably magnesium coated.
  • additional metal preferably magnesium coated.
  • Further usable metals are, for example, aluminum and manganese.
  • the coated galvanized steel strip 1 After leaving the vacuum chamber 3, the coated galvanized steel strip 1 enters a heating chamber 4 provided with a heating device 4a. In this heating chamber 4 then takes place a thermal diffusion treatment, which can be carried out in a normal atmosphere. In the course of the diffusion treatment, the magnesium layer applied in a vacuum partially diffuses into the underlying zinc layer, forming intermetallic phases consisting of zinc and magnesium.
  • the steel strip 1 After emerging from the heating chamber 4, the steel strip 1 is deflected at least one cooling roller 5 and is thereby cooled to a defined temperature. This is at the same time the starting temperature of the subsequent cooling process and is preferably 250 to 350 0 C, in particular 290 to 31O 0 C.
  • the steel strip 1 is passed into a further chamber 6.
  • the diffusion-treated surface with an aqueous Spray cooling medium under high pressure.
  • the cooling can also take place in a dipping bath.
  • the aqueous cooling medium may be pure Wasserr act.
  • salts which shift the solution equilibrium to the undissociated oxide can also be dissolved in the cooling medium.
  • the cooling medium can contain buffering substances, for example acetate, phosphate, borate, carbonate, or citrate ions, by means of which an optimum pH value can be set in the sense of minimal hydrolysis of magnetic native metallic oxides.
  • the spraying device is designed such that the coated steel sheet is completely wetted immediately at the beginning of the cooling by the aqueous cooling medium in order to avoid the formation of visible patterns on the surface.
  • the cooling in the chamber 6 takes place with a predetermined temperature control. Daloei is the temperature of the cooling medium maximum 42 0 C-
  • the exposure time of the cooling medium to the steel strip 1 is between 1 and 10 s.
  • the cooling medium is removed by squeezing rollers 7 from the Bandoberiflache.
  • the residual heat of the belt 1 supports the removal of the cooling medium by evaporation.
  • the removal of the cooling medium can also be effected by a gas jet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrochemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Herstellen eines korrosionsgeschützten Stahlblechs (1) zur Beschichtung mit einem organischen Beschichtungsmittel, bei dem das mit einem Überzug aus Zink oder einer Zinklegierung korrosionsgeschützte Stahlblech (1) im Vakuum mit mindestens einem zusätzlichen Metall oder einer Metalllegierung beschichtet, anschließend einer thermischen Diffusionsbehandlung unterworfen und abschließend abgekühlt wird. Das Verfahren ist erfindungsgemäß dadurch gekennzeichnet, dass das Abkühlen mit einem wässrigen Kühlmedium erfolgt.

Description

Verfahren zum Herstellen eines korrosionsgeschützten Stahlblechs
Die Erfindung betrifft ein Verfahren zum Herstellen eines korrosionsgeschützten Stahlblechs zur Beschichtung mit einem organischen BeSchichtungsmittel, bei dem das mit: einem Überzug aus Zink oder einer Zinklegierung korrosionsgeschützte Stahlblech im Vakuum mit mindest ens einem zusätzlichen Metall oder einer Metalllegierung beschichtet, anschließend einer thermischen
Diffusionsbehandlung unterworfen und abschließend abg~ekühlt wird.
In der Automobilindustrie besteht großer Bedarf an Werkstoffen mit hoher Korrosionsbeständigkeit und gleichzeitig guten Verarbeitungseigenschaften. Die Verzinkung von Karosserieblechen aus Stahl (Schmelztauchverfahren oder elektrolytische Beschichtung) zum Zwecke des Korrosionsschutzes hat sich in den let zten Jahrzehnten weitgehend durchgesetzt. Die im Schmelztauchverfahren oder mittels elektrolytischer Abscheidung verzinkten Stahlbleche zeichnen sich durch eine gute Haftung der Zinkschicht auf dem Stahlblech/und eine gute Verarbeitbarkeit, insbesondere Umformbarköit, aus.
Als Problem erweist sich jedoch regelmäßig die unzureichende Haftung einer organischen Beschichtung, insbesondere einer Lackschicht, auf der Oberfläche de s veredelten Stahlblechs. Durch die Lackschicht dringen Luftsauerstoff und Feuchtigkeit an die Blechoberfläche, welche mit dieser reagieren und somit zu einer fortschreitenden Degradation der Oberfläche führen. Um. dies zu verhindern und somit eine hinreichende Lackhaftung zu gewährleisten, wird das Stahlblech einer zusätzlichen Zwischenbehandlung (z.B. Chromatieren) unterworfen, die einen zusätzlichen Aufwand bedeutet und aufgrund des Einsatzes CrVI-haltiger Substanzen teilweise ökologisch bedenklich sind.
Verfahren der eingangs genannten Art sind aus dem Stan_d der Technik bekannt. In der DE 100 39 375 Al ist ein Verfahren zur Herstellung eines korrosionsgeschützten Stahlblech,s beschrieben, bei welchem auf ein mit einem Zink- oder Zinklegierungsüberzug" versehenes Stahlblech eine Schicht aus Metallen, insbesondere Erdalkalimetallen, Magnesium oder Aluminium oder deren Legierungen, in einem kontinuierlichen Prozess durch Vakuumbeschichtung aufgebracht wird. Anschließend wird das beschichtete Blech einer Wärmebehandlung unterworfen. Bei dieser Wärmebehandlung, welche aus einer Aufheiz- und einer Haltephase besteht, kommt es in den Bereichen der Oberfläche, in denen sich bei der Vakuumbeschichtung mehrphasige Legierungen zwischen der aufgedampften Schicht und der Zink- bzw. Zinklegierungsschicht mit einer gegenüber der Zink- bzw. Zinklegierungsschicht geringerer Schmelztemperatur gebildet haben, lokal zu AufSchmelzungen. Dabei dringt das aufgedampfte Metall bzw. die aufgedampfte Legierung auch in tiefere Schichten des Zinküberzugs ein. Im Anschluss an die Wärmebehandlung wird das Stahlbleclh in einer unverändert sauerstoffarmen Atmosphäre abgekühlt, wobei die Aufschmelzungen erstarren.
Durch dieses Verfahren wird die Korrosionsbeständigkeit des verzinkten Stahlblechs positiv beeinflusst, indem die Auflösung des Zinküberzmgs durch die stabilisierende Wirkung des aufgedampften und durch die Aufschmelzungen ia den Zinküberzug eingedrungenen Metalls stark verlangsamt wird.
In der DE 195 27 515 Cl ist ein weiteres Verfahren zur Herstellung eines korrosionsgeschützten Stahlblechs beschrieben. Bei diesem wird auf ein mit einem zinkhaltigen Überzug versehenes Stahlfeinblech ein oder mehrere von Zirxk verschiedene Metalle, insbesondere Fe, Mn, Cu, Ni und Mg, oder deren Legierungen durch Vakuumbeschichtung aufgebracht und anschließend ohne zwischenzeitliche Exposition an oxidierender Atmosphäre einer thermischen
Diffusionsbehandlung mit anschließender Abkühlung in einer- Inertgasatmospäre unterzogen. Im Zuge der Diffusionsbehandlung bildet sich an der Oberfläche eine Schicht einer zinkreichen Legierung und zudem Mischphasen mit dem oder den im Vakuum aufgebrachten Metallen aus. Mithilfe dieses Verfahrens ist die Herstellung eines verzinkten Stahlbleches guter Oberflächenqualität und Korrosionsbeständigkeit möglich.
Bei den aus dem Stand der Technik bekannten Verfahren ist der apparative Aufwand j edoch hoch, da nicht nur die Wärmebehandlung, sondern auch der sich daran anschließende Abkühlungsprozess in einer Inertgasatmosphäre durchzuführen sind. Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Herstellung eines korrosionsgeschützten Stahlblechs zur Beschichtung mit einem organischen Beschichtungsmittel anzugeben, welches sich im Vergleich zum gattungsgleichen Stand der Technik durch eine hervorragende Haftung des organischen Beschichtungsmittels sowie durch einen hohen Korrosionswiderstand auch im beschichteten Zustand des Blechs auszeichnet.
Die Aufgabe wird erfindungsgemäß mit einem Verfahren nach dem Oberbegriff des Patentanspruches 1 dadurch gelöst, dass das Abkühlen mit einem wässrigen Kühlmedium unter normalen Atmosphärenbedingungen erfolgt.
Bei dem erfindungsgemäßen Verfahren wird zunächst in bekannter Weise ein Stahlblech mit einem Überzug aus Zink oder einer Zinklegieriαng versehen. Dies erfolgt in bekannter Weise im Sclnmelztauchverfahren (Feuerverzinkung) oder durch elektrolyt±sche Abscheidung. Im folgenden wird das verzinkte Stahlblech im Vakuum mit einem zusätzlichen Metall beschichtet. Daran schließt sich eine thermische Diffusionsbehandlung an, bei welcher Atome der im Vakuum aufgebrachten Metallschicht in die darunter liegende Zink¬ bzw. Zinklegierungssctiicht hinein diffundieren. Durch den Restgasanteil im Vakuum und während der thermischen Diffusionsbehandlung bildet sich auf der Oberfläche des beschichteten Stahlblechs eine native Oxidschicht aus, welche die Oberfläche passiviert und somit ihren Korrosionswiderstand erhöht. Erfindungsgemäß ist vorgesehen, dass das "veredelte Stahlblech nach der thermischen Diffusionsbehandlung mit einem wässrigen Kühlmedium abgekühlt wird.
Durch die Verwendung eines einfachen wässrigen Kühlmediums kann der Produktions aufwand und damit die anfallenden Kosten gegenüber dem. aus dem Stand der Technik bekannten Verfahren erheblich reduziert werden. Dabei werden, wie Untersuchungen der A.nmelderin überraschenderweise gezeigt haben, in Bezug auf die Korrosionsbeständigkeit und die Lackhaftung wenigstens gleichwertige Ergebnisse erzielt. Erwartungsgemäß würden sich bei einer Behandlung mit Wasser Oxidationsprobleme einstellen. Überraschenderweise bleiben negative Reaktionen mit dem zusätzlichen Metall aus. Wie sich in weiteren Experimenten der Anmelderin zeigte, kann auf eine der Beschichtung mit einem organischen Beschichtungsmittel vorausgehende, in der Fachwelt für notwendig erachtete Zwischenbehandlung vollständig verzichtet werden. Diese ist im Falle von Mischbauweisen mit konventionellen Produkten aber weiter möglich.
Dadurch, dass die Abkühlung durch das wässrige Kühlmedium unter normalen Atmosphärenbedingungen erfolgt, ist keine Kapselung der Bearbeitungsstation, an der die Abkühlung erfolgt, bzw. eine Befüllung derselben mit Prozessgas, notwendig.
Ein weiterer Vorteil der Abkühlung mittels eines wässrigen Kühlmediums liegt darin, dass in Teilbereichen der beschichteten Oberfläche, in denen sich keine native Oxidschicht bildet, d.h. an denen der blanke metallische Überzug freiliegt, Wassermoleküle aus dem Kühlmittel zersetzt werden, wobei sich korrosionsschützende, teilweise schwer lösliche Hydiroxide ausbilden. Diese Hydroxide oder: die bei der nachfolgenden Trocknung daraus entstehenden Oxide verbessern entscheidend die Haftung von organischen Beschichtungen auf der Oberfläche des Stahlblechs.
Die im Vakuum auf die verzinkte Blechoberfläche aufgebrachte Schicht kann aus einem oder mehreren Metallen aufgebaut sein. Vorzugsweise werden solche Metalle eingesetzt, welche mit dem Zink der Zink- bzw. Zinklegierungsschichtt Mischphasen bilden. Daraus resultiert eine gute Verbindung beider Schichten, und die Korrosionsfestigkeit wird erhöht. Als besonders geeignet erweisen sich reaktive Metalle, wie Magnesium, Aluminium, Eisen oder Mangan oder deren Legierungen.
Durch eine vorgegebene Temperaturführung im Sinne einer definierten Starttemperatur des veredelten Stahlblechs ziα Beginn der Abkühlung, einer voreingestellten Temperatur des Kühlmediums sowie einer festgelegten Kühldauer kann soworαl die Behandlungszeit verkürzt als auch die Qualität der Korrosionsschutzschicht im Sinne eines höheren Korrosionswiderstandes verbessert werden.
Die Starttemperatur des Stahlblechs zu Beginn der Abkühlumg beträgt vorzugsweise 250 bis 35O0C, insbesondere 290 bis 3100C. Die Einstellung der Starttemperatur kann technisch! auf verschiedene Weise erfolgen. So ist die Verwendung von Kühlrollen ebenso möglich, wie der Einsatz einer Gaskühlung. Die Dauer der Abkühlung beträgt dabei vorzugsweise 1 bis LO s. Die Temperatur des Kühlmediums sollte nicht zu hoch, gewählt werden, da in diesem Falle der Metallüberzug des Stahlblechs durch das Kühlmittel stark angegriffen wird. Vorzugsweise sollte die Temperatur des Kühlmittels 42°C nicht übersteigen.
Die Endtemperatur des Stahlblechs nach der Abkühlung beträgt vorzugsweise 20 b>is 1200C, insbesondere 40 bis 600C. Dadurch ergibt sich, ein weiter Arbeitsbereich. Eine Erhöhung der Endtemperatur über 12O0C hinaus ist nicht sinnvoll, da es sonst zu einer Schädigung nachfolgender gummierter Rollen für die Entfernung des Kühlmediums kommen kann.
Um die Ausbildung sichtbarer Muster auf der Oberfläche zu vermeiden, ist es zweckmäßig, das beschichtete Stahlblech unmittelbar zu Beginn der- Abkühlung durch das wässrige Kühlmedium vollständig zu benetzen. Hierzu kann die Abkühlung in einem Tauchbad durchgeführt werden. Ebenso lässt sich das beschichtete Stahlblech auch besprühen, wobei das Aufsprühen vorzugsweise unter Hochdruck erfolgt, da hierbei eine besonders schnelle Kühlung und Passivierrung der Oberfläche erreicht werden kann. Zudem kann bei sehr? heißen Blechoberflächen auf diese Weise die sich unmittelbar an der OberfLäche bildende Wasserdampfschichit, welche den Wärmeübergang zwischen dem Stahlblech und denn Kühlmedium stark herabsetzt, durchbrochen werden (Leidenfrost-Effekt) .
Sinnvollerweise sollte das wässrige Kühlmedium unmittelbar nach dem Abkühlen von der- Oberfläche des beschichteten Stahlblechs entfernt werden. Hierdurch wird die die Oberfläche des veredelten Stahlblechs überziehende native Oxidschicht stabilisiert. Die Entfernung des Kühlmediums kann beispielsweise durch Abquetschwalzen oder auch durrch einen Gasstrahl erfolgen.
Die Korrosionsbeständigkeit und die Haftung der aufzutragenden organischen Beschichtung kann durch weitere Maßnahmen weiter verbessert werden. So können dem wässrrigen Kühlmedium lösliche Salze zugegeben werden. Diese setzen geeignete zweiwertige Metallionen oder Hydroxidionen frrei und verschieben somit das Lösungsgleichgewicht zum undissoziierten Oxid gemäß der Gleichung
M-Oxid + H2O O M(OH)2 <-> M2+ + 2 OH"
M: Metallatom
Dadurch kann die Auflösung der schützenden nativen Oxidschicht vermindert und diese stabilisiert werden.
Ebenso können dem wässrigen Kühlmedium puffernde Substanzen, insbesondere Acetat-, Phosphat-, Borat-, Carbonat-, oder Citrat-Ionen, zugegeben werden, durch welche ein optimaler pH-Wert im Sinne einer minimalen Hydrolyse amphoterer nativer Metalloxide eingestellt werden kann. So sollte der pH-Wert weder im schwach sauren Beireich (pH < 5) noch im stark basischen Bereich (pH > 12,5) liegen.
Durch den Einsatz von Carbonat-Ionen als Puffer-Substanz kann durch die Bildung unlöslicher Carbonate eine zusätzliche Stabilisierung der Blechoberfläche erreicht werden. Die erfindungsgemäß besonders einfache Durchführung des Abkühlschrittes innerhalb der Herstellung korrosionsgeschützter Stahlbleche erlaubt es schließlich ohne weiteres, dass das Stahlblech als Band im Durchlauf beschichtet, diffus!onsbehandelt und gekühlt wird. Dadurch ist das erfindungsgeinäße Verfahren auch für den großtechnischen Betirieb in Bandbeschichtungsanlagen geeignet.
Da infolge der hervorragenden Lackhaftungseigenschaften der Oberfläche eine Zwischenbehandlung des beschichteten, diffusionsbehandelten und anschließend abgekühlten Stahlblechs vor der Auftragung einer organischen Beschichtung nicht mehr notwendig ist, ist es möglich, das organische Beschichtungsmittel unmittelbar nach Entfernung des wässrigen Kühlmediums aufzutragen. Dadurch kann dex Fertigungsprozess erheblich beschleunigt werden, was zυ weiteren Kosteneinsparungen führt.
Im folgenden wird die Erfindung anhand einer ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert. Die Zeichnung zeigt eine Anlage zur kontinuierlichen Veredelung und anschließenden Lackieriαng eines Stahlbandes.
Gemäß der Zeichnung wird ein Substrat in Form eines Stahlbandes 1 zunächst durch eine oder mehrere Zellen 2 geleitet und in einem elektrolytischen Abscheideprozess mit einer Zinkschicht überzogen. Ebenso ist eine Verzinkung im Schmelztauchverfahren (Feuerverzinkung) möglich. Im Anschluss daran tritt das Stahlband 1 in eine Vakuumkanxmer 3 ein. In dieser wird das Band 1 mit einem aus dem Stand der Technik bekannten Beschichtungsverfahren, beispielsweise mittels PVD, mit einem zusätzlichen Metall, vorzugsweise Magnesium, beschichtet. Weitere einsetzbare Metalle sind beispielsweise Aluminium und Mangan.
Durch das Restgas in der Vakuumkammer 3 wächst auf dem Magnesiumüberzug unverzüglich eine native Oxidschicht auf. Durch Einstellung der Partialdrücke von O2 oder H2O in der Restgasatmosphäre der Vakuumkammer 3 kann diese native Oxidschicht dabei gezielt beeinflusst werden.
Nach Verlassen der Vakuumkammer 3 tritt das beschichtete verzinkte Stahlband 1 in eine mit einer Heizeinrichtung 4a versehenen Heizkammer 4 ein. In dieser Heizkammer 4 erfolgt sodann eine thermische Diffusionsbehandlung, welche in normaler Atmosphäre durchgeführt werden kann. Im Zuge der Diffusionsbehandlung diffundiert die im Vakuum aufgebrachte Magnesiumschicht teilweise in die darunter liegende Zinkschicht, wobei sich aus Zink und Magnesium bestehende intermetallische Phasen ausbilden.
Nach Austritt aus der Heizkammer 4 wird das Stahlband 1 an mindestens einer Kühlrolle 5 umgelenkt und wird dabei auf eine definierte Temperatur abgekühlt. Diese ist zugleich die Starttemperatur des sich nun anschließenden Abkühlvorgangs und beträgt vorzugsweise 250 bis 3500C, insbesondere 290 bis 31O0C.
Zur kontrollierten Abkühlung wird das Stahlband 1 in eine weitere Kammer 6 geleitet. In dieser Kammer, in welcher ebenfalls normale Atmosphärenbedingungen herrschen, wird die diffusionsbehandelte Oberfläche mit einem wässrigen Kühlmedium unter Hochdruck besprüht. Alternativ zum Aufsprühen kann die Abkühlung auch in einem Tauchbad erfolgen. Bei_ dem wässrigen Kühlmedium kann es sich um reines Wasserr handeln. Es können in dem Kühlmedium jedoch auch Salze gelöst sein, welche das Lösungsgleichgewicht zum undissoziierten Oxid verschieben. Ebenso kann das Kühlmedium puffernde Substanzen, beispielsweise Acetat-, Phosphat-, Borat-, Carbonat-, oder Citrat-Ionen, enthalten, durch welche ein optimaler pH-Wert im Sinne einer minimalen Hydrolyse araphoterer nativer Metalloxide eingestellt werden kann.
Vorzugsweise ist die Sprüheinrichtung derart ausgelegt, dass das beschichtete Stahlblech unmittelbar zu Beginn der Abkühlung durrch das wässrige Kühlmedium vollständig benetzt wird, um die Ausbildung sichtbarer Muster auf der Oberfläche zu vermeiden. Die Abkühlung in der Kammer 6 erfolgt mit einer vorgegebene Temperaturführung. Daloei beträgt die Temperatur des Kühlmediums maximal 420C- Die Einwirkdauer des Kühlmediums auf das Stahlband 1 liegt zwischen 1 und 10 s.
Unmittelbar nach Austritt aus der Kammer 6 wird das Kühlmedium durch Abquetschrollen 7 von der Bandoberiflache entfernt. Dabei unterstützt die Restwärme des Bandes 1 die Entfernung des Kühlmediums durch Verdampfen. Alternativ kann die Entfernung des Kühlmediums auch durch einen Gasstrahl erfolgen.
Sodann kann das trockene Stahlband 1 ohne
Zwischenbehandlung einer Lackiereinheit 8 zugeführt werden, welche in einem kontinuierlichen Walzlackierprozess das Stahlband 1 in-line beschichtet. Wahlweise kann die Lackierung auch ex-line mittels Walzlackierrprozess, Sprüh¬ oder Tauchlackierung erfolgen.

Claims

P A T E N T A N S P R U C H E
1. Verfahren zum Herstellen eines korrosionsgeschützten Stahlblechs (1) zur Beschich"tung mit einem organischen Beschichtungsmittel, bei dem das mit einem Überzug aus Zink oder einer Zinklegierung korrosionsgeschützte Stahlblech im Vakuum mit mindestens einem zusätzlichen Metall oder einer Metalllegierung beschichtet, anschließend einer thermischen Diffusionsbehandlung unterworfen und abschließend abgekühlt wird, d a d u r c h g e k e n n z e i c h n e t, d a s s das Abkühlen mit einem wässrigen Kühlmedium unter normalen Atmosphärenbedingungen erfolgt.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, d a s s das mindestens eine zusätzli che Metall mit Zink eine Mischphase bildet.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, d a s s das mindestens eine zusätzliche Metall ein Metall der Gruppe Mg, Al, Mn ist bzw. dass die Metalllegierung aus wenigstens zwei Metallen dieser Gruppe gebildet ist.
4. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, d a s s die Abkühlung mit einer vorgegeben Temperaturführung erfolgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, d a s s die Starttemperatur des Stahlblechs zu Beginn der Abkühlung 250 bis 3500C, vorzugsweise 290 bis 31O0C, beträgt.
6. Verfahren nach einem der Anspüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, d a s s die Starttemperatur der Abkühlung mittels Kühlrollen (5) eingestellt wird.
7. Verfahren nach einem der Anspüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, d a s s die Starttemperatur der Abkühlung mittels einer Gaskühlung eingestellt wird.
8. Verfahren nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, d a s s die Dauer der Abkühlung 1 bis 10 s beträgt.
9. Verfahren nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t, d a s s die Temperatur des wässrigen Kühlmediums maximal 420C beträgt.
10. Verfahren nach einem der Anspüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t, d a s s die Endtemperatur zum Ende der Abkühlung 20 bis 1200C, vorzugsweise 40 bis 60°C, beträgt.
11. Verfahren nach einem der Ansprüche 1 bis 10, d a d u r c h g e k e n n z e i c h n e t, d a s s das beschichtete Stahlblech unmittelbar zu Beginn der Abkühlung durch das wässrige Kühlmedium vollständig benetzt wird.
12. Verfahren nach einem der Ansprüche 1 bis 11, d a d u r c h g e k e n n z e i c h n e t, d a s s die Abkühlung in einem Tauchbad erfolgt .
13. Verfahren nach einem der Ansprüche 1 bis 11, d a d u r c h g e k e n n z e i c h n e t, d a s s die Abkühlung durch Besprühen erfolgt.
14. Verfahren nach Anspruch 13, d a d u r c h g e k e n n z e i c h n e t, d a s s das wässrige Kühlmedium unter Hochdruck aufgesprüht wird.
15. Verfahren nach einem der Ansprüche 1 bis 14, d a d u r c h g e k e n n z e i c h n e t, d a s s das wässrige Kühlmedium unmittelbar nach dem Atokühlen von der Oberfläche des beschichteten Stahlblecϊis entfernt wird.
16. Verfahren nach Anspruch 15, d a d u r c h g e k e n n z e i c h n e t, d a s s das wässrige Kühlmedium durch Abquetschwalzen (7) entfernt wird.
17. Verfahren nach Anspruch 15, d a d u r c h g e k e n n z e i c h n e t, d a s s das wässrige Kühlmedium durch einen Gasstrahl entfernt wird.
18. Verfahren nach einem der Ansprüche 1 bis 17, d a d u r c h g e k e n n z e i c h n e t, d a s s das wässrige Kühlmedium lösliche Salze enthält, die zweiwertige Metallionen oder Hydroxid — Ionen freisetzen, welche das Lösungsgleichgewicht zum undissoziierten Ox-Ld verschieben.
19. Verfahren nach einem der Ansprüche 1 3ois 18, d a d u r c h g e k e n n z e i c h n e t, d a s s das wässrige Kühlmedium puffernde Substanzen enthält.
20. Verfahren nach Anspruch 19, d a d u r c h g e k e n n z e i c h n e t, d a s s das wässrige Kühlmedium als puffernde Substanzen Acetat-, Phosphat-, Borat-, Carbonat- , oder Citrat- Ionen enthält.
21. Verfahren nach einem der Ansprüche 1 bis 20, d a d u r c h g e k e n n z e i c h n e t, d a s s das Stahlblech als Band im Durchlauf beschichtet, diffusionbehandelt und gekühlt wird.
22. Verfahren nach einem der Ansprüche 1 bis 21, d a d u r c h g e k e n n z e i c h n e t, d a s s das organische Beschichtungsmittel nach Entfernung des wässrigen Kühlmediums ohne Zwischenbehandlung aufgetragen wird.
PCT/EP2005/011387 2004-10-28 2005-10-24 Verfahren zum herstellen eines korrosionsgeschützten stahlblechs WO2006045570A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/577,981 US20100040783A9 (en) 2004-10-28 2005-10-24 Process for producing a corrosion-protected steel sheet
BRPI0517630-1A BRPI0517630A (pt) 2004-10-28 2005-10-24 processo para produção de uma chapa de aço protegida contra corrosão
EP05796770A EP1805342A1 (de) 2004-10-28 2005-10-24 Verfahren zum herstellen eines korrosionsgeschützten stahlblechs
JP2007538319A JP2008518100A (ja) 2004-10-28 2005-10-24 腐食保護鋼板を製造する方法
AU2005298896A AU2005298896A1 (en) 2004-10-28 2005-10-24 Method for producing a steel sheet protected against corrosion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004052482A DE102004052482A1 (de) 2004-10-28 2004-10-28 Verfahren zum Herstellen eines korrosionsgeschützten Stahlblechs
DE102004052482.3-45 2004-10-28

Publications (1)

Publication Number Publication Date
WO2006045570A1 true WO2006045570A1 (de) 2006-05-04

Family

ID=35457276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/011387 WO2006045570A1 (de) 2004-10-28 2005-10-24 Verfahren zum herstellen eines korrosionsgeschützten stahlblechs

Country Status (8)

Country Link
US (1) US20100040783A9 (de)
EP (1) EP1805342A1 (de)
JP (1) JP2008518100A (de)
CN (1) CN101133178A (de)
AU (1) AU2005298896A1 (de)
BR (1) BRPI0517630A (de)
DE (1) DE102004052482A1 (de)
WO (1) WO2006045570A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135092A1 (de) 2006-05-18 2007-11-29 Thyssenkrupp Steel Ag Mit einem korrosionsschutzsystem versehenes stahlblech und verfahren zum beschichten eines stahlblechs mit einem solchen korrosionsschutzsystem
EP2045360A1 (de) * 2007-10-02 2009-04-08 ThyssenKrupp Steel AG Verfahren zum Herstellen eines Stahlbauteils durch Warmformen und durch Warmformen hergestelltes Stahlbauteil
EP2085492A1 (de) * 2007-12-28 2009-08-05 Posco Mit Zinklegierung beschichtetes Stahlblech mit guter Dichtstoffhaftung und Korrosionsbeständigkeit und Herstellungsverfahren dafür
EP2098607A1 (de) * 2008-02-25 2009-09-09 ArcelorMittal France Beschichtungsverfahren eines Metallstreifens und Anlage zur Ausführung dieses Verfahrens
EP2290133A1 (de) * 2009-08-25 2011-03-02 ThyssenKrupp Steel Europe AG Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils und Stahlbauteil
DE102010030465A1 (de) * 2010-06-24 2011-12-29 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen eines Blechformteils aus einem höherfesten Stahlblechmaterial mit einer elektrolytisch aufgebrachten Zink-Nickel-Beschichtung
CN101443132B (zh) * 2006-05-18 2012-05-09 蒂森克虏伯钢铁股份公司 镀覆有防腐蚀体系的钢板以及使用这种防腐蚀体系镀覆钢板的方法
EP2824213A1 (de) 2013-07-12 2015-01-14 Voestalpine Stahl GmbH Verfahren zur Verbesserung der Haftfähigkeit auf einem schutzbeschichteten Stahlblech

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005036426B4 (de) * 2005-08-03 2007-08-16 Thyssenkrupp Steel Ag Verfahren zum Beschichten von Stahlprodukten
DE102007026061A1 (de) * 2007-06-01 2008-12-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verschleiß- und korrosionsbeständiges Bauteil und Verfahren zu seiner Herstellung
TWI653362B (zh) 2012-10-17 2019-03-11 澳大利亞商布魯史寇普鋼鐵有限公司 金屬被覆鋼帶的製造方法
US20160168658A1 (en) * 2012-10-17 2016-06-16 Bluescope Steel Limited Method of producing metal-coated steel strip
CN112662976A (zh) * 2012-10-18 2021-04-16 蓝野钢铁有限公司 形成金属合金镀覆钢带的方法
DE102012110972B3 (de) * 2012-11-14 2014-03-06 Muhr Und Bender Kg Verfahren zum Herstellen eines Erzeugnisses aus flexibel gewalztem Bandmaterial und Erzeugnis aus flexibel gewalztem Bandmaterial
JP6062066B2 (ja) 2012-12-26 2017-01-18 ポスコPosco アルミニウム−マグネシウムコーティング鋼板およびその製造方法
US9956576B2 (en) 2014-04-22 2018-05-01 Metokote Corporation Zinc rich coating process
CN104328370B (zh) * 2014-11-11 2017-02-15 武汉钢铁(集团)公司 一种热镀锌镁合金钢板的生产方法
US10203232B2 (en) * 2016-09-27 2019-02-12 Cameron International Corporation Flow meter with rotor assembly
CN107354378A (zh) * 2017-07-17 2017-11-17 承德市帝圣金属复合材料有限公司 一种复合金属材料及其制备方法
KR102031466B1 (ko) 2017-12-26 2019-10-11 주식회사 포스코 표면품질 및 내식성이 우수한 아연합금도금강재 및 그 제조방법
CN111346803A (zh) * 2020-03-10 2020-06-30 富阳双龙防火门有限公司 一种彩钢带的加工工艺及涂装装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2349236A1 (de) * 1973-10-01 1975-04-24 Bethlehem Steel Corp Verfahren zum herstellen eines aluminium-zinkbeschichteten eisenhaltigen gegenstandes mit verbesserter bestaendigkeit gegen abblaettern durch korrosion und nach diesem verfahren hergestellte eisenhaltige gegenstaende
US4361448A (en) * 1981-05-27 1982-11-30 Ra-Shipping Ltd. Oy Method for producing dual-phase and zinc-aluminum coated steels from plain low carbon steels
JPS6223977A (ja) * 1985-07-22 1987-01-31 Sumitomo Electric Ind Ltd ブラスメツキ鋼線の製造方法
JPS6421049A (en) * 1987-07-15 1989-01-24 Nippon Steel Corp Hot dip plating method with zinc-iron alloy
US4812371A (en) * 1986-11-17 1989-03-14 Nippon Steel Corporation Zn-Al hot-dip galvanized steel sheet having improved resistance against secular peeling of coating
JPH02190463A (ja) * 1989-01-20 1990-07-26 Kawasaki Steel Corp スポット溶接性に優れた溶融亜鉛系めっき鋼板の製造方法
WO2002014573A1 (de) * 2000-08-11 2002-02-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Korrosionsgeschütztes stahlblech und verfahren zu seiner herstellung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1481120A (fr) * 1966-03-09 1967-05-19 Chiers Hauts Fourneaux Perfectionnement au procédé et aux installations de galvanisation à chaud par immersion dans un bain métallique liquide de matériaux divers en acier
SE445470B (sv) * 1979-03-02 1986-06-23 Centre Rech Metallurgique Forfarande for framstellning av ett belagt stalband
BE874599A (fr) * 1979-03-02 1979-09-03 Centre Rech Metallurgique Procede de fabrication d'une bande d'acier revetue
US5002837A (en) * 1988-07-06 1991-03-26 Kabushiki Kaisha Kobe Seiko Sho Zn-Mg alloy vapor deposition plated metals of high corrosion resistance, as well as method of producing them
JPH02194162A (ja) * 1988-10-13 1990-07-31 Kobe Steel Ltd Zn―Mg合金めっき金属材料の製造方法
US5284680A (en) * 1992-04-27 1994-02-08 Inland Steel Company Method for producing a galvanized ultra-high strength steel strip
US5439704A (en) * 1993-10-27 1995-08-08 Hunter Engineering Company, Inc. Combined coil and blank powder coating
JP2002241962A (ja) * 2001-02-13 2002-08-28 Sumitomo Metal Ind Ltd 溶融Zn−Al−Mg合金めっき鋼板とその製造方法
JP3732141B2 (ja) * 2001-11-09 2006-01-05 新日本製鐵株式会社 加工後の耐食性に優れた溶融亜鉛−Al系合金めっき鋼板及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2349236A1 (de) * 1973-10-01 1975-04-24 Bethlehem Steel Corp Verfahren zum herstellen eines aluminium-zinkbeschichteten eisenhaltigen gegenstandes mit verbesserter bestaendigkeit gegen abblaettern durch korrosion und nach diesem verfahren hergestellte eisenhaltige gegenstaende
US4361448A (en) * 1981-05-27 1982-11-30 Ra-Shipping Ltd. Oy Method for producing dual-phase and zinc-aluminum coated steels from plain low carbon steels
JPS6223977A (ja) * 1985-07-22 1987-01-31 Sumitomo Electric Ind Ltd ブラスメツキ鋼線の製造方法
US4812371A (en) * 1986-11-17 1989-03-14 Nippon Steel Corporation Zn-Al hot-dip galvanized steel sheet having improved resistance against secular peeling of coating
JPS6421049A (en) * 1987-07-15 1989-01-24 Nippon Steel Corp Hot dip plating method with zinc-iron alloy
JPH02190463A (ja) * 1989-01-20 1990-07-26 Kawasaki Steel Corp スポット溶接性に優れた溶融亜鉛系めっき鋼板の製造方法
WO2002014573A1 (de) * 2000-08-11 2002-02-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Korrosionsgeschütztes stahlblech und verfahren zu seiner herstellung

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 202 (C - 432) 30 June 1987 (1987-06-30) *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 199 (C - 594) 11 May 1989 (1989-05-11) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 466 (C - 0768) 11 October 1990 (1990-10-11) *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101443132B (zh) * 2006-05-18 2012-05-09 蒂森克虏伯钢铁股份公司 镀覆有防腐蚀体系的钢板以及使用这种防腐蚀体系镀覆钢板的方法
WO2007135092A1 (de) 2006-05-18 2007-11-29 Thyssenkrupp Steel Ag Mit einem korrosionsschutzsystem versehenes stahlblech und verfahren zum beschichten eines stahlblechs mit einem solchen korrosionsschutzsystem
EP2045360A1 (de) * 2007-10-02 2009-04-08 ThyssenKrupp Steel AG Verfahren zum Herstellen eines Stahlbauteils durch Warmformen und durch Warmformen hergestelltes Stahlbauteil
WO2009047183A1 (de) * 2007-10-02 2009-04-16 Thyssenkrupp Steel Ag Verfahren zum herstellen eines stahlbauteils durch warmformen und durch warmformen hergestelltes stahlbauteil
EP2085492A1 (de) * 2007-12-28 2009-08-05 Posco Mit Zinklegierung beschichtetes Stahlblech mit guter Dichtstoffhaftung und Korrosionsbeständigkeit und Herstellungsverfahren dafür
EP2098607A1 (de) * 2008-02-25 2009-09-09 ArcelorMittal France Beschichtungsverfahren eines Metallstreifens und Anlage zur Ausführung dieses Verfahrens
WO2009118466A1 (fr) * 2008-02-25 2009-10-01 Arcelormittal Investigacion Y Desarrollo Sl Procédé de revêtement d'une bande métallique et installation de mise en oeuvre du procédé
US11313023B2 (en) 2008-02-25 2022-04-26 Arcelormittal Equipment for coating a metal strip
US10072327B2 (en) 2008-02-25 2018-09-11 Arcelormittal Investigacion Desarrollo Sl Method for coating a metal strip and equipment for implementing said method
CN102625863A (zh) * 2009-08-25 2012-08-01 蒂森克虏伯钢铁欧洲股份公司 设有金属的防腐镀层的钢部件的制造方法和钢部件
AU2010288814B2 (en) * 2009-08-25 2014-05-29 Thyssenkrupp Steel Europe Ag Method for producing a steel component provided with a metal coating protecting against corrosion and steel component
CN102625863B (zh) * 2009-08-25 2015-11-25 蒂森克虏伯钢铁欧洲股份公司 设有金属的防腐镀层的钢部件的制造方法和钢部件
US9284655B2 (en) 2009-08-25 2016-03-15 Thyssenkrupp Steel Europe Ag Method of producing a steel component provided with a metallic coating giving protection against corrosion
US10053752B2 (en) 2009-08-25 2018-08-21 Thyssenkrupp Steel Europe Ag Steel component provided with a metallic coating giving protection against corrosion
WO2011023418A1 (de) * 2009-08-25 2011-03-03 Thyssenkrupp Steel Europe Ag Verfahren zum herstellen eines mit einem metallischen, vor korrosion schützenden überzug versehenen stahlbauteils und stahlbauteil
EP2290133A1 (de) * 2009-08-25 2011-03-02 ThyssenKrupp Steel Europe AG Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils und Stahlbauteil
DE102010030465A1 (de) * 2010-06-24 2011-12-29 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen eines Blechformteils aus einem höherfesten Stahlblechmaterial mit einer elektrolytisch aufgebrachten Zink-Nickel-Beschichtung
DE102010030465B4 (de) 2010-06-24 2023-12-07 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen eines Blechformteils aus einem höherfesten Stahlblechmaterial mit einer elektrolytisch aufgebrachten Zink-Nickel-Beschichtung
EP2824213A1 (de) 2013-07-12 2015-01-14 Voestalpine Stahl GmbH Verfahren zur Verbesserung der Haftfähigkeit auf einem schutzbeschichteten Stahlblech
US9920430B2 (en) 2013-07-12 2018-03-20 Voestalpine Stahl Gmbh Method for improving adherence

Also Published As

Publication number Publication date
US20100040783A9 (en) 2010-02-18
DE102004052482A1 (de) 2006-05-11
AU2005298896A1 (en) 2006-05-04
BRPI0517630A (pt) 2008-10-14
CN101133178A (zh) 2008-02-27
US20090098295A1 (en) 2009-04-16
EP1805342A1 (de) 2007-07-11
JP2008518100A (ja) 2008-05-29

Similar Documents

Publication Publication Date Title
WO2006045570A1 (de) Verfahren zum herstellen eines korrosionsgeschützten stahlblechs
EP2235229B9 (de) Verfahren zum beschichten eines 6 - 30 gew. % mn enthaltenden warm- oder kaltgewalzten stahlflachprodukts mit einer metallischen schutzschicht
EP3215656B1 (de) Verfahren zum herstellen einer korrosionsschutzbeschichtung für härtbare stahlbleche und korrosionsschutzschicht für härtbare stahlbleche
EP2496721B1 (de) Herstellung von galvannealed-blechen durch wärmebehandlung elektrolytisch veredelter bleche
EP2683848A1 (de) Stahlflachprodukt, verfahren zum herstellen eines stahlflachprodukts und verfahren zum herstellen eines bauteils
WO2007124781A1 (de) Verfahren zum schmelztauchbeschichten eines stahlflachproduktes aus höherfestem stahl
WO2009047183A1 (de) Verfahren zum herstellen eines stahlbauteils durch warmformen und durch warmformen hergestelltes stahlbauteil
DE19527515C1 (de) Verfahren zur Herstellung von korrosionsgeschütztem Stahlblech
DE10039375A1 (de) Korrosionsgeschütztes Stahlblech und Verfahren zu seiner Herstellung
WO2013117273A1 (de) Verfahren zum schmelztauchbeschichten eines stahlflachprodukts
DE2632439A1 (de) Verfahren zur herstellung eines mit aluminium oder einer aluminiumlegierung beschichteten stahlbleches
DE102015113878B4 (de) Verfahren zur thermischen Behandlung eines mit einer Konversionsschicht beschichteten Schwarzblechs
EP0026757B1 (de) Verfahren zum Feuerverzinken von Eisen- oder Stahlgegenständen
EP4182489A1 (de) Verfahren zur herstellung eines schmelztauchbeschichteten stahlblechs und schmelztauchbeschichtetes stahlblech
DE2160784A1 (de) Verfahren und mittel zur erzeugung von schutzschichten auf metallgegenstaenden
WO2021170860A1 (de) Verfahren zum herstellen gehärteter stahlbauteile mit einer konditionierten zinkkorrosionsschutzschicht
DE102012109855B4 (de) Verfahren zum Herstellen eines mit einer metallischen Korrosionsschutzschicht beschichteten Stahlprodukts
DE19926102B4 (de) Verfahren und Anlage zur Herstellung eines elektrolytisch beschichteten Warmbandes
EP3807435A1 (de) Trennschicht für die warmumformung
EP2955249A1 (de) Mit einem Korrosionsschutzsystem versehenes Stahlflachprodukt und Verfahren zum Herstellen eines mit einem Korrosionsschutzsystem beschichteten Stahlflachprodukts
AT228595B (de) Verzinktes Blechmaterial und Verfahren zu seiner Herstellung
DE102021105207A1 (de) Verfahren zur Modifikation von veredelten Oberflächen mit dem Ziel verbesserter Oberflächeneigenschaften
EP3872229A1 (de) Verfahren zum herstellen gehärteter stahlbauteile mit einer konditionierten zinklegierungskorrosionsschutzschicht
DE3903856C2 (de)
DE2904014A1 (de) Verzinktes stahlblech und aus diesem hergestellte dose

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005796770

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005298896

Country of ref document: AU

Ref document number: 2007538319

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580037194.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2005298896

Country of ref document: AU

Date of ref document: 20051024

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005796770

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11577981

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0517630

Country of ref document: BR