EP0026757B1 - Verfahren zum Feuerverzinken von Eisen- oder Stahlgegenständen - Google Patents

Verfahren zum Feuerverzinken von Eisen- oder Stahlgegenständen Download PDF

Info

Publication number
EP0026757B1
EP0026757B1 EP80890108A EP80890108A EP0026757B1 EP 0026757 B1 EP0026757 B1 EP 0026757B1 EP 80890108 A EP80890108 A EP 80890108A EP 80890108 A EP80890108 A EP 80890108A EP 0026757 B1 EP0026757 B1 EP 0026757B1
Authority
EP
European Patent Office
Prior art keywords
zinc
bath
tubes
kept
galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80890108A
Other languages
English (en)
French (fr)
Other versions
EP0026757A1 (de
Inventor
Walter Hans
Hans Moschinger
Reiner Spreitzhofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine AG
Original Assignee
Voestalpine AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine AG filed Critical Voestalpine AG
Publication of EP0026757A1 publication Critical patent/EP0026757A1/de
Application granted granted Critical
Publication of EP0026757B1 publication Critical patent/EP0026757B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching

Definitions

  • the invention relates to a method for hot-dip galvanizing iron or steel pipes in automatic galvanizing plants, in which the pipes to be galvanized are immersed in a zinc bath after degreasing, pickling, rinsing, application of fluxing agents and optionally drying and after removal from the zinc bath blown off and quenched.
  • the required zinc coating in qlm 2 is prescribed especially for use in drinking water pipes.
  • the zinc coating also includes all iron-zinc alloys that occur due to diffusion processes.
  • the surfaces of the objects to be galvanized are prepared by pickling, applying fluxes and optionally drying in a drying oven, after which they are introduced into the zinc bath.
  • the zinc bath temperature is at least 450 to 465 ° C., and in the case of steel tubes a dip in the zinc bath of approximately 120 s is usually maintained. After the pipes have been removed from the zinc bath, they are blown off with compressed air and blown out with steam.
  • a time of about 10 s is required before immersion in the water quenching bath.
  • the water quench bath usually has a temperature of about 50 to 60 ° C.
  • the present invention now aims to keep the zinc consumption, that is to say the amount of zinc taken up from the zinc bath, in order to achieve a specific zinc coating in g / m 2 as low as possible without sacrificing corrosion resistance.
  • the invention further aims to keep the risk of diffusion of iron from the objects to be galvanized into the zinc of the bath as low as possible and also to reduce the zinc consumption in order to achieve a certain zinc coating.
  • the invention consists in that the pipes to be galvanized are immersed in the zinc bath until a quantity of zinc / m 2 is absorbed, which corresponds to a weight per unit area of the zinc coating / m 2 after blowing off with air and / or water vapor, which is less than the desired weight per unit area of the zinc coating / M 2 and at most 95% of the desired weight per unit area of the zinc coating / M 2 corresponds to the fact that the galvanized pipes after they have been removed from the zinc bath at temperatures of over 250 ° C.
  • the immersion time in the zinc bath is chosen so that after blowing off a zinc amount / m 2 remains on the object to be galvanized, which is less than the desired weight per unit area of the zinc coating / m 2 and at most 95% of the desired weight per unit area of the zinc coating / m 2 corresponds, it is achieved that less zinc is applied from the bath.
  • the dipping time is thus shortened compared to the known methods, and strong blowing off or stripping of the zinc adhering to the surface of the objects to be galvanized can also be achieved by increased blower outputs.
  • the objects are then kept at temperatures above 250 ° C.
  • the objects are preferably immersed in the zinc bath until a quantity of zinc / m 2 is absorbed which, after being blown off with air and / or water vapor, is about 85% of the desired Basis weight of the zinc coating / m z corresponds. In this way, savings of up to 15% in zinc are readily possible, although this consideration does not take into account that the lower contamination of the zinc bath by iron also results in a significant improvement in economy.
  • the holding time at temperatures above 250 ° C. is preferably such that the zinc coating / m 2 increases by at least 10%, preferably at least 15%, by alloy formation.
  • the galvanized objects can preferably be kept at temperatures above 250 ° C. after they have been removed from the zinc bath until an intermetallic zinc-iron alloy layer has formed, for at least 75% of the layer thickness of the zinc coating.
  • the formation of the iron-zinc alloy layer can preferably extend over at least 80%, in particular 90%, of the layer thickness of the zinc coating, the upper limit being given only by the fact that an outermost layer of the zinc coating, preferably with a layer thickness of at most 5% of the
  • the total thickness of the zinc coating, which is to be formed from pure zinc, is to be retained.
  • the articles are preferably kept at temperatures of above 250 ° C., preferably above 300 ° C., for 10 to 120 s, preferably at least 20 s, in particular 60 to 90 s, after they have been removed from the zinc bath.
  • diving times of 20 to 180 s, preferably 20 to 120 s, are possible, after which the galvanized objects are kept in heated, still air or in a water vapor atmosphere. It has proven to be particularly advantageous if the holding time at temperatures above 250 ° C. after the objects have been removed from the zinc bath is longer than the immersion time of the objects in the zinc bath. This ensures minimal zinc consumption.
  • the method is advantageously carried out as wet galvanizing.
  • wet galvanizing for example, pipes with significantly lower temperatures enter the zinc bath than after. a drying oven would be the case. Since diffusion processes only start at 250 ° C, the time until which diffusion processes in the zinc bath cannot yet take place is extended in this way. The diffusion processes in the bath should be kept as low as possible and only take place outside the zinc bath over the holding time. It is therefore advantageous according to the invention to use a zinc bath with an addition of aluminum in the amount of 0.08 to 0.5, preferably 0. 2% by weight, since such an addition of aluminum largely suppresses the diffusion processes and thus the formation of alloys in the bath.
  • the process according to the invention thus controls the ratio of the alloy layer to the pure zinc layer when the zinc coating is applied, and the proportion of the alloy layer in the total zinc coating which is substantially higher than known processes saves zinc during the galvanizing process.
  • Pipes of various dimensions were galvanized once without extended alloying times and once with extended holding times after they had been removed from the zinc bath. The increase in the zinc coating in percent was then determined when the holding time was extended outside and inside. The distribution of the zinc coating on the outside and inside of pipes was also determined, and surprisingly, with larger pipe dimensions, the distribution on the outside and inside was evened out. The results are summarized in Table 1 below.
  • the invention is further illustrated by the diagrams shown in the figures of the drawing explained in more detail, in which, in addition to the zinc coating determined, the distribution of the zinc coatings over the length of the tube can also be seen at different holding times at temperatures above 250 ° C.
  • the zinc coating in g / m 2 is plotted on the ordinate and the length of the pipe is plotted on the abscissa, 1 corresponding to the pipe start and 12 to the pipe end.
  • a uniform diving time of 110 s was observed for better comparability.
  • the pull-out speed from the bath was uniformly 0.7 m / s.
  • a stripping pressure of 1.2 bar and a blow-out pressure of 5 bar were observed with a blow-out time of 0.8 s.
  • the curves labeled 1 represent the values for the zinc coating, which were achieved by quenching 12 s after removal from the bath.
  • the solid line shows the values measured on the outside of the pipe, while the corresponding dashed curve shows the values inside the pipe.
  • the sample length was measured uniformly at 500 mm.
  • curves 4 again show the values measured outside and inside after quenching 13 s after being removed from the bath.
  • Curves 5 correspond to the values after a holding time of 60 s, the solid lines in turn corresponding to the values measured on the outside and the broken line corresponding to the values measured on the inside.
  • Curves 6 represent the external and internal values of the zinc coating in the manner already described after quenching 10 s after being removed from the bath.
  • Curves 7 show the conditions after a holding time of 75 s.
  • Curves 10 illustrate the values which were measured after quenching 10 s after removal, while curves 11 represent the values obtained after a holding time of 90 s.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zum Feuerverzinken von Eisen- oder Stahlrohren in automatischen Verzinkungsanlagen, bei welchem die zu verzinkenden Rohre nach dem Entfetten, Beizen, Spülen, Aufbringen von Flußmitteln und gegebenenfalls Trocknen in ein Zinkbad eingetaucht werden und nach dem Ausbringen aus dem Zinkbad abgeblasen und abgeschreckt werden.
  • Insbesondere für die Verwendung bei Trinkwasserleitungen wird die erforderliche Zinkauflage in qlm2 vorgeschrieben. Die -Zinkauflage umfaßt hiebei neben der Reinzinkschicht sämtliche durch Diffusionsvorgänge auftretende Eisen-Zink-Legierungen. Bei den bekannten Verfahren zum Feuerverzinken von Eisen- oder Stahlgegenständen werden die Oberflächen der zu verzinkenden Gegenstände durch Beizen, Aufbringen von Flußmitteln und gegebenenfalls Trocknen im Trockenofen vorbereitet, worauf sie in das Zinkbad eingebracht werden. Die Zinkbadtemperatur beträgt bei den bekannten Verfahren zumindest 450 bis 465 °C und bei Stahlrohren wird üblicherweise eine Tauchdauer im Zinkbad von ca. 120 s eingehalten. Nach dem Ausbringen der Rohre aus dem Zinkbad werden diese mit Preßluft abgeblasen und mit Dampf ausgeblasen. Üblicherweise wird auf Grund der erforderlichen Handhabungszeit und um eine glatte und glänzende Oberfläche zu erzielen, bis zum Eintauchen in das Wasserabschreckbad eine Zeit von etwa 10 s benötigt. Das Wasserabschreckbad weist zumeist eine Temperatur von etwa 50 bis 60 °C auf.
  • Für die Herstellung von korrosionsbeständigem, vergütetem Spannstahl wurde bereits vorgeschlagen, die Vergütung unmittelbar in einem Zinkbad vorzunehmen, wodurch das Patentieren des Drahtes mit dem Verzinken kombiniert wird. Auf diese Weise werden weitere Wärmebehandlungen vermieden, wobei die Zeitdauer der Einwirkung des Zinks im Bad ausschließlich durch die gewünschte Vergütungsbehandlung bestimmt ist. Aus der DE-OS 2 711 041 ist es bekanntgeworden, ein Salz-Zinkbad zum Abschrecken von der Rekristallisationstemperatur auf die Vergütungstemperatur zu verwenden, worauf anschließend eine Wärmebehandlung, insbesondere eine Vergütungs- und Kontrollbehandlung bei Temperaturen zwischen 300 °C und 400 °C durch Erhitzen für die Ausbildung des gewünschten Gefüges im Blech vorgesehen ist. Hiedurch soll die Duktilität des Metalls erhöht werden.
  • Die vorliegende Erfindung zielt nun darauf ab, den Zinkverbrauch, das heißt die aus dem Zinkbad aufgenommene Zinkmenge zur Erzielung einer bestimmten Zinkauflage in g/m2 so gering wie möglich zu halten, ohne eine Einbuße der Korrosionsbeständigkeit hinzunehmen.
  • Die Erfindung zielt weiter darauf ab, die Gefahr einer Diffusion von Eisen aus den zu verzinkenden Gegenständen in das Zink des Bades so gering wie nur möglich zu halten und auch auf diese Weise den Zinkverbrauch zur Erzielung einer bestimmten Zinkauflage zu vermindern. Zur Lösung dieser Aufgabe besteht die Erfindung darin, daß die zu verzinkenden Rohre in das Zinkbad bis zur Aufnahme einer Zinkmenge/m2 getaucht werden, welche nach dem Abblasen mit Luft und/oder Wasserdampf einem Flächengewicht der Zinkauflage/m2 entspricht, welches geringer ist als das gewünschte Flächengewicht der Zinkauflage/M2 und höchstens 95% des gewünschten Flächengewichtes der Zinkauflage/M2 entspricht, daß die verzinkten Rohre nach dem Ausbringen aus dem Zinkbad bei Temperaturen von über 250 °C bis zum Anwachsen der Zinkauflage auf das gewünschte Flächengewicht/mz gehalten werden, wobei eine intermetallische Zink-Eisenlegierungsschicht über einen Teilbereich von wenigstens 60 % der Schichtstärke der Zinkauflage durch Diffusion von Eisen in das Zink erzielt wird und eine äußerste Schicht der Zinkauflage von reinem Zink gebildet wird, und daß hierauf die verzinkten Rohre in an sich bekannter Weise abgeschreckt werden.
  • Dadurch, daß die Tauchzeit im Zinkbad so gewählt wird, daß nach dem Abblasen eine Zinkmenge/m2 auf dem zu verzinkenden Gegenstand verbleibt, welche geringer ist als das gewünschte Flächengewicht der Zinkauflage/m2 und höchstens 95% des gewünschten Flächengewichtes der Zinkauflage/m2 entspricht, wird erreicht, daß weniger Zink aus dem Bad ausgebracht wird. Es wird somit die Tauchzeit gegenüber den bekannten Verfahren verkürzt und es kann auch durch erhöhte Gebläseleistungen ein starkes Abblasen bzw. Abstreifen des an der Oberfläche der zu verzinkenden Gegenstände anhaftenden Zinkes erzielt werden. Um nun die gewünschte Zinkauflage/m2 zu erzielen, werden die Gegenstände anschließend bei Temperaturen über 250 °C gehalten. Bei solchen Temperaturen von über 250 °C finden Diffusionsvorgänge statt, bei welchen Eisen in die Zinkschicht diffundiert und auf Kosten der Reinzinkschicht eine Legierungsschicht ausgebildet wird. Diese durch Diffusion gebildete Eisen-Zink-Legierungsschicht führt nun bei einer Bestimmung der Gesamtzinkauflage zu höheren Werten für die Zinkauflage. Durch das Anwachsen der Eisen-Zink-Legierungsschichten nach dem Herausheben der verzinkten Gegenstände aus dem Bad wird verhindert, daß Eisen in das Zinkbad diffundiert und es wird gleichzeitig die erforderliche Zinkauflage durch Wahl der entsprechenden Haltezeit bei Temperaturen von über 250 °C durch Diffusionsvorgänge und Legierungsbildung erzielt. Erst ein Abkühlen auf Temperaturen unterhalb 250 °C stoppt die Diffusionsvorgänge und damit die weitere Legierungsbildung. Die Qualität der Verzinkung wird nicht beeinträchtigt, da auch Eisen-Zink-Legierungsschichten einen sehr guten Korrosionsschutz ergeben. Die Nachlegierungszeit soll lediglich dadurch begrenzt werden, daß die Diffusionsvorgänge nicht so weit gehen, daß keine Reinzinkschicht mehr verbleibt.
  • Vorzugsweise werden die Gegenstände in das Zinkbad bis zur Aufnahme einer Zinkmenge/m2 getaucht, welche nach dem Abblasen mit Luft und/oder Wasserdampf etwa 85% des gewünschten Flächengewichtes der Zinkauflage/mz entspricht. Auf diese Weise sind Einsparungen an Zink von bis zu 15 % ohne weiteres möglich, wobei bei dieser Betrachtung nicht berücksichtigt ist, daß auch die geringere Verunreinigung des Zinkbades durch Eisen eine bedeutende Verbesserung der Wirtschaftlichkeit zur Folge hat.
  • Die Haltezeit bei Temperaturen von über 250 °C wird vorzugsweise so bemessen, daß die Zinkauflage/m2 um wenigstens 10 %, vorzugsweise wenigstens 15 %, durch Legierungsbildung anwächst. Hiebei können vorzugsweise die verzinkten Gegenstände nach dem Ausbringen aus dem Zinkbad bis zur Ausbildung einer intermetallischen Zink-Eisen-Legierungsschicht über wenigstens 75% der Schichtstärke der Zinkauflage bei Temperaturen von über 250 °C gehalten werden. Die Ausbildung der Eisen-Zink-Legierungsschicht kann sich bevorzugt über wenigstens 80 %, insbesondere 90 %, der Schichtstärke der Zinkauflage erstrecken, wobei die Obergrenze lediglich dadurch gegeben ist, daß eine äußerste Schicht der Zinkauflage, vorzugsweise mit einer Schichtstärke von maximal 5 % der Gesamtstärke der Zinkauflage, welche von reinem Zink gebildet sein soll, erhalten bleiben soll. Vorzugsweise werden hiefür die Gegenstände nach dem Ausbringen aus dem Zinkbad zwischen 10 und 120 s, vorzugsweise wenigstens 20 s, insbesondere 60 bis 90 s, auf Temperaturen von über 250 °C, vorzugsweise über 300 °C, gehalten.
  • Erfindungsgemäß kommen Tauchzeiten von 20 bis 180 s, vorzugsweise 20 bis 120 s, in Frage, worauf die verzinkten Gegenstände an erhitzter ruhender Luft oder in Wasserdampfatmosphäre gehalten werden. Als besonders vorteilhaft hat es sich herausgestellt, wenn die Haltezeit bei Temperaturen von über 250 °C nach dem Ausbringen der Gegenstände aus dem Zinkbad länger bemessen wird als die Tauchzeit der Gegenstände in das Zinkbad. Auf diese Weise wird ein minimaler Zinkverbrauch gewährleistet.
  • In vorteilhafter Weise wird das Verfahren als Naßverzinkung durchgeführt. Bei der Naßverzinkung gelangen beispielsweise Rohre mit wesentlich geringeren Temperaturen in das Zinkbad, als dies nach. einem Trockenofen der Fall wäre. Da Diffusionsvorgänge erst bei 250 °C einsetzen, wird auf diese Weise die Zeit, bis zu welcher Diffusionsvorgänge im Zinkbad noch nicht ablaufen können, verlängert. Die Diffusionsvorgänge sollen im Bad so gering wie nur möglich gehalten werden und erst außerhalb des Zinkbades über die Haltezeit ablaufen..Es ist daher erfindungsgemäß vorteilhaft, ein Zinkbad mit einem Zusatz von Aluminium im Ausmaß von 0,08 bis 0,5, vorzugsweise 0,2 Gew.%, einzusetzen, da ein solcher Zusatz von Aluminium die Diffusionsvorgänge und damit die Legierungsbildung im Bad weitgehend unterdrückt.
  • Durch das erfindungsgemäße Verfahren wird somit das Verhältnis Legierungsschicht zu Reinzinkschicht beim Aufbringen der Zinkauflage gesteuert und durch den gegenüber bekannten Verfahren wesentlich erhöhten Anteil der Legierungsschicht an der Gesamtzinkauflage eine Einsparung von Zink bei der Verzinkung erzielt.
  • Die Erfindung wird nachfolgend an Hand von Vergleichsversuchen näher erläutert.
  • Es wurden Rohre verschiedener Dimensionen einmal ohne verlängerte Legierungszeiten und einmal mit verlängerten Haltezeiten nach dem Ausbringen aus dem Zinkbad verzinkt. Es wurde darauf die Zunahme der Zinkauflage in Prozent bei der Verlängerung der Haltezeit außen und innen bestimmt. Es wurde weiters die Verteilung der Zinkauflage auf die Außen- und Innenseite von Rohren bestimmt, wobei sich überraschenderweise bei größeren Rohrdimensionen eine Vergleichmäßigung der Verteilung auf die Außen- und Innenseite ergab. Die Ergebnisse sind in der nachfolgenden Tabelle 1 zusammengefaßt.
    Figure imgb0001
  • Die Erfindung wird weiters an Hand von in den Figuren der Zeichnung dargestellten Diagrammen näher erläutert, in welchen zusätzlich zur ermittelten Zinkauflage bei unterschiedlichen Haltezeiten auf Temperaturen von über 250 °C auch noch die Verteilung der Zinkauflagen über die Länge des Rohres ersichtlich ist.
  • In Fig. 1 sind die Verhältnisse für ein 1/2-Zollrohr, in Fig. 2 für ein 3/4-Zollrohr, in Fig. 3 für ein 6/4-Zollrohr, in Fig. 4 für ein 3-Zollrohr und in Fig. 5 wiederum für ein 1/2-Zollrohr dargestellt.
  • In Fig. 1 bis 5 sind auf der Ordinate die Zinkauflage in g/m2 und auf der Abszisse die Länge des Rohres aufgetragen, wobei 1 dem Rohranfang und 12 dem Rohrende entspricht.
  • In den Fig. 1 bis 3 wurde zur besseren Vergleichbarkeit eine einheitliche Tauchzeit von 110 s eingehalten. In Fig. 1 betrug die Ausziehgeschwindigkeit aus dem Bad einheitlich 0,7 m/s. Es wurde ein Abstreifdruck von 1,2 bar und ein Ausblasdruck von 5 bar bei einer Ausblaszeit von 0,8 s eingehalten. Die mit 1 bezeichneten Kurven geben die Werte für die Zinkauflage wieder, welche durch eine Abschreckung 12 s nach dem Ausbringen aus dem Bad erzielt wurden. Die durchgezeichnete Linie gibt die an der Außenseite des Rohres gemessenen Werte wieder, während die entsprechende strichlierte Kurve die Werte im Inneren des Rohres darstellt. Die Probenlänge wurde einheitlich mit 500 mm bemessen.
  • Mit 2 sind durchgehend die außen gemessenen Werte und strichliert die innen gemessenen Werte nach einer Haltezeit von 60 s dargestellt. Die Kurven 3 geben die entsprechenden Werte nach einer Haltezeit von 90 s wieder. Die Rohre wurden während der Haltezeit auf Temperaturen von über 250 °C gehalten.
  • In Fig. 2 sind die Verhältnisse für ein 3/4-Zollrohr dargestellt, wobei gegenüber der Darstellung gemäß Fig. 1 mit einer auf 0,6 m/s verringerten Ausziehgeschwindigkeit bzw. einem Ausblasdruck von 6 bar gearbeitet wurde. Die Kurven 4 geben wiederum in Analogie zu der Darstellung nach Fig. 1 die außen und innen gemessenen Werte nach einem Abschrecken 13 s nach dem Ausziehen aus dem Bad wieder. Die Kurven 5 entsprechen den Werten nach einer Haltezeit von 60 s, wobei die durchgezogenen Linien wiederum den außen gemessenen und die strichlierte Linie den innen gemessenen Werten entsprechen.
  • In Fig. 3 sind die Verhältnisse bei einem 6/4-Zollrohr dargestellt, wobei als Ausziehgeschwindigkeit wiederum 0,7 m/s, als Abstreifdruck 1,1 bar und als Ausblasdruck 4 bar bei einer Ausblaszeit von 1,2 s gewählt wurde. Die Probenlänge betrug hier 400 mm. Die Kurven 6 geben in der bereits beschriebenen Weise die Außen- und Innenwerte der Zinkauflage nach einem Abschrecken 10 s nach dem Ausziehen aus dem Bad wieder. Die Kurven 7 zeigen die Verhältnisse nach einer Haltezeit von 75 s.
  • Der Darstellung gemäß Fig. 4 liegen 3-Zollrohre zu Grunde, die nach einer Tauchzeit von 140 s mit einer Geschwindigkeit von 0,5 m/s ausgezogen werden. Als Abstreifdruck wurde 1 bar und als Ausblasdruck 9 bar bei einer Ausblaszeit von 1,7 s angewendet. Die Probenlänge betrug 150 mm. Die Kurven 8 geben wiederum die Werte bei einem Abschrecken 10 s nach dem Ausziehen wieder, während die Kurven 9 nach einer Haltezeit von 60 s gemessen wurden.
  • In Fig. 5 wurden bei einer Zinkbadtemperatur von 460 °C 1/2-Zollrohre 60 s getaucht und unter einem Druck von 2 bar überschüssiges Zink abgestreift. Die Kurven 10 veranschaulichen die Werte, welche nach einem Abschrecken 10 s nach dem Ausziehen gemessen wurden, während die Kurven 11 die erhaltenen Werte nach einer Haltezeit von 90 s wiedergeben.
  • Die Korrosionsbeständigkeit von einer verlängerten Haltezeit bei Temperaturen von über 250 °C unterworfenen Rohren hat sich als mindestens gleichwertig der Korrosionsbeständigkeit von Rohren welche gemäß den bekannten Verfahren mit Zink beschichtet wurden, erwiesen. Auch Faltproben gemäß DIN 2444 leißen keine Mängel der erfindungsgemäßen Beschichtung erkennen.

Claims (12)

1. Verfahren zum Feuerverzinken von Eisen- oder Stahlrohren in automatischen Verzinkungsanlagen, bei welchem die zu verzinkenden Rohre nach dem Entfetten, Beizen, Spülen, Aufbringen von Flußmitteln und gegebenenfalls Trocknen in ein Zinkbad eingetaucht werden und nach dem Ausbringen aus dem Zinkbad abgeblasen und abgeschreckt werden, dadurch gekennzeichnet, daß die zu verzinkenden Rohre in das Zinkbad bis zur Aufnahme einer Zinkmenge/m2 getaucht werden, welche nach dem Abblasen mit Luft und/oder Wasserdampf einem Flächengewicht der Zinkauflage/mz entspricht, welches geringer ist als das gewünschte Flächengewicht der Zinkauflage/M 2 und höchstens 95 % des gewünschten Flächengewichtes der Zinkauflage/m2 entspricht, daß die verzinkten Rohre nach dem Ausbringen aus dem Zinkbad bei Temperaturen von über 250 °C bis zum Anwachsen der Zinkauflage auf das gewünschte Flächengewicht/M2 gehalten werden, wobei eine intermetallische Zink-Eisenlegierungsschicht über einen Teilbereich von wenigstens 60 % der Schichtstärke der Zinkauflage durch Diffusion von Eisen in das Zink erzielt wird und eine äußerste Schicht der Zinkauflage von reinem Zink gebildet wird, und daß hierauf die verzinkten Rohre in an sich bekannter Weise abgeschreckt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Rohre in das Zinkbad bis zur Aufnahme einer Zinkmenge/m2 getaucht werden, welche nach dem Abblasen mit Luft und/oder Wasserdampf etwa 85 % des gewünschten Flächengewichtes der Zinkauflage/m2 entspricht.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die verzinkten Rohre nach dem Ausbringen bis zum Anwachsen der Zinkauflage/M2 um wenigstens 10 %, vorzugsweise wenigstens 15 %, bei Temperaturen von über 250 °C gehalten werden.
4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die verzinkten Rohre nach dem Ausbringen aus dem Zinkbad bis zur Ausbildung einer intermetallischen Zink-Eisenlegierungsschicht über wenigstens 75 % der Schichtstärke der Zinkauflage bei Temperaturen von über 250 °C gehalten werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Haltezeit auf einer Temperatur von mehr als 250 °C nach dem Ausbringen der Rohre aus dem Zinkbad für die Erzielung einer Schichtstärke der intermetallischen Legierung von wenigstens 80 %, vorzugsweise wenigstens 90 %, der Schichtstärke der Zinkauflage gewählt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die maximale Dauer der Haltezeit der Rohre nach dem Ausbringen aus dem Zinkbad auf einer Temperatur von mehr als 250 °C so bemessen wird, daß die äußerste Schicht der Zinkauflage mit einer Schichtstärke von maximal 5 % der Gesamtstärke der Zinkauflage, von reinem Zink gebildet wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Rohre nach dem Ausbringen aus dem Zinkbad zwischen 10 und 120 s, vorzugsweise wenigstens 20 s, insbesondere 60 bis 90 s, auf Temperaturen von über 250 °C, vorzugsweise über 300 °C, gehalten werden.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Rohre 20 bis 180 s, vorzugsweise 20 bis 120 s, in das Zinkbad getaucht werden und hierauf außerhalb des Zinkbades bis zum Abschrecken 20 bis 120 s auf Temperaturen von über 250 °C gehalten werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Rohre während der Haltezeit an ruhender Luft oder in Wasserdampfatmosphäre gehalten werden.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Haltezeit bei Temperaturen von über 250 °C nach dem Ausbringen der Rohre aus dem Zinkbad länger bemessen wird als die Tauchzeit der Gegenstände in das Zinkbad.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Verfahren als Naßverzinkung durchgeführt wird.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß ein Zinkbad mit einem Zusatz von Aluminium im Ausmaß von 0,08 bis 0,5, vorzugsweise 0,2 Gew.%, eingesetzt wird.
EP80890108A 1979-09-26 1980-09-24 Verfahren zum Feuerverzinken von Eisen- oder Stahlgegenständen Expired EP0026757B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0630679A AT365243B (de) 1979-09-26 1979-09-26 Verfahren zum feuerverzinken von eisen- oder stahlgegenstaenden
AT6306/79 1979-09-26

Publications (2)

Publication Number Publication Date
EP0026757A1 EP0026757A1 (de) 1981-04-08
EP0026757B1 true EP0026757B1 (de) 1985-02-20

Family

ID=3584968

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80890108A Expired EP0026757B1 (de) 1979-09-26 1980-09-24 Verfahren zum Feuerverzinken von Eisen- oder Stahlgegenständen

Country Status (6)

Country Link
EP (1) EP0026757B1 (de)
AT (1) AT365243B (de)
CS (1) CS212726B2 (de)
DD (1) DD153135A5 (de)
DE (1) DE3070214D1 (de)
HU (1) HU183217B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19646362A1 (de) * 1996-11-09 1998-05-14 Thyssen Stahl Ag Verfahren zum Wärmebehandeln von ZnAl-schmelztauchbeschichtetem Feinblech
DE102007026061A1 (de) * 2007-06-01 2008-12-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verschleiß- und korrosionsbeständiges Bauteil und Verfahren zu seiner Herstellung
EP4116456A1 (de) 2021-07-09 2023-01-11 Matro GmbH Verfahren und anlage zum verzinken von eisen- und stahlwerkstücken

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679449B2 (ja) * 1982-12-24 1994-10-05 住友電気工業株式会社 耐熱亜鉛被覆acsr用鉄合金線
DE19628544C1 (de) * 1996-07-16 1998-02-26 Sachsenring Automobiltechnik Kugelgelenk und Verfahren zum Beschichten desselben
US6634252B2 (en) 2001-06-14 2003-10-21 Teleflex Incorporated Support for motion transmitting cable assembly
CA2750206C (en) * 2009-01-21 2013-10-15 Sumitomo Metal Industries, Ltd. Bent metal member and a method for its manufacture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1521004A1 (de) * 1966-02-11 1969-08-14 Siemens Ag Verfahren zur Herstellung von gegen Spannungskorrosion bestaendigen Metallteilen
LU74569A1 (de) * 1976-03-16 1977-09-27

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Chem. Technologie", v. K. Winneck und L. Küchler, 1973, S. 641 *
"Hütte, Taschenbuch für Eisenhüttenleute", 1961, S. 1156 *
"Lueger Lexikon der Technik", 1968, Bd. 9, S. 70/71 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19646362A1 (de) * 1996-11-09 1998-05-14 Thyssen Stahl Ag Verfahren zum Wärmebehandeln von ZnAl-schmelztauchbeschichtetem Feinblech
DE19646362C2 (de) * 1996-11-09 2000-07-06 Thyssen Stahl Ag Verfahren zum Wärmebehandeln von ZnAl-schmelztauchbeschichtetem Feinblech
US6231695B1 (en) 1996-11-09 2001-05-15 Thyssen Stahl Ag Method of heat-treating a thin sheet coated with ZnAL by hot dip galvanization
DE102007026061A1 (de) * 2007-06-01 2008-12-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verschleiß- und korrosionsbeständiges Bauteil und Verfahren zu seiner Herstellung
EP4116456A1 (de) 2021-07-09 2023-01-11 Matro GmbH Verfahren und anlage zum verzinken von eisen- und stahlwerkstücken

Also Published As

Publication number Publication date
EP0026757A1 (de) 1981-04-08
HU183217B (en) 1984-04-28
AT365243B (de) 1981-12-28
CS212726B2 (en) 1982-03-26
DE3070214D1 (en) 1985-03-28
ATA630679A (de) 1981-05-15
DD153135A5 (de) 1981-12-23

Similar Documents

Publication Publication Date Title
EP1819840B1 (de) Verfahren zum schmelztauchbeschichten eines bandes aus hoeherfestem stahl
DE60220191T2 (de) Hochfestes feuerverzinktes galvanisiertes stahlblech und feuerverzinktes geglühtes stahlblech mit ermüdungsfestigkeit,korrosionsbeständigkeit,duktilität und plattierungshaftung,nach starker verformung und verfahren zu dessen herstellung
WO2015036151A1 (de) Verfahren zum herstellen eines mit einem metallischen, vor korrosion schützenden überzug versehenen stahlbauteils und stahlbauteil
WO2007124781A1 (de) Verfahren zum schmelztauchbeschichten eines stahlflachproduktes aus höherfestem stahl
WO2009047183A1 (de) Verfahren zum herstellen eines stahlbauteils durch warmformen und durch warmformen hergestelltes stahlbauteil
DE2743655B2 (de) Legierung zum Tauchgalvanisieren von Stühlen und Anwendung derselben
WO2006045570A1 (de) Verfahren zum herstellen eines korrosionsgeschützten stahlblechs
DE2510328C2 (de) Verfahren zur Verbesserung der Korrosions-Widerstandsfähigkeit von Formkörpern aus Stahl oder Eisen
DE102008005605A1 (de) Verfahren zum Beschichten eines 6 - 30 Gew. % Mn enthaltenden warm- oder kaltgewalzten Stahlflachprodukts mit einer metallischen Schutzschicht
EP2055799A1 (de) Stahlflachprodukt mit einem vor Korrosion schützenden metallischen Überzug und Verfahren zum Erzeugen eines vor Korrosion schützenden metallischen Zn-Mg Überzugs auf einem Stahlflachprodukt
DE3444540A1 (de) Feuerverzinkte staehle und verfahren zu deren herstellung
DE3242625C2 (de) Verfahren zur Herstellung von feuerverzinkten Stahlblechen und Feuerverzinkungsschmelze
EP3749793B1 (de) Verfahren zur herstellung eines stahlbandes mit verbesserter haftung metallischer schmelztauchüberzüge
EP0026757B1 (de) Verfahren zum Feuerverzinken von Eisen- oder Stahlgegenständen
DE2258589A1 (de) Verfahren zum aufbringen von schutzueberzuegen auf stahlblech oder -band durch tauchen
DE2941850C2 (de) Kontinuierliches Verfahren zur Überalterung von heißtauchüberzogenem Stahlblech oder -band
DE1521317A1 (de) Schutzueberzug
DE19646362C2 (de) Verfahren zum Wärmebehandeln von ZnAl-schmelztauchbeschichtetem Feinblech
EP1252354B1 (de) Verfahren zum herstellen eines mit einer zinkbeschichtung versehenen stahlbandes
DE3903856C2 (de)
DE19543804B4 (de) Verfahren zur Herstellung von feuerverzinktem Stahlband und damit hergestelltes feuerverzinktes Blech oder Band aus Stahl
DE1290024C2 (de) Verfahren zur Herstellung von korrosions- und biegefesten Aluminiumueberzuegen auf Eisengegenstaende durch Aufspritzen
AT228595B (de) Verzinktes Blechmaterial und Verfahren zu seiner Herstellung
DE1521148C3 (de) Eisenhaltiger Metallgegenstand mit einem Aluminium-Zink-Legierungsüberzug und Verfahren zu seiner Herstellung
AT220448B (de) Verfahren zur Erzeugung von korrosionsfesten Aluminiumüberzügen auf Eisenoberflächen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LU NL

17P Request for examination filed

Effective date: 19810408

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI LU NL

REF Corresponds to:

Ref document number: 3070214

Country of ref document: DE

Date of ref document: 19850328

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19850930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19860930

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19870930

Ref country code: CH

Effective date: 19870930

Ref country code: BE

Effective date: 19870930

BERE Be: lapsed

Owner name: VOEST-ALPINE A.G.

Effective date: 19870930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880601

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881118