WO2006040960A1 - 画像処理装置および画像処理プログラム - Google Patents

画像処理装置および画像処理プログラム Download PDF

Info

Publication number
WO2006040960A1
WO2006040960A1 PCT/JP2005/018330 JP2005018330W WO2006040960A1 WO 2006040960 A1 WO2006040960 A1 WO 2006040960A1 JP 2005018330 W JP2005018330 W JP 2005018330W WO 2006040960 A1 WO2006040960 A1 WO 2006040960A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
edge
edge strength
pixel data
image
Prior art date
Application number
PCT/JP2005/018330
Other languages
English (en)
French (fr)
Inventor
Kazunori Sumiya
Manabu Yata
Taro Hizume
Toshiyuki Sano
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN200580034109.6A priority Critical patent/CN101036161B/zh
Priority to US11/576,726 priority patent/US7936941B2/en
Priority to JP2006540880A priority patent/JP4724124B2/ja
Publication of WO2006040960A1 publication Critical patent/WO2006040960A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/409Edge or detail enhancement; Noise or error suppression
    • H04N1/4092Edge or detail enhancement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20004Adaptive image processing
    • G06T2207/20012Locally adaptive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20192Edge enhancement; Edge preservation

Definitions

  • the present invention is suitable for digital image processing!
  • the present invention relates to an image processing apparatus and an image processing program capable of obtaining a clear image with little noise.
  • edge enhancement processing is widely used as processing for sharpening an image.
  • the signal that has been subjected to HPF is added to the image signal, thereby enhancing the change in the image signal and enhancing the edge of the image.
  • HPF Noise Pass Filter
  • the noise component of the image signal is similarly enhanced by the HPF, resulting in an image with a poor SZN feeling.
  • an image feature amount calculation unit 12 that calculates color edge information as image feature amounts from input image data, and the image feature amounts calculated here are If the value is less than the first value, the emphasis coefficient for smoothing the sharpness is set.If the value is greater than the first value and less than the second value, the emphasis coefficient for enhancing the sharpness is set to the second value. Is larger than the enhancement coefficient calculation unit 13 for calculating the enhancement coefficient for which the sharpness is not corrected, and the precision correction for performing the definition correction of the input image data based on the calculated enhancement coefficient. And calculating the color edge information, comparing this value with the threshold value, and correcting the definition of the input image data based on different emphasis coefficients in each case! / (For example, refer to Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-83294 (Summary, Fig. 1)
  • the present invention has been made to solve such a conventional problem, and an object thereof is to provide an image processing apparatus that can obtain a clear image with little noise and in the edge direction. To do.
  • the image processing apparatus of the present invention includes an image data input means for inputting image data, and a level difference between the target pixel of the input image data and its surrounding pixels.
  • Edge strength for calculating edge strength in a specific direction A filter is determined based on the edge strength in a specific direction calculated by the calculation means and the edge strength calculation means, and filter processing by the filter is performed on the pixel data to selectively reduce noise and edge enhancement.
  • the image processing apparatus of the present invention performs filtering according to the edge strength in the specific direction between the target pixel and its surroundings to reduce noise, and therefore sharpens in the specific direction near the target pixel. It is possible to obtain a clear image in the edge direction with little noise.
  • the filter processing unit may be configured to apply a smoothing filter when the edge intensity in the specific direction is equal to or smaller than a first value, and when the edge intensity is larger than the second value. May have a configuration characterized by selecting an edge enhancement filter.
  • the image processing apparatus of the present invention executes the smoothing filter when the edge strength in a specific direction is low, and the filtering process using the edge enhancement filter when high, so that the pixel of interest is detected. It is smoother when the specific direction is flat, can be sharper when there is an edge, and can obtain a clear image with less noise and the edge direction.
  • the filter processing means calculates an edge strength force in the specific direction by linear linear transformation, and the pixel-of-interest data according to the filter coefficient changing linearly.
  • Selective noise reduction and edge enhancement You may have the structure characterized by this.
  • the image processing apparatus of the present invention performs noise reduction or edge enhancement on the pixel-of-interest data according to the linearly changing filter coefficient, so that the filter of the filter is matched to the edge strength near the pixel of interest.
  • the characteristics can be changed smoothly from smoothing to high-frequency emphasis, signal processing switching by threshold is eliminated, and image discontinuity due to switching can be eliminated.
  • the filter processing unit multiplies the edge intensity in the specific direction by applying an inclination coefficient and adds an image quality adjustment value for adjusting the image quality to obtain a preliminary value.
  • the preliminary value is compared with the predetermined upper limit value and lower limit value, and if the preliminary value exceeds the upper limit value, the upper limit value is determined. If the preliminary value is lower than the lower limit value, the lower limit value is determined. If the preliminary value does not exceed the upper limit value and does not fall below the lower limit value, the preliminary value is determined as a weighting coefficient, and noise reduction and edge enhancement are performed by weighting the target pixel data with the weighting coefficient.
  • the image processing apparatus of the present invention can adjust the noise reduction amount or edge enhancement amount due to image change by the inclination coefficient, and various image quality adjustment values can be used, from soft image quality to sharp image quality.
  • Image quality can be selected, and upper and lower limit clips can prevent image quality deterioration due to over-filtering, and image adjustment can be performed easily.
  • the filter processing unit is a product obtained by multiplying a difference between an average value of pixel data before and after the pixel-of-interest data and the pixel-of-interest data by the weighting factor. May be added to the average value of the pixel data before and after the target pixel data, and the weighted addition may be performed.
  • the image processing apparatus of the present invention can selectively execute filter processing using a low-pass filter and a noise-pass filter according to the value of the weighting coefficient. Filtering is performed with a smooth filter when low and with an edge enhancement filter when high, so it is smoother when the specific direction of the pixel of interest is flat and sharper when there is an edge. Therefore, a clear image can be obtained in the edge direction with little noise.
  • the image processing apparatus of the present invention may have a configuration characterized in that the inclination coefficient and the image quality adjustment value are determined according to the amount of noise included in the image data. .
  • the image processing apparatus of the present invention can effectively perform filter processing according to the amount of noise included in the image data.
  • the specific direction includes at least a horizontal direction and a vertical direction
  • the edge strength calculation means is configured to detect a horizontal direction based on a level difference between the target pixel data and its left and right pixel data.
  • a horizontal edge strength calculator that calculates edge strength; and a vertical edge strength calculator that calculates edge strength in the vertical direction between the target pixel data and the upper and lower pixel data thereof
  • the filter processing means includes: A horizontal filter processing unit that obtains a horizontal filter based on the horizontal edge strength calculated by the horizontal edge strength calculation unit and selectively performs horizontal noise reduction and horizontal edge enhancement by the horizontal filter; Based on the vertical edge strength calculated by the vertical edge strength calculator, V is obtained as a vertical filter, and the vertical filter reduces vertical noise.
  • a vertical filter processing unit that selectively performs vertical edge enhancement, and the edge enhancement signal generation means generates an edge enhancement signal from the horizontal filtered pixel data and the vertical filtered pixel data. You may have the characteristic structure.
  • the image processing apparatus of the present invention separately detects horizontal and vertical edges and performs filtering in the horizontal and vertical directions, respectively, thereby reducing individual noise in the horizontal and vertical directions.
  • One side can be smoothed and one side sharpened, resulting in a clear image with little noise and edge direction.
  • the edge strength calculating means further includes a level difference between the target pixel data and pixel data located before and after the first diagonal direction, and an edge in the first diagonal direction.
  • a first diagonal edge strength calculation unit for calculating strength, and a level difference between the pixel data of interest and the pixel data located before and after the second diagonal direction, and a second diagonal direction for calculating edge strength in the second diagonal direction An edge strength calculator, wherein the filter processing means obtains a first diagonal filter based on the first diagonal edge strength calculated by the first diagonal edge strength calculator, and the first diagonal direction First diagonal direction by filter
  • a first diagonal filter processing unit that selectively performs noise reduction and first edge enhancement, and a second diagonal edge strength calculated by the second diagonal edge strength calculation unit.
  • a second oblique direction filter processing unit that obtains two oblique direction filters and selectively performs second oblique direction noise reduction and second oblique direction edge enhancement by the second oblique direction filter;
  • An edge enhancement signal may be generated from the pixel data subjected to the first oblique direction filter processing and the pixel data subjected to the second oblique direction filter processing.
  • the image processing apparatus of the present invention detects the edge strengths in the first diagonal direction and the second diagonal direction separately, and performs filter processing in each of the first diagonal direction and the second diagonal direction.
  • the single noise in each of the first diagonal direction and the second diagonal direction is reduced, smoothing on one side and sharpening on the other side, with less noise and sharper edges. Can be obtained.
  • the image processing program of the present invention provides an image data input cast for inputting image data, and an edge for calculating edge strength in a specific direction from a level difference between the target pixel of the input image data and its surrounding pixels.
  • Filter processing is selected based on the strength calculation step and the edge strength in a specific direction calculated in the edge strength calculation step, and noise reduction and edge enhancement of the pixel data are selectively performed by the selected filter processing.
  • a filter processing step, an edge enhancement signal generation step for generating an edge enhancement signal from the filtered pixel data, and an image correction step for correcting the input image data based on the edge enhancement signal It has a configuration characterized by this.
  • the image processing program of the present invention performs filtering according to the edge strength in the specific direction of the target pixel and its surroundings to reduce noise, so that the noise is reduced in the specific direction near the target pixel. Sharp sharpening can be performed, and a clear image can be obtained with little noise and also in the edge direction.
  • the present invention performs edge filtering on the basis of the edge strength calculating means for calculating the edge strength in the specific direction between the target pixel and the surrounding pixels, and the edge strength in the specific direction.
  • a filter processing means that selectively performs noise reduction and edge enhancement, sharpening in a specific direction near the target pixel can be performed, and a clear image with little noise and also in the edge direction can be obtained. If it can be obtained, an image processing apparatus having a habit effect can be provided.
  • FIG. 1 is a block diagram of an edge enhancement signal generation processing unit of an image processing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing the operation of edge enhancement signal generation processing of the image processing apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a flowchart showing a horizontal prefiltering operation of edge emphasis signal generation processing in the first exemplary embodiment of the present invention.
  • FIG. 4 is a block diagram of a horizontal prefilter unit of an edge enhancement signal generation processing unit of an image processing apparatus according to a second embodiment of the present invention.
  • FIG. 5 is a graph showing the relationship of the weighting coefficient to the edge strength of the image processing apparatus according to the second embodiment of the present invention.
  • FIG. 6 is a flowchart showing a horizontal prefilter processing operation of edge enhancement signal generation processing in the second embodiment of the present invention.
  • Image signal input section (Image data input means)
  • Pre-filter horizontal filter processing section
  • Pre-filter vertical filter processing unit
  • Multiplier 87 1Z256 multiplier
  • FIG. 1 a block diagram of the image processing apparatus according to the first embodiment of the present invention is shown in FIG. 1
  • FIG. 1 is a block diagram of an edge enhancement signal generation processing unit of an image processing apparatus.
  • An image signal input unit (image data input unit) 21 for inputting an image signal and a filtering process according to the edge strength in the horizontal direction.
  • Horizontal pre-filter unit 31 that performs filtering
  • vertical pre-filter unit 32 that performs filtering according to the edge strength in the vertical direction
  • horizontal / vertical edge enhancement signal generation unit that generates edge enhancement signals (edge enhancement signal generation means) 26
  • an adder (image correction means) 27 for adding signals
  • an image signal output unit 28 for outputting image signals.
  • the horizontal prefilter unit 31 includes a horizontal edge strength calculation unit 22 that calculates edge strength in the horizontal direction, and a prefilter (horizontal filter processing unit) 24 that performs horizontal filter processing.
  • the vertical prefilter unit 32 includes a vertical edge strength calculation unit 23 that calculates vertical edge strength, and a prefilter (vertical filter processing unit) 25 that performs vertical filter processing.
  • the image signal input unit 21 sequentially inputs signals in units of pixels.
  • a signal of a plurality of lines is necessary. Therefore, a plurality of columns of image signals are input in parallel using a line memory or the like.
  • the number of power lines using three lines is not limited to three.
  • the horizontal edge strength calculator 22 first applies an LPF (low pass filter) to the input signal in the vertical direction, and then calculates the absolute value of the difference in the horizontal direction. By this processing, the influence of noise can be reduced and the edge strength in the horizontal direction can be detected.
  • LPF low pass filter
  • the vertical edge strength calculator 23 applies the horizontal LPF to the input signal, calculates the absolute value of the vertical difference, and calculates the vertical edge. Is to detect the intensity of.
  • the pre-filter 24 performs filter processing such as LPF when the horizontal edge strength obtained by the horizontal edge strength calculating unit 22 is weak, and HPF that emphasizes high frequency when strong. At this time, even if single noise is applied to the target pixel, LPF is applied because the horizontal edge strength is weak, and the influence of noise is reduced.
  • the prefilter 25 has a vertical edge strength obtained by the vertical edge strength calculation unit 23 that is weak when the vertical edge strength is weak, LPF when strong, and HPF that emphasizes high frequency when high. Filter processing is performed.
  • Each of the pre-filter 24 and the pre-filter 25 has a single noise reduction effect.
  • the edge is sharpened in the horizontal direction and smoothed in the vertical direction, resulting in a sharp edge. The same applies to the vertical edge.
  • the horizontal / vertical edge enhancement signal generator 26 receives the output signals of the prefilter 24 and the prefilter 25 and generates an edge enhancement signal.
  • the adder 27 outputs the edge enhancement signal generated by the horizontal / vertical edge enhancement signal generation unit 26.
  • the image signal input unit 21 adds the main signal to the main line signal, and the image signal output unit 28 outputs the image signal added by the adder 27.
  • the image signal input unit 21 inputs an image signal (Sl l).
  • the horizontal direction pre-filter unit 31 receives an image signal from the image signal input unit 21, detects the strength of the edge in the horizontal direction, and performs filter processing according to the strength (S12). .
  • This horizontal prefiltering will be described in detail later.
  • the vertical direction pre-filter unit 32 receives an image signal from the image signal input unit 21, detects the edge strength in the vertical direction, and performs filter processing according to the strength (S13). .
  • the horizontal direction pre-filtering process and the vertical direction pre-filtering process may be prepared as separate processes, or only one process may be prepared, The same processing may be called twice with the input of the horizontal and vertical swapping as input.
  • the horizontal / vertical edge enhancement signal generation unit 26 outputs the prefilter power output from each of the horizontal direction prefilter unit 31 and the vertical direction prefilter unit 32. This signal is received and an edge emphasis signal is generated.
  • the adder 27 adds the signal generated by the horizontal / vertical edge emphasis signal generation unit 26 to the image signal input by the image signal input unit 21 and outputs an image signal.
  • An edge-enhanced signal is output from section 28 (S14).
  • FIG. 3 shows a flowchart of the horizontal direction prefilter processing, which will be described.
  • the vertical LPF processing noise is removed and reduced by a plurality of vertical pixel values based on a signal input from the image signal input unit 21 (S21).
  • the horizontal difference absolute value sum calculation process the difference absolute value between the pixel of interest and the pixel values on the left and right sides is added to obtain the edge strength in the horizontal direction (S22).
  • the filter selection process according to the obtained edge strength, the smooth filter such as LPF is emphasized when the edge strength is weak, and the edges such as multiple filter forces HPF are emphasized so that high frequency enhancement is achieved when the edge strength is strong Select a filter (S23). For example, a first threshold value, a second threshold value, and two threshold values are provided. If the edge strength is less than or equal to the first threshold value, a smoothing filter is set to be greater than or equal to the second threshold value. In some cases, an edge enhancement filter may be selected. And depending on the selected filter
  • filter processing is performed and output (S24).
  • the filter processing is not performed, and the output is output at the same timing as when the filter processing is delayed.
  • the image processing apparatus differs from the image processing apparatus according to the first embodiment in the horizontal edge enhancement signal generation process and the vertical edge enhancement signal generation process. Become. Therefore, only the horizontal direction pre-filter part and the vertical direction pre-filter part are different, and the other constituent actions are the same.
  • FIG. 4 shows a block diagram of the horizontal prefilter unit in the present embodiment and will be described. Further, the vertical prefilter unit is the same as the horizontal prefilter unit, and thus the description thereof is omitted.
  • the horizontal prefilter unit 40 includes a horizontal edge strength calculation unit 41 that calculates the edge strength in the horizontal direction, a pre-finoleator 42 that performs filtering according to the edge strength in the horizontal direction, It has.
  • the horizontal edge strength calculation unit 41 includes a vertical LPF 51 that applies LPF in the vertical direction, a delay element 52 that delays data, a delay element 53, a subtractor 54 that calculates a difference value between two signals, and a subtractor 55, an absolute value calculation processing unit 56 that calculates the absolute value of the input value, an absolute value calculation processing unit 57, and an adder 58 that adds the two input values.
  • the vertical LPF 51 inputs a three-line signal, multiplies the coefficients by 1/4, 1/2, and 1Z4, respectively, and adds the LPF in the vertical direction.
  • the vertical LPF coefficient is not limited to this! /.
  • the delay element 52 and the delay element 53 temporarily accumulate the input pixel signals and delay the output timing.
  • each of the delay elements 52 and 53 delays a time signal for one pixel data.
  • the subtractor 54 and the subtractor 55 use the pixel signal output from the delay element 52 as the pixel signal of the target pixel, and obtain the difference value between the target pixel and the right signal, and the target pixel and the left signal, respectively. .
  • the absolute value calculation processing unit 56 and the absolute value calculation processing unit 57 calculate the absolute value of the difference value between the target pixel and the left and right pixels calculated by the subtractor 54 and the subtractor 55, respectively.
  • the device 58 adds the absolute values of the difference values between the target pixel and the left and right pixels calculated by the absolute value calculation processing unit 56 and the absolute value calculation processing unit 57 to obtain the image change amount in the target pixel unit. Yes, this is the edge intensity in the horizontal direction of the local area (in this case, an area of 3 * 3 pixels).
  • the pre-filter 42 includes a slope coefficient setting unit 71 that sets a slope coefficient, a slope coefficient multiplier 72 that multiplies the slope coefficient set by the slope coefficient setting unit 71, and an off value that sets an offset value.
  • Set setting unit 73 Offset addition unit 74 that adds the offset value set by the offset setting unit 73, Upper / lower limit clip adjustment unit 75 that clips the upper limit value and lower limit value, Delays data for two pixels 1Z2 multiplier 83 that multiplies delay element 81, adder 82, and 1Z2 Delay element 84 that delays data for one pixel data, subtracter 85, multiplier 86 that multiplies the weighting factor, and 1Z256 that multiplies 1Z256 It has a multiplier 87 and an adder 88.
  • the gradient coefficient multiplier 72 adds the gradient coefficient set by the gradient coefficient setting unit 71 to the horizontal edge strength output from the adder 58 constituting the horizontal edge strength calculation unit 41.
  • the offset adding unit 74 adds the offset value set by the offset setting unit 73.
  • the upper / lower limit clip 75 applies a predetermined clip to the upper limit and the lower limit, thereby obtaining a weighting coefficient. The calculation of the weighting coefficient will be explained later.
  • the delay element 81 temporarily accumulates input pixel signals and delays the output timing for two pixels.
  • the adder 82 and the 1Z2 multiplier 83 add the pixel data delayed by two pixels to the delay element 81 and the non-delayed pixel data, and multiply by 1Z2 so as to be delayed by one pixel. The average of the two pixels on the left and right of the pixel is obtained.
  • the delay element 84 temporarily accumulates the input pixel signal and delays the output timing by one pixel.
  • the delay element 84 stores two pixel signals representing two pixels on the left and right of the target pixel input to the adder 82. The pixel value between them, that is, the pixel signal of the target pixel is output.
  • the subtractor 85 calculates the difference between the pixel of interest and the addition average of the left and right pixels by subtracting the value output from the 1Z2 multiplier 83 from the pixel data delayed by the delay element 84. .
  • the multiplier 86 multiplies the output from the subtractor 85 and the output from the upper and lower limit clip 75, and multiplies the difference between the target pixel and the addition average of the two left and right pixels by the weighting factor. This is what we want.
  • the 1Z256 multiplier 87 divides the accumulated gain output from the multiplier 86 by 256. This is because the accumulated gain is multiplied by 1 to 256 for realization in the circuit, and decimal calculation is possible. Then this is not necessary.
  • the adder 88 adds the outputs from the multiplier 86 and 1Z256 multiplier 87 and the output from the adder 82 and 1Z2 multiplier 83, and calculates the integrated gain and the addition average value of the left and right two pixels. Add Is.
  • FIG. Fig. 5 is a graph showing the relationship of the weighting factor to the edge strength, with the horizontal axis representing the edge strength in the horizontal direction and the vertical axis representing the weighting factor value.
  • the weighting coefficient value is a weighting coefficient.
  • the slope 101 of the graph is determined by the slope coefficient set by the slope coefficient setting unit 71, and the amount of change in the filter characteristics with respect to the change in the image can be adjusted.
  • the slope coefficient setting unit 71 may set the slope coefficient according to the amount of noise included in the signal input to the image signal input unit, as shown in the figure.
  • the offset 102 is determined by an offset value set by the offset setting unit 73, and image quality adjustment can be made to a softer image quality or a sharper image quality.
  • This offset value constitutes the image adjustment value.
  • the offset setting unit 73 may set the offset value according to the amount of noise included in the signal input to the image signal input unit (not shown).
  • the weighting coefficient value is determined by the upper / lower limit clip adjusting unit 75. That is, the upper / lower limit clip adjustment unit 75 compares the value output from the offset addition unit 74 with the upper limit clip value 103 and the lower limit clip value 104, and the value output from the offset addition unit 74 exceeds the upper limit clip value 103.
  • the upper limit clip value 103 is output from the offset adder 74. If the output value falls below the lower limit clip value 104, the lower limit clip value 104 is set.If the output value from the offset addition unit 74 does not exceed the upper limit clip value 103 and does not fall below the lower limit clip value 104, the offset addition unit 74 starts. Output the output value.
  • the upper and lower limit clip adjusting unit 75 may set the upper limit clip value and the lower limit clip value to be variable, for example, according to the amount of noise included in the signal. Needless to say.
  • the flat portion of the image becomes smoother and the edge portion becomes clearer. Can be obtained without switching the processing.
  • linear linear transformation is used for calculating the edge force / weighting coefficient, but the transformation method is not limited to this. Further, in the present embodiment, the force processing area described in the 3 * 3 pixel area is not limited to this.
  • FIG. 6 is a flowchart of horizontal prefilter processing in the present embodiment. Show and explain.
  • This horizontal prefiltering process is a modification of part of the horizontal prefiltering process shown in the first embodiment, and only the changed part will be described.
  • the filter selection process is eliminated, and a filter coefficient calculation process (S33) exists instead.
  • the prefiltering process (S34) is also realized by weighted addition.
  • a weighting coefficient is calculated by the gradient coefficient multiplier 72, the offset adder 74, and the upper / lower limit clip 75 based on the edge strength obtained by the adder 58.
  • the weighting addition process is performed by the multiplier 86, the adder 88, and the like using the weighting coefficient obtained in the filter coefficient calculation process (S33).
  • the image processing apparatus may be configured using, for example, a processor, a memory, or the like, or may be configured by an electric circuit or the like. It may be a module of a program executed by, for example.
  • the image processing apparatus can perform sharpening in a specific direction near the pixel of interest, and obtain a clear image with little noise and also in the edge direction. If it can be used, it will have an effect and is useful as an image processing apparatus for performing digital image processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Picture Signal Circuits (AREA)

Abstract

 【課題】 ノイズが少なくかつ鮮明な画像を得ることのできる画像処理装置を提供すること。  【解決手段】 注目画素とその左右画素との水平方向におけるエッジ強度を算出する水平エッジ強度算出部22と、水平方向のエッジ強度に基づいたフィルタ処理を行いノイズ低減およびエッジ強調を選択的に行うプレフィルタ24と、注目画素とその上下画素との垂直方向におけるエッジ強度を算出する垂直エッジ強度算出部23と、垂直方向のエッジ強度に基づいたフィルタ処理を行いノイズ低減およびエッジ強調を選択的に行うプレフィルタ25とを設けることにより、注目画素付近での上下または左右方向における先鋭化を行うことができ、ノイズが少なくかつエッジ方向にも鮮明な画像を得ることができる。  

Description

明 細 書
画像処理装置および画像処理プログラム
技術分野
[0001] 本発明は、ディジタル画像処理にお!/ヽて、特にノイズが少なくかつ鮮明な画像を得 ることのできる画像処理装置および画像処理プログラムに関する。
背景技術
[0002] 従来の画像処理装置にお!/、ては、画像を鮮明にするための処理としてエッジ強調 処理が広く用いられて 、る。これは画像信号に HPF (ノヽィパスフィルター)をかけた信 号を加算することで画像信号の変化を強調し、画像のエッジを強調するものである。 ところが、このような画像処理装置では、 HPFにより画像信号のノイズ成分も同じよう に強調されてしま 、、 SZN感の悪 、画像となってしまう。
[0003] そこで、適応的な精細度補正を実現する画像処理装置が提案されて!、る。このよう な従来の画像処理装置を、図 7に示し説明する。
[0004] 図 7に示すように、従来の画像処理装置では、入力画像データから画像特徴量とし てカラーエッジ情報を算出する画像特徴量算出部 12と、ここで算出された画像特徴 量が、第一の値以下の場合は、先鋭度を平滑ィ匕する強調係数を、第一の値よりも大 きく第二の値以下の場合は、先鋭度を強調する強調係数を、第二の値よりも大きい 場合は、先鋭度の補正を行わない強調係数を、それぞれ算出する強調係数算出部 13と、ここで算出された強調係数に基づいて入力画像データの精細度補正を行う精 細度補正部 14とを備えることにより、カラーエッジ情報を算出し、この値を閾値と比較 して、それぞれの場合で異なる強調係数に基づ 、て入力画像データの精細度補正 を行って!/、る(例えば特許文献 1参照)。
特許文献 1 :特開 2002— 83294号公報 (要約、第 1図)
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、このような従来の画像処理装置においては、エッジの方向に対する 考慮がなぐエッジ付近ではどの方向に対しても先鋭ィ匕されてしまうという問題があつ た。
[0006] 本発明は、このような従来の問題を解決するためになされたもので、ノイズが少なく かつエッジ方向にも鮮明な画像を得ることのできる画像処理装置を提供することを目 的とする。
課題を解決するための手段
[0007] 本発明の画像処理装置は、画像データを入力する画像データ入力手段と、前記入 力した画像データの注目画素とその周囲画素のレベル差力 特定方向のエッジ強 度を算出するエッジ強度算出手段と、前記エッジ強度算出手段に算出された特定方 向のエッジ強度に基づ 、てフィルタを決定し、画素データに前記フィルタによるフィル タ処理を実行して選択的にノイズ低減およびエッジ強調を行うフィルタ処理手段と、 前記フィルタ処理された画素データによりエッジ強調信号を生成するエッジ強調信号 生成手段と、前記入力した画像データを前記エッジ強調信号に基づ!、て補正する画 像補正手段とを備えたことを特徴とした構成を有して 、る。
[0008] この構成により、本発明の画像処理装置は、注目画素とその周囲との特定方向に おけるエッジ強度にしたがってフィルタがかけられノイズが低減されるので、注目画素 付近での特定方向における先鋭ィ匕を行うことができ、ノイズが少なくかつエッジ方向 にも鮮明な画像を得ることができる。
[0009] また、本発明の画像処理装置は、前記フィルタ処理手段は、前記特定方向のエツ ジ強度が第 1の値以下の場合には平滑ィ匕フィルタを、第 2の値より大きい場合にはェ ッジ強調フィルタを選択することを特徴とした構成を有しても良い。
[0010] この構成により、本発明の画像処理装置は、特定方向のエッジ強度が低い場合に は平滑ィ匕フィルタを、高 、場合にはエッジ強調フィルタによるフィルタ処理を実行する ので、注目画素の特定方向が平坦な場合はより滑らかで、エッジがある場合にはより 鮮明にすることができ、ノイズが少なくエッジ方向には鮮明な画像を得ることができる
[0011] さらに、本発明の画像処理装置は、前記フィルタ処理手段は、前記特定方向のエツ ジ強度力 線形一次変換によりフィルタ係数を算出し、線形変化する前記フィルタ係 数にしたがって前記注目画素データのノイズ低減およびエッジ強調を選択的に行う ことを特徴とした構成を有しても良い。
[0012] この構成により、本発明の画像処理装置は、線形変化するフィルタ係数にしたがつ て注目画素データのノイズ低減もしくはエッジ強調が行われるので、注目画素付近の エッジ強度に合わせてフィルタの特性を平滑化から高域強調まで滑らかに変化させ ることができ、閾値による信号処理切り替えを無くし、切り替わりによる画像の不連続 性を排除することができる。
[0013] さらに、本発明の画像処理装置は、前記フィルタ処理手段は、前記特定方向のエツ ジ強度に対して、傾き係数をかけ、画質の調整を行う画質調整値を加算して予備値 を算出し、前記予備値と所定の上限値および下限値と比較をして、前記予備値が上 限値を上回る場合は上限値を、前記予備値が下限値を下回る場合は下限値を、前 記予備値が上限値を上回らず、かつ下限値を下回らない場合は前記予備値を重み 付け係数として決定し、前記注目画素データに前記重み付け係数による重み付けカロ 算を行ってノイズ低減およびエッジ強調を選択的に行うことを特徴とした構成を有し ても良い。
[0014] この構成により、本発明の画像処理装置は、傾き係数によって画像の変化によるノ ィズ低減量もしくはエッジ強調量を調整でき、画質調整値によってソフトな画質からシ ヤープな画質まで様々な画質を選択でき、上下限クリップによってフィルタのかけす ぎによる画質劣化を防止することができ、画像の調整を容易に行うことができる。
[0015] さらに、本発明の画像処理装置は、前記フィルタ処理手段は、前記注目画素デー タの前後の画素データの平均値と前記注目画素データとの差分に前記重み付け係 数を掛け合わせた積を前記注目画素データの前後の画素データの平均値に加えて 前記重み付け加算を行うことを特徴とした構成を有しても良い。
[0016] この構成により、本発明の画像処理装置は、重み付け係数の値に応じてローパスフ ィルタおよびノヽィパスフィルタによるフィルタ処理を選択的に実行することができるの で、特定方向のエッジ強度が低い場合には平滑ィ匕フィルタを、高い場合にはエッジ 強調フィルタによるフィルタ処理を実行するので、注目画素の特定方向が平坦な場 合はより滑らかで、エッジがある場合にはより鮮明にすることができ、ノイズが少なくェ ッジ方向には鮮明な画像を得ることができる。 [0017] さらに、本発明の画像処理装置は、前記傾き係数および前記画質調整値は画像デ ータに含まれるノイズの量に応じて決定されることを特徴とした構成を有しても良い。
[0018] この構成により、本発明の画像処理装置は、画像データに含まれるノイズの量に応 じて効果的にフィルタ処理を行うことができる。
[0019] さらに、本発明の画像処理装置は、前記特定方向は少なくとも水平方向と垂直方 向を含み、前記エッジ強度算出手段は、前記注目画素データとその左右画素データ のレベル差から水平方向のエッジ強度を算出する水平エッジ強度算出部と、前記注 目画素データとその上下画素データのレベル差力 垂直方向のエッジ強度を算出 する垂直エッジ強度算出部とを備え、前記フィルタ処理手段は、前記水平エッジ強 度算出部に算出された水平方向のエッジ強度に基づ!/、て水平フィルタを求め、前記 水平フィルタにより水平ノイズ低減および水平エッジ強調を選択的に行う水平フィル タ処理部と、前記垂直エッジ強度算出部に算出された垂直方向のエッジ強度に基づ Vヽて垂直フィルタを求め、前記垂直フィルタにより垂直ノイズ低減および垂直エッジ 強調を選択的に行う垂直フィルタ処理部とを備え、前記エッジ強調信号生成手段は 、前記水平フィルタ処理された画素データおよび前記垂直フィルタ処理された画素 データによりエッジ強調信号を生成することを特徴とした構成を有しても良い。
[0020] この構成により、本発明の画像処理装置は、水平および垂直エッジがそれぞれ別 々に検出され、水平および垂直方向それぞれのフィルタ処理が行われるので、水平 および垂直方向それぞれの単独ノイズが低減され、一方には平滑化、一方には先鋭 化を行うことができ、ノイズが少なくかつエッジ方向にも鮮明な画像を得ることができる
[0021] さらに、本発明の画像処理装置は、前記エッジ強度算出手段は、さらに、前記注目 画素データとその第 1斜め方向の前後に位置する画素データのレベル差力 第 1斜 め方向のエッジ強度を算出する第 1斜めエッジ強度算出部と、前記注目画素データ とその第 2斜め方向の前後に位置する画素データのレベル差力 第 2斜め方向のェ ッジ強度を算出する第 2斜め方向エッジ強度算出部とを備え、前記フィルタ処理手段 は、前記第 1斜め方向エッジ強度算出部に算出された第 1斜め方向のエッジ強度に 基づいて第 1斜め方向フィルタを求め、前記第 1斜め方向フィルタにより第 1斜め方 向ノイズ低減および第 1斜め方向エッジ強調を選択的に行う第 1斜め方向フィルタ処 理部と、前記第 2斜め方向エッジ強度算出部に算出された第 2斜め方向のエッジ強 度に基づいて第 2斜め方向フィルタを求め、前記第 2斜め方向フィルタにより第 2斜め 方向ノイズ低減および第 2斜め方向エッジ強調を選択的に行う第 2斜め方向フィルタ 処理部とを備え、前記エッジ強調信号生成手段は、前記第 1斜め方向フィルタ処理さ れた画素データおよび前記第 2斜め方向フィルタ処理された画素データによりエッジ 強調信号を生成することを特徴とした構成を有しても良 ヽ。
[0022] この構成により、本発明の画像処理装置は、第 1斜め方向および第 2斜め方向のェ ッジ強度がそれぞれ別々に検出され、第 1斜め方向および第 2斜め方向それぞれの フィルタ処理が行われるので、第 1斜め方向および第 2斜め方向それぞれの単独ノィ ズが低減され、一方には平滑化、一方には先鋭ィ匕を行うことができ、ノイズが少なくか つエッジ方向にも鮮明な画像を得ることができる。
[0023] さらに、本発明の画像処理プログラムは、画像データを入力する画像データ入カス テツプと、前記入力した画像データの注目画素とその周囲画素のレベル差から特定 方向のエッジ強度を算出するエッジ強度算出ステップと、前記エッジ強度算出ステツ プで算出された特定方向のエッジ強度に基づ 、てフィルタ処理を選択し、前記選択 したフィルタ処理により画素データのノイズ低減およびエッジ強調を選択的に行うフィ ルタ処理ステップと、前記フィルタ処理された画素データによりエッジ強調信号を生 成するエッジ強調信号生成ステップと、前記入力した画像データを前記エッジ強調 信号に基づいて補正する画像補正ステップとを備えたことを特徴とした構成を有して いる。
[0024] この構成により、本発明の画像処理プログラムは、注目画素とその周囲との特定方 向におけるエッジ強度にしたがってフィルタ処理が行われノイズが低減されるので、 注目画素付近での特定方向における先鋭ィ匕を行うことができ、ノイズが少なくかつェ ッジ方向にも鮮明な画像を得ることができる。
発明の効果
[0025] 本発明は、注目画素とその周囲画素との特定方向におけるエッジ強度を算出する エッジ強度算出手段と、前記特定方向のエッジ強度に基づ 、たフィルタ処理を行 ヽ ノイズ低減およびエッジ強調を選択的に行うフィルタ処理手段とを設けることにより、 注目画素付近での特定方向における先鋭ィ匕を行うことができ、ノイズが少なくかつェ ッジ方向にも鮮明な画像を得ることができると ヽぅ効果を有する画像処理装置を提供 することができるものである。
図面の簡単な説明
[0026] [図 1]本発明の第 1の実施の形態における画像処理装置のエッジ強調信号生成処理 部のブロック図
[図 2]本発明の第 1の実施の形態における画像処理装置のエッジ強調信号生成処理 動作を示すフローチャート
[図 3]本発明の第 1の実施の形態におけるエッジ強調信号生成処理の水平方向プレ フィルタ処理動作を示すフローチャート
[図 4]本発明の第 2の実施の形態における画像処理装置のエッジ強調信号生成処理 部の水平方向プレフィルタ部のブロック図
[図 5]本発明の第 2の実施の形態における画像処理装置のエッジ強度に対する重み 付け係数の関係を示したグラフ
[図 6]本発明の第 2の実施の形態におけるエッジ強調信号生成処理の水平方向プレ フィルタ処理動作を示すフローチャート
[図 7]従来の画像処理装置のブロック図
符号の説明
[0027] 11 画像入力部
12 画像特徴量算出部
13 強調係数算出部
14 精細度補正部
15 画像出力部
21 画像信号入力部 (画像データ入力手段)
22 水平エッジ強度算出部
23 垂直エッジ強度算出部
24 プレフィルタ(水平フィルタ処理部) プレフィルタ(垂直フィルタ処理部)
水平垂直エッジ強調信号生成部 (エッジ強調信号生成手段) 加算器 (画像補正手段)
画像信号出力部
水平方向プレフィルタ部
垂直方向プレフィルタ部
水平方向プレフィルタ部
水平エッジ強度算出部
プレフィルタ
垂直 LPF
遅延素子
遅延素子
減算器
減算器
絶対値算出処理部
絶対値算出処理部
加算器
傾き係数設定部
傾き係数乗算部
オフセット設定部
オフセット加算部
上下限クリップ調整部
遅延素子
加算器
1Z2乗算器
遅延素子
減算器
乗算器 87 1Z256乗算器
88 加算器
発明を実施するための最良の形態
[0028] 以下、本発明の実施の形態の画像処理装置について、図面を用いて説明する。
[0029] (第 1の実施の形態)
まず、本発明の第 1の実施の形態における画像処理装置のブロック図を図 1に示し
、説明する。
[0030] 図 1は、画像処理装置のエッジ強調信号生成処理部のブロック図であり、画像信号 を入力する画像信号入力部 (画像データ入力手段) 21と、水平方向のエッジ強度に したがってフィルタ処理を行う水平方向プレフィルタ部 31と、垂直方向のエッジ強度 にしたがってフィルタ処理を行う垂直方向プレフィルタ部 32と、エッジ強調信号を生 成する水平垂直エッジ強調信号生成部 (エッジ強調信号生成手段) 26と、信号の加 算を行う加算器 (画像補正手段) 27と、画像信号を出力する画像信号出力部 28とを 備えている。
[0031] また、水平方向プレフィルタ部 31は、水平方向のエッジ強度を算出する水平エッジ 強度算出部 22と、水平方向のフィルタ処理を行うプレフィルタ(水平フィルタ処理部) 24と、を有し、垂直方向プレフィルタ部 32は、垂直方向のエッジ強度を算出する垂 直エッジ強度算出部 23と、垂直方向のフィルタ処理を行うプレフィルタ(垂直フィルタ 処理部) 25と、を有している。
[0032] 画像信号入力部 21は、画素単位の信号を順次入力するものである。ここで、垂直 方向のエッジ強調信号を生成するためには、複数ラインの信号が必要なので、ライン メモリ等を使用して複数列の画像信号を並列に入力する。図 1では、 3ライン使用して いる力 ライン数は 3本に限定されるものではない。
[0033] 水平エッジ強度算出部 22は、入力信号に対して、まず垂直方向に LPF (ローパス フィルタ)をかけてから、水平方向の差分の絶対値を算出するものである。この処理に より、ノイズの影響を低減して水平方向のエッジの強度を検出することができる。
[0034] 垂直エッジ強度算出部 23は、水平エッジ強度算出部 22と同様に、入力信号に対 して水平 LPFをかけてから、垂直方向の差分の絶対値を算出し、垂直方向のエッジ の強度を検出するものである。
[0035] プレフィルタ 24は、水平エッジ強度算出部 22で求めた水平エッジ強度が弱い場合 には LPFを、強 、場合には高域を強調する HPFなどのフィルタ処理を行うものであ る。この時、注目画素に単独ノイズがあつたとしても水平エッジ強度が弱いため LPF がかけられ、ノイズの影響は低減される。
[0036] プレフィルタ 25は、プレフィルタ 24と同様に、垂直エッジ強度算出部 23で求めた垂 直エッジ強度が弱 、場合には LPFを、強 、場合には高域を強調する HPFなどのな どのフィルタ処理を行うものである。
[0037] プレフィルタ 24とプレフィルタ 25は、それぞれが単独ノイズの低減効果を持つ。注 目画素が水平エッジの場合には、水平方向には先鋭化、垂直方向には平滑化し、シ ヤープなエッジとなる。垂直エッジの場合も同様である。
[0038] 水平垂直エッジ強調信号生成部 26は、プレフィルタ 24、プレフィルタ 25の出力信 号を受けエッジ強調信号を生成するものである。
[0039] 加算器 27は、水平垂直エッジ強調信号生成部 26で生成されたエッジ強調信号を
、画像信号入力部 21で入力された本線信号に加算するものであり、画像信号出力 部 28は、加算器 27で加算された画像信号を出力するものである。
[0040] なお、図 1では、水平方向と垂直方向の処理を記載したが、同様に斜め方向の処 理を追カ卩しても良い。
[0041] 以上のように構成された画像処理装置のエッジ強調信号生成動作について、図 2 にフローチャートを示し、説明する。
[0042] まず、信号入力処理では、画像信号入力部 21が画像信号を入力する(Sl l)。次 に、水平方向プレフィルタ処理では、水平方向プレフィルタ部 31が画像信号入力部 21から画像信号を入力し、水平方向のエッジの強度を検出し、強度に応じてフィルタ 処理を行う(S12)。この水平方向プレフィルタ処理については、後で詳述する。また 、垂直方向プレフィルタ処理では、垂直方向プレフィルタ部 32が画像信号入力部 21 から画像信号を入力し、垂直方向のエッジの強度を検出し、強度に応じてフィルタ処 理を行う(S13)。このとき、水平方向プレフィルタ処理と垂直方向プレフィルタ処理は 、別々の処理として用意しておいても良いし、 1つの処理のみ用意しておいて、信号 の水平と垂直とを入れ替えたものを入力として同じ処理を 2度呼び出しても良い。
[0043] 次に、水平垂直エッジ強調信号生成処理では、水平垂直エッジ強調信号生成部 2 6が水平方向プレフィルタ部 31と垂直方向プレフィルタ部 32とのそれぞれから出力さ れたプレフィルタの力かった信号を受け取り、エッジ強調信号を生成し、加算器 27が 、画像信号入力部 21が入力した画像信号に、水平垂直エッジ強調信号生成部 26に 生成された信号を加算し、画像信号出力部 28からエッジ強調された信号を出力する (S14)。
[0044] 以上の処理により、画像のノイズを低減しつつ、画像のエッジを強調した鮮明な画 像を得ることができる。
[0045] また、図 3に、水平方向プレフィルタ処理のフローチャートを示し、説明する。
[0046] まず、垂直 LPF処理では、画像信号入力部 21から入力した信号により、複数の垂 直方向の画素値によって雑音の除去、低減化を行う(S21)。次に、水平差分絶対値 和算出処理では、注目画素と左右両側の画素値との差分絶対値を加算して、水平 方向のエッジ強度を得る(S22)。次に、フィルタ選択処理では、得られたエッジ強度 にしたがい、エッジ強度が弱ければ LPFなどの平滑フィルタを、エッジ強度が強けれ ば高域強調となるよう、複数のフィルタ力 HPFなどエッジを強調するフィルタを選択 する(S23)。例えば、第 1のしきい値、第 2のしきい値と 2つのしきい値を設け、エッジ 強度が第 1のしきい値以下の場合には平滑フィルタを、第 2のしきい値以上の場合に はエッジ強調フィルタを選択するようにしても良い。そして、選択されたフィルタにより
、フィルタ処理を行い出力する(S24)。ここで、エッジ強度が第 1のしきい値と第 2のし き!、値の間の場合はフィルタ処理を行わず、遅延させてフィルタ処理を行った場合と 同じタイミングで出力させる。
[0047] これらの処理により、画像のノイズを低減しつつ、画像のエッジを強調した鮮明な画 像を得ることができる。
[0048] (第 2の実施の形態)
次に、本発明の第 2の実施の形態における画像処理装置について、説明する。
[0049] 本実施の形態の画像処理装置は、上記第 1の実施の形態における画像処理装置 に対して、水平エッジ強調信号生成処理および垂直エッジ強調信号生成処理が異 なる。したがって、水平方向プレフィルタ部および垂直方向プレフィルタ部のみが異 なり、他の構成作用は同一である。
[0050] 図 4に、本実施の形態における水平方向プレフィルタ部のブロック図を示し、説明 する。また、垂直方向プレフィルタ部については、水平方向プレフィルタ部と同様のも のなので、説明を省略する。
[0051] 図 4に示すように、水平方向プレフィルタ部 40は、水平方向のエッジ強度を算出す る水平エッジ強度算出部 41と、水平方向のエッジ強度にしたがってフィルタ処理を 行うプレフイノレタ 42と、を備えている。
[0052] 水平エッジ強度算出部 41は、垂直方向に LPFをかける垂直 LPF51、データの遅 延を行う遅延素子 52、遅延素子 53、 2つの信号の差分値を算出する減算器 54、減 算器 55、入力値の絶対値を算出する絶対値算出処理部 56、絶対値算出処理部 57 、 2つの入力値を加算する加算器 58を有している。
[0053] 垂直 LPF51は、 3ライン信号を入力し、それぞれ、 1/4, 1/2, 1Z4の係数を掛 けて加算することにより、垂直方向に LPFをかけるものである。ただし、縦方向 LPFの 係数はこれに限定するものではな!/、。
[0054] 遅延素子 52および遅延素子 53は、入力した画素信号を一旦蓄積し、出力タイミン グを遅延するものである。ここで、遅延素子 52、 53はそれぞれ 1画素データ分の時間 信号を遅延させるものとする。減算器 54および減算器 55は、遅延素子 52から出力さ れる画素信号を注目画素の画素信号として、それぞれ注目画素と右の信号、注目画 素と左の信号との差分値を求めるものである。
[0055] 絶対値算出処理部 56および絶対値算出処理部 57は、それぞれ減算器 54および 減算器 55に算出された注目画素と左右の画素の差分値の絶対値を求めるものであ り、加算器 58は、絶対値算出処理部 56および絶対値算出処理部 57に算出された 注目画素と左右の画素の差分値の絶対値を加算して、注目画素部での画像変化量 を求めるものであり、これを局所領域(ここでは 3 * 3画素の領域)の水平方向のエツ ジ強度とする。
[0056] プレフィルタ 42は、傾き係数を設定する傾き係数設定部 71、傾き係数設定部 71に より設定された傾き係数を乗算する傾き係数乗算部 72、オフセット値を設定するオフ セット設定部 73、オフセット設定部 73により設定されたオフセット値を加算するオフセ ット加算部 74、上限値および下限値をクリップする上下限クリップ調整部 75、 2画素 データ分のデータの遅延を行う遅延素子 81、加算器 82、 1Z2を乗算する 1Z2乗算 器 83、 1画素データ分のデータの遅延を行う遅延素子 84、減算器 85、重み付け係 数を乗算する乗算器 86、 1Z256を乗算する 1Z256乗算器 87、加算器 88を有して いる。
[0057] 傾き係数乗算部 72は、水平エッジ強度算出部 41を構成する加算器 58から出力さ れた水平方向のエッジ強度に対して、傾き係数設定部 71により設定された傾き係数 を積算するものであり、オフセット加算部 74は、オフセット設定部 73により設定された オフセット値を加算するものである。上下限クリップ 75は、上限および下限に所定の クリップをかけるものであり、これにより、重み付け係数を求める。重み付け係数の算 出については、後で改めて説明する。
[0058] 遅延素子 81は、入力した画素信号を一旦蓄積し、 2画素分出力タイミングを遅延す るものである。加算器 82と 1Z2乗算器 83は、遅延素子 81に 2画素分遅延された画 素データと、遅延されていない画素データとを加算し、 1Z2を乗算することにより、 1 画素分遅延される注目画素の左右 2画素の加算平均値を求めるものである。
[0059] 遅延素子 84は、入力した画素信号を一旦蓄積し、 1画素分出力タイミングを遅延す るものであり、加算器 82に入力される注目画素の左右 2画素を表す 2つの画素信号 の間の画素値、すなわち、注目画素の画素信号を出力するものである。減算器 85は 、遅延素子 84に遅延された画素データから、 1Z2乗算器 83から出力された値を減 算することにより、注目画素と、左右 2画素の加算平均との差を求めるものである。
[0060] 乗算器 86は、減算器 85からの出力と上下限クリップ 75からの出力とを乗算し、注 目画素と、左右 2画素の加算平均との差に、重み付け係数を掛けた積算ゲインを求 めるものである。 1Z256乗算器 87は、乗算器 86から出力された積算ゲインを 256で 割るものであり、これは、回路での実現のために積算ゲインを 256で 1倍とするためで あり、小数演算が可能ならこの必要はない。
[0061] 加算器 88は、乗算器 86、 1Z256乗算器 87からの出力と、加算器 82、 1Z2乗算 器 83からの出力とを、加算して、積算ゲインと左右 2画素の加算平均値とを加算する ものである。
[0062] ここで、中央の画素(注目画素)を「CENTER」、左右 2画素の加算平均を「AVE」、 重み付け係数を「k」とすると、前記処理による出力信号は、
( CENTER - AVE ) * k + AVE 式(1)
と表すことができる。これは、
CENTER * k + AVE * ( 1 - k ) 式(2)
と等価である。つまり本処理は、中央の画素と左右の画素を「k」対(1-k)で重み付け 加算するフィルタを通すものである。
[0063] したがって、重み係数を変化させることで、フィルタの構成を変えることなくその特性 を変えることができる。上記式(2)より明らかなように、「k」が 1より小さい場合は LPFと なり、逆に「k」が 1より大きい場合は(1-k)は負の数となり、特性は高域強調となる。
[0064] また、重み付け係数の算出について図 5を用いて説明する。図 5は、エッジ強度に 対する重み付け係数の関係を示したグラフであり、横軸は水平方向のエッジ強度、 縦軸は重み付け係数値である。本実施の形態で、重み付け係数値は重み付け係数
「k」に 256を掛けた値となっている。
[0065] グラフの傾き 101は、傾き係数設定部 71で設定される傾き係数にて定まり、画像の 変化に対するフィルタ特性の変化量を調整することができる。傾き係数設定部 71は、 例えば、図示されて!ヽな 、画像信号入力部に入力される信号に含まれるノイズの量 に応じて傾き係数を設定しても良 ヽ。
[0066] オフセット 102は、オフセット設定部 73により設定されるオフセット値にて定まり、より ソフトな画質やシャープな画質に画質調整を行うことができる。このオフセット値は画 像調整値を構成する。オフセット設定部 73は、例えば、図示されていない画像信号 入力部に入力される信号に含まれるノイズの量に応じてオフセット値を設定しても良 い。
[0067] さらに、重み付け係数値は、上下限クリップ調整部 75により決定される。すなわち、 上下限クリップ調整部 75はオフセット加算部 74から出力された値を上限クリップ値 1 03および下限クリップ値 104と比較し、オフセット加算部 74から出力された値が上限 クリップ値 103を上回る場合は上限クリップ値 103を、オフセット加算部 74から出力さ れた値が下限クリップ値 104を下回る場合は下限クリップ値 104を、オフセット加算部 74から出力された値が上限クリップ値 103を上回らず下限クリップ値 104を下回らな い場合はオフセット加算部 74から出力された値を出力する。
[0068] 上記式(2)から明らかなように重み係数「k」が 1Z3のとき、中央の画素と左右の画 素は均等に 1Z3ずつの重み付けで加算され、これが最も強い LPFとなる。これ以下 の値では逆に中央の信号の重み付けが小さくなりすぎるので、 1Z3を重み付け係数 の下限値とする。図 5では、積算ゲインを 256で 1倍として 256 * 1/3 = 85を下限ク リップの値としている。
[0069] また、「k」が 1以上の時は(1-k)が負となりフィルタの特性は高域強調となる力 あま りに強すぎるフィルタ処理を行うとかえつて画質劣化の要因となるので、 k=1.4 (256倍 して 360)程度で上限クリップをかける。また、本発明はこれに限定されず、上下限ク リップ調整部 75は上限クリップ値、下限クリップ値を可変として、例えば信号に含まれ るノイズの量などに応じて設定しても良 、ことは言うまでもな 、。
[0070] このように、水平方向のエッジ量に合わせて重み付け係数「k」を線形一次変換にて 算出することで、重み付け加算によるフィルタの特性を滑らかに変化させることができ 、処理の切り替え (フィルタの切り替わり)による画像の不連続性を無くすことができる
[0071] 以上のように、エッジ量の線形一次変換にて重み付け係数を算出し、重み付けカロ 算によるフィルタを用いることで、画像の平坦な部分はより滑らかに、エッジの部分は より鮮明な画像を、処理を切り替えることなく得ることができる。
[0072] なお、本実施の形態では、水平方向エッジ強調信号処理を例に挙げて説明を行つ た力 垂直方向エッジ強調信号処理に関しても同様で、垂直 LPFを水平 LPFに変え て、その他の処理も縦横を入れ替えれば良い。また、斜め方向の処理追加に関して も同様である。
[0073] また、本実施の形態では、エッジ量力 重み付け係数の算出に線形一次変換を用 いたが、変換方法はこれに限定されるものではない。さらに、本実施の形態では、 3 * 3画素の領域で説明を行った力 処理領域はこれに限定されるものではない。
[0074] また、図 6に、本実施の形態における水平方向プレフィルタ処理のフローチャートを 示し、説明する。
[0075] 本水平方向プレフィルタ処理は、上記第 1の実施の形態において示した水平方向 プレフィルタ処理の一部を変更したもので、変更部分についてのみ説明を行う。
[0076] 本水平方向プレフィルタ処理では、フィルタ選択処理が無くなり、代わりにフィルタ 係数算出処理 (S33)が存在する。また、プレフィルタ処理 (S34)も重み付け加算に より実現する構成となっている。
[0077] フィルタ係数算出処理 (S33)では、加算器 58により求めたエッジ強度を元に、傾き 係数乗算部 72、オフセット加算部 74、上下限クリップ 75によって重み付け係数を算 出する。プレフィルタ処理 (S34)では、フィルタ係数算出処理 (S33)で求めた重み 付け係数を用いて、乗算器 86、加算器 88等により、重み付け加算処理を行う。
[0078] これにより、エッジの強度に合わせて LPFから高域強調までの特性を滑らかに制御 することができ、処理の切り替えによる画像の不連続性を無くすことができる。
[0079] なお、本発明の実施の形態の画像処理装置は、例えば、プロセッサやメモリ等を用 いて構成されてもよぐまた、それぞれ電気回路等によって構成されてもよぐまたは 上記処理をプロセッサ等によって実行させるプログラムのモジュールでも良い。 産業上の利用可能性
[0080] 以上のように、本発明に力かる画像処理装置は、注目画素付近での特定方向にお ける先鋭ィ匕を行うことができ、ノイズが少なくかつエッジ方向にも鮮明な画像を得るこ とができると!ヽぅ効果を有し、ディジタル画像処理を行う画像処理装置等として有用で ある。

Claims

請求の範囲
[1] 画像データを入力する画像データ入力手段と、
前記入力した画像データの注目画素とその周囲画素のレベル差から特定方向の エッジ強度を算出するエッジ強度算出手段と、
前記エッジ強度算出手段に算出された特定方向のエッジ強度に基づ!/、てフィルタ を決定し、画素データに前記フィルタによるフィルタ処理を実行して選択的にノイズ 低減およびエッジ強調を行うフィルタ処理手段と、
前記フィルタ処理された画素データによりエッジ強調信号を生成するエッジ強調信 号生成手段と、
前記入力した画像データを前記エッジ強調信号に基づいて補正する画像補正手 段とを備えたことを特徴とする画像処理装置。
[2] 前記フィルタ処理手段は、前記特定方向のエッジ強度が第 1の値以下の場合には平 滑ィ匕フィルタを、第 2の値より大き 、場合にはエッジ強調フィルタを選択することを特 徴とする請求項 1に記載の画像処理装置。
[3] 前記フィルタ処理手段は、前記特定方向のエッジ強度力 線形一次変換によりフィ ルタ係数を算出し、線形変化する前記フィルタ係数にしたがって前記注目画素デー タのノイズ低減およびエッジ強調を選択的に行うことを特徴とする請求項 1に記載の 画像処理装置。
[4] 前記フィルタ処理手段は、前記特定方向のエッジ強度に対して、傾き係数をかけ、画 質の調整を行う画質調整値を加算して予備値を算出し、前記予備値と所定の上限値 および下限値と比較をして、前記予備値が上限値を上回る場合は上限値を、前記予 備値が下限値を下回る場合は下限値を、前記予備値が上限値を上回らず、かつ下 限値を下回らな ヽ場合は前記予備値を重み付け係数として決定し、前記注目画素 データに前記重み付け係数による重み付け加算を行ってノイズ低減およびエッジ強 調を選択的に行うことを特徴とする請求項 3に記載の画像処理装置。
[5] 前記フィルタ処理手段は、前記注目画素データから前記注目画素データの前後の 画素データの平均値を引いた差分に前記重み付け係数を掛け合わせた積を前記注 目画素データの前後の画素データの平均値に加えて前記重み付け加算を行うことを 特徴とする請求項 4に記載の画像処理装置。
[6] 前記傾き係数および前記画質調整値は画像データに含まれるノイズの量に応じて決 定されることを特徴とする請求項 4に記載の画像処理装置。
[7] 前記特定方向は少なくとも水平方向と垂直方向を含み、前記エッジ強度算出手段は 、前記注目画素データとその左右画素データのレベル差力 水平方向のエッジ強度 を算出する水平エッジ強度算出部と、前記注目画素データとその上下の画素データ のレベル差力 垂直方向のエッジ強度を算出する垂直エッジ強度算出部とを備え、 前記フィルタ処理手段は、前記水平エッジ強度算出部に算出された水平方向のェ ッジ強度に基づ 、て水平フィルタを求め、前記水平フィルタにより水平ノイズ低減お よび水平エッジ強調を選択的に行う水平フィルタ処理部と、前記垂直エッジ強度算 出部に算出された垂直方向のエッジ強度に基づいて垂直フィルタを求め、前記垂直 フィルタにより垂直ノイズ低減および垂直エッジ強調を選択的に行う垂直フィルタ処 理部とを備え、
前記エッジ強調信号生成手段は、前記水平フィルタ処理された画素データおよび 前記垂直フィルタ処理された画素データによりエッジ強調信号を生成することを特徴 とする請求項 1に記載の画像処理装置。
[8] 前記エッジ強度算出手段は、さらに、前記注目画素データとその第 1斜め方向の前 後に位置する画素データのレベル差力 第 1斜め方向のエッジ強度を算出する第 1 斜め方向エッジ強度算出部と、前記注目画素データとその第 2斜め方向の前後に位 置する画素データのレベル差力 第 2斜め方向のエッジ強度を算出する第 2斜め方 向エッジ強度算出部とを備え、
前記フィルタ処理手段は、前記第 1斜め方向エッジ強度算出部に算出された第 1斜 め方向のエッジ強度に基づいて第 1斜め方向フィルタを求め、前記第 1斜め方向フィ ルタにより第 1斜め方向ノイズ低減および第 1斜め方向エッジ強調を選択的に行う第 1 斜め方向フィルタ処理部と、前記第 2斜め方向エッジ強度算出部に算出された第 2斜 め方向のエッジ強度に基づいて第 2斜め方向フィルタを求め、前記第 2斜め方向フィ ルタにより第 2斜め方向ノイズ低減および第 2斜め方向エッジ強調を選択的に行う第 2斜め方向フィルタ処理部とを備え、 前記エッジ強調信号生成手段は、前記第 1斜め方向フィルタ処理された画素デー タおよび前記第 2斜め方向フィルタ処理された画素データによりエッジ強調信号を生 成することを特徴とする請求項 7に記載の画像処理装置。
画像データを入力する画像データ入力ステップと、
前記入力した画像データの注目画素とその周囲画素のレベル差から特定方向の エッジ強度を算出するエッジ強度算出ステップと、
前記エッジ強度算出ステップで算出された特定方向のエッジ強度に基づ!/、て実行 するフィルタ処理を選択し、前記選択したフィルタ処理により画素データのノイズ低減 およびエッジ強調を選択的に行うフィルタ処理ステップと、
前記フィルタ処理された画素データによりエッジ強調信号を生成するエッジ強調信 号生成ステップと、
前記入力した画像データを前記エッジ強調信号に基づいて補正する画像補正ステ ップとを備えたことを特徴とする画像処理プログラム。
PCT/JP2005/018330 2004-10-08 2005-10-04 画像処理装置および画像処理プログラム WO2006040960A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200580034109.6A CN101036161B (zh) 2004-10-08 2005-10-04 图像处理装置及图像处理方法
US11/576,726 US7936941B2 (en) 2004-10-08 2005-10-04 Apparatus for clearing an image and method thereof
JP2006540880A JP4724124B2 (ja) 2004-10-08 2005-10-04 画像処理装置および画像処理プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004296195 2004-10-08
JP2004-296195 2004-10-08

Publications (1)

Publication Number Publication Date
WO2006040960A1 true WO2006040960A1 (ja) 2006-04-20

Family

ID=36148256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018330 WO2006040960A1 (ja) 2004-10-08 2005-10-04 画像処理装置および画像処理プログラム

Country Status (4)

Country Link
US (1) US7936941B2 (ja)
JP (1) JP4724124B2 (ja)
CN (1) CN101036161B (ja)
WO (1) WO2006040960A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123677B (zh) * 2006-08-11 2011-03-02 松下电器产业株式会社 改善图像锐度的方法、装置及集成电路
CN101094313B (zh) * 2007-07-25 2011-05-18 北京中星微电子有限公司 一种图像噪声抑制装置和方法
JP2012119957A (ja) * 2010-12-01 2012-06-21 Olympus Imaging Corp 撮像装置および画像処理方法
JP2013029991A (ja) * 2011-07-28 2013-02-07 Toa Corp 画像処理装置およびこの画像処理装置を備える電子カメラおよび画像再生装置
US8374460B2 (en) 2008-07-29 2013-02-12 Ricoh Company, Ltd. Image processing unit, noise reduction method, program and storage medium
JP2016071748A (ja) * 2014-09-30 2016-05-09 株式会社メガチップス 画像処理装置及び画像処理方法
CN111724326A (zh) * 2020-06-28 2020-09-29 深圳市慧鲤科技有限公司 图像处理方法及装置、电子设备及存储介质

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200729934A (en) * 2006-01-27 2007-08-01 Asustek Comp Inc Method, video display system and automobile video display system
CN101132477B (zh) * 2006-08-23 2010-12-01 原相科技股份有限公司 数字图像处理方法及其装置
US7813582B1 (en) * 2006-09-25 2010-10-12 Google Inc. Method and apparatus for enhancing object boundary precision in an image
US8306348B2 (en) * 2007-04-24 2012-11-06 DigitalOptics Corporation Europe Limited Techniques for adjusting the effect of applying kernels to signals to achieve desired effect on signal
DE102007058498A1 (de) * 2007-12-05 2009-06-10 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Rauschunterdrückung in medizinischen Bildern
TWI349475B (en) * 2008-01-14 2011-09-21 Wintek Corp Image processing apparatus and image processing method
US20100002952A1 (en) * 2008-07-01 2010-01-07 Texas Instruments Incorporated Method and apparatus for image sharpening
KR100951254B1 (ko) * 2008-07-18 2010-04-02 삼성전기주식회사 이미지의 선명도 향상 장치
JP5254740B2 (ja) * 2008-10-24 2013-08-07 キヤノン株式会社 画像処理装置および画像処理方法
JP5241429B2 (ja) * 2008-10-24 2013-07-17 キヤノン株式会社 画像形成装置およびその制御方法
JP5254739B2 (ja) 2008-10-24 2013-08-07 キヤノン株式会社 画像形成装置およびその制御方法
DE102009029439A1 (de) * 2009-09-14 2011-03-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Darstellung von Hindernissen in einem Einparkhilfesystem von Kraftfahrzeugen
CN102577344B (zh) * 2009-10-05 2014-09-10 株式会社艾库塞尔 图像处理系统和图像处理方法
WO2011061957A1 (ja) 2009-11-17 2011-05-26 シャープ株式会社 符号化装置、復号化装置、符号化装置の制御方法、復号化装置の制御方法、伝送システム、および制御プログラムを記録したコンピュータ読み取り可能な記録媒体
WO2011061958A1 (ja) 2009-11-17 2011-05-26 シャープ株式会社 復号化装置、復号化装置の制御方法、伝送システム、および制御プログラムを記録したコンピュータ読み取り可能な記録媒体
CN102214292B (zh) * 2010-04-09 2014-09-10 汉王科技股份有限公司 人脸图像的光照处理方法
CN103141077B (zh) * 2010-09-29 2016-01-20 夏普株式会社 信号处理装置、控制程序以及集成电路
JP5711634B2 (ja) * 2011-09-22 2015-05-07 株式会社東芝 画像処理装置、画像処理方法および画像処理プログラム
TWI462576B (zh) * 2011-11-25 2014-11-21 Novatek Microelectronics Corp 固定圖案的邊緣偵測方法與電路
KR101522757B1 (ko) * 2011-12-19 2015-05-27 삼성전기주식회사 영상의 노이즈 제거 방법
JP5396626B1 (ja) * 2012-08-09 2014-01-22 清一 合志 画像強調装置、画像強調方法
KR20140086632A (ko) * 2012-12-28 2014-07-08 삼성디스플레이 주식회사 영상 처리 장치 및 그것을 포함하는 표시 장치
TWI596573B (zh) * 2013-04-25 2017-08-21 財團法人工業技術研究院 影像處理裝置及其影像雜訊抑制方法
CN105139343B (zh) * 2014-05-30 2018-04-03 上海贝卓智能科技有限公司 一种图像处理方法、装置
CN105654456B (zh) * 2014-11-14 2019-04-26 联想(北京)有限公司 信息处理方法及电子设备
CN105405108B (zh) * 2015-10-28 2019-01-25 努比亚技术有限公司 图像锐化方法及移动终端
KR102592605B1 (ko) * 2018-12-06 2023-10-24 삼성전자주식회사 이미지 신호 처리기, 이미지 신호 처리기의 동작 방법, 및 이미지 신호 처리기를 포함하는 전자 장치
CN111080550B (zh) * 2019-12-13 2023-03-07 北京金山云网络技术有限公司 图像处理方法、装置、电子设备及计算机可读存储介质
US11488285B2 (en) * 2020-04-13 2022-11-01 Apple Inc. Content based image processing
CN111724321B (zh) * 2020-06-19 2023-04-28 上海富瀚微电子股份有限公司 一种图像滤波方法及系统
CN112102209B (zh) * 2020-11-17 2021-02-19 四川圣点世纪科技有限公司 一种异常静脉图像的修复方法及装置
CN115661003B (zh) * 2022-12-20 2023-09-12 睿视(天津)科技有限公司 一种图像增强控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04576A (ja) * 1990-04-17 1992-01-06 Nec Corp 画像信号の処理装置
JPH06326868A (ja) * 1991-08-20 1994-11-25 Samsung Electron Co Ltd 画像処理装置
JP2002083294A (ja) * 2000-09-07 2002-03-22 Fuji Xerox Co Ltd 画像処理装置、画像処理方法および画像処理プログラムが格納された記録媒体
JP2002314814A (ja) * 2001-04-12 2002-10-25 Ricoh Co Ltd 画像処理装置
JP2003281529A (ja) * 2002-03-20 2003-10-03 Ricoh Co Ltd 画像処理装置および画像処理方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0106265B2 (en) * 1982-10-07 1992-08-26 Kabushiki Kaisha Toshiba Image data processing apparatus
US5065444A (en) * 1988-02-08 1991-11-12 Northrop Corporation Streak removal filtering method and apparatus
US5148809A (en) * 1990-02-28 1992-09-22 Asgard Medical Systems, Inc. Method and apparatus for detecting blood vessels and displaying an enhanced video image from an ultrasound scan
US5273040A (en) * 1991-11-14 1993-12-28 Picker International, Inc. Measurement of vetricle volumes with cardiac MRI
US5819035A (en) * 1995-10-20 1998-10-06 Matsushita Electric Industrial Co., Ltd. Post-filter for removing ringing artifacts of DCT coding
US5920653A (en) * 1996-10-22 1999-07-06 Hewlett-Packard Company Multiple spatial channel printing
US6148115A (en) * 1996-11-08 2000-11-14 Sony Corporation Image processing apparatus and image processing method
JP4000576B2 (ja) 1998-07-09 2007-10-31 西日本旅客鉄道株式会社 レール継目による軌道狂いの位置照合方法
US6175658B1 (en) * 1998-07-10 2001-01-16 General Electric Company Spatially-selective edge enhancement for discrete pixel images
US6788826B1 (en) * 1998-11-10 2004-09-07 Agfa-Gevaert Method for correcting artefacts in a digital image
US6721457B1 (en) * 1999-08-27 2004-04-13 Hewlett-Packard Development Company, L.P. Method for enhancing digital images
AUPQ377899A0 (en) * 1999-10-29 1999-11-25 Canon Kabushiki Kaisha Phase three kernel selection
JP3545979B2 (ja) * 1999-11-30 2004-07-21 シャープ株式会社 輪郭補正装置
US6728416B1 (en) * 1999-12-08 2004-04-27 Eastman Kodak Company Adjusting the contrast of a digital image with an adaptive recursive filter
WO2002005544A1 (fr) * 2000-07-06 2002-01-17 Seiko Epson Corporation Procede de traitement d'image, support d'enregistrement, et dispositif de traitement d'image
US6757442B1 (en) * 2000-11-22 2004-06-29 Ge Medical Systems Global Technology Company, Llc Image enhancement method with simultaneous noise reduction, non-uniformity equalization, and contrast enhancement
US20030026495A1 (en) * 2001-03-07 2003-02-06 Gondek Jay Stephen Parameterized sharpening and smoothing method and apparatus
US7003173B2 (en) * 2001-06-12 2006-02-21 Sharp Laboratories Of America, Inc. Filter for combined de-ringing and edge sharpening
JP4649781B2 (ja) * 2001-06-20 2011-03-16 ソニー株式会社 画像処理方法および装置
US7423781B2 (en) * 2002-03-20 2008-09-09 Ricoh Company, Ltd. Image processor and image processing method for image enhancement using edge detection
US7031552B2 (en) * 2002-04-05 2006-04-18 Seiko Epson Corporation Adaptive post-filtering for reducing noise in highly compressed image/video coding
FI115942B (fi) * 2002-10-14 2005-08-15 Nokia Corp Menetelmä kuvien interpoloimiseksi ja terävöittämiseksi
JP2004318423A (ja) * 2003-04-15 2004-11-11 Konica Minolta Photo Imaging Inc 画像処理方法、画像処理装置及び画像処理プログラム
SG115540A1 (en) * 2003-05-17 2005-10-28 St Microelectronics Asia An edge enhancement process and system
US8391649B2 (en) * 2003-08-01 2013-03-05 Texas Instruments Incorporated Image filter method
JP4139760B2 (ja) * 2003-10-10 2008-08-27 富士フイルム株式会社 画像処理方法および装置ならびに画像処理プログラム
EP1583030A1 (en) * 2004-03-31 2005-10-05 Fujitsu Limited Image magnification device and image magnification method
US7664326B2 (en) * 2004-07-09 2010-02-16 Aloka Co., Ltd Method and apparatus of image processing to detect and enhance edges
GB2416614A (en) * 2004-07-27 2006-02-01 Hewlett Packard Development Co Document creation
US7379626B2 (en) * 2004-08-20 2008-05-27 Silicon Optix Inc. Edge adaptive image expansion and enhancement system and method
JP4632452B2 (ja) * 2006-07-07 2011-02-16 キヤノン株式会社 画像補正処理装置、画像補正処理方法、プログラム及び記憶媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04576A (ja) * 1990-04-17 1992-01-06 Nec Corp 画像信号の処理装置
JPH06326868A (ja) * 1991-08-20 1994-11-25 Samsung Electron Co Ltd 画像処理装置
JP2002083294A (ja) * 2000-09-07 2002-03-22 Fuji Xerox Co Ltd 画像処理装置、画像処理方法および画像処理プログラムが格納された記録媒体
JP2002314814A (ja) * 2001-04-12 2002-10-25 Ricoh Co Ltd 画像処理装置
JP2003281529A (ja) * 2002-03-20 2003-10-03 Ricoh Co Ltd 画像処理装置および画像処理方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123677B (zh) * 2006-08-11 2011-03-02 松下电器产业株式会社 改善图像锐度的方法、装置及集成电路
CN101094313B (zh) * 2007-07-25 2011-05-18 北京中星微电子有限公司 一种图像噪声抑制装置和方法
US8374460B2 (en) 2008-07-29 2013-02-12 Ricoh Company, Ltd. Image processing unit, noise reduction method, program and storage medium
JP2012119957A (ja) * 2010-12-01 2012-06-21 Olympus Imaging Corp 撮像装置および画像処理方法
JP2013029991A (ja) * 2011-07-28 2013-02-07 Toa Corp 画像処理装置およびこの画像処理装置を備える電子カメラおよび画像再生装置
JP2016071748A (ja) * 2014-09-30 2016-05-09 株式会社メガチップス 画像処理装置及び画像処理方法
CN111724326A (zh) * 2020-06-28 2020-09-29 深圳市慧鲤科技有限公司 图像处理方法及装置、电子设备及存储介质
CN111724326B (zh) * 2020-06-28 2023-08-01 深圳市慧鲤科技有限公司 图像处理方法及装置、电子设备及存储介质

Also Published As

Publication number Publication date
US20080199101A1 (en) 2008-08-21
JP4724124B2 (ja) 2011-07-13
US7936941B2 (en) 2011-05-03
CN101036161B (zh) 2011-05-18
CN101036161A (zh) 2007-09-12
JPWO2006040960A1 (ja) 2008-05-15

Similar Documents

Publication Publication Date Title
WO2006040960A1 (ja) 画像処理装置および画像処理プログラム
JP4534594B2 (ja) 画像処理装置、画像処理方法、画像処理方法のプログラム及び画像処理方法のプログラムを記録した記録媒体
JP4556276B2 (ja) 画像処理回路及び画像処理方法
JP4869653B2 (ja) 画像処理装置
EP2158754A1 (en) Image processing method and apparatus
JP2007288595A (ja) フレーム巡回型ノイズ低減装置
JP4538358B2 (ja) 画像処理装置
JP5693743B2 (ja) 画像処理装置、画像処理方法、撮像装置、コンピュータプログラム及び記録媒体
JP4463400B2 (ja) 輝度信号エンハンサ
JP4768510B2 (ja) 画質改善装置および画質改善方法
US7894686B2 (en) Adaptive video enhancement gain control
JP2002290773A (ja) 画像強調装置および画像強調プログラム
US20020167614A1 (en) Edge correction circuit
JP4246178B2 (ja) 画像処理装置及び画像処理方法
JPH04241580A (ja) 波形等化装置
JP2003198878A (ja) 輪郭補正装置
JP4596496B2 (ja) ノイズ除去装置およびノイズ除去方法
JP5559275B2 (ja) 画像処理装置及びその制御方法
JP5111310B2 (ja) 画像処理方法及び画像処理装置
JPS62171282A (ja) 相関適応式雑音低減装置
JP2002094834A (ja) 画像フィルタ処理方法及び装置
JP6504500B2 (ja) ビデオ画像強調方法
JP3872943B2 (ja) 輪郭補正装置、輪郭補正方法、及び輪郭補正プログラム記録媒体
JPH07135584A (ja) 映像信号処理装置
JP2755112B2 (ja) 輪郭補正回路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006540880

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11576726

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580034109.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase