WO2006038377A1 - 成分分離方法および成分分離装置 - Google Patents

成分分離方法および成分分離装置 Download PDF

Info

Publication number
WO2006038377A1
WO2006038377A1 PCT/JP2005/014727 JP2005014727W WO2006038377A1 WO 2006038377 A1 WO2006038377 A1 WO 2006038377A1 JP 2005014727 W JP2005014727 W JP 2005014727W WO 2006038377 A1 WO2006038377 A1 WO 2006038377A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
zeolite
vapor
mixed
crystal
Prior art date
Application number
PCT/JP2005/014727
Other languages
English (en)
French (fr)
Inventor
Suiwen Lin
Shiro Ikeda
Original Assignee
Bussan Nanotech Research Institute Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute Inc. filed Critical Bussan Nanotech Research Institute Inc.
Priority to BRPI0517536-4A priority Critical patent/BRPI0517536A/pt
Priority to US11/576,672 priority patent/US20070284307A1/en
Priority to EP05770794A priority patent/EP1808222A4/en
Publication of WO2006038377A1 publication Critical patent/WO2006038377A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/10Temperature control
    • B01D2311/103Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/22Cooling or heating elements
    • B01D2313/221Heat exchangers

Definitions

  • the present invention relates to a component separation method and a component separation apparatus that use a zeolite crystal to separate components from a component system containing at least water and an organic acid component.
  • Zeolite is a crystalline substance having a skeletal structure in which tetrahedrons in which four oxygens are coordinated are connected to a cation, and fine pores in the order of angstroms.
  • a method for separating one component from a mixture of two or more components by utilizing the selective adsorption ability and the molecular sieving ability by the fine pores of the zeolite crystal has been widely studied.
  • a molecular sieve method in which a separation operation is performed by using an operation method called pressure swing adsorption using a zeolite crystal powder (see, for example, Patent Document 1), or a zeolite crystal thin film is used.
  • a vapor permeation method in which a vapor separation is performed by supplying vapor to the thin film and taking out components that permeate the thin film (see, for example, Patent Document 2).
  • Zeolite membranes in which a zeolite crystal is formed in a thin film on the surface of a support are effective for separating components and have better mechanical strength and heat resistance than polymer membranes.
  • zeolite crystals having a regular pore size with a low SiZAl ratio and high hydrophilicity are selected and used.
  • zeolite crystals include Na-substituted A-type zeolite, Y-type zeolite, and X-type zeolite. These zeolite crystals show high separation performance in the separation of water Z organic solvent systems.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-216456
  • Patent Document 2 JP 2003-093828
  • the above-mentioned highly hydrophilic zeolite crystals are generally weak against acids.
  • the above-mentioned water-soluble organic compounds are stable when using zeolite crystals when separating moisture. There is an inconvenience that cannot be separated. This is because, for example, in the case of Na-substituted type zeolite, Na elutes into the acid and the hydrophilicity is impaired, and in particular, the SiZAl ratio like the A-type, Y-type or X-type zeolite described above. This is because the skeleton structure of the crystal collapses due to the elution of Na and A1 in the skeleton, and the crystal itself decomposes.
  • the present invention when an acid component is contained in the component in contact with the zeolite crystal, prevents collapse of the skeletal structure of the zeolite crystal and deterioration of the properties, and separates the components using the zeolite crystal. It is an object of the present invention to provide a component separation method and a component separation apparatus that can stably carry out the treatment for a long period of time.
  • the component separation method of the present invention is a component separation method for separating a part of the component from a mixed component containing water and an organic acid component using zeolite crystals, and generates vapor of the mixed component, When the vapor of the mixed component comes into contact with the zeolite crystal, the vapor of the mixed component is heated to a temperature at which capillary condensation of the vapor of the mixed composition does not occur.
  • the component separation device of the present invention is a component separation device that separates a part of a component from a mixed component containing water and an organic acid component using a zeolite crystal
  • the zeolite crystal is a membranous zeolite
  • a membrane separation means comprising the membranous zeolite that selectively permeates and separates a part of the mixed component, an evaporation means for generating vapor of the mixed component, and the mixed component
  • vapor heating means for heating the vapor of the mixed component to a temperature at which capillary condensation of the vapor of the mixed composition does not occur when the vapor of the vapor comes into contact with the zeolite crystal.
  • the steam heating means can reliably heat the vapor contacting the zeolite crystals to a desired temperature by heating the membranous zeolite.
  • the component separation method of the present invention it is possible to prevent moisture from condensing on at least the surface of the zeolite crystal and capillary condensation. As a result, it is possible to prevent the organic acid contained in the mixture from being ionized on the zeolite crystal, and to prevent the skeleton structure of the zeolite crystal from being collapsed by the organic acid. As a result, it becomes possible to perform component separation from the above mixed components using zeolite crystals while maintaining the properties of zeolite crystals stably for a long period of time.
  • the temperature at which capillary condensation occurs is lowered, or the crystals are closely adjacent to each other, so that capillary condensation occurs.
  • the probability of occurrence decreases, and it becomes possible to perform component separation stably for a longer period of time.
  • the zeolite crystals are also heated, so that when the vapor contacts the crystals, the temperature of the vapor is reduced and the occurrence of capillary condensation is suppressed. Is possible.
  • the component separation apparatus of the present invention is an apparatus that realizes the above-described component separation method, and maintains component characteristics of zeolite crystals stably over a long period of time by separating components from the mixed components using zeolite crystals. It is possible to do it as it is.
  • the steam heating means also heats the zeolite crystals. By virtue of this, it is possible to suppress the occurrence of capillary condensation due to a decrease in the temperature of the vapor when the vapor contacts the crystal.
  • FIG. 1 is a diagram showing a liquid level meniscus in a capillary tube.
  • FIG. 2 is a graph showing the relationship between pore diameter and pZps for capillary condensation of water vapor.
  • FIG. 3 is a graph showing the relationship between steam temperature and pZps in the latm water vapor shown in FIG.
  • FIG. 4 is a graph showing the relationship between pore size and pZps for capillary condensation of acetic acid aqueous solution vapor.
  • FIG. 5 is a diagram showing an example of a component separation device of the present invention.
  • FIG. 6 is a diagram showing the results of XRD analysis of LTA-type zeolite powder before and after treating the vapor of an acetic acid aqueous solution.
  • FIG. 7 is a diagram showing the results of XRD analysis of LTA-type zeolite powder boiled in an acetic acid aqueous solution.
  • FIG. 8 is a graph showing the ratio of acetic acid in the separated component and the permeation rate with respect to the elapsed time when a part of the component was separated using an aqueous acetic acid solution LTA-type membrane zeolite in Example 3. .
  • FIG. 9 is a graph showing the ratio of acetic acid in the separated component and the permeation rate with respect to elapsed time when a part of the component was separated using an LTA-type membrane zeolite in an aqueous acetic acid solution in Comparative Example 2. It is.
  • FIG. 10 shows the results of XRD analysis of Example 3, Comparative Example 2, and LTA-type membrane zeolite before treatment.
  • the present inventors have incorporated the concept of capillary condensation into the present invention by using a conventionally known zeolite crystal in separating a part of the component from the mixed component containing water and an organic acid component. It came.
  • the component separation method of the present invention is a component separation method for separating a part of a component from a mixed component containing moisture and an organic acid component using zeolite crystals, and generates a vapor of the mixed component to produce a mixed component. It is characterized by heating the vapor of the mixed component to a temperature at which capillary condensation of the vapor of the mixed component does not occur when the vapor of the liquid comes into contact with the zeolite crystal.
  • the adsorbed molecular layer has a high adsorption amount region in which the so-called ⁇ capillary condensed phase '' can be considered from a low adsorption amount region where the adsorption molecular layer is below monomolecular adsorption. Formed.
  • the membranous zeolite has regular pores, and the surface of the liquid in the pores has a curved surface as shown in FIG. Then, it is considered that the saturated vapor pressure of the liquid depends on the curvature of the liquid surface due to the surface tension, and the saturated vapor pressure of the curved surface and the saturated vapor pressure of the flat liquid surface are different.
  • the gas condenses into a liquid even before it reaches saturation vapor pressure.
  • the critical pore radius ⁇ c generated by the capillary condensation phase is given by the following Kelvin equation (Kelvin capillary condensation equation, also called Thomson equation) (Equation 1).
  • Equation 1 explains the transmission theory of a thermodynamic capillary condensation mechanism.
  • FIG. Figure 2 Shows the relationship between pore size ⁇ c and pZps for capillary condensation of water vapor at 100 ° C and atmospheric pressure (latm).
  • the vertical axis in FIG. 2 is the pore diameter (nm), and the horizontal axis force is 3 ⁇ 4 Zps.
  • the upper side of the boundary line shown in 2 is a range where capillary condensation does not occur, and the lower side of the boundary line is a range where capillary condensation occurs.
  • FIG. 2 shows the formula (1) in which the surface tension ⁇ is 58.84 mm-N / m, the liquid molar specific volume.
  • V L is 18 mlZmol
  • gas constant R is 8.3143 JZ mol :
  • the absolute temperature is 373 ° C.
  • the pZps When heated to 10 ° C, the pZps is 0.707, and capillary condensation does not occur in pores of 2 nm or more according to the curve in Fig. 2! /.
  • FIG. 2 shows the relationship between the vapor temperature (° C; horizontal axis) and pZps (vertical axis) in latm water vapor.
  • Equation 1 For the vapor of an acetic acid aqueous solution that is a mixed component of moisture and an organic acid component, calculation can be performed using Equation 1 in the same manner as the above-described water vapor.
  • Fig. 4 shows a graph created by calculation using Equation 1 for the vapor of an acetic acid aqueous solution.
  • Figure 4 shows the relationship between the pore size ⁇ c and pZps for capillary condensation in the vapor of a 50 wt% aqueous acetic acid solution evaporated at 105 ° C and normal pressure.
  • FIG. 4 shows that in formula 1, the surface tension ⁇ is 26.6 mm -N / m, the liquid molar specific volume v
  • L 27.7 ml / moU gas constant
  • R 8.3143 JZ mol:
  • the vapor of the mixed component brought into contact with the zeolite crystal does not cause capillary condensation. Conditions are determined and steam is contacted with the zeolite crystals under such conditions. As a result, the skeletal structure of the zeolite crystal is prevented from collapsing, the characteristic of the zeolite crystal is prevented from being deteriorated, and the zeolite crystal can be used for component separation of the mixed component containing the organic acid component. Become.
  • capillary condensation means that water vapor (gas) becomes water (liquid) on the zeolite crystal.
  • the organic acid dissolves in the condensed water and becomes active by ionization, and the activated organic acid is the LTA-type zeolite.
  • the low SiZAl structure easily collapses the framework structure of the zeolite crystal.
  • Equation 1 the Kelvin equation (Equation 1) is used to calculate the temperature when the components are separated and the other mixed components do not exhibit capillary condensation.
  • zeolite crystals used in the present invention conventionally known zeolites can be used.
  • Zeolite crystals having various skeletons such as LTA type, FAU type, MFI type, AFI type, MOR type and the like are used as the type of skeleton of the zeolite crystal.
  • LTA type, FAU type and the like are preferably used in the present invention.
  • the Zeolite crystal's SiZAl ratio is not particularly limited, but is mainly used to separate water, so a highly hydrophilic zeolite crystal with a SiZAl ratio of about 1 to 5 and preferably a SiZ A1 ratio of about 1 to 2 is used. .
  • Examples of the substitution type of the zeolite crystal include a Na (sodium) substitution type and a K (potassium) substitution type. Although not particularly limited, a substitution type of a cation having about 1 to 3 valences is used.
  • the zeolite crystals may be used as membrane zeolite formed by bonding to a porous support such as alumina, or may be used as powdered zeolite. However, considering that it is used to separate a part of the component from the mixed component, it is preferable to use membranous zeolite formed on a tubular porous support because the crystal grains are closely adjacent to each other. . In addition, although the size of the pore in the zeolite crystal depends on the type and type, it is usually about 4 to 8 A (angstrom).
  • the production method is not particularly limited, however, for example, the method disclosed in JP-A-2004-82008 is preferably used.
  • this production method is a method for producing a membranous zeolite in which a seed crystal is attached to a porous support by bringing a slurry containing the zeolite seed crystal into contact with the porous support.
  • This is a method for producing membranous zeolite in which the mode (mode) in the frequency distribution of crystal grain size is lnm to l ⁇ m, and 99% by volume of the seed crystal has a grain size of 5 ⁇ m or less.
  • the membranous zeolite is also referred to as a zeolite membrane.
  • the mixed component containing water and an organic acid component may contain other components as long as it contains water and an organic acid component!
  • other components include water-soluble organic substances such as alcohol and ketone.
  • Examples of such a mixed component include a mixture of alcohol and water derived from biomass produced by fermenting sugar cane, potatoes, and grains.
  • the content ratio of moisture and organic acid component, etc. is not particularly limited.
  • the mixed component consists only of moisture and organic acid component
  • the moisture content is 5 to 50% by mass. If the organic acid component is in the range of about 50 to 95% by mass, the present invention can be applied satisfactorily.
  • the mixed component is composed of moisture, organic acid component and water-soluble organic component
  • the moisture is about 5-50% by mass
  • the organic acid component is about 0-95% by mass
  • the water-soluble organic component is about ⁇ -95% by mass If it is in this range, the present invention can be applied satisfactorily.
  • the unit: mass% may be expressed as wt%.
  • the present invention can be applied even to a relatively strong acid having a mixing component strength of about 3 ⁇ 4H1-3.
  • organic acid component examples include organic compounds having properties as acids, such as carboxylic acids containing fatty acids, phenols, and sulfonic acids.
  • organic acids include formic acid, acetic acid, propionic acid, butyric acid, lactic acid, malic acid, tartaric acid, succinic acid, sorbic acid, fumaric acid, malonic acid, succinic acid, oxalic acid, glycolic acid, maleic acid , Ascorbic acid, phthalic acid, acetyl salicylic acid, benzoic acid, m-toluic acid, glutaric acid, adipic acid, pimelic acid and the like.
  • the component to be separated from the mixed component is generally moisture, but there may be a case where components other than moisture which are sufficient if the mixed component can be concentrated may be separated.
  • the boiling point of the mixed component is investigated, and the vapor is generated by heating the mixed component or reducing the pressure.
  • the temperature is defined as described above for the mixed component system to be separated.
  • the steam itself can be heated, and the zeolite itself can be heated as well as the steam itself.
  • the component separation apparatus 10 shown in FIG. 5 is a component separation apparatus 10 that uses a zeolite crystal 11 to separate a part of the mixed component force including water and an organic acid component, and the zeolite crystal 11
  • the component separation device 10 includes a zeolite membrane 11 as a membrane separation unit, a tube portion 12 that houses the zeolite membrane 11, and a ribbon heat as a steam heating unit that covers the periphery of the tube portion 12. And a thermocouple 14 for measuring the temperature of the ribbon heater 13 and a force.
  • the lower end portion of the zeolite film 11 is sealed, and the upper end portion is connected to a vacuum pump (see reference numeral 15) so that the inside of the zeolite film 11 is kept in a vacuum.
  • the upper end portion of the tube portion 12 is sealed, and steam 16 is also introduced into the lower end portion force.
  • the steam 16 introduced into the pipe portion 12 and the zeolite membrane 11 are heated by the heating by the ribbon heater 13.
  • an evaporation means 17 is provided for evaporating the mixed component including the water and the organic acid component.
  • the form of the component separation apparatus 10 of the present invention is not limited to the one shown in Fig. 5 as long as it comprises means of membrane separation means, evaporation means, and steam heating means! !
  • the membrane zeolite 11 itself is heated to a temperature at which capillary condensation does not occur by the ribbon heater 13, but the evaporation means and the vapor heating means are the same.
  • the member force may be used, and only the steam may be heated.
  • the LTA-type zeolite powder was pelletized.
  • an aqueous acetic acid solution having a pH of 4 was boiled under atmospheric pressure conditions so that the generated vapor was in contact with the zeolite pellets, and the vapor and the zeolite pellets were heated to 130 ° C. where no capillary condensation occurred.
  • the LTA-type zeolite pellets were treated for 20 hours at the temperature, and Example 1 was obtained.
  • Example 1 was obtained.
  • the LTA-type zeolite pellets were treated for 100 hours to give Example 2.
  • Example 2 a verification experiment was conducted as to whether or not the zeolite crystals were dissolved in the acid.
  • LTA type zeolite powder lg was added to 950 g of water and stirred, and the solution pH was set to 10.2.
  • 10 wt% aqueous acetic acid solution was further added, and the pH of the solution was adjusted to 4.
  • the solution of the leverage was boiled for 1 hour with stirring to obtain Comparative Example 1.
  • FIG. 7 shows the results with the horizontal axis representing the angle and the vertical axis representing the intensity.
  • FIG. 7 (a) shows the analysis results after boiling in Comparative Example 1
  • FIG. 7 (b) shows the analysis results when treated at 130 ° C. for 20 hours in Example 1. From Fig. 7, after the boiling treatment, the sharp peak of the LTA-type zeolite crystal disappeared, and only a broad spectrum was observed as a whole. From this, it was found that the crystal structure of the LTA-type zeolite powder collapsed and became an amorphous phase.
  • a zeolite membrane in which LTA-type zeolite crystals were densely formed was formed on a tubular alumina porous support. Specifically, this zeolite film was produced as follows.
  • A-type zeolite fine particles (particle size lOOnm) were placed in water and stirred to prepare a slurry having a concentration of 0.5 mass%.
  • a tubular porous support (average pore diameter 1.3 / ⁇ ⁇ , outer diameter 10 mm, inner diameter 6 mm, length 13 cm) that also has ⁇ -alumina force is immersed in this slurry for 3 minutes, and then pulled up at a speed of about 0.2 cmZs. It was. This was dried in a constant temperature bath at 25 ° C for 2 hours and then dried in a constant temperature bath at 70 ° C for 16 hours.
  • the porous support with the seed crystal layer added to this reaction solution was crushed and held at 100 ° C. for 4 hours.
  • a zeolite membrane was formed on the surface of the porous support.
  • a crystalline layer of A-type zeolite having a uniform film thickness is formed on the tubular porous support.
  • the thickness of the formed zeolite membrane is about 5 / zm.
  • a dehydration test for separating water from acetic acid vapor was performed using the zeolite membrane formed on the tubular porous support as the zeolite membrane 11 in the test apparatus as shown in FIG.
  • acetic acid vapor was generated by boiling an acetic acid aqueous solution in which acetic acid and water were 50 wt% and pH 2.6, respectively, under normal pressure conditions. Based on Fig. 4, the condition in which this solution does not condense on the zeolite membrane 11 is 130 ° C, so the acetic acid vapor and the zeolite membrane 11 were heated to 130 ° C with the ribbon heater 13 (measured with the thermocouple 14). The temperature was 130 ° C.) o Under these conditions, a dehydration test from acetic acid vapor 16 using an LTA type zeolite membrane 11 was conducted, and Example 3 was obtained.
  • the substance that permeated the zeolite membrane 11 was collected using a trap tube at a liquid nitrogen temperature. Then, the weight of the collected liquid was measured, and the unit area of the zeolite film 11 and the permeation speed Q (kgZm 2 hr) per unit time were estimated. The composition of the collected liquid was measured by gas chromatography. The results are shown in Fig. 8. The permeation rate Q with time is shown in the lower part of FIG. 8, and the acetic acid content (wt%) in the permeate liquid is shown in the upper part of FIG.
  • Example 3 A dehydration test was conducted in the same manner as in Example 3 except that the zeolite film 11 was kept at the vapor temperature by the ribbon heater 13 to obtain Comparative Example 2. At this time, the temperature measured by the thermocouple 14 is The temperature of the steam is about 105 ° C.
  • the permeation rate Q and the composition of the collected liquid were measured in the same manner as in Example 3, and the results are shown in FIG.
  • the permeation rate Q with the passage of time is shown in the lower part of FIG. 9, and the acetic acid content in the permeate liquid is shown in the upper part of FIG.
  • the permeation rate Q is stable for a long time, but the concentration of acetic acid in the permeate liquid composition increases with time, and is equivalent to the composition of acetic acid vapor (i.e., 50 wt% water, 50 wt% acetic acid). It was.
  • a structural analysis by XRD was performed.
  • the results are shown in Fig. 10.
  • the upper part (a) of FIG. 10 shows the structural analysis result of the zeolite membrane before the dehydration experiment
  • the middle part (b) of FIG. 10 shows the structural analysis result of the zeolite film after the dehydration experiment of Example 3.
  • the lower part (c) of FIG. 10 shows the structural analysis results of the zeolite membrane after the dehydration experiment of Comparative Example 2.
  • Fig. 10 the zeolite membrane 11 which was heated by the ribbon heater 13 of Example 3 and subjected to the dehydration test under the condition that capillary condensation does not occur, has a clear diffraction peak derived from the LTA-type zeolite crystal.
  • the XRD spectrum similar to that of the unused zeolite film was confirmed (see Fig. 10 (a) and (b)). This proved that even after the dehydration test of acetic acid vapor in Example 3, there was no collapse of the crystal structure of the zeolite crystals.
  • the present invention is not limited to the above embodiment.
  • the above embodiment is merely an example, and has any configuration that is substantially the same as the technical idea described in the claims of the present invention and that exhibits the same operational effects. Are also included in the technical scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 ゼオライト結晶の性質を劣化させることなく、水分と酸成分とを含む混合成分から当該成分の一部を分離する成分分離方法を提供する。  ゼオライト結晶を用いて水分および酢酸等の有機酸成分を含む混合成分から当該成分の一部を分離する成分分離方法であって、混合成分の蒸気16を生成し、混合成分の蒸気16がゼオライト結晶11に接触したときに、混合成分の蒸気16の毛管凝縮が起きない温度までリボンヒータ13により混合成分の蒸気16を加熱する成分分離方法により、上記課題を解決する。

Description

明 細 書
成分分離方法および成分分離装置
技術分野
[0001] 本発明は、ゼォライト結晶を用い、少なくとも水分と有機酸成分とが含有された成分 系から成分を分離する成分分離方法および成分分離装置に関する。
背景技術
[0002] ゼォライトはカチオンに 4つの酸素が配位する四面体が連結した骨格構造を有する とともに、オングストロームオーダーの微細な細孔を有する結晶物質である。
[0003] ゼォライト結晶の微細孔による選択的吸着能ならびに分子篩能を利用して、二成 分以上の混合物から、一成分を分離する方法が、広く検討されている。
[0004] この分離方法としては、ゼォライト結晶粉末を利用し、圧力スイング吸着と呼ばれる 運転方式で分離操作を行うモレキュラーシーブ法 (例えば特許文献 1参照)、または 、ゼォライト結晶薄膜を利用し、混合物の蒸気を当該薄膜に供給して、薄膜を透過す る成分を取り出すことによって分離操作を行う蒸気透過法 (例えば特許文献 2参照) などがある。ゼォライト結晶を支持体の表面に薄膜状に形成させたゼォライト膜は、 成分の分離に有効であり、高分子膜に比べて機械強度、耐熱性に優れたものである
[0005] ゼォライト結晶を利用した成分分離プロセスで広く検討されているものの中に、水溶 性有機物から水分を分離し、水溶性有機物を濃縮するプロセスがある。このようなプ ロセスにおいては、 SiZAl比率が低ぐ規則的な細孔径を持ち、親水性の高いゼォ ライト結晶が選択されて用いられる。こうしたゼォライト結晶としては、例えば、 Na置換 型の A型ゼオライト、 Y型ゼオライト、 X型ゼオライトなどが挙げられる。これらのゼオラ イト結晶は、水 Z有機溶媒系の分離において、高い分離性能を示している。
特許文献 1:特開平 10— 216456号公報
特許文献 2 :特開 2003— 093828
発明の開示
発明が解決しょうとする課題 [0006] ここで、水溶性有機物として、ノィォマスアルコール、すなわち農作物等のバイオマ ス由来のアルコ一ルを用 、た場合に、この水溶性有機物と水分とからなる混合物に は、酸成分が含まれている場合がある。
[0007] し力しながら、上記のような親水性の高いゼォライト結晶は一般的に酸に弱ぐ上述 の水溶性有機物力 水分を分離する際にゼォライト結晶を用いた場合に、安定して 成分を分離できないという不都合がある。これは、例えば Na置換型のゼォライトの場 合に、 Naが酸に溶出して親水性が損なわれてしまうこと、および、特に上記した A型 、 Y型または X型のゼォライトのような SiZAl比が 5以下のものの場合に、 Naや骨格 中の A1の溶出によって結晶の骨格構造が崩れて、結晶そのものが分解してしまうこと のためである。
[0008] このため、上記のような親水性の高いゼォライト結晶を用いて、酸成分を含む混合 溶液力も水分を分離することは事実上不可能である。また、この問題の解決策として 比較的高 、耐酸性を有する種類のゼォライトを用いることや、当該溶液を中和する方 法などは、これまでに提案されてきたが、プロセス条件の最適化によりこの問題を解 決する方法は提案されて ヽな ヽ。
[0009] したがって、本発明は、ゼォライト結晶に接触する成分中に酸成分が含まれている 場合に、ゼォライト結晶の骨格構造の崩壊および特性の低下を防いで、ゼォライト結 晶を利用した成分分離を長期間安定的に行うことができる成分分離方法および成分 分離装置を提供することを目的とする。
課題を解決するための手段
[0010] 本発明の成分分離方法は、ゼォライト結晶を用いて水分および有機酸成分を含む 混合成分から当該成分の一部を分離する成分分離方法であって、前記混合成分の 蒸気を生成し、前記混合成分の蒸気が前記ゼォライト結晶に接触したときに、前記混 合成分の蒸気の毛管凝縮が起きない温度まで前記混合成分の蒸気を加熱すること を特徴とする。
[0011] 上記本発明の成分分離方法において、前記ゼォライト結晶は、膜状ゼォライトであ る場合に、よりその効果が顕著になる。また、上記本発明の成分分離方法において、 前記混合成分の蒸気の毛管凝縮が起きな!/ヽ温度まで、前記ゼォライト結晶を加熱す ることにより、ゼォライト結晶に接触する蒸気を所望の温度まで確実に加熱できる。
[0012] 本発明の成分分離装置は、ゼォライト結晶を用いて水分および有機酸成分を含む 混合成分から当該成分の一部を分離する成分分離装置であって、前記ゼォライト結 晶は、膜状ゼォライトであり、前記混合成分カゝら当該成分の一部を選択的に透過して 分離する前記膜状ゼォライトからなる膜分離手段と、前記混合成分の蒸気を生成す る蒸発手段と、前記混合成分の蒸気が前記ゼォライト結晶に接触したときに、前記混 合成分の蒸気の毛管凝縮が起きない温度まで前記混合成分の蒸気を加熱する蒸気 加熱手段と、を備えることを特徴とする。
[0013] 上記本発明の成分分離装置において、前記蒸気加熱手段は、前記膜状ゼォライト を加熱することにより、ゼォライト結晶に接触する蒸気を所望の温度まで確実に加熱 できる。
発明の効果
[0014] 本発明の成分分離方法により、ゼォライト結晶の少なくとも表面で水分が凝縮する こと、および、毛細管凝縮することを防止することができる。これより、ゼォライト結晶上 で混合物に含まれる有機酸が電離することを防止することができ、ゼォライト結晶の 骨格構造の有機酸による崩壊を防ぐことができる。この結果、ゼォライト結晶を用いた 上記混合成分からの成分分離を、ゼォライト結晶の特性を長期間、安定的に維持し たまま行うことが可能になる。
[0015] 本発明の成分分離方法において、ゼォライト結晶として膜状ゼォライトを用いた場 合には、毛管凝縮を起こす温度が低くなり、または、結晶同士が緻密に隣り合つてい るため毛管凝縮を起こす確率が低下し、より長期間安定的に成分分離を行うことが可 能となる。また、本発明の成分分離方法において、ゼォライト結晶をも加熱するように なっていることにより、蒸気が結晶に接触した際に蒸気の温度が低下して、毛管凝縮 が発現することを抑止することが可能となる。
[0016] 本発明の成分分離装置は、上述の成分分離方法を実現した装置であり、ゼォライト 結晶を用いた上記混合成分からの成分分離を、ゼォライト結晶の特性を長期間、安 定的に維持したまま行うことが可能になる。
[0017] 本発明の成分分離装置において、蒸気加熱手段は、ゼォライト結晶をも加熱するよ うになつていることにより、蒸気が結晶に接触した際に蒸気の温度が低下して、毛管 凝縮が発現することを抑止することが可能となる。
図面の簡単な説明
[0018] [図 1]毛細管内の液面メニスカスを示す図である。
[図 2]水蒸気の毛管凝縮に対する細孔径と pZpsの関係を示す図である。
[図 3]図 2に示す latmの水蒸気における蒸気の温度と pZpsの関係を示す図である
[図 4]酢酸水溶液の蒸気の毛管凝縮に対する細孔径と pZpsの関係を示す図である
[図 5]本発明の成分分離装置の一例を示す図である。
[図 6]酢酸水溶液の蒸気を処理する前後の LTA型ゼオライト粉末の XRD分析結果 を示す図である。
[図 7]酢酸水溶液中で煮沸した LTA型ゼオライト粉末の XRD分析結果を示す図であ る。
[図 8]実施例 3にお 、て酢酸水溶液力 LTA型膜状ゼォライトを用いて成分の一部 を分離した場合の、経過時間に対する分離成分内の酢酸の割合および透過速度を 示す図である。
[図 9]比較例 2にお ヽて酢酸水溶液カゝら LTA型膜状ゼォライトを用いて成分の一部 を分離した場合の、経過時間に対する分離成分内の酢酸の割合および透過速度を 示す図である。
[図 10]実施例 3、比較例 2および処理前の LTA型膜状ゼォライトの XRD分析結果を 示す図である。
符号の説明
[0019] 10 … 成分分離装置
11 … 膜状ゼォライト
12 … 管部
13 … リボンヒータ
14 … 熱電対 15 … 真空ポンプに接続
16 … 酢酸 Z水混合蒸気
17 … 蒸発手段
発明を実施するための最良の形態
[0020] 本発明者らは、水分および有機酸成分を含む混合成分から成分の一部を分離す るにあたり、従来公知のゼォライト結晶を用いつつ、毛管凝縮の考え方を取り入れる ことにより、本発明に至った。
すなわち、本発明の成分分離方法は、ゼォライト結晶を用いて水分および有機酸 成分を含む混合成分から当該成分の一部を分離する成分分離方法であって、混合 成分の蒸気を生成し、混合成分の蒸気がゼォライト結晶に接触したときに、混合成分 の蒸気の毛管凝縮が起きない温度まで混合成分の蒸気を加熱することに特徴を有 する。
[0021] まず、毛管凝縮について、図 1乃至図 4を用いて以下に説明する。
細孔を有する吸着性多孔質固体においては、吸着分子層が単分子吸着以下の低 吸着量域から、いわゆる「毛管凝縮相」の存在を考えうるような高吸着量域が、ミクロ 細孔内に形成される。
[0022] 膜状ゼォライトは規則的な細孔を持ち、図 1に毛細管内の液面メニスカスを示すよう に、当該細孔中の液体の表面は曲面になる。そうすると、液体の示す飽和蒸気圧が 表面張力により液体表面の曲率に依存すると考えられ、曲面の飽和蒸気圧と平らな 液面の飽和蒸気圧とは異なる。その中で気体は飽和蒸気圧に達する前の状態でも 凝縮して液体となる。毛管凝縮相の発生する限界細孔半径 γ cは次の Kelvin式 (ケ ルビン毛管凝縮式、トムソンの式とも言われる。)(式 1)で与えられる。
[数 1]
In (p / ps ) = - 2 σ vL cosa / (yc R T) … (式 1. ) σ : 表面張力、 vL : 液体モル比容積、 a : 接触角、 / w : 飽和蒸気圧、 R: 気体常数、 T: 絶対温度
[0023] この式 1は、熱力学的な毛管凝縮機構の透過理論を説明している。
[0024] まず、水蒸気について、式 1を用いて計算により作成したグラフを図 2に示す。図 2 は、 100°C、常圧(latm)の水蒸気の毛管凝縮について、細孔径 γ cと pZpsの関係 を示している。図 2における縦軸が細孔径 (nm)であり、横軸力 ¾Zpsの値である。図
2に示す境界線よりも上側は毛管凝縮が起こらない範囲であり、当該境界線よりも下 側は毛管凝縮が起こる範囲である。
[0025] なお、図 2は、式 1において、表面張力 σは 58. 84mm -N/m,液体モル比容積
V Lは 18mlZmol、気体常数 Rは 8. 3143JZモル · :、絶対温度は 373Κとし、接触 角 aが 0° であるため cos a = 1とした。
[0026] 図 2に示すように、常圧の条件下で 100°Cの水蒸気(pZps= lの条件)を 10nm以 下の細孔を透過すると、毛管凝縮が起こる。一方、常圧の条件下で水蒸気と細孔を 1
10°Cまで加熱すると、 pZpsは 0. 707となり、図 2の曲線に従って 2nm以上の細孔 にお 、て毛管凝縮が起こらな 、と!/、える。
[0027] 図 2によると、毛管凝縮は、水蒸気が接する細孔径が小さいほど発現しやすいが、 所定の圧力に維持された系にお 、ては、水蒸気の温度を上げて水蒸気自体の飽和 蒸気圧を上昇させ、 pZpsの値を低下させることによって、毛管凝縮が発現する限界 細孔径 を低下させることが可能である。ここで、図 3に、 latmの水蒸気における 蒸気の温度 (°C;横軸)と pZps (縦軸)との関係を示す。
[0028] 水分と有機酸成分の混合成分である酢酸水溶液の蒸気に対しても、上述の水蒸気 と同様に式 1を用いて計算ができる。
[0029] 酢酸水溶液の蒸気について、式 1を用いて計算により作成したグラフを図 4に示す
。図 4は、 105°C、常圧において蒸発させた 50wt%酢酸水溶液の蒸気における毛管 凝縮について、細孔径 γ cと pZpsとの関係を示している。
[0030] なお、図 4は、式 1において、表面張力 σは 26. 6mm -N/m,液体モル比容積 v
Lは 27. 7ml/moU気体常数 Rは 8. 3143JZモル · :、絶対温度は 378Κとし、接 触角 αを 0° と仮定して cos a = 1とした。
[0031] 図 4に示すように、常圧の条件下で 105°Cの酢酸蒸気 (pZps= lの条件)を 10nm 以下の細孔を透過すると、毛管凝縮が起こる。一方、常圧の条件下で水蒸気と細孔 を 130°Cまで加熱すると、 pZpsは 0. 398となり、図 4の曲線に従って 0. 5nm以上の 細孔にぉ 、て毛管凝縮が起こらな 、と 、える。 [0032] このように、図 4〖こよると、有機酸成分を含む水溶液の蒸気にぉ 、ても、水蒸気の場 合と同様に、蒸気の温度を上げて pZpsの値を低下させることによって、毛管凝縮が 発現する細孔径をより小さくすることが可能である。
[0033] そのため、本発明においては、 Kelvin式(式 1)を用いた計算結果に基づき、ゼォ ライト結晶に接触させる混合成分の蒸気にっ 、て、毛管凝縮が起こらな 、温度条件 および圧力条件を決定し、当該条件下で蒸気をゼオライト結晶に接触させる。このこ とにより、ゼォライト結晶の骨格構造の崩壊を抑止するとともに、ゼォライト結晶の特 性の低下を防止し、有機酸成分を含んだ混合成分の成分分離にゼォライト結晶を利 用することが可能となる。
[0034] なお、毛管凝縮が起こるとは、ゼォライト結晶上で水蒸気 (気体)が水 (液体)となる ことを意味する。水分と有機酸成分とが含まれる混合成分にぉ ヽて毛管凝縮が起こ ると、有機酸は凝縮した水に溶け、電離して活性となり、活性となった有機酸は、 LT A型ゼオライトのように SiZAlの低 、ゼオライト結晶の骨格構造を容易に崩壊させる こととなる。
[0035] ここで、成分分離をした 、他の各混合成分につ!、て、毛管凝縮が発現しな 、温度 を算出するためには、 Kelvin式 (式 1)を用い、加熱時の圧力条件と混合成分が蒸発 する絶対温度 Tとに合わせて、図 2または図 4のような細孔径と PZPsとの関係を表す グラフを作成する。この作成したグラフを用いて、ゼォライト結晶の細孔径に対する毛 管凝縮が発現しない温度を算出する。
[0036] 次いで、本発明の成分分離方法における、毛管凝縮以外の構成について説明す る。
[0037] まず、本発明に用いられるゼォライト結晶は、従来公知のゼォライトを用いることが できる。
[0038] ゼォライト結晶の骨格の型は、 LTA型、 FAU型、 MFI型、 AFI型、 MOR型等、種 々の骨格のゼォライト結晶が用いられる。このうち、 LTA型、 FAU型等が本発明に 好ましく用いられる。
[0039] また、ゼォライト結晶は、 SiZAl比により、 A型(SiZAl比 = 1)、 X型(K SiZAl比 く 1. 5)、Y型(1. 5く SiZAl比く 2)、 MFI型(SiZAl比≥ 27)等があり、種々の型 のゼオライト結晶が用いられる。ゼォライト結晶の SiZAl比は、特に限定されないが、 主として水分を分離するために用いるため、 SiZAl比 = 1〜5程度、好ましくは SiZ A1比 = 1〜2程度の高親水性のゼォライト結晶が用いられる。
[0040] ゼォライト結晶の置換型は、 Na (ナトリウム)置換型、 K (カリウム)置換型等が挙げら れ、特に限定されないが、 1〜3価程度のカチオンの置換型が用いられる。
[0041] ゼォライト結晶は、アルミナ等の多孔質支持体に接合して形成された膜状ゼォライ トとして用いてもよいし、粉末状ゼオライトとして用いてもよい。ただし、混合成分から その成分の一部を分離するために用いることを考えると、結晶粒が緻密に隣り合って いるため、管状の多孔質支持体に形成された膜状ゼォライトを用いることが好ましい 。なお、ゼォライト結晶における細孔の大きさは、種類や型によるが、通常、 4〜8A( オングストローム)程度である。
[0042] なお、ゼォライト結晶を膜状ゼォライトとして用いる場合、その製造方法についても 特に限定されないが、例えば、特開 2004— 82008に開示されている方法を用いる ことが好ましい。この製造方法は、具体的には、ゼォライトの種結晶を含むスラリーを 多孔質支持体に接触させることにより、前記種結晶を多孔質支持体に付着させる膜 状ゼオライトの製造方法であって、種結晶の粒径の頻度分布におけるモード (最頻値 )が lnm〜l μ mであり、種結晶の 99体積%が粒径 5 μ m以下とする膜状ゼォライト の製造方法である。なお、以下において、膜状ゼォライトをゼオライト膜ともいう。
[0043] 水分および有機酸成分を含む混合成分は、水分および有機酸成分を含んで!/ヽれ ば他の成分が含まれていてもよい。他の成分としては、アルコール、ケトン等の水溶 性有機物が挙げられる。このような混合成分として、例えば、砂糖きび、いも類、穀物 などを発酵させて作るバイオマス由来のアルコールと水との混合物等が挙げられる。
[0044] また、水分および有機酸成分等の含有割合につ!/ヽても、特に限定されな ヽが、混 合成分が水分および有機酸成分のみからなる場合、水分が 5〜50質量%程度、有 機酸成分が 50〜95質量%程度の範囲内であれば、良好に本発明を適用することが できる。また、混合成分が水分、有機酸成分および水溶性有機物成分からなる場合 、水分が 5〜50質量%程度、有機酸成分が 0〜95質量%程度、水溶性有機物成分 力^〜 95質量%程度の範囲内であれば、良好に本発明を適用することができる。な お、本明細書において、単位:質量%は wt%と表す場合もある。
[0045] さらに、混合成分力 ¾H1〜3程度の比較的強い酸であっても、本発明を適用できる
[0046] 有機酸成分としては、脂肪酸を含むカルボン酸、フエノール類、スルホン酸等の酸 としての性質を有する有機化合物が挙げられる。具体的に、有機酸としては、ギ酸、 酢酸、プロピオン酸、酪酸、乳酸、リンゴ酸、酒石酸、クェン酸、ソルビン酸、フマル酸 、マロン酸、コノヽク酸、シユウ酸、グリコール酸、マレイン酸、ァスコルビン酸、フタル酸 、ァセチルサリチル酸、安息香酸、 m—トルィル酸、グルタル酸、アジピン酸、ピメリン 酸等が挙げられる。
[0047] なお、混合成分から分離する成分は、一般には水分であるが、混合成分を濃縮で きればよぐ水分以外の成分をも分離する場合もある。
[0048] また、混合成分の蒸気を生成するためには、混合成分について沸点を調査し、混 合成分を加熱し、または圧力を下げることにより、蒸気を生成する。
[0049] 蒸気の毛管凝縮が起きな 、温度は、分離対象の混合成分系につ 、て、上述のよう に規定する。
[0050] 蒸気を加熱するに際し、蒸気自体を加熱することができ、また、蒸気自体を加熱す るとともにゼォライト結晶も加熱することができる。
[0051] 次いで、上記した成分分離方法を実施できる成分分離装置の一例について、図 5 を用いて説明する。
[0052] 図 5に示す成分分離装置 10は、ゼォライト結晶 11を用いて水分および有機酸成分 を含む混合成分力も当該成分の一部を分離する成分分離装置 10であって、ゼオラ イト結晶 11は、結晶粒が緻密に隣り合つてなる膜状ゼォライト 11であり、混合成分か ら当該成分の一部を選択的に透過して分離する膜状ゼォライトからなる膜分離手段 11と、混合成分の蒸気 16を生成する蒸発手段 17と、混合成分の蒸気がゼォライト 結晶 11に接触したときに、混合成分の蒸気 16の毛管凝縮が起きない温度まで混合 成分の蒸気 16を加熱する蒸気加熱手段 13と、を備えることを特徴とする。
[0053] 具体的には、成分分離装置 10は、膜分離手段としてのゼォライト膜 11と、ゼォライ ト膜 11を収納する管部 12と、管部 12の周囲を覆う、蒸気加熱手段としてのリボンヒー タ 13と、リボンヒータ 13の温度を測定するための熱電対 14と、力も構成されている。 ゼォライト膜 11の下端部は封止されており、上端部は真空ポンプと接続されて (符号 15参照)、ゼォライト膜 11の内部が真空に保たれるようになつている。また、管部 12 の上端部は封止されており、下端部力も蒸気 16が導入されるようになっている。そし て、リボンヒータ 13による加熱により、管部 12に導入された蒸気 16とゼオライト膜 11と が加熱されるようになっている。また、管部 12よりも下に、水分および有機酸成分を 含む混合成分を蒸発させるための蒸発手段 17が備えられている。
[0054] なお、本発明の成分分離装置 10の形態は、膜分離手段、蒸発手段、蒸気加熱手 段の各手段を備えて!/、ればよぐ図 5に示したものに限定されな!、。
[0055] 特に、図 5に示す成分分離装置 10においては、リボンヒータ 13により膜状ゼォライ ト 11自体を毛管凝縮が起きない温度まで加熱しているが、蒸発手段と蒸気加熱手段 とが同一の部材力 なり、蒸気のみを加熱する形態であってもよい。
実施例
[0056] 上述のゼォライト結晶について、実施例および比較例を用いて本発明を説明する。
[0057] (実施例 2)
まず、 LTA型ゼオライト粉末をペレット状にした。次いで、 pH4の酢酸水溶液を常 圧条件下で沸騰させ、発生した蒸気がゼォライトペレットに接触するようにし、当該蒸 気およびゼォライトペレットを毛管凝縮が起きない 130°Cまで加熱した。次いで、当該 温度において、 LTA型ゼオライトペレットについて、 20時間の処理を行い、実施例 1 とした。また、同様に、 LTA型ゼオライトペレットについて、 100時間の処理を行い、 実施例 2とした。
[0058] 以上の条件下で処理したサンプルをサンプル管から取り出して室温でー晚乾燥さ せてから、ペレットを粉末にし、ペレットの結晶構造を XRD (X-ray diffraction ;X線回 折)により分析した。また、上記処理をする前の LTA型ゼオライト粉末についても、結 晶構造を XRDにより分析した。図 6に、横軸を角度、縦軸を強度 (Intensity)として、 その結果を示す。この図 6から、 20時間処理した実施例 1も、 100時間処理した実施 例 2も、ペレットは処理前の LTA型ゼオライトと変わらず、同様の結晶構造を維持して [0059] (比較例 1)
実施例 2に対して、酸にゼォライト結晶が溶解するか否かについての検証実験 を行った。 LTA型ゼオライト粉末 lgを 950gの水にカ卩えて攪拌し、溶液 pHは 10. 2と した。この溶液に、さらに 10wt%酢酸水溶液をカ卩え、溶液の pHを 4に調整した。続 V、てこの溶液を攪拌しながら 1時間煮沸させて、比較例 1とした。
[0060] 煮沸した後に、残留した固体をろ過し、得た固体を室温で一晩乾燥した。煮沸した LTA型ゼオライト粉末の構造変化を XRDにより分析した。図 7に、横軸を角度、縦軸 を強度として、その結果を示す。図 7 (a)は、比較例 1の煮沸処理後の分析結果、図 7 (b)は、実施例 1の 130°Cで 20時間処理した場合の分析結果である。この図 7から、 煮沸処理後には、 LTA型ゼオライト結晶のシャープなピークは消失し、全体的にブ ロードなスペクトルだけが観測された。このことから、 LTA型ゼオライト粉末の結晶構 造が崩壊され、非結晶相になったことが分力つた。このように、 pH4の酢酸水溶液中 における LTA型ゼオライト粉末の結晶構造が、煮沸により変化することは明確である 。この結果は、粉末状の LTA型ゼオライトでも膜状の LTA型ゼオライト結晶でも同様 であった。
[0061] (実施例 3)
管状のアルミナの多孔質支持体上に LTA型ゼオライト結晶が緻密に形成されたゼ オライト膜を形成した。具体的に、このゼォライト膜は、以下のように製造された。
[0062] まず、 A型ゼオライトの微粒子 (粒径 lOOnm)を水に入れて撹拌し、 0. 5質量%の 濃度のスラリーを作製した。このスラリーに α—アルミナ力もなる管状多孔質支持体( 平均細孔径 1. 3 /ζ πι、外径 10mm、内径 6mm、長さ 13cm)を 3分間浸漬した後、約 0. 2cmZsの速度で引き上げた。これを 25°Cの恒温槽中で 2時間乾燥した後、 70°C の恒温槽中で 16時間乾燥した。次いで、ケィ酸ナトリウム、水酸化アルミニウム及び 蒸留水を、各成分のモル比が SiO ZA1 O =2、 Na O/SiO = 1、 H O/Na O
2 2 3 2 2 2 2
= 75となるように混合し、水熱反応溶液とした。この反応溶液に種結晶層を付与した 多孔質支持体を浸潰して、 100°Cで 4時間保持した結果、多孔質支持体の表面にゼ オライト膜が形成された。その結果、管状多孔質支持体には、均一な膜厚を有する A 型ゼオライトの結晶層が形成されて ヽる。 [0063] 形成されたゼオライト膜の厚さは約 5 /z mである。このゼォライト膜を用いて、ェタノ ール Z水の混合溶液(エタノール 90wt%、水 10wt%)から脱水試験(75°Cの浸透 気化試験)を行った場合、その脱水性能を示す透過速度 (Q)と分離係数( α )は、そ れぞれ、 Q = 3. 5kg/m2hr, α = 10000である。
[0064] 上述した図 5に示すような試験装置に、ゼォライト膜 11として上述の管状多孔質支 持体に形成されたゼオライト膜を用い、酢酸蒸気から水分を分離する脱水試験を行 つた ο
[0065] この試験において、酢酸および水がそれぞれ 50wt%、 pH2. 6である酢酸水溶液 を常圧の条件下で沸騰させて、酢酸蒸気を発生させた。図 4に基づき、この溶液がゼ オライト膜 11上で毛管凝縮しない条件が 130°Cとなるため、リボンヒータ 13で酢酸蒸 気およびゼォライト膜 11を 130°Cまで加熱した (熱電対 14により測定した温度は、 13 0°Cであった。 ) oこの条件下で、 LTA型ゼオライト膜 11を用いた酢酸蒸気 16からの 脱水試験を行って、実施例 3とした。
[0066] ゼォライト膜 11を透過した物質を、液体窒素温度下において、トラップ管を使って 捕集した。そして、捕集した液体の重量を測定してゼォライト膜 11の単位面積、単位 時間当たりの透過速度 Q (kgZm2hr)を見積もった。また、捕集した液体の組成をガ スクロマトグラフにより測定した。その結果を図 8に示す。なお、経過時間に伴う透過 速度 Qを図 8の下段に示し、透過物の液体における酢酸の含有率 (wt%)を図 8の上 段に示す。
[0067] 図 8に示したように、毛管凝縮が発現しない条件でのゼォライト膜を用いた酢酸蒸 気からの脱水試験において、透過速度 Qおよび透過物の液体組成は、長期間で安 定している。また、透過物の液体組成において酢酸の割合が低下しており、水がより 選択的に透過していることを示している。なお、図 8上段に示すように、透過物の液体 組成において、初期に酢酸の割合が高ぐ不安定となっている力 このことは、ゼオラ イト膜にぉ 、て一般的なことである。
[0068] (比較例 2)
リボンヒータ 13によりゼォライト膜 11を蒸気温度程度に保温する他は、実施例 3と同 様に脱水試験を行って、比較例 2とした。このとき、熱電対 14により測定した温度は、 105°Cであり、蒸気の温度は 105°C程度である。
[0069] 比較例 2について、実施例 3と同様に透過速度 Qと捕集した液体の組成を測定し、 その結果を図 9に示す。なお、経過時間に伴う透過速度 Qを図 9の下段に示し、透過 物の液体における酢酸の含有率を図 9の上段に示す。この場合、透過速度 Qは長期 間で安定しているが、透過物の液体組成の酢酸濃度が時間の経過とともに増加し、 酢酸蒸気の組成 (すなわち水 50wt%、酢酸 50wt%)と同等になった。
[0070] (実施例 3および比較例 2の構造解析)
実施例 3および比較例 2に用いたゼォライト膜の構造の違 、を確認するために、 XR Dによる構造解析を行った。その結果を図 10に示す。なお、図 10上段 (a)は、脱水 実験前のゼォライト膜の構造解析結果を示し、図 10中段 (b)は、実施例 3の脱水実 験後のゼォライト膜の構造解析結果を示し、図 10下段 (c)は、比較例 2の脱水実験 後のゼォライト膜の構造解析結果を示す。
[0071] 図 10において、実施例 3のリボンヒータ 13による加熱を行い毛管凝縮が発現しない 条件で脱水試験を行ったゼォライト膜 11につ 、ては、 LTA型ゼオライト結晶由来の 明確な回折ピークが確認され、未使用のゼォライト膜と同様の XRDスペクトルが得ら れている(図 10 (a)、(b)参照)。このこと力 、実施例 3の酢酸蒸気の脱水試験後に おいても、ゼォライト結晶の結晶構造の崩壊が無いことが証明された。
[0072] これに対して、比較例 2のリボンヒータ 13による加熱を行わずに脱水試験を行った 場合には、 LTA型ゼオライト家結晶由来の明確な回折ピークは消失して 、た(図 10 (c)参照)。このことから、比較例 2の酢酸蒸気の脱水試験によって、ゼォライト結晶の 結晶構造が崩壊していることがわ力つた。このため、図 9に示すように、ゼォライト膜の 脱水分離能が低下して、脱水試験における透過物の液体組成が時間経過とともに酢 酸リッチになったものと考えられる。
[0073] このように、毛管凝縮が発現しな!、条件で酢酸蒸気をゼオライト結晶に接触させる ことで、ゼォライト結晶上で混合物に含まれる酸が電離することを防止することができ 、ゼォライト結晶の骨格構造の酸による崩壊を防ぐことができる。この結果、ゼォライト 結晶を用いた上記混合成分力もの脱水を、ゼォライト結晶の特性を長期間で安定的 に維持したまま行うことが可能になる。 [0074] また、各実施例にお!、ては、酢酸および水分の混合成分を用いて蒸発実験を行つ ているが、有機酸成分は、酢酸に限定されない。また、本発明を有機酸成分、水分 および有機物成分の混合成分の成分分離に適用した場合にも、有機酸成分と水分 のみの混合系よりも、ゼォライト結晶の特性を低下させる機能が緩和され、本発明の 作用効果をより発揮することができる。
[0075] さらに、本発明は上記実施形態に限定されるものではない。上記実施形態は、例 示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構 成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的 範囲に包含される。

Claims

請求の範囲
[1] ゼォライト結晶を用 Vヽて水分および有機酸成分を含む混合成分から当該成分の一 部を分離する成分分離方法であって、
前記混合成分の蒸気を生成し、前記混合成分の蒸気が前記ゼォライト結晶に接触 したときに、前記混合成分の蒸気の毛管凝縮が起きなレ、温度まで前記混合成分の 蒸気を加熱することを特徴とする成分分離方法。
[2] 前記ゼォライト結晶は、膜状ゼォライトであることを特徴とする請求項 1に記載の成 分分離方法。
[3] 前記混合成分の蒸気の毛管凝縮が起きない温度まで、前記ゼォライト結晶を加熱 することを特徴とする請求項 1に記載の成分分離方法。
[4] 前記混合成分の蒸気の毛管凝縮が起きない温度まで、前記ゼォライト結晶を加熱 することを特徴とする請求項 2に記載の成分分離方法。
[5] ゼォライト結晶を用いて水分および有機酸成分を含む混合成分から当該成分の一 部を分離する成分分離装置であって、
前記ゼォライト結晶は膜状ゼォライトであり、
前記混合成分から当該成分の一部を選択的に透過して分離する前記膜状ゼオラ イトからなる膜分離手段と、
前記混合成分の蒸気を生成する蒸発手段と、
前記混合成分の蒸気が前記ゼォライト結晶に接触したときに、前記混合成分の蒸 気の毛管凝縮が起きない温度まで前記混合成分の蒸気を加熱する蒸気加熱手段と を備えることを特徴とする成分分離装置。
[6] 前記蒸気加熱手段は、前記膜状ゼォライトを加熱することを特徴とする請求項 5〖こ 記載の成分分離装置。
訂正された) Ϊ 氏 (規則 91)
PCT/JP2005/014727 2004-10-04 2005-08-11 成分分離方法および成分分離装置 WO2006038377A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BRPI0517536-4A BRPI0517536A (pt) 2004-10-04 2005-08-11 método e aparelho para separar um componente de uma composição mista
US11/576,672 US20070284307A1 (en) 2004-10-04 2005-08-11 Method for separating component and apparatus for separating component
EP05770794A EP1808222A4 (en) 2004-10-04 2005-08-11 METHOD FOR SEPARATING COMPONENTS AND TRENCH UNIT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004291775A JP4548080B2 (ja) 2004-10-04 2004-10-04 成分分離方法および成分分離装置
JP2004-291775 2004-10-04

Publications (1)

Publication Number Publication Date
WO2006038377A1 true WO2006038377A1 (ja) 2006-04-13

Family

ID=36142462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014727 WO2006038377A1 (ja) 2004-10-04 2005-08-11 成分分離方法および成分分離装置

Country Status (7)

Country Link
US (1) US20070284307A1 (ja)
EP (1) EP1808222A4 (ja)
JP (1) JP4548080B2 (ja)
KR (1) KR20070065355A (ja)
CN (1) CN101035609A (ja)
BR (1) BRPI0517536A (ja)
WO (1) WO2006038377A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160186A (ja) * 2014-02-28 2015-09-07 日本ゼオン株式会社 膜分離方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5219520B2 (ja) * 2006-01-11 2013-06-26 日本碍子株式会社 混合液の分離方法
KR100801114B1 (ko) 2006-08-01 2008-02-05 한국원자력연구원 나노분말 제조장치 및 그 제조방법
WO2009113178A1 (ja) 2008-03-14 2009-09-17 三菱重工業株式会社 脱水システム及び脱水方法
JP2008221176A (ja) * 2007-03-15 2008-09-25 Mitsubishi Heavy Ind Ltd 脱水システム及び脱水方法
JP2009226374A (ja) * 2008-03-25 2009-10-08 Hitachi Zosen Corp 分離膜モジュール
JP2014198308A (ja) * 2013-03-29 2014-10-23 日本碍子株式会社 セラミック分離フィルタ及び脱水方法
CN106255545B (zh) 2014-04-18 2019-08-27 三菱化学株式会社 多孔支持体-沸石膜复合体和多孔支持体-沸石膜复合体的制造方法
JP6733093B1 (ja) 2019-05-09 2020-07-29 株式会社三井E&Sマシナリー ゼオライト膜に供する被処理流体の処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588535A (ja) * 1981-05-01 1983-01-18 ユニオン・カ−バイド・コ−ポレ−シヨン 吸着分離方法
JPH0889769A (ja) * 1994-09-19 1996-04-09 Kyocera Corp ガス分離用構造体ならびにこれを用いたガス分離方法
JPH10202072A (ja) * 1996-11-22 1998-08-04 Sekiyu Sangyo Kasseika Center 有機液体混合物用分離膜および分離方法
JP2003068629A (ja) * 2001-08-29 2003-03-07 Kyocera Corp 露光装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1195258A (en) * 1982-03-26 1985-10-15 Desh R. Garg Vapor phase adsorption process for concentration of ethanol from dilute aqueous mixtures thereof
US6054052A (en) * 1995-12-14 2000-04-25 Mobil Oil Corporation Selective sorption of organics by metal-containing M41S
TW429160B (en) * 1997-02-03 2001-04-11 Bayer Ag Method for the separation of gas mixtures by pressure-swing adsorption in a two-bed adsorber system
JP2000237561A (ja) * 1998-01-08 2000-09-05 Tosoh Corp Fer型ゼオライト膜、その製造方法及びそれを用いた有機酸の濃縮方法
JP3670852B2 (ja) * 1998-07-27 2005-07-13 三井造船株式会社 混合物分離膜の製法
JP3686262B2 (ja) * 1998-07-27 2005-08-24 三井造船株式会社 混合物分離膜
JP2003144871A (ja) * 2001-08-24 2003-05-20 Tosoh Corp モルデナイト型ゼオライト膜複合体およびその製造方法並びにそれを用いた濃縮方法
JP2003093828A (ja) * 2001-09-27 2003-04-02 Mitsui Eng & Shipbuild Co Ltd 分離膜モジュールを備えた蒸留装置、および蒸留塔
DE10218916A1 (de) * 2002-04-27 2003-11-06 Degussa Verfahren zur Herstellung von Acetalen und Ketalen mit Hilfe mehrstufiger Pervaporation oder Dampfpermeation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588535A (ja) * 1981-05-01 1983-01-18 ユニオン・カ−バイド・コ−ポレ−シヨン 吸着分離方法
JPH0889769A (ja) * 1994-09-19 1996-04-09 Kyocera Corp ガス分離用構造体ならびにこれを用いたガス分離方法
JPH10202072A (ja) * 1996-11-22 1998-08-04 Sekiyu Sangyo Kasseika Center 有機液体混合物用分離膜および分離方法
JP2003068629A (ja) * 2001-08-29 2003-03-07 Kyocera Corp 露光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160186A (ja) * 2014-02-28 2015-09-07 日本ゼオン株式会社 膜分離方法

Also Published As

Publication number Publication date
CN101035609A (zh) 2007-09-12
EP1808222A1 (en) 2007-07-18
JP4548080B2 (ja) 2010-09-22
US20070284307A1 (en) 2007-12-13
EP1808222A4 (en) 2008-09-17
BRPI0517536A (pt) 2008-10-14
KR20070065355A (ko) 2007-06-22
JP2006102616A (ja) 2006-04-20

Similar Documents

Publication Publication Date Title
WO2006038377A1 (ja) 成分分離方法および成分分離装置
US6387269B1 (en) Membrane for separating fluids
US11028031B2 (en) Method for producing high-concentration alcohol
Kondo et al. Permeation mechanism through zeolite NaA and T-type membranes for practical dehydration of organic solvents
JP5219520B2 (ja) 混合液の分離方法
JP5087644B2 (ja) Zsm−5型ゼオライト膜の製造方法
JP6252249B2 (ja) 膜分離方法
Liu et al. Preparation and characterization of ZSM-5/PDMS hybrid pervaporation membranes: Laboratory results and pilot-scale performance
JP4751996B2 (ja) Zsm−5型ゼオライト膜の製造方法
JPWO2018181349A1 (ja) 分離膜及び分離膜の製造方法
Gethard et al. Carbon nanotube enhanced membrane distillation for online preconcentration of trace pharmaceuticals in polar solvents
JP2008188564A (ja) 有機混合溶液の分離膜及びその製造方法
JP2005074382A (ja) 混合物分離膜、混合物分離方法
JP5884349B2 (ja) 含水有機化合物の脱水濃縮方法及びそれに用いる脱水濃縮装置
CN112368253B (zh) 间戊二烯的制造方法
JP2003088734A (ja) ゼオライト積層複合体及びそれを用いたゼオライトメンブレンリアクタ
Varghese et al. Dehydration of THF‐water mixtures using zeolite‐incorporated polymeric membranes
JP2012081436A (ja) 脱水素反応の促進方法、脱水素反応器、及びケミカルヒートポンプ
Hu et al. High-flux recovery of aromatic compounds from tobacco extract using an MCM-41/PDMS hybrid membrane
JP6271405B2 (ja) ゼオライト膜を用いた脱水方法
JP2004051617A (ja) 無水アルコールの製造方法及びその装置
JP7464037B2 (ja) 分離膜製造方法
WO2022202454A1 (ja) 分離膜及びその製造方法
US20190233355A1 (en) Systems and methods for making ethanol products
JP2002249311A (ja) ゼオライト成形体、ゼオライト積層中間体、ゼオライト積層複合体及びそれらの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077007617

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005770794

Country of ref document: EP

Ref document number: 200580033805.5

Country of ref document: CN

Ref document number: 11576672

Country of ref document: US

Ref document number: 1385/CHENP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005770794

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11576672

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0517536

Country of ref document: BR