WO2006035755A1 - 移動体ナビゲート情報表示方法および移動体ナビゲート情報表示装置 - Google Patents

移動体ナビゲート情報表示方法および移動体ナビゲート情報表示装置 Download PDF

Info

Publication number
WO2006035755A1
WO2006035755A1 PCT/JP2005/017715 JP2005017715W WO2006035755A1 WO 2006035755 A1 WO2006035755 A1 WO 2006035755A1 JP 2005017715 W JP2005017715 W JP 2005017715W WO 2006035755 A1 WO2006035755 A1 WO 2006035755A1
Authority
WO
WIPO (PCT)
Prior art keywords
road
data
navigation information
image
current position
Prior art date
Application number
PCT/JP2005/017715
Other languages
English (en)
French (fr)
Inventor
Zhencheng Hu
Keiichi Uchimura
Original Assignee
National University Corporation Kumamoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Kumamoto University filed Critical National University Corporation Kumamoto University
Priority to JP2006537744A priority Critical patent/JP4696248B2/ja
Priority to US11/663,909 priority patent/US8195386B2/en
Publication of WO2006035755A1 publication Critical patent/WO2006035755A1/ja

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3647Guidance involving output of stored or live camera images or video streams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/365Guidance using head up displays or projectors, e.g. virtual vehicles or arrows projected on the windscreen or on the road itself
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096855Systems involving transmission of navigation instructions to the vehicle where the output is provided in a suitable form to the driver
    • G08G1/096861Systems involving transmission of navigation instructions to the vehicle where the output is provided in a suitable form to the driver where the immediate route instructions are output to the driver, e.g. arrow signs for next turn

Definitions

  • the present invention is a so-called car navigation device and a method for displaying car navigation information using the so-called car navigation device, and collects, processes, displays, etc. information on the current position of a moving body and related information for navigation.
  • the present invention relates to a mobile navigation information display method and a mobile navigation information display device.
  • the current position of a moving body such as an automobile is detected, and the detected current position together with the surrounding road map is displayed on the display screen to display various guidance information such as destinations and directions, and to output audio.
  • Mobile navigation devices such as so-called car navigation devices, have been developed.
  • a CD-ROM Compact Disc Read Only Memory
  • the map stored as data in the storage means is traced by the autonomous navigation control unit, and the current position of the moving object is confirmed based on the GPS signal transmitted from the GPS satellite.
  • the actual driving position and the trace position on the map are significantly shifted due to factors such as measurement errors.
  • there has also been a clear malfunction (false detection) such as the vehicle's running position detected by the car navigation device while driving, indicating the sea.
  • technologies such as position correction (map matching) have been developed, and at present, the detection accuracy of the running position of the vehicle has become sufficient. It is coming.
  • a driving position and a driving direction are displayed with an icon such as an arrow in a two-dimensional road map or a three-dimensional CG road map.
  • an icon such as an arrow in a two-dimensional road map or a three-dimensional CG road map.
  • display information such as the recommended route (optimum route) from the current position to the destination in an overlapping manner.
  • display information such as traffic congestion information obtained from VICS sensors on the screen with text labels.
  • Patent Document 1 Patent Document 2 and the like have proposed navigation devices that use a photographed image in addition to map information.
  • navigation information is mainly video information displayed on a video display unit, so that a driver may be distracted with attention during driving. Therefore, in Patent Document 2, an imaging device such as a CCD camera that photographs the front of the vehicle body is provided near the ceiling of the windshield of the vehicle or in the vicinity of the dashboard, for example.
  • An imaging device such as a CCD camera that photographs the front of the vehicle body is provided near the ceiling of the windshield of the vehicle or in the vicinity of the dashboard, for example.
  • a technique has been proposed in which an image (image) of a landscape including a road ahead of the vehicle body is inserted and displayed as a sub-screen at a predetermined position in the map information display screen. According to this technology, even when the driver of the vehicle is watching navigation information such as a map displayed on the screen of the image display device during driving, it is displayed as a sub-screen at a predetermined position in the screen. It is explained that the situation in front of the vehicle can be grasped without looking back at the frontal landscape by looking at the live-action video of the front
  • the external dimensions (screen size) ) Is set to be displayed in a larger size, so that the driver immediately notices the occurrence of a high-risk situation ahead, and the high-visibility front situation is highly visible to the driver. It is possible to show it in the future, and in turn, it is possible to ensure further safe driving.
  • Patent Document 3 proposes a technique for estimating a three-dimensional road shape using information.
  • the technique disclosed in Patent Document 3 is a method of combining an image road shape extracted from foreground image data of a host vehicle and map data around the host vehicle into one logical space composed of three or two dimensions. Projecting and estimating the road shape, the posture of the vehicle relative to the road surface, the absolute position of the vehicle, etc. based on the overlapping state in the logical space of both projected road shapes is a monocular CCD camera. Based on the video taken in step 1, the road shape can be estimated sufficiently accurately to achieve accurate preceding vehicle determination and automatic steering.
  • Patent Document 1 JP-A-10-132598
  • Patent Document 2 JP-A-11-304499
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-331787 Disclosure of the invention
  • Patent Document 1 has the following problems. That is, first, image information is simply used as a background image.For example, an image of a destination display arrow starts to display the central force of the screen, and the rear of the landscape (generally as the vehicle progresses) It is only displayed so as to move, for example, the center of the screen to the upper force (lower side of the display screen).
  • image information is simply used as a background image.
  • an image of a destination display arrow starts to display the central force of the screen, and the rear of the landscape (generally as the vehicle progresses) It is only displayed so as to move, for example, the center of the screen to the upper force (lower side of the display screen).
  • the camera attitude parameter is fixed in advance as an angle of the optical axis of the camera with respect to the ground (or the horizontal direction), for example, the vibration of the running vehicle, the vehicle by steering, etc.
  • Navigation information such as directions such as the right turn position and arrows in the direction of travel, for example, due to changes in camera posture due to rolling or pitching of the vehicle, tilting of the vehicle on an uphill or downhill, etc.
  • the image of is greatly shifted from the image obtained by shooting the actual landscape, indicating that the direction is substantially wrong, or the right turn position is unclear. There is a problem.
  • the arrow 901 that is an image of the navigation information clearly appears to indicate the left turn position on the road in the forward landscape.
  • the road scenery where the driver's seat power of the vehicle can actually be seen through the windshield is shown in Fig. 13 even if it is a vehicle such as a general passenger car or a bus or truck with a high driver's seat. It cannot be a bird's eye view as seen from a high position. In other words, except for a driver's seat that is 10m above the ground or higher, such as a cockpit of a jumbo jet, which is extremely high so that it cannot be a driver's seat in a car.
  • Fig. 15 shows (A) the change in unit angle at a line of sight, for example, about lm from the driver's seat of a typical vehicle (attitude with respect to the road surface). Degree ( ⁇ LA), and (B) the unit angle change at a line of sight higher than that, for example, about 10 m (posture to the road surface)
  • the degree of change in the projected image on the road surface relative to ⁇ 0 e A LB and are schematically compared.
  • the degree of change in the projected image from a low position this corresponds to the magnitude of the positional deviation with respect to the posture change ⁇ e when a low positional force is taken).
  • the navigation information such as an arrow is located at a fixed position on the center line in the screen of the live-action video. Even a slight change in the attitude of the vehicle will cause a large gap between the live-action image of the landscape and the navigation information image, and the scenery that is close to the vehicle along the road, such as a building such as a building. Since distant landscapes are often obstructed, it is necessary to display an image of navigation information at a more accurate position in order to cope with such a situation. Is possible.
  • Patent Document 2 has the following problems in addition to the same problems as in the technique of Patent Document 1 as described above.
  • Patent Document 2 since Patent Document 2 only displays a live-action image of the landscape ahead of the road on the sub-screen, the verification of the road map information and the actual image is still considered by the driver in his / her head. It must be made. For this reason, for example, it is difficult for a driver who drives a road with many intersections and branches in an unfamiliar (or first-time) land to grasp navigation information intuitively. There is a risk that the directions will be wrong or the navigation information will be misunderstood or unintelligible.
  • Patent Document 3 has the following problems. In other words, there is no specific road shape model! There is a possibility that a large gap will occur between the center line and the road map data force. In addition, because it is not possible to estimate the vehicle lane information, navigation information cannot be provided correctly when changing lanes or turning left or right! /.
  • the single slope (cant) of the road surface is set so as to change in accordance with the horizontal curvature, so in consideration of the road structure!
  • the estimation result of the attitude data for the road surface in the lane adjacent to the currently running lane will change significantly, and the road shape may not be estimated accurately.
  • the present invention has been made in view of serious problems, and its purpose is to display navigation information such as route guidance, own vehicle position, and map information in a live-action image of a road ahead of a moving object or By accurately projecting and displaying the image at an appropriate position in the actual landscape, the driver can intuitively and accurately recognize the correspondence between the navigation information and the live-action image or the actual-view landscape.
  • Navigation information display method and mobile navigation which do not hinder the visibility of cautionary images such as pedestrians and live-action images during road construction in navigation information images It is to provide an information display device.
  • a first moving body navigation information display method is configured to detect a current position of a moving body and display a live-action image of a scene including a road in a traveling direction of the moving body as an object.
  • the process of shooting with the installed on-board camera and the detected transfer A process of reading out navigation information related to the operation of the moving object corresponding to the current position of the moving object from the navigation information stored in advance in association with the road map data, and the current position of the moving object and the road Based on map data, a process for generating a road shape model related to a road that is supposed to be photographed from the current position, and the real image power road shape data that is image data relating to a road included in the landscape
  • the road shape model data and the road shape data are collated to estimate posture data of the vehicle-mounted camera or the moving body with respect to the road of the subject, and based on the posture data, Determines the display position of the navigation information read corresponding to the current position of the moving object in the captured real image. And processes to the determined
  • the first moving body navigation information display device includes a current position detecting means for detecting a current position of the moving body, and an actual image using a landscape including a road in the traveling direction of the moving body as a subject.
  • Imaging means for capturing an image with a vehicle-mounted camera installed on the moving body, and navigation information relating to the operation of the moving body corresponding to the detected current position of the moving body are stored in advance in association with road map data. And generating a road shape model related to a road that is assumed to be photographed from the current position based on the current position of the mobile object and the road map data.
  • Force road shape data that is image data relating to roads contained in the landscape is extracted, and the road shape model data is compared with the road shape data;
  • the display position is determined, and the read navigation information is synthesized at the determined position of the photographed live-action image as an image displayed with a display size and color tone set by the user.
  • the data processing means for outputting data for displaying the resulting image, the determined position of the photographed live-action video is at the determined position.
  • Image display means for combining and displaying the read navigation information as an image displayed with a display size and color tone set by the user;
  • a current position of a mobile object such as an automobile vehicle and road map data including the current position are displayed.
  • a road shape model related to the road that is supposed to be photographed is generated, and at the same time, the real image power road shape data that is the image data of the road included in the landscape in the forward or traveling direction is generated.
  • the data of the road shape model is extracted and collated with the road shape data to estimate the posture data of the in-vehicle camera or the moving body with respect to the road in the landscape as the subject.
  • an appropriate display position in the captured live image of the navigation information read out corresponding to the current position of the moving object is determined, and the captured live image is determined. It displays an image that is composed of the navigation information read out at the appropriate position with the display dimensions and color tone set by the user.
  • navigation information such as route guidance, own vehicle position, map information, etc.
  • the display size and color tone of the navigation information image (including the character information etc.) synthesized in the live-action video should be set appropriately by the user according to his / her preference. Therefore, the visibility of the entire image formed by compositing the navigation information image in the live-action video is avoided.
  • the user himself / herself can customize the navigation information image so that the image has good visibility.
  • a second mobile object navigation information display method is configured to detect a current position of a mobile object and display a live-action image of a landscape including a road in a traveling direction of the mobile object on the mobile object.
  • the process of shooting with the installed on-board camera and the detected transfer A process of reading out navigation information related to the operation of the moving object corresponding to the current position of the moving object from the navigation information stored in advance in association with the road map data, and the current position of the moving object and the road Based on map data, a process for generating a road shape model related to a road that is supposed to be photographed from the current position, and the real image power road shape data that is image data relating to a road included in the landscape
  • the road shape model data and the road shape data are collated to estimate posture data of the vehicle-mounted camera or the moving body with respect to the road of the subject, and based on the posture data, Determines the display position of the navigation information read corresponding to the current position of the moving object in the captured real image.
  • the second mobile object navigation information display device is a real image using a current position detection means for detecting a current position of the mobile object and a landscape including a road in the traveling direction of the mobile object as a subject.
  • Imaging means for capturing an image with a vehicle-mounted camera installed on the moving body, and navigation information relating to the operation of the moving body corresponding to the detected current position of the moving body are stored in advance in association with road map data. And generating a road shape model related to a road that is assumed to be photographed from the current position based on the current position of the mobile object and the road map data.
  • Force road shape data that is image data relating to roads contained in the landscape is extracted, and the road shape model data is compared with the road shape data;
  • the navigation position is determined, and three types of warning information, guidance information, and additional information are defined in advance according to the urgency of the display for the navigation information, and priority is given to each category.
  • Predetermining the order It is determined which of the classifications the navigation information corresponds to, and the navigation information is synthesized as an image at the determined position of the photographed live-action video according to the order corresponding to the classification.
  • the data of the read navigation information is synthesized at the determined position of the photographed real image according to the order corresponding to the classification.
  • a live-action image is displayed in the same manner as the first mobile navigation information display method or mobile navigation information display device.
  • the navigation information is appropriate to be synthesized by comparing road shape model data with road shape data, for example, route guidance, own vehicle position
  • navigation information such as map information can be displayed by accurately projecting it to an appropriate position in the live-action video of the road ahead of the moving object or in the actual landscape. It is possible for the driver to intuitively and accurately recognize the correspondence with the live-action image or the real-life scene.
  • the navigation information image that has been read out is displayed at the determined position in the photographed live-action image in the order corresponding to the classification based on the priority order as described above. As a result, it is avoided that many navigation information images are displayed in one live-action video at a time. Is prevented.
  • navigation information other than the warning information described above may be displayed after the current position of the moving body with respect to the warning object in the live-action video is within a predetermined distance. This saves the amount of data processing for the navigation information image formation, and the navigation information image needed for the user is approached until it is really needed. It is possible to display with good timing.
  • the third method for displaying navigation information of a moving body detects a current position of the moving body and displays a real image with a landscape including a road in the traveling direction of the moving body as a subject.
  • the navigation information regarding the process of photographing with the in-vehicle camera installed on the moving body and the operation of the moving body corresponding to the detected current position of the moving body is preliminarily stored. It is assumed that the current position force is captured based on the process of reading the navigation information stored in association with the road map data, the current position of the moving object, and the road map data.
  • a process for generating a road shape model relating to a road a process for extracting road shape data, which is image data relating to a road included in the landscape, the road image model data, and the road shape model Navigation information read out corresponding to the current position of the mobile object based on the attitude data, estimating the attitude data of the vehicle-mounted camera or the mobile object with respect to the road of the subject
  • the navigation information is a process of displaying a composite image, and the navigation information other than the graphic display for the driving direction guidance is a virtual vanishing point or a virtual horizon in the live-action video. And a process of displaying in the area above the virtual vanishing point or the virtual horizon without displaying in the area below.
  • the third mobile navigation information display device includes a current position detection means for detecting a current position of the mobile body, and an actual image using a landscape including a road in the traveling direction of the mobile body as a subject.
  • Imaging means for capturing an image with a vehicle-mounted camera installed on the moving body, and navigation information relating to the operation of the moving body corresponding to the detected current position of the moving body are stored in advance in association with road map data. And generating a road shape model related to a road that is assumed to be photographed from the current position based on the current position of the mobile object and the road map data.
  • Force road shape data that is image data relating to roads contained in the landscape is extracted, and the road shape model data is compared with the road shape data; Estimating posture data of the in-vehicle camera or the moving body with respect to the road of the recording subject, and based on the posture data, the captured live-action image of the navigation information read corresponding to the current position of the moving body
  • navigation information other than graphic display for driving direction guidance is displayed in a region below the virtual vanishing point or virtual horizon in the live-action video.
  • the data processing means for outputting the data for synthesis and display in the area above the virtual vanishing point or the virtual horizon, and based on the data output from the data processing means, the imaging Image display means for combining and displaying the read navigation information at the determined position of the captured real image.
  • a live-action image is displayed in the same manner as the first mobile navigation information display method or mobile navigation information display device.
  • the navigation information is appropriate to be synthesized by comparing road shape model data with road shape data, for example, route guidance, own vehicle position
  • navigation information such as map information can be displayed by accurately projecting it to an appropriate position in the live-action video of the road ahead of the moving object or in the actual landscape. It is possible for the driver to intuitively and accurately recognize the correspondence with the live-action image or the real-life scene.
  • navigation information other than the graphic display for driving direction guidance is not displayed in the virtual vanishing point or the area below the virtual horizon in the live-action image, but the virtual vanishing point or virtual Since it is designed to be displayed in a composite area above the horizon, the visibility of live-action video on the road and ground is not hindered by the display of navigation information!
  • the fourth method for displaying navigation information of a moving body detects a current position of the moving body, and displays an actual image with a landscape including a road in the traveling direction of the moving body as a subject.
  • the navigation information regarding the process of photographing with the vehicle-mounted camera installed on the moving body and the operation of the moving body corresponding to the detected current position of the moving body was previously stored in association with the road map data.
  • the fourth mobile unit navigation information display device provides a current position detecting means for detecting a current position of the mobile unit and a landscape including a road in the traveling direction of the mobile unit.
  • the image capturing means for capturing the captured real image with the in-vehicle camera installed on the moving body and the navigation information related to the operation of the moving body corresponding to the detected current position of the moving body are associated with the road map data in advance. And generating a road shape model related to a road that is supposed to be photographed from the current position based on the current position of the mobile body and the road map data.
  • the real image power The road shape data, which is image data relating to the road included in the landscape, is extracted, and the road shape model data is compared with the road shape data. Estimating the posture data of the in-vehicle camera or the moving body with respect to the road of the subject, and taking the photographed real image of the navigation information read corresponding to the current position of the moving body based on the posture data A display position in the video is determined, and the read navigation information is synthesized as a three-dimensional icon that rotates about a vertical axis or a horizontal axis at the determined position of the photographed live-action video.
  • Data processing means for outputting data for displaying the image, and the read navigation to the determined position of the photographed real image based on the data output from the data processing means
  • Image display means for combining and displaying information as a three-dimensional icon that rotates about a vertical or horizontal axis is provided.
  • a live-action image is displayed in the same manner as the first mobile navigation information display method or mobile navigation information display device.
  • the navigation information is appropriate to be synthesized by comparing road shape model data with road shape data, for example, route guidance, own vehicle position Navigation information, such as map information, in the live-action video of the road ahead of the moving object or in the actual landscape Therefore, it is possible to perform display that is accurately projected at various positions, and thus, it is possible for the driver to intuitively and accurately recognize the correspondence between the navigation information and the live-action image or the actual scene.
  • the navigation information image is displayed as a 3D icon that rotates around the vertical or horizontal axis in the live-action video, so that the visibility of the real-time video on the road and the ground is improved. There is no hindrance in the display of navigation information.
  • the navigation information includes, for example, route guidance on the route to the destination of the moving body, the vehicle position, the lane in which the vehicle is traveling, the route guidance, or the vehicle position. At least of the buildings that serve as landmarks for the mobile driver to confirm
  • the navigation information is information of characters, symbols, or numbers
  • the information may be converted into an icon and the icon image may be combined with the captured video and displayed.
  • the process or data processing means for performing the data processing described above expresses the navigation information as a virtual object in a 3D augmented reality space, and converts it into the already obtained posture data. It is possible to synthesize the navigation information image as a virtual entity in the live-action video by assigning it to the corresponding position in the road shape data converted to the 2D feature space based on it. is there. In this way, for example, navigation information consisting of letters, symbols, or numbers for a building that serves as a guide for driving directions is displayed in a live-action image. Even if it is hidden behind the perimeter, it is possible to visually and intuitively indicate the existence of the landmark building.
  • the process or data processing means for performing the above data processing converts the road shape data into perspective two-dimensional feature space image data and converts the road shape model data into perspective 2
  • the image data of the dimensional feature space may be converted and the two-dimensional data may be collated with each other in the two-dimensional feature space to estimate the posture data of the in-vehicle camera or the moving body with respect to the road surface of the subject road.
  • the road shape data and the road shape model data used to estimate the posture data are compared with each other in 3D data in a 3D logical space, the amount of information is extremely high. More and more Since it is possible to perform two-dimensional data in a quasi-three-dimensional two-dimensional feature space without using a method that may cause high-speed data processing to be difficult, It is possible to simplify the process and achieve high speed.
  • the above-described data processing process or data processing means generates the road shape model
  • the single slope of the road surface on the curved road is set so as to change corresponding to the horizontal curvature of the curved road.
  • the process or data processing means for performing the data processing described above uses a road shaped look-up table (RSL) when collating the road shape model data with the road shape data.
  • RSL road shaped look-up table
  • the existence probability of the road white line included in the landscape is calculated from the live-action image, the RSL value is calculated, and the posture data of the moving body may be calculated so that the evaluation value based on the RSL value is maximized.
  • accurate road shape data can always be extracted without being adversely affected by various environmental factors such as weather changes, road shadows, and dirt. Can use it to estimate accurate posture data.
  • the process or the image display means for performing the image display described above combines an image obtained by combining the navigation information read out at a position determined to be appropriate in the photographed live-action image, For example, it is possible to display on a predetermined display screen of a display device such as a liquid crystal display panel for car navigation installed almost at the center of the dashboard.
  • an image obtained by synthesizing the navigation information read out at the determined position of the photographed live-action image is displayed on a display device such as a so-called HUD (Head Up Display) type projector. It may be projected and displayed on the inner surface of the transparent window in front of the driver's seat.
  • the process or the data processing means for performing the data processing described above includes the navigation information corresponding to the current position detected by the moving body of the navigation information stored in advance in association with the road map data.
  • a road shape model related to the road that is supposed to be photographed from the current position is generated based on the current position of the moving body and road map data, and is included in the live-action image.
  • Road shape data which is image data of the road to be captured, is compared with the road shape model data and the road shape data, and the posture data of the in-vehicle camera or the moving body with respect to the subject road is estimated. Based on the posture data Next, the display position of the navigation information read corresponding to the current position of the moving object in the captured live-action image is determined, and is read out to the determined position.
  • the image for displaying the navigation information image is output, and the image display means or the image display process described above displays the navigation information image on the inner surface of the transparent window in front of the driver's seat of the moving body. By projecting and displaying it, it is also possible to display the navigation information image combined with the scenery seen from the transparent window in front of the driver's seat.
  • the current position of a mobile object such as an automobile vehicle and the road including the current position.
  • a road shape model for the road that is assumed to be photographed at the current position is generated, and at the same time, image data of the road included in the landscape in the forward or traveling direction from the actual image.
  • the road shape data is extracted, the road shape model data and the road shape data are collated, and the posture data of the vehicle-mounted camera or moving body with respect to the road in the landscape as the subject is estimated, and the posture data Based on the current position of the moving body, the navigation information read out corresponding to the current position of the moving body is determined in the captured actual image, and the captured actual image is determined.
  • An image obtained by synthesizing the read navigation information is displayed at the determined appropriate position.
  • navigation information such as route guidance, own vehicle position, and map information is displayed in front of the moving body. It is possible to display images that are accurately projected at the appropriate position in the actual video of the road or in the actual landscape, and the driver can intuitively understand the correspondence between the navigation information and the actual video or the actual landscape.
  • the navigation information image avoids obstructing the visibility of cautionary images such as pedestrians and on-site images during road construction in the live-action image, and the entire display image is visible.
  • the property can be improved.
  • FIG. 1 is a diagram showing a schematic configuration of a mobile navigation information display device according to an embodiment of the present invention.
  • FIG. 2 A diagram showing the relative positional relationship between the three-dimensional vehicle coordinate system VCS, the three-dimensional camera coordinate system CCS, and the two-dimensional projection image coordinate system ICS.
  • FIG. 3 A diagram showing an example of mapping by points and lines represented by road map data.
  • FIG. 4 A diagram showing a road segment horizontal shape model approximated by a clothoid curve.
  • FIG. 5 A diagram showing an example of a road horizontal shape model used for 2D matching.
  • FIG. 6 A flow chart showing a flow of a series of main processes including extraction of road shape data, generation of a road shape model, estimation of camera posture parameters, and the like in the central processing unit.
  • FIG. 7 is a diagram summarizing various mathematical formulas used for various calculations performed in the central processing unit.
  • FIG. 8 is a diagram showing an example of an image finally displayed.
  • FIG. 9 is a diagram schematically showing rotation of a three-dimensional icon displayed in a composite image.
  • FIG. 10 is a diagram showing an example of a screen configuration when a character information dedicated display area is provided in advance around the outside of a live-action video.
  • FIG. 11 is a diagram showing another example (different from FIG. 8) of the image finally displayed.
  • FIG. 12 is a diagram schematically showing a state in which two three-dimensional icons are rotated and displayed at different phases.
  • FIG. 13 is a diagram showing an example of an image formed by overlapping images of navigation information claimed to be displayable in Patent Document 1.
  • FIG.14 An example of the front view of the actual driver's seat power through the windshield It is a figure.
  • FIG. 6 is a diagram schematically showing a comparison (B) of the degree of change in the projected image on the road surface with respect to the unit angle change in the line of sight from such a height.
  • FIG. 1 shows a schematic configuration of the mobile navigation information display device of the present invention.
  • the mobile navigation information display method according to the embodiment of the present invention is embodied by the operation or action of this mobile navigation information display device. To do.
  • This mobile navigation information display device comprises a sensor input unit 1, an operation unit 2, a map management unit 3, a central processing unit 4, a video display unit 5, and a control unit 6. It is provided as a main part.
  • the sensor input unit 1 includes a CCD (solid-state imaging device) camera 101, a GPS sensor 102, an INS sensor 103, and a VICS 104.
  • the CCD camera 101 is used by, for example, a car equipped with this mobile navigation information display device so that the driver can take a picture of the scenery in front of the vehicle at a camera angle that is almost the same as the line of sight seen through the windshield.
  • a moving body hereinafter, also referred to as the own vehicle or the moving body or the own vehicle
  • the own vehicle or the moving body or the own vehicle is installed on the dashboard of the driver's seat or near the ceiling (not shown).
  • This CCD camera 101 is of a monocular system with a fixed focal length, for example, and takes an image of a landscape in front of the road and captures the image signal.
  • the captured image signal is transferred as data to an image memory (not shown) of the central processing unit 4.
  • the travel direction data and vehicle speed data acquired by the GPS sensor 102 and the INS sensor 103 related to the moving object are transferred to the central processing unit 4 in synchronization with the image data acquired by the CCD camera 101.
  • the Data received from VICS 104 which is a road traffic information receiver, is also transferred to the central processing unit 4.
  • the operation unit 2 transfers commands for system setting, mode change, and the like to the central processing unit 4 in response to an operation command input by a button operation from a user or a remote control input device (not shown).
  • the map management unit 3 records in advance various information on the road position designated by the command input from the operation unit 2, and the map data of a predetermined geographical area. ! /, Map data Read from CD301 and transfer to central processing unit 4.
  • the central processing unit 4 is composed of four modules, an image processing module 401, a positioning processing module 402, a video output processing module 403, and a control output processing module 404, and an image data generation unit 405. And
  • the image processing module 401 performs posture estimation of the CCD camera 101 mounted on the vehicle, tracking of the traveling lane, detection of harmful objects, calculation of the distance between vehicles, and the like.
  • the positioning processing module 402 determines the direction and vehicle speed from the sensor input unit 1 as a map management unit.
  • Map matching with the road map data of 3 is performed, and the road position information is correctly calculated and output.
  • the video output processing module 403 expresses the route guidance, the vehicle position, and the map information in the video display unit 5 as a virtual entity in the three-dimensional augmented reality space, and uses an estimation method described later. Projected onto the two-dimensional road image using the obtained posture parameters of the CCD camera 101, and fused (synthesized) with the live-action image in front of the moving object. It also generates data to display road lane markings and danger indications such as obstacles in bad weather conditions. Furthermore, as information to be added to the road map, for example, information on objects that can serve as landmarks for route guidance such as landmarks, railway stations, hospitals, gas stations, etc. is converted into icons, which are then used as camera postures. Project to the live-action video of the road using parameters.
  • the control output processing module 404 comprehensively determines each analysis result, and gives an alarm output command to the control unit 6 for outputting an alarm corresponding to the degree of danger to the host vehicle.
  • the image data generation unit 405 is based on the data output mainly from the image processing module and the positioning processing module and the map data read from the map management unit 3, and the traveling lane in which the host vehicle is currently traveling Recognition, road shape recognition, obstacle recognition, It performs absolute road position recognition, camera posture estimation, etc., and generates data for combining and displaying navigation information at appropriate positions in the live-action video. More specifically, the display data is generated based on the following three-dimensional modeling rules in the virtual space. That is,
  • All navigation information can basically be changed by the user.
  • the default display size and color are predetermined for each piece of navigation information.
  • a landmark indicating a hospital has a default setting to display a white cross with a plate-shaped 3D icon with a specified area and thickness on a red background. It is also possible to change the display so that it is displayed as a plate-shaped 3D icon.
  • Such setting data is input by the user using the operation unit 2.
  • the input setting data is further input to the image data generation unit 405 via the image processing module 401.
  • the image data generating unit 405 generates data for displaying various types of navigation information with dimensions and shades corresponding to each of them.
  • warning information is information for warning the user about leaving the lane, approaching an obstacle (or the possibility of a collision), and the like.
  • Guidance information includes information on the direction of travel to the destination, parking space availability guidance, and information on large facilities along landmarks and traffic routes. Additional information is information on small and medium-sized facilities and shops along the road. Priorities are determined in advance for each of these categories.
  • the priority order information is also stored in the image data generation unit 405 in advance.
  • the navigation information other than the warning information is displayed after the current position of the moving object with respect to the warning object in the live-action video (or the real scene in the case of HUD) falls within a predetermined distance.
  • navigation information is from the virtual vanishing point or virtual horizon in the live-action video. Are not displayed in the lower area, but are displayed in the area above the virtual vanishing point or virtual horizon.
  • the navigation information is displayed as a 3D icon that rotates around the vertical or horizontal axis at the determined position of the captured video. If multiple rotating 3D icons are displayed on one screen, the 3D icons are rotated and displayed at different phases or rotation speeds.
  • the navigation information is displayed as a semi-transparent icon so that the live-action image can be seen through.
  • character information (information displayed as characters) is displayed in a display area provided in advance around the outside of the live-action video in the live-action video.
  • the video display unit 5 Based on the data generated by the image data generation unit 405, the video display unit 5 synthesizes a video (image) in which the navigation information is synthesized at an appropriate position in the live-action video, for example, a liquid crystal display panel screen. To display.
  • the control unit 6 controls the output of an alarm or the like corresponding to the alarm output command as described above, the control of the sound output corresponding to the analysis result by the control output module, the control of the brake, the control of the steering, etc.
  • the control is performed by controlling the operation of each servo motor system provided to adjust the control amount.
  • road map data relating to nearby geography including the current position of the host vehicle is converted into current position data detected by the GPS sensor 102, the INS sensor 103, and the positioning processing module.
  • the image data generation unit 405 Based on this, the image data generation unit 405 generates a road shape model related to a road that is assumed to be captured of the current position force.
  • the road image included in the landscape in the direction of travel from the live-action video is extracted based on, for example, white line image data of a road division line.
  • the image data generation unit 405 collates the road shape data with the road shape model data, and becomes an object photographed by the CCD camera 101! Estimate the attitude data of the CCD camera 101 (or the attitude data of the host vehicle) to the road in the landscape.
  • the road shape model data and the road shape data are used to determine where the image data generation unit 405 should synthesize the navigation information in the live-action video.
  • the video display unit 5 displays navigation information such as route guidance, own vehicle position, and map information on the road ahead of the moving body. It is possible to display accurately synthesized images at appropriate positions in live-action images or in actual scenes that can be seen through the windshield.
  • the mobile navigation information display apparatus according to the present embodiment enables the driver to intuitively and accurately recognize the correspondence between the navigation information and the actual image or the actual scenery. Video can be displayed.
  • the above navigation information includes, for example, the route guidance, the vehicle position, the lane in which the vehicle is traveling, the route guidance, or the vehicle position regarding the route to the destination of the moving object. It is at least one of the buildings that serve as landmarks for the mobile operator to confirm. If the navigation information is character, symbol, or number information, it is desirable that the information be displayed as an icon and that the icon image be combined with the photographed video.
  • the image data generation unit 405 expresses the navigation information as a virtual entity in the 3D augmented reality space, and converts it into a 2D feature space based on the already obtained posture data or the like. By assigning it to the corresponding position in the road shape data
  • the navigation information image is synthesized as a virtual entity at an appropriate position in the live-action video, and for example, the navigation information that also has characters, symbols, or numerical power about the building that serves as a guide for driving directions is displayed in the live-action video. Even if the building is hidden behind the building on the near side or the inner periphery of the curved road, the presence of the landmark building is visually and intuitively shown.
  • the image data generation unit 405 converts road shape data into perspective two-dimensional feature space image data and converts road shape model data into perspective two-dimensional feature space image data. Then, they are collated with 2D data in the 2D feature space to estimate the posture data of the in-vehicle camera or moving body with respect to the road surface of the subject road. In this way, by matching the road shape data and road shape model data, which is performed to estimate the posture data, between two-dimensional data in a pseudo three-dimensional two-dimensional feature space, Simplification of the verification process and high speed key have been achieved.
  • the road look-up table (RSL, reference: Hu-shaking “Study on extraction and simultaneous tracking of multiple moving objects by motion analysis of in-vehicle camera” Kumamoto Using the University graduate School of Science and Technology, Doctoral Dissertation) to calculate the RSL value by determining the existence probability of the road white line included in the live-action video landscape, the movement so that the evaluation value by the RSL value is maximized Body posture data may be obtained.
  • RSL reference: Hu-shaking “Study on extraction and simultaneous tracking of multiple moving objects by motion analysis of in-vehicle camera” Kumamoto Using the University graduate School of Science and Technology, Doctoral Dissertation
  • the RSL value by determining the existence probability of the road white line included in the live-action video landscape
  • an image obtained by synthesizing the navigation information at a position determined to be appropriate in the photographed live-action image for example, a liquid crystal for car navigation installed in a substantially central portion of the dashboard or the like.
  • a display device such as a display panel
  • an image obtained by synthesizing the read navigation information at an appropriate position determined by the above-described collation in the photographed live-action image is displayed as a display device such as a so-called HUD type projection device. For example, project it on the inner surface of the transparent window in front of the driver's seat.
  • the navigation information image is an appropriate position for displaying the navigation information image by comparison as described above, instead of combining the navigation information image into the captured video.
  • the navigation information image is projected and displayed on the inner surface of the front glass in front of the driver's seat corresponding to that position, and the navigation information image is displayed in the driver's seat.
  • Transparent window power on the front may be displayed in combination with the visible landscape.
  • Figure 2 shows the relative relationship between the three-dimensional vehicle coordinate system VCS (Xv, Yv, ⁇ ), the three-dimensional camera coordinate system CCS (Xc, Yc, Zc), and the two-dimensional projection image coordinate system ICS (xi, yi). It represents the positional relationship.
  • the origin of the three-dimensional vehicle coordinate system VCS is located at the midpoint of the vehicle rear wheel center line, and the Zv axis points toward the vehicle center line, and the Xv axis and Yv axis point to the left and up, respectively.
  • each is set.
  • the origin of the 3D camera coordinate system CCS is located at the lens center point of the CCD camera, and the Zc axis is set to overlap the optical axis of the camera.
  • Equation 1 The transformation relationship from the camera coordinate system CCS to the image coordinate system ICS is orthographic projection. Therefore, it can be described as a relational expression with a matrix as shown in Equation 1 in Fig. 7.
  • P is the coordinate [Xc, Yc, Zc, 1] in the CCS coordinate system
  • p is the coordinate [xi, yi, 1] in the ICS coordinate system.
  • A is a 3 ⁇ 4 projection matrix and can generally be decomposed as shown in FIG.
  • K is a parameter matrix inside the camera, and is determined by the horizontal / vertical deformation rate (Sx, Sy), the image center point (uo, vo), and the rotational deformation rate S 0 of the image. .
  • This K is expressed as Equation 3 in Fig. 7.
  • the camera posture matrix M is called a camera external parameter matrix, and shows the transformation relationship from the viewpoint to the target model coordinate system.
  • the equation 4 in Fig. 7 is obtained by three-dimensional translation and rotation transformation of a rigid body. Can be expressed as shown.
  • R11 to R33 are rotation parameters
  • Tx, Ty, Tz are translation parameters.
  • Equation 5 in FIG. 7 the constraint equation as shown in Equation 5 in FIG. 7 is established based on Equations 1 to 4.
  • Equation 6 the projection relationship between the image coordinate system and the vehicle coordinate system is expressed by the equation shown in Equation 6 in FIG. It is expressed by That is, according to Equation 6, one corresponding point pair ( ⁇ , ⁇ ) in 2D-3D space determines one constraint equation as shown in Equation 6 in Fig. 7 for the camera attitude data. It becomes. Theoretically, such a pair of corresponding points is sufficient to estimate the camera posture.
  • information sources other than live-action image data of the front landscape also accurately and reliably estimate the depth data of the 3D space, and use that data to compare the 2D space to the 3D space. Needless to say, you can. However, in that case, it should be processed generally It goes without saying that the amount of data tends to be larger than in the case of matching in the 2D-2D feature space.
  • FIG. 3 shows an example of mapping by points and lines represented by road map data.
  • the road map data includes three-dimensional position information such as latitude and longitude of the road segment, generally called a node, and sea level, road name, grade, number of lanes, and intersections.
  • the road width can be estimated based on the road grade.
  • the node position described in the map data is on the road center line.
  • Road structures are generally composed of complex curved surfaces using horizontal and longitudinal curvatures.
  • FIG. 4 shows a road segment horizontal shape model approximated by a clothoid curve.
  • a road segment horizontal shape model can be modeled using an equation such as shown in Equation 7 in FIG.
  • c0 and cl in Equation 7 are the initial curvature and curvature change parameters of the horizontal curve, respectively.
  • Nli is the number of up lanes
  • nri is the number of down lanes
  • wi is the average road width between segments.
  • Li indicates the segment length.
  • the travel position of the vehicle is offset to the left in the left-handed customary country such as Japan instead of the road center line, but the road position of the vehicle (the road from the origin of the vehicle coordinate system to the road) It corresponds to the fact that the actual driving position is offset to one lane by using information on the deviation amount to the center) and the direction (deviation angle between the Z-axis direction of the vehicle coordinate system and the road horizontal tangent).
  • the road horizontal shape model of the road centerline can be converted into a new V, model based on the vehicle coordinate system VCS.
  • the road shape data and the road shape model estimated for the road map data are estimated.
  • the estimated pose vector is estimated by 2D—2D matching the extracted road shape data in a two-dimensional feature space.
  • Figure 5 shows an example of a road horizontal shape model used for the 2D-2D matching.
  • the value of RSL increases as it approaches the road white line.
  • road white lines, dividing lines, and road area boundary line candidates are extracted as feature areas, and the image is binarized (pixels belonging to the feature area are set to 1, and other pixels are 0). Then, calculate the RSL value of each pixel using Equation 9 shown in Fig. 7.
  • x and y are binary pixel values
  • % i, j are kernel coefficients for RSL.
  • the kernel size is usually set to 5 or 7.
  • Each coefficient is determined by the Gaussin distribution formula.
  • the final evaluation formula for camera posture estimation is shown in Equation 10 in Fig. 7.
  • is a set of 2D projection points of the road horizontal shape model.
  • Hooke ⁇ Jeeves direct search algorithm is preferably used. (R. Hooke and T. Jeeves. “Direct search solution of numerical and statistical problems,” Journal of the Association for Computing Machinery (ACM), pp. 212-229 (1961).).
  • FIG. 6 is a flowchart showing a flow of a series of main processes including extraction of road shape data, generation of a road shape model, estimation of camera posture parameters, and the like in the central processing unit.
  • the data acquired by the GPS sensor and the INS sensor is acquired in synchronization with the acquisition of the data of the live-action video (S2).
  • a dividing line region such as a white line such as a road division line on a road and a boundary line of a pavement surface is extracted from the photographed video data to calculate an RSL value (S3).
  • the current position (absolute position) of the host vehicle is obtained (detected) by easy map matching, and related map data corresponding to the current position is obtained from the power of information stored in the map data CD. Read (S4).
  • a road horizontal shape model for the road in the landscape captured as a live-action image is constructed (S5).
  • the road horizontal shape model is projected into a perspective two-dimensional space (S6).
  • An evaluation value is obtained by matching the RSL representation of the road image with the projected road horizontal shape model (S7).
  • the obtained evaluation value is the maximum value (S8). If the maximum value is determined at this time (Y of S8), the attitude vector at that time is output (S9), and the output value is fed back as the next search starting point (S10). If the force is not the maximum value (N in S8), the posture vector is updated by the Hooke & Jeeves method (S11) and re-evaluation is performed (S11 to S6 to S8). This loop is repeated until the maximum value is obtained (Y in S8).
  • the individual navigation information is then displayed more specifically. Is generated by the image data generation unit 405. More specifically, the data is generated based on nine types of three-dimensional modeling rules (1) to (9) as already described. As a result, the image power is displayed on the screen of the image display unit 5 as shown as an example in FIGS.
  • the landmarks and facility information are displayed as three-dimensional icons schematically representing them.
  • a three-dimensional icon 801 indicating the location of “hospital” is synthesized and displayed near the front of the hospital in the live-action image.
  • the ground color is red and a white cross is drawn therein. Its size (outer diameter) and color are set to a level that does not impede the visibility of buildings and road images in the live-action image that will be the background.
  • the three-dimensional icon 801 is displayed so as to rotate at a predetermined rotational speed about the vertical axis 802 as shown in an enlarged manner in FIG.
  • FIG. 9A When the three-dimensional icon 801 is facing forward (FIG. 9A), it is clearly visible to the user that this indicates “hospital”. Then, when it is rotated 90 degrees from the front side, only an extremely thin area of the thickness 803 is displayed as shown in an enlarged view in FIG. 9 (B). The user clearly sees the presence of the 3D icon 801 behind the screen, which prevents the visibility of buildings, pedestrians, and obstacles in the live-action video (displayed). can do.
  • the display dimensions and display colors (color usage and hue) of all navigation information such as the three-dimensional icon 801 etc. can basically be changed by the user. It is.
  • Instruction information such as the direction of travel is displayed as a three-dimensional arrow.
  • a virtual road painting 804 indicating the speed limit
  • a three-dimensional arrow 805 indicating the direction to travel
  • a virtual road pane indicating the lane Tings 806 and 807 are combined with the actual video of the road and displayed.
  • character information or the like for destination display is not displayed so as to overlap the virtual vanishing point or the area below the virtual horizon in the live-action video, that is, specifically on the real video of the road.
  • the destination display 808 mainly composed of character information is near the top of the entire live-action video 80 9 (the entire screen in the case of Fig. 8), and almost empty in the live-action video. It is displayed in the area that is only visible. In this way, an image mainly composed of character information such as a destination display 808 is displayed in a real video image or a virtual vanishing point or an area below the virtual horizon in a real scene with a high probability that a road, a pedestrian, or a building exists. By not doing so, it is possible to avoid the fact that the live-action images and actual scenes of roads, pedestrians and buildings are hidden and cannot be seen.
  • the navigation information is displayed as a three-dimensional icon that rotates around the vertical axis (or may be the horizontal axis) at the determined position of the photographed live-action image. Force to be displayed When a plurality of 3D icons are displayed on one screen, each of the 3D icons is rotated and displayed at different phases or rotation speeds. In the example shown in FIG. 12, the first 3D icon 121 and the second 3D icon 122 are displayed with the same rotational speed in the same direction but with a phase difference of about 90 degrees. .
  • the road name information 811 and the speed limit information 812 are set to be displayed as text information in the navigation information. Can be displayed in a character information dedicated display area 810 provided in advance around the outside of the live-action video 809 in the live-action video.
  • warning information and guidance information can be classified into three types, and the navigation information can be combined and displayed at the corresponding position in the live-action video according to the order corresponding to the classification.
  • an image of navigation information is displayed in front of the mobile object. It can be accurately composited at an appropriate position in the actual scenery of the road or in the actual scenery seen through the windshield. As a result, it is possible to display an image that allows the driver to intuitively and accurately recognize the correspondence between the navigation information and the live-action image or the actual scenery.
  • the navigation information image prevents the visibility of the live-action video (or the actual scenery) from being disturbed by the composition of the navigation information by various methods as described above. The visibility can be improved over the entire display image.

Abstract

 ナビゲーション情報と実写映像または実視景観との対応関係をドライバーが直観的に正確に認識することができ、かつ、実写映像における例えば歩行者や道路工事中の現場の実写映像のような要注意な映像の視認性をナビゲーション情報の画像で妨げることのない移動体ナビゲート情報表示装置を提供することにある。画像データ生成部(405)は、道路形状データと道路形状モデルとの照合を行って、姿勢データを推定すると共に、ナビゲーション情報の画像を、移動体の前方の道路の実写映像中(または実景中)の適切な位置に正確に合成して表示するための映像(画像)データを生成し、3次元アイコン等として表示する。その映像データに基づいた表示を映像表示部(5)が行う。

Description

明 細 書
移動体ナビゲート情報表示方法および移動体ナビゲート情報表示装置 技術分野
[0001] 本発明は、いわゆるカーナビゲーシヨン装置およびそれによるカーナビゲート情報 の表示方法と呼ばれるような、移動体の現在位置の情報やそれに関連したナビゲー シヨンのための情報の収集 ·処理'表示等を行うための、移動体ナビゲート情報表示 方法および移動体ナビゲート情報表示装置に関する。
背景技術
[0002] 自動車車両のような移動体の現在位置を検出し、周辺の道路地図と共に検出され た現在位置を表示画面に表示して、行き先や道順など種々の案内情報の表示や音 声出力を行うという、いわゆるカーナビゲーシヨン装置のような、移動体ナビゲート装 置が開発されている。
[0003] このような従来のカーナビゲーシヨン装置では、車速センサーからの車速パルスお よび地磁気センサーからの地磁気による方角に基づ 、て、予め CD— ROM (Comp act Disc Read Only Memory)のような記憶手段にデータとして格納されてい る地図上を自律航法制御部でトレースするとともに、 GPS衛星から伝送される GPS 信号に基づ 、て当該移動体の現在位置の確認を行う。この分野での開発初期の力 一ナビゲーシヨン装置では、計測誤差等の要因から、実際の走行位置と地図上での トレース位置とが有意にずれてしま 、、例えば実際には海岸線寄りの道路を走行中 に、カーナビゲーシヨン装置によって検出された自車の走行位置は海の中が示され ている、といった明らかな誤動作 (誤検出)なども、過去にはあった。しかし、そのよう な有意の位置ずれが生じる場合には、位置補正 (マップマッチング)を行うようにする 技術などが開発されて、現在では、自車の走行位置の検出精度は十分なものとなつ てきている。
[0004] このようにして得られた自車の現在位置の情報と、 CD— ROMなどの大容量データ 記憶手段から得た地図情報とを、重ね合わせることで、現在位置とその付近の所定 範囲内の道路地図とを表す画像を、例えば液晶表示装置のような画像表示装置の 画面に平面的な地図のような 2次元画像として表示することが可能となっている。また それと共に、自車位置、進行方向、速度、地図情報、進路案内、最短経路、道路情 報などのような、いわゆるナビゲート情報を、 2次元画像の地図に重ね合わせて、ある Vヽは 2次元画像の地図の中の該当する位置に嵌め込んで、表示することなどが可能 となっている。
[0005] 従来のナビゲーシヨン表示装置では、 2次元画像の道路平面地図または周囲景観 を 3次元 CG化して立体的に表した道路地図中に、矢印などのアイコンで表示される 走行位置および走行方向や、現在位置から目的地までの推奨ルート (最適経路)な どの情報の画像を、重ねて表示するものもある。またさらには、 VICSセンサーなどか ら得られる道路渋滞情報等をテキストラベルで画面上に表示するものもある。
[0006] ところが、このような従来の技術では、平面的(2次元的)な簡略化された地図や 3次 元表現であっても CGによって抽象的に簡略ィ匕して表現された画像を用いた間接的 なナビゲーシヨン情報しか提供することができな 、ので、自動車に乗って運転して ヽ るドライバーにとっては、例えば現在位置や進路案内などの情報と実際にフロントガ ラス越しに見えている景観中の道路との対応関係が直観的には判りにくいという不都 合がある。
[0007] これらの不都合を解決するために、地図情報の他に実写映像を利用するナビゲー シヨン装置が、例えば特許文献 1、特許文献 2などによって提案されている。
[0008] 特許文献 1に開示された技術では、移動体の現在位置と進行方向を検出し、その検 出された現在位置および進行方向に対応して表示すべきナビゲート情報を選択し、 車両のフロントガラスを通して見える進行方向前方の景観とほぼ相似したカメラアン グルカゝら撮像装置によって撮像された実写映像と、そのときの自車両の現在位置に 対応して読み出されたナビゲート情報の画像とを重畳させて、例えば液晶表示パネ ルの画面などに表示する。そして、その結果、実際の道路およびその周囲の景観の 映像とナビゲート情報との対応関係を視覚的に判りやすいものとして表示することが 可能となると主張されている。また、一般なカーナビゲーシヨン装置では、ナビゲーシ ヨン情報は主として映像表示部に映し出される映像情報であることから、運転者は運 転中にお 、て注意力が散漫となりやす 、虞がある。 [0009] そこで、特許文献 2では、車体の前方を撮影する CCDカメラのような撮像装置を、 例えば車両のフロントガラスの天井寄りの位置またはダッシュボート付近などに設け ておき、その撮像装置によって撮影された車体の前方の道路を含んだ景観の映像( 画像)を、地図情報を表示する画面中の所定位置に子画面として嵌め込んで表示す る、という技術が提案されている。この技術によれば、車両のドライバ一は運転中に画 像表示装置の画面に表示された地図などのナビゲーシヨン情報を見ている状態でも 、その画面内の所定位置に子画面として映し出された前方の景観の実写映像を見る ことで、前方の景観に視線を戻さなくとも車両の前方状況を把握することできると説明 されている。
[0010] また、その小画面の実写映像中に映し出される障害物が大きいと判断された場合 や横力 急に飛び出して来た物体があった場合などには、子画面の外形寸法 (画面 サイズ)を大きくして表示するように設定したことで、前方の危険性の高い状態の発生 を即座に視覚的にドライバーに伝えると共に、その危険性の高い前方状況をドライバ 一に対して高い視認性で見せるようにすることができ、延いてはさらなる安全運転を 確することを可能とする、 t 、つた技術なども提案されて 、る。
[0011] また、先行車両判定や自動操舵を行うためには、移動体の前方の道路等を含んだ 景観をさらに正確にデータとして把握することが必要になるので、画像道路情報と地 図道路情報を用いて 3次元道路形状を推定するという技術が、例えば特許文献 3に よって提案されている。この特許文献 3に開示された技術は、自車両の前景の画像 データから抽出される画像道路形状と自車両の周辺の地図データとを、 3次元または 2次元で構成された一つの論理空間に投影し、この投影された双方の道路形状の論 理空間における重なり状態に基づいて、道路形状、路面に対する自車両の姿勢、自 車両の絶対位置などを推定すると ヽぅもので、単眼の CCDカメラで撮影した映像に 基づ 、て十分に正確な道路形状の推定を行って、正確な先行車両判定や自動操舵 を実現すると 、うものである。
特許文献 1 :特開平 10— 132598号公報
特許文献 2:特開平 11― 304499号公報
特許文献 3 :特開 2001— 331787号公報 発明の開示
[0012] し力しながら、上記の特許文献 1に開示された技術では、以下に述べるような問題 点がある。すなわち、第 1に、画像情報は単純に背景映像として使われるだけであり、 例えば行先表示の矢印の画像は画面の中央部力 表示を開始して、車両の進行に 連れて景観の後方 (一般に表示画面の上側力 下側)へと画面の中央部を例えば直 線的に移動するように表示されるだけである。
[0013] このため、例えばカーブした道路でのナビゲート情報の表示や、両側 4斜線のよう な多車線が設けられている道路では、ナビゲート情報の表示が景観中のどの位置を 正確に示して 、るのか判別できなかったり、あるいは全くずれた位置を指し示して!/ヽ たりすることになる場合があるという問題がある。
[0014] また、第 2に、カメラの姿勢パラメータはカメラの光軸の地面 (あるいは水平方向)に 対する角度として予め固定的に設定されているので、例えば走行中の車両の振動、 操舵による車両のローリングやピッチング、上り坂や下り坂での車両の傾きなどに起 因してカメラの姿勢が変化することに起因して、例えば右折位置のような道順や進行 方向の矢印などによるナビゲート情報の画像は、実際の景観を撮影してなる映像に 対して大幅にずれてしまい、実質的に誤った方向を指し示すことになつたり、右折位 置が判然としな 、表示となってしまう t 、う問題がある。
[0015] 例えば、図 13に示した一例では、ナビゲート情報の画像である矢印 901は、明確 に前方景観中の道路での左折位置を示しているように見える。しかし、一般的な乗用 車や、運転席が高い位置にあるバスやトラックのような車両であっても、実際に車両 の運転席力もフロントガラス越しに見える道路の景観は、図 13に示したような高い位 置から見下したような鳥瞰図的なものとはなり得ない。換言すれば、地上 10mあるい はそれ以上の高さの、例えばジャンボジェット機のコックピットなどのように、自動車車 両の運転席としては有り得ないような極めて高い位置にある運転席など以外からは、 ビルディングや住宅などの建物が並んでいる景観における道路の映像を、図 13に示 したような曲り角やビルディングの裏の道までが鳥瞰図的に見渡せるように撮影する ことは、実際上不可能である。実際には、高々 lm前後の高さに運転者の視線が位 置する一般的な乗用車や、高くても 2ないし 3m程度の高さに運転者の視線が位置す る大型トラックやバスのような一般的な自動車車両では、図 14に一例を示したように、 特に前後方向の密度が詰まっており、かつ進行方向の道路に対して交差する道路 が沿線のビルディング等で隠れてしまって見辛 、傾向の景観 (および実写映像)とな る場合が多い。
[0016] 図 15は、(A)—般的な車両の運転席からの例えば lm程度の高さの視線における 単位角度変化 (路面に対する姿勢) Δ Θ eに対する路面への投影射像の変化の度合 い( Δ LA)と、 (B)それよりも高 、例えば 10m程度の高さの視線における単位角度変 ィ匕 (路面に対する姿勢) Δ 0 eに対する路面への投影射像の変化の度合い(A LB)と を、模式的に比較して表したものである。この図 15に示したように、低い位置からの 投影射像の変化の度合い (これが低い位置力 撮影した場合の姿勢変化 Δ Θ eに対 する位置のずれの大きさに相当する) A LAと、高い位置力もの投影射像の変化の度 合い (これが高い位置力 撮影した場合の姿勢変化 Δ Θ eに対する位置のずれの大 きさに相当する) A LBとでは、 A LA > >LBであることが明らかである。このため、特 許文献 1のように固定的な位置にナビゲート情報を重畳させて表示すると、車両の姿 勢変化や、片勾配 (カント)など道路の立体的な形状等に因る道路に対する相対的 な車両の姿勢変化などに起因して、ナビゲート情報の表示位置が実写映像での適 切に表示すべき位置力も大幅にずれるという事態が頻発してしまい、その結果、ナビ ゲート情報が景観中のどの位置を示しているの力などをユーザー (運転者)が直観的 に正確に把握することは困難あるいは不可能なものとなる。
[0017] さらに具体的には、特許文献 1のように景観の実写映像の画面中の中央線上のよう な固定的な位置にナビゲート情報の例えば矢印などを位置させるようにする技術で は、車両の少しの姿勢変化でも景観の実写映像とナビゲート情報の画像との間での ずれが大幅なものとなり、またビルディングのような建物ゃ榭木などの道路沿線で車 両寄りにある景観によってそれよりも遠方の景観が遮られることが多 、ので、それに 対処するためにさらに正確な位置にナビゲート情報の画像を表示することが必要とな る力 特許文献 1ではそのような対処は不可能である。
[0018] また、実際には自動車のような移動体は一般に、走行中には車両のローリングゃピ ツチングなどで頻繁に姿勢が変化することが多ぐし力も上記のような理由から一般 的な車両の高々 1乃至 3m程度の高さからの景観中では、少しの姿勢変化でも大幅 な位置ずれとなってしまうので、特許文献 1の技術では、例えば道順を示す矢印のよ うなナビゲート情報の表示位置が実写映像中での適正な表示位置から大幅にずれ た状態になるという事態が多発する虞がある。
[0019] し力も、そのような姿勢変化は、車両の駆動方式などの構造やエンジンの配置位置 などで支配的に定まる重心位置の違 、などによって、車両の形式ごとで異なったもの となる場合が多いので、車両の形式ごとや姿勢変化の大きさや方向ごとで異なった 対応をすることが必要となるが、そのような対応は特許文献 1では不可能である。また 、車体および運転者の身体を大きく傾斜させて曲線を通過する二輪車やスタータの 場合には、車両の姿勢変化はさらに顕著なものとなるので、そのような二輪車向けの ナビゲート装置の場合には、車両の姿勢変化に起因した表示位置のずれがさらに顕 著なものとなってしまう。
[0020] また、第 3に、道路地図データに附加されている道路名称、ランドマーク、病院など の道順案内などのナビゲートを行うに際して有力な目印となり得る場所を自車両の現 在位置に基づいて 3次元的にリアルタイムに表示することが望ましいが、そのようなこ とは特許文献 1では全く考慮されておらず、提案もされていない。し力も、図 14に一 例を示したように、道路沿線の目印となる建物は車両寄りの建物や景観などの背後 に隠れて見辛 、ものとなる場合も多 、。
[0021] 特許文献 2の技術では、上記のような特許文献 1の技術の場合と同様の問題点の 他に、次のような問題点がある。すなわち、特許文献 2では、道路前方の景観の実写 映像を子画面に表示しているだけであるため、道路地図情報と実映映像との照合は 、やはりドライバーが自分の頭の中で考えて行わなければならない。このため、例え ば不慣れな (または初めて通るような)土地における交差や分岐等が多い道路を運転 するドライバーにとっては、直観的にナビゲート情報を把握することが困難であり、延 いてはユーザーが道順を間違ってしまったりナビゲート情報の意味する内容を誤認 したり理解不能になったりする虞がある。
[0022] 特許文献 3の技術には、次のような問題点がある。すなわち、特定な道路形状モデ ルがな!/、ため、多車線道路の場合では画像データから抽出する自車走行車線の中 心線と道路地図データ力 推定する道路中心線との間で大きなずれを生じる可能性 がある。また、自車走行車線の情報を推定できないので、車線変更や左折右折の際 に正し 、ナビゲーシヨン情報を提供することができな!/、。
[0023] また、走行路面の片勾配 (カント; cant)は水平曲率に対応して変化するように設定 されて 、ると!/、う道路構造を考慮して 、な 、ので、曲線道路では現在走行中の車線 の隣の車線での路面に対する姿勢データの推定結果が大幅に変わってしまうことと なり、道路形状を正確に推定することができない虞がある。
[0024] また、画像力もの道路特徴抽出を行うに際しては、道路形状の推定結果をフィード バックせずに単純にフレーム毎に微分フィルタによって輝度変化が大き 、部分を白 線として抽出するようにしている力 この手法によって得られる推定結果は天候の変 化や路面上の影、汚れなどのような種々の環境的な要因の影響を極めて受けやす い。このため、道路特徴抽出してなるデータの表す道路形状モデルが実体の道路形 状とは有意にずれた不正確なものとなる虞があるという問題などもある。
[0025] また、さらには、前方の実写映像にナビゲーシヨン情報の画像を合成するなどして 表示する場合、例えばナビゲーシヨン情報の画像が、実写映像における歩行者やそ の他の障害物などのような要注意な映像と重なるなどして、その要注意な映像の存 在の視認性を妨げてしまう虞がある。
[0026] 本発明は力かる問題点に鑑みてなされたもので、その目的は、進路案内、自車位 置、地図情報などのナビゲーシヨン情報を、移動体の前方の道路の実写映像中また は実際の景観中における適切な位置に正確に投影した表示を行って、ナビゲーショ ン情報と実写映像または実視景観との対応関係をドライバーが直観的に正確に認識 することができ、かつ、実写映像における例えば歩行者や道路工事中の現場の実写 映像のような要注意な映像の視認性をナビゲーシヨン情報の画像で妨げることのな V、ようにした、ナビゲート情報表示方法および移動体ナビゲート情報表示装置を提 供することにある。
[0027] 本発明による第 1の移動体ナビゲート情報表示方法は、移動体の現在位置を検出 すると共に前記移動体の進行方向の道路を含んだ景観を被写体とした実写映像を 前記移動体に設置された車載カメラによって撮影するプロセスと、検出された前記移 動体の現在位置に対応した前記移動体の運行に関するナビゲート情報を、予め道 路地図データと関連付けて記憶されていたナビゲート情報の中から読み出すプロセ スと、前記移動体の現在位置と前記道路地図データとに基づいて、前記現在位置か ら撮影されることが想定される道路に関する道路形状モデルを生成するプロセスと、 前記実写映像力 前記景観中に含まれる道路に関する画像データである道路形状 データを抽出するプロセスと、前記道路形状モデルのデータと前記道路形状データ とを照合して、前記被写体の道路に対する前記車載カメラまたは前記移動体の姿勢 データを推定し、前記姿勢データに基づいて、前記移動体の現在位置に対応して読 み出されたナビゲート情報の前記撮影された実写映像における表示位置を決定する プロセスと、前記撮影された実写映像の前記決定された位置に、前記読み出された ナビゲート情報をユーザーによって設定された表示寸法および色調で合成した画像 を表示するプロセスとを備えて 、る。
また、本発明による第 1の移動体ナビゲート情報表示装置は、移動体の現在位置を 検出する現在位置検出手段と、前記移動体の進行方向の道路を含んだ景観を被写 体とした実写映像を前記移動体に設置された車載カメラによって撮影する撮像手段 と、前記移動体の検出された現在位置に対応した前記移動体の運行に関するナビ ゲート情報を、予め道路地図データと関連付けて記憶されていたナビゲート情報の 中から読み出し、前記移動体の現在位置と前記道路地図データとに基づいて、前記 現在位置から撮影されることが想定される道路に関する道路形状モデルを生成し、 前記実写映像力 前記景観中に含まれる道路に関する画像データである道路形状 データを抽出し、前記道路形状モデルのデータと前記道路形状データとを照合して 、前記被写体の道路に対する前記車載カメラまたは前記移動体の姿勢データを推定 し、前記姿勢データに基づいて、前記移動体の現在位置に対応して読み出されたナ ビゲート情報の前記撮影された実写映像における表示位置を決定し、前記撮影され た実写映像の前記決定された位置に、前記読み出されたナビゲート情報を、ユーザ 一によつて設定された表示寸法および色調で表示される画像として合成してなる画 像を表示するためのデータを出力するデータ処理手段と、前記データ処理手段から 出力されたデータに基づ!ヽて、前記撮影された実写映像の前記決定された位置に、 前記読み出されたナビゲート情報を、ユーザーによって設定された表示寸法および 色調で表示される画像として合成して表示する画像表示手段とを備えている。
[0029] 本発明による第 1の移動体ナビゲート情報表示方法または移動体ナビゲート情報 表示装置では、自動車車両のような移動体の現在位置と、その現在位置を含んだ道 路地図データとに基づいて、現在位置力 撮影されることが想定される道路に関する 道路形状モデルを生成し、またそれと共に、実写映像力 前方あるいは進行方向の 景観中に含まれる道路の画像データである道路形状データを抽出し、それら道路形 状モデルのデータと道路形状データとを照合して、被写体である景観中の道路に対 する車載カメラまたは移動体の姿勢データを推定する。そしてその姿勢データに基 づいて、移動体の現在位置に対応して読み出されたナビゲート情報の撮影された実 写映像における適切な表示位置を決定し、その撮影された実写映像の決定された適 切な位置に読み出されたナビゲート情報をユーザーによって設定された表示寸法お よび色調で合成してなる画像を表示する。
[0030] このようにして、実写映像中でのどこの位置にナビゲート情報を合成するのが適切 であるのかを、道路形状モデルのデータと道路形状データとを照合することによって 決定することにより、例えば進路案内、自車位置、地図情報などのナビゲーシヨン情 報を、移動体の前方の道路の実写映像中または実際の景観中における適切な位置 に正確に投影した表示を行うことが可能となり、延いてはナビゲーシヨン情報と実写 映像または実視景観との対応関係をドライバーが直観的に正確に認識することが可 能となる。しかも、実写映像中に合成されるナビゲート情報の画像 (文字情報等も含 めて画像と総称するものとする)の表示寸法および色調を、ユーザーが自らの好みに 応じて適宜に設定することができるようにして!/、るので、ナビゲート情報の画像を実写 映像中に合成してなる画像全体の視認性の低下が回避される。また、ユーザー自身 がナビゲート情報の画像を自分にとって視認性の良 、ものとなるようにカスタマイズす ることが可能となる。
[0031] 本発明による第 2の移動体ナビゲート情報表示方法は、移動体の現在位置を検出 すると共に前記移動体の進行方向の道路を含んだ景観を被写体とした実写映像を 前記移動体に設置された車載カメラによって撮影するプロセスと、検出された前記移 動体の現在位置に対応した前記移動体の運行に関するナビゲート情報を、予め道 路地図データと関連付けて記憶されていたナビゲート情報の中から読み出すプロセ スと、前記移動体の現在位置と前記道路地図データとに基づいて、前記現在位置か ら撮影されることが想定される道路に関する道路形状モデルを生成するプロセスと、 前記実写映像力 前記景観中に含まれる道路に関する画像データである道路形状 データを抽出するプロセスと、前記道路形状モデルのデータと前記道路形状データ とを照合して、前記被写体の道路に対する前記車載カメラまたは前記移動体の姿勢 データを推定し、前記姿勢データに基づいて、前記移動体の現在位置に対応して読 み出されたナビゲート情報の前記撮影された実写映像における表示位置を決定する プロセスと、前記ナビゲート情報について、表示の必要性の緊急度に応じて、警告情 報と誘導情報と付加情報との 3種類の分類を予め定義し、その各分類に対して優先 順位を予め定めておき、前記ナビゲート情報が前記分類のうちのどれに該当するか を判別し、前記分類に対応した順序に従って、前記ナビゲート情報を、前記撮影され た実写映像の前記決定された位置に合成して表示するプロセスとを備えている。 また、本発明による第 2の移動体ナビゲート情報表示装置は、移動体の現在位置を 検出する現在位置検出手段と、前記移動体の進行方向の道路を含んだ景観を被写 体とした実写映像を前記移動体に設置された車載カメラによって撮影する撮像手段 と、前記移動体の検出された現在位置に対応した前記移動体の運行に関するナビ ゲート情報を、予め道路地図データと関連付けて記憶されていたナビゲート情報の 中から読み出し、前記移動体の現在位置と前記道路地図データとに基づいて、前記 現在位置から撮影されることが想定される道路に関する道路形状モデルを生成し、 前記実写映像力 前記景観中に含まれる道路に関する画像データである道路形状 データを抽出し、前記道路形状モデルのデータと前記道路形状データとを照合して 、前記被写体の道路に対する前記車載カメラまたは前記移動体の姿勢データを推定 し、前記姿勢データに基づいて、前記移動体の現在位置に対応して読み出されたナ ビゲート情報の前記撮影された実写映像における表示位置を決定し、前記ナビゲー ト情報について、表示の必要性の緊急度に応じて、警告情報と誘導情報と付加情報 との 3種類の分類を予め定義し、その各分類に対して優先順位を予め定めておき、 前記ナビゲート情報が前記分類のうちのどれに該当するかを判別し、前記分類に対 応した順序に従って、前記撮影された実写映像の前記決定された位置に前記ナビ ゲート情報を画像として合成して表示するためのデータを出力するデータ処理手段と
、前記データ処理手段力 出力されたデータに基づいて、前記撮影された実写映像 の前記決定された位置に、前記読み出されたナビゲート情報の画像を、前記分類に 対応した順序に従って合成して表示する画像表示手段とを備えている。
[0033] 本発明による第 2の移動体ナビゲート情報表示方法または移動体ナビゲート情報 表示装置では、第 1の移動体ナビゲート情報表示方法または移動体ナビゲート情報 表示装置と同様にして、実写映像中でのどこの位置にナビゲート情報を合成するの が適切であるのかを、道路形状モデルのデータと道路形状データとを照合することに よって決定することにより、例えば進路案内、自車位置、地図情報などのナビゲーシ ヨン情報を、移動体の前方の道路の実写映像中または実際の景観中における適切 な位置に正確に投影した表示を行うことが可能となり、延 、てはナビゲーシヨン情報と 実写映像または実視景観との対応関係をドライバーが直観的に正確に認識すること が可能となる。し力も、撮影された実写映像における決定された位置に、読み出され たナビゲート情報の画像を、上記のような優先順位に基づ 、た分類に対応した順序 に従って合成して表示するようにしているので、一度に多数のナビゲート情報の画像 がーつの実写映像中に表示されることが回避され、延いてはナビゲート情報の画像 を実写映像中に合成してなる画像全体の視認性の低下が防止される。
[0034] なお、上記の警告情報以外のナビゲート情報については、実写映像の中の警告対 象物に対する移動体の現在位置が所定の距離内に入って以降に表示するようにし てもよい。このようにすることにより、ナビゲート情報の画像形成のためのデータ処理 量が節約されると共に、ユーザーにとって必要なナビゲート情報の画像を、それが本 当に必要となるまで近付いたときに、タイミング良く表示することが可能となる。
[0035] また、本発明による第 3の移動体ナビゲート情報表示方法は、移動体の現在位置を 検出すると共に前記移動体の進行方向の道路を含んだ景観を被写体とした実写映 像を前記移動体に設置された車載カメラによって撮影するプロセスと、検出された前 記移動体の現在位置に対応した前記移動体の運行に関するナビゲート情報を、予 め道路地図データと関連付けて記憶されていたナビゲート情報の中力 読み出すプ ロセスと、前記移動体の現在位置と前記道路地図データとに基づいて、前記現在位 置力 撮影されることが想定される道路に関する道路形状モデルを生成するプロセ スと、前記実写映像力 前記景観中に含まれる道路に関する画像データである道路 形状データを抽出するプロセスと、前記道路形状モデルのデータと前記道路形状デ 一タとを照合して、前記被写体の道路に対する前記車載カメラまたは前記移動体の 姿勢データを推定し、前記姿勢データに基づいて、前記移動体の現在位置に対応 して読み出されたナビゲート情報の前記撮影された実写映像における表示位置を決 定するプロセスと、前記撮影された実写映像の前記決定された位置に、前記読み出 されたナビゲート情報を合成した画像を表示するプロセスであって、前記ナビゲート 情報のうち、走行方向案内のためのグラフィック表示以外のナビゲート情報について は、前記実写映像における仮想消失点または仮想地平線よりも下の領域には表示 せず、前記仮想消失点または前記仮想地平線よりも上の領域に表示するプロセスと を備えている。
また、本発明による第 3の移動体ナビゲート情報表示装置は、移動体の現在位置を 検出する現在位置検出手段と、前記移動体の進行方向の道路を含んだ景観を被写 体とした実写映像を前記移動体に設置された車載カメラによって撮影する撮像手段 と、前記移動体の検出された現在位置に対応した前記移動体の運行に関するナビ ゲート情報を、予め道路地図データと関連付けて記憶されていたナビゲート情報の 中から読み出し、前記移動体の現在位置と前記道路地図データとに基づいて、前記 現在位置から撮影されることが想定される道路に関する道路形状モデルを生成し、 前記実写映像力 前記景観中に含まれる道路に関する画像データである道路形状 データを抽出し、前記道路形状モデルのデータと前記道路形状データとを照合して 、前記被写体の道路に対する前記車載カメラまたは前記移動体の姿勢データを推定 し、前記姿勢データに基づいて、前記移動体の現在位置に対応して読み出されたナ ビゲート情報の前記撮影された実写映像における表示位置を決定し、前記ナビゲー ト情報のうち、走行方向案内のためのグラフィック表示以外のナビゲート情報につい ては、前記実写映像における仮想消失点または仮想地平線よりも下の領域には表示 せず、前記仮想消失点または前記仮想地平線よりも上の領域に合成して表示するた めのデータを出力するデータ処理手段と、前記データ処理手段から出力されたデー タに基づいて、前記撮影された実写映像の前記決定された位置に、前記読み出され たナビゲート情報を合成して表示する画像表示手段とを備えている。
[0037] 本発明による第 3の移動体ナビゲート情報表示方法または移動体ナビゲート情報 表示装置では、第 1の移動体ナビゲート情報表示方法または移動体ナビゲート情報 表示装置と同様にして、実写映像中でのどこの位置にナビゲート情報を合成するの が適切であるのかを、道路形状モデルのデータと道路形状データとを照合することに よって決定することにより、例えば進路案内、自車位置、地図情報などのナビゲーシ ヨン情報を、移動体の前方の道路の実写映像中または実際の景観中における適切 な位置に正確に投影した表示を行うことが可能となり、延 、てはナビゲーシヨン情報と 実写映像または実視景観との対応関係をドライバーが直観的に正確に認識すること が可能となる。し力も、ナビゲート情報のうち走行方向案内のためのグラフィック表示 以外のナビゲート情報については、実写映像における仮想消失点または仮想地平 線よりも下の領域には表示せず、仮想消失点または仮想地平線よりも上の領域に合 成して表示するようにして ヽるので、道路や地面の実写映像の視認性をナビゲート情 報の表示で妨げることがな!、。
[0038] また、本発明による第 4の移動体ナビゲート情報表示方法は、移動体の現在位置を 検出すると共に前記移動体の進行方向の道路を含んだ景観を被写体とした実写映 像を前記移動体に設置された車載カメラによって撮影するプロセスと、検出された前 記移動体の現在位置に対応した前記移動体の運行に関するナビゲート情報を、予 め道路地図データと関連付けて記憶されていたナビゲート情報の中力 読み出すプ ロセスと、前記移動体の現在位置と前記道路地図データとに基づいて、前記現在位 置力 撮影されることが想定される道路に関する道路形状モデルを生成するプロセ スと、前記実写映像力 前記景観中に含まれる道路に関する画像データである道路 形状データを抽出するプロセスと、前記道路形状モデルのデータと前記道路形状デ 一タとを照合して、前記被写体の道路に対する前記車載カメラまたは前記移動体の 姿勢データを推定し、前記姿勢データに基づいて、前記移動体の現在位置に対応 して読み出されたナビゲート情報の前記撮影された実写映像における表示位置を決 定するプロセスと、前記読み出されたナビゲート情報を、垂直軸または水平軸を中心 に回転する 3次元アイコンとして、前記撮影された実写映像の前記決定された位置に 合成して表示するプロセスとを備えて!/、る。
[0039] また、本発明による第 4の移動体ナビゲート情報表示装置は、移動体の現在位置を 検出する現在位置検出手段と、前記移動体の進行方向の道路を含んだ景観を被写 体とした実写映像を前記移動体に設置された車載カメラによって撮影する撮像手段 と、前記移動体の検出された現在位置に対応した前記移動体の運行に関するナビ ゲート情報を、予め道路地図データと関連付けて記憶されていたナビゲート情報の 中から読み出し、前記移動体の現在位置と前記道路地図データとに基づいて、前記 現在位置から撮影されることが想定される道路に関する道路形状モデルを生成し、 前記実写映像力 前記景観中に含まれる道路に関する画像データである道路形状 データを抽出し、前記道路形状モデルのデータと前記道路形状データとを照合して 、前記被写体の道路に対する前記車載カメラまたは前記移動体の姿勢データを推定 し、前記姿勢データに基づいて、前記移動体の現在位置に対応して読み出されたナ ビゲート情報の前記撮影された実写映像における表示位置を決定し、前記撮影され た実写映像の前記決定された位置に、前記読み出されたナビゲート情報を垂直軸ま たは水平軸を中心に回転する 3次元アイコンとして合成してなる画像を表示するため のデータを出力するデータ処理手段と、前記データ処理手段から出力されたデータ に基づいて、前記撮影された実写映像の前記決定された位置に、前記読み出された ナビゲート情報を、垂直軸または水平軸を中心に回転する 3次元アイコンとして合成 して表示する画像表示手段とを備えて ヽる。
[0040] 本発明による第 4の移動体ナビゲート情報表示方法または移動体ナビゲート情報 表示装置では、第 1の移動体ナビゲート情報表示方法または移動体ナビゲート情報 表示装置と同様にして、実写映像中でのどこの位置にナビゲート情報を合成するの が適切であるのかを、道路形状モデルのデータと道路形状データとを照合することに よって決定することにより、例えば進路案内、自車位置、地図情報などのナビゲーシ ヨン情報を、移動体の前方の道路の実写映像中または実際の景観中における適切 な位置に正確に投影した表示を行うことが可能となり、延 、てはナビゲーシヨン情報と 実写映像または実視景観との対応関係をドライバーが直観的に正確に認識すること が可能となる。し力も、ナビゲート情報の画像を、垂直軸または水平軸を中心に回転 する 3次元アイコンとして、実写映像中に合成して表示するようにしたので、道路や地 面の実写映像の視認性をナビゲート情報の表示で妨げることがない。
[0041] ここで、上記のナビゲート情報としては、例えば移動体の目的地に到着するまでの 道順に関する進路案内、自車位置、自車が走行中の車線、進路案内または自車位 置を当該移動体の運転者が確認するに当たっての目印となる建物のうち、少なくとも
V、ずれか一つなどが可能である。
[0042] また、ナビゲート情報が文字または記号もしくは数字の情報であるときは、その情報 をアイコン化して、そのアイコンの画像を撮影された実写映像に合成して表示するよ うにすればよい。
[0043] また、上記のデータ処理を行うプロセスまたはデータ処理手段は、ナビゲート情報 を 3次元拡張現実 (Augmented Reality)空間内の仮想実体 (virtual object)として表 現し、既に得られた姿勢データに基づいて 2次元特徴空間に変換してなる道路形状 データの中の該当する位置に割り当てるようにすることで、そのナビゲート情報の画 像を実写映像中に仮想実体として合成することなども可能である。このようにすること により、例えば道順案内の目印となる建物についての文字または記号もしくは数字か らなるナビゲート情報を、実写映像ではその目印の建物が手前側の建物などの背後 や曲線道路の内周側などに隠れて見えない場合であっても、その目印の建物の存 在を視覚的に直観的に示すことが可能となる。
[0044] なお、上記のデータ処理を行うプロセスまたはデータ処理手段は、道路形状データ を遠近法的な 2次元特徴空間の画像データに変換すると共に道路形状モデルのデ ータを遠近法的な 2次元特徴空間の画像データに変換し、それらを 2次元特徴空間 にて 2次元データどうしで照合して、被写体の道路の路面に対する車載カメラまたは 移動体の姿勢データを推定するようにしてもよい。このようにすることにより、姿勢デー タを推定するために行われる道路形状データと道路形状モデルのデータとの照合を 、 3次元論理空間などで 3次元データどうしで行うと 、つた情報量が極めて多くなりデ ータの高速処理が困難になる場合があることが想定されるような手法を用いなくとも、 疑似 3次元的な 2次元特徴空間で 2次元データどうしで行うことができるので、その照 合のプロセスの簡易化および高速ィ匕を達成することなどが可能となる。
[0045] また、上記のデータ処理を行うプロセスまたはデータ処理手段は、道路形状モデル を生成するにあたり、曲線道路における走行路面の片勾配は当該曲線道路の水平 曲率に対応して変化するように設定されて!ヽると!ヽぅ道路構造を考慮したモデリング を行うことで、多車線道路の道路形状モデルを生成するものとしてもよい。このよう〖こ することにより、自動車車両のような移動体が多車線道路を走行している場合であつ ても、多車線道路の道路形状を正確に把握することができ、延いてはそのような多車 線道路の道路形状に正確に対応した適切な位置にナビゲート情報を合成して表示 することが可能となる。
[0046] また、上記のデータ処理を行うプロセスまたはデータ処理手段は、道路形状モデル のデータと道路形状データとを照合するにあたり、道路ルックアップテーブル (RSL: Road Shaped Look-up table)を用いて、実写映像から景観中に含まれる道路白線の 存在確率を求めて RSL値を算出し、その RSL値による評価値が最大になるように当 該移動体の姿勢データを求めるようにしてもよい。このようにすることにより、天候の変 化や路面上の影、汚れなどのような種々の環境的な要因の悪影響を受けることなく常 に正確な道路形状データを抽出することができ、延いてはそれを用いて正確な姿勢 データを推定することが可能となる。
[0047] また、上記の画像表示を行うプロセスまたは画像表示手段は、撮影された実写映像 の中の適切であると決定された位置に読み出されたナビゲート情報を合成してなる 画像を、例えばダッシュボートのほぼ中央部などに設置されたカーナビゲーシヨン用 の液晶表示パネルのような表示装置の所定の表示画面に表示するものであるように することが可能である。
[0048] あるいは、撮影された実写映像の決定された位置に読み出されたナビゲート情報を 合成してなる画像を、いわゆる HUD (Head Up Display)型投射装置のような表示装 置などによって、運転席前面の透明窓の内側表面に投射して表示するようにしてもよ い。 [0049] また、上記のデータ処理を行うプロセスまたはデータ処理手段は、移動体の検出さ れた現在位置に対応したナビゲート情報を、予め道路地図データと関連付けて記憶 されていたナビゲート情報の中から読み出し、当該移動体の現在位置と道路地図デ ータとに基づいて、現在位置から撮影されることが想定される道路に関する道路形状 モデルを生成し、実写映像カゝら景観中に含まれる道路の画像データである道路形状 データを抽出し、道路形状モデルのデータと道路形状データとを照合して、被写体 の道路に対する車載カメラまたは移動体の姿勢データを推定し、その姿勢データに 基づ ヽて、移動体の現在位置に対応して読み出されたナビゲート情報の撮影された 実写映像における表示位置を決定し、その決定された位置に読み出されたナビゲー ト情報の画像を表示するためのデータを出力するものであり、上記の画像表示手段 または画像表示プロセスは、ナビゲート情報の画像を移動体の運転席前面の透明窓 の内側表面に投射して表示することで、そのナビゲート情報の画像を運転席前面の 透明窓から見える景観に合成して表示するものであるようにすることなども可能である
[0050] 以上説明したように、本発明の移動体ナビゲート情報表示方法または移動体ナビ ゲート情報表示装置によれば、自動車車両のような移動体の現在位置と、その現在 位置を含んだ道路地図データとに基づいて、現在位置力 撮影されることが想定さ れる道路に関する道路形状モデルを生成し、またそれと共に、実写画像から前方あ るいは進行方向の景観中に含まれる道路の画像データである道路形状データを抽 出し、それら道路形状モデルのデータと道路形状データとを照合して、被写体である 景観中の道路に対する車載カメラまたは移動体の姿勢データを推定し、その姿勢デ ータに基づいて、移動体の現在位置に対応して読み出されたナビゲート情報の撮影 された実写画像における適切な表示位置を決定し、その撮影された実写画像の決定 された適切な位置に、読み出されたナビゲート情報を合成した画像を表示するように したので、例えば進路案内、自車位置、地図情報などのナビゲーシヨン情報を、移動 体の前方の道路の実写映像中または実際の景観中における適切な位置に正確に投 影した表示を行うことが可能となり、延いてはナビゲーシヨン情報と実写映像または実 視景観との対応関係をドライバーが直観的に正確に認識することが可能となるという 効果を奏する。し力も、実写映像における例えば歩行者や道路工事中の現場の実写 映像のような要注意な映像の視認性をナビゲーシヨン情報の画像で妨げることを回 避して、表示画像全体に亘つて視認性を良好なものとすることができる。
図面の簡単な説明
[図 1]本発明の一実施の形態に係る移動体ナビゲート情報表示装置の概要構成を表 した図である。
[図 2]3次元車両座標系 VCSおよび 3次元カメラ座標系 CCSならびに 2次元投影画 像座標系 ICSの相対的位置関係を表した図である。
[図 3]道路地図データによって表される点と線によるマッピングの一例を表した図であ る。
[図 4]クロソイド曲線で近似してなる道路セグメント水平形状モデルを表した図である。
[図 5]2D— 2Dマッチングの際に用いられる道路水平形状モデルの一例を表した図 である。
[図 6]中央処理部における、道路形状データの抽出および道路形状モデルの生成な らびにカメラ姿勢パラメータの推定等を含んだ一連の主要な処理の流れを表したフロ 一チャートである。
[図 7]中央処理部で行われる各種の演算に用いられる各種の数式を纏めて表した図 である。
[図 8]最終的に表示される画像の一例を表した図である。
[図 9]合成画像中に表示される 3次元アイコンの回転を模式的に示した図である。
[図 10]実写映像の外側周囲に文字情報専用表示領域を予め設けた場合の画面構 成の一例を表した図である。
[図 11]最終的に表示される画像の、他の(図 8とは別の)一例を表した図である。
[図 12]2つの 3次元アイコンを、互いに異なった位相で回転させて表示する状態を模 式的に示した図である。
[図 13]特許文献 1にて表示可能であると主張されているナビゲート情報の画像を重 畳してなる映像の一例を表した図である。
[図 14]実際の自動車の運転席力もフロントガラス越しに見える前方景観の一例を表し た図である。
[図 15]—般的な車両の lm程度の高さの運転席力もの視線における単位角度変化に 対する路面への投影射像の変化の度合 、 (A)と、それよりも高 、 10mのような高さか らの視線における単位角度変化に対する路面への投影射像の変化の度合い (B)と を、模式的に比較して表した図である。
発明を実施するための最良の形態
[0052] 以下、本発明を実施するための最良の形態について図面を参照して詳細に説明 する。
[0053] 図 1は、本発明の移動体ナビゲート情報表示装置の概要構成を表したものである。
なお、本発明の実施の形態に係る移動体ナビゲート情報表示方法は、この移動体ナ ビゲート情報表示装置の動作あるいは作用によって具現ィ匕されるものであるから、以 下、それらを併せて説明する。
[0054] この移動体ナビゲート情報表示装置は、センサー入力部 1と、操作部 2と、地図管 理部 3と、中央処理部 4と、映像表示部 5と、制御部 6とを、その主要部として備えてい る。
[0055] さらに詳細には、センサー入力部 1は、 CCD (固体撮像素子)カメラ 101と、 GPSセ ンサ 102と、 INSセンサ 103と、 VICS104とを備えている。 CCDカメラ 101はドライバ 一がフロントガラス越しに見る視線とほぼ同様のカメラアングルで車両前方の景観を 撮影 (撮像)するように、例えばこの移動体ナビゲート情報表示装置が搭載されて ヽ る自動車のような移動体 (以下、これを自車両または当該移動体もしくは自車とも呼 ぶ)の運転席のダッシュボードの上または天井付近(図示省略)などに設置されて ヽ る。この CCDカメラ 101は、例えば固定焦点距離の単眼方式のものであり、道路を含 んだ前方の景観の画像を撮像してその画像信号を取り込む。取り込まれた画像信号 は、中央処理部 4の画像メモリ(図示省略)にデータとして転送される。そして GPSセ ンサ 102と INSセンサ 103とで取得された当該移動体に関する走行方位のデータお よび車速データは、 CCDカメラ 101で取得された画像データと同期して、中央処理 部 4へと転送される。また、道路交通情報受信装置である VICS 104から受けられた データも中央処理部 4に転送される。 [0056] 操作部 2は、ユーザーからのボタン操作またはリモコン入力装置(図示省略)などに よって入力された操作命令に応答してシステム設定やモード変更などの命令を中央 処理部 4に転送する。
[0057] 地図管理部 3は、中央処理部 4からの読み出し命令に従って、操作部 2からの命令 入力で指定された道路位置の各種情報を、所定の地理的領域の地図データを予め 記録して!/、る地図データ CD301から読み出して、中央処理部 4へと転送する。
[0058] 中央処理部 4は、画像処理モジュール 401、測位処理モジュール 402、映像出力 処理モジュール 403、制御出力処理モジュール 404という 4つのモジュールと、画像 データ生成部 405とから、その主要部が構成されて 、る。
[0059] 画像処理モジュール 401は、車載された CCDカメラ 101の姿勢推定、走行車線追 跡、害物検出、および車間距離計算などを行う。
[0060] 測位処理モジュール 402は、センサー入力部 1からの方位及び車速を地図管理部
3の道路地図データとマップマッチングして、正 、道路位置情報の演算を行ってそ のデータを出力する。
[0061] 映像出力処理モジュール 403は、映像表示部 5における進路案内、自車位置、お よび地図情報を、 3次元拡張現実空間内の仮想実体として表現し、それを後述する ような推定方法で求められた CCDカメラ 101の姿勢パラメータで 2次元道路映像へと 投影して、移動体の前面の景観の実写映像と融合 (合成)させる。また、悪天候状況 での道路区画線強調表示や障害物などの危険表示などを行うためのデータ生成も 行う。またさらには、道路地図に附加すべき情報として、例えば、ランドマーク、鉄道 の駅、病院、ガソリンスタンドなどのような道順案内の際の目印となり得る物体の情報 をアイコン化して、それをカメラ姿勢パラメータを用いて道路の実写映像に投影する。
[0062] 制御出力処理モジュール 404は、各解析結果を総合的に判断し、自車両に対する 危険性の度合いに対応した警報等を出力するためのアラーム出力命令を、制御部 6 に対して与える。
[0063] 画像データ生成部 405は、主に画像処理モジュールおよび測位処理モジュールか ら出力されたデータならびに地図管理部 3から読み出された地図データに基づいて 、自車両の現在走行中の走行車線認識、道路形状認識、障害物認識や、自車両の 絶対路上位置認識、カメラ姿勢の推定などを行って、ナビゲート情報を実写映像中 の適切な位置に合成して表示するためのデータを生成する。その表示データは、さ らに具体的には、次のような仮想空間内での 3次元モデリングルールに基づいて生 成される。すなわち、
(1)ランドマークや施設情報は、それらを模式的に表現した 3次元アイコンで表示す る。
(2)走行方向などの指示情報は、 3次元矢印で表示する。
(3)全てのナビゲート情報は、基本的にユーザーによって変更可能である。但し、各 ナビゲート情報ごとに、そのデフォルトの表示寸法および色がそれぞれ予め定められ ていることは勿論である。例えば、病院を示すランドマークは、赤地に白十字の、所 定の面積および厚みを有するプレート状の 3次元アイコンで表示するようにデフォルト 設定されている力 これをユーザーが例えば白地に赤白十字のプレート状の 3次元 アイコンで表示するように変更することなども可能である。そのような設定のデータに ついては、操作部 2を用いてユーザーが入力する。そしてその入力された設定のデ ータはさらに画像処理モジュール 401を介して画像データ生成部 405へと入力され る。そして、画像データ生成部 405にて、各種のナビゲート情報をその各々に対応し た寸法および色合いで表示するためのデータが生成される。
(4)ナビゲート情報について、表示の必要性の緊急度に応じて、警告情報と誘導情 報と付加情報との 3種類の分類を予め定義しておく。その定義の情報は、画像データ 生成部 405に予め格納されている。ここで、警告情報とは、例えば車線離れや障害 物の接近 (または衝突の虞)等をユーザーに警告するための情報である。また、誘導 情報とは、目的地への走行方向、駐車場の空き案内、ランドマークや通行路沿線の 大きな施設の情報等である。また、付加情報とは、通行路沿線の中小施設や商店等 の情報である。それら各分類のそれぞれに対して優先順位を予め定めておく。その 優先順位の情報も、画像データ生成部 405に予め格納されている。そして、ナビゲ ート情報が前述の分類のうちのどれに該当するかを判別し、その分類に対応した順 序に従って各ナビゲート情報を実写映像内の該当する位置に合成して表示するため のデータを、画像データ生成部 405にて生成する。 (5)警告情報以外のナビゲート情報については、実写映像 (または HUDの場合には 実景)の中の警告対象物に対する移動体の現在位置が所定の距離内に入って以降 に表示する。
(6)ナビゲート情報のうち、走行方向案内のための 3次元矢印や仮想道路ペインティ ングなどのようなグラフィック表示以外の、ナビゲート情報については、実写映像にお ける仮想消失点または仮想地平線よりも下の領域には表示せず、仮想消失点または 仮想地平線よりも上の領域に表示する。
(7)ナビゲート情報を、垂直軸または水平軸を中心に回転する 3次元アイコンとして、 撮影された実写映像の決定された位置に合成して表示する。なお、回転する 3次元 アイコンが、一画面内に複数個表示される場合には、それら複数個の 3次元アイコン のそれぞれを、互いに異なった位相または回転速度で回転させて表示する。
(8)ナビゲート情報を、実写映像が透けて視認されるような半透明アイコンとして表示 する。
(9)ナビゲート情報のうち、文字情報 (文字として表示される情報)については、実写 映像内ではなぐ実写映像の外側周囲に予め設けられた表示領域に表示する。
[0064] 映像表示部 5は、画像データ生成部 405によって生成されたデータに基づいて、ナ ビゲート情報を実写映像中の適切な位置に合成した映像 (画像)を、例えば液晶表 示パネノレの画面に表示する。
[0065] 制御部 6は、上記のようなアラーム出力命令に対応した警報等の出力の制御や、制 御出力モジュールによる解析結果に対応した音声出力の制御、ブレーキの制御、操 舵の制御などを、例えばそれらの制御量を調節するために設けられて 、る各サーボ モータ系などの動作を制御することによって行う。
[0066] 次に、この移動体ナビゲート情報表示装置の動作について説明する。
[0067] この移動体ナビゲート情報表示装置では、自車両の現在位置を含む付近の地理 に関する道路地図データを、 GPSセンサ 102および INSセンサ 103ならびに測位処 理モジュールによって検出された現在位置のデータに基づいて、画像データ生成部 405が、現在位置力も撮影されることが想定される道路に関する道路形状モデルを 生成する。またそれと共に、実写映像から進行方向の景観中に含まれる道路の画像 データである道路形状データを、例えば道路の走行区分線の白線画像データ等に 基づいて抽出する。
[0068] 続いて、画像データ生成部 405は、道路形状データと道路形状モデルのデータと を照合して、 CCDカメラ 101によって撮影される被写体となつて!、る景観中の道路に 対する CCDカメラ 101の姿勢データ (または自車両の姿勢データでも構わない)を推 定する。
[0069] そしてその姿勢データに基づいて、移動体の現在位置に対応して読み出されたナ ビゲート情報の撮影された実写映像における適切な表示位置を決定し、その撮影さ れた実写映像の決定された適切な位置に、読み出されたナビゲート情報を合成した 画像を表示することができるような画像データを生成する。
[0070] このようにして、画像データ生成部 405が、実写映像中でのどこの位置にナビゲー ト情報を合成するのが適切であるのかを、道路形状モデルのデータと道路形状デー タとを照合することによって決定し、そのようにして生成された画像データに基づいて 、映像表示部 5が、例えば進路案内、自車位置、地図情報などのナビゲーシヨン情報 を、移動体の前方の道路の実写映像中またはフロントガラス越しに見える実際の景 観中の適切な位置に正確に合成した表示を行うことができる。その結果、本実施の 形態に係る移動体ナビゲート情報表示装置によれば、ナビゲーシヨン情報と実写映 像または実視景観との対応関係をドライバーが直観的に正確に認識することを可能 とした映像を表示することができる。
[0071] ここで、上記のナビゲート情報とは、例えば移動体の目的地に到着するまでの道順 に関する進路案内、自車位置、自車が走行中の車線、進路案内または自車位置を 当該移動体の運転者が確認するに当たっての目印となる建物のうち、少なくともいず れか一つなどである。また、ナビゲート情報が文字または記号もしくは数字の情報で あるときは、その情報をアイコンィ匕して、そのアイコンの画像を撮影された実写映像に 合成して表示することが望ま U、。
[0072] また、画像データ生成部 405では、ナビゲート情報を 3次元拡張現実空間内の仮 想実体として表現して、既に得られた姿勢データ等に基づいて 2次元特徴空間に変 換してなる道路形状データの中の該当する位置に割り当てるようにすることで、その ナビゲート情報の画像を実写映像中の適切な位置に仮想実体として合成して、例え ば道順案内の目印となる建物についての文字または記号もしくは数字力もなるナビ ゲート情報を、実写映像ではその目印の建物が手前側の建物などの背後や曲線道 路の内周側などに隠れて見えない場合であっても、その目印の建物の存在を視覚的 に直観的に示すようにしている。
[0073] また、画像データ生成部 405では、道路形状データを遠近法的な 2次元特徴空間 の画像データに変換すると共に道路形状モデルのデータを遠近法的な 2次元特徴 空間の画像データに変換し、それらを 2次元特徴空間にて 2次元データどうしで照合 して、被写体の道路の路面に対する車載カメラまたは移動体の姿勢データを推定し ている。このように、姿勢データを推定するために行われる道路形状データと道路形 状モデルのデータとの照合を、疑似 3次元的な 2次元特徴空間で 2次元データどうし で行うようにしたことで、その照合のプロセスの簡易化および高速ィ匕が達成されてい る。
[0074] また、道路形状モデルを生成するにあたり、曲線道路における走行路面の片勾配 は当該曲線道路の水平曲率に対応して変化するように設定されているという道路構 造を考慮したモデリングを行うことで、多車線道路の道路形状モデルを生成して 、る 。これにより、自動車車両のような移動体が多車線道路を走行しているときでも、多車 線道路の道路形状を正確に把握することができ、延 、てはそのような多車線道路の 道路形状に正確に対応した適切な位置にナビゲート情報を合成して表示することが できる。
[0075] また、道路形状モデルのデータと道路形状データとを照合するにあたり、道路ルツ クアップテーブル (RSL,参照文献:胡振程「車載カメラの運動解析による複数移動 体の抽出及び同時追跡に関する研究」熊本大学大学院自然科学研究室博士学位 論文)を用いて、実写映像力 景観中に含まれる道路白線の存在確率を求めて RSL 値を算出し、その RSL値による評価値が最大になるように当該移動体の姿勢データ を求めるようにしてもよい。このようにすることで、天候の変化や、路面上の影または汚 れなどのような種々の環境的な要因の悪影響を受けることなく常に正確な道路形状 データを抽出することができ、延いてはそれを用いて正確な姿勢データを推定するこ とが可能となる。
[0076] また、撮影された実写映像中の適切であると決定された位置にナビゲート情報を合 成してなる画像を、例えばダッシュボートのほぼ中央部などに設置されたカーナビゲ ーシヨン用の液晶表示パネルのような表示装置の所定の表示画面に表示するもので あるようにすることの他にも能である。
[0077] または、撮影された実写映像における上記のような照合によって決定された適切な 位置に、読み出されたナビゲート情報を合成してなる画像を、いわゆる HUD型投射 装置のような表示装置などによって、運転席前面の透明窓の内側表面に投射して表 示するようにしてちょい。
[0078] あるいは、ナビゲート情報の画像を撮影された実写映像の中に合成するのではなく 、上記のような照合によってナビゲート情報の画像を表示するのに適切な位置である と決定された位置のデータを用いて、その位置に相当する運転席前面のフロントガラ スの内側表面に、ナビゲート情報の画像を HUD的に投射して表示することで、その ナビゲート情報の画像を運転席前面の透明窓力 見える景観に合成して表示しても よい。
[0079] 次に、本実施の形態に係る移動体ナビゲート情報表示装置および移動体ナビゲー ト情報表示方法の、さらに具体的な実施例について説明する。
[0080] 図 2は、 3次元車両座標系 VCS (Xv, Yv, Ζν)および 3次元カメラ座標系 CCS (Xc , Yc, Zc)ならびに 2次元投影画像座標系 ICS (xi, yi)の相対的位置関係を表したも のである。ここで、 3次元車両座標系 VCSの原点は車両後輪中央線の中点に位置し ており、 Zv軸は車両の中央線に、 Xv軸, Yv軸はそれぞれ左,上に指向するように、 各々設定されているものとする。また、 3次元カメラ座標系 CCSの原点は CCDカメラ のレンズ中心点に位置しており、 Zc軸はカメラの光軸に重なるように設定されている ものとする。また、 2次元投影画像座標系 ICSは Zc=fconst (Zc=fなる平面)に位置 しているちのとする。
[0081] カメラ座標系 CCSから画像座標系 ICSへの変換関係は正投影である。従って、図 7 に式 1に示したような行列による関係式として記述することができる。但しここに、 Pは CCS座標系内の座標 [Xc, Yc, Zc, 1]、 pは ICS座標系内の座標 [xi, yi, 1]である。 [0082] Aは 3 X 4の投影マトリックスであり、一般に図 7に式 2として示したように分解するこ とができる。ここに、 Kはカメラ内部のパラメータマトリクスと呼ばれるもので、画像の横 縦方向変形率 (Sx, Sy)および画像中心点 (uo, vo)ならびに回転変形率 S 0によつ て定まるものである。この Kを図 7に式 3として表す。
[0083] カメラ姿勢マトリクス Mは、カメラ外部パラメータマトリクスと呼ばれるもので、視点か ら対象モデル座標系への変換関係を示しており、一般に剛体の 3次元並進および回 転変換によって図 7に式 4として示したように表すことができるものである。ここに、 R11 〜R33 (Rの要素全て)は回転パラメータであり、 Tx, Ty, Tz (Tの要素全て)は並進 ノ ラメータである。
[0084] ところでカメラ倍率は一般に 1で近似することも可能であることから、式 1〜式 4に基 づいて、図 7に式 5で示したような拘束式が成り立つ。
[0085] ここで、カメラ姿勢を代表する回転および並進の 6つのパラメータを姿勢ベクトルで 表示すると、画像座標系と車両座標系との投影関係は、図 7の式 6で示したような数 式で表現される。すなわち、式 6によれば、 2D— 3D空間における一つの対応点対( ρ, Ρ)は、カメラ姿勢データに対して図 7に式 6で示したような一つの拘束式を決定す ることとなる。理論的には、このような 6つの対応点対があれば、カメラの姿勢を推定 するためには十分である。
[0086] しかし、単純な単眼の CCDカメラによって撮像される前方景観のモノクロの実写画 像データのみから 3次元空間の奥行きを正確かつ確実に推定することは、理論的に 極めて困難あるいは不可能であるため、本実施例では、 2D— 3Dでの(2次元空間 対 3次元空間照合による)マッチングを避けて、道路地図情報から多車線道路形状 モデルを推定し、その多車線道路形状モデルを実写映像データカゝら抽出された多 車線道路形状データと 2D— 2D特徴空間でのマッチングに変換して、 2次元空間対 2次元空間での照合によってカメラ姿勢データを推定する。但し、このときの照合は 2 D— 2D特徴空間でのマッチングのみには限定されな 、ことは言うまでもな 、。この他 にも、例えば前方景観の実写画像データ以外の情報源力も 3次元空間の奥行きデ ータを正確かつ確実に推定し、そのデータを用いて 2次元空間対 3次元空間の照合 を行うようにしてもよいことは言うまでもない。但し、その場合には、一般に処理すべき データ量が 2D— 2D特徴空間でのマッチングの場合よりも多くなる傾向にあることは 言うまでもない。
[0087] 図 3は、道路地図データによって表される点と線によるマッピングの一例を表したも のである。道路地図データには一般にノードと呼ばれる道路セグメントの緯度経度と 海抜などの 3次元位置情報、道路名称、等級、車線数、交差状況などが記録されて いる。道路幅は道路等級に基づいて推定することができる。また、一般に地図データ に記載されたノード位置は道路中央線上にある。道路の構造は一般に、水平曲率と 縦断曲率を用いる複雑曲面によって構成されて 、る。
[0088] 図 4は、クロソイド(clothoid)曲線で近似してなる道路セグメント水平形状モデルを 表したものである。このような道路セグメント水平形状モデルは、図 7の式 7に示したよ うな数式を用いてモデリングすることができる。ここで、式 7における c0と clは、それぞ れ水平曲線の初期曲率と曲率の変化パラメータである。また nliは上り車線数、 nriは 下り車線数、 wiはセグメント間の平均道路幅である。 Liはセグメント長さを示すもので ある。このモデルを用いて地図データに基づ 、て任意路上位置での道路形状モデ ルを簡易に極めて短時間で構築することができる。
[0089] 車両の走行位置は一般に、道路中央線ではなく日本のような左側通行の慣習の国 では左にオフセットしている場合が多いが、自車両の路上位置(車両座標系の原点 から道路中央への偏移量)および向き (車両座標系の Z軸方向と道路水平接線との 偏移角)の情報を用いることで、実際の走行位置が片車線にオフセットしていることに 対応する道路中心線の道路水平形状モデルを、車両座標系 VCSベースとした新し V、モデルに変換することができる。
[0090] そして視認距離 (実写映像として撮影されることが想定される領域)内の道路の路 面が平坦であると仮定して、投影変換式である図 7の式 6から、図 7に式 8として示し たような道路水平形状モデルの投影式を推定する。この図 7の式 8では、 3次元の道 路形状を言うなれば遠近法的に 2次元に投影したので、カメラ姿勢を推定するための 照合方法としてデータ処理の繁雑化の虞のある 2D 3Dマッチングを 2D— 2Dマツ チングに簡単ィ匕することできる。
[0091] このように、本実施例では、道路地図データ力 推定される道路形状モデルと道路 の実写映像力 抽出される道路形状データとを 2次元の特徴空間で 2D— 2Dマッチ ングさせて最適な姿勢ベクトルを推定する。図 5は、その 2D— 2Dマッチングの際に 用いられる道路水平形状モデルの一例を示したものである。
[0092] なお、実際の道路環境では、太陽光線や人工照明などによる光の照射状況やの天 候状況等によって車線の区切りを示す道路白線の明度や色合いなどが大幅に変化 する場合が多いため、道路形状モデルと実写映像力も抽出された道路形状データと を直接的にうまくマッチングさせることができなくなる場合がある。そこで本実例では、 道路白線ルックアップテーブル (RSL)の概念を用いて、道路白線の明度値の代りに その存在確率を映像ィ匕することによって、高速かつロバストな道路形状マッチングを 実現することができる。
[0093] RSLの値は、道路白線に近いほど高くなる。具体的な計算法としては、まず道路白 線、区切り線、および道路領域の境界線候補を特徴領域として抽出し、画像を 2値化 する(特徴領域に属する画素を 1とし、他の画素を 0とする)。そして図 7に示した式 9 を用いて各画素の RSL値を計算する。但しここに、 x,yは 2値ィ匕した画素値であり、 % i,jは RSL用のカーネル係数である。雑音を抑制するために、カーネルサイズは通 常 5又は 7に設定する。各係数は Gaussin分布式によって定める。カメラ姿勢推定の 最終評価式を、図 7の式 10に示す。ここに、 η σは道路水平形状モデルの 2次元投 影点の集合である。この式 10によって、道路地図データに基づいて生成される道路 形状モデルと実写映像力 抽出される道路形状データとを完全にマッチングする最 高の RSL評価値を得ることができる。
[0094] 6パラメータの姿勢ベクトル σの最適値を求めるためには、種々のローカル極値サ ーチ方法を用いることができる力 その中でも特に Hooke^Jeevesの直接サーチァ ルゴリズムを好適に採用することができる( R. Hooke and T. Jeeves. "Direct search s olution of numerical and statistical problems," Journal of the Association for Comput ing Machinery (ACM), pp.212- 229 (1961).)。
[0095] このようにして求められたカメラ姿勢データは、ナビゲート情報を表示すべき位置を 決定するためのデータの照合の際などに用いられる。また、このカメラ姿勢データは フィードバック量として次回の推定にも使用される。 [0096] 図 6は、中央処理部における、道路形状データの抽出および道路形状モデルの生 成ならびにカメラ姿勢パラメータの推定等を含んだ一連の主要な処理の流れを表し たフローチャートである。
[0097] まず、 CCDカメラによって撮影された自車両の前方の道路を含んだ景観の実写映 像のデータを取り込む(Sl)。
[0098] またそれと共に、実写映像のデータの取り込みと同期して、 GPSセンサおよび INS センサによって取得されたデータを取り込む(S2)。
[0099] そして、実写映像データから道路の走行区分線などの白線や舗装面の境界線など の区切り線領域を抽出して RSL値を算出する(S3)。
[0100] また、 、わゆるマップマッチングによって自車両の現在位置(絶対位置)を求め(検 出し)、その現在位置に対応した関連地図データを地図データ CDに記憶されている 情報のな力から読み出す (S4)。
[0101] 実写映像として撮影されている景観中の道路に関する道路水平形状モデルを構築 する(S5)。
[0102] 更新されたカメラ姿勢ベクトルに基づ 、て、道路水平形状モデルを遠近法的な 2次 元空間に投影する(S6)。
[0103] 道路映像の RSL表現と投影した道路水平形状モデルとのマッチングを行って評価 値を求める(S7)。
[0104] そして、得られた評価値が最大値である力否かを判断する(S8)。このとき最大値と 判断された場合には(S8の Y)、そのときの姿勢ベクトルを出力し (S9)、その出力値 を次回のサーチ起点としてフィードバックする(S10)。し力し最大値でなければ (S8 の N)、 Hooke & Jeeves法によって姿勢ベクトルを更新して(S 11)再評価を行う(S 11 〜S6〜S8)。このループは最大値が得られるまで(S8の Yになるまで)繰り返される。
[0105] 以上の一連の動作は、次回のデータ取り込み〜処理の開始タイミングになると(S1 2の Y)、再びデータ取り込みという第 1ステップから上記と同様の順を追って実行され る。
[0106] 以上のようにしてマッチングが行われ、どの位置にどのナビゲート情報を表示するか が決定されると、次に、その個々のナビゲート情報を、さらに具体的に表示するため のデータが画像データ生成部 405にて生成される。そのデータの生成は、より具体 的には、既に説明したような(1)〜(9)の 9種類の 3次元モデリングルールに基づいて 行われる。その結果、図 8〜図 12に一例として示したような画像力 映像表示部 5の 画面に表示される。
[0107] ランドマークや施設情報は、それらを模式的に表現した 3次元アイコンで表示される 。図 8の一例では、「病院」の所在を示す 3次元アイコン 801が、実写映像の病院の前 付近に合成されて表示されている。この病院を示す 3次元アイコン 801は、例えば地 の色が赤でありその中に白十字が描かれて 、る。その大きさ(外径寸法)および色合 いは、背景となって ヽる実写映像の建物や道路の映像の視認性を妨げることのな ヽ 程度のものに設定されている。
[0108] そして、この 3次元アイコン 801は、図 9に拡大して示したように、垂直軸 802を中心 として所定の回転速度で回転しているように表示される。この 3次元アイコン 801が正 面を向 、た状態(図 9 (A) )のときには、ユーザーにとってこれが「病院」を示すもので あるということは明確に視認される。そして、その正面を向いた状態から 90度回転す ると、図 9 (B)に拡大して示したように、その厚み 803の極めて薄い面積しか表示され て ヽな 、状態となるので、この 3次元アイコン 801の背後に存在して!/、る(表示されて いる)実写映像における建物や歩行者や障害物等の視認性を妨げることがなぐそ れらの存在をユーザーは明確に視認することができる。
[0109] なお、 3次元アイコン 801等のような全てのナビゲート情報について、その表示寸法 および表示色 (色使いや色合い)は、基本的にユーザーによって変更可能であること は、既に説明した通りである。
[0110] 走行方向などの指示情報は、 3次元矢印で表示される。図 8の一例では、例えば現 在ユーザーの車輛が直進中の道路の車線上には、制限速度を示す仮想道路ペイン ティング 804、走行すべき方向を示す 3次元矢印 805、車線を示す仮想道路ペイン ティング 806、 807が、道路の実写映像に合成されて表示されている。しかし、実写 映像における仮想消失点または仮想地平線よりも下の領域、すなわち具体的には道 路の実写映像上には、行先表示のための文字情報等が重なるようには表示されてい ない。 [0111] そして、この図 8の一例では、文字情報を主体とする行先表示 808は、実写映像 80 9全体(図 8の場合には画面全体)のうちの上端付近の、実写映像ではほとんど天空 しか写っていない領域に表示されている。このように、道路や歩行者や建物が存在し ている確率の高い実写映像や実景における仮想消失点または仮想地平線よりも下 の領域には、行先表示 808のような文字情報を主体とする画像は表示しな 、ようにす ることで、道路や歩行者や建物の実写映像や実景が隠されて視認できなくなってしま うことを回避することができる。
[0112] また、ナビゲート情報は、前述のように、垂直軸 (または水平軸でもよい)を中心に回 転する 3次元アイコンとして、撮影された実写映像の決定された位置に合成して表示 される力 一画面内に複数個の 3次元アイコンを表示する場合には、それら複数個の 3次元アイコンのそれぞれを、互いに異なった位相または回転速度で回転させて表 示される。図 12に示した一例では、第 1の 3次元アイコン 121と第 2の 3次元アイコン 1 22とが、同方向に同じ回転速度で、しかし位相を約 90度異ならせて回転して表示さ れる。
[0113] このように位相を約 90度異ならせることによって、第 1の 3次元アイコン 121が正面 を向いた状態のときには第 2の 3次元アイコン 122は横を向いた状態となって、実質 的に第 1の 3次元アイコン 121だけがユーザーに視認される。また第 2の 3次元アイコ ン 122が正面を向いた状態のときには第 1の 3次元アイコン 121は横を向いた状態と なって、実質的に第 2の 3次元アイコン 122だけがユーザーに視認される。このように して、一度にユーザーにとって視認可能となる 3次元アイコンの個数を制限することで 、複数の 3次元アイコンが一度に多数並列して見えてしまうことに起因した表示画像 の煩雑化および視認性の悪化を、回避することが可能となる。なお、位相を異ならせ ること以外にも、例えば 3次元アイコンの回転速度を異ならせるようにしてもよい。
[0114] あるいは、図 10に一例を示したように、ナビゲート情報のうちでも文字情報として表 示されるように設定されて 、る道路名の情報 811と、制限速度の情報 812につ 、て は、実写映像内ではなぐ実写映像 809の外側周囲に予め設けられた文字情報専 用表示領域 810内に表示することも可能である。
[0115] あるいは、ナビゲート情報を、表示の必要性の緊急度に応じて、警告情報と誘導情 報と付加情報との 3種類に分類し、その分類に対応した順序に従って各ナビゲート情 報を実写映像内の該当する位置に合成して表示することなども可能である。
[0116] すなわち、警告情報のようなユーザーに対して緊急に警告を発することが要請され る情報以外の(緊急度がそれ未満の)、ランドマークや中小施設などのような一般的 なナビゲート情報については、実写映像 (または HUDの場合には実景)の中の警告 対象物に対する移動体の現在位置が所定の距離内に入って以降に、表示する。具 体的には、図 11に示した一例に則して説明すると、現時点では 3個の 3次元アイコン 821 (「ホテル」の存在を示す), 822 (ガソリンスタンドを示す), 823 (コンビにストアを 示す)が表示されている力 これらはいずれも、ユーザーの搭乗している自動車に対 して例えば 100 [m]のように予め定められた距離内に入ったとき力も表示が開始され る力 実物がそれよりも遠い位置にあるときには表示されない。この図 11の例では、 一番遠くの 3次元アイコン 822が、所定の距離内に入って、表示開始され始めたばか りの状態にある。
[0117] また、図 11の実写映像 (画面) 809の左下に表示されている簡易道路地図情報 82 4のように、ナビゲート情報の画像をその背景の実写映像が透けて視認されるように、 半透明アイコンとして表示する。なお、半透明アイコンとして表示可能であるのは、簡 易道路地図情報 824のみに限定されないことは勿論である。
[0118] 以上、詳細に説明したように、本実施の形態に係る移動体ナビゲート情報表示装 置または移動体ナビゲート情報表示手段によれば、ナビゲーシヨン情報の画像を、 移動体の前方の道路の実写映像中またはフロントガラス越しに見える実際の景観中 の適切な位置に正確に合成することができる。そしてその結果、ナビゲーシヨン情報 と実写映像または実視景観との対応関係をドライバーが直観的に正確に認識するこ とができるような映像を、表示することが可能となる。し力も、ナビゲーシヨン情報の合 成に起因して、実写映像 (または実視景観)の視認性をナビゲーシヨン情報の画像が 妨げてしまうことを、以上説明したような種々の手法によって回避して、表示画像全体 に亘つて視認性を良好なものとすることができる。

Claims

請求の範囲
[1] 移動体の現在位置を検出すると共に前記移動体の進行方向の道路を含んだ景観 を被写体とした実写映像を前記移動体に設置された車載カメラによって撮影するプ
Πセスと、
検出された前記移動体の現在位置に対応した前記移動体の運行に関するナビゲ ート情報を、予め道路地図データと関連付けて記憶されて 、たナビゲート情報の中 力 読み出すプロセスと、
前記移動体の現在位置と前記道路地図データとに基づいて、前記現在位置から 撮影されることが想定される道路に関する道路形状モデルを生成するプロセスと、 前記実写映像から前記景観中に含まれる道路に関する画像データである道路形 状データを抽出するプロセスと、
前記道路形状モデルのデータと前記道路形状データとを照合して、前記被写体の 道路に対する前記車載カメラまたは前記移動体の姿勢データを推定し、前記姿勢デ ータに基づ 、て、前記移動体の現在位置に対応して読み出されたナビゲート情報の 前記撮影された実写映像における表示位置を決定するプロセスと、
前記撮影された実写映像の前記決定された位置に、前記読み出されたナビゲート 情報をユーザーによって設定された表示寸法および色調で合成した画像を表示する プロセスと
を備えたことを特徴とする移動体ナビゲート情報表示方法。
[2] 移動体の現在位置を検出すると共に前記移動体の進行方向の道路を含んだ景観 を被写体とした実写映像を前記移動体に設置された車載カメラによって撮影するプ 口セスと、
検出された前記移動体の現在位置に対応した前記移動体の運行に関するナビゲ ート情報を、予め道路地図データと関連付けて記憶されて 、たナビゲート情報の中 力 読み出すプロセスと、
前記移動体の現在位置と前記道路地図データとに基づいて、前記現在位置から 撮影されることが想定される道路に関する道路形状モデルを生成するプロセスと、 前記実写映像から前記景観中に含まれる道路に関する画像データである道路形 状データを抽出するプロセスと、
前記道路形状モデルのデータと前記道路形状データとを照合して、前記被写体の 道路に対する前記車載カメラまたは前記移動体の姿勢データを推定し、前記姿勢デ ータに基づ 、て、前記移動体の現在位置に対応して読み出されたナビゲート情報の 前記撮影された実写映像における表示位置を決定するプロセスと、
前記ナビゲート情報について、表示の必要性の緊急度に応じて、警告情報と誘導 情報と付加情報との 3種類の分類を予め定義し、その各分類に対して優先順位を予 め定めておき、前記ナビゲート情報が前記分類のうちのどれに該当するかを判別し、 前記分類に対応した順序に従って、前記ナビゲート情報を、前記撮影された実写映 像の前記決定された位置に合成して表示するプロセスと
を備えたことを特徴とする移動体ナビゲート情報表示方法。
[3] 前記警告情報以外のナビゲート情報については、前記実写映像の中の警告対象 物に対する前記移動体の現在位置が所定の距離内に入って以降に表示する ことを特徴とする請求の範囲第 2項記載の移動体ナビゲート情報表示方法。
[4] 移動体の現在位置を検出すると共に前記移動体の進行方向の道路を含んだ景観 を被写体とした実写映像を前記移動体に設置された車載カメラによって撮影するプ 口セスと、
検出された前記移動体の現在位置に対応した前記移動体の運行に関するナビゲ ート情報を、予め道路地図データと関連付けて記憶されて 、たナビゲート情報の中 力 読み出すプロセスと、
前記移動体の現在位置と前記道路地図データとに基づいて、前記現在位置から 撮影されることが想定される道路に関する道路形状モデルを生成するプロセスと、 前記実写映像から前記景観中に含まれる道路に関する画像データである道路形 状データを抽出するプロセスと、
前記道路形状モデルのデータと前記道路形状データとを照合して、前記被写体の 道路に対する前記車載カメラまたは前記移動体の姿勢データを推定し、前記姿勢デ ータに基づ 、て、前記移動体の現在位置に対応して読み出されたナビゲート情報の 前記撮影された実写映像における表示位置を決定するプロセスと、 前記撮影された実写映像の前記決定された位置に、前記読み出されたナビゲート 情報を合成した画像を表示するプロセスであって、前記ナビゲート情報のうち、走行 方向案内のためのグラフィック表示以外のナビゲート情報については、前記実写映 像における仮想消失点または仮想地平線よりも下の領域には表示せず、前記仮想 消失点または前記仮想地平線よりも上の領域に表示するプロセスと、
を備えたことを特徴とする移動体ナビゲート情報表示方法。
[5] 移動体の現在位置を検出すると共に前記移動体の進行方向の道路を含んだ景観 を被写体とした実写映像を前記移動体に設置された車載カメラによって撮影するプ Πセスと、
検出された前記移動体の現在位置に対応した前記移動体の運行に関するナビゲ ート情報を、予め道路地図データと関連付けて記憶されて 、たナビゲート情報の中 力 読み出すプロセスと、
前記移動体の現在位置と前記道路地図データとに基づいて、前記現在位置から 撮影されることが想定される道路に関する道路形状モデルを生成するプロセスと、 前記実写映像から前記景観中に含まれる道路に関する画像データである道路形 状データを抽出するプロセスと、
前記道路形状モデルのデータと前記道路形状データとを照合して、前記被写体の 道路に対する前記車載カメラまたは前記移動体の姿勢データを推定し、前記姿勢デ ータに基づ 、て、前記移動体の現在位置に対応して読み出されたナビゲート情報の 前記撮影された実写映像における表示位置を決定するプロセスと、
前記読み出されたナビゲート情報を、垂直軸または水平軸を中心に回転する 3次 元アイコンとして、前記撮影された実写映像の前記決定された位置に合成して表示 するプロセスと
を備えたことを特徴とする移動体ナビゲート情報表示方法。
[6] 前記回転する 3次元アイコンが、一画面内に複数個表示される場合には、それら複 数個の 3次元アイコンのそれぞれを、互いに異なった位相または回転速度で回転さ せて表示する
ことを特徴とする請求の範囲第 5項記載の移動体ナビゲート情報表示方法。 [7] 移動体の現在位置を検出すると共に前記移動体の進行方向の道路を含んだ景観 を被写体とした実写映像を前記移動体に設置された車載カメラによって撮影するプ Πセスと、
検出された前記移動体の現在位置に対応した前記移動体の運行に関するナビゲ ート情報を、予め道路地図データと関連付けて記憶されて 、たナビゲート情報の中 力 読み出すプロセスと、
前記移動体の現在位置と前記道路地図データとに基づいて、前記現在位置から 撮影されることが想定される道路に関する道路形状モデルを生成するプロセスと、 前記実写映像から前記景観中に含まれる道路に関する画像データである道路形 状データを抽出するプロセスと、
前記道路形状モデルのデータと前記道路形状データとを照合して、前記被写体の 道路に対する前記車載カメラまたは前記移動体の姿勢データを推定し、前記姿勢デ ータに基づ 、て、前記移動体の現在位置に対応して読み出されたナビゲート情報の 前記撮影された実写映像における表示位置を決定するプロセスと、
前記撮影された実写映像の前記決定された位置に前記読み出されたナビゲート情 報の画像を、前記実写映像が透けて視認されるような半透明アイコンとして表示する プロセスと
を備えたことを特徴とする移動体ナビゲート情報表示方法。
[8] 移動体の現在位置を検出すると共に前記移動体の進行方向の道路を含んだ景観 を被写体とした実写映像を前記移動体に設置された車載カメラによって撮影するプ 口セスと、
検出された前記移動体の現在位置に対応した前記移動体の運行に関するナビゲ ート情報を、予め道路地図データと関連付けて記憶されて 、たナビゲート情報の中 力 読み出すプロセスと、
前記移動体の現在位置と前記道路地図データとに基づいて、前記現在位置から 撮影されることが想定される道路に関する道路形状モデルを生成するプロセスと、 前記実写映像から前記景観中に含まれる道路に関する画像データである道路形 状データを抽出するプロセスと、 前記道路形状モデルのデータと前記道路形状データとを照合して、前記被写体の 道路に対する前記車載カメラまたは前記移動体の姿勢データを推定し、前記姿勢デ ータに基づ 、て、前記移動体の現在位置に対応して読み出されたナビゲート情報の 前記撮影された実写映像における表示位置を決定するプロセスと、
前記撮影された実写映像の前記決定された位置に前記読み出されたナビゲート情 報を合成した画像を表示するプロセスであって、前記ナビゲート情報のうちの文字情 報については、前記実写映像の外側に予め設けられた表示領域に表示するプロセ スと
を備えたことを特徴とする移動体ナビゲート情報表示方法。
[9] 前記道路形状データを遠近法的な 2次元特徴空間の画像データに変換すると共に 前記道路形状モデルのデータを前記遠近法的な 2次元特徴空間の画像データに変 換し、前記 2次元特徴空間で前記道路形状データと前記道路形状モデルのデータと を 2次元データどうしで照合して、前記被写体の道路に対する前記車載カメラまたは 前記移動体の姿勢データを推定する
ことを特徴とする請求の範囲第 1項ないし第 8項のいずれ力 1項に記載の移動体ナ ビゲート情報表示方法。
[10] 道路形状モデルを生成するにあたり、曲線道路における走行路面の片勾配は当該 曲線道路の水平曲率に対応して変化するように設定されているという道路構造を考 慮したモデリングを行って、多車線道路の道路形状モデルを生成する
ことを特徴とする請求の範囲第 9項記載の移動体ナビゲート情報表示方法。
[11] 道路ルックアップテーブル (RSL)を用いて、前記実写映像から前記景観中に含ま れる道路白線の存在確率を求めて RSL値を算出し、その RSL値による評価値が最 大になるように前記姿勢データを求めることで、前記道路形状モデルのデータと前記 道路形状データとの照合を行う
ことを特徴とする請求の範囲第 9項記載の移動体ナビゲート情報表示方法。
[12] 前記ナビゲート情報は、当該移動体の目的地に到着するまでの道順に関する進路 案内、自車位置、自車が走行中の車線、前記進路案内または前記自車位置を当該 移動体の運転者が確認するに当たっての目印となる建物のうち、少なくともいずれか 一つである
ことを特徴とする請求の範囲第 9項記載の移動体ナビゲート情報表示方法。
[13] 移動体の現在位置を検出する現在位置検出手段と、
前記移動体の進行方向の道路を含んだ景観を被写体とした実写映像を前記移動 体に設置された車載カメラによって撮影する撮像手段と、
前記移動体の検出された現在位置に対応した前記移動体の運行に関するナビゲ ート情報を、予め道路地図データと関連付けて記憶されて 、たナビゲート情報の中 から読み出し、前記移動体の現在位置と前記道路地図データとに基づいて、前記現 在位置力 撮影されることが想定される道路に関する道路形状モデルを生成し、前 記実写映像力 前記景観中に含まれる道路に関する画像データである道路形状デ ータを抽出し、前記道路形状モデルのデータと前記道路形状データとを照合して、 前記被写体の道路に対する前記車載カメラまたは前記移動体の姿勢データを推定 し、前記姿勢データに基づいて、前記移動体の現在位置に対応して読み出されたナ ビゲート情報の前記撮影された実写映像における表示位置を決定し、前記撮影され た実写映像の前記決定された位置に、前記読み出されたナビゲート情報を、ユーザ 一によつて設定された表示寸法および色調で表示される画像として合成してなる画 像を表示するためのデータを出力するデータ処理手段と、
前記データ処理手段力 出力されたデータに基づいて、前記撮影された実写映像 の前記決定された位置に、前記読み出されたナビゲート情報を、ユーザーによって 設定された表示寸法および色調で表示される画像として合成して表示する画像表示 手段と
を備えたことを特徴とする移動体ナビゲート情報表示装置。
[14] 移動体の現在位置を検出する現在位置検出手段と、
前記移動体の進行方向の道路を含んだ景観を被写体とした実写映像を前記移動 体に設置された車載カメラによって撮影する撮像手段と、
前記移動体の検出された現在位置に対応した前記移動体の運行に関するナビゲ ート情報を、予め道路地図データと関連付けて記憶されて 、たナビゲート情報の中 から読み出し、前記移動体の現在位置と前記道路地図データとに基づいて、前記現 在位置力 撮影されることが想定される道路に関する道路形状モデルを生成し、前 記実写映像力 前記景観中に含まれる道路に関する画像データである道路形状デ ータを抽出し、前記道路形状モデルのデータと前記道路形状データとを照合して、 前記被写体の道路に対する前記車載カメラまたは前記移動体の姿勢データを推定 し、前記姿勢データに基づいて、前記移動体の現在位置に対応して読み出されたナ ビゲート情報の前記撮影された実写映像における表示位置を決定し、前記ナビゲー ト情報について、表示の必要性の緊急度に応じて、警告情報と誘導情報と付加情報 との 3種類の分類を予め定義し、その各分類に対して優先順位を予め定めておき、 前記ナビゲート情報が前記分類のうちのどれに該当するかを判別し、前記分類に対 応した順序に従って、前記撮影された実写映像の前記決定された位置に前記ナビ ゲート情報を画像として合成して表示するためのデータを出力するデータ処理手段と
前記データ処理手段力 出力されたデータに基づいて、前記撮影された実写映像 の前記決定された位置に、前記読み出されたナビゲート情報の画像を、前記分類に 対応した順序に従って合成して表示する画像表示手段と
を備えたことを特徴とする移動体ナビゲート情報表示装置。
[15] 前記データ処理手段は、前記警告情報以外のナビゲート情報については、前記実 写映像の中の警告対象物に対する前記移動体の現在位置が所定の距離内に入つ て以降に表示するためのデータを出力する
ことを特徴とする請求の範囲第 14項記載の移動体ナビゲート情報表示装置。
[16] 移動体の現在位置を検出する現在位置検出手段と、
前記移動体の進行方向の道路を含んだ景観を被写体とした実写映像を前記移動 体に設置された車載カメラによって撮影する撮像手段と、
前記移動体の検出された現在位置に対応した前記移動体の運行に関するナビゲ ート情報を、予め道路地図データと関連付けて記憶されて 、たナビゲート情報の中 から読み出し、前記移動体の現在位置と前記道路地図データとに基づいて、前記現 在位置力 撮影されることが想定される道路に関する道路形状モデルを生成し、前 記実写映像力 前記景観中に含まれる道路に関する画像データである道路形状デ ータを抽出し、前記道路形状モデルのデータと前記道路形状データとを照合して、 前記被写体の道路に対する前記車載カメラまたは前記移動体の姿勢データを推定 し、前記姿勢データに基づいて、前記移動体の現在位置に対応して読み出されたナ ビゲート情報の前記撮影された実写映像における表示位置を決定し、前記ナビゲー ト情報のうち、走行方向案内のためのグラフィック表示以外のナビゲート情報につい ては、前記実写映像における仮想消失点または仮想地平線よりも下の領域には表示 せず、前記仮想消失点または前記仮想地平線よりも上の領域に合成して表示するた めのデータを出力するデータ処理手段と、
前記データ処理手段力 出力されたデータに基づいて、前記撮影された実写映像 の前記決定された位置に、前記読み出されたナビゲート情報を合成して表示する画 像表示手段と
を備えたことを特徴とする移動体ナビゲート情報表示装置。
移動体の現在位置を検出する現在位置検出手段と、
前記移動体の進行方向の道路を含んだ景観を被写体とした実写映像を前記移動 体に設置された車載カメラによって撮影する撮像手段と、
前記移動体の検出された現在位置に対応した前記移動体の運行に関するナビゲ ート情報を、予め道路地図データと関連付けて記憶されて 、たナビゲート情報の中 から読み出し、前記移動体の現在位置と前記道路地図データとに基づいて、前記現 在位置力 撮影されることが想定される道路に関する道路形状モデルを生成し、前 記実写映像力 前記景観中に含まれる道路に関する画像データである道路形状デ ータを抽出し、前記道路形状モデルのデータと前記道路形状データとを照合して、 前記被写体の道路に対する前記車載カメラまたは前記移動体の姿勢データを推定 し、前記姿勢データに基づいて、前記移動体の現在位置に対応して読み出されたナ ビゲート情報の前記撮影された実写映像における表示位置を決定し、前記撮影され た実写映像の前記決定された位置に、前記読み出されたナビゲート情報を垂直軸ま たは水平軸を中心に回転する 3次元アイコンとして合成してなる画像を表示するため のデータを出力するデータ処理手段と、
前記データ処理手段力 出力されたデータに基づいて、前記撮影された実写映像 の前記決定された位置に、前記読み出されたナビゲート情報を、垂直軸または水平 軸を中心に回転する 3次元アイコンとして合成して表示する画像表示手段と を備えたことを特徴とする移動体ナビゲート情報表示装置。
[18] 前記データ処理手段は、前記回転する 3次元アイコンがー画面内に複数個表示さ れる場合には、それら複数個の 3次元アイコンのそれぞれを、互いに異なった位相ま たは回転速度で回転させて表示するためのデータを出力する
ことを特徴とする請求の範囲第 17項記載の移動体ナビゲート情報表示装置。
[19] 移動体の現在位置を検出する現在位置検出手段と、
前記移動体の進行方向の道路を含んだ景観を被写体とした実写映像を前記移動 体に設置された車載カメラによって撮影する撮像手段と、
前記移動体の検出された現在位置に対応した前記移動体の運行に関するナビゲ ート情報を、予め道路地図データと関連付けて記憶されて 、たナビゲート情報の中 から読み出し、前記移動体の現在位置と前記道路地図データとに基づいて、前記現 在位置力 撮影されることが想定される道路に関する道路形状モデルを生成し、前 記実写映像力 前記景観中に含まれる道路に関する画像データである道路形状デ ータを抽出し、前記道路形状モデルのデータと前記道路形状データとを照合して、 前記被写体の道路に対する前記車載カメラまたは前記移動体の姿勢データを推定 し、前記姿勢データに基づいて、前記移動体の現在位置に対応して読み出されたナ ビゲート情報の前記撮影された実写映像における表示位置を決定し、前記撮影され た実写映像の前記決定された位置に、前記読み出されたナビゲート情報を、半透明 で表示される画像として合成してなる画像として表示するためのデータを出力するデ ータ処理手段と、
前記データ処理手段力 出力されたデータに基づいて、前記撮影された実写映像 の前記決定された位置に、前記読み出されたナビゲート情報を、半透明で表示され る画像として合成して表示する画像表示手段と
を備えたことを特徴とする移動体ナビゲート情報表示装置。
[20] 移動体の現在位置を検出する現在位置検出手段と、
前記移動体の進行方向の道路を含んだ景観を被写体とした実写映像を前記移動 体に設置された車載カメラによって撮影する撮像手段と、
前記移動体の検出された現在位置に対応した前記移動体の運行に関するナビゲ ート情報を、予め道路地図データと関連付けて記憶されて 、たナビゲート情報の中 から読み出し、前記移動体の現在位置と前記道路地図データとに基づいて、前記現 在位置力 撮影されることが想定される道路に関する道路形状モデルを生成し、前 記実写映像力 前記景観中に含まれる道路に関する画像データである道路形状デ ータを抽出し、前記道路形状モデルのデータと前記道路形状データとを照合して、 前記被写体の道路に対する前記車載カメラまたは前記移動体の姿勢データを推定 し、前記姿勢データに基づいて、前記移動体の現在位置に対応して読み出されたナ ビゲート情報の前記撮影された実写映像における表示位置を決定し、前記撮影され た実写映像の前記決定された位置に前記読み出されたナビゲート情報を合成して 表示すると共に、前記ナビゲート情報のうちの文字情報については前記実写映像内 ではなく前記実写映像の外側に予め設けられた表示領域に表示するためのデータ を出力するデータ処理手段と、
前記データ処理手段力 出力されたデータに基づいて、前記撮影された実写映像 の前記決定された位置に前記読み出されたナビゲート情報を合成して表示すると共 に、前記ナビゲート情報のうちの文字情報については前記実写映像内ではなく前記 実写映像の外側に予め設けられた表示領域に表示する画像表示手段と
を備えたことを特徴とする移動体ナビゲート情報表示装置。
[21] 前記データ処理手段が、前記道路形状データを遠近法的な 2次元特徴空間の画 像データに変換すると共に前記道路形状モデルのデータを前記遠近法的な 2次元 特徴空間の画像データに変換し、前記 2次元特徴空間で前記道路形状データと前 記道路形状モデルのデータとを 2次元データどうしで照合して、前記被写体の道路 に対する前記車載カメラまたは前記移動体の姿勢データを推定する
ことを特徴とする請求の範囲第 13項ないし第 20項のいずれか 1項に記載の移動体 ナビゲート情報表示装置。
[22] 前記データ処理手段が、道路形状モデルを生成するにあたり、曲線道路における 走行路面の片勾配は当該曲線道路の水平曲率に対応して変化するように設定され て 、ると 、う道路構造を考慮したモデリングを行って、多車線道路の道路形状モデル を生成する
ことを特徴とする請求の範囲第 21項記載の移動体ナビゲート情報表示装置。
[23] 前記データ処理手段が、前記道路形状モデルのデータと前記道路形状データとを 照合するにあたり、道路ルックアップテーブル (RSL)を用いて、前記実写映像から前 記景観中に含まれる道路白線の存在確率を求めて RSL値を算出し、その RSL値に よる評価値が最大になるように前記姿勢データを求めることで、前記照合を行う ことを特徴とする請求の範囲第 21項記載の移動体ナビゲート情報表示装置。
[24] 前記ナビゲート情報は、当該移動体の目的地に到着するまでの道順に関する進路 案内、自車位置、自車が走行中の車線、前記進路案内または前記自車位置を当該 移動体の運転者が確認するに当たっての目印となる建物のうち、少なくともいずれか 一つである
ことを特徴とする請求の範囲第 21項記載の移動体ナビゲート情報表示装置。
PCT/JP2005/017715 2004-09-28 2005-09-27 移動体ナビゲート情報表示方法および移動体ナビゲート情報表示装置 WO2006035755A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006537744A JP4696248B2 (ja) 2004-09-28 2005-09-27 移動体ナビゲート情報表示方法および移動体ナビゲート情報表示装置
US11/663,909 US8195386B2 (en) 2004-09-28 2005-09-27 Movable-body navigation information display method and movable-body navigation information display unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-282190 2004-09-28
JP2004282190 2004-09-28

Publications (1)

Publication Number Publication Date
WO2006035755A1 true WO2006035755A1 (ja) 2006-04-06

Family

ID=36118900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017715 WO2006035755A1 (ja) 2004-09-28 2005-09-27 移動体ナビゲート情報表示方法および移動体ナビゲート情報表示装置

Country Status (3)

Country Link
US (1) US8195386B2 (ja)
JP (1) JP4696248B2 (ja)
WO (1) WO2006035755A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036726A (ja) * 2007-08-03 2009-02-19 Yahoo Japan Corp 探索経路表示方法及び探索経路表示システム
JP2009204385A (ja) * 2008-02-27 2009-09-10 Mitsubishi Electric Corp 標定装置、標定方法および標定プログラム
CN1885343B (zh) * 2005-06-21 2010-06-16 三星电子株式会社 显示三维图形的设备和方法
US7751970B2 (en) * 2006-08-07 2010-07-06 Pioneer Corporation Information providing apparatus, information providing method, and computer product
JP2010151658A (ja) * 2008-12-25 2010-07-08 Zhencheng Hu 移動体位置測定装置及び移動体位置測定方法
JP2010156608A (ja) * 2008-12-26 2010-07-15 Toshiba Corp 車載用表示システム及び表示方法
JP2010237393A (ja) * 2009-03-31 2010-10-21 Oki Electric Ind Co Ltd 地図表示装置、地図表示方法及びプログラム
US20100274478A1 (en) * 2008-01-07 2010-10-28 Kenji Takahashi Image transformation method, image display method, image transformation apparatus and image display apparatus
JP2011128838A (ja) * 2009-12-17 2011-06-30 Panasonic Corp 画像表示装置
JP2012503228A (ja) * 2008-09-17 2012-02-02 ノキア コーポレイション 拡張現実のためのユーザインターフェース
JP2012068481A (ja) * 2010-09-24 2012-04-05 Asia Air Survey Co Ltd 拡張現実表現システムおよび方法
JP2012145565A (ja) * 2011-01-10 2012-08-02 Samsung Electronics Co Ltd ポータブル端末で移動経路を提供する装置及び方法
JP2013041360A (ja) * 2011-08-12 2013-02-28 Oita Ns Solutions Corp 情報処理システム、情報処理方法及びプログラム
JPWO2011093031A1 (ja) * 2010-02-01 2013-05-30 日本電気株式会社 携帯端末、行動履歴描写方法、及び行動履歴描写システム
JP2013185871A (ja) * 2012-03-06 2013-09-19 Nissan Motor Co Ltd 移動物体位置姿勢推定装置及び方法
JP2014220604A (ja) * 2013-05-07 2014-11-20 三菱電機株式会社 撮影位置情報表示装置
CN104613978A (zh) * 2008-09-05 2015-05-13 大众汽车有限公司 在车辆中显示信息的方法和装置
JP2015197860A (ja) * 2014-04-02 2015-11-09 キヤノン株式会社 表示装置、表示制御方法及びプログラム
JP2016149132A (ja) * 2015-02-12 2016-08-18 ホンダ リサーチ インスティテュート ヨーロッパ ゲーエムベーハーHonda Research Institute Europe GmbH 乗り物のドライバ支援システムにおける予測のためのシステムおよび方法
WO2017169230A1 (ja) * 2016-03-31 2017-10-05 本田技研工業株式会社 画像表示装置および画像表示方法
JP2018149884A (ja) * 2017-03-10 2018-09-27 アルパイン株式会社 ヘッドアップディスプレイ装置及び表示制御方法
JP2018173399A (ja) * 2017-03-31 2018-11-08 アイシン・エィ・ダブリュ株式会社 表示装置及びコンピュータプログラム
KR20190052912A (ko) * 2017-11-09 2019-05-17 삼성전자주식회사 가상 경로를 디스플레이하는 방법 및 장치
WO2019097755A1 (ja) * 2017-11-17 2019-05-23 アイシン・エィ・ダブリュ株式会社 表示装置及びコンピュータプログラム
CN110889872A (zh) * 2018-09-11 2020-03-17 三星电子株式会社 在增强现实中显示虚拟对象的定位方法和装置
JP2020057358A (ja) * 2018-10-01 2020-04-09 三星電子株式会社Samsung Electronics Co.,Ltd. ポーズ情報を取得する方法及び装置

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8892356B1 (en) * 2003-06-19 2014-11-18 Here Global B.V. Method and system for representing traffic signals in a road network database
US9341485B1 (en) 2003-06-19 2016-05-17 Here Global B.V. Method and apparatus for representing road intersections
US7929800B2 (en) 2007-02-06 2011-04-19 Meadow William D Methods and apparatus for generating a continuum of image data
US8207964B1 (en) 2008-02-22 2012-06-26 Meadow William D Methods and apparatus for generating three-dimensional image data models
US8108142B2 (en) * 2005-01-26 2012-01-31 Volkswagen Ag 3D navigation system for motor vehicles
DE102005018082A1 (de) * 2005-04-19 2006-10-26 Robert Bosch Gmbh Verfahren zur dreidimensionalen Darstellung einer digitalen Straßenkarte
US8423292B2 (en) * 2008-08-19 2013-04-16 Tomtom International B.V. Navigation device with camera-info
BRPI0520250A2 (pt) 2005-06-06 2009-04-28 Tomtom Int Bv dispositivo de navegaÇço com informaÇço de cÂmera
US7728869B2 (en) * 2005-06-14 2010-06-01 Lg Electronics Inc. Matching camera-photographed image with map data in portable terminal and travel route guidance method
JP4246195B2 (ja) * 2005-11-01 2009-04-02 パナソニック株式会社 カーナビゲーションシステム
JP4935145B2 (ja) * 2006-03-29 2012-05-23 株式会社デンソー カーナビゲーション装置
JP4231884B2 (ja) * 2006-09-27 2009-03-04 株式会社デンソーアイティーラボラトリ 注視対象物検出装置および注視対象物検出方法
JPWO2008099483A1 (ja) * 2007-02-15 2010-05-27 パイオニア株式会社 表示制御装置、表示制御方法、表示制御プログラムおよび記録媒体
US7990394B2 (en) 2007-05-25 2011-08-02 Google Inc. Viewing and navigating within panoramic images, and applications thereof
US20090089705A1 (en) * 2007-09-27 2009-04-02 Microsoft Corporation Virtual object navigation
JP4994256B2 (ja) * 2008-01-28 2012-08-08 株式会社ジオ技術研究所 経路案内データベースのデータ構造
US8803966B2 (en) 2008-04-24 2014-08-12 GM Global Technology Operations LLC Clear path detection using an example-based approach
US8751154B2 (en) 2008-04-24 2014-06-10 GM Global Technology Operations LLC Enhanced clear path detection in the presence of traffic infrastructure indicator
US8452053B2 (en) * 2008-04-24 2013-05-28 GM Global Technology Operations LLC Pixel-based texture-rich clear path detection
US8634593B2 (en) * 2008-04-24 2014-01-21 GM Global Technology Operations LLC Pixel-based texture-less clear path detection
CA2720303A1 (en) * 2008-05-02 2009-11-05 Tomtom International B.V. A navigation device and method for displaying map information
CN102016929A (zh) * 2008-05-29 2011-04-13 通腾科技股份有限公司 产生显示图像
JP5223502B2 (ja) * 2008-07-03 2013-06-26 ヤマハ株式会社 方位追従表示装置、方位追従表示方法および方位追従表示プログラム
US20100085350A1 (en) * 2008-10-02 2010-04-08 Microsoft Corporation Oblique display with additional detail
DE102009006471A1 (de) * 2009-01-28 2010-09-02 Audi Ag Verfahren zum Betrieb einer Navigationseinrichtung eines Kraftfahrzeugs sowie Kraftfahrzeug hierfür
US20100198506A1 (en) * 2009-02-03 2010-08-05 Robert Steven Neilhouse Street and landmark name(s) and/or turning indicators superimposed on user's field of vision with dynamic moving capabilities
US9477368B1 (en) 2009-03-31 2016-10-25 Google Inc. System and method of indicating the distance or the surface of an image of a geographical object
JP5216690B2 (ja) * 2009-06-01 2013-06-19 株式会社日立製作所 ロボット管理システム、ロボット管理端末、ロボット管理方法およびプログラム
US20110098910A1 (en) * 2009-10-22 2011-04-28 Nokia Corporation Method and apparatus for intelligent guidance using markers
KR101001842B1 (ko) * 2010-01-28 2010-12-17 팅크웨어(주) 차량용 내비게이션 및 내비게이션 시스템의 블랙박스 정상 위치 유도 방법
JP5136671B2 (ja) * 2010-05-13 2013-02-06 株式会社デンソー 地図表示装置
JP5413516B2 (ja) * 2010-08-19 2014-02-12 日産自動車株式会社 立体物検出装置及び立体物検出方法
US10331864B1 (en) 2010-12-27 2019-06-25 Mlb Advanced Media, L.P. Watermarking systems and methods
JP2012155655A (ja) * 2011-01-28 2012-08-16 Sony Corp 情報処理装置、報知方法及びプログラム
DE102011006347B4 (de) * 2011-03-29 2023-02-09 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Ausgabe von grafischen Fahrhinweisen
KR20120127830A (ko) 2011-05-16 2012-11-26 삼성전자주식회사 차량용 단말을 위한 사용자 인터페이스 방법 및 장치
KR101407670B1 (ko) * 2011-09-15 2014-06-16 주식회사 팬택 증강현실 기반 모바일 단말과 서버 및 그 통신방법
US9177204B1 (en) * 2011-09-28 2015-11-03 Rockwell Collins, Inc. Spectrally enhanced vision system for low visibility operations
JP5708449B2 (ja) * 2011-11-08 2015-04-30 アイシン・エィ・ダブリュ株式会社 レーン案内表示システム、方法およびプログラム
KR20130053137A (ko) * 2011-11-15 2013-05-23 엘지전자 주식회사 이동 단말기 및 이동 단말기의 제어 방법
JP5803645B2 (ja) * 2011-12-15 2015-11-04 アイシン・エィ・ダブリュ株式会社 評価表示システム、方法およびプログラム
JP5735658B2 (ja) * 2011-12-15 2015-06-17 パイオニア株式会社 表示装置及び表示方法
US9037411B2 (en) * 2012-05-11 2015-05-19 Honeywell International Inc. Systems and methods for landmark selection for navigation
JP6000780B2 (ja) * 2012-09-21 2016-10-05 オリンパス株式会社 撮像装置
US20140095294A1 (en) * 2012-09-28 2014-04-03 Cornelius V. Vick Mechanism for facilitating context-aware broadcast and virtual visualization of advertisements
CN103868517A (zh) * 2012-12-10 2014-06-18 深圳富泰宏精密工业有限公司 室内定位系统及方法
TWI485421B (zh) 2012-12-17 2015-05-21 Ind Tech Res Inst 圖資校正裝置、系統和方法
US20140184643A1 (en) * 2012-12-27 2014-07-03 Caterpillar Inc. Augmented Reality Worksite
US9041714B2 (en) * 2013-01-31 2015-05-26 Samsung Electronics Co., Ltd. Apparatus and method for compass intelligent lighting for user interfaces
US20140232746A1 (en) * 2013-02-21 2014-08-21 Hyundai Motor Company Three dimensional augmented reality display apparatus and method using eye tracking
CN110906949B (zh) * 2013-06-13 2024-01-09 移动眼视力科技有限公司 用于导航的计算机实施方法、导航系统和车辆
JP6236954B2 (ja) * 2013-07-23 2017-11-29 アイシン・エィ・ダブリュ株式会社 運転支援システム、方法およびプログラム
EP2848487B1 (en) * 2013-09-12 2020-03-18 Volvo Car Corporation Manoeuvre generation for automated drive
FR3011923B1 (fr) * 2013-10-14 2017-05-26 Renault Sas Procede de guidage d'un utilisateur d'un vehicule automobile, systeme correspondant et vehicule automobile
KR102145574B1 (ko) * 2013-11-29 2020-08-18 (주)문화유산기술연구소 실제 길거리에 어우러진 가상 영상 출력 시스템
US9395192B1 (en) * 2013-12-20 2016-07-19 Google Inc. Methods and systems for road and lane boundary tracing
KR101519277B1 (ko) * 2013-12-24 2015-05-11 현대자동차주식회사 차량의 주행도로 인지 장치 및 방법
KR20150094382A (ko) * 2014-02-11 2015-08-19 현대자동차주식회사 증강현실 hud 기반의 길 안내 제공 장치 및 방법
US9858720B2 (en) 2014-07-25 2018-01-02 Microsoft Technology Licensing, Llc Three-dimensional mixed-reality viewport
US9766460B2 (en) * 2014-07-25 2017-09-19 Microsoft Technology Licensing, Llc Ground plane adjustment in a virtual reality environment
US10451875B2 (en) 2014-07-25 2019-10-22 Microsoft Technology Licensing, Llc Smart transparency for virtual objects
US9865089B2 (en) 2014-07-25 2018-01-09 Microsoft Technology Licensing, Llc Virtual reality environment with real world objects
US10311638B2 (en) 2014-07-25 2019-06-04 Microsoft Technology Licensing, Llc Anti-trip when immersed in a virtual reality environment
US9904055B2 (en) 2014-07-25 2018-02-27 Microsoft Technology Licensing, Llc Smart placement of virtual objects to stay in the field of view of a head mounted display
US10416760B2 (en) 2014-07-25 2019-09-17 Microsoft Technology Licensing, Llc Gaze-based object placement within a virtual reality environment
JP6661883B2 (ja) * 2015-02-09 2020-03-11 株式会社デンソー 車両用表示制御装置及び車両用表示制御方法
WO2016130719A2 (en) * 2015-02-10 2016-08-18 Amnon Shashua Sparse map for autonomous vehicle navigation
US9304003B1 (en) 2015-03-18 2016-04-05 Microsoft Technology Licensing, Llc Augmented reality navigation
CN104833367A (zh) * 2015-05-11 2015-08-12 京东方科技集团股份有限公司 车载投影系统
JP6696149B2 (ja) * 2015-10-29 2020-05-20 富士通株式会社 画像生成方法、画像生成プログラム、情報処理装置および表示制御方法
US10217283B2 (en) 2015-12-17 2019-02-26 Google Llc Navigation through multidimensional images spaces
KR101916993B1 (ko) 2015-12-24 2018-11-08 엘지전자 주식회사 차량용 디스플레이 장치 및 그 제어방법
US9909894B2 (en) 2016-01-07 2018-03-06 Here Global B.V. Componentized junction models
US10234294B2 (en) 2016-04-01 2019-03-19 Here Global B.V. Road geometry matching with componentized junction models
EP3477434B1 (en) * 2016-06-22 2020-10-21 Sony Corporation Information processing device, information processing method, and program
KR20180070198A (ko) * 2016-12-16 2018-06-26 현대자동차주식회사 차량 및 차량의 제어방법
US10839203B1 (en) 2016-12-27 2020-11-17 Amazon Technologies, Inc. Recognizing and tracking poses using digital imagery captured from multiple fields of view
JP6930120B2 (ja) * 2017-02-02 2021-09-01 株式会社リコー 表示装置、移動体装置及び表示方法。
US9992461B1 (en) * 2017-02-08 2018-06-05 Hyundai Motor Company Projection orientation correction system for vehicle
US10977953B2 (en) * 2017-02-17 2021-04-13 The Charles Stark Draper Laboratory, Inc. Probabilistic landmark navigation (PLN) system
US10339812B2 (en) * 2017-03-02 2019-07-02 Denso International America, Inc. Surrounding view camera blockage detection
US20180341822A1 (en) * 2017-05-26 2018-11-29 Dura Operating, Llc Method and system for classifying objects in a perception scene graph by using a scene-detection-schema
KR102427854B1 (ko) 2017-09-25 2022-08-01 삼성전자주식회사 영상 렌더링 방법 및 장치
US11232294B1 (en) 2017-09-27 2022-01-25 Amazon Technologies, Inc. Generating tracklets from digital imagery
US20190340797A1 (en) * 2018-05-03 2019-11-07 Visteon Global Technologies, Inc. System and method for a dynamic map display with actual images
CN108665556B (zh) * 2018-05-20 2024-03-01 福州市极化律网络科技有限公司 一种基于混合现实的路政指示显示方法及存储介质
US11468698B1 (en) 2018-06-28 2022-10-11 Amazon Technologies, Inc. Associating events with actors using digital imagery and machine learning
US11468681B1 (en) 2018-06-28 2022-10-11 Amazon Technologies, Inc. Associating events with actors using digital imagery and machine learning
US11482045B1 (en) 2018-06-28 2022-10-25 Amazon Technologies, Inc. Associating events with actors using digital imagery and machine learning
KR101957896B1 (ko) * 2018-06-29 2019-07-04 한화시스템(주) 원격 조종을 위한 통합적 영상 및 상황 디스플레이 시스템 및 디스플레이 방법
JP1632766S (ja) * 2018-09-10 2019-06-03
US11448518B2 (en) 2018-09-27 2022-09-20 Phiar Technologies, Inc. Augmented reality navigational overlay
US10495476B1 (en) 2018-09-27 2019-12-03 Phiar Technologies, Inc. Augmented reality navigation systems and methods
US10573183B1 (en) 2018-09-27 2020-02-25 Phiar Technologies, Inc. Mobile real-time driving safety systems and methods
US10488215B1 (en) 2018-10-26 2019-11-26 Phiar Technologies, Inc. Augmented reality interface for navigation assistance
GB2580400B (en) * 2019-01-10 2021-11-03 Jaguar Land Rover Ltd A control system, system and method for providing assistance to an occupant of a vehicle
US11919513B2 (en) 2019-01-10 2024-03-05 Jaguar Land Rover Limited Control system, system and method for providing assistance to an occupant of a vehicle
GB2622499A (en) * 2019-03-07 2024-03-20 Mobileye Vision Technologies Ltd Aligning road information for navigation
CN110779541B (zh) * 2019-04-10 2021-11-23 北京嘀嘀无限科技发展有限公司 一种转向箭头的显示方法及系统
US20220335698A1 (en) * 2019-12-17 2022-10-20 Ashley SinHee Kim System and method for transforming mapping information to an illustrated map
CN113137970B (zh) * 2020-01-20 2022-11-15 北京智慧图科技有限责任公司 小程序ar导航系统
US11443516B1 (en) 2020-04-06 2022-09-13 Amazon Technologies, Inc. Locally and globally locating actors by digital cameras and machine learning
US11398094B1 (en) * 2020-04-06 2022-07-26 Amazon Technologies, Inc. Locally and globally locating actors by digital cameras and machine learning
KR20220022340A (ko) * 2020-08-18 2022-02-25 삼성전자주식회사 컨텐츠를 시각화하는 장치 및 방법
KR20220036456A (ko) * 2020-09-15 2022-03-23 현대자동차주식회사 증강현실 기반의 정보 표시 장치
JP6976537B1 (ja) * 2020-10-08 2021-12-08 株式会社Fronteo 情報検索装置、情報検索方法および情報検索用プログラム
CN112562375A (zh) * 2020-12-11 2021-03-26 奇瑞汽车股份有限公司 增强现实的道路名称展示方法及系统、移动终端及车载终端
CN113516770A (zh) * 2021-04-14 2021-10-19 孙继雄 一种道路设计图纸与航拍实景特效合成的方法
US20220388507A1 (en) * 2021-06-04 2022-12-08 Telenav, Inc. Vehicle system with mechanism for determining clear path and method of operation thereof
CN113554712A (zh) * 2021-06-29 2021-10-26 北京百度网讯科技有限公司 自动驾驶车辆的配准方法、装置、电子设备和车辆
CN115171412B (zh) * 2022-08-09 2024-04-12 阿波罗智联(北京)科技有限公司 车辆行驶状态的显示方法、系统及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047050A (ja) * 2001-07-26 2003-02-14 Komatsu Ltd 移動体の通信装置
JP2003121167A (ja) * 2001-10-12 2003-04-23 Denso Corp 案内画像生成装置、案内画像表示装置、ナビゲーション装置、及びプログラム
JP2003256997A (ja) * 2002-02-28 2003-09-12 Honda Motor Co Ltd 車両運転能力向上支援装置
JP2004150918A (ja) * 2002-10-30 2004-05-27 Shinichi Yamanaka 地図表示方法
WO2004048895A1 (ja) * 2002-11-22 2004-06-10 Kumamoto Technology & Industry Foundation 移動体ナビゲート情報表示方法および移動体ナビゲート情報表示装置

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114692A (ja) * 1993-10-15 1995-05-02 Fujitsu Ten Ltd 経路案内方法
KR100224326B1 (ko) * 1995-12-26 1999-10-15 모리 하루오 차량용 네비게이션장치
US6181302B1 (en) * 1996-04-24 2001-01-30 C. Macgill Lynde Marine navigation binoculars with virtual display superimposing real world image
JPH10132598A (ja) 1996-10-31 1998-05-22 Sony Corp ナビゲート方法、ナビゲーション装置及び自動車
JPH10281794A (ja) * 1997-04-03 1998-10-23 Toyota Motor Corp 車両用案内表示装置
US6199014B1 (en) * 1997-12-23 2001-03-06 Walker Digital, Llc System for providing driving directions with visual cues
JPH11184375A (ja) * 1997-12-25 1999-07-09 Toyota Motor Corp デジタル地図データ処理装置及びデジタル地図データ処理方法
JPH11281387A (ja) 1998-03-31 1999-10-15 Sony Corp ナビゲーション装置
JPH11304499A (ja) 1998-04-22 1999-11-05 Matsushita Electric Ind Co Ltd カーナビゲーション装置
US6285317B1 (en) * 1998-05-01 2001-09-04 Lucent Technologies Inc. Navigation system with three-dimensional display
US6356840B2 (en) * 1998-06-12 2002-03-12 Mitsubishi Denki Kabushiki Kaisha Navigation device with a three dimensional display
US6208933B1 (en) * 1998-12-04 2001-03-27 Northrop Grumman Corporation Cartographic overlay on sensor video
US6182010B1 (en) * 1999-01-28 2001-01-30 International Business Machines Corporation Method and apparatus for displaying real-time visual information on an automobile pervasive computing client
JP2001034160A (ja) * 1999-05-14 2001-02-09 Denso Corp 地図表示装置
JP3908419B2 (ja) * 1999-09-14 2007-04-25 アルパイン株式会社 ナビゲーション装置
JP3717045B2 (ja) * 2000-01-19 2005-11-16 松下電器産業株式会社 ナビゲーション装置
US20030210228A1 (en) * 2000-02-25 2003-11-13 Ebersole John Franklin Augmented reality situational awareness system and method
JP2001331787A (ja) 2000-05-19 2001-11-30 Toyota Central Res & Dev Lab Inc 道路形状推定装置
US6977630B1 (en) * 2000-07-18 2005-12-20 University Of Minnesota Mobility assist device
JP2002236027A (ja) 2001-02-08 2002-08-23 Denso Corp カーナビゲーション装置
US7274380B2 (en) * 2001-10-04 2007-09-25 Siemens Corporate Research, Inc. Augmented reality system
JP3893983B2 (ja) * 2002-01-17 2007-03-14 ソニー株式会社 情報提供装置及び情報提供方法、記憶媒体、並びにコンピュータ・プログラム
JP4014447B2 (ja) * 2002-05-23 2007-11-28 富士通テン株式会社 ナビゲーション装置
DE10236221C1 (de) * 2002-08-07 2003-11-20 Siemens Ag Verfahren und Vorrichtung zur Anzeige von Navigationsinformationen für ein Fahrzeug
US6885939B2 (en) * 2002-12-31 2005-04-26 Robert Bosch Gmbh System and method for advanced 3D visualization for mobile navigation units
US7071970B2 (en) * 2003-03-10 2006-07-04 Charles Benton Video augmented orientation sensor
WO2005045729A1 (de) * 2003-11-10 2005-05-19 Siemens Aktiengesellschaft System und verfahren zur durchführung und visualisierung von simulationen in einer erweiterten realität
JP2005149409A (ja) * 2003-11-19 2005-06-09 Canon Inc 画像再生方法及び装置
EP1598638A2 (en) * 2004-05-20 2005-11-23 Noritsu Koki Co., Ltd. Image processing system and navigaton system for correlating position data with image data
EP1751499B1 (en) * 2004-06-03 2012-04-04 Making Virtual Solid, L.L.C. En-route navigation display method and apparatus using head-up display
US7460953B2 (en) * 2004-06-30 2008-12-02 Navteq North America, Llc Method of operating a navigation system using images
JP4632793B2 (ja) * 2005-01-12 2011-02-16 京セラ株式会社 ナビゲーション機能付き携帯型端末機
US20060190812A1 (en) * 2005-02-22 2006-08-24 Geovector Corporation Imaging systems including hyperlink associations
US7466244B2 (en) * 2005-04-21 2008-12-16 Microsoft Corporation Virtual earth rooftop overlay and bounding
US20060262140A1 (en) * 2005-05-18 2006-11-23 Kujawa Gregory A Method and apparatus to facilitate visual augmentation of perceived reality
US7737965B2 (en) * 2005-06-09 2010-06-15 Honeywell International Inc. Handheld synthetic vision device
US7728869B2 (en) * 2005-06-14 2010-06-01 Lg Electronics Inc. Matching camera-photographed image with map data in portable terminal and travel route guidance method
DE102006010478A1 (de) * 2006-03-07 2007-09-13 Robert Bosch Gmbh Verfahren und Anordnung zur Anzeige von Navigationshinweisen
JP4935145B2 (ja) * 2006-03-29 2012-05-23 株式会社デンソー カーナビゲーション装置
JP2008039596A (ja) * 2006-08-07 2008-02-21 Pioneer Electronic Corp 情報提供装置、情報提供方法、情報提供プログラム、および記録媒体
JP4231884B2 (ja) * 2006-09-27 2009-03-04 株式会社デンソーアイティーラボラトリ 注視対象物検出装置および注視対象物検出方法
US20080147325A1 (en) * 2006-12-18 2008-06-19 Maassel Paul W Method and system for providing augmented reality
US7990394B2 (en) * 2007-05-25 2011-08-02 Google Inc. Viewing and navigating within panoramic images, and applications thereof
KR101561913B1 (ko) * 2009-04-17 2015-10-20 엘지전자 주식회사 이동 단말기의 영상 표시 방법 및 그 장치
US20110153198A1 (en) * 2009-12-21 2011-06-23 Navisus LLC Method for the display of navigation instructions using an augmented-reality concept
TWI408339B (zh) * 2010-03-22 2013-09-11 Inst Information Industry 即時擴增實境裝置、即時擴增實境方法及其電腦程式產品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047050A (ja) * 2001-07-26 2003-02-14 Komatsu Ltd 移動体の通信装置
JP2003121167A (ja) * 2001-10-12 2003-04-23 Denso Corp 案内画像生成装置、案内画像表示装置、ナビゲーション装置、及びプログラム
JP2003256997A (ja) * 2002-02-28 2003-09-12 Honda Motor Co Ltd 車両運転能力向上支援装置
JP2004150918A (ja) * 2002-10-30 2004-05-27 Shinichi Yamanaka 地図表示方法
WO2004048895A1 (ja) * 2002-11-22 2004-06-10 Kumamoto Technology & Industry Foundation 移動体ナビゲート情報表示方法および移動体ナビゲート情報表示装置

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1885343B (zh) * 2005-06-21 2010-06-16 三星电子株式会社 显示三维图形的设备和方法
US7751970B2 (en) * 2006-08-07 2010-07-06 Pioneer Corporation Information providing apparatus, information providing method, and computer product
JP2009036726A (ja) * 2007-08-03 2009-02-19 Yahoo Japan Corp 探索経路表示方法及び探索経路表示システム
US20100274478A1 (en) * 2008-01-07 2010-10-28 Kenji Takahashi Image transformation method, image display method, image transformation apparatus and image display apparatus
JP2009204385A (ja) * 2008-02-27 2009-09-10 Mitsubishi Electric Corp 標定装置、標定方法および標定プログラム
CN104613978A (zh) * 2008-09-05 2015-05-13 大众汽车有限公司 在车辆中显示信息的方法和装置
JP2012503228A (ja) * 2008-09-17 2012-02-02 ノキア コーポレイション 拡張現実のためのユーザインターフェース
JP2010151658A (ja) * 2008-12-25 2010-07-08 Zhencheng Hu 移動体位置測定装置及び移動体位置測定方法
JP2010156608A (ja) * 2008-12-26 2010-07-15 Toshiba Corp 車載用表示システム及び表示方法
JP2010237393A (ja) * 2009-03-31 2010-10-21 Oki Electric Ind Co Ltd 地図表示装置、地図表示方法及びプログラム
JP2011128838A (ja) * 2009-12-17 2011-06-30 Panasonic Corp 画像表示装置
JPWO2011093031A1 (ja) * 2010-02-01 2013-05-30 日本電気株式会社 携帯端末、行動履歴描写方法、及び行動履歴描写システム
JP2012068481A (ja) * 2010-09-24 2012-04-05 Asia Air Survey Co Ltd 拡張現実表現システムおよび方法
JP2012145565A (ja) * 2011-01-10 2012-08-02 Samsung Electronics Co Ltd ポータブル端末で移動経路を提供する装置及び方法
US9518834B2 (en) 2011-01-10 2016-12-13 Samsung Electronics Co., Ltd. Apparatus and method for providing user's route information in mobile communication system
JP2013041360A (ja) * 2011-08-12 2013-02-28 Oita Ns Solutions Corp 情報処理システム、情報処理方法及びプログラム
JP2013185871A (ja) * 2012-03-06 2013-09-19 Nissan Motor Co Ltd 移動物体位置姿勢推定装置及び方法
JP2014220604A (ja) * 2013-05-07 2014-11-20 三菱電機株式会社 撮影位置情報表示装置
JP2015197860A (ja) * 2014-04-02 2015-11-09 キヤノン株式会社 表示装置、表示制御方法及びプログラム
JP2016149132A (ja) * 2015-02-12 2016-08-18 ホンダ リサーチ インスティテュート ヨーロッパ ゲーエムベーハーHonda Research Institute Europe GmbH 乗り物のドライバ支援システムにおける予測のためのシステムおよび方法
US10935789B2 (en) 2016-03-31 2021-03-02 Honda Motor Co., Ltd. Image display apparatus and image display method
JPWO2017169230A1 (ja) * 2016-03-31 2018-11-08 本田技研工業株式会社 画像表示装置および画像表示方法
WO2017169230A1 (ja) * 2016-03-31 2017-10-05 本田技研工業株式会社 画像表示装置および画像表示方法
JP2018149884A (ja) * 2017-03-10 2018-09-27 アルパイン株式会社 ヘッドアップディスプレイ装置及び表示制御方法
JP2018173399A (ja) * 2017-03-31 2018-11-08 アイシン・エィ・ダブリュ株式会社 表示装置及びコンピュータプログラム
JP7151073B2 (ja) 2017-03-31 2022-10-12 株式会社アイシン 表示装置及びコンピュータプログラム
KR20190052912A (ko) * 2017-11-09 2019-05-17 삼성전자주식회사 가상 경로를 디스플레이하는 방법 및 장치
KR102434580B1 (ko) * 2017-11-09 2022-08-22 삼성전자주식회사 가상 경로를 디스플레이하는 방법 및 장치
US11511627B2 (en) 2017-11-17 2022-11-29 Aisin Corporation Display device and computer program
WO2019097755A1 (ja) * 2017-11-17 2019-05-23 アイシン・エィ・ダブリュ株式会社 表示装置及びコンピュータプログラム
JP2020042002A (ja) * 2018-09-11 2020-03-19 三星電子株式会社Samsung Electronics Co.,Ltd. 拡張現実で仮想オブジェクトを表示するための測位方法及び装置
CN110889872A (zh) * 2018-09-11 2020-03-17 三星电子株式会社 在增强现实中显示虚拟对象的定位方法和装置
JP7269082B2 (ja) 2018-09-11 2023-05-08 三星電子株式会社 拡張現実で仮想オブジェクトを表示するための測位方法及び装置
US11842447B2 (en) 2018-09-11 2023-12-12 Samsung Electronics Co., Ltd. Localization method and apparatus of displaying virtual object in augmented reality
JP2020057358A (ja) * 2018-10-01 2020-04-09 三星電子株式会社Samsung Electronics Co.,Ltd. ポーズ情報を取得する方法及び装置
JP7365148B2 (ja) 2018-10-01 2023-10-19 三星電子株式会社 ポーズ情報を取得する方法及び装置

Also Published As

Publication number Publication date
US20080195315A1 (en) 2008-08-14
US8195386B2 (en) 2012-06-05
JPWO2006035755A1 (ja) 2008-05-15
JP4696248B2 (ja) 2011-06-08

Similar Documents

Publication Publication Date Title
JP4696248B2 (ja) 移動体ナビゲート情報表示方法および移動体ナビゲート情報表示装置
US11333506B2 (en) Computer-vision based positioning for augmented reality navigation
JP6700623B2 (ja) 走行支援装置及びコンピュータプログラム
US11535155B2 (en) Superimposed-image display device and computer program
US8315796B2 (en) Navigation device
US10029700B2 (en) Infotainment system with head-up display for symbol projection
US8558758B2 (en) Information display apparatus
JP6775188B2 (ja) ヘッドアップディスプレイ装置および表示制御方法
JP4921462B2 (ja) カメラ情報を有するナビゲーションデバイス
US9459113B2 (en) Visual guidance for vehicle navigation system
CN111046743B (zh) 一种障碍物信息标注方法、装置、电子设备和存储介质
US20120224060A1 (en) Reducing Driver Distraction Using a Heads-Up Display
US20110103651A1 (en) Computer arrangement and method for displaying navigation data in 3d
US11525694B2 (en) Superimposed-image display device and computer program
JP2009205191A (ja) 駐車スペース認識装置
JP2004219664A (ja) 情報表示システム及び情報表示方法
JPH11108684A (ja) カーナビゲーションシステム
KR20110114114A (ko) 실사형 3차원 네비게이션 구현방법
JPWO2004048895A1 (ja) 移動体ナビゲート情報表示方法および移動体ナビゲート情報表示装置
CN102235869A (zh) 用于标记汽车目的地的方法和信息系统
GB2510698A (en) Driver assistance system
JP4787196B2 (ja) 車載用ナビゲーション装置
EP3859390A1 (en) Method and system for rendering a representation of an evinronment of a vehicle
JP2014211431A (ja) ナビゲーション装置、及び、表示制御方法
US20210327113A1 (en) Method and arrangement for producing a surroundings map of a vehicle, textured with image information, and vehicle comprising such an arrangement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006537744

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05788414

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11663909

Country of ref document: US