WO2006030486A1 - 金属凹面反射鏡とこれを用いた光源体およびその光源装置並びにその点灯回路 - Google Patents

金属凹面反射鏡とこれを用いた光源体およびその光源装置並びにその点灯回路 Download PDF

Info

Publication number
WO2006030486A1
WO2006030486A1 PCT/JP2004/013344 JP2004013344W WO2006030486A1 WO 2006030486 A1 WO2006030486 A1 WO 2006030486A1 JP 2004013344 W JP2004013344 W JP 2004013344W WO 2006030486 A1 WO2006030486 A1 WO 2006030486A1
Authority
WO
WIPO (PCT)
Prior art keywords
concave
concave reflecting
discharge lamp
metal
reflecting mirror
Prior art date
Application number
PCT/JP2004/013344
Other languages
English (en)
French (fr)
Inventor
Toshitaka Fujii
Atsuji Nakagawa
Tomihiko Ikeda
Hisao Furukawa
Original Assignee
Phoenix Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoenix Electric Co., Ltd. filed Critical Phoenix Electric Co., Ltd.
Priority to PCT/JP2004/013344 priority Critical patent/WO2006030486A1/ja
Priority to US11/572,463 priority patent/US20080042538A1/en
Priority to CNB2004800438186A priority patent/CN100549495C/zh
Publication of WO2006030486A1 publication Critical patent/WO2006030486A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces

Definitions

  • Metal concave reflector, light source body using the same, light source device and lighting circuit thereof Metal concave reflector, light source body using the same, light source device and lighting circuit thereof
  • the present invention relates to a concave reflecting mirror used at least for a concave reflecting portion made of metal and used in a discharge lamp, a light source device using the concave reflecting mirror, and a lighting circuit for the same, and a liquid crystal projector
  • Such information equipment such as information equipment is applied to video equipment such as projection television.
  • FIG. 2 shows a conventional example of a light source body (B) for a liquid crystal projector in which a glass concave reflector (2 ′) is mounted on a high-pressure discharge lamp (10).
  • the high-pressure discharge lamp (10) is arranged with the optical axis of the concave concave mirror made of glass (2 ') almost coincident, and the force that generates parallel or condensed light flux toward the front.
  • the material of the reflector (2 ') was exclusively made of glass.
  • the concave reflector (2 ') on which the high-pressure discharge lamp (10) is mounted is made of glass and metal cannot be used is that when the high-pressure discharge lamp (10) is started, the electrode (12X13) This is because a high pulse voltage of 15 kV must be applied continuously for dielectric breakdown! /. That is, when a pulse high voltage of 15 kV is applied continuously, the high pressure side sealing part (18) force of the high pressure discharge lamp (10) is also exposed, and the external lead rod (16) as well as the low pressure side external in some cases Lead rod (17) or its auxiliary lead (20) and metal part located close to it (if a concave reflector is made of metal, the neck part of this concave reflector corresponds to the metal part. This is a force that causes an abnormal discharge to cause a lighting failure.
  • the material of the concave concave mirror made of glass (2 ') is selected according to the maximum temperature of the concave reflective mirror (2') in use, and in the case of relatively low power consumption (250W or less), it is heat resistant. For borosilicate glass with a temperature of about 400 ° C and relatively high power consumption (200W or more), use crystallized glass with a heat-resistant temperature of about 500 ° C.
  • the concave reflecting surface (2c ') of the concave reflecting mirror (2') has a multi-layer deposited film (2d ') as a titanium oxide film.
  • this multilayer deposited film (2d ') has excellent heat resistance, it overcomes the difference in thermal expansion between the vitreous substrate of the concave reflecting portion (2a') and the multilayer deposited film (2d ') due to the temperature during lighting. As a result, peeling of the multilayer deposited film (2d ') does not occur, and the adhesiveness between the two is considered to have no practical problem.
  • glass is used for the concave reflector (2 '), there are the following problems.
  • the concave reflecting mirror (2 ') has a relatively complicated shape, and requires high accuracy, in particular, the accuracy of the concave reflecting surface (2c'). Become. If the high-pressure discharge lamp (10) becomes high wattage and the lighting temperature rises, crystallized glass with excellent heat resistance must be used, and this crystallized glass is expensive because the material itself is high. Becomes expensive.
  • the glass concave reflector (2 ') has a high thermal conductivity during lighting, and the entire surface becomes high temperature. Therefore, the multilayer deposited film (2d') is formed on the concave reflective surface (2c '). (For visible light reflection and infrared light transmission), the ones with excellent heat resistance as described above must be used. As described above, this multi-layer vapor deposition film (2d ') has a large number of laminated films and has a high vapor deposition temperature in the vapor deposition kettle, so that the time required for evacuating the vapor deposition kettle becomes longer and the processing cost is increased accordingly.
  • the light source body (B) is required to be V so that even if the high pressure discharge lamp (10) is ruptured, the fragments are not scattered around. Therefore, when the high-pressure discharge lamp (10) bursts and its fragments collide with the glass concave reflector (2 '), the concave reflector (2') is basically destroyed. .
  • the concave reflecting surface of the concave reflecting mirror (2 ') (The curved surface accuracy of 2 has a large effect on the brightness.
  • the glass concave reflector (2 ') is not easy to control during molding, in other words, as long as the glass concave reflector (2') is used, the brightness variation It was impossible to avoid the occurrence! / ⁇ and ⁇ ⁇ material itself.
  • Patent Document 1 USP6211616
  • a first object of the present invention is to make it possible to use a concave reflecting mirror having at least a concave reflecting portion made of metal for a discharge lamp, and secondly, a concave reflecting surface thereby.
  • the variation in brightness is reduced, and thirdly, by using such a concave reflector, the light source device as a whole can be reduced in size and density.
  • the discharge lamp bursts it is to make it possible to reduce as much as possible / J of internal mercury scattering.
  • “Claim 1” is a basic concept of the concave reflecting mirror (2) according to the present invention.
  • a high pressure discharge lamp (10) sealing part (18) is mounted that protrudes and is made of an insulating material via an insulating member (3) or is continuously applied with a DC voltage of 1000V-4000V at start-up. And a neck portion (2b) for mounting the sealing portion ”.
  • the entire concave reflecting mirror (2) or at least the concave reflecting portion (2a) is made of metal, surface accuracy is greatly improved by machining such as polishing of the concave reflecting surface (2c) after molding. Therefore, it was possible to obtain a highly accurate concave reflector (2) with no variation in brightness.
  • it since it is made of metal and has excellent heat dissipation properties, it is possible to use a multilayer vapor deposition film (2d) applied to the concave reflecting surface (2c) that has poor heat resistance. The production cost of 2) can be greatly reduced.
  • the material of the entire concave reflecting mirror (2) or at least the concave reflecting portion (2a) is made of a conventional glass-made metal, which is conventionally used for dielectric breakdown at the time of starting the lamp. From the high voltage pulse of about 15kV, the exposed part of the external lead rod (16) or (17) and the metal part close to it by adopting a starting method with lkV—approximately 4kV DC voltage [Lamphouse (S3) Insulation distance from the metal part (7) and concave metal reflector (2) metal neck (2b) or low-voltage side auxiliary lead (20) passed through the neck (2b) as shown in Fig. 1 (S3) — Shorten (S5) It can be done.
  • the sealing portion (18) attached to the neck portion (2b) (18) force is derived, and the exposed portion of the external lead rod (16) is insulated from the metal portion (7) of the lamp house.
  • the insulation distance between the inner and outer surfaces of (2a) (S13XS14) [Refer to Fig.
  • the volume of the lamp house can be reduced, and the entire light source device (A) can be made compact and dense.
  • the sealing part (18) attached to the neck part (2b) (18) Force is derived from the external lead rod (16) which is often on the high voltage side where high voltage is applied at the start of lighting.
  • the external lead rod (17) side from which the force is derived may be the high pressure side.
  • the sealing portion (18) side will be described as the high pressure side, but it is of course not limited thereto.
  • “Claim 2” is another example of the concave reflecting mirror (2), and protrudes toward the back side at the center of the metallic concave reflecting portion (2a) and the metallic concave reflecting portion (2a).
  • Concave surface composed of an insulating member (3) or of an insulating material and a neck portion (2b) for mounting a sealing portion on which a sealing portion (18) of a high pressure discharge lamp (10) is mounted It is a reflecting mirror (2), and is characterized in that an amalgam-forming substance with mercury is arranged in 2D (the 2D part of the concave reflecting surface (2c) of the metallic concave reflecting portion (2a).
  • the opening part (21) of the concave reflecting surface (2c), for example, a range of 5 to 10 mm from the opening end is a part that is hardly used for reflecting the light emitted from the high-pressure discharge lamp (10). Therefore, when the high-pressure discharge lamp (10) is ruptured by placing the amalgam-generating substance in 2D (for example, plating) in this non-use range, a part of the high-temperature mercury vapor is separated from the amalgam-generating substance. Reacts to form mercury amalgam, which remains attached to the opening (2D. As a result, the amount of external mercury scattering can be reduced.
  • “Claim 3” is another embodiment of “Claim 2" and "the opening portion (21) of the metallic concave reflecting portion (2a)".
  • a mesh plate (61) formed of an amalgam-forming substance or a mesh plate (61) attached with an amalgam-forming substance is stretched in the notch (2g) formed in the above.
  • these amalgam producing substances include zinc, tin, and silver.
  • a transparent plate (5) is disposed over the entire opening of the metal concave reflecting portion (2a). May not be installed and open
  • “Claim 4" defines the thermal conductivity of the metal part of the concave reflecting mirror (2), and is characterized in that "the metal part has a thermal conductivity of 50 W / m'K or more". Is. Conventional glass materials used as concave reflectors have a low thermal conductivity of about 1. OW / m'K, so the heat dissipation effect cannot be expected as described above. The temperature of ') is very high. When the power consumption of the high-pressure discharge lamp (10) is rated at 200W, the concave reflector (2a ') reaches, for example, about 500 ° C. Therefore, it is necessary to use expensive crystallized glass with a heat-resistant temperature of about 500 ° C.
  • “Claim 5" defines the multilayer deposited film (2d) of the metallic concave reflecting mirror (2), and "magnesium fluoride is applied to the concave reflecting surface (2c) of the concave reflecting portion (2a).” It is characterized by the fact that a multilayered vapor deposition film (2d) of zinc sulfate is applied.
  • the concave reflecting surface (2c ') of the concave reflecting mirror (2') has a heat resistant property as a multilayer deposited film (2d ').
  • This multilayer deposited film (2d) is heat resistant and has the above-mentioned acid titanium (TiO) and acid oxide.
  • “Claim 6” relates to another embodiment of the multilayer deposited film (2d) of the concave reflecting mirror (2), and "a heat ray absorbing film (2dl) is formed on the concave reflective metal base surface (2al)". Then, a multilayer vapor deposition film (2d), which is a visible light reflecting film, is formed on the heat ray absorbing film (2dl) ”.
  • a heat ray absorbing film (2 dl) between the concave reflecting base (2al) of the concave reflecting part (2a) and the multilayer deposited film (2d) that is a visible light reflecting film
  • a high pressure discharge lamp ( 10) Visible light directed toward the concave reflecting surface (2c) is reflected by the multilayer deposition film (2d) and emitted forward, but infrared rays are not reflected by the multilayer deposition film (2d) but are multilayer deposition films. Passes through (2d) toward the base (2al) side of the concave reflecting part (2a) on the back.
  • a heat ray absorbing film (2dl) is provided between the multilayer deposited film (2d) and the metal base surface (2al) of the concave reflecting portion (2a). Unlike the glass concave reflecting mirror (2 '), the infrared rays that passed through are directly reflected by the metal base surface (2al) of the concave reflecting portion (2a) and heat the irradiated surface in front. However, if a heat-absorbing film (2dl) is provided behind the multi-layer vapor-deposited film (2d), the portion of the infrared power that has passed through the multi-layer vapor-deposited film (2d) is absorbed by the heat-ray-absorbing film (2dl). The reflection component will be minimized.
  • the concave reflecting mirror (2) having at least the concave reflecting portion (2a) made of metal is used, it is possible to avoid the temperature rise of the irradiated surface.
  • the heat absorbed by the heat ray absorbing film (2dl) is dissipated to the surroundings by the metal concave reflecting portion (2a).
  • “Claim 7" relates to still another embodiment of the reflecting surface of the concave reflecting mirror (2), and "after using iron or stainless steel for the concave reflecting portion (2a) of the concave reflecting mirror (2) and after polishing.
  • a multilayer deposited film is formed on the concave reflective metal base (2al) that has been oxidized. It can absorb and reflect only visible light efficiently.
  • This method has an advantage over claim 6 in that a heat-absorbing film with poor accuracy is unnecessary.
  • the reflecting mirror made of metal has the effect of suppressing the heat generated by the lamp by conducting heat from the absorbed infrared rays.
  • the cooling rate after the lamp is extinguished is faster than that of glass reflectors. There is an effect that the moving time becomes faster.
  • “Claim 8" relates to still another embodiment of the reflecting surface of the concave reflecting mirror (2), and "in the center of the metallic concave reflecting portion (2a) and the metallic concave reflecting portion (2a)".
  • the aluminum reflecting layer (2h) is formed on at least a part of the concave reflecting surface (2c)
  • the light is reflected by the aluminum during lighting and can be used effectively as a reflecting layer.
  • the aluminum in the aluminum reflecting layer (2h) is sealed in the discharge lamp (10)! This creates mercury and amalgam to prevent mercury from being scattered outside.
  • “Claim 9” relates to yet another embodiment of the concave reflecting mirror (2) according to claim 8, and "magnesium fluoride and sulfur are not formed on the portion of the concave reflecting surface (2c) where the aluminum reflecting layer is not formed. It is characterized by the fact that it is coated with a multilayered zinc film (2d). By rubbing in this way, visible light is reflected forward by the multilayer vapor-deposited film (2d), and infrared light is absorbed and radiated to the metallic concave reflecting part (2a) side.
  • both visible light and infrared light are reflected forward, but since the aluminum reflective layer (2h) is a part of the concave reflective surface (2c), the entire concave reflective surface (2c) includes infrared rays. As a result, the amount of infrared reflection to the front can be reduced compared to the case of a total reflection surface. As described above, the aluminum reflective layer (2h) becomes amalgam and collects mercury.
  • “Claim 10" relates to still another embodiment of the concave reflecting mirror (2) according to claim 9, wherein "a heat ray absorbing film (2dl) is formed on the concave reflecting base (2al)".
  • a multilayer vapor deposition film (2d) that is a visible light reflecting film is formed on the heat ray absorbing film (2dl) ”. If the heat absorption film (2dl) is provided behind the multilayer vapor deposition film (2d) as described above, the force of infrared rays that have passed through the multilayer vapor deposition film (2d) by the heat radiation absorption film (2dl) as described above. The part will be absorbed and the reflection component will be minimized.
  • “Claim 12" is another embodiment of the concave reflecting mirror (2), and is provided on the back side at the center of the metallic concave reflecting portion (2a) and the metallic concave reflecting portion (2a).
  • Neck (2b) for mounting the sealing part which is protruded and made of insulating material (3) or made of insulating material (3) and to which the sealing part (18) of the high-pressure discharge lamp (10) is mounted
  • Concave reflector (2) composed of and using iron or stainless steel for at least the concave reflector (2c), and after oxidizing the concave reflective metal base (2al), it was oxidized
  • a multilayer deposited film (2d) is formed on the concave reflective metal base (2al) ”.
  • “Claim 13" is related to the light source body (1) in which the discharge lamp (10) is mounted on the concave reflecting mirror (2), "the insulating member (3) mounted in the neck (2b) or neck (2b)".
  • the concave reflecting mirror (2) according to any one of claims 1 to 7, and a mounting portion (18) for mounting the sealing portion provided in the sealing portion (18).
  • a high pressure discharge lamp (10) mounted in the hole (6a), and along the mounting hole (6a) of the insulating member (3) mounted in the neck (2b) or the neck (2b).
  • the other sealing part (19) force of the high-pressure discharge lamp (10) to the perforated insulating hole (6b) or the insulating groove or the insulating tube (9) inserted through the insulating hole (6b) or the insulating groove
  • the derived external lead rod (17) or the drawer auxiliary lead (20) connected thereto is inserted and connected.
  • the light source body (1) described in “Claim 14" is the reverse of “Claim 13", and "the low-pressure side sealing portion (19) where the high-voltage lighting voltage is not applied at the start of lighting is derived.
  • the external lead rod (17) or the auxiliary lead (20) connected to the external lead rod (17) is electrically joined to the metallic concave reflecting portion (2a) ”.
  • the low pressure side external lead rod (17) or the auxiliary lead (20) connected to this is intentionally electrically connected to the metal concave reflector (2) without insulation.
  • the metal concave reflector (2) that covers the discharge lamp (10) from the surroundings acts as a shield, and can reduce the noise generated at the start.
  • “Claim 15” is characterized in that the outer surface of the concave reflecting mirror (2) is "the outer surface of the metal portion is covered with the insulating layer (2e)".
  • the metal portion is connected to the external lead rod ( The same potential as 17) causes a safety problem that the operator may get an electric shock when touching the concave reflector (2).
  • “Claim 16” is another embodiment of the light source body (1), and is characterized in that "the transparent plate (5) is disposed in the entire opening of the metal concave reflecting portion (2a)". Therefore, by blocking the front opening with the transparent plate (5), it is possible to prevent debris scattering and mercury vapor diffusion when the discharge lamp (10) bursts. In particular, the scattered mercury can be fixed in cooperation with the above-mentioned mercury amalgam producing substances, which can contribute to the prevention of environmental pollution.
  • the discharge lamp lighting circuit (C) described in “Claim 17” includes a “starting circuit section (4) that generates a DC voltage of 1000 V to 4000 V when the discharge lamp is started and a high lighting power during steady lighting.
  • the high-voltage diode (8) connected to the high-voltage diode (8), and the DC high-voltage side end (47) of the starting circuit (4) has a reverse polarity to the output side of the high-voltage diode (8). It is connected to ".
  • “Claim 18” is a light source device (A) according to the present invention, wherein “the light source body (1) according to any one of claims 13 to 15 and the discharge lamp lighting circuit according to claim 17 (C ) And ".”
  • a concave reflecting mirror having at least a concave reflecting portion made of metal can be used for a discharge lamp, and this improves the curved surface accuracy of the concave reflecting surface.
  • the use of an infrared absorbing film has made it possible to suppress the temperature rise on the irradiated surface, as in the case of a concave concave mirror made of glass.
  • mercury amalgam-generating materials when the discharge lamp ruptures, it has become possible to minimize the scattering of mercury inside.
  • aluminum when aluminum is used as a mercury amalgam-forming material, it can be used as a reflective surface under normal circumstances, and it works as a mercury scavenger when the lamp bursts, which is very effective.
  • the concave reflecting mirror is made of metal, the concave reflecting mirror can be maintained without mechanical destruction even when the high-pressure discharge lamp ruptures.
  • FIG. 1 shows an example of a lighting circuit of the present invention and a discharge lamp used in the lighting circuit.
  • FIG. 2 is a drawing showing an example of a conventional lighting circuit and a discharge lamp used in the lighting circuit.
  • FIG. 3 is a schematic sectional view of a second embodiment of the discharge lamp of the present invention.
  • FIG. 4 is a schematic sectional view of a third embodiment of the discharge lamp of the present invention.
  • FIG. 5 is a schematic sectional view of a fourth embodiment of the discharge lamp of the present invention.
  • FIG. 6 is a sectional view of a specific example of the discharge lamp of the present invention.
  • FIG. 9 is a graph showing the starting applied voltage by the lighting circuit of the present invention.
  • Figure 1 shows a light source body (1) with a double-end type high-pressure discharge lamp (10) mounted on a concave reflector (2) made of metal with at least a concave reflector (2a) and its lighting circuit (C). is there.
  • the sealing portion (18) of the high-pressure discharge lamp (10) mounted on the concave reflecting mirror (2) is on the high-pressure side to which a high voltage is applied at the start is a typical example.
  • the high-pressure discharge lamp (10) will be described as a typical example of a double-end type, but a single-end type can also be applied.
  • the sealed container (11) of the high-pressure discharge lamp (10) used in the present invention is made of quartz glass that hardly undergoes thermal expansion and contraction, and has a hollow sphere-shaped arc tube portion (11a). It consists of a sealing part (18X19) extending straight from both ends.
  • the sealing part (18X19) Molybdenum metal foil (14X15) is embedded inside each with airtight, the base end of the electrode (12X13) is welded to one end, and the external lead rod (16X17) is connected to the other end.
  • the embedded ends are welded to each other, and the other end of the external lead rod (16X17) is led out.
  • the tips of the electrodes (12X13) are opposed to each other with a predetermined interval (0.8-1.5 mm).
  • the high-voltage side external lead rod (16) is connected to the brass-side output line (L) of the starting circuit section (4) of the lighting circuit (C) via the terminal (16a).
  • Auxiliary lead (20) connected to the rod (17) acts as an extension lead for the low-pressure-side lead-out external lead rod (17) and is equivalent to the low-pressure-side lead-out external lead rod (17) Is arranged along the high-pressure discharge lamp (1) and in the case of the embodiment of FIGS. 1, 4 and 6 (here described according to FIG. 6 illustrating FIGS.
  • the lead-out end is provided with a terminal (16a) which is connected to the low-pressure side line (m) of the starting circuit portion (4).
  • the concave reflecting mirror (2) is a metal at least on the concave reflecting portion (2a) (a metal material having a higher thermal conductivity, preferably 5 OW / m 'K or more, such as an aluminum die-cast product in this embodiment). Is used.
  • the concave reflecting portion (2a) of the concave reflecting mirror (2) is formed in an appropriate shape according to the required light properties such as a spheroid, paraboloid, hemisphere, etc., and the concave reflecting surface (2c ) Is formed with a multilayer deposited film (2d).
  • a multilayer deposited film (2d) of magnesium fluoride (MgF) and zinc sulfate (ZnS) is used as the visible light reflecting film of the concave reflecting portion (2a).
  • an infrared absorption layer (2dl) may be provided between the multilayer deposited film (2d) and the base material (2al) of the concave reflecting portion (2a).
  • a heat-resistant black paint is used for the infrared absorbing layer (2 dl).
  • the concave reflecting mirror (2) may be formed entirely of metal, but the concave reflecting portion (2a) is formed of metal and is used by being attached to the neck (2b) made of an insulating material.
  • a concave groove (2bl) for fitting the insulating member (3) is formed in the metal neck (2b) and insulated with the inorganic adhesive of the insulating member (3).
  • the member (3) may be fixed to the concave groove (2bl).
  • the metal for the concave reflector (2) is preferably excellent in thermal conductivity, and aluminum die casting is most preferable in consideration of various factors such as weight, cost, workability, and mechanical strength. Better ,.
  • the insulating member (3) is used by being fitted into the neck (2b) of the concave reflecting mirror (2), is formed of ceramic, and has a high-pressure discharge lamp (1) in the center.
  • a mounting hole (6a) is formed in which the high-pressure side sealing portion (18) of the mounting member is mounted.
  • an insulating groove (6b) is formed on the inner peripheral surface of the mounting hole (6a). Is recessed.
  • an insulating hole may be formed parallel to the mounting hole (6a).
  • Magnesium fluoride (MgF) is used as a visible light reflecting film constituting the concave reflecting surface (2c).
  • ZnS zinc sulfide
  • the following structure can be considered as a structure not using the infrared absorbing film (2dl) [FIG. 6 (mouth)].
  • the black acid film absorbs infrared rays and is efficiently radiated by the iron concave reflecting portion (2a).
  • visible light is efficiently reflected by the visible light reflection film (multilayer deposition film (2d)) constituting the four-surface reflection surface (2c).
  • This method has the advantage that the heat-absorbing film (2 dl) with poor accuracy described above is not necessary.
  • the concave reflecting mirror (2) made of metal (in this case iron) has the effect of suppressing the high temperature of the discharge lamp (10) by conducting heat from the absorbed infrared rays.
  • the cooling rate after the lamp is extinguished is faster than that of a conventional glass reflector, so the restart time is faster for the same starting voltage.
  • the mercury amalgam-forming substance aluminum is used as the reflective layer (2h).
  • the aluminum reflecting layer (2h) is formed on all or part of the concave reflecting surface (2c).
  • infrared rays are also reflected forward together with visible light.
  • the lamp bursts it also acts as a trap for mercury in the lamp. It is preferable because mercury can be prevented from scattering to the outside.
  • the aluminum reflecting layer (2h) does not need to be applied to the entire concave reflecting surface (2c), for example, the central portion of the concave reflecting surface (2c) surrounding the neck (2b) (this portion is the most from the lamp). (The portion that reflects the light) and a multilayer deposited film (2d) may be applied to the remaining portion. In this way, visible light is reflected forward by the multilayer deposited film (2d), and infrared light is absorbed and radiated by the metal concave reflecting part (2a) side.
  • the aluminum reflective layer (2h) is a force that reflects both visible and infrared rays forward.
  • the aluminum reflective layer (2h) is a part of the concave reflective surface (2c), so the entire concave reflective surface (2c) includes infrared rays. Compared with the total reflection surface, the amount of infrared reflection to the front can be suppressed.
  • the place where the aluminum reflective layer (2h) is provided is not limited to the central part of the concave reflective surface (2c) surrounding the neck part (2b), but may also be an opening part (2D or a part off the central part) Um ...
  • the heat ray absorbing film (2dl) is formed on the concave reflection base surface (2al), and the multilayer vapor deposition film (2d) is formed on the heat ray absorbing film (2dl). May be. If the heat-absorbing film (2dl) is provided behind the multilayer vapor-deposited film (2d) as described above, a considerable amount of infrared rays that have passed through the multilayer-deposited film (2d) by the heat-ray-absorbing film (2dl) as described above.
  • the concave reflection mirror (2) in which the portion is absorbed and the reflection component is minimized and at least the concave reflection portion (2a) is made of metal is used, the temperature of the irradiated surface can be prevented from rising.
  • the heat absorbed by the heat ray absorbing film (2dl) is gold. Heat is dissipated to the surroundings by the concave reflection part (2a) made of a metal.
  • a black acid iron iron film or a stainless steel oxide film is used with higher accuracy in place of the heat ray absorbing film (2dl).
  • I can do it. That is, at least the concave reflection part (2a) is made of iron or stainless steel, the concave reflection metal base surface (2al) is polished, and then the specular reflection metal base surface (2al) is oxidized. Then, a multilayer deposited film (2d) is formed thereon.
  • an aluminum reflective layer (2h) may be formed at a necessary portion, and a heat ray absorbing film (2dl) may be formed at a portion where the aluminum reflective layer is not formed. This makes it possible for the black iron oxide film or stainless steel film to efficiently absorb infrared light instead of the heat ray absorbing film with poor accuracy and reflect only visible light. Due to the rapid cooling, the restart time is faster for the same starting voltage than for glass.
  • the high-pressure discharge lamp (10) has its high-pressure side sealing portion (18) inserted into the mounting hole (6a) and fixed with an inorganic adhesive.
  • the external lead rod (17) led out from the low pressure side sealing part (18) is an insulating groove (6b) formed on the inner peripheral surface of the mounting hole (6a) by the auxiliary lead (20).
  • the insulating tube (9) prevents contact with the concave reflecting portion (2a) which is a metal portion.
  • the lighting circuit (C) is composed of a ballast (6), a starting circuit section (4), and a high voltage diode (8). It is connected to the high-pressure discharge lamp (10) via a diode (8). In the case of alternating current, a relay (35) connected in parallel to a high voltage diode (8) is used as shown by a two-dot chain line.
  • the ballast (6) is a DC power source indicated by the battery symbol (51) “Normally, the commercial current is rectified by a rectifier to make a direct current”, the lighting current of the discharge lamp (10) is detected and the pulse width
  • the pulse width control circuit (56) that controls the switching, which is installed on the positive output line (L) of the ballast (6) and performs switching operation according to the pulse width control signal of the pulse width control circuit (56) Element (57), a choke coil (59) connected in series to the switching element (57), and provided between the positive output line (L) and the low voltage side line (m).
  • the high voltage diode (8) is connected to the positive output, and during steady lighting, the output of the ballast (6) passes through the high voltage diode (8).
  • the high-pressure discharge lamp (10) flows into the high-pressure discharge lamp (10), thereby driving the steady-state lighting of the high-pressure discharge lamp (10).
  • the starting circuit section (4) that outputs a high DC voltage of about 1000-4000V (with a small capacity of about 0.1-1mA) is generally known, and here is an example. Show. A resistor (31) and a start pulse generating capacitor (32) are connected in series to the branch line (30) branched from the positive output line (L) of the ballast (6), and the start pulse generating capacitor ( The other end of 32) is connected to the low pressure side line (m). One end of the trigger element (33) is connected to the connection point between the resistor (31) and the start pulse generating capacitor (32), and the other end is connected to the primary side of the step-up transformer (41). . The other primary side of the step-up transformer (41) is connected to the low-pressure side line (m) of the ballast (6) so as to straddle the start pulse generating capacitor (32).
  • One end of the secondary side of the step-up transformer (41) is connected to a connection point of a pair of boost output capacitors (44X45) connected in series, and the other end of the secondary side is connected via a diode (42). Connected to one of the boost output capacitors (45). Then, another node paired with the diode (42) is connected between the connection point of the positive output line (L) and the boost output capacitor (44) and the connection point of the diode (42) and the secondary side. A diode (43) is provided. A protective resistor (46) is connected between the connection point of the boost output capacitor (45) and the diode (42) and the output side of the high voltage diode (8) of the positive output line (L). Yes.
  • the operation of the lighting circuit (C) in FIG. 1 will be described.
  • an optical device switch (not shown) is turned on, the optical device is activated and the lamp is started.
  • Start-up is performed as follows.
  • the direct current output from the direct current ballast (6) flows to the positive output line (L) power branch line (30) at this point because the discharge lamp (1) is not lit, and the starting circuit section (4 ).
  • the operation of the starting circuit section (4) is as follows. On the branch side, a current flows through the resistor (31) to the pulse generating capacitor (32) to charge it, and a voltage is generated across the capacitor (32).
  • the trigger element (33) connected in parallel to the pulse generating capacitor (32) is activated, and a trigger current flows to step up the transformer.
  • a whisker-like plus / minus pulse voltage is generated on the primary side of (41).
  • a boosted positive and negative boost pulse voltage amplified on the secondary side is generated.
  • the positive and negative boost pulse voltage is generated in the direction of the arrow on the secondary side.
  • the charging is instantaneously performed during the period when the trigger element (33) is activated and the whiskers voltage is generated. In this way, the output voltage Vs of the starting circuit section (4) is generated across the capacitor (44X45) connected in series.
  • the voltage generated across the capacitor (44X45) connected in series is connected to the voltage (Vs) across the high voltage diode (8) via the resistor (46) [However, the high voltage diode for lighting The output side of (8) is a high voltage].
  • the resistor (46) is a protective resistor for the diode (42X43), as will be described later, and almost no voltage is generated at this point and can be ignored, so the voltage generated across the capacitor (44X45) is lit.
  • the voltage across the high-voltage diode (8) is almost equal to the voltage (Vs).
  • the output of the starting circuit (4) is supplied to the high-pressure discharge lamp (10) by the high voltage diode (8) and is prevented from entering the ballast (6).
  • the breakdown of the high-pressure discharge lamp (10) follows the energy expressed by the product of voltage and time (however, the breakdown energy increases exponentially as the voltage level decreases), compared to the conventional case. Even if the voltage is low, the necessary insulation breakdown energy is reached after a certain period of time, and arc discharge occurs between the electrodes (12X13). Incidentally, when the starting voltage (VA) is about 2000V, the dielectric breakdown energy is reached in about 0.4ms.
  • the transition to the arc discharge is smoothly performed through the glow discharge, and the transition to steady lighting is performed.
  • the lamp voltage drops suddenly at the initial stage when the glow discharge force arc discharge starts, and then gradually increases to a predetermined voltage (for example, Reaches 80V). Thereafter, the voltage is maintained and steady lighting is performed.
  • the output voltage (lamp voltage) of the ballast (6) is kept lower than the trigger voltage of the trigger element (33) as described above, so the charging voltage of the pulse generating capacitor (32) is also the trigger element.
  • the trigger voltage (33) is below the trigger voltage and the trigger element (33) stops operating.
  • the step-up transformer (41) also stops, and during steady lighting, a steady lamp current flows to the high-pressure discharge lamp (10) via the high voltage diode (8).
  • the current output from the DC ballast (6) passes through the discharge lamp (10) and flows through the low-voltage side line (m) during steady lighting, causing the sense resistor (53) to generate a voltage. .
  • the pulse width control circuit (56) detects the lighting current flowing in the discharge lamp (10) by detecting the voltage of the sense resistor (53) so that the power supplied to the discharge lamp (10) is constant.
  • the switching element (57) is controlled to be switched.
  • a discharge phenomenon may occur between the electrodes (12X13) at the start of lighting, and noise may be generated in the peripheral circuit due to the discharge phenomenon. Therefore, as shown in Fig. 5, if the auxiliary lead (20) connected to the low-pressure-side external lead rod (17) is connected to the metal concave reflecting part (2a), the concave reflecting part (2a ) Can serve as a shield member and reduce the occurrence of malfunctions in the peripheral circuits (Of course, as described above, the high-pressure side sealing part (18) of (10) is attached to the concave reflecting mirror (2).
  • the external lead rod (17) of the low-pressure side sealing part (19) or the auxiliary lead (20) connected thereto is electrically connected to the concave reflecting part (2a), which is the metal part of the concave reflecting mirror (2). It is common to join to) o
  • the shielding effect can be expected, and the connected concave reflection part (2a) becomes the same potential as the external lead rod (16) or (17), and the light source device ( If an operator handling A) accidentally touches the concave reflector (2a), there is a possibility of electric shock. Therefore, if the concave part (2a) or the concave part (2), which is the metal part of the concave reflector (2), is covered with an insulating layer (2e), such a risk can be avoided. It can be surely prevented.
  • Fig. 4 is a schematic diagram of the case described with reference to Fig. 6, where the auxiliary lead (20) is inserted through the neck (2b), and the metal concave reflecting portion (2a) and the auxiliary lead.
  • the insulation distance (SI 1) from (20) and the insulation distance (S12) between the exposed end of the auxiliary lead (20) inserted through the insulation tube (9) and the metal neck (2b) are shown.
  • the interval may be about 2mm-6mm depending on the DC voltage lkV-4kV.
  • Fig. 5 shows the metal concave reflector (2a) and the metal part of the lamp house when the auxiliary lead (20) is connected to the concave reflector (2a) and the outer surface is not provided with an insulating layer (2e).
  • the insulation distance (S15) with 7) is shown, and the insulation distance specified in the above safety standards or safety standards is required. If the insulating layer (2e) is provided on the outer surface, the insulating distance (S15) is further reduced.
  • the high pressure discharge lamp (10) When the high pressure discharge lamp (10) is steadily lit, a part of the light emitted from the high pressure discharge lamp (10) is emitted directly forward, and the other is reflected by the concave reflecting portion (2a).
  • the light emitted forward passes through an optical system composed of, for example, a UV-IR cut filter, a color separation dichroic mirror, a total reflection mirror, and the like, and passes through a projection lens (70) to form a color image on the front screen (S). Projected as such.
  • an infrared absorbing film (2dl) or a black iron oxide film or a black stainless steel film is provided under the multilayer deposited film (2d) which is a visible light reflecting film, only visible light is deposited in the multilayer. Reflected by the film (2d), infrared light is absorbed by the infrared absorption film (2dl) or black iron oxide film or black stainless steel film, is not irradiated forward, and is used to heat the concave reflector (2). Radiated from the concave reflector (2) to the surroundings. As a result, the temperature rise of the irradiated surface is suppressed even though the high-pressure discharge lamp (10) is used as the light source.
  • the high-pressure discharge lamp (10) is filled with the necessary gas and mercury in the arc tube section (11a).
  • the high-pressure discharge lamp (10) itself becomes hot and the arc tube section ( The pressure in 11a) increases to a very high pressure, for example about 150 atmospheres.
  • the envelope container (11) is glass as described above, it sometimes bursts. In that case, the arc tube part (11a) is filled! The mercury is vaporized and scattered around, contaminating the surrounding environment.
  • the concave reflecting portion (2a) is provided with an opening (2D has a notch (2g), and the notch ( A mesh plate (61) is stretched over 2g), and ventilation cooling may be performed using the notch (2g), but some mercury vapor cache plates ( 6) Force to flow outside through the mercury At this time, mercury passing through the mesh plate (61) is collected by the mercury amalgam forming substance of the mesh plate (61), and the outflow of mercury to the outside is suppressed.
  • the mercury amalgam-forming substance is also provided in the opening part (2D), it is effective in collecting mercury remaining in the concave reflection part (2a).
  • the light source body (1) may be a concave reflector (2) equipped with a double-end type discharge lamp (10), but a single-end type discharge lamp as shown in FIG. 10 ') can be attached to the concave reflector (2).
  • Uniform brightness is required over the entire surface of the light source of the large-screen rear projection TV and the liquid crystal projector.
  • a metal reflector By using a metal reflector, the surface accuracy of the reflecting surface can be significantly improved compared to the case of glass, and costs can be reduced. It also contributes to improving the intensity of the light source, which is strong against lamp rupture, and in particular, should be used as a light source for future large-screen rear-processing televisions.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

 放電灯用として少なくとも凹面反射部が金属製である凹面反射鏡を使用することができるようにするためのもので、金属製凹面反射部(2a)と、前記金属製凹面反射部(2a)の中央にて背面側に突出され、絶縁部材(3)を介して或いは絶縁材料で構成され、始動時に1000V~4000Vの直流電圧が連続的に印加される高圧放電灯(10)の高電圧印加側の封止部(18)が装着される封止部装着用の首部(2b)とで構成されていることを特徴とするもので、凹面反射面(2c)の曲面精度の向上を図ることができ、これにより明るさのばらつきを小さくすることや多層蒸着膜を耐熱性の低いものを使用することなどができ、更にコストを大幅に減ずることができた。

Description

明 細 書
金属凹面反射鏡とこれを用いた光源体およびその光源装置並びにその 点灯回路
技術分野
[0001] 本発明は、少なくともその凹面反射部が金属製であり、放電灯に装着して用いられ る凹面反射鏡並びに前記凹面反射鏡を用いた光源装置並びにその点灯回路であつ て、液晶プロジェクタなどの情報機器ある ヽはプロジェクシヨンテレビ等の映像機器に 適用される。
背景技術
[0002] 図 2は高圧放電灯 (10)にガラス製凹面反射鏡 (2')を装着した液晶プロジェクタ用の 光源体 (B)の従来例である。高圧放電灯 (10)はガラス製凹面反射鏡 (2')と光軸をほぼ 一致させて配置され、前方に向けて平行な光束あるいは集光した光束を発生させる ようになつている力 この凹面反射鏡 (2')の材質としては専らガラス製のものが使用さ れていた。
[0003] 高圧放電灯 (10)が装着される凹面反射鏡 (2')にガラスが使用され金属を使用するこ とができない理由は、高圧放電灯 (10)の始動時に電極 (12X13)間の絶縁破壊のため に 15kVものパルス高電圧を連続的に印加させなければならな!/、からである。即ち、 15kVものパルス高電圧を連続的に印加すると、高圧放電灯 (10)の高圧側封止部 (18)力も露出して 、る外部リード棒 (16)は勿論、場合によっては低圧側外部リード棒 (17)或いはその補助リード (20)とそれに近接して位置する金属部分 (凹面反射鏡とし て金属製のものを使用した場合はこの凹面反射鏡の首部の部分が前記金属部分に 該当することになる)との間で異常放電が発生し、点灯障害を起こすことになる力 で ある。
[0004] このようなガラス製凹面反射鏡 (2')の材質は使用時の凹面反射鏡 (2')の最高温度に より選定され、比較的低い消費電力 (250W以下)の場合は、耐熱温度 400°C程度の ほう珪酸ガラス、比較的高い消費電力 (200W以上)の場合は、耐熱温度 500°C程度 の結晶化ガラスを使用する。 [0005] また、凹面反射鏡 (2')の凹面反射面 (2c')には多層蒸着膜 (2d')として酸ィ匕チタン
(TiO )と酸化珪素 (SiO )の多層蒸着膜が 30層前後施されており、可視光のみを反射
2 2
し、赤外線を背方に透過させるようになつている。この多層蒸着膜 (2d')は耐熱性に優 れているため、点灯時の温度による凹面反射部 (2a')のガラス質基体と多層蒸着膜 (2d')との熱膨張差を克服して多層蒸着膜 (2d')の剥離が発生せず、両者の接着性は 実用上問題がないとされている。しかしながら、凹面反射鏡 (2')にガラスを使用する場 合、以下のような問題点がある。
[0006] (a)凹面反射鏡 (2')は比較的複雑な形状をしており、且つ高精度、特に凹面反射面 (2c')の精度が要求されるため反射鏡製造コストが割高になる。カロえて、高圧放電灯 (10)が高ワットになり、点灯温度が高くなると耐熱性に優れた結晶化ガラスを使用しな ければならず、この結晶化ガラスは材料自体が高 、ため材料費が割高になる。
[0007] (b)ガラス製凹面反射鏡 (2')は熱伝導性が悪ぐ点灯時、全体が高温になるためその 凹面反射面 (2c')に形成される多層蒸着膜 (2d') (可視光線反射用と赤外線透過用)は 前述のような耐熱性に優れるものを使用しなければならない。この多層蒸着膜 (2d')は 前述のように積層膜数が多くしかも蒸着釜での蒸着温度が高いので蒸着釜の真空 引き時間が長くなり、それだけ加工コストが割高となる。
[0008] (c)光源体 (B)には、高圧放電灯 (10)が破裂した場合でもその破片が周囲に飛散しな V、ようにすることが要請されて 、るが、ガラスは基本的に耐衝撃性が小さ!/、ため高圧 放電灯 (10)の破裂によってその破片がガラス製の凹面反射鏡 (2')に衝突すると凹面 反射鏡 (2')は基本的に破壊される。そこで、高圧放電灯 (10)の破裂時における凹面 反射鏡 (2')の機械的破壊防止策として、ガラスの厚みを厚くする方法とか凹面反射鏡 (2')の外面にフッ素榭脂コートを行うなど種々の方策が加えられている力 前者にあ つては成形上の制約があるという問題があり、後者にあってはフッ素榭脂コートの加 ェコストが著しく高いなどコスト面での問題がある。
[0009] (d)その他、前述のように絶縁破壊電圧として 15kVもの高パルス電圧が必要である ため、高圧放電灯 (10)の高圧側封止部 (18)力 の高圧側外部リード棒 (16)の露出部 分と周囲の金属部分 (7) [凹面反射鏡 (2')としてガラス基材を使用した場合には高圧 放電灯 (10)をガラス製凹面反射鏡 (2')に装着した光源体 (1)を収納するためのランプ ハウスの金属部分 (7)]間で絶縁距離 (S2)として少なくとも 15mm程度開ける必要があ り、プロジェクタの小型化、高密度化を進めるうえで大きな障害となる。なお、低圧側 封止部 (19)力 導出された低圧側外部リード棒 (17)と高圧側外部リード棒 (16)との絶 縁距離 (S1)も必要であるため、低圧側外部リード棒 (17)は補助リード (20)を介して凹面 反射部 (2 )に装着されている金属端子 (22)に接続せざるを得な力つた。
[0010] (e)加えて凹面反射鏡 (2')の凹面反射面 (2 の曲面精度は明るさに大きく影響する 力 ガラス製の場合はどうしてもばらつきが発生し、曲面精度的に対応が困難となり、 その要求を満たすにはガラス製凹面反射鏡 (2')は成形時の制御が容易ではない。換 言すれば、ガラス製凹面反射鏡 (2')を使用する限り、明るさのばらつき発生を避けるこ とができな!/ヽと ヽぅ材質そのものの問題もあった。
[0011] (£)また、従来の点灯回路 (b)は図 2のような構成であるので、点灯始動時には前述の ように 15kVの高ノ ルス電圧を連続的に印加することになる。それ故、凹面反射鏡 (2')の材質にはガラスを使用せざるを得な力つたのである。なお、従来の点灯回路 (b) を簡単に説明する。
[0012] 放電灯 (10)の始動時 (消灯後の再点灯時も同様)に、安定器 (6)の出力電圧 (約 300 一 350V)にィグナイタ (4')で生成された細いひげ状でパルス間隔が数 10Hzの高圧 パルス電圧 (12KV— 25KV、パルス幅が 0.1マイクロ秒程度)が重畳した始動電圧が 放電灯 (10)の電極 (12X13)間に印加される。
[0013] 前記高圧パルス電圧が何回か電極 (12X13)間に加えられると、電極 (12X13)間の絶 縁破壊が起こり、陰極 (13)から陽極 (12)に電子が発射され細い放電路が形成され放 電が開始する。続いて適正な電圧が印加され電流が供給されると放電過渡状態のグ ロー放電を経てアーク放電に移行する。アーク放電の移行初期は発光管部 (11a)中 の水銀が蒸発していない状態であるため、電極 (12X13)間の電圧は例えば 15V程度 にまで低下し、その後、温度上昇に伴う水銀の蒸発に連れて電圧が上昇し 80V程度 に達し、定常点灯状態となる。
[0014] なお、付随的な問題であるが、放電灯 (10)が破裂し、放電灯 (10)内部の水銀が周囲 に飛散して周囲の環境を汚染するという問題も指摘されていた。
[0015] このようなガラス製リフレクタを用いたものとしては USP6211616を始め、多数のも のがある。
特許文献 1 :USP6211616
発明の開示
発明が解決しょうとする課題
[0016] 本発明の課題の第 1は、放電灯用として少なくとも凹面反射部が金属製である凹面 反射鏡を使用することができるようにすることであり、第 2に、これにより凹面反射面の 曲面精度の向上を図り、以つて明るさのばらつきを小さくすること、第 3に、このような 凹面反射鏡を使用することで光源装置全体の小型化と高密度化を達成することにあ る。付随的には放電灯が破裂した場合、内部の水銀の周囲への飛散を出来るだけ /J、さくすることが出来るようにすることにある。
課題を解決するための手段
[0017] 「請求項 1」は本発明の凹面反射鏡 (2)の基本概念で「金属製凹面反射部 (2a)と、前 記金属製凹面反射部 (2a)の中央にて背面側に突出され、絶縁部材 (3)を介して或い は絶縁材料で構成され、始動時に 1000V— 4000Vの直流電圧が連続的に印加さ れる高圧放電灯 (10)の封止部 (18)が装着される封止部装着用の首部 (2b)とで構成さ れている」ことを特徴とする。
[0018] 凹面反射鏡 (2)の全体或いは少なくとも凹面反射部 (2a)を金属製としたので、成形 後の凹面反射面 (2c)の研磨等の機械加工により面精度を飛躍的に向上させることが でき、以て明るさのばらつきがない高精度な凹面反射鏡 (2)とすることができた。加え て、金属製であるため放熱性に優れているので、凹面反射面 (2c)に施される多層蒸 着膜 (2d)を耐熱性に劣るものを使用することができ、凹面反射鏡 (2)の製造コストを大 幅に引き下げることができる。
[0019] また、本発明は凹面反射鏡 (2)の全体あるいは少なくとも凹面反射部 (2a)の材質を 従来のガラス製力 金属製にするものであるが、ランプ始動時の絶縁破壊用に従来 の 15kV程度の高圧パルスから lkV— 4kVのほぼ直流電圧による始動方法を採用 することで電気的に外部リード棒 (16)又は (17)の露出部分と、これに近接する金属部 分 [ランプハウスの金属部分 (7)や凹面反射鏡 (2)の金属製首部 (2b)或いは図 1に示す ように首部 (2b)を通過させた低圧側補助リード (20)]との絶縁距離 (S3)— (S5)を短くす ることがでさる。
[0020] 具体的には、図 1において、首部 (2b)に装着された封止部 (18)力 導出された外部 リード棒 (16)の露出部分とランプハウスの金属部分 (7)の絶縁距離 (S3)、前記外部リー ド棒 (16)の露出部分と補助リード (20)の絶縁距離 (S4)、首部 (2b)に挿通された補助リー ド (20)と首部 (2b)の絶縁距離 (S5)或いは凹面反射部 (2a)の中央に位置する封止部 (19)力も導出された外部リード棒 (17)やその補助リード (20)の露出部分と金属製の凹 面反射部 (2a)の内外面との絶縁距離 (S13XS14) [図 3参照]などが始動時の直流電圧 1 kV— 4kVに応じて約 2mm— 6mmと従来に比べてはるかに小さくすることが出来る。 その結果、ランプハウスの容積を小さくすることができ、光源装置 (A)全体をコンパクト 且つ高密度化することができる。
[0021] なお、首部 (2b)に装着される封止部 (18)力 導出される外部リード棒 (16)は点灯始 動時高電圧が力かる高圧側となること多いが、場合によっては凹面反射部 (2a)の中 央に位置する封止部 (19)力 導出された外部リード棒 (17)側が高圧側となる場合もあ る。本発明では封止部 (18)側を高圧側として説明するが勿論、これに限られるもので はない。
[0022] 「請求項 2」は前記凹面反射鏡 (2)の他の例で「金属製凹面反射部 (2a)と、前記金属 製凹面反射部 (2a)の中央にて背面側に突出され、絶縁部材 (3)を介して或いは絶縁 材料で構成され、高圧放電灯 (10)の封止部 (18)が装着される封止部装着用の首部 (2b)とで構成されている凹面反射鏡 (2)であって、金属製凹面反射部 (2a)の凹面反射 面 (2c)の開口部分 (2Dに水銀とのアマルガム生成物質が配置されて 、る」ことを特徴と する。
[0023] 凹面反射面 (2c)の開口部分 (21)、たとえば開口端から 5から 10mmの範囲は高圧放 電灯 (10)から出射された光を反射する上でほとんど利用されない部分である。従って 、この非利用範囲である開口部分 (2Dにアマルガム生成物質を配置 (たとえば鍍金)す ることで、高圧放電灯 (10)が破裂した場合、高温水銀蒸気の一部分が前記アマルガ ム生成物質と反応して水銀アマルガムを形成し開口部分 (2Dに付着残留する。その 結果、水銀の外部飛散量を減少させることができる。
[0024] 「請求項 3」は「請求項 2」の他の実施例で「金属製凹面反射部 (2a)の開口部分 (21) に形成された切欠部 (2g)にアマルガム生成物質にて形成されたメッシュプレート (61) 或はアマルガム生成物質を付着したメッシュプレート (61)が張設されている」ことを特 徴とする。なお、これらアマルガム生成物質としては亜鉛や錫、銀などがあげられる。 なお、「請求項 2」の場合も同様であるが、金属製凹面反射部 (2a)の全面開口に透明 板 (5)が配設されて ヽる場合もあれば、透明板 (5)が配設されず開放状態の場合もある
[0025] 「請求項 4」は前記凹面反射鏡 (2)の金属部分の熱伝導率を規定したもので、「金属 部分が熱伝導率 50W/m'K以上である」ことを特徴とするものである。凹面反射鏡と して用いられる従来のガラス材料の熱伝導率はおよそ 1. OW/m'Kと低いため前述 のように放熱効果は期待できず、高圧放電灯点灯時の凹面反射鏡 (2')の温度は非常 に高い。高圧放電灯 (10)の消費電力が定格 200Wの場合、凹面反射部 (2a')は例え ば 500°C程度にも達する。従って耐熱温度 500°C程度の高価な結晶化ガラスを使用 する必要がある。
[0026] これに対して熱伝導率 50W/m'K以上の金属を凹面反射鏡 (2)の金属部分に使用 することにより、放熱が大きく凹面反射部 (2a)の温度は大幅に下がる。 200Wの場合、 全体或 、は少なくとも凹面反射部 (2a)にアルミニウムを使用した場合、 300°C程度に 下げることができる。なお、各金属の熱伝導率(単位 W/m'K)はアルミニウムが 233 、鉄が 56、銅が 381である。
[0027] 「請求項 5」は金属製凹面反射鏡 (2)の多層蒸着膜 (2d)を規定したもので、「凹面反 射部 (2a)の凹面反射面 (2c)にはフッ化マグネシウムと硫ィ匕亜鉛の多層蒸着膜 (2d)の 蒸着が施されている」事を特徴とする。凹面反射鏡の材質として、従来のようなガラス 材料の場合、前述のように凹面反射鏡 (2')の凹面反射面 (2c')には多層蒸着膜 (2d')と して耐熱性の良好な酸ィ匕チタン (TiO )と酸化珪素 (SiO )の多層蒸着膜が 30層前後積
2 2
層されている。
[0028] これに対して少なくとも凹面反射部 (2a)が金属製の場合、その放熱効果によって温 度が低くなるので、フッ化マグネシウム (MgF )と硫ィ匕亜鉛 (ZnS)の多層蒸着膜 (2d)を使
2
用することができる。この多層蒸着膜 (2d)は耐熱性で前述の酸ィ匕チタン (TiO )と酸ィ匕
2 珪素 (SiO )の多層蒸着膜 (2d')に比べて劣るが、積層される多層蒸着膜 (2d)は約 22層 と少なくて済み、し力も蒸着釜の温度は前述の酸ィ匕チタン (TiO )と酸化珪素 (SiO )の
2 2 多層蒸着膜に比べて低めで可能なので、真空引きが短くでき大幅なコスト削減を可 能とする。
[0029] 「請求項 6」は凹面反射鏡 (2)の多層蒸着膜 (2d)の他の実施例に関し、「凹曲反射金 属基面 (2al)上に熱線吸収膜 (2dl)が形成され、前記熱線吸収膜 (2dl)の上に可視光 反射膜である多層蒸着膜 (2d)が形成されて ヽる」ことを特徴とする。このように凹面反 射部 (2a)の凹面反射基面 (2al)と可視光反射膜である多層蒸着膜 (2d)との間に熱線 吸収膜 (2dl)を施すことにより、高圧放電灯 (10)力 出、凹面反射面 (2c)に向かう可視 光は多層蒸着膜 (2d)によって反射されて前方に出射されるが、赤外線は前記多層蒸 着膜 (2d)では反射されず多層蒸着膜 (2d)を通過してその背方の凹面反射部 (2a)の基 面 (2al)側に向かう。
[0030] 多層蒸着膜 (2d)と凹面反射部 (2a)の金属基面 (2al)との間に熱線吸収膜 (2dl)が設 けられて 、な 、場合、多層蒸着膜 (2d)を通過した赤外線はガラス製凹面反射鏡 (2')と 異なり、凹面反射部 (2a)の金属製基面 (2al)によって直接反射され、前方の照射面を カロ熱することになる。しかしながら、多層蒸着膜 (2d)の背後に熱線吸収膜 (2dl)を設け ておれば、多層蒸着膜 (2d)を通過した赤外線の力なりの部分は熱線吸収膜 (2dl)によ り吸収され、反射成分が最小化されることになる。その結果、少なくとも凹面反射部 (2a)が金属製である凹面反射鏡 (2)を使用したとしても、照射面の昇温を避けることが できる。なお、熱線吸収膜 (2dl)にて吸収された熱は金属製凹面反射部 (2a)により周 囲に放熱されることになる。
[0031] 「請求項 7」は凹面反射鏡 (2)の反射面の更に他の実施例に関し、「凹面反射鏡 (2) の凹面反射部 (2a)に鉄あるいはステンレスを使用し、研磨後、酸化処理がなされた凹 曲反射金属基面 (2al)に多層蒸着膜が形成されている」ことを特徴とするもので、これ により、赤外線を黒色の酸ィ匕鉄皮膜あるいは酸化ステンレス皮膜が吸収し、効率よく 可視光のみを反射する事ができる。この方法は請求項 6に対して精度の悪い熱線吸 収膜が不要になるという利点を有する。しかも金属にて構成された反射鏡は吸収した 赤外線による熱を熱伝導により、ランプの発熱を抑制する効果がある。特にランプ消 灯後の冷却速度がガラス製反射鏡に比べて早いので、同じ始動電圧に対して再始 動時間が早くなるという効果がある。
[0032] 「請求項 8」は凹面反射鏡 (2)の反射面の更に他の実施例に関し、「金属製凹面反 射部 (2a)と、前記金属製凹面反射部 (2a)の中央にて背面側に突出され、絶縁部材 (3) を介して或いは絶縁材料 (3)で構成され、高圧放電灯 (10)の封止部 (18)が装着される 封止部装着用の首部 (2b)とで構成されている凹面反射鏡 (2)であって、少なくとも凹面 反射面 (2c)の一部にアルミニウム反射層 (2h)が形成されている」ことを特徴とする。こ のように少なくとも凹面反射面 (2c)の一部にアルミニウム反射層 (2h)を形成しておけば 、点灯時にはアルミニウム)によって光が反射され、反射層として有効に利用すること ができ、ランプ破裂時には、アルミニウム反射層 (2h)のアルミニウムが放電灯 (10)に封 入されて!、る水銀とアマルガムを作り、水銀の外部への飛散を防止する。
[0033] 「請求項 9」は請求項 8に記載の凹面反射鏡 (2)に更なる他の実施例に関し、「凹面 反射面 (2c)のアルミニウム反射層非形成部分にフッ化マグネシウムと硫ィ匕亜鉛の多 層蒸着膜 (2d)が施されている」事を特徴とする。このよう〖こすること〖こよって、多層蒸着 膜 (2d)によって可視光線は前方に反射され、赤外線が金属製凹面反射部 (2a)側に吸 収され、且つ放熱される。アルミニウム反射層 (2h)では可視光線も赤外線も前方に反 射されるが、アルミニウム反射層 (2h)は凹面反射面 (2c)の一部であるから凹面反射面 (2c)全体が赤外線を含めて全反射面となっているものに比べて前方への赤外線反射 量を抑制することができる。アルミニウム反射層 (2h)がアマルガムとなって水銀を捕集 することは前述の通りである。
[0034] 「請求項 10」は請求項 9に記載の凹面反射鏡 (2)の更なる他の実施例に関し、「凹 曲反射基面 (2al)上に熱線吸収膜 (2dl)が形成され、前記熱線吸収膜 (2dl)の上に可 視光反射膜である多層蒸着膜 (2d)が形成されて ヽる」ことを特徴とする。このように多 層蒸着膜 (2d)の背後に熱線吸収膜 (2dl)を設けておれば、前述したように熱線吸収 膜 (2dl)により多層蒸着膜 (2d)を通過した赤外線の力なりの部分は吸収され、反射成 分が最小化されることになる。その結果、少なくとも凹面反射部 (2a)が金属製である凹 面反射鏡 (2)を使用したとしても、照射面の昇温を避けることができる。なお、熱線吸 収膜 (2dl)にて吸収された熱は金属製凹面反射部 (2a)により周囲に放熱されることに なる。 [0035] 「請求項 11」は請求項 10に記載の凹面反射鏡 (2)の更なる他の実施例に関し、「少 なくとも凹面反射部 (2a)に鉄あるいはステンレスを使用し、研磨後、酸化処理がなされ た凹曲反射金属基面 (2al)のアルミニウム反射層非形成部分に多層蒸着膜 (2d)が形 成されている」ことを特徴とする。この場合も前記同様、精度の悪い熱線吸収膜の代 わりに赤外線を黒色の酸ィ匕鉄皮膜ある 、は酸化ステンレス皮膜が効率よく吸収し、 可視光のみを反射する事ができる他、ランプ発熱抑制効果や、ランプ消灯後の急冷 によりガラスの場合に比べて同じ始動電圧に対して再始動時間が早くなる。
[0036] 「請求項 12」は凹面反射鏡 (2)の更に他の実施例で「金属製凹面反射部 (2a)と、前 記金属製凹面反射部 (2a)の中央にて背面側に突出され、絶縁部材 (3)を介して或い は絶縁材料 (3)で構成され、高圧放電灯 (10)の封止部 (18)が装着される封止部装着 用の首部 (2b)とで構成されている凹面反射鏡 (2)であって、少なくとも凹面反射部 (2c) に鉄あるいはステンレスを使用し、凹曲反射金属基面 (2al)の研磨後、酸化処理がな された凹曲反射金属基面 (2al)に多層蒸着膜 (2d)が形成されて ヽる」ことを特徴とする 。このようにしておけば可視光の殆ど全ては多層蒸着膜 (2d)にて前方に照射される一 方、赤外線の大半は黒色酸化処理層に吸収され、前方への照射が抑制されること〖こ なり、被照射面の温度上昇を抑制することができる。なお、吸収された熱は金属製凹 面反射部 (2a)により放散されることになる。
[0037] 「請求項 13」は放電灯 (10)を凹面反射鏡 (2)に装着した光源体 (1)に関し「首部 (2b) 或いは首部 (2b)内に装着された絶縁部材 (3)に設けられた封止部装着用の装着孔 (6a)が穿設されている請求項 1一 7のいずれかに記載の凹面反射鏡 (2)と、その封止 部 (18)が前記装着孔 (6a)に装着された高圧放電灯 (10)とで構成され、前記首部 (2b)あ るいは首部 (2b)内に装着された絶縁部材 (3)の装着孔 (6a)に沿って穿設された絶縁通 孔 (6b)又は絶縁溝或いは該絶縁通孔 (6b)又は絶縁溝に挿通された絶縁管 (9)に高圧 放電灯 (10)の他の封止部 (19)力 導出された外部リード棒 (17)或いはこれに接続され た引出し補助リード (20)が挿通されて 、る」ことを特徴とする。
[0038] 外部リード棒 (17)或いはこれに接続された補助リード (20)を首部 (2b)に挿通した場合 、金属部分である首部 (2b)或 ヽは金属部分である凹面反射部 (2a)に近接ある!/ヽは接 触すること〖こなる。一般的に、補助リード (20)が低圧側であったとしても安全規格で金 属部分に接触ある 、は近接することは好ましくな 、とされて 、る。絶縁管 (9)を用いる ことで、外部リード棒 (17)或いはこれに接続された補助リード (20)を凹面反射鏡 (2)の 金属部分力 確実に絶縁することができる。
[0039] 「請求項 14」に記載の光源体 (1)は「請求項 13」の逆の場合で「点灯始動時に高圧 点灯電圧が印加されない方の低圧側封止部 (19)力 導出された外部リード棒 (17)或 いはこれに接続された補助リード (20)が金属製の凹面反射部 (2a)に電気的に接合さ れている」ことを特徴とする。これは図 5に示すように、低圧側外部リード棒 (17)或いは これに接続された補助リード (20)をあえて金属凹面反射鏡 (2)と絶縁せずに電気的に 接続したもので、放電灯 (10)を周囲から覆う金属製凹面反射鏡 (2)がシールドの役目 を果たし、始動時に発生するノイズの低減が図れる。
[0040] 「請求項 15」は凹面反射鏡 (2)の外面に関し「金属部分の外面が絶縁層 (2e)で被覆 されて 、る」ことを特徴とする。「請求項 14」のように外部リード棒 (17)或いはこれに接 続された補助リード (20)を凹面反射鏡 (2)の金属部分に接続することによって当該金 属部分が外部リード棒 (17)と同電位となり凹面反射鏡 (2)に接触した場合に作業者が 感電するというような可能性が発生するという安全上問題を生ずる。金属部分の外面 を絶縁層 (2e)で被覆することにより、前述のような問題が解消される。
[0041] 「請求項 16」は光源体 (1)の更に他の実施例で「金属製凹面反射部 (2a)の全面開口 に透明板 (5)が配設されている」ことを特徴とするもので、透明板 (5)による前面開口の 閉塞により放電灯 (10)の破裂時の破片飛散と水銀蒸気の周囲への拡散を防止できる 。特に、前述の水銀アマルガム生成物質との協働により飛散水銀の固定が出来、周 囲環境汚染防止に貢献できる。
[0042] 「請求項 17」に記載の放電灯点灯回路 (C)は「放電灯の始動時に 1000V— 4000 Vの直流電圧を発生させる始動回路部 (4)と、定常点灯時に点灯電力を高圧放電灯 (10)に供給する安定器 (6)と、その入力側が前記安定器 (6)の出力ライン (L)に接続さ れ、その出力側が放電灯 (10)の一方の電極 (12)に接続された高耐圧ダイオード (8)と で構成され、前記始動回路部 (4)の直流高電圧側端部 (47)が高耐圧ダイオード (8)の 出力側に逆方向の極性となるように接続されている」ことを特徴とする。
[0043] これによれば、点灯始動時における放電灯 (10)の電極 (12X13)間の絶縁破壊が始 動回路部 (4)にて生成された 1000— 4000Vの直流始動電圧にて引き起こされ、グロ 一放電が発生する。このとき、始動回路部 (4)の直流高電圧側端部 (47)が高耐圧ダイ オード (8)の出力側に接続されているので、高耐圧ダイオード (8)によって安定器 (6)側 に始動回路部の出力電圧が回り込むのを阻止され、前述のような 1000— 4000Vの 直流始動電圧が電極 (12X13)間に印加されることになる。そして、従来例で説明した ように電極 (12X13)間の絶縁破壊によって陰極 (13)から陽極 (12)に電子が発射され細 い放電路が形成され放電が開始し、続いて適正な電圧が印加されて電流が供給さ れると放電過渡状態のグロ一放電を経てアーク放電に移行する。
[0044] 「請求項 18」は本発明に係る光源装置 (A)で「請求項 13— 15のいずれかに記載の 光源体 (1)と、請求項 17に記載の放電灯点灯回路 (C)とで構成された」ことを特徴とす る。
発明の効果
[0045] 本発明は以上のような構成であるから、放電灯用として少なくとも凹面反射部が金 属製である凹面反射鏡を使用することができ、これが故に凹面反射面の曲面精度の 向上を図ることができ、以つて明るさのばらつきを小さくすることや多層蒸着膜を耐熱 性の低いものを使用することなどができ、更にコストを大幅に減ずることができた。そし て光源装置全体の小型化と高密度化を達成することも可能となった。また、赤外線吸 収膜を用いることでガラス製の凹面反射鏡と同様、被照射面の昇温を抑制することが できるようにもなつた。その他、水銀アマルガム生成材料を適宜使用することで、放電 灯が破裂した場合、内部の水銀の周囲への飛散を出来るだけ小さくすることも出来る ようになった。特に、水銀アマルガム生成材料としてアルミニウムを使用して場合、通 常の場合は反射面として使用でき、ランプ破裂時には水銀捕集剤としても働き、非常 に効果的である。また凹面反射鏡が金属製で実現したので、高圧放電灯が破裂した 場合でも凹面反射鏡は機械的に破壊することなく維持される。
図面の簡単な説明
[0046] [図 1]本発明の点灯回路とこれに用いられる放電灯の一例を示す図面
[図 2]従来の点灯回路とこれに用いられる放電灯の一例を示す図面
[図 3]本発明の放電灯の第 2の実施例の概略断面図 [図 4]本発明の放電灯の第 3の実施例の概略断面図
[図 5]本発明の放電灯の第 4の実施例の概略断面図
[図 6]本発明の放電灯の具体例の断面図
[図 7]図 6の正面図
[図 8]従来の点灯回路による始動印加電圧を示すグラフ
[図 9]本発明の点灯回路による始動印加電圧を示すグラフ
符号の説明
[0047] (1)光源体
(2)凹面反射鏡
(2a)凹面反射部
(2b)首部
(3)絶縁部材
(4)始動回路部
(5)透明板
(8)点灯用ダイオード
(10) 放電灯
(61)メッシュプレート
発明を実施するための最良の形態
[0048] 以下、本発明を好適な実施例を用いて説明する。図 1は少なくとも凹面反射部 (2a) が金属製の凹面反射鏡 (2)にダブルエンド型の高圧放電灯 (10)を装着した光源体 (1) とその点灯回路 (C)を示すものである。前述したように本実施例では凹面反射鏡 (2)に 装着された高圧放電灯 (10)の封止部 (18)は始動時に高電圧が印加される高圧側で ある場合をその代表例として説明する。また、高圧放電灯 (10)はダブルエンド型のも のをその代表例として説明するが勿論、シングルエンド型のものでも適用することが できる。
[0049] 本発明に使用される高圧放電灯 (10)の封体容器 (11)は熱膨張収縮がほとんど起こ らない石英ガラスで構成されており、中空球体状の発光管部 (11a)の両端からストレー トに伸びた封止部 (18X19)とで構成されている。前記封止部 (18X19)にはシュリンクシ ールにて内部にモリブデン金属箔 (14X15)がそれぞれ気密状に埋設されており、その 一端に電極 (12X13)の基端部分が溶接されており、その他端には外部リード棒 (16X17)の埋設端がそれぞれ溶接され、外部リード棒 (16X17)の他端が外部に導出さ れている。前記電極 (12X13)の先端部分は所定の間隔 (0.8— 1.5mm)を明けて対向 している。
[0050] 高圧側外部リード棒 (16)は端子 (16a)を介して点灯回路 (C)の始動回路部 (4)のブラ ス側出力ライン (L)に接続されており、低圧側外部リード棒 (17)に接続された補助リー ド (20) [これは低圧側引出し外部リード棒 (17)の延長リードとしての働きをするもので、 低圧側引出し外部リード棒 (17)と同等のものである]は、高圧放電灯 (1)に沿って配設 され、図 1、 4及び 6の実施例の場合 (ここでは、図 1、 4を詳細に図解した図 6に従って 説明する)、凹面反射鏡 (2)の首部 (2b)の内側に配設され、高圧放電灯 (1)の高圧側封 止部 (18)を固定する絶縁部材 (3)に設けられた絶縁通孔 (6b) [孔でなく溝でもよいし、 単に高圧側封止部装着孔 (6a)を通すだけでもよい]を通って凹面反射鏡 (2)の背面側 に導出されている。そして、その導出端には端子 (16a)が設けられており、前記始動回 路部 (4)の低圧側ライン (m)に接続されて 、る。
[0051] 凹面反射鏡 (2)は少なくとも凹面反射部 (2a)に金属 (熱伝導率が高いほど好ましぐ 5 OW/m' K以上の金属材料、たとえば本実施例ではアルミニウムのダイカスト品)が使 用される。凹面反射鏡 (2)の凹面反射部 (2a)は回転楕円面或いは放物面、半球面な ど必要とする光の性質に合わせて適宜の形状に形成されており、その凹面反射面 (2c)に多層蒸着膜 (2d)が形成されている。この場合、凹面反射部 (2a)の可視光線反 射膜として、例えばフッ化マグネシウム (MgF )と硫ィ匕亜鉛 (ZnS)の多層蒸着膜 (2d)を使
2
用することができる。また、必要に応じて多層蒸着膜 (2d)と凹面反射部 (2a)の基材 (2al)との間に赤外線吸収層 (2dl)を設けるようにしてもよい。赤外線吸収層 (2dl)とし ては耐熱性の黒色塗料が使用される。
[0052] 凹面反射鏡 (2)は全体を金属で形成してもよ ヽが、凹面反射部 (2a)を金属で形成し 、絶縁材料で構成した首部 (2b)に装着して使用してもよいし、図 6のように金属製の 首部 (2b)に絶縁部材 (3)を嵌め込むための凹溝 (2bl)を形成し、ここに絶縁部材 (3)の 無機接着剤にて絶縁部材 (3)を凹溝 (2bl)に固着するようにしてもよい。本実施例では 図 6に示す場合をその代表例として説明する。なお、凹面反射鏡 (2)用の金属は熱伝 導性に優れたものであることが好ましぐ重量、コスト、加工性、機械的強度などの諸 点を考慮してアルミダイカストが最も好まし 、。
[0053] 絶縁部材 (3)は前述のように凹面反射鏡 (2)の首部 (2b)内に嵌め込まれて使用される もので、セラミックで形成されており、中央に高圧放電灯 (1)の高圧側封止部 (18)が装 着される装着孔 (6a)が形成されており、図 1の実施例の場合にはこの装着孔 (6a)の内 周面に絶縁溝 (6b)が凹設されている。勿論、図示していないが装着孔 (6a)に平行に 絶縁孔を穿設してもよい。
[0054] また、凹面反射面 (2c)を構成する可視光線反射膜としてフッ化マグネシウム (MgF )
2 と硫化亜鉛 (ZnS)の多層蒸着膜 (2d)の蒸着が凹面反射面 (2c)に施されている。更に、 多層蒸着膜 (2d)と凹面反射部 (2a)の基面 (2al)との間に赤外線吸収膜 (2dl)が必要に 応じて形成されている。
[0055] 一方、前記赤外線吸収膜 (2dl)を使用しない構造として次のようなものが考えられる [図 6(口)]。凹面反射鏡 (2)の少なくとも凹面反射部 (2a)に鉄或いはステンレスを使用し 、凹曲反射金属基面 (2al)を鏡面に研磨し、その後、該金属基面 (2al)を酸化処理 (所 謂、黒染処理)を施し、その金属基面 (2al)上に多層蒸着膜 (2d)を形成する。即ち、酸 化処理の施された (極く薄!ヽ耐熱性酸化皮膜で構成されて!ヽる)黒色表面の金属基 面 (2al)上に直接多層蒸着膜 (2d)が形成されることになる。
[0056] この黒色の酸ィ匕皮膜は赤外線を吸収し且つ鉄製の凹面反射部 (2a)によって効率よ く放熱される。一方、可視光は四面反射面 (2c)を構成する可視光線反射膜 (多層蒸 着膜 (2d))によって効率よく反射される事になる。この方法では前述の精度の悪い熱 線吸収膜 (2dl)が不要になると 、う利点を有する。し力も金属 (この場合は鉄)にて構成 された凹面反射鏡 (2)は吸収した赤外線による熱を熱伝導により、放電灯 (10)の高温 化を抑制する効果がある。特にランプ消灯後の冷却速度が従来のガラス製反射鏡に 比べて早いので、同じ始動電圧に対して再始動時間が早くなるという効果がある。
[0057] また、凹面反射面 (2c)の前面開口を開放状態とし [換言すれば、前面開口に透明板 (5)を設けないこと]から 5— 10mm程度の開口部分 (2Dにたとえば、亜鉛、錫或いは銀 のような水銀とアマルガムを形成する水銀アマルガム形成物質を鍍金しておいてもよ いし、凹面反射部 (2a)の前面開口に透明板 (5)を張設し、前面開口を閉塞状態として 凹面反射部 (2a)の前面開口に切欠部 (2g)を形成し、この切欠部 (2g)に亜鉛、錫或い は銀のような水銀とアマルガムを形成する水銀アマルガム形成物質を鍍金したメッシ ュプレート (61) [多孔質板、パンチングメタル、網などを含む]或いは前記水銀アマル ガム生成物質で形成したメッシュプレート (61)を張設しておいてもよい。勿論、この場 合でもメッシュプレート (61)を使用すると同時に開口部分 (2Dに水銀アマルガム生成 物質を鍍金してぉ 、てもよ 、。
[0058] 水銀アマルガム形成物質の他の例として、アルミニウムを使用し、これを反射層 (2h) として使用する。この場合、凹面反射面 (2c)の全部またはその一部にアルミニウム反 射層 (2h)が形成される。凹面反射面 (2c)の全部にアルミニウム反射層 (2h)を形成した 場合、赤外線も可視光と共に前方に反射されることになるが、ランプ破裂時にはラン プ封入水銀の捕集剤としても働き、水銀の外部への飛散を防止出来て好ましい。
[0059] アルミニウム反射層 (2h)は凹面反射面 (2c)の全部に施す必要はなぐ一部、たとえ ば首部 (2b)を取り囲む凹面反射面 (2c)の中央部分 (この部分が最もランプからの光り を反射する部分である)に施し、残部に多層蒸着膜 (2d)を施してもよい。このようにす れば、多層蒸着膜 (2d)によって可視光線は前方に反射され、赤外線が金属製凹面 反射部 (2a)側に吸収され、且つ放熱される。アルミニウム反射層 (2h)では可視光線も 赤外線も前方に反射される力 アルミニウム反射層 (2h)は凹面反射面 (2c)の一部であ るから凹面反射面 (2c)全体が赤外線を含めて全反射面となっているものに比べて前 方への赤外線反射量を抑制することができる。なお、アルミニウム反射層 (2h)を設け る場所は首部 (2b)を取り囲む凹面反射面 (2c)の中央部分に限られず、その他、開口 部分 (2Dや中央部分を外れた部分でもよ 、ことは 、うまでもな 、。
[0060] また、前述の場合において、凹曲反射基面 (2al)上に熱線吸収膜 (2dl)を形成し、前 記熱線吸収膜 (2dl)の上に多層蒸着膜 (2d)を形成してもよい。このように多層蒸着膜 (2d)の背後に熱線吸収膜 (2dl)を設けておけば、前述したように熱線吸収膜 (2dl)によ り多層蒸着膜 (2d)を通過した赤外線のかなりの部分は吸収され、反射成分が最小化 され、少なくとも凹面反射部 (2a)が金属製である凹面反射鏡 (2)を使用したとしても、 照射面の昇温を避けることができる。なお、熱線吸収膜 (2dl)にて吸収された熱は金 属製凹面反射部 (2a)により周囲に放熱されることになる。
[0061] また、凹面反射部 (2a)に鉄あるいはステンレスを使用することにより、熱線吸収膜 (2dl)に代えて更に精度のょ 、黒色の酸ィ匕鉄皮膜あるいは酸化ステンレス皮膜を使 用することが出来る。即ち、少なくとも凹面反射部 (2a)に鉄あるいはステンレスを使用 し、この凹曲反射金属基面 (2al)を研磨し、然る後、鏡面の凹曲反射金属基面 (2al)を 酸化処理し、その上に多層蒸着膜 (2d)を形成する。或いは必要部位にアルミニウム 反射層 (2h)を形成し、アルミニウム反射層非形成部分に熱線吸収膜 (2dl)を形成して もよい。これにより、精度の悪い熱線吸収膜の代わりに赤外線を黒色の酸化鉄皮膜 あるいは酸化ステンレス皮膜が効率よく吸収し、可視光のみを反射する事ができる他 、ランプ発熱抑制効果や、ランプ消灯後の急冷によりガラスの場合に比べて同じ始動 電圧に対して再始動時間が早くなる。
[0062] 図 6の場合、高圧放電灯 (10)は、その高圧側封止部 (18)が前記装着孔 (6a)に挿入さ れ、無機接着剤にて固着されている。一方、低圧側封止部 (18)カゝら導出された外部リ ード棒 (17)は補助リード (20)にて装着孔 (6a)の内周面に形成された絶縁溝 (6b)の絶縁 管 (9)を通って凹面反射鏡 (2)の背部に導出される。前記絶縁管 (9)により金属部分で ある凹面反射部 (2a)との接触が防止される。
[0063] 点灯回路 (C)は、安定器 (6)と始動回路部 (4)及び高耐圧ダイオード (8)とで構成され ており、安定器 (6)はこの場合直流用で、高耐圧ダイオード (8)を介して高圧放電灯 (10)に接続されている。交流の場合は、 2点鎖線で示すように高耐圧ダイオード (8)に 並列接続されたリレー (35)が用いられる。
[0064] 安定器 (6)は電池記号で示された直流電源 (51)「通常は商用電流を整流器で整流 して直流とする」、放電灯 (10)の点灯電流を検出してパルス幅を制御するパルス幅制 御回路 (56)、安定器 (6)のプラス側出力ライン (L)に設置され、パルス幅制御回路 (56) 力ものパルス幅制御信号に応じてスイッチング動作をするスイッチング素子 (57)、スィ ツチング素子 (57)に直列接続されたチョークコイル (59)、プラス側出力ライン (L)と低圧 側ライン (m)との間に設けられ、スイッチング素子 (57)によるパルス幅制御された電流 を前記チョークコイル (59)と協働して平滑にするための平滑コンデンサ (60)、低圧側ラ イン (m)に設けられ、ランプ電流を検出するためのセンス抵抗 (53)を備えており、定常 点灯時に点灯に必要な電力を放電灯 (10)に供給するようになっている。
[0065] 高耐圧ダイオード (8)は安定器 (6)の本実施例ではプラス側出力に接続されており、 定常点灯時、安定器 (6)の出力が高耐圧ダイオード (8)を通って高圧放電灯 (10)に流 れ、これにより高圧放電灯 (10)を定常点灯駆動する。
[0066] 1000— 4000V程度の直流高電圧(電流容量は 0.1— 1mA程度の小容量で)を出 力するような始動回路部 (4)は一般的に知られており、ここではその一例を示す。安定 器 (6)のプラス側出力ライン (L)カゝら分岐した分岐線 (30)に抵抗 (31)と始動パルス生成 用コンデンサ (32)が直列接続されており、始動パルス生成用コンデンサ (32)の他端は 低圧側ライン (m)に接続されている。そして、この抵抗 (31)と始動パルス生成用コンデ ンサ (32)との接続点にトリガ素子 (33)の一端が接続され、その他端が昇圧トランス (41) の 1次側に接続されている。昇圧トランス (41)の 1次側の他方は始動パルス生成用コ ンデンサ (32)を跨ぐようにして安定器 (6)の低圧側ライン (m)に接続されて 、る。
[0067] 昇圧トランス (41)の 2次側の一端は、直列接続された一対の昇圧出力コンデンサ (44X45)の接続点に接続されており、 2次側の他端はダイオード (42)を介して一方の 昇圧出力コンデンサ (45)に接続されている。そして、プラス側出力ライン (L)と前記昇 圧出力コンデンサ (44)との接続点とダイオード (42)と 2次側の接続点との間にダイォー ド (42)と対になるもう 1つのダイオード (43)が配設されている。そして、前記昇圧出カコ ンデンサ (45)とダイオード (42)との接続点とプラス側出力ライン (L)の高耐圧ダイオード (8)の出力側との間に保護抵抗 (46)が接続されている。
[0068] 次に図 1の点灯回路 (C)の作用について説明する。光学機器のスィッチ(図示せず) をオンにすると、光学機器が作動しランプ始動が行われる。始動は以下のように行わ れる。直流安定器 (6)から出力された直流出力は、放電灯 (1)が点灯していないためこ の時点ではプラス側出力ライン (L)力 分岐線 (30)に流れて始動回路部 (4)を起動する 。始動回路部 (4)の作用は次の通りである。分岐側では抵抗 (31)を通じて電流がパル ス生成用コンデンサ (32)に流れてこれを充電し、コンデンサ (32)の両端に電圧が発生 する。この電圧がトリガ素子 (33)の所定のトリガ電圧 (例えば 200V程度)に達した処で パルス生成用コンデンサ (32)に並列接続されたトリガ素子 (33)が作動してトリガ電流が 流れ昇圧トランス (41)の 1次側にひげ状のプラス ·マイナスに振れたパルス電圧が発 生する。これを受けて 2次側に増幅されたひげ状のプラス'マイナスに振れた昇圧パ ルス電圧が発生し、 2次側では前記プラス'マイナスに振れた昇圧パルス電圧により 2 次側の矢印方向の電流がダイオード (43)力 コンデンサ (44)を通ってコンデンサ (44) を充填し、矢印の反対方向に流れる電流はダイオード (42)を通ってコンデンサ (45)を 充電することになる。前記充電はトリガ素子 (33)が作動してひげ電圧が発生した期間 に瞬時に行われる。このようにして始動回路部 (4)の出力電圧 Vsは直列接続されてい るコンデンサ (44X45)の両端に発生する。
[0069] そして、直列接続されているコンデンサ (44X45)の両端に発生する電圧は抵抗 (46) を介して高耐圧ダイオード (8)の両端に電圧 (Vs) [ただし、点灯用の高耐圧ダイオード (8)の出力側が高電圧である]として印加されることになる。なお、抵抗 (46)は後述する ようにダイオード (42X43)の保護抵抗であって、この時点で電圧はほとんど発生せず 無視することができるので、コンデンサ (44X45)の両端に発生する電圧は点灯用の高 耐圧ダイオード (8)の両端に電圧 (Vs)にほぼ等しい。高耐圧ダイオード (8)により、始動 回路部 (4)の出力は高圧放電灯 (10)に供給され、安定器 (6)に回り込むのを防止する。
[0070] 一方、ランプ始動時 (高圧放電灯 (10)はまだ点灯して 、な 、状態)は、安定器 (6)の プラス出力側ライン (L)と低圧側ライン (m)との間には電圧 (Vo)が発生しており、昇圧コ ンデンサ (44X45)の充電と共に放電灯 (10)の電極 (12X13)に印加する点灯始動電圧 (VA) = (Vo) + (Vs)が上昇し、その後、点灯始動電圧 (VA)が連続的に印加されること になる。図 9はこの関係を示すグラフである (縦軸;電圧、横軸;時間)。ここで典型的な 例として Vo=350V Vs=1700V VA=約 2000Vの一例を示す。
[0071] 高圧放電灯 (10)の絶縁破壊は電圧と時間の積で表されるエネルギに従 、(ただし、 電圧レベルが低くなると絶縁破壊エネルギは指数関数的に大きくなる)、従来に比べ て低い電圧であったとしてもこれを連続的に印加することである時間後には必要な絶 縁破壊エネルギに到達し電極 (12X13)間でアーク放電が発生する。ちなみに、点灯 始動電圧 (VA)が約 2000Vの場合 0. 4ms程度で絶縁破壊エネルギに達する。
[0072] 以上のようにしてランプ始動の後、グロ一放電を経てアーク放電への移行がスムー ズに行われ、定常点灯に移行する。ランプ電圧は、グロ一放電力 アーク放電への 移行した初期の段階で一旦急落した後、次第に電圧が上昇し所定の電圧 (例えば、 80V)に達する。その後該電圧を保ち定常点灯することになる。定常点灯では前記 安定器 (6)の出力電圧 (ランプ電圧)は前述の通りトリガ素子 (33)のトリガ電圧より低い 電圧が維持されるため、パルス生成用コンデンサ (32)の充電電圧もトリガ素子 (33)のト リガ電圧以下となり、トリガ素子 (33)の作動が停止する。これにより昇圧トランス (41)も 停止し、定常点灯時には、高耐圧ダイオード (8)を経由して高圧放電灯 (10)に定常の ランプ電流が流れる。
[0073] 定常点灯では直流安定器 (6)から出力した電流は、定常点灯時、放電灯 (10)を通過 して低圧側ライン (m)を流れ、センス抵抗 (53)に電圧を生成させる。パルス幅制御回路 (56)は前記センス抵抗 (53)の電圧を検出して放電灯 (10)に流れている点灯電流を検 出し、放電灯 (10)に供給される電力が一定となるようにスイッチング素子 (57)をスイツ チング制御する。
[0074] さて前述の場合において、点灯始動時には電極 (12X13)間で放電現象が発生しこ れによる周辺回路へのノイズ発生が考えられる。そこで、図 5に示すように、低圧側外 部リード棒 (17)に接続されている補助リード (20)を金属製の凹面反射部 (2a)に接続し ておけば、凹面反射部 (2a)がシールド部材の役目を果たし、周辺回路の誤動作発生 を軽減することができる (勿論、前述のように (10)の高圧側封止部 (18)が凹面反射鏡 (2)へ取り付けられることになり、低圧側封止部 (19)の外部リード棒 (17)又はこれに接続 された補助リード (20)を凹面反射鏡 (2)の金属部分である凹面反射部 (2a)に電気的に 接合される場合が一般的である。 )o
[0075] この場合、前述のようにシールド効果を期待することが出来るのである力 接続され た凹面反射部 (2a)が外部リード棒 (16)又は (17)と同電位になり、光源装置 (A)を取り扱 つている作業者が誤って凹面反射部 (2a)に接触した場合、感電の可能性がある。そ れ故、凹面反射鏡 (2)の金属部分である凹面反射部 (2a)あるいは凹面反射鏡 (2)全体 の外面を絶縁層 (2e)で被覆しておけば、そのような危険性を確実に防止できる。
[0076] なお、図 3のようの補助リード (20)を凹面反射部 (2a)に通す場合で、補助リード (20)と 凹面反射部 (2a)との間で絶縁を取る必要がある場合、凹面反射部 (2a)に挿通した絶 縁筒 (23)を利用することになる。図 4は、図 6を用いて説明した場合の概略図で、首部 (2b)に補助リード (20)を挿通した場合であり、金属製の凹面反射部 (2a)と補助リード (20)との絶縁距離 (SI 1)、絶縁管 (9)に挿通された補助リード (20)の露出端と金属首部 (2b)との絶縁距離 (S12)を示しており、本発明の場合、直流電圧 lkV— 4kVに応じて 約 2mm— 6mmの間隔でよい。図 5は補助リード (20)を凹面反射部 (2a)に接続し、外 面に絶縁層 (2e)を設けていない場合の金属製の凹面反射部 (2a)とランプハウスの金 属部分 (7)との絶縁距離 (S15)を示しており、前記の絶縁距離あるいは安全規格で定 められた絶縁距離が必要となる。なお、外面に絶縁層 (2e)を設けておけば前記絶縁 距離 (S15)は更に小さくなる。
[0077] また、高圧放電灯 (10)の定常点灯時、高圧放電灯 (10)から出た光の一部は直接前 方に向けて出射され、他は凹面反射部 (2a)に反射される。これら前方に出射された光 は例えば UV-IRカットフィルタ、色分離ダイクロイツクミラー、全反射ミラーその他で構 成された光学系を通り、投写レンズ (70)を通して前方のスクリーン (S)にカラー映像とし て投影されること〖こなる。
[0078] この時、赤外線吸収膜 (2dl)或いは黒色酸化鉄皮膜または黒色ステンレス皮膜が可 視光線反射膜である多層蒸着膜 (2d)の下に設けてあれば、可視光線だけが多層蒸 着膜 (2d)に反射されて、赤外線は赤外線吸収膜 (2dl)或 ヽは黒色酸化鉄皮膜または 黒色ステンレス皮膜に吸収され、前方に照射されず、凹面反射鏡 (2)の加熱に使われ 、凹面反射鏡 (2)から周囲に放射されていく。その結果、光源として高圧放電灯 (10)を 使用しているにもかかわらず被照射面の昇温が抑制されることになる。
[0079] その他、高圧放電灯 (10)は発光管部 (11a)に必要ガスと水銀などを充填しており、点 灯時には高圧放電灯 (10)自体が高温になり、また発光管部 (11a)内の気圧は例えば 1 50気圧程度のきわめて高い圧力まで高まる。一方、封体容器 (11)は前述のようにガ ラスであるから時として破裂することがある。その場合、発光管部 (11a)内に充填され て!、る水銀が蒸気となって周囲に飛散し、周囲の環境汚染することになる。
[0080] そこで、前述のように利用されな 、開口部分 (2Dや、切欠部 (2g)に張設されたメッシ ュプレート (61)に水銀とアマルガムを形成する水銀アマルガム形成材料を用いておけ ば (或 、はアルミニウム反射層 (2h)を必要部位に蒸着しておけば)、前記水銀蒸気がこ れらの部分に接触して水銀アマルガム形成材料と化合し、当該部分に付着して残留 する。その結果、飛散する水銀の量を減少させることができる。 [0081] ここで、前面開口が透明版 (5)で閉塞され切欠部 (2g)が設けられて 、な 、場合には 、透明版 (5)が破砕されない限り水銀がガラス破砕片と共に凹面反射部 (2a)内に残留 するので、かなりの水銀がアマルガムとなって捕集されることになる。
[0082] 逆に、前記の場合 (前面開口が透明版 (5)で閉塞されている場合)で凹面反射部 (2a) に開口部分 (2Dに切欠部 (2g)が設けられ、切欠部 (2g)にメッシュプレート (61)が張設さ れ、切欠部 (2g)を利用して通風冷却が行われる場合があるが、放電灯 (10)の破裂に より一部の水銀蒸気カ ッシュプレート (6)を通って外部に流出しょうとする力 この時 メッシュプレート (61)の水銀アマルガム形成物質によってメッシュプレート (61)を通過 する水銀が捕集され、水銀の外部への流出を抑制することになる。なお、この場合で 開口部分 (2Dにも水銀アマルガム形成物質を設けておけば凹面反射部 (2a)の内部残 留水銀の捕集に効果がある。
[0083] なお、前記光源体 (1)は凹面反射鏡 (2)にダブルエンドタイプの放電灯 (10)を装着し たものでもよいが、図 1に示すようなシングルエンド型の放電灯 (10')を凹面反射鏡 (2) に装着したものでもよ 、ことは 、うまでもな!/、。
産業上の利用可能性
[0084] 大画面リアプロジェクシヨンテレビの光源や液晶プロジェクタの光源には全面にわ たって均一な明るさが求められる。金属リフレクタを採用することで、反射面の面精度 がガラス製の場合に比べて格段に向上し、コストも抑えることができる。また、ランプ破 裂などにも強ぐ光源の強度向上に資するものであり、特に、今後の大画面リアプロ ジ クシヨンテレビの光源としてなくてはならないものである。

Claims

請求の範囲
[1] 金属製凹面反射部と、前記金属製凹面反射部の中央にて背面側に突出され、絶縁 部材を介して或いは絶縁材料で構成され、始動時に 1000V— 4000Vの直流電圧 が連続的に印加される高圧放電灯の封止部が装着される封止部装着用の首部とで 構成されていることを特徴とする凹面反射鏡。
[2] 金属製凹面反射部と、前記金属製凹面反射部の中央にて背面側に突出され、絶縁 部材を介して或いは絶縁材料で構成され、高圧放電灯の封止部が装着される封止 部装着用の首部とで構成されている凹面反射鏡であって、凹面反射面の開口部分 に水銀とのアマルガム生成物質が配置されていることを特徴とする凹面反射鏡。
[3] 金属製凹面反射部の開口部分に形成された切欠部にアマルガム生成物質にて形成 されたメッシュプレート或はアマルガム生成物質を付着したメッシュプレートが張設さ れていることを特徴とする請求項 2に記載の凹面反射鏡。
[4] 金属部分が熱伝導率 50W/m'K以上であることを特徴とする請求項 1一 3のいずれ かに記載の凹面反射鏡。
[5] 凹面反射部の凹面反射面にはフッ化マグネシウムと硫ィ匕亜鉛の多層蒸着膜が施さ れて ヽる事を特徴とする請求項 1一 4の ヽずれかに記載の凹面反射鏡。
[6] 凹曲反射基面上に熱線吸収膜が形成され、前記熱線吸収膜の上に可視光反射膜 である多層蒸着膜が形成されていることを特徴とする請求項 1一 5のいずれかに記載 の凹面反射鏡。
[7] 少なくとも凹面反射部に鉄あるいはステンレスを使用し、研磨後、酸化処理がなされ た凹曲反射金属基面に多層蒸着膜が形成されていることを特徴とする請求項 1一 6 のいずれかに記載の凹面反射鏡。
[8] 金属製凹面反射部と、前記金属製凹面反射部の中央にて背面側に突出され、絶縁 部材を介して或いは絶縁材料で構成され、高圧放電灯の封止部が装着される封止 部装着用の首部とで構成されている凹面反射鏡であって、
少なくとも凹面反射面の一部にアルミニウム反射層が形成されて ヽることを特徴と する凹面反射鏡。
[9] 凹面反射面のアルミニウム反射層非形成部分にフッ化マグネシウムと硫ィ匕亜鉛の多 層蒸着膜が施されている事を特徴とする請求項 8に記載の凹面反射鏡。
[10] 凹曲反射基面上に熱線吸収膜が形成され、前記熱線吸収膜の上に可視光反射膜 である多層蒸着膜が形成されていることを特徴とする請求項 9に記載の凹面反射鏡。
[11] 少なくとも凹面反射部に鉄あるいはステンレスを使用し、凹曲反射金属基面の研磨 後、酸化処理がなされた凹曲反射金属基面のアルミニウム反射層非形成部分に多 層蒸着膜が形成されていることを特徴とする請求項 10に記載の凹面反射鏡。
[12] 金属製凹面反射部と、前記金属製凹面反射部の中央にて背面側に突出され、絶縁 部材を介して或いは絶縁材料で構成され、高圧放電灯の封止部が装着される封止 部装着用の首部とで構成されている凹面反射鏡であって、
少なくとも凹面反射部に鉄ある!ヽはステンレスを使用し、凹曲反射金属基面の研磨 後、酸化処理がなされた凹曲反射金属基面に多層蒸着膜が形成されていることを特 徴とする凹面反射鏡。
[13] 首部或いは首部内に装着された絶縁部材に設けられた封止部装着用の装着孔が穿 設されている請求項 1一 12のいずれかに記載の凹面反射鏡と、その封止部が前記 装着孔に装着された高圧放電灯とで構成され、前記首部あるいは首部内に装着され た絶縁部材の装着孔に沿って穿設された絶縁通孔又は絶縁溝或いは該絶縁通孔 又は絶縁溝に挿通された絶縁管に高圧放電灯の他の封止部力 導出された外部リ ード棒或いはこれに接続された補助リードが挿通されていることを特徴とする光源体
[14] 点灯始動時に高圧点灯電圧が印加されない方の低圧側封止部力 導出された外部 リード棒或いはこれに接続された補助リードが金属製の凹面反射部に電気的に接合 されていることを特徴とする請求項 13に記載の光源体。
[15] 凹面反射鏡の金属部分の外面が絶縁層で被覆されていることを特徴とする請求項 1 3に記載の光源体。
[16] 金属製凹面反射部の全面開口に透明板が配設されて 、ることを特徴とする請求項 1
3— 15の!、ずれかに記載の光源体。
[17] 放電灯の始動時に 1000V— 4000Vの直流電圧を発生させる始動回路部と、定常 点灯時に点灯電力を高圧放電灯に供給する安定器と、その入力側が前記安定器の 出力ラインに接続され、その出力側が放電灯の一方の電極に接続された高耐圧ダイ オードとで構成され、前記始動回路部の直流電圧は高耐圧ダイオードの出力側に逆 方向の極性となるように接続されていることを特徴とする放電灯点灯回路。
請求項 13— 17のいずれかに記載の光源体と、請求項 17に記載の放電灯点灯回路 とで構成されたことを特徴とする光源装置。
PCT/JP2004/013344 2004-09-14 2004-09-14 金属凹面反射鏡とこれを用いた光源体およびその光源装置並びにその点灯回路 WO2006030486A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2004/013344 WO2006030486A1 (ja) 2004-09-14 2004-09-14 金属凹面反射鏡とこれを用いた光源体およびその光源装置並びにその点灯回路
US11/572,463 US20080042538A1 (en) 2004-09-14 2004-09-14 Metallic Concave Reflection Mirror, Light Source and Light Source Apparatus Using the Same, and Lighting Circuit Thereof
CNB2004800438186A CN100549495C (zh) 2004-09-14 2004-09-14 金属凹面反射镜和采用它的光源体以及其光源装置与亮灯电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/013344 WO2006030486A1 (ja) 2004-09-14 2004-09-14 金属凹面反射鏡とこれを用いた光源体およびその光源装置並びにその点灯回路

Publications (1)

Publication Number Publication Date
WO2006030486A1 true WO2006030486A1 (ja) 2006-03-23

Family

ID=36059753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013344 WO2006030486A1 (ja) 2004-09-14 2004-09-14 金属凹面反射鏡とこれを用いた光源体およびその光源装置並びにその点灯回路

Country Status (3)

Country Link
US (1) US20080042538A1 (ja)
CN (1) CN100549495C (ja)
WO (1) WO2006030486A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017668A1 (en) 2007-07-17 2009-01-21 Ushiodenki Kabushiki Kaisha Light source device having noise reduction properties

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527665A (ja) * 2005-01-12 2008-07-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Uvエンハンサーを有するランプ組立体

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299003A (ja) * 1987-05-29 1988-12-06 東芝ライテック株式会社 照明器具
JPH0231011U (ja) * 1988-08-23 1990-02-27
JPH037203U (ja) * 1989-06-09 1991-01-24
JPH03171503A (ja) * 1989-11-30 1991-07-25 Iwasaki Electric Co Ltd 反射鏡及びその製造方法
JPH04284397A (ja) * 1991-03-14 1992-10-08 Ishige M Ii Ken:Kk ナトリウム灯点灯回路
JPH0689701A (ja) * 1992-09-09 1994-03-29 Toshiba Lighting & Technol Corp 投光光源装置
JPH06314501A (ja) * 1993-04-30 1994-11-08 Toshiba Lighting & Technol Corp 投光光源装置およびこれを用いた液晶プロジェクタ
JPH09505442A (ja) * 1994-09-09 1997-05-27 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 反射ランプ
JPH09219290A (ja) * 1996-02-14 1997-08-19 Koito Mfg Co Ltd 放電ランプ
JPH1069804A (ja) * 1996-08-27 1998-03-10 Toyota Motor Corp 複数の光源を備えた車両用灯器
JPH10254061A (ja) * 1997-03-07 1998-09-25 Seiko Epson Corp 光源装置および投写型表示装置
JPH11134912A (ja) * 1997-10-31 1999-05-21 Toshiba Glass Co Ltd 保護膜
JP2002279809A (ja) * 2000-12-20 2002-09-27 Alanod Aluminium-Veredlung Gmbh & Co Kg 光源のためのカバー部品
JP2004022533A (ja) * 2002-06-19 2004-01-22 Koransha Co Ltd 高圧ランプ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326687B1 (ko) * 1992-10-30 2002-06-20 요트.게.아. 롤페즈 전기램프및반사기장치
EP0821833B1 (en) * 1995-08-30 2002-11-20 Koninklijke Philips Electronics N.V. Electric reflector lamp
JP2000082322A (ja) * 1998-09-08 2000-03-21 Ushio Inc 光源ユニット
KR100715059B1 (ko) * 2000-02-15 2007-05-07 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 전기 램프 반사기 유닛
KR20030016385A (ko) * 2001-05-10 2003-02-26 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 고압 가스 방전 램프
JP4096598B2 (ja) * 2001-11-06 2008-06-04 株式会社日立製作所 投影装置用光源及びそれを用いた投写型画像ディスプレイ装置
EP1471563A2 (en) * 2003-04-21 2004-10-27 Matsushita Electric Industrial Co., Ltd. Lamps with reflector and respective image projection apparatuses
US7301265B2 (en) * 2003-05-22 2007-11-27 Seiko Epson Corporation Light source unit, method of manufacturing light source unit, and projector

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299003A (ja) * 1987-05-29 1988-12-06 東芝ライテック株式会社 照明器具
JPH0231011U (ja) * 1988-08-23 1990-02-27
JPH037203U (ja) * 1989-06-09 1991-01-24
JPH03171503A (ja) * 1989-11-30 1991-07-25 Iwasaki Electric Co Ltd 反射鏡及びその製造方法
JPH04284397A (ja) * 1991-03-14 1992-10-08 Ishige M Ii Ken:Kk ナトリウム灯点灯回路
JPH0689701A (ja) * 1992-09-09 1994-03-29 Toshiba Lighting & Technol Corp 投光光源装置
JPH06314501A (ja) * 1993-04-30 1994-11-08 Toshiba Lighting & Technol Corp 投光光源装置およびこれを用いた液晶プロジェクタ
JPH09505442A (ja) * 1994-09-09 1997-05-27 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 反射ランプ
JPH09219290A (ja) * 1996-02-14 1997-08-19 Koito Mfg Co Ltd 放電ランプ
JPH1069804A (ja) * 1996-08-27 1998-03-10 Toyota Motor Corp 複数の光源を備えた車両用灯器
JPH10254061A (ja) * 1997-03-07 1998-09-25 Seiko Epson Corp 光源装置および投写型表示装置
JPH11134912A (ja) * 1997-10-31 1999-05-21 Toshiba Glass Co Ltd 保護膜
JP2002279809A (ja) * 2000-12-20 2002-09-27 Alanod Aluminium-Veredlung Gmbh & Co Kg 光源のためのカバー部品
JP2004022533A (ja) * 2002-06-19 2004-01-22 Koransha Co Ltd 高圧ランプ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017668A1 (en) 2007-07-17 2009-01-21 Ushiodenki Kabushiki Kaisha Light source device having noise reduction properties
US7944133B2 (en) 2007-07-17 2011-05-17 Ushiodenki Kabushiki Kaisha Light source device

Also Published As

Publication number Publication date
US20080042538A1 (en) 2008-02-21
CN100549495C (zh) 2009-10-14
CN101006306A (zh) 2007-07-25

Similar Documents

Publication Publication Date Title
US6597118B2 (en) High-pressure mercury lamp luminescent device and means of ignition
JP4134793B2 (ja) 光源装置
US6919686B2 (en) Discharge lamp having an auxiliary light source to produce light with a short wavelength
JP2002245971A (ja) 高圧放電ランプ、高圧放電ランプ点灯装置および照明装置
TWI250549B (en) Discharge tube and strobe device using the discharge tube and camera
WO2006030486A1 (ja) 金属凹面反射鏡とこれを用いた光源体およびその光源装置並びにその点灯回路
JP4191520B2 (ja) 少なくとも凹面反射部が金属にて構成された凹面反射鏡を用いた光源体およびその光源装置
JP2001264690A (ja) ランプユニット
TWI332671B (ja)
JP3562427B2 (ja) 高圧水銀ランプ発光装置、およびその点灯方法
JPH11345694A (ja) 電球形蛍光ランプおよび照明装置
JP4179394B2 (ja) 光源装置
JP3938153B2 (ja) 光学装置とその部品
JP2005129400A (ja) 光源装置、およびそれを用いた投影型表示装置
JP2005149968A (ja) 光源装置
JP4147816B2 (ja) ショートアーク型超高圧放電ランプ
JP2002110100A (ja) 高圧放電ランプ、高圧放電ランプ点灯装置および照明装置
JP2002083505A (ja) 電球形蛍光ランプおよび照明器具
JP2001244097A (ja) 電球形蛍光ランプ、放電ランプ点灯装置および照明装置
JP2005243361A (ja) 高圧放電ランプ点灯装置および照明装置
JP2001093473A (ja) 高圧放電ランプ点灯装置、高圧放電ランプ装置および照明装置
JP4099627B2 (ja) 放電灯点灯装置および電球形蛍光ランプ
JP2003007101A (ja) 凹面反射鏡および光源ユニット
JP2006019150A (ja) 光源装置
JPH1012388A (ja) 高圧ナトリウムランプ、高圧ナトリウムランプ点灯装置および照明装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11572463

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200480043818.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWP Wipo information: published in national office

Ref document number: 11572463

Country of ref document: US