WO2006028126A1 - 電磁アクチュエータ - Google Patents

電磁アクチュエータ Download PDF

Info

Publication number
WO2006028126A1
WO2006028126A1 PCT/JP2005/016409 JP2005016409W WO2006028126A1 WO 2006028126 A1 WO2006028126 A1 WO 2006028126A1 JP 2005016409 W JP2005016409 W JP 2005016409W WO 2006028126 A1 WO2006028126 A1 WO 2006028126A1
Authority
WO
WIPO (PCT)
Prior art keywords
mover
stator
coil
permanent magnet
electromagnetic actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2005/016409
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Matsumoto
Nobutaka Kubota
Takeshi Noda
Kazuhiro Matsuo
Kenji Kato
Mitsutaka Homma
Takao Wakabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to EP05782235A priority Critical patent/EP1788591A4/en
Priority to US11/661,606 priority patent/US7605680B2/en
Priority to CN2005800297727A priority patent/CN101010755B/zh
Publication of WO2006028126A1 publication Critical patent/WO2006028126A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • H01F7/1615Armatures or stationary parts of magnetic circuit having permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1692Electromagnets or actuators with two coils

Definitions

  • the present invention relates to an electromagnetic actuator that does not adversely affect nearby electronic devices and magnetic members.
  • the electromagnetic actuator has a stator 1 and a mover 2, and the cross section of the stator 1 and the mover 2 with the axis of symmetry as the boundary is a character of "day".
  • a magnetic circuit is formed.
  • Coils 31 and 32 are provided in the two spaces of the Japanese character, respectively, and the magnetized permanent magnet 15 is provided on the radial protrusion 14 corresponding to the central line (see, for example, Patent Document 1). ).
  • another electromagnetic actuator is provided so as to cover the coil 3, the movable element 2 that moves on the central axis of the coil 3, and the upper surface, the lower surface, and the outer peripheral surface of the coil 3.
  • a stator 1 A permanent magnet 15 is disposed in a gap surrounded by the stator 1 and the mover 2, and the mover 2 is attracted to the stator 1 by a magnetic field generated by the permanent magnet 15 (for example, Patent Document 1). 2).
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 7-37461
  • Patent Document 2 JP 2002-289430
  • the electromagnetic actuator is desired to have high efficiency, and there is a demand to reduce the current during operation as much as possible.
  • the present invention has been made in consideration of the above points, and there is no possibility that the magnetic flux generated by the coil reversely excites the permanent magnet when the latch is released and demagnetizes the permanent magnet.
  • the purpose is to provide an electromagnetic actuator that minimizes magnetic flux leakage and does not adversely affect nearby electronic devices and magnetic materials!
  • the present invention provides a first coil, a cylindrical movable element that moves along the central axis of the first coil, a first plate member provided on the upper surface of the first coil, A first stator having a first hollow plate provided on the lower surface of the first coil, a first cylinder covering the outer peripheral surface of the first coil, and a permanent magnet for fixing the mover at the moving end.
  • the electromagnetic actuator is provided with a second stator that is provided continuously with the first stator and controls the magnetic flux of the permanent magnet.
  • the second stator is a second cylinder continuous with the first hollow plate member of the first stator, and a second cylinder provided at the end of the second cylinder on the permanent magnet side.
  • An electromagnetic actuator comprising a hollow plate and an inner cylinder disposed in a second cylinder.
  • the present invention is characterized in that the mover has a plunger and a protruding plate member protruding outward in the radial direction of the plunger force, and an inner cylinder is provided with a receiving portion for receiving the protruding plate member. It is an electromagnetic actuator.
  • the permanent magnet is provided in the first hollow plate member of the first stator, and the second stator Is an electromagnetic actuator characterized in that it has a cylindrical body having a flange portion that comes into contact with a permanent magnet.
  • the permanent magnet is provided in the first hollow plate member of the first stator, and the second stator has a third hollow plate member in contact with the permanent magnet. It is.
  • the present invention is an electromagnetic actuator characterized in that a short ring for short-circuiting the magnetic flux of the permanent magnet is provided in the vicinity of the permanent magnet.
  • the present invention is an electromagnetic actuator characterized in that a pole piece connected to the first plate member is provided at the center of the first coil.
  • the length of the pole piece is set between the longest length reaching the center of the first coil and the minimum length shortened by half of the stroke of the mover from the longest length.
  • This is an electromagnetic actuator characterized by the following.
  • the difference between the outer diameter of the mover and the outer diameter of the pole piece is equal to the outer diameter of the mover.
  • the present invention is the electromagnetic actuator characterized in that the difference between the cross-sectional area of the mover and the cross-sectional area of the pole piece is within ⁇ 15% of the cross-sectional area of the mover.
  • the present invention provides an electromagnetic actuator characterized in that, in the first plate member, the outer diameter of the mover and the cylindrical cross-sectional area of the same diameter are within twice the same force as the cross-sectional area of the mover. is there.
  • the present invention is the electromagnetic actuator characterized in that the cross-sectional area of the first cylinder covering the outer periphery of the first coil is equal to or less than twice the cross-sectional area of the mover.
  • the difference between the cross-sectional area of the hollow surface of the first hollow plate material and the cross-sectional area of the mover is within ⁇ 15% of the cross-sectional area of the hollow surface of the first hollow plate material. It is a featured electromagnetic actuator.
  • the difference between the cross-sectional area perpendicular to the magnetic flux of the permanent magnet and the cross-sectional area of the permanent magnet in the second stator is within ⁇ 15% of the cross-sectional area of the second stator. It is an electromagnetic actuator characterized by being.
  • the electromagnetic actuator according to the present invention is characterized in that a gap between the first coil and the first stator is within 3 mm.
  • the present invention is the electromagnetic actuator, wherein the gap between the hollow surface of the first hollow plate member of the first stator and the outer peripheral surface of the mover is 3 mm to 5 mm.
  • the electromagnetic actuator according to the present invention is characterized in that the difference between the cross-sectional area of the projecting plate material of the mover and the cross-sectional area of the plunger is within ⁇ 15% of the cross-sectional area of the projecting plate material.
  • the present invention is characterized in that the difference between the cross-sectional area of the projecting plate material of the mover and the cross-sectional area of the inner peripheral surface of the receiving portion of the second cylinder is within ⁇ 15% of the cross-sectional area of the projecting plate material.
  • This is an electromagnetic actuator.
  • the present invention is the electromagnetic actuator characterized in that the gap between the outer peripheral surface of the plunger of the mover and the second stator is lm m to 5 mm.
  • the present invention is an electromagnetic actuator characterized in that a second coil is provided coaxially with the first coil.
  • the present invention is an electromagnetic actuator characterized in that the first coil and the second coil are arranged side by side in the radial direction.
  • the present invention relates to a first coil, a cylindrical movable element that moves along the central axis of the first coil, a first plate member provided on the upper surface of the first coil, A first stator having a first hollow plate provided on the lower surface of the first coil, a first cylinder covering the outer peripheral surface of the first coil, and the first mover at the operation end position of the first stator.
  • the electromagnetic actuator is characterized in that the mover is positioned in the vicinity of the mover when the mover is at the open end position away from the first stator.
  • the second stator is a second cylinder that is continuous with the first hollow plate member of the first stator, and a second cylinder provided at a permanent magnet side end of the second cylinder.
  • An electromagnetic actuator comprising a hollow plate and an inner cylinder disposed in a second cylinder.
  • the present invention is characterized in that the permanent magnet is disposed in the vicinity of the end of the movable element on the open terminal side when the movable element is in the open terminal position away from the first stator. It is an electromagnetic actuator.
  • the mover has a plunger and a protrusion protruding outward in the radial direction of the plunger force.
  • the electromagnetic actuator is characterized in that a receiving portion for receiving the protruding plate material is provided on the inner cylinder.
  • the plunger force of the mover is such that the difference between the thickness of the protruding member protruding outward in the radial direction and the thickness of the permanent magnet is within ⁇ 15% of the thickness of the protruding member.
  • This is an electromagnetic actuator characterized by
  • the permanent magnet is provided in the vicinity of a projecting member that projects radially outward from a plunger of the mover when the mover is in an open end position away from the first stator. It is an electromagnetic actuator characterized by having been arrange
  • the present invention is the electromagnetic actuator characterized in that a space is formed between the first hollow plate member of the first stator and the inner cylinder of the second stator.
  • the present invention provides an electromagnetic actuator, wherein a second coil is provided in a space between a first hollow plate member of the first stator and an inner cylinder of the second stator. It is. Brief Description of Drawings
  • FIG. 1 is a cross-sectional view for explaining a first embodiment of an electromagnetic actuator according to the present invention.
  • FIG. 2 is a diagram for explaining a state in which the mover is fixedly latched by a permanent magnet in the first embodiment of the present invention.
  • FIG. 3 is a diagram for explaining the operation when the latched state is released by the short ring in the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining the action when the latched state is released by energizing the first and second coils in the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining the state of the electromagnetic actuator in an unlatched state in the first embodiment of the present invention.
  • FIG. 6 is a diagram for explaining the operation when the mover in the unlatched state is energized by the pole piece when the first coil is energized in the first embodiment of the present invention.
  • FIG. 7 is a view for explaining the operation when the mover in the unlatched state when the first coil is energized is attracted to and latched by the pole piece in the first embodiment of the present invention.
  • FIG. 8 is a sectional view for explaining a second embodiment of the electromagnetic actuator according to the present invention.
  • FIG. 9 In the second embodiment of the present invention, the mover is fixedly latched by a permanent magnet.
  • FIG. 10 is a diagram for explaining the action when the latched state is released by the short ring in the second embodiment of the present invention.
  • FIG. 11 is a diagram for explaining the operation when the latch state is released by energizing the first and second coils in the second embodiment of the present invention.
  • FIG. 12 is a view for explaining the state of the electromagnetic actuator in the unlatched state in the second embodiment of the present invention.
  • FIG. 13 is a diagram for explaining the operation when the movable element in the unlatched state is attracted to the pole piece by energizing the first coil in the second embodiment of the present invention.
  • FIG. 14 is a view for explaining the operation when the movable element in the unlatched state is energized by the pole piece and is latched by energizing the first coil in the second embodiment of the present invention.
  • FIG. 16 is a view for explaining a state where the mover is fixedly latched by a permanent magnet in the third embodiment of the present invention.
  • FIG. 17 is a view for explaining the operation when the latched state is released by the short ring in the third embodiment of the present invention.
  • FIG. 18 is a diagram for explaining the action when the latch state is released by energizing the first and second coils in the third embodiment of the present invention.
  • FIG. 19 is a diagram for explaining the state of the electromagnetic actuator in the unlatched state in the third embodiment of the present invention.
  • FIG. 20 is a diagram for explaining the operation when the movable element in the unlatched state is attracted to the pole piece by energizing the first coil in the third embodiment of the present invention.
  • FIG. 21 is a view for explaining the operation when the movable element in the unlatched state is energized by the pole piece and is latched by energizing the first coil in the third embodiment of the present invention.
  • FIG. 23 is a diagram illustrating a state in which the mover is fixedly latched by a permanent magnet in the fourth embodiment of the present invention.
  • FIG. 25 is a diagram for explaining the operation when the latch state is released by energizing the first and second coils in the fourth embodiment of the present invention.
  • FIG. 26 is a diagram for explaining the state of the electromagnetic actuator in the latch release state in the fourth embodiment of the present invention.
  • FIG. 27 is a diagram for explaining the operation when the movable element in the unlatched state is energized by the pole piece when the first coil is energized in the fourth embodiment of the present invention.
  • FIG. 28 is a diagram for explaining the operation when the mover in the unlatched state when the first coil is energized is attracted to and latched by the pole piece in the fourth embodiment of the present invention.
  • FIG. 29 is a sectional view for explaining a fifth embodiment of the electromagnetic actuator according to the present invention.
  • FIG. 30 is a sectional view for explaining a sixth embodiment of the electromagnetic actuator according to the present invention.
  • FIG. 31 is a diagram for explaining the operation when the first coil is energized and the mover is attracted to the pole piece in the sixth embodiment of the present invention.
  • FIG. 32 is a view for explaining a state when the first coil is energized to operate the mover and the adsorption to the pole piece is completed in the sixth embodiment of the present invention.
  • FIG. 33 is a diagram for explaining the operation when the latch state is released by energizing the second coil in the sixth embodiment of the present invention.
  • FIG. 34 is a sectional view for explaining a seventh embodiment of the electromagnetic actuator according to the present invention.
  • FIG. 35 is a diagram for explaining the action when the first coil is energized and the mover is attracted to the pole piece in the seventh embodiment of the present invention.
  • FIG. 36 is a diagram for explaining a state when the first coil is energized to operate the mover and the adsorption to the pole piece is completed in the seventh embodiment of the present invention.
  • FIG. 37 is a diagram for explaining the action when the second coil is energized to release the latched state in the seventh embodiment of the present invention.
  • FIG. 38 is a cross-sectional view illustrating a conventional electromagnetic actuator.
  • FIG. 39 is a cross-sectional view illustrating a conventional electromagnetic actuator.
  • FIG. 1 is a cross-sectional view of an electromagnetic actuator according to the present invention, showing a latch release state.
  • the electromagnetic actuator includes the first coil 31, the mover 2 that moves on the central axis of the first coil 31, the first coil disposed on the upper and lower surfaces, the outer periphery, and the inner side of the first coil.
  • the first stator 11 constituting a magnetic circuit for guiding the magnetic flux generated by the first coil 31 together with the mover 2 and the mover 2 concentrically with the first coil 31. 2 is connected to the ring-shaped permanent magnet 15 and the first stator 11, the magnetic flux of which is magnetized parallel to the moving direction of the mover 2, and the permanent magnet 15.
  • a second stator 12 that also has a magnetic material force for guiding the magnetic flux to the movable element 2.
  • a second coil 32 is provided coaxially with the first coil 31 in the gap on the outer periphery of the mover 2, and is illustrated in the figure.
  • the short ring 4 slides in the same direction as the mover 2 inside the second stator.
  • the mover 2 is made of a magnetic material, and the mover 2 is a load W that pushes the mover 2 downward through a nonmagnetic shaft 5 attached to the end of the mover 2. It is connected to the
  • the first stator 11 is entirely made of a magnetic material. That is, the first stator 11 is connected to the plate member (first plate member) 112 covering the upper end surface of the first coil 31 and the first plate member 112, and is a convex type extending to the vicinity of the center of the first coil 31. It has a pole piece 111, a cylinder (first cylinder) 113 covering the outer periphery of the first coil 31, and a hollow plate material (first hollow plate material) 114 covering the lower end surface of the first coil 31. .
  • the length of the pole piece 111 that reaches the center of the first coil 31 is the longest length, and the length that is shortened by half of the stroke X of the mover 2 from this longest length is the minimum length. Is set.
  • the second stator 12 is also made of a magnetic material, and is attached to the cylinder 121 and the cylinder 121 connected to the first hollow plate 114 of the first stator 11 and the cylinder 121. It has a hollow plate (second hollow plate) 122 and a cylinder (inner cylinder) 123 which is arranged in a cylinder 121 and whose inner surface 123a is close to the outer periphery of the mover 2 by opening a powerful gap. Magnet 15 is the hollow plate It is fixed between the material 122 and the cylinder 123.
  • the second coil 32 is provided so as to surround the movable element 2.
  • the pole piece 111 and the mover 2 have the same outer diameter, and the A—A cross section of the pole piece 111 and the mover 2 The cross-sectional areas of the BB cross sections are almost equal.
  • substantially equal refers to a difference within ⁇ 15% with respect to one of the two values.
  • the cross-sectional area of the first plate 112 along the cross-section C—C and the cross-section of the cross-section D—D of the cylinder 113 are approximately equal to or less than twice the cross-sectional area of the cross-section BB of the mover 2. ing.
  • the cross-sectional area of the hollow surface EE of the first hollow plate member 114 is substantially equal to the cross-sectional area of the A-A cross section of the pole piece 111. Further, the gap G1 between the inner surface of the first hollow plate member 114 and the mover 2 is used to efficiently concentrate the magnetic flux of the permanent magnet 15 in the latched state on the attracting surfaces of the pole piece 111 and the mover 2. 5mm is appropriate.
  • the cross-sectional area of the second cylinder 121 in the F-F cross section, the cylindrical cross-sectional area of the second hollow plate 122 along the G-G cross section, the cross-sectional area of the inner cylinder 123 in the H-H cross section, and the permanent magnet 15 The cross-sectional area of is approximately equal to the cross-sectional area of the mover 2 on the B-B cross section.
  • the area of the facing surface J J of the inner cylinder 123 is approximately equal to or larger than the cross-sectional area of the mover 2 in the BB cross section in a state where the mover 2 is close to the pole piece 111.
  • the gap G2 between the conductor of the first coil 31 or the conductor of the second coil 32 and the surrounding magnetic body 112, 113, 114, 121, 123 surrounds them, respectively. It is 3mm or less so that the generated magnetic flux can be used efficiently.
  • a current is applied to one or both of the first coil 31 and the second coil 32 so that the magnetic flux of the permanent magnet 15 is extinguished.
  • the mover 2, the first stator 11, and the second fixed are caused by the magnetic flux indicated by the arrow 63 generated by the first coil 31 and the magnetic flux indicated by the arrow 64 generated by the second coil 32.
  • the magnetic flux 61 due to the permanent magnet 15 passing through the child 12 decreases, and the load W is overcome by the attracting force P acting on the mover 2, the latch state of the mover 2 is released, and the mover 2 descends.
  • the gap between the mover 2 and the first hollow plate member 114 is larger. Since the distance between the mover 2 and the pole piece 111 is smaller than the distance between the mover 2 and the pole piece 111, the magnetic flux of the permanent magnet 15 forms a magnetic path as shown by the arrow 65, and the attractive force P is not generated in the mover 2.
  • FIG. 6 when a current is passed through the first coil 31 to generate a magnetic flux in the same direction as the magnetic flux of the permanent magnet 15, the magnetic flux flows as indicated by an arrow 66, and the mover 2 Adsorbed to the pole piece 111 side.
  • FIG. 7 when the mover 2 has been attracted to the pole piece 111, the magnetic flux of the permanent magnet 15 is in the state of arrow 61, and even if the current of the first coil 31 is cut off, FIG. As shown, the mover 2 can be kept in the state of being attracted to the pole piece 111 by the magnetic flux generated by the permanent magnet 15, that is, the latched state.
  • the permanent magnet 15 is not back-excited by the magnetic flux generated from the first coil 31 or the second coil 32 in any state.
  • the permanent magnet 15, the first coil 31, and the second coil 32 are substantially surrounded by the first stator 11, the second stator 12, and the mover 2 made of ferromagnetic material. Magnetic flux does not leak.
  • the mover 2 is made of a magnetic material, and moves on the central axis of the first coil 31.
  • the movable element 2 is opposite to the nonmagnetic shaft 5 connected to the load W.
  • a magnetic plate member (protruding plate member) 22 that protrudes radially outward from the plunger 21.
  • the second cylinder 121 and the second hollow plate 122 have the same configuration as that of the first embodiment, but the inner cylinder 123 is a receiving portion forming a stepped portion. It has a two-stage cylindrical shape with 124.
  • the pole piece 111 has the south pole as much as possible. Appears, and in the latched state, the mover 2 is attracted by the SN2 pole.
  • the outer diameter of the pole piece 111 and the plunger 21 is the same, and the A—A cross section of the pole piece 111 and the B ′ of the plunger 21 -B 'cross sections each have approximately the same cross sectional area.
  • the cross-sectional area of the first plate 112 along the cross-section C—C and the cross-sectional area of the cross-section D—D of the first cylinder 113 are the cross-sectional area of the B′—B ′ cross-section of the plunger 21. It is almost equal or less than 2 times.
  • the cross-sectional area of the hollow surface EE of the first hollow plate material 114 is substantially equal to the cross-sectional area of the A-A cross section of the pole piece 111.
  • the area Q—Q is almost equal to the cross-sectional area of the plunger 21 at the B—B cross section.
  • the gap G1 between the inner surface of the first hollow plate member 114 and the mover 2 In order to efficiently collect the magnetic flux of the permanent magnet 15 in the latched state between the pole piece 111 and the plunger 21, between the protruding plate 22 of the mover 2 and the receiving portion 124 of the inner cylinder 123.
  • the gap Gl is 3-5mm, and the gap G3 and G4 are 1-5mm.
  • the permanent magnet 15 is not back-excited by the magnetic flux generated from the first coil 31 or the second coil 32 in any state. Further, since the permanent magnet 15, the first coil 31, and the second coil 32 are substantially surrounded by the first stator 11, the second stator 12, and the mover 2 made of a ferromagnetic material, Magnetic flux does not leak. Furthermore, since the mover 2 is attracted by the SN2 pole of the permanent magnet 15 during latching, the latching force can be secured with a small number of permanent magnets.
  • FIG. 15 to FIG. 21 the same parts as those of the first embodiment shown in FIG. 1 to FIG.
  • the permanent magnet 15 is attached to the first hollow plate 114 of the first stator 11.
  • the second stator 12 has a cylindrical body 125, and the cylindrical body 125 has a flange 125 b that contacts the permanent magnet 15.
  • the inner surface 125a of the cylindrical body 125 is close to the outer periphery of the mover 2 with a small gap.
  • the second coil 32 is disposed inside the cylindrical body 125 of the second stator 12. Also, the force near the flange 125b of the short ring four-force cylinder 125 is provided so that it can slide to the vicinity of the outer periphery of the permanent magnet 15.
  • the pole piece 111 and the mover 2 have the same outer diameter, and the pole piece 111 is movable along the AA cross section.
  • Each of the BB cross sections of the child 2 has approximately the same cross sectional area.
  • the cross-sectional area of the first plate 112 along the cross-section C—C and the cross-section area of the cross-section D—D of the first cylinder 113 are substantially equal to the cross-sectional area of the cross section BB of the mover 2 Or less than twice.
  • the cross-sectional area of the hollow surface EE of the first hollow plate member 114 is substantially equal to the cross-sectional area of the A-A cross section of the pole piece 111.
  • the cross-sectional area of the cylindrical body 125 along the FF cross section is substantially equal to the cross-sectional area of the permanent magnet 15.
  • the cross-sectional area of the inner surface 125a of the cylindrical body 125 and the opposite surface J-J of the mover 2 is approximately equal to the cross-sectional area of the mover 2 in the B-B cross section when the mover 2 is close to the pole piece 111. Or more.
  • the gap Gl between the inner surface of the first hollow plate 114 and the mover 2 is used to efficiently concentrate the magnetic flux of the permanent magnet 15 in the latched state on the attracting surfaces of the pole piece 111 and the mover 2. It is ⁇ 5mm.
  • the outer diameter of the first hollow plate 114, the outer diameter of the permanent magnet 15, and the outer diameter of the flange 125b of the cylindrical body 125 are the same, and the inner diameter difference between the permanent magnet 15 and the first hollow plate 114 G5 is 3mm or more!
  • the distance between the conductor of the first coil 31 and the surrounding magnetic bodies 112, 113, 114 is 3 mm or less so that the magnetic flux generated by the first coil 31 can be used efficiently.
  • the distance between the second coil 32 and the cylindrical body 125 having the flange 125b is 3 mm or less in both the radial direction and the axial direction so that the magnetic flux generated by the second coil 32 can be used efficiently.
  • a current is applied to one or both of the first coil 31 and the second coil 32 so as to extinguish the magnetic flux of the permanent magnet 15 as shown in FIG.
  • the magnetic flux indicated by the arrow 83 generated by the first coil 31 and the magnetic flux indicated by the arrow 84 generated by the second coil 32 so that the movable element 2, the first stator 11, and the second stator are
  • the magnetic flux of the permanent magnet that passes through 12 decreases, the load W wins over the attractive force P acting on the mover 2, the latch state of the mover 2 is released, and the mover 2 descends.
  • the permanent magnet 15 is not back-excited by the magnetic flux generated from the first coil 31 or the second coil 32 in any state. Further, since the permanent magnet 15 is arranged on the outermost periphery of the electromagnetic actuator, an inexpensive magnet having a low magnetic flux density can be used. Therefore, an inexpensive electromagnetic actuator can be provided in place of the recent high-performance magnet.
  • FIGS. 22 to 28 the same parts as those of the first embodiment shown in FIGS. 1 to 7 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the mover 2 has the same configuration as that of the second embodiment.
  • the mover 2 is made of a magnetic material and moves on the central axis of the first coil 31, and on the opposite side of the nonmagnetic shaft 5 connected to the load W. And a magnetic plate material (projection plate material) 22 that protrudes toward the surface.
  • the second stator 12 comprises only a hollow plate material (third hollow plate material) 126
  • the permanent magnet 15 comprises the first stator 11 1 hollow plate material 114 and the second stator 12 third hollow plate material. It is sandwiched between 126.
  • the third hollow plate 126 adjusts the magnetic flux emitted from the magnetic pole appearing on the lower side of the permanent magnet 15 and acts to adjust the magnetic flux to the protruding plate 22 of the mover 2.
  • the second coil 32 is arranged outside the first stator 11, and the short ring 4 is provided so as to be slidable near the outer periphery of the permanent magnet 15 near the third hollow plate member 126.
  • the pole piece 111 has the south pole below the hollow plate 126.
  • the N pole appears in the state, and in the latched state, the mover 2 is attracted by the SN2 pole.
  • the outer diameter of the pole piece 111 and the plunger 21 are the same.
  • the B′—B ′ cross section of the plunger 21 has approximately the same cross sectional area.
  • the cross-sectional area of the cylinder 112 along the cross-section CC of the plate material 112 and the cross-sectional area of the cross-section D—D of the cylinder 113 are substantially equal to or less than twice the cross-sectional area of the B′—B ′ cross-section of the plunger 21. ing.
  • the cross-sectional area of the hollow surface E—E of the first hollow plate material 114 is substantially equal to the cross-sectional area of the A—A cross section of the pole piece 111.
  • the cylindrical cross-sectional area along the FF cross section of the third cylinder 126, the cylindrical cross-sectional area along the GG cross section of the protruding plate 22 of the movable element 2, the protruding plate 22 and the third hollow plate 126 are
  • the contact area H—H is substantially equal to the cross-sectional area of the permanent magnet 15.
  • the gap G1 between the hollow surface of the first hollow plate 114 and the plunger 21 and the gap G3 between the hollow surface of the third hollow plate 126 and the plunger 21 cause the magnetic flux of the permanent magnet 15 in the latched state.
  • G1 is 3-5mm and G3 is l-5mm to concentrate on the contact surface of the pole piece 111 and plunger 21 and the third hollow plate 126 and the movable plate 2 projecting plate 22 efficiently.
  • the outer diameter of the third hollow plate material 114, the outer diameter of the permanent magnet 15, and the outer diameter of the flange of the cylinder 125 are the same.
  • the inner diameter of the permanent magnet 15 is 3 mm or more larger than the inner diameter of the first hollow plate 114.
  • the distance between the conductors of the first coil 31 and the second coil 32 and the surrounding magnetic bodies 112, 113, 114, 126 can efficiently use the magnetic flux generated by the coils 31, 32. It is 3mm or less.
  • the permanent magnet 15 is not reversely excited by the magnetic flux generated from the first coil 31 or the second coil 32 in any state. Further, since the permanent magnet 15 is arranged on the outermost periphery of the electromagnetic actuator, an inexpensive magnet having a low magnetic flux density can be used. Therefore, an inexpensive electromagnetic actuator can be provided in place of the recent high-performance magnet. Furthermore, since the movable element 2 is sucked by the SN2 pole of the permanent magnet 15 when latched, the latching force can be secured with a small number of permanent magnets.
  • the electromagnetic coil actuator can be operated by omitting the second coil 32 and switching the direction of the current flowing through the first coil 31.
  • the second coil 32 may be provided on the outer peripheral portion of the first coil 31.
  • a current is passed through only the first coil 31 or both the first and second coils 31 and 32.
  • the electromagnetic actuator is operated.
  • FIGS. 30 to 33 the same parts as those in the first embodiment shown in FIGS. 1 to 7 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 30 is a cross-sectional view of an electromagnetic actuator showing a sixth embodiment of the present invention, showing an open state.
  • the electromagnetic actuator is arranged on the first coil 31, the movable element 2 that moves on the central axis of the first coil 31, the upper and lower surfaces, the outer periphery, and the inner side of the first coil 31, and the movable element 2 together with the first stator 11 constituting a magnetic circuit for inducing the magnetic flux generated by the first coil 31, and at a predetermined distance from the first coil 31 concentrically with the first coil 31.
  • a ring-shaped permanent magnet 15 provided with a magnetic flux magnetized parallel to the moving direction of the mover 2 and the first stator 11, and the magnetic flux of the permanent magnet 15 is transferred to the mover 2.
  • a second stator 12 made of a magnetic material to be guided; and a second coil 32 provided in the outer periphery of the mover 2 in the second stator 12.
  • the mover 2 is made of a magnetic material and is driven by a nonmagnetic shaft 5 attached to the end of the mover 2.
  • the first stator 11 is made of a magnetic material, and includes a convex pole piece 111 provided from the upper side to the upper end surface near the center of the first coil 31, and the first coil 31.
  • a first plate member 112 covering the upper end surface; a first cylinder 113 covering the outer periphery of the first coil 31; and a first hollow plate member 114 covering the lower end surface of the first coil 31.
  • the second stator 12 is also made of a magnetic material, and is attached to the second cylinder 121 connected to the first hollow plate 114 of the first stator 11 and the second cylinder 121.
  • the second hollow plate 122 and the inner cylinder 123 whose inner surface 123a is adjacent to the outer periphery of the mover 2 with a slight gap therebetween 1 And 23.
  • the permanent magnet 15 is fixed between the second hollow plate member 122 and the inner cylinder 123.
  • a second coil 32 is provided between the first hollow plate member 114 of the first stator 11 and the inner cylinder 123 of the second stator 122 so as to surround the mover 2. .
  • a current is passed through the first coil 31 in the state of FIG. 30, and a magnetic flux is generated as indicated by an arrow 61 in FIG.
  • an upward force 73 corresponding to the magnitude of the current of the first coil 31 is applied to the mover 2 and the mover 2 starts to rise.
  • the equilibrium state of the upward and downward magnetic attractive forces 71 and 72 acting on the movable element 2 by the permanent magnet 15 is broken, and the downward magnetic attractive force 72 rises the movable element 2. It increases rapidly according to the amount, saturates at a certain amount of increase, and decreases rapidly when it increases further.
  • FIG. 32 shows a state where the gap X between the mover 2 and the pole piece 111 is 0, and the mover 2 is attracted to the pole piece 111.
  • the magnetic flux generated by the permanent magnet 15 mainly enters the outer surface of the mover 2 from the inner surface of the inner cylinder 123 as shown by an arrow 63 and then enters the end surface of the pole piece 111 from the upper surface.
  • the attracting force 74 of the permanent magnet 15 acts on the end face of the mover 2, even when the current of the first coil 31 is turned off, the mover 2 remains adsorbed to the pole piece 111, that is, keeps the latched state. Can do.
  • a load W is applied to the shaft 5 of the mover 2 as shown in FIG.
  • a current is applied to the coil 32 of 2 so as to erase the magnetic flux of the permanent magnet 15 as indicated by the arrow 63.
  • the magnetic flux indicated by the arrow 64 generated by the second coil 32 reduces the magnetic flux of the permanent magnet 15 passing through the mover 2, the first stator 11, and the second stator 12.
  • the load W wins, the latch state of the mover 2 is released, and the mover 2 descends.
  • the permanent magnet 15 is not reverse-excited by the magnetic flux generated in the first coil 31 or the second coil 32 in any state.
  • the permanent magnet 15, the first coil 31, and the second coil 32 are surrounded by the first stator 11, the second stator 12, and the mover 2 made of ferromagnetic material, Magnetic flux does not leak.
  • the movable element 2 is operated by individually applying current to the first coil 31 and the second coil 32 that are independent of each other, the movable element 2 can be operated by a simple power source. It is easy to switch to high speed.
  • the permanent magnet 15 is arranged in the vicinity of the mover 2 with the actuator released, the electromagnetic attractive force acting on the mover 2 is balanced by the magnetic flux of the permanent magnet 15 that forms a circuit with the mover 2.
  • the mover 2 is held with the pole piece 111 and the gap X opened.
  • the electromagnetic actuator is provided on the first coil 31, the movable element 2 that moves on the central axis of the first coil 31, and the upper surface, the lower surface, and the outer peripheral surface of the first coil 31.
  • a first stator 11 and a permanent magnet 15 that attracts and fixes the mover 2 to the first stator 11 at its operation end position are provided.
  • the permanent magnet 15 is disposed in the vicinity of the mover 2 in a state where the mover 2 is away from the first stator 11 and at the open end position. For this reason, the mover 2 in the open end position can be fixed by the magnetic force of the permanent magnet 15.
  • the permanent magnet 15 is not directly reverse-excited, and the permanent magnet 15 is not demagnetized, and magnetic flux leakage due to the permanent magnet 15 or the first coil 31 is prevented. It can be reduced.
  • FIGS. 34 to 37 the same parts as in the first embodiment shown in FIGS. Minutes are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 34 is a cross-sectional view of the electromagnetic actuator showing the seventh embodiment of the present invention, and shows an open state.
  • the mover 2 is made of a magnetic material, and includes a plunger 21 made of a magnetic material that moves on the central axis of the first coil 31, and a plunger 21 provided on the opposite side of the plunger 21 from the shaft 5. And a protruding plate member 25 protruding radially outward from 21.
  • the difference between the thickness of the protruding plate 22 and the thickness of the permanent magnet 15 is within ⁇ 15% of the thickness of the protruding plate 25.
  • the second cylinder 121 and the second hollow plate 122 have the same configuration as in the first embodiment, but the inner cylinder 123 has a stepped portion. It has a two-stage cylindrical shape having a receiving portion 124 to be formed.
  • the permanent magnet 15 is arranged so that, for example, the north pole faces upward and the south pole faces downward.
  • the south pole appears in the pole piece 111 and the north pole appears in the receiving portion 124 of the cylinder 123, and the protruding plate member 22 of the mover 2 becomes the magnet.
  • the mover 2 is attracted by the S and N poles.
  • the plunger 21 of the mover 2 is separated from the pole piece 111, and the protruding plate member 22 of the mover 2 is in the vicinity of the permanent magnet 15.
  • the magnetic flux generated by the permanent magnet 15 passes through the protruding plate 11 of the mover 2 having a magnetic force with low magnetic resistance, as indicated by the arrow 62, and the mover 2 acts upward and downward acting by the magnet 15.
  • the magnetic attraction forces 71 and 72 are balanced and held at a position where the gap with the pole piece 111 becomes X.
  • FIG. 36 shows a state where the gap X between the mover 2 and the pole piece 111 is 0, and the plunger 21 is attracted to the pole piece 111.
  • the magnetic flux generated by the permanent magnet 15 enters the projecting plate material 22 of the mover 2 from the receiving portion 124 of the inner cylinder 123 as indicated by an arrow 63, and enters the end face of the pole piece 111 from the plunger 21 first.
  • the permanent magnet After passing through the first plate 112 of the stator 11, the first cylinder 113, the first hollow plate 114, the second cylinder 121 of the second stator 12, and the second hollow plate 122, the permanent magnet again follow the path back to 15.
  • the plunger 21 Since the attractive force 74 of the permanent magnet 15 acts on the end surface of the plunger 21 and the contact surface of the protruding plate 22 and the receiving portion 124, the plunger 21 is applied to the pole piece 111 even if the current of the first coil 31 is turned off.
  • the plate 22 of the mover 2 can be kept in the state of being adsorbed to the receiving portion 124 of the cylinder 123.
  • the permanent magnet 15 in any state, is not reversely excited by the magnetic flux generated in the first coil 31 or the second coil 32. .
  • the permanent magnet 15, the first coil 31, and the second coil 32 are substantially surrounded by the first stator 11, the second stator 12, and the mover 2 made of ferromagnetic material. Magnetic flux does not leak.
  • the movable element 2 since the movable element 2 is operated by individually applying current to the first coil 31 and the second coil 32 that are independent of each other, the movable element can be operated by a simple power source. Can be easily switched to high speed.
  • the permanent magnet 15 is arranged near the mover 2 with the actuator open, the electromagnetic attraction force acting on the mover 2 is balanced by the magnetic flux of the permanent magnet 15 that forms a circuit with the mover 2. Can be kept in a state. As a result, the mover 2 is held with the pole piece 111 and the gap X opened.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)

Abstract

 磁束漏れを少なくして、高効率の電磁アクチュエータを提供する。  電磁アクチュエータは、第1のコイル31と、第1のコイル31の中心軸上を移動する可動子2と、前記第1のコイル31の上面、下面、および外周面を覆う第1の固定子11と、可動子2をその可動区間の終端で固着ラッチする永久磁石15とを備えている。第1の固定子11に連続して、永久磁石15からの磁束を制御する第2の固定子12が設けられている。この第2の固定子12を設けたことにより、固着ラッチ状態の可動子2を解放するとき、永久磁石15に対して直接逆励磁することはなく、永久磁石11が減磁しない。

Description

明 細 書
電磁ァクチユエータ
技術分野
[0001] 本発明は、近接する電子機器や磁性体部材へ悪影響を及ぼさな!/ヽ電磁ァクチユエ ータに関する。
背景技術
[0002] 従来、永久磁石により吸引状態を保持する電磁ァクチユエータとして、いくつかの 構成の物が提案されている。
[0003] その一つの電磁ァクチユエータは、図 38に示すように固定子 1と可動子 2とを有し、 固定子 1と可動子 2はその対称軸を境にした断面が「日」の字状の磁気回路を形成し ている。 日の字の 2つの空間にそれぞれコイル 31、 32が設けられ、中央の線に相当 する半径方向突出部 14に、磁ィ匕した永久磁石 15が設けられている(例えば、特許文 献 1参照)。
[0004] 図 38において、第 1の空隙 41の空隙長が第 2の空隙 42の空隙長よりも小さいため に永久磁石 15が生成する磁束は第 1の空隙 41を含む磁気回路に多く流れ、これに より左向きの磁気吸引力が可動子 2に発生して可動子 2を左のラッチ位置に固定す ることが出来る。ラッチを解除するときにはコイル 31、 32に電流を流し、第 1の空隙 41 の磁束を減じ、第 2の空隙 42の磁束を増力!]させ、可動子 2を左方向に移動させる駆 動力を発生させる。
[0005] また別の電磁ァクチユエータは、図 39に示すようにコイル 3と前記コイル 3の中心軸 上を移動する可動子 2と、前記コイル 3の上面、下面、および外周面を覆うように設け た固定子 1とを有して!/、る。永久磁石 15が前記固定子 1と前記可動子 2で囲まれた 空隙に配置され、前記永久磁石 15が発生する磁界によって前記可動子 2を前記固 定子 1に吸着させている(例えば、特許文献 2参照)。
[0006] 図 39において、ラッチを解除するときにはコイル 3に電流を流し、永久磁石 15の磁 束を減じ、可動子 2に働く下向きの吸引力を減じればラッチが解除され、負荷により 可動子 2は上昇する。 特許文献 1:特開平 7— 37461号広報
特許文献 2:特開 2002— 289430号広報
[0007] 前述した特許文献 1に記載の電磁ァクチユエータにおいて、コイル 31、 32が作る磁 路中に永久磁石 15が設けられているため、ラッチ解除時に永久磁石 15を直接逆励 磁する事になり、減磁する可能性があるという問題がある。
[0008] また、特許文献 2に記載の電磁ァクチユエータにおいて、永久磁石 15の発生する 磁束がァクチユエータの外部に漏れ、近接する電子機器や磁性体部材に悪影響を 及ぼす可能性があるという問題がある。
[0009] また、電磁ァクチユエ一タは高効率であることが望まれており、作動時の電流は出 来るだけ少なくしたいという要望がある。
発明の開示
[0010] 本発明は、このような点を考慮してなされたものであり、コイルの発生する磁束がラッ チ解除時に永久磁石を逆励磁して減磁する可能性がなぐかつ、永久磁石の磁束も れを最小限にして、近接する電子機器や磁性体部材へ悪影響を及ぼさな!/、電磁ァ クチユエータを提供することを目的とする。
[0011] 本発明は、第 1のコイルと、第 1のコイルの中心軸に沿って移動する円筒状の可動 子と、第 1のコイルの上面に設けられた第 1の板材と、第 1のコイルの下面に設けられ た第 1の中空板材と、第 1のコイルの外周面を覆う第 1の円筒とを有する第 1の固定子 と、可動子を移動端部で固着する永久磁石と、第 1の固定子に連続して設けられ、永 久磁石の磁束を制御する第 2の固定子と、を備えたことを特徴とする電磁ァクチユエ ータである。
[0012] 本発明は、第 2の固定子は第 1の固定子の第 1の中空板材に連続する第 2の円筒と 、第 2の円筒の永久磁石側端部に設けられた第 2の中空板材と、第 2の円筒内に配 置された内円筒とを有することを特徴とする電磁ァクチユエータである。
[0013] 本発明は、可動子はプランジャーと、プランジャー力 半径方向外方に突出する突 出板材とを有し、内円筒にこの突出板材を受ける受け部を設けたことを特徴とする電 磁ァクチユエータである。
[0014] 本発明は、永久磁石は第 1の固定子の第 1の中空板材に設けられ、第 2の固定子 は永久磁石に当接するフランジ部を有する円筒体を有することを特徴とする電磁ァク チユエータである。
[0015] 本発明は、永久磁石は第 1の固定子の第 1の中空板材に設けられ、第 2の固定子 は永久磁石に当接する第 3の中空板材を有することを特徴とする電磁ァクチユエータ である。
[0016] 本発明は、永久磁石の近傍に、永久磁石の磁束をショートさせるショートリングが設 けられて 、ることを特徴とする電磁ァクチユエータである。
[0017] 本発明は、第 1のコイルの中心に、第 1の板材に連結されたポールピースを設けた ことを特徴とする電磁ァクチユエータである。
[0018] 本発明は、ポールピースの長さは、第 1のコイルの中心まで達する最長長さと、この 最長長さから可動子のストロークの半分だけ短くした最小長さとの間に設定されたこと を特徴とする電磁ァクチユエータである。
[0019] 本発明は、可動子の外径と、前記ポールピースの外径との差は、可動子の外径の
± 15 %以内であることを特徴とする電磁ァクチユエータである。
[0020] 本発明は、可動子の断面積と、前記ポールピースの断面積との差は、可動子の断 面積の ± 15%以内であることを特徴とする電磁ァクチユエータである。
[0021] 本発明は、第 1の板材のうち可動子の外径と、同一径の円筒状断面積は、可動子 の断面積と同一力 2倍以内であることを特徴とする電磁ァクチユエータである。
[0022] 本発明は、第 1のコイルの外周を覆う第 1の円筒の断面積は、可動子の断面積と同 一か 2倍以内であることを特徴とする電磁ァクチユエータである。
[0023] 本発明は、第 1の中空板材の中空面の断面積と、可動子の断面積との差は、第 1の 中空板材の中空面の断面積の ± 15%以内であることを特徴とする電磁ァクチユエ一 タである。
[0024] 本発明は、前記第 2の固定子のうち永久磁石の磁束に垂直な断面積と、永久磁石 の断面積との差は、第 2の固定子の断面積の ± 15%以内であることを特徴とする電 磁ァクチユエータである。
[0025] 本発明は、前記第 1のコイルと第 1の固定子との間のギャップは、 3mm以内である ことを特徴とする電磁ァクチユエータである。 [0026] 本発明は、前記第 1の固定子の第 1の中空板材の中空面と、可動子の外周面との ギャップは、 3mmから 5mmであることを特徴とする電磁ァクチユエータである。
[0027] 本発明は、可動子の突出板材の断面積と、プランジャーの断面積との差は、突出 板材の断面積の ± 15%以内であることを特徴とする電磁ァクチユエータである。
[0028] 本発明は、可動子の突出板材の断面積と、第 2円筒の受け部の内周面の断面積と の差は、突出板材の断面積の ± 15%以内であることを特徴とする電磁ァクチユエ一 タである。
[0029] 本発明は、可動子のプランジャーの外周面と、第 2の固定子との間のギャップは lm mから 5mmであることを特徴とする電磁ァクチユエータである。
[0030] 本発明は、第 1のコイルと同軸上に第 2のコイルを設けたことを特徴とする電磁ァク チユエータである。
[0031] 本発明は、第 1のコイルと第 2のコイルは半径方向に並んで配置されていることを特 徴とする電磁ァクチユエータである。
[0032] 本発明は、第 1のコイルと、第 1のコイルの中心軸に沿って移動する円筒状の可動 子と、第 1のコイルの上面に設けられた第 1の板材と、第 1のコイルの下面に設けられ た第 1の中空板材と、第 1のコイルの外周面を覆う第 1の円筒とを有する第 1の固定子 と、前記可動子をその作動終端位置で前記第 1の固定子に吸着して固着ラッチする 永久磁石と、前記第 1の固定子に連続して設けられ、前記永久磁石の発する磁束を 制御する第 2の固定子とを備え、前記永久磁石は、前記可動子が前記第 1の固定子 カゝら離れて開放終端位置にあるとき、可動子の近傍に位置することを特徴とする電磁 ァクチユエータである。
[0033] 本発明は、第 2の固定子は第 1の固定子の第 1の中空板材に連続する第 2の円筒と 、第 2の円筒の永久磁石側端部に設けられた第 2の中空板材と、第 2の円筒内に配 置された内円筒とを有することを特徴とする電磁ァクチユエータである。
[0034] 本発明は、前記永久磁石は、前記可動子が前記第 1の固定子から離れて開放終 端位置にあるとき、可動子の開放終端側の端部近傍に配置されたことを特徴とする 電磁ァクチユエータである。
[0035] 本発明は、可動子はプランジャーと、プランジャー力 半径方向外方に突出する突 出板材とを有し、内円筒にこの突出板材を受ける受け部を設けたことを特徴とする電 磁ァクチユエータである。
[0036] 本発明は、前記可動子のプランジャー力 半径方向外方に突出する突出部材の厚 さと、前記永久磁石の厚さとの差は、突出部材の厚さの ± 15%以内であることを特徴 とする電磁ァクチユエータである。
[0037] 本発明は、前記永久磁石は、前記可動子が前記第 1の固定子から離れて開放終 端位置にあるとき、可動子のプランジャーから半径方向外方に突出する突出部材の 近傍に配置されたことを特徴とする電磁ァクチユエータである。
[0038] 本発明は、前記第 1の固定子の第 1の中空板材と前記第 2の固定子の内円筒との 間に空間が形成されていることを特徴とする電磁ァクチユエータである。
[0039] 本発明は、前記第 1の固定子の第 1の中空板材と前記第 2の固定子の内円筒との 間の空間に、第 2のコイルを設けたことを特徴とする電磁ァクチユエータである。 図面の簡単な説明
[0040] [図 1]本発明による電磁ァクチユエ一タの第 1の実施の形態を説明する断面図。
[図 2]本発明の第 1の実施の形態において、可動子が永久磁石により固着ラッチされ た状態を説明する図。
[図 3]本発明の第 1の実施の形態において、ショートリングによりラッチ状態が解除さ れる時の作用を説明する図。
[図 4]本発明の第 1の実施の形態において、第 1および第 2のコイルに通電してラッチ 状態が解除される時の作用を説明する図。
[図 5]本発明の第 1の実施の形態において、ラッチ解除状態の電磁ァクチユエータの 状態を説明する図。
[図 6]本発明の第 1の実施の形態において、第 1のコイルに通電してラッチ解除状態 の可動子がポールピースに吸引される時の作用を説明する図。
[図 7]本発明の第 1の実施の形態において、第 1のコイルに通電してラッチ解除状態 の可動子がポールピースに吸引されてラッチされる時の作用を説明する図。
[図 8]本発明による電磁ァクチユエ一タの第 2の実施の形態を説明する断面図。
[図 9]本発明の第 2の実施の形態において、可動子が永久磁石により固着ラッチされ た状態を説明する図。
圆 10]本発明の第 2の実施の形態において、ショートリングによりラッチ状態が解除さ れる時の作用を説明する図。
[図 11]本発明の第 2の実施の形態において、第 1および第 2のコイルに通電してラッ チ状態が解除される時の作用を説明する図。
圆 12]本発明の第 2の実施の形態において、ラッチ解除状態の電磁ァクチユエータ の状態を説明する図。
圆 13]本発明の第 2の実施の形態において、第 1のコイルに通電してラッチ解除状態 の可動子がポールピースに吸引される時の作用を説明する図。
圆 14]本発明の第 2の実施の形態において、第 1のコイルに通電してラッチ解除状態 の可動子がポールピースに吸引されてラッチされる時の作用を説明する図。
圆 15]本発明による電磁ァクチユエ一タの第 3の実施の形態を説明する断面図。 圆 16]本発明の第 3の実施の形態において、可動子が永久磁石により固着ラッチさ れた状態を説明する図。
圆 17]本発明の第 3の実施の形態において、ショートリングによりラッチ状態が解除さ れる時の作用を説明する図。
[図 18]本発明の第 3の実施の形態において、第 1および第 2のコイルに通電してラッ チ状態が解除される時の作用を説明する図。
圆 19]本発明の第 3の実施の形態において、ラッチ解除状態の電磁ァクチユエータ の状態を説明する図。
圆 20]本発明の第 3の実施の形態において、第 1のコイルに通電してラッチ解除状態 の可動子がポールピースに吸引される時の作用を説明する図。
圆 21]本発明の第 3の実施の形態において、第 1のコイルに通電してラッチ解除状態 の可動子がポールピースに吸引されてラッチされる時の作用を説明する図。
圆 22]本発明による電磁ァクチユエ一タの第 4の実施の形態を説明する断面図。 圆 23]本発明の第 4の実施の形態において、可動子が永久磁石により固着ラッチさ れた状態を説明する図。
圆 24]本発明の第 4の実施の形態において、ショートリングによりラッチ状態が解除さ れる時の作用を説明する図。
[図 25]本発明の第 4の実施の形態において、第 1および第 2のコイルに通電してラッ チ状態が解除される時の作用を説明する図。
[図 26]本発明の第 4の実施の形態において、ラッチ解除状態の電磁ァクチユエータ の状態を説明する図。
[図 27]本発明の第 4の実施の形態において、第 1のコイルに通電してラッチ解除状態 の可動子がポールピースに吸引される時の作用を説明する図。
[図 28]本発明の第 4の実施の形態において、第 1のコイルに通電してラッチ解除状態 の可動子がポールピースに吸引されてラッチされる時の作用を説明する図。
[図 29]本発明による電磁ァクチユエ一タの第 5の実施の形態を説明する断面図。
[図 30]本発明による電磁ァクチユエ一タの第 6の実施の形態を説明する断面図。
[図 31]本発明の第 6の実施の形態において、第 1のコイルに通電して可動子がポー ルピースに吸引される時の作用を説明する図。
[図 32]本発明の第 6の実施の形態において、第 1のコイルに通電して可動子が作動 し、ポールピースに吸着完了した時の状態を説明する図。
[図 33]本発明の第 6の実施の形態において、第 2のコイルに通電してラッチ状態が解 除される時の作用を説明する図。
[図 34]本発明による電磁ァクチユエ一タの第 7の実施の形態を説明する断面図。
[図 35]本発明の第 7の実施の形態において、第 1のコイルに通電して可動子がポー ルピースに吸引される時の作用を説明する図。
[図 36]本発明の第 7の実施の形態において、第 1のコイルに通電して可動子が作動 し、ポールピースに吸着完了した時の状態を説明する図。
[図 37]本発明の第 7の実施の形態において、第 2のコイルに通電してラッチ状態が解 除される時の作用を説明する図。
[図 38]従来の電磁ァクチユエータを説明する断面図。
[図 39]従来の電磁ァクチユエータを説明する断面図。
発明を実施するための最良の形態
(第 1の実施の形態) 本発明による電磁ァクチユエ一タの第 1の実施の形態を図 1乃至図 7により説明す る。
[0042] 図 1は本発明による電磁ァクチユエータの断面図であってラッチ解除状態を示して いる。
[0043] 電磁ァクチユエータは、第 1のコイル 31と、第 1のコイル 31の中心軸上を移動する 可動子 2と、第 1のコイルの上下面、外周及び内側に配置されて第 1のコイル 31を保 持し、前記可動子 2とともに第 1のコイル 31が発生する磁束を誘導するための磁気回 路を構成する第 1の固定子 11と、第 1のコイル 31の同心上で可動子 2より離れた位 置に設けられ、その磁束が前記可動子 2の移動方向と平行に着磁されたリング状の 永久磁石 15と、前記第 1の固定子 11に連結され、前記永久磁石 15の磁束を前記可 動子 2に誘導するための磁性材料力もなる第 2の固定子 12とを備えている。
[0044] 第 2の固定子 12の近傍には前記可動子 2の外周の空隙に第 1のコイル 31と同軸上 に第 2のコイル 32が設けられ、また図示して 、な 、駆動機構の作用により第 2の固定 子の内部を可動子 2と同一方向にショートリング 4が摺動するようになって 、る。
[0045] 図 1において、可動子 2は磁性体で構成され、可動子 2は可動子 2の端部に取り付 けられた非磁性の軸 5を介して可動子 2を下方に押し下げる負荷 Wに接続されている
[0046] 第 1の固定子 11は、全て磁性材料で構成されている。すなわち第 1の固定子 11は 第 1のコイル 31の上端面を覆う板材 (第 1の板材) 112と、第 1の板材 112に連結され 、第 1のコイル 31の中心近傍まで延びる凸型のポールピース 111と、第 1のコイル 31 の外周を覆う円筒(第 1の円筒) 113と、第 1のコイル 31の下端面を覆う中空板材 (第 1の中空板材) 114とを有している。ポールピース 111は、第 1のコイル 31の中心まで 達する長さを最長長さとし、この最長長さから可動子 2のストローク Xの半分だけ短くし た長さを最小長さとして、その間の所望長さに設定されている。
[0047] 第 2の固定子 12も、全て磁性材料で構成され、第 1の固定子 11の第 1の中空板材 114に接続する円筒(第 2の円筒) 121と、円筒 121に取り付けられた中空板材 (第 2 の中空板材) 122と、円筒 121内に配置されその内面 123aが可動子 2の外周にわず 力な空隙を開けて近接する円筒(内円筒) 123とを有し、永久磁石 15は前記中空板 材 122と円筒 123の間に固定されている。
[0048] 第 1の固定子 11の第 1の中空板材 114と第 2の固定子 12の内円筒 123との間には
、第 2のコイル 32が可動子 2を取り囲むように設けられて!/、る。
[0049] 図 1に示すように、高効率の電磁ァクチユエータを実現するため、ポールピース 111 と可動子 2の外径は同一となっており、ポールピース 111の A— A断面と可動子 2の B B断面それぞれの断面積もほぼ等しくなつている。
[0050] 本明細書にぉ 、て「ほぼ等し 、」とは 、ずれか一方の値に対して ± 15%以内の差 を指して言う事とする。第 1の板材 112の断面 C— Cに沿った円筒断面積と円筒 113 の断面 D— Dの断面積は、可動子 2の B— B断面の断面積とほぼ等 、か 2倍以下と なっている。
[0051] 第 1の中空板材 114の中空面 E— Eの断面積はポールピース 111の A— A断面の 断面積とほぼ等しくなつている。また、第 1の中空板材 114の内面と可動子 2とのギヤ ップ G1は、ラッチ状態における永久磁石 15の磁束を効率的にポールピース 111と 可動子 2の吸着面に集中させるため 3〜5mmが適当である。第 2の円筒 121の F—F 断面における断面積と、第 2の中空板材 122の G— G断面に沿った円筒断面積と、 内円筒 123の H— H断面における断面積と、永久磁石 15の断面積は、可動子 2の B —B断面における断面積とほぼ等しくなつている。内円筒 123の対向面 J Jの面積は 、可動子 2がポールピース 111に近接した状態で、可動子 2の B— B断面における断 面積とほぼ等 、かそれ以上とする。
[0052] 第 1のコイル 31の導体あるいは第 2のコイル 32の導体と、それらを囲む周囲の磁性 体 112、 113、 114、 121、 123とのギャップ G2は、それぞれのコィノレ 31、 32力 S発生 する磁束を効率よく利用できるよう、 3mm以下となっている。
[0053] 次にこのような構成力もなる実施の形態の作用について説明する。
[0054] 図 2に示すように、可動子 2とポールピース 111との間のギャップ X力Oあるいは極め て小さいとき、永久磁石 15に発生する磁束は矢印 61のように第 1の固定子 11と、第 2の固定子 12と、可動子 2との間に磁路を形成し、可動子 2にポールピース 111方向 に吸引力 Pが発生し、負荷 Wに抗してラッチ状態となる。
[0055] 図 2の状態でショートリング 4を永久磁石 15の近傍にスライドさせると、永久磁石 15 が発生する磁束の一部が図 3の矢印 62のようにバイパスされ、ポールピース 111と可 動子 2の間の磁束が減少し、吸引力 Pより負荷 Wが勝って、可動子 2のラッチ状態が 解除され可動子 2が下降する。
[0056] また、図 2に示す状態で、図 4に示すように、第 1のコイル 31および第 2のコイル 32 のうち、一方あるいはその両方に永久磁石 15の磁束をうち消すように電流を流すと、 第 1のコイル 31が発生する矢印 63で示す磁束、および第 2のコイル 32が発生する矢 印 64で示す磁束により、可動子 2、第 1の固定子 11、および第 2の固定子 12の中を 通る永久磁石 15による磁束 61が減少し、可動子 2に働 、て ヽた吸引力 Pより負荷 W が勝り、可動子 2のラッチ状態が解除され可動子 2が下降する。
[0057] また、図 5に示すように、可動子 2がラッチ解除状態でストローク Xだけポールピース 111から離れた状態では、可動子 2と第 1の中空板材 114との間の空隙の方が可動 子 2とポールピース 111との距離より小さいため、永久磁石 15の磁束は矢印 65の様 に磁路を形成して可動子 2に吸引力 Pは発生しない。
[0058] ここで図 6に示すように、第 1のコイル 31に電流を流して永久磁石 15の磁束と同方 向に磁束を発生させると、磁束は矢印 66の様に流れ、可動子 2はポールピース 111 側へ吸着される。図 7に示すように、可動子 2がポールピース 111に吸着完了した状 態で、永久磁石 15の磁束は矢印 61の状態になり、第 1のコイル 31の電流を切っても 、図 2に示すように永久磁石 15が発生する磁束により可動子 2はポールピース 111に 吸着したままの状態、即ちラッチ状態を保つことが出来る。
[0059] 以上のように本実施の形態によれば、いずれの状態においても永久磁石 15は、第 1のコイル 31あるいは第 2のコイル 32から発生する磁束により逆励磁されることがな い。また、永久磁石 15、第 1のコイル 31、および第 2のコイル 32は、強磁性体製の第 1の固定子 11、第 2の固定子 12、および可動子 2によりほぼ囲まれているため、磁束 が漏れることはない。
[0060] (第 2の実施の形態)
次に本発明の第 2の実施の形態を図 8乃至図 14により説明する。
[0061] 図 8乃至図 14に示す第 2の実施の形態において、図 1乃至図 7に示す第 1の実施 の形態と同一部分には同一符号を符して詳細な説明は省略する。 [0062] 図 8乃至図 14において、可動子 2は磁性体で構成され第 1のコイル 31の中心軸上 を移動するプランジャー 21と、負荷 Wに接続された非磁性の軸 5と反対側に設けら れプランジャー 21から半径方向外方へ突出する磁性体の板材 (突出板材) 22とを有 している。
[0063] 第 2の固定子 12のうち、第 2の円筒 121と第 2の中空板材 122とは第 1の実施の形 態と同一構成であるが、内円筒 123は段部をなす受け部 124を有する 2段円筒形状 となっている。
[0064] すなわちラッチ状態において、可動子 2の突出板材 22と内円筒 123の受け部 124 とが接触するようになって 、る。
[0065] 以上の構成で、例えば永久磁石 15の N極が上、 S極が下を向くように配置されてい たとすると、ポールピース 111には S極力 内円筒 123の受け部 124には N極が現れ 、ラッチ状態では SN2極で可動子 2を吸引することになる。
[0066] 図 8乃至図 14において高効率の電磁ァクチユエータを実現するため、ポールピー ス 111とプランジャー 21の外径は同一であり、かつポールピース 111の A— A断面と プランジャー 21の B' -B'断面はそれぞれほぼ等しい断面積を有する。
[0067] 第 1の板材 112の断面 C— Cに沿った円筒断面積と、第 1の円筒 113の断面 D— D の断面積は、プランジャー 21の B'— B'断面の断面積とほぼ等しいか 2倍以下となつ ている。第 1の中空板材 114の中空面 E—Eの断面積は、ポールピース 111の A— A 断面の断面積とほぼ等しくなつている。第 2の円筒 121の F—F断面における断面積 と、第 2の中空板材 122の G— G断面に沿った円筒断面積と、内円筒 123の H— H断 面における断面積と、永久磁石 15の断面積と、内円筒 123の J J断面に沿った円筒 断面積と、可動子 2の板材 22の K K断面に沿った円筒断面積と、突出板材 22と内 円筒 123の受け部 124が接触する面積 Q— Qは、プランジャー 21の B—B断面にお ける断面積とほぼ等しくなつている。
[0068] また、第 1の中空板材 114の内面と可動子 2とのギャップ G1と、プランジャー 21と内 円筒 123とのギャップ G3と、可動子 2の突出板材 22と内円筒 123のギャップ G4は、 ラッチ状態における永久磁石 15の磁束を効率的にポールピース 111とプランジャー 21の間と可動子 2の突出板材 22と内円筒 123の受け部 124の間に収集させるため 、ギャップ Glは 3〜5mm、ギャップ G3とギャップ G4は l〜5mmとなっている。
[0069] 次にこのような構成力もなる本実施の形態の作用について説明する。図 9に示すよ うに、プランジャー 21とポールピース 111との間、および可動子 2の突出板材 22と内 円筒 123の受け部 124との間のギャップ Xが 0あるいは極めて小さいとき、永久磁石 1 5が発生する磁束は矢印 71に示すように第 1の固定子 11と、第 2の固定子 12と、可 動子 2に磁路を形成し、可動子 2にポールピース 111方向に吸引力 Pが発生し、負荷 Wに抗してラッチ状態となる。
[0070] また、図 9に示す状態でショートリング 4を永久磁石 15の近傍にスライドさせると、永 久磁石 15が発生する磁束の一部が図 10の矢印 72のようにバイパスされ、ポールピ ース 111とプランジャー 21の間、および可動子 2の突出板材 22と内円筒 123の受け 部 124との間の磁束が減少し、吸引力 Pより負荷 Wが勝り可動子 2のラッチ状態が解 除され可動子 2が下降する。
[0071] また、図 9に示す状態で、図 11に示すように第 1のコイル 31および第 2のコイル 32 のうち一方、あるいはその両方に永久磁石 15の磁束をうち消すように電流を流すと、 第 1のコイル 31が発生する矢印 73で示す磁束や、第 2のコイル 32が発生する矢印 7 4で示す磁束により、可動子 2、第 1の固定子 11、および第 2の固定子 12の中を通る 永久磁石の磁束が減少し、可動子 2に働いていた吸引力 Pより負荷 Wが勝り可動子 2 のラッチ状態が解除され可動子 2が下降する。
[0072] また、図 12に示すように、プランジャー 21がラッチ解除状態でストローク Xだけポー ルピース 111から離れた状態では、プランジャー 21と第 1の中空板材 114および内 円筒 123との空隙の方力 プランジャー 21とポールピース 111との間、または可動子 2の突出板材 22と内円筒 123の受け部 124との間の距離より小さいため、永久磁石 15の磁束は主に矢印 75の様に磁路を形成するため可動子 2に吸引力 Pは発生しな い。
[0073] ここで図 13に示すように、第 1のコイル 31に電流を流して永久磁石 15の磁束と同 方向の磁束を発生させると、磁束は矢印 76の様に流れ、可動子 2はポールピース 11 1へと吸着される。図 14に示すように、可動子 2がポールピース 111および内円筒 12 3の受け部 124に吸着完了した状態で第 1のコイル 31の電流を切っても、図 9のよう に永久磁石 15により、可動子 2はポールピース 111と内円筒 123の受け部 124に吸 着されたままの状態、即ちラッチ状態を保つことが出来る。
[0074] 以上のように本実施の形態によれば、いずれの状態においても永久磁石 15は、第 1のコイル 31あるいは第 2のコイル 32から発生する磁束により逆励磁されることがな い。また、永久磁石 15、第 1のコイル 31、および第 2のコイル 32は強磁性体製の第 1 の固定子 11、第 2の固定子 12、および可動子 2でほぼ囲まれているため、磁束が漏 れることはない。さらに、ラッチ時には永久磁石 15の SN2極で可動子 2を吸引するた め、少ない永久磁石でラッチ力を確保できる。
[0075] (第 3の実施の形態)
次に本発明の第 3の実施の形態を図 15乃至図 21により説明する。図 15乃至図 21 において、図 1乃至図 7に示す第 1の実施の形態と同一部分には同一符号を符して 詳細な説明は省略する。
[0076] 図 15乃至図 21において、永久磁石 15は第 1の固定子 11の第 1の中空板材 114に 取り付けられている。そして、第 2の固定子 12は、円筒体 125を有し、この円筒体 12 5は永久磁石 15に当接するフランジ 125bを有している。円筒体 125の内面 125aは 、可動子 2の外周にわずかな空隙を開けて近接している。第 2のコイル 32は第 2の固 定子 12の円筒体 125内部に配置されている。またショートリング 4力 円筒体 125の フランジ 125b付近力も永久磁石 15の外周付近まで摺動可能に設けられている。
[0077] 図 15乃至図 21に示すように、高効率の電磁ァクチユエータを実現するため、ポー ルピース 111と可動子 2の外径は同一であり、かつポールピース 111の A— A断面と 、可動子 2の B— B断面はそれぞれほぼ等 、断面積を有する。
[0078] 第 1の板材 112の断面 C— Cに沿った円筒断面積と、第 1の円筒 113の断面 D— D の断面積は、可動子 2の B— B断面の断面積とほぼ等しいか、 2倍以下となっている。 第 1の中空板材 114の中空面 E— Eの断面積は、ポールピース 111の A— A断面の 断面積とほぼ等しくなつている。円筒体 125の F—F断面に沿った円筒断面積は、永 久磁石 15の断面積とほぼ等しくなつている。円筒体 125の内面 125aと可動子 2の対 向面 J -Jの断面積は、可動子 2がポールピース 111に近接した状態で、可動子 2の B —B断面における断面積とほぼ等 、かそれ以上となって 、る。 [0079] また、第 1の中空板材 114の内面と可動子 2とのギャップ Glは、ラッチ状態における 永久磁石 15の磁束を効率的にポールピース 111と可動子 2の吸着面に集中させる ため 3〜5mmとなっている。第 1の中空板材 114の外径、永久磁石 15の外径、およ び円筒体 125のフランジ 125bの外径は互いに同一となっており、永久磁石 15と第 1 の中空板材 114の内径差 G5は 3mm以上となって!/、る。
[0080] 第 1のコイル 31の導体と周囲の磁性体 112、 113、 114との間隔は、第 1のコイル 3 1が発生する磁束を効率よく利用できるよう、 3mm以下となっている。また第 2のコィ ル 32とフランジ 125bを有する円筒体 125との間隔は、第 2のコイル 32が発生する磁 束を効率よく利用できるよう、径方向、軸方向とも 3mm以下となっている。
[0081] 次にこのような構成力 なる本実施の形態の作用について説明する。図 16に示す ように、プランジャー 21とポールピース 111との間のギャップ X力 Oある!/、は極めて小 さいとき、永久磁石 15が発生する磁束は矢印 81に示すように、第 1の固定子 11と、 第 2の固定子 12と、可動子 2に磁路を形成し、可動子 2にポールピース 111方向に 吸引力 Pが発生し、負荷 Wに抗してラッチ状態となっている。
[0082] また、図 16に示す状態でショートリング 4を永久磁石 15の近傍にスライドさせると、 永久磁石 15が発生する磁束の一部が図 17の矢印 82のようにバイパスされ、ポール ピース 111と可動子 2の間の磁束が減少し、吸引力 Pより負荷 Wが勝り、可動子 2のラ ツチ状態が解除され可動子 2が下降する。
[0083] また、図 16の状態で、図 18に示すように第 1のコイル 31および第 2のコイル 32のう ち一方、あるいはその両方に永久磁石 15の磁束をうち消すように電流を流すと、第 1 のコイル 31が発生する矢印 83で示す磁束、および第 2のコイル 32が発生する矢印 8 4で示す磁束により、可動子 2、第 1の固定子 11、および第 2の固定子 12の中を通る 永久磁石の磁束が減少し、可動子 2に働いていた吸引力 Pより負荷 Wが勝り、可動子 2のラッチ状態が解除され可動子 2が下降する。
[0084] また、図 19に示すように、可動子 2がラッチ解除状態でストローク Xだけポールピー ス 111から離れた状態では、可動子 2と第 1の中空板材 114との空隙の方が、可動子 2とポールピース 111との間の距離より小さいため、永久磁石 15の磁束は矢印 85の 様に磁路を形成し、このため可動子 2に吸引力 Pは発生しない。 [0085] 図 20に示すように、第 1のコイル 31に電流を流して永久磁石 15の磁束と同方向の 磁束を発生させると、磁束は矢印 86の様に流れ、可動子 2はポールピース 111へと 吸着される。図 21に示すように、可動子 2がポールピース 111に吸着完了した状態 で第 1のコイル 31の電流を切っても、図 16に示すように永久磁石 15が発生する磁束 により可動子 2はポールピース 111に吸着したままの状態、即ちラッチ状態を保つこと が出来る。
[0086] 以上のように本実施の形態によれば、いずれの状態においても永久磁石 15は、第 1のコイル 31あるいは第 2のコイル 32から発生する磁束によって逆励磁されることが ない。また、永久磁石 15を電磁ァクチユエータの最外周に配置したことにより、磁束 密度の小さい安価な磁石を使用でき、このため近年の高性能な磁石に代えて、安価 な電磁ァクチユエータを提供できる。
[0087] (第 4の実施の形態)
次に本発明の第 4の実施の形態を図 22乃至図 28により説明する。図 22乃至図 28 において、図 1乃至図 7に示す第 1の実施の形態と同一部分には同一符号を符して 詳細な説明は省略する。
[0088] 図 22乃至図 28において、可動子 2は実施例 2のものと同一の構成を有している。
すなわち可動子 2は磁性体で構成され第 1のコイル 31の中心軸上を移動するプラン ジャー 21と、負荷 Wに接続された非磁性の軸 5と反対側に設けられプランジャー 21 から半径方向へ突出する磁性体の板材 (突出板材) 22とを有している。第 2の固定子 12は中空板材 (第 3の中空板材) 126のみからなり、永久磁石 15は、第 1の固定子 1 1の中空板材 114と第 2の固定子 12の第 3の中空板材 126との間に挟まれて 、る。 第 3の中空板材 126は永久磁石 15の下側に現れる磁極から発せられる磁束を調整 し、可動子 2の突出板材 22へ整えて流すように作用する。第 2のコイル 32は第 1の固 定子 11の外側に配置され、ショートリング 4が第 3の中空板材 126付近力 永久磁石 15の外周付近までに摺動可能に設けられている。
[0089] 図 22乃至図 28において、例えば永久磁石 15の S極が上、 N極が下を向くように配 置されていたとすると、ポールピース 111には S極が、中空板材 126の下側には N極 が現れ、ラッチ状態では SN2極で可動子 2を吸引することになる。 [0090] 図 22乃至図 28に示すように、高効率の電磁ァクチユエータを実現するため、ポー ルピース 111とプランジャー 21の外径は同一となっており、ポールピース 111の A— A断面と、プランジャー 21の B'—B'断面はそれぞれほぼ等しい断面積を有する。ま た板材 112の断面 C Cに沿った円筒断面積と、円筒 113の断面 D— Dの断面積は 、プランジャー 21の B'—B'断面の断面積とほぼ等しいか、 2倍以下となっている。第 1の中空板材 114の中空面 E— Eの断面積は、ポールピース 111の A— A断面の断 面積とほぼ等しくなつている。第 3の円筒 126の F—F断面に沿った円筒断面積と、可 動子 2の突出板材 22の G— G断面に沿った円筒断面積と、突出板材 22と第 3の中空 板材 126が接触する面積 H—Hは、永久磁石 15の断面積とほぼ等しくなつている。 また、第 1の中空板材 114の中空面とプランジャー 21とのギャップ G1と、第 3の中空 板材 126の中空面とプランジャー 21とのギャップ G3は、ラッチ状態における永久磁 石 15の磁束を効率的にポールピース 111とプランジャー 21の吸着面および第 3の中 空板材 126と可動子 2の突出板材 22の接触面に集中させるため、 G1は 3〜5mm、 G3は l〜5mmとなっている。さらに第 3の中空板材 114の外径と永久磁石 15の外径 と、円筒 125のフランジの外径は同一となっている。永久磁石 15の内径は第 1の中空 板材 114の内径より 3mm以上大きくなつている。
[0091] 第 1のコイル 31および第 2のコイル 32の導体と、周囲の磁性体 112、 113、 114、 1 26との間隔は、それぞれのコイル 31、 32が発生する磁束を効率よく利用できるよう、 3mm以下となっている。
[0092] 次にこのような構成力もなる本実施の形態の作用について説明する。
[0093] 図 23に示すように、プランジャー 21とポールピース 111との間のギャップ X力 Oある いは極めて小さいとき、永久磁石 15が発生する磁束は矢印 91に示すように第 1の固 定子 11と、第 2の固定子 12と、可動子 2に磁路を形成し、可動子 2にポールピース 1 11方向に吸引力 Pが発生し、負荷 Wに抗してラッチ状態となって 、る。
[0094] また、図 23に示す状態でショートリング 4を永久磁石 15の近傍にスライドさせると、 永久磁石 15が発生する磁束の一部が図 33の矢印 92のようにバイパスされる。このと きポールピース 111と可動子 2の間の磁束が減少し、吸引力 Pより負荷 Wが勝り、可 動子 2のラッチ状態が解除され可動子 2が下降する。 [0095] また、図 23の状態で、図 25に示すように第 1のコイル 31および第 2のコイル 32のう ち一方、あるいはその両方に永久磁石 15の磁束をうち消すように電流を流すと、第 1 のコイル 31が発生する矢印 93で示す磁束、および第 2のコイル 32が発生する矢印 9 4で示す磁束により、可動子 2、第 1の固定子 11、および第 2の固定子 12の中を通る 永久磁石の磁束が減少し、可動子 2に働いていた吸引力 Pより負荷 Wが勝り、可動子 2のラッチ状態が解除され可動子 2が下降する。
[0096] また、図 26に示すように、可動子 2がラッチ解除状態となってストローク Xだけポー ルピース 111から離れた状態では、プランジャー 21と第 1の中空板材 114や第 3の中 空板材 126の空隙の方力 プランジャー 21とポールピース 111や可動子 2の突出板 材 22と第 3の中空板材 126との距離より小さいため、永久磁石 15の磁束は矢印 95 の様に磁路を形成し、このため可動子 2に吸引力 Pは発生しない。図 27に示すように 、第 1のコイル 31に電流を流して永久磁石 15の磁束と同方向の磁束を発生させると 、磁束は矢印 96の様に流れ、可動子 2はポールピース 111へと吸着される。図 28に 示すように可動子 2がポールピース 111に吸着完了した状態で第 1のコイル 31の電 流を切っても、図 23のように永久磁石 15の発生する磁束で可動子 2はポールピース 111に吸着したままの状態、即ちラッチ状態を保つことが出来る。
[0097] 以上のように本実施の形態によれば、いずれの状態においても永久磁石 15は、第 1のコイル 31あるいは第 2のコイル 32から発生する磁束によって逆励磁されることが ない。また、永久磁石 15を電磁ァクチユエータの最外周に配置したことにより、磁束 密度の小さい安価な磁石を使用でき、このため近年の高性能な磁石に代えて、安価 な電磁ァクチユエータを提供できる。さらに、ラッチ時には永久磁石 15の SN2極で可 動子 2を吸弓 Iするため、少な 、永久磁石でラッチ力を確保できる。
[0098] (第 5の実施の形態)
次に本発明の第 5の実施の形態を図 29により説明する。第 5の実施の形態はコィ ルの配置を入れ替えたものであり、他は上述した第 1の実施の形態〜第 4の実施の 形態と同一である。
[0099] 第 1〜第 4の実施の形態において、第 2のコイル 32を省略し、第 1のコイル 31に流 す電流方向を切替える事により電磁ァクチユエータを作動させることが出来る。 [0100] また、図 29に示すように、第 2のコイル 32を第 1のコイル 31の外周部分に設けても よい。図 29において、可動子 2をポールピース 111へ吸引するときは第 1のコイル 31 のみか、第 1と第 2のコイル 31、 32の両方かに電流を流す。一方、可動子 2の永久磁 石 15によるラッチを解除するときは、第 1のコイル 31か第 2のコイル 32かあるいはそ の両方に電流をながして、電磁ァクチユエータを作動させる。
[0101] (第 6の実施の形態)
次に本発明の第 6の実施の形態を図 30乃至図 33により説明する。図 30乃至図 33 に示す第 6の実施の形態において、図 1乃至図 7に示す第 1の実施の形態と同一部 分には同一符号を符して詳細な説明は省略する。
[0102] 図 30は本発明の第 6の実施の形態を示す電磁ァクチユエータの断面図であって、 開放状態を示している。
[0103] 電磁ァクチユエータは、第 1のコイル 31と、第 1のコイル 31の中心軸上を移動する 可動子 2と、第 1のコイル 31の上下面、外周及び内側に配置され、前記可動子 2とと もに第 1のコイル 31が発生する磁束を誘導する磁気回路を構成する第 1の固定子 11 と、第 1のコイル 31の同心上に第 1のコイル 31から所定距離をおいて設けられ、磁束 が前記可動子 2の移動方向と平行に着磁されたリング状の永久磁石 15と、前記第 1 の固定子 11に連続し、前記永久磁石 15の磁束を前記可動子 2に誘導する磁性材 料で構成された第 2の固定子 12と、前記第 2の固定子 12内であって前記可動子 2の 外周に設けられた第 2のコイル 32とを備えて 、る。
[0104] このうち可動子 2は磁性体で構成され、可動子 2の端部に取り付けられた非磁性の 軸 5により駆動される。
[0105] また第 1の固定子 11は、全て磁性材料で構成され、第 1のコイル 31の中心近傍より 上側から上端面まで設けられた凸型のポールピース 111と、第 1のコイル 31の上端 面を覆う第 1の板材 112と、第 1のコイル 31の外周を覆う第 1の円筒 113と、第 1のコ ィル 31の下端面を覆う第 1の中空板材 114とを有している。
[0106] 第 2の固定子 12も、全て磁性材料で構成され、第 1の固定子 11の第 1の中空板材 114に接続する第 2の円筒 121と、第 2の円筒 121に取り付けられた第 2の中空板材 122と、その内面 123aが可動子 2の外周にわずかな空隙を開けて近接する内円筒 1 23とを有している。永久磁石 15は第 2の中空板材 122と内円筒 123の間に固定され ている。
[0107] 第 1の固定子 11の第 1の中空板材 114と第 2の固定子 122の内円筒 123との間に は第 2のコイル 32が可動子 2を取り囲むように設けられて 、る。
[0108] 次にこのような構成力もなる本実施の形態の作用について説明する。図 30に示す ように、可動子 2とポールピース 111が離れていて、可動子 2の下側の端面近傍に永 久磁石 15が配置されていると、永久磁石 15が発生する磁束は磁気抵抗の少ない磁 性体である可動子 2の中を矢印 62のように通る。このとき、磁石 15により作用する上 向きと下向きの磁気吸引力 71、 72が平衡して可動子 2はポールピース 111とのギヤ ップカ ¾となる位置で保持される。
[0109] 次に図 30の状態で第 1のコイル 31に電流を流し、図 31の矢印 61のように磁束を発 生させる。この場合、可動子 2に第 1のコイル 31の電流の大きさに応じた上向きの力 7 3が作用し、可動子 2が上昇し始める。可動子 2が上昇すると、永久磁石 15により可 動子 2に作用している上向きと下向きの磁気吸引力 71、 72の平衡状態が崩れ、下向 きの磁気吸引力 72が可動子 2の上昇量に応じて急激に大きくなり、一定上昇量で飽 和し、それ以上上昇すると急激に減少する。
[0110] この間、可動子 2の上昇量は、極めて微少となる。上向きの吸引力 73が永久磁石 1 5により生じる下向きの磁気吸引力 72の飽和した値を上回ると、可動子 2はポールピ ース 111とのギャップ Xが 0になるまで上昇する(図 32)。
[0111] 図 32は可動子 2とポールピース 111のギャップ Xが 0になり、可動子 2がポールピー ス 111に吸着して 、る状態を示して 、る。この状態で永久磁石 15が発生する磁束は 主に矢印 63のように、内円筒 123の内面から可動子 2の外面に入り上面からポール ピース 111の端面に入った後に第 1の固定子 11の第 1の板材 112、第 1の円筒 113 、第 1の中空板材 114、第 2の固定子 12の第 2の円筒 121、第 2の中空板材 122を通 つた後に再び永久磁石 15に戻る経路をたどる。永久磁石 15の吸引力 74は可動子 2 の端面に作用するため、第 1のコイル 31の電流を切っても、可動子 2はポールピース 111に吸着したままの状態、即ちラッチ状態を保つことができる。
[0112] 次に図 32に示す状態から図 33に示すように可動子 2の軸 5に負荷 Wを作用させ、第 2のコイル 32に矢印 63で示すような永久磁石 15の磁束をうち消すように電流を流す 。このとき第 2のコイル 32が発生する矢印 64で示す磁束により、可動子 2、第 1の固 定子 11、および第 2の固定子 12の中を通る永久磁石 15の磁束が減少し、可動子 2 に働いていた吸引力 Pに比べて負荷 Wが勝り可動子 2のラッチ状態が解除され可動 子 2が下降する。
[0113] 以上のように本実施の形態によれば、いずれの状態においても、永久磁石 15が第 1のコイル 31あるいは第 2のコイル 32に発生する磁束により逆励磁されることはない。 また、永久磁石 15、および第 1のコイル 31、第 2のコイル 32が、強磁性体製の第 1の 固定子 11、第 2の固定子 12、および可動子 2により囲まれているため、磁束が漏れる ことはない。また、それぞれ独立した第 1のコイル 31および第 2のコイル 32に個別に 電流を印可して可動子 2を作動させるため、単純な電源により可動子 2を作動させる ことができ、この作動方向を高速度に切り換える事も容易に行える。また、ァクチユエ ータを解放状態で可動子 2の近傍に永久磁石 15を配置したので、可動子 2との間で 回路を作る永久磁石 15の磁束により、可動子 2に働く電磁吸引力を平衡状態に保つ ことができ、これにより可動子 2がポールピース 111とギャップ Xを開けた状態で保持 される。
[0114] 以上のように電磁ァクチユエータは、第 1のコイル 31と第 1のコイル 31の中心軸上を 移動する可動子 2と、第 1のコイル 31の上面、下面、および外周面に設けた第 1の固 定子 11と、可動子 2をその作動終端位置で前記第 1の固定子 11に吸着して固着ラッ チする永久磁石 15とを備えている。永久磁石 15は、可動子 2が第 1の固定子 11から 離れて開放終端位置にある状態で可動子 2の近傍に配置されている。このため開放 終端位置に有る可動子 2を永久磁石 15の磁力で固着することができる。また、作動 終端位置に有る可動子 2を解放するとき、永久磁石 15に直接逆励磁せず前記永久 磁石 15が減磁することはなぐまた、永久磁石 15や第 1のコイル 31による磁束漏れ を少なくすることが出来る。
[0115] (第 7の実施の形態)
次に本発明の第 7の実施の形態を図 34乃至図 37により説明する。図 34乃至図 37 に示す第 7の実施の形態において、図 1乃至図 7に示す第 1の実施の形態と同一部 分には同一符号を符して詳細な説明は省略する。
[0116] 図 34は本発明の第 7の実施の形態を示す電磁ァクチユエータの断面図であって、 開放状態を示している。
[0117] 可動子 2は磁性体で構成され、第 1のコイル 31の中心軸上を移動する磁性体から なるプランジャー 21と、プランジャー 21のうち軸 5と反対側に設けられ、プランジャー 21から半径方向外方に突出する突出板材 25とを有している。突出板材 22の厚さと、 永久磁石 15の厚さとの差は、突出板材 25の厚さの ± 15%以内となっている。
[0118] 第 2の固定子 12のうち、第 2の円筒 121と第 2の中空板材 122は第 1の実施の形態 と同一の構成を有して 、るが、内円筒 123は段部をなす受け部 124を有する 2段円 筒形状となっている。
[0119] 可動子 2のプランジャー 21とポールピース 111が接触すると、可動子 2の突出板材 22と内円筒 123の受け部 124とが接触するようになっている。
[0120] また永久磁石 15は、たとえば N極が上、 S極が下を向くように配置されている。この 場合、可動子 2の突出板材 22が磁石 15から離れているとき、ポールピース 111には S極が、円筒 123の受け部 124には N極が現れ、可動子 2の突出板材 22が磁石 15 近傍にあってラッチ状態では S極と N極によって可動子 2を吸引することになる。
[0121] 次にこのような構成力もなる本実施の形態の作用について説明する。
[0122] 図 34において、可動子 2のプランジャー 21がポールピース 111と離れていて、可動 子 2の突出板材 22が永久磁石 15の近傍に有る。このとき、永久磁石 15が発生する 磁束は、磁気抵抗の少ない磁性体力もなる可動子 2の突出板材 11の中を矢印 62に 示すように通り、可動子 2は磁石 15により作用する上向きと下向きの磁気吸引力 71、 72が平衡してポールピース 111とのギャップが Xとなる位置で保持される。
[0123] 図 34に示す状態で第 1のコイル 31に電流を流し、図 35の矢印 61に示すように磁 束を発生させる。このとき、可動子 2に第 1のコイル 31の電流の大きさに応じた上向き の力 73が作用し、可動子 2が上昇し始める。可動子 2が上昇すると、永久磁石 15に より可動子 2に作用している上向きと下向きの磁気吸引力 71、 72の平衡状態が崩れ 、下向きの磁気吸引力 72が可動子 2の上昇量に応じて急激に大きくなり、一定上昇 量で飽和し、それ以上上昇すると急激に減少する。 [0124] この間、可動子 2の上昇量は、極めて微小である。上向きの吸引力 73が永久磁石 1 5により生じる下向きの磁気吸引力 72の飽和した値を上回ると、可動子 2はポールピ ース 111とのギャップ Xが 0になるまで上昇する(図 36)。
[0125] 図 36は可動子 2とポールピース 111のギャップ Xが 0になり、プランジャー 21がポー ルピース 111に吸着して 、る状態を示して 、る。この状態で永久磁石 15が発生する 磁束は主に矢印 63のように内円筒 123の受け部 124から可動子 2の突出板材 22に 入りプランジャー 21からポールピース 111の端面に入った後に第 1の固定子 11の第 1の板材 112、第 1の円筒 113、第 1の中空板材 114、第 2の固定子 12の第 2の円筒 121、第 2の中空板材 122を通った後に再び永久磁石 15に戻る経路をたどる。永久 磁石 15の吸引力 74はプランジャー 21の端面と突出板材 22と受け部 124の接触面 に作用するため、第 1のコイル 31の電流を切っても、プランジャー 21はポールピース 111に、可動子 2の板材 22は円筒 123の受け部 124にそれぞれ吸着したままの状態 を保持できる。
[0126] 次に、図 36に示す状態から図 37のように可動子 2の軸 5に負荷 Wを作用させ、第 2 のコイル 32に矢印 63で示すような永久磁石 15の磁束をうち消すように電流を流す。 このとき、第 2のコイル 32が発生する矢印 64で示す磁束により、可動子 2、第 1の固 定子 11、および第 2の固定子 12の中を通る永久磁石 15の磁束が減少し、可動子 2 に働いていた吸引力 Pに比べて負荷 Wが勝り可動子 2のラッチ状態が解除され可動 子 2が下降する。
[0127] 以上説明したように、本実施の形態によれば、いずれの状態においても、永久磁石 15が第 1のコイル 31あるいは第 2のコイル 32に発生する磁束により逆励磁されること はない。また、永久磁石 15、及び第 1のコイル 31、第 2のコイル 32が、強磁性体製の 第 1の固定子 11、第 2の固定子 12、および可動子 2でほぼ囲まれているため、磁束 が漏れることはない。また、それぞれ独立した第 1のコイル 31、および第 2のコイル 32 に個別に電流を印可して可動子 2を作動させるため、単純な電源により可動子を作 動させることができ、この作動方向を高速度に切り換える事も容易に行える。また、ァ クチユエータを開放状態で可動子 2の近傍に永久磁石 15を配置したので、可動子 2 との間で回路を作る永久磁石 15の磁束により、可動子 2に働く電磁吸引力を平衡状 態に保つことができる。これにより可動子 2がポールピース 111とギャップ Xを開けた 状態で保持される。

Claims

請求の範囲
[1] 第 1のコイルと、
第 1のコイルの中心軸に沿って移動する円筒状の可動子と、
第 1のコイルの上面に設けられた第 1の板材と、第 1のコイルの下面に設けられた第 1の中空板材と、第 1のコイルの外周面を覆う第 1の円筒とを有する第 1の固定子と、 可動子を移動端部で固着する永久磁石と、
第 1の固定子に連続して設けられ、永久磁石の磁束を制御する第 2の固定子と、を 備えたことを特徴とする電磁ァクチユエータ。
[2] 第 2の固定子は第 1の固定子の第 1の中空板材に連続する第 2の円筒と、第 2の円 筒の永久磁石側端部に設けられた第 2の中空板材と、第 2の円筒内に配置された内 円筒とを有することを特徴とする請求項 1記載の電磁ァクチユエータ。
[3] 可動子はプランジャーと、プランジャー力 半径方向外方に突出する突出板材とを 有し、内円筒にこの突出板材を受ける受け部を設けたことを特徴とする請求項 2記載 の電磁ァクチユエータ。
[4] 永久磁石は第 1の固定子の第 1の中空板材に設けられ、第 2の固定子は永久磁石 に当接するフランジ部を有する円筒体を有することを特徴とする請求項 1記載の電磁 ァクチユエータ。
[5] 永久磁石は第 1の固定子の第 1の中空板材に設けられ、第 2の固定子は永久磁石 に当接する第 3の中空板材を有することを特徴とする請求項 1記載の電磁ァクチユエ ータ。
[6] 永久磁石の近傍に、永久磁石の磁束をショートさせるショートリングが設けられてい ることを特徴とする請求項 1乃至 5のいずれか記載の電磁ァクチユエータ。
[7] 第 1のコイルの中心に、第 1の板材に連結されたポールピースを設けたことを特徴と する請求項 1乃至 5のいずれかに記載の電磁ァクチユエータ。
[8] ポールピースの長さは、第 1のコイルの中心まで達する最長長さと、この最長長さか ら可動子のストロークの半分だけ短くした最小長さとの間に設定されたことを特徴とす る請求項 7に記載の電磁ァクチユエータ。
[9] 可動子の外径と、前記ポールピースの外径との差は、可動子の外径の ± 15%以内 であることを特徴とする請求項 7または 8のいずれかに記載の電磁ァクチユエータ。
[10] 可動子の断面積と、前記ポールピースの断面積との差は、可動子の断面積の ± 15 %以内であることを特徴とする請求項 7乃至 9のいずれかに記載の電磁ァクチユエ一 タ。
[11] 第 1の板材のうち可動子の外径と、同一径の円筒状断面積は、可動子の断面積と 同一か 2倍以内であることを特徴とする請求項 1乃至 10のいずれかに記載の電磁ァ クチユエータ。
[12] 第 1のコイルの外周を覆う第 1の円筒の断面積は、可動子の断面積と同一か 2倍以 内であることを特徴とする請求項 1乃至 11のいずれかに記載の電磁ァクチユエータ。
[13] 第 1の中空板材の中空面の断面積と、可動子の断面積との差は、第 1の中空板材 の中空面の断面積の ± 15%以内であることを特徴とする請求項 1乃至 12のいずれ かに記載の電磁ァクチユエータ。
[14] 前記第 2の固定子のうち永久磁石の磁束に垂直な断面積と、永久磁石の断面積と の差は、第 2の固定子の断面積の ± 15%以内であることを特徴とする請求項 1乃至 1
3の!、ずれかに記載の電磁ァクチユエータ。
[15] 前記第 1のコイルと第 1の固定子との間のギャップは、 3mm以内であることを特徴と する請求項 1乃至 14のいずれかに記載の電磁ァクチユエータ。
[16] 前記第 1の固定子の第 1の中空板材の中空面と、可動子の外周面とのギャップは、
3mmから 5mmであることを特徴とする請求項 1乃至 15のいずれかに記載の電磁ァ クチユエータ。
[17] 可動子の突出板材の断面積と、プランジャーの断面積との差は、突出板材の断面 積の ± 15%以内であることを特徴とする請求項 3乃至 16のいずれかに記載の電磁 ァクチユエータ。
[18] 可動子の突出板材の断面積と、第 2円筒の受け部の内周面の断面積との差は、突 出板材の断面積の ± 15%以内であることを特徴とする請求項 3乃至 17のいずれか に記載の電磁ァクチユエータ。
[19] 可動子のプランジャーの外周面と、第 2の固定子との間のギャップは lmmから 5m mであることを特徴とする請求項 3乃至 18のいずれかに記載の電磁ァクチユエータ。
[20] 第 1のコイルと同軸上に第 2のコイルを設けたことを特徴とする請求項 1乃至 19のい ずれかに記載の電磁ァクチユエータ。
[21] 第 1のコイルと第 2のコイルは半径方向に並んで配置されていることを特徴とする請 求項 20に記載の電磁ァクチユエータ。
[22] 第 1のコイルと、
第 1のコイルの中心軸に沿って移動する円筒状の可動子と、
第 1のコイルの上面に設けられた第 1の板材と、第 1のコイルの下面に設けられた第 1の中空板材と、第 1のコイルの外周面を覆う第 1の円筒とを有する第 1の固定子と、 前記可動子をその作動終端位置で前記第 1の固定子に吸着して固着ラッチする永 久磁石と、
前記第 1の固定子に連続して設けられ、前記永久磁石の発する磁束を制御する第 2の固定子とを備え、
前記永久磁石は、前記可動子が前記第 1の固定子から離れて開放終端位置にあ るとき、可動子の近傍に位置することを特徴とする電磁ァクチユエータ。
[23] 第 2の固定子は第 1の固定子の第 1の中空板材に連続する第 2の円筒と、第 2の円 筒の永久磁石側端部に設けられた第 2の中空板材と、第 2の円筒内に配置された内 円筒とを有することを特徴とする請求項 22記載の電磁ァクチユエータ。
[24] 前記永久磁石は、前記可動子が前記第 1の固定子から離れて開放終端位置にあ るとき、可動子の開放終端側の端部近傍に配置されたことを特徴とする請求項 22記 載の電磁ァクチユエータ。
[25] 可動子はプランジャーと、プランジャー力 半径方向外方に突出する突出板材とを 有し、内円筒にこの突出板材を受ける受け部を設けたことを特徴とする請求項 22記 載の電磁ァクチユエータ。
[26] 前記可動子のプランジャーから半径方向外方に突出する突出部材の厚さと、前記 永久磁石の厚さとの差は、突出部材の厚さの ± 15%以内であることを特徴とする請 求項 25記載の電磁ァクチユエータ。
[27] 前記永久磁石は、前記可動子が前記第 1の固定子から離れて開放終端位置にあ るとき、可動子のプランジャーから半径方向外方に突出する突出部材の近傍に配置 されたことを特徴とする請求項 25または 26のいずれか記載の電磁ァクチユエータ。
[28] 前記第 1の固定子の第 1の中空板材と前記第 2の固定子の内円筒との間に空間が 形成されて ヽることを特徴とする請求項 22乃至 27の ヽずれか記載の電磁ァクチユエ ータ。
[29] 前記第 1の固定子の第 1の中空板材と前記第 2の固定子の内円筒との間の空間に 、第 2のコイルを設けたことを特徴とする請求項 28記載の電磁ァクチユエータ。
PCT/JP2005/016409 2004-09-07 2005-09-07 電磁アクチュエータ Ceased WO2006028126A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05782235A EP1788591A4 (en) 2004-09-07 2005-09-07 ELECTROMAGNETIC ACTUATOR
US11/661,606 US7605680B2 (en) 2004-09-07 2005-09-07 Electromagnetic actuator
CN2005800297727A CN101010755B (zh) 2004-09-07 2005-09-07 电磁致动器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004260142 2004-09-07
JP2004-260142 2004-09-07
JP2005-051702 2005-02-25
JP2005051702A JP2006108615A (ja) 2004-09-07 2005-02-25 電磁アクチュエータ

Publications (1)

Publication Number Publication Date
WO2006028126A1 true WO2006028126A1 (ja) 2006-03-16

Family

ID=36036407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016409 Ceased WO2006028126A1 (ja) 2004-09-07 2005-09-07 電磁アクチュエータ

Country Status (5)

Country Link
US (1) US7605680B2 (ja)
EP (1) EP1788591A4 (ja)
JP (1) JP2006108615A (ja)
CN (1) CN101010755B (ja)
WO (1) WO2006028126A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007128977A3 (en) * 2006-04-07 2008-01-10 Artemis Intelligent Power Ltd Electromagnetic actuator

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2895594B1 (fr) * 2005-12-22 2008-03-07 Sagem Defense Securite Dispositif de deplacement lineaire d'un corps entre deux positions predeterminees
JP2007227766A (ja) * 2006-02-24 2007-09-06 Toshiba Corp 電磁アクチュエータ
ES2369372T3 (es) * 2006-04-05 2011-11-30 Abb Technology Ag Actuador electromagnético , en particular para un interruptor de media tensión.
WO2008075640A1 (ja) * 2006-12-18 2008-06-26 Fuji Electric Systems Co., Ltd. 電磁石装置
JP2008256007A (ja) * 2007-04-02 2008-10-23 Toyota Central R&D Labs Inc ドグクラッチアクチュエータ
JP4901642B2 (ja) * 2007-08-21 2012-03-21 三菱電機株式会社 電磁石装置、及び電磁操作開閉装置
DE102007044245A1 (de) * 2007-09-11 2009-04-02 Siemens Ag Magnetisches Antriebssystem für eine Schalteinrichtung sowie Verfahren zur Herstellung eines magnetischen Antriebssystems
FR2921199B1 (fr) * 2007-09-17 2014-03-14 Schneider Electric Ind Sas Actionneur electromagnetique et appareil interrupteur equipe d'un tel actionneur electromagnetique
EP2182531B1 (en) * 2008-10-29 2014-01-08 Sauer-Danfoss ApS Valve actuator
DE102008057738B4 (de) * 2008-11-17 2011-06-16 Kendrion Magnettechnik Gmbh Elektromagnet mit einstellbarem Nebenschlussluftspalt
JP4888495B2 (ja) * 2009-01-20 2012-02-29 株式会社デンソー リニアソレノイド
JP5233943B2 (ja) * 2009-10-01 2013-07-10 株式会社島津製作所 試験装置
PL2312605T3 (pl) * 2009-10-14 2012-12-31 Abb Technology Ag Bistabilny siłownik magnetyczny do wyłącznika instalacyjnego średniego napięcia
JP5314197B2 (ja) * 2010-12-21 2013-10-16 三菱電機株式会社 電磁操作装置
DE202011004021U1 (de) * 2011-03-16 2012-07-09 Eto Magnetic Gmbh Elektromagnetische Aktuatorvorrichtung
US8212640B1 (en) * 2011-07-26 2012-07-03 Lockheed Martin Corporation Tool having buffered electromagnet drive for depth control
CN102610407B (zh) * 2011-11-25 2014-10-01 中国西电电气股份有限公司 三工位双稳态永磁机构
JP5785886B2 (ja) * 2012-02-27 2015-09-30 アズビル株式会社 磁気バネ装置
DE202012009830U1 (de) * 2012-10-15 2012-11-15 Bürkert Werke GmbH Impulsmagnetventil
CN103236376B (zh) * 2013-03-29 2015-06-17 厦门宏发电力电器有限公司 一种非对称螺线管式结构的磁保持继电器
JP6035590B2 (ja) * 2014-05-27 2016-11-30 株式会社国際電気通信基礎技術研究所 アクチュエータ装置、ヒューマノイド型ロボットおよびパワーアシスト装置
JP2016025169A (ja) * 2014-07-18 2016-02-08 株式会社日立製作所 操作器または電力用開閉機器
US10236107B2 (en) * 2015-05-04 2019-03-19 Tae Kwang Choi Magnetic flux control device
JP6558571B2 (ja) * 2015-07-01 2019-08-14 パナソニックIpマネジメント株式会社 電磁継電器
DE102016005926A1 (de) * 2016-05-14 2017-11-16 Leopold Kostal Gmbh & Co. Kg Elektromagnetischer Feedback-Aktuator für ein Bedienelement und Anordnung mit mindestens einem elektromagnetischen Feedback-Aktuator
KR101888788B1 (ko) * 2017-03-22 2018-08-14 엘에스산전 주식회사 차단기 구동용 영구자석 액추에이터
DE102017107397A1 (de) * 2017-04-06 2018-10-11 Olympus Winter & Ibe Gmbh Elektromagnetischer Aktuator für ein chirurgisches Instrument und Verfahren zum Herstellen desselben
DE102017124196A1 (de) * 2017-10-17 2019-04-18 Svm Schultz Verwaltungs-Gmbh & Co. Kg Elektromagnet mit Permanentmagnet
US10655748B2 (en) 2018-07-13 2020-05-19 Bendix Commercial Vehicle Systems Llc Magnetic latching solenoid valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588907U (ja) * 1981-07-08 1983-01-20 星電器製造株式会社 プランジヤソレノイド
JPS6482606A (en) * 1987-09-25 1989-03-28 Matsushita Electric Works Ltd Electromagnet device
JPH0235407U (ja) * 1988-08-31 1990-03-07
JPH07307217A (ja) * 1994-05-11 1995-11-21 Olympus Optical Co Ltd 電動駆動装置
JPH1131616A (ja) * 1997-05-16 1999-02-02 Nippon Soken Inc 電磁装置
JP2002289430A (ja) * 2001-01-18 2002-10-04 Hitachi Ltd 電磁石およびそれを用いた開閉装置の操作機構

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3070730A (en) * 1960-08-22 1962-12-25 Bendix Corp Three-position latching solenoid actuator
US3119940A (en) * 1961-05-16 1964-01-28 Sperry Rand Corp Magnetomotive actuators of the rectilinear output type
US3728654A (en) * 1970-09-26 1973-04-17 Hosiden Electronics Co Solenoid operated plunger device
US4046244A (en) * 1975-08-06 1977-09-06 Sycor, Inc. Impact matrix print head solenoid assembly
US4144514A (en) * 1976-11-03 1979-03-13 General Electric Company Linear motion, electromagnetic force motor
GB1591471A (en) * 1977-06-18 1981-06-24 Hart J C H Electromagnetic actuators
JPS56150963A (en) * 1980-04-24 1981-11-21 Nippon Soken Inc Rotary driving device
EP0101527B1 (de) * 1982-08-20 1986-05-28 Bürkert GmbH Impulsmagnetventil mit Dauermagnethaltung ohne Änderung der Remanenz
US5034714A (en) * 1989-11-03 1991-07-23 Westinghouse Electric Corp. Universal relay
JPH0737461A (ja) 1993-07-27 1995-02-07 Fuji Electric Co Ltd ソレノイドアクチュエータ
US5365210A (en) * 1993-09-21 1994-11-15 Alliedsignal Inc. Latching solenoid with manual override
US5546063A (en) * 1994-06-17 1996-08-13 United States Defense Research, Inc. Magnetic field solenoid
US6199587B1 (en) * 1998-07-21 2001-03-13 Franco Shlomi Solenoid valve with permanent magnet
CN1234135C (zh) 2001-01-18 2005-12-28 株式会社日立制作所 电磁铁和使用该电磁铁的开关装置的操作机构
JP2003308761A (ja) * 2002-04-12 2003-10-31 Toshiba Corp 電磁アクチュエータ
US20040113731A1 (en) * 2002-10-09 2004-06-17 David Moyer Electromagnetic valve system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588907U (ja) * 1981-07-08 1983-01-20 星電器製造株式会社 プランジヤソレノイド
JPS6482606A (en) * 1987-09-25 1989-03-28 Matsushita Electric Works Ltd Electromagnet device
JPH0235407U (ja) * 1988-08-31 1990-03-07
JPH07307217A (ja) * 1994-05-11 1995-11-21 Olympus Optical Co Ltd 電動駆動装置
JPH1131616A (ja) * 1997-05-16 1999-02-02 Nippon Soken Inc 電磁装置
JP2002289430A (ja) * 2001-01-18 2002-10-04 Hitachi Ltd 電磁石およびそれを用いた開閉装置の操作機構

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1788591A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007128977A3 (en) * 2006-04-07 2008-01-10 Artemis Intelligent Power Ltd Electromagnetic actuator
US8272622B2 (en) 2006-04-07 2012-09-25 Artemis Intelligent Power Limited Electromagnetic actuator

Also Published As

Publication number Publication date
JP2006108615A (ja) 2006-04-20
US20070257756A1 (en) 2007-11-08
CN101010755B (zh) 2011-06-08
US7605680B2 (en) 2009-10-20
CN101010755A (zh) 2007-08-01
EP1788591A4 (en) 2013-01-16
EP1788591A1 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
WO2006028126A1 (ja) 電磁アクチュエータ
JP4734766B2 (ja) 磁石可動型電磁アクチュエータ
CN205230681U (zh) 磁性锁闭的磁通转移电子机械致动器
JP3863429B2 (ja) リニア振動アクチュエータ
WO2002091551A1 (en) Magnetically driving apparatus
KR101783561B1 (ko) 원통형 영구자석 조작기 및 이의 제작방법
JP2000224829A (ja) リニア振動アクチュエータ
CN115001232A (zh) 双向驱动器
JP4580814B2 (ja) 電磁アクチュエータ
JP6422457B2 (ja) 電磁アクチュエータおよびそれを用いた電磁リレー
JPH0241649A (ja) 作動モーター
JP4754975B2 (ja) 有極電磁石
JPH01168011A (ja) 有極電磁石
JPS60123005A (ja) 有極型双安定ソレノイド
JP2004172516A (ja) 有極電磁石装置
JPH10270243A (ja) 双安定自己保持無音ソレノイド
JPS59150407A (ja) 双安定プランジヤー
JP2003031088A (ja) 開閉装置用電磁駆動機構
WO2023243121A1 (ja) 電磁操作式開閉装置
WO2016114230A1 (ja) 動力伝達装置
JP2003031097A (ja) 開閉器の操作装置
JP2023028684A (ja) 自己保持型プランジャを有する電磁弁装置
JPH1075557A (ja) 電磁プランジヤ
JP2007123586A (ja) アクチュエータ
JP2005073480A (ja) アクチエータ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005782235

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11661606

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580029772.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005782235

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11661606

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP