WO2002091551A1 - Magnetically driving apparatus - Google Patents

Magnetically driving apparatus Download PDF

Info

Publication number
WO2002091551A1
WO2002091551A1 PCT/JP2002/004490 JP0204490W WO02091551A1 WO 2002091551 A1 WO2002091551 A1 WO 2002091551A1 JP 0204490 W JP0204490 W JP 0204490W WO 02091551 A1 WO02091551 A1 WO 02091551A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
magnetic
air
magnetic flux
coil
Prior art date
Application number
PCT/JP2002/004490
Other languages
French (fr)
Japanese (ja)
Inventor
Misao Nojiri
Original Assignee
Staf Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Staf Corporation filed Critical Staf Corporation
Publication of WO2002091551A1 publication Critical patent/WO2002091551A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system

Definitions

  • the present invention relates to a magnetic drive device, and more particularly to a small and powerful magnetic drive device that drives a permanent magnet with a magnetic field of a coil.
  • FIG. 12 is a longitudinal sectional view of a conventional magnetic drive device having one coil.
  • the coil 11 of the magnetic drive device is wound around a coil bobbin 12 to be air-core.
  • An armature 13 is provided at the center of the coil bobbin 12.
  • the yoke 14 is a strong material made of iron or the like that entirely surrounds the coil 11, the coil bobbin 12, and the armature 13 except for a part on the outside.
  • the yoke lid 15 is attached to one end of the yoke 14 (left side in FIG.
  • a drive shaft 16 projects outside.
  • the other end of the yoke 14 (right side in FIG. 12) is closed by an armature receiving portion 18 made of a non-magnetic material, and has no protrusion.
  • the drive shaft 16 is joined to the armature 13 on the inside.
  • a spring 17 is provided between the joint and the yoke cover 15.
  • a device disclosed in JP-A-6-315255 is known.
  • the “movable magnet factor actuator” shown in Fig. 13 (a) uses a magnet movable body in which at least two permanent magnets are arranged with the same polarity facing each other, and effectively uses the magnetic flux generated by each magnetic pole of the permanent magnet. By using it, the thrust and efficiency are improved.
  • At least two permanent magnets facing the same pole are provided with an intermediate magnetic body, and end magnets are provided on the outer end faces of the permanent magnets located at both ends to form a movable magnet.
  • a movable magnet is provided inside the at least three coils. At least three coils are connected so that current flows in different directions with the boundary between the magnetic poles of each permanent magnet.
  • a device disclosed in JP-A-11-204329 is known.
  • the “linear solenoid actuator” shown in Fig. 13 (b) reduces the reluctance of the magnetic circuit, increases the effective magnetic flux, reduces the operating resistance, and centers the mover to increase responsiveness. It is.
  • a radial protrusion protruding from the cylindrical part of the stator toward the inner diameter side supports the four hourglass rollers so that they can roll.
  • the roller acts as a rolling bearing that reduces the moving resistance of the mover in the vertical direction.
  • the magnetic material roller reduces the relatance between the inner diameter of the radial projection and the outer diameter of the mover, that is, the outer diameter of the permanent magnet or the movable core.
  • such a conventional magnetic drive device has a problem that a small device having a strong driving force cannot be realized.
  • the upper limit of the generated magnetic force is determined by the number of turns of the coil and the current value. Therefore, the force acting on the drive shaft is only up to its upper limit.
  • the conventional type of magnetic drive requires a yoke as large as possible and a coil with a large number of turns therein. At that time, continuous heating could not be performed for a long time due to the heat generated by the coil due to the current.
  • the present invention has been conceived to solve the above-mentioned conventional problems and to provide a magnetic drive device capable of obtaining a strong driving force even in a small size. Disclosure of the invention
  • a magnetic driving device is provided with a perforated magnetic flux converging core formed of a ferromagnetic material, and a magnetic flux converging core having substantially the same inner diameter as the hole of the magnetic flux concentrating core and having opposite directions.
  • Two air-core coils arranged in a straight line with their axes aligned so as to generate a magnetic field with a magnetic flux focusing core interposed therebetween, and a drive unit for a permanent magnet that passes through the air-core coils A configuration was provided. With this configuration, the driving forces from the two air-core coils can be added, and the device for obtaining the same driving force can be made smaller than a conventional device.
  • the outer diameter of the magnetic flux focusing core is larger than the outer diameter of the air-core coil, it is possible to efficiently cool the air.
  • the configuration is such that a pulse current having a variable repetition frequency is supplied to the air-core coil for driving, it can be driven at a desired cycle.
  • the housing is made of a ferromagnetic material surrounding the magnetic flux focusing core and the air-core coil in contact with the magnetic flux focusing core at a position opposite to the drive unit side, the housing is configured as follows. Since it has a heat radiation effect and a sound insulation effect, the operation of the magnetic drive device is calm, and long-term continuous operation is possible. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a longitudinal sectional view showing a basic configuration of a magnetic drive device according to a first embodiment of the present invention
  • FIG. 2 is a longitudinal sectional view for explaining the operation of the magnetic drive device according to the first embodiment of the present invention
  • FIG. 3 is a coil drive circuit diagram of the magnetic drive device according to the first embodiment of the present invention.
  • FIG. 4 is a longitudinal sectional view showing a basic configuration of an air pump using a magnetic drive device according to a second embodiment of the present invention
  • FIG. 5 shows a coil drive circuit of a magnetic drive device according to a second embodiment of the present invention.
  • FIG. 6 is a longitudinal sectional view showing a configuration of a magnetic drive device according to a third embodiment of the present invention.
  • FIG. 7 is a longitudinal sectional view showing a configuration of a magnetic drive device according to a fourth embodiment of the present invention.
  • FIG. 8 is a longitudinal sectional view showing another configuration of the magnetic drive device according to the fourth embodiment of the present invention.
  • FIG. 9 is a longitudinal sectional view showing a configuration of a magnetic drive device according to a fifth embodiment of the present invention.
  • FIG. 10 is a longitudinal sectional view showing a configuration of a magnetic drive device according to a sixth embodiment of the present invention.
  • FIG. 11 is an operation transition diagram showing the operation of the magnetic drive device according to the sixth embodiment of the present invention.
  • FIG. 12 is a longitudinal sectional view showing the configuration of a conventional magnetic drive device
  • FIG. 13 is a longitudinal sectional view showing the configuration of a conventional magnetic drive device having a plurality of coils.
  • two air-core coils are arranged in a straight line with the axes of the air-core coils coincident with each other so as to generate magnetic fields in opposite directions, and the air-core coils and the air-core coils are arranged between the air-core coils.
  • This is a magnetic drive device in which a perforated magnetic flux focusing core made of a ferromagnetic material having the same inner diameter is sandwiched, and a permanent magnet is passed through an air-core coil as a drive unit.
  • FIG. 1 is a longitudinal sectional view showing a basic configuration of a magnetic drive device according to a first embodiment of the present invention.
  • a magnetic flux converging core 21 is a flat ring-shaped ferromagnetic core for converging magnetic flux between two coils.
  • the coils 22 and 23 are air-core coils wound in opposite directions.
  • Coil bobbins 24 and 25 are bobbins for winding coils.
  • the drive unit 26 is a permanent magnet that converts a change in a magnetic field into a mechanical force.
  • the power supply terminal 27 is a terminal for supplying a current to the coil.
  • FIG. 2 is a vertical view for explaining the operation of the magnetic drive device according to the first embodiment of the present invention. It is sectional drawing.
  • FIG. 2 (a) is a diagram showing a stationary state in which no current flows through the coils 22 and 23.
  • FIG. 2 (b) is a diagram illustrating the instantaneous state when a magnetic field starts to be generated when the coil is energized.
  • Fig. 2 (c) is a diagram when the magnetic field is in a steady state.
  • FIG. 3 is a drive circuit diagram of a coil portion of the magnetic drive device according to the first embodiment of the present invention.
  • transistors 31 to 34 are switching elements for turning on and off a current from a power supply.
  • the power supply 35 is a power supply that supplies a current to the coil.
  • Ground 36 is the current return path for the power supply.
  • Coins 22 and 23 are provided so as to sandwich a ring-shaped magnetic flux focusing core 21 formed of a ferromagnetic material and having a hole. Both coils 22 and 23 are air cores, and the inner diameter is substantially the same as the inner diameter of magnetic flux focusing core 21. The winding directions of the coils 22 and 23 are opposite to each other. Therefore, the magnetic fields generated by both coils are in directions opposite to each other.
  • the winding start terminal of the coil 22 and the winding start terminal of the coil 23 are commonly connected, and the winding end terminal of the coil 22 and the winding end terminal of the coil 23 are commonly connected. Connect the commonly connected terminals to the power supply terminal 27.
  • a drive unit 26 made of a permanent magnet is passed through the air core portions of the coils 22 and 23.
  • a driving force take-out mechanism (not shown) is provided at an end of the driving section 26.
  • Coil bobbins 24 and 25 are used to fix coils 22 and 23.
  • the magnetic drive device When no current is flowing through the coil and the drive unit 26 is on the left side of FIG. 2 (a), the magnetic flux focusing core 21 is driven by the permanent magnet of the drive unit 26 as shown in FIG. 2 (a). As shown, the inside is N pole and the outside is S pole. Therefore, the positional relationship between the driving unit 26 and the magnetic flux focusing core 21 is shifted from the magnetic flux focusing core 21 so that the driving unit 26 projects outward from the coil 22.
  • the magnetic flux concentrating core 21 is deviated from the initial magnetization direction by the magnetic fields of the coils 22 and 23. It is magnetized in the opposite direction. That is, since the magnetization of the coils 22 and 23 by the magnetic field is larger than the magnetization by the permanent magnet, the polarity of the magnetic flux focusing core 21 is opposite to the polarity shown in FIG. 2 (a). At this time, the polarity of the S pole on the right side of the drive unit 26 matches the polarity of the S pole inside the magnetic flux focusing core 21 and repels strongly, so that the drive unit 26 moves to the right in the figure. Start.
  • Transistors 31 to 34 are connected between a power supply 35 for generating a magnetic field in the two coils 22 and 23 and the coils 22 and 23.
  • Transistors 31 and 32 are connected in series between power supply 35 and ground 36, and are connected in series between transistors 33 and 34, power supply 35 and ground 36 to form a bridge-connected switch. ing.
  • the drive pulse for turning on the NPN transistors 31 and 33 is a positive pulse of the power supply voltage
  • the drive pulse for turning on the PNP transistors 32 and 34 is a negative pulse of the ground voltage .
  • the left operation pulse for operating the drive unit 26 in the left direction is a pair of a positive pulse for turning on the NPN transistor 31 and a negative pulse for turning on the PNP transistor 34.
  • the right operation pulse for operating the driving unit 26 in the right direction includes a positive pulse for turning on the NPN transistor 33 and a negative pulse for turning on the PNP transistor 32. Is a pair with
  • An alternating current flows through the coils 22 and 23 by alternately applying the left operation pulse and the right operation pulse at intervals corresponding to the movement cycle of the drive unit 26, respectively.
  • a pulse repetition period is fixed and a case where a repetition period is variable.
  • the driving speed is constant. If the repetition period is variable, the driving speed can be changed, and more delicate control of the driving force can be performed.
  • the size of the magnetic flux converging core 21 in the diameter direction is larger than the outer diameter of the coil.
  • Magnetic flux focusing core 21 Force S projecting outward from coil.
  • the coil can be cooled by the magnetic flux concentrating core 21 and can withstand continuous operation for a long time.
  • the outer shape of the magnetic flux focusing core 21 is not limited to a circular shape, but may be formed in a square shape such as a square shape in accordance with a device to be mounted.
  • the number of turns of each coil is configured to be equal in FIG. 1, the number of turns may not be the same due to the design of the device.
  • the direction of the current flowing through the coil may be a single direction instead of both directions. Driving only with an applied current from one drive circuit causes uneven driving strength in the left and right directions, but if there is no inconvenience when used in that state, economical operation is possible.
  • an elastic material such as a coil spring can be used.
  • the magnetic drive device is arranged in a straight line with the axes of the two air-core coils aligned so as to generate magnetic fields in opposite directions. Since a core for magnetic flux focusing with a hole made of a ferromagnetic material having substantially the same inside diameter as the air-core coil is sandwiched between the air-core coils and a permanent magnet is passed through the air-core coil to form a drive unit, a compact device is used. However, the permanent magnet can be driven with a large force.
  • two air-core coils are aligned in a straight line with their axes aligned to generate magnetic fields in opposite directions, and a ferromagnetic material hole is formed between the air-core coils.
  • Perforated magnetic flux An air pump that drives the permanent magnet in the air-core coil with a single pulse with the focusing core in between This is a magnetic drive device for moving.
  • FIG. 4 is a cross-sectional view of an air pump using a magnetic drive device according to a second embodiment of the present invention.
  • a permanent magnet 41 is a driving member that converts a change in a magnetic field into a mechanical force.
  • the diaphragm 42 is a metal film that changes its shape according to the position of the permanent magnet 41 and sucks or discharges air.
  • the intake valve 43 is a valve that opens when inhaling air.
  • the air suction port 44 is a port for sucking air from outside.
  • the exhaust valve 45 is a valve that opens when exhaling air.
  • the air discharge port 46 is a discharge port that discharges air to the outside.
  • the spring 47 is a buffer for limiting the movement of the permanent magnet 41 to the right.
  • FIG. 5 is a coil drive circuit diagram of the magnetic drive device according to the second embodiment of the present invention.
  • a transistor 48 is a switching element for turning on and off a current flowing through a coil.
  • the driving force by the permanent magnet 41 is unidirectional, unlike the first embodiment shown in FIG. 4
  • the permanent magnet 41 is stopped at a predetermined position.
  • the permanent magnet 41 moves rightward.
  • the current is cut off, the permanent magnet 41 is pulled back to the left.
  • the diaphragm 42 is connected to the permanent magnet 41 and deforms according to the movement of the permanent magnet 41 to change the volume.
  • An air pump is formed by the diaphragm 42, the intake valve 43, and the exhaust valve 45.
  • the air inlet 44 is connected to the intake valve 43, and the air outlet 46 is connected to the exhaust valve 45.
  • the coiled spring 47 is provided between the permanent magnet 41 and the coil bobbin 25 around the shaft.
  • the permanent magnet 41 When the coils 22 and 23 are not energized, the permanent magnet 41 is stopped at the position where the diaphragm 42 is in a stable state. When a current is applied and a magnetic field is generated in the coil, the permanent magnet 41 pulls the diaphragm 42 rightward in FIG. Permanent magnet 41 Is pushed to near the right end, and the movement distance is limited by the spring 47 and stops. During that time, air is sucked in from the air inlet 44 and is taken in from the intake valve 43. When the current is interrupted, the permanent magnet 41 is pulled back to the left by the diaphragm 42. When the permanent magnet 41 returns, the air is discharged from the exhaust valve 45 to the outside via the air discharge port 46.
  • N PN type transistor 48 Force is connected between power supply 35 and coils 22 and 23.
  • the drive pulse for turning on the NPN transistor 48 is a positive pulse of the power supply voltage.
  • a single operation pulse is applied every time corresponding to the moving cycle of the permanent magnet 41 to flow current through the coils 22 and 23.
  • the magnetic field of the coils 22 and 23 is generated by a unidirectional drive pulse, but this pulse may be a bipolar pulse.
  • this pulse may be a bipolar pulse.
  • the permanent magnet 41 draws the diaphragm 42 rightward, the coils 22 and 23 are excited in the opposite direction, so that the permanent magnet 41 also receives a magnetic field force in addition to the restoring force of the diaphragm 42. 41 can be quickly returned to its original position.
  • the magnetic drive device is arranged in a straight line with the axes of the two air-core coils coincident to generate magnetic fields in opposite directions,
  • a small air pump that is easy to control is realized because the air pump is driven by a single pulse driving the permanent magnet in the air core coil with a ferromagnetic perforated magnetic flux focusing core sandwiched between them. it can.
  • the end of the drive section of the permanent magnet Is a magnetic drive device having a short length and a ferromagnetic material added.
  • FIG. 6 is a longitudinal sectional view showing a configuration of a magnetic drive device according to a third embodiment of the present invention.
  • the magnetic materials 28 and 29 are magnetic materials adhered to both ends of the permanent magnet of the driving unit 26.
  • the holding cylinder 30 is a cylinder for integrating the permanent magnet drive unit 26 and the magnetic materials 28 and 29 into a drive unit.
  • the operation of the thus configured magnetic drive device according to the third embodiment of the present invention will be described.
  • the lengths of the magnetic members 28 and 29 adhered to both ends of the permanent magnet of the drive unit 26 in the major axis direction are shorter than the permanent magnets of the drive unit 26.
  • the driving unit 26 is driven by the two coils 22 and 23
  • the magnetic members 28 and 29 move simultaneously with the driving unit 26.
  • magnetic materials 28 and 29 are added. Since the driving force is proportional to the product of the mass of the driving unit 26 and the moving speed of the driving unit 26, the mass of the driving unit 26 is substantially increased, and the driving force is increased.
  • a ferromagnetic material having an axial length shorter than that of the permanent magnet is added to the end of the drive unit of the permanent magnet of the magnetic drive device. Even in this case, the same driving force as that of a long permanent magnet can be obtained.
  • the fourth embodiment of the present invention is a magnetic drive device that surrounds the magnetic flux focusing core and the air core coil with a housing made of a ferromagnetic material that contacts the outer periphery of the magnetic flux focusing core.
  • FIG. 7 is a longitudinal sectional view showing a configuration of a magnetic drive device according to a fourth embodiment of the present invention.
  • a housing 51 is a member made of a ferromagnetic material that surrounds the magnetic flux focusing core and the air-core coil.
  • the coils 22, 23, the drive unit 26, and the coil bobbins 24, 25 are the same as those in the first embodiment shown in FIG.
  • FIG. 8 is a longitudinal sectional view showing another configuration of the magnetic drive device according to the fourth embodiment of the present invention.
  • a housing 52 is a member made of a ferromagnetic material that surrounds the magnetic flux focusing core and the air-core coil.
  • the magnetic flux converging core 21 is in contact with a housing 51 made of a magnetic material at a contact position 50 on the opposite side of the drive unit 26 from the permanent magnet.
  • a non-magnetic inclusion exists between the magnetic flux focusing core 21 and the housing 51. not exist.
  • the housing 51 surrounds the outside of the magnetic flux focusing core 21 and the air-core coils 22 and 23.
  • Two metal springs 47 are provided between the drive unit 26 and the coil bobbins 24 and 25 as a cushioning material when the drive unit 26 is driven.
  • the drive unit 26 When power is supplied to the two coils 22 and 23 from a power source (not shown), the drive unit 26 repeatedly moves rapidly in the left and right directions in FIG.
  • the magnetic drive device becomes a vibrator (vibrator) by the movement of the drive unit 26.
  • Vibrator vibrator
  • the lines of magnetic force generated by the coils 22 and 23 pass through the inside of the drive unit 26 from the magnetic flux focusing core 21 through the housing 51, and thus the loss of the generated lines of magnetic force is extremely small. Since the housing 51 is a good conductor of heat, the heat dissipation effect on the coils 22 and 23 is large. Since magnetic lines of force do not leak out of the housing 51, no magnetic noise is generated for peripheral devices.
  • the magnetic drive device shown in FIG. 8 is obtained by partially changing the configuration of the housing 51 shown in FIG.
  • the housing 52 is made of a magnetic material similar to that of the magnetic flux focusing core 21 so that there is no gap therebetween. That is, the magnetic flux focusing core 21 and the housing 52 are integrated. Therefore, the loss of the generated magnetic field lines is further reduced.
  • the magnetic drive device is formed of a housing made of a ferromagnetic material that is in contact with the outer periphery of the magnetic flux focusing core, and surrounds the magnetic flux focusing core and the air-core coil.
  • the fifth embodiment of the present invention is a magnetic drive device in which the magnetic flux converging core has a three-layer structure in which a nonmagnetic material layer is interposed in the axial middle.
  • FIG. 9 is a longitudinal sectional view showing a configuration of a magnetic drive device according to a fifth embodiment of the present invention.
  • the magnetic flux converging cores 61 and 62 are cores having a nonmagnetic material layer 63 interposed therebetween.
  • the magnetic flux focusing core is divided into a core 61 and a core 62.
  • a three-layer structure is formed with the nonmagnetic material layer 63 interposed therebetween.
  • Lines of magnetic force generated from coils 22 and 23 are used for focusing magnetic flux After passing through the closer one of the cores 61 and 62, it passes through the housing 52. For this reason, the loss of the lines of magnetic force is extremely small, and the magnetic flux focusing core is reduced in size, so that the device can be reduced in weight.
  • the magnetic flux focusing core of the magnetic drive device has a three-layer structure in which the non-magnetic material layer is interposed in the middle in the axial direction. Can be quantity.
  • the sixth embodiment of the present invention is a magnetic drive device in which magnetic flux focusing cores are provided on both sides of a set of two coils.
  • FIG. 10 is a longitudinal sectional view showing a configuration of a magnetic drive device according to a sixth embodiment of the present invention.
  • FIG. 10 (a) is a longitudinal sectional view showing a configuration of a magnetic drive device provided with a plate-ring-shaped ferromagnetic flux focusing core for converging magnetic fluxes at both ends of a set of two coils. is there.
  • FIG. 10 (b) is a longitudinal sectional view showing a configuration of a magnetic drive device provided with a disk-shaped ferromagnetic flux focusing core for converging magnetic fluxes at both ends of a set of two coils. It is.
  • FIG. 10 (c) is a longitudinal section showing the configuration of a magnetic drive device provided with a flat ring-shaped ferromagnetic flux converging core for converging the magnetic flux between the middle and both ends of a set of two coils.
  • FIG. 10 (d) is a diagram for explaining the restriction on the length of the drive unit.
  • the magnetic flux converging core 21 is a flat ring-shaped or disk-shaped ferromagnetic core for converging the magnetic flux outside the two coils.
  • Other configurations are the same as those of the first embodiment.
  • FIG. 11 is an operation transition diagram showing the operation of the magnetic drive device according to the sixth embodiment of the present invention.
  • FIG. 11 (a) is a diagram showing a state in which no current is flowing through the coil and the permanent magnet of the drive unit is on the left side of the coil.
  • FIG. 11 (b) is a diagram showing a state where the right drive current has begun to flow through the coil.
  • FIG. 11 (c) is a view showing a state in which the permanent magnet of the drive unit comes to the right side of the coil and stops after a right drive current is supplied to the coil.
  • FIG. 10 (a) two air-core coils 22, 23 are arranged in a straight line with their axes coincident to generate magnetic fields in opposite directions.
  • the perforated magnetic flux converging core 21 is provided at both ends of a set of two coils 22 and 23.
  • a permanent magnet is passed through the inside of the two coils 22 and 23 to form a drive unit 26.
  • One magnetic flux focusing core is attached to each coil at both ends of the coil set, and the magnetic field generated by each coil is concentrated by the magnetic flux focusing core 21 and the magnetic force is permanently magnetized. Act on the stone drive 26.
  • a disc-shaped magnetic flux focusing core 21 having no hole is provided at one end of a set of two air-core coils.
  • the distance between the magnetic flux focusing core 21 and the permanent magnet of the drive unit 26 is reduced by making the shape of the magnetic flux focusing core 21 a disk shape instead of a ring shape, thereby reducing the magnetic resistance.
  • a spring 47 is provided between the drive unit 26 of the permanent magnet and the magnetic flux focusing core 21. Therefore, the drive unit 26 is stably stopped at the center when not operating.
  • the magnetic flux converging core 21 is also provided in the middle of the pair of two air-core coils 22,23. Since the magnetic flux focusing core 21 as a magnetic separation plate is added between the coils, the operation efficiency is improved.
  • the length of the permanent magnet of the drive unit 26 is limited.
  • the upper limit of the length of the permanent magnet of the drive unit 26 is up to the length that does not cover the magnetic flux focusing cores 21 of both sides of the coil set. It does not operate with such a length that the permanent magnet covers the two magnetic flux focusing cores 21.
  • the permanent magnets of the drive unit 26 are repelled and attracted by the magnetic flux lines collected in the magnetic flux focusing core 21.
  • the magnetic flux focusing core 21 on the left side is driven by the permanent magnet of the drive unit 26 in Fig. 11 (a).
  • the inside is the S pole and the outside is the N pole.
  • the magnetic flux focusing core 21 on the right side has an N pole on the inside and an S pole on the outside.
  • the left end of the driving unit 26 is located at a position facing the inside of the magnetic flux converging core 21 and is stably stopped.
  • the magnetic flux focusing core 21 on the left side is opposite to the original magnetization direction due to the magnetic field of the coil 22. It is magnetized in the direction. Since the magnetization of the coil 22 due to the magnetic field is larger than that of the permanent magnet, the polarity of the magnetic flux focusing core 21 is reversed, as shown in FIG. 11 (a). It is the opposite of polarity.
  • the right magnetic flux focusing core 21 is strongly magnetized by the magnetic field of the coil 23 in the same direction as the initial magnetization direction.
  • the S pole on the right side of the drive unit 26 is opposite in polarity to the N pole inside the magnetic flux focusing core 21 on the right side and strongly attracts each other, so the drive unit 26 starts moving to the right in the figure. I do.
  • the magnetic drive device is configured such that the magnetic flux focusing cores are attached to both sides of the two coil sets, so that the permanent magnets can be efficiently driven. Can be. Industrial applicability
  • the magnetic drive device is provided with a perforated magnetic flux converging core formed of a ferromagnetic material, and a magnetic flux concentrating core having substantially the same inner diameter as the hole of the magnetic flux concentrating core and having opposite directions. Equipped with two air-core coils arranged in a straight line with magnetic flux converging cores sandwiched between them so that their axes are aligned so as to generate a magnetic field, and a drive unit for a permanent magnet passed through the air-core coils With the configuration, the driving forces from the two air-core coils can be added, and an effect that a device for obtaining the same driving force can be made smaller than a conventional device can be obtained.
  • the magnetic flux focusing core is added to the air-core coil, the lines of magnetic force generated by the coil can be converged and a strong driving force can be given to the permanent magnet serving as the driving unit. Therefore, a strong driving force can be obtained even with a small size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Electromagnets (AREA)

Abstract

The miniaturization of a magnetically driving apparatus for driving a permanent magnet with the magnetic field of a solenoid coil and the generation of a strong drive power. Two air-core coils (22, 23) are arrayed linearly with their axes kept coincident so as to generate magnetic fields in opposite directions. A perforated flux converging core (21) of a ferromagnetic material is sandwiched between the air-core coils (22, 23).

Description

明 細 書  Specification
技術分野 Technical field
本発明は、 磁気駆動装置に関し、 特に、 ドコイルの磁界で永久磁石を 駆動する小型で強力な磁気駆動装置に関する。 背景技術  The present invention relates to a magnetic drive device, and more particularly to a small and powerful magnetic drive device that drives a permanent magnet with a magnetic field of a coil. Background art
従来、 ソレノイ ドコイルの磁界より強磁性体のプランジャを駆動して、 流体用 バルブやダイヤフラムを作動させる磁気駆動装置が利用されている。第 1 2図は、 コイルが 1つの従来の磁気駆動装置の縦断面図である。 第 1 2図に示すように、 磁気駆動装置のコイル 11は、 コイルボビン 12に卷かれて空芯になっている。 コ ィルボビン 12の中央部にはァーマチュア 13が設けられている。 ヨーク 14は、 コイル 11 とコイルボビン 12 とァーマチュア 13を、 外側の一部を除いて全体的 に取り囲んでいる、 鉄材などを使用した強固なものである。 ヨーク蓋 15 は、 ョ ーク 14の一方端 (第 1 2図の左側) において、 ヨーク 14に対し開閉可能に取り 付けられている。 ヨーク蓋 15の中央には、 駆動用シャフ ト 16が外へ突出してい る。 ヨーク 14の他方端 (第 1 2図の右側) は、 非磁性材のァ一マチュア受部 18 により閉じられていて、 突出物はない。 駆動シャフ ト 16 は、 その内側でァーマ チユア 13と接合している。 その接合部分とヨーク蓋 15との間に、 スプリング 17 が設けられている。  Conventionally, a magnetic drive device that drives a fluid valve or a diaphragm by driving a ferromagnetic plunger by a magnetic field of a solenoid coil has been used. FIG. 12 is a longitudinal sectional view of a conventional magnetic drive device having one coil. As shown in FIG. 12, the coil 11 of the magnetic drive device is wound around a coil bobbin 12 to be air-core. An armature 13 is provided at the center of the coil bobbin 12. The yoke 14 is a strong material made of iron or the like that entirely surrounds the coil 11, the coil bobbin 12, and the armature 13 except for a part on the outside. The yoke lid 15 is attached to one end of the yoke 14 (left side in FIG. 12) so as to be openable and closable with respect to the yoke 14. At the center of the yoke lid 15, a drive shaft 16 projects outside. The other end of the yoke 14 (right side in FIG. 12) is closed by an armature receiving portion 18 made of a non-magnetic material, and has no protrusion. The drive shaft 16 is joined to the armature 13 on the inside. A spring 17 is provided between the joint and the yoke cover 15.
図示しない電源からの通電により、 コイル 11 に電流が流れて磁界が発生する と、 ァーマチュア 13 力 図示する位置から左方へ駆動される。 すなわち、 コィ ル 11に磁界が発生し、 コイル 11 の内側に存在するァーマチュア 13力 磁束に よってコイル 11内部に引き込まれ、 駆動シャフト 16は左方へ移動して、 左方へ 突出する。 ァーマチュア 13は、 スプリング 17を押し付けるから、 力が均衡する 位置で停止する。 電流が断たれてコイルめ磁界がなくなると、 ァーマチュア 13 は、 スプリング 17 の弾力によって右方へ押し戻され、 第 1 2図に示す位置で停 止する。 このようにして、 駆動シャフ ト 16 は、 第 1 2図の左右両方向に振動す る態様で駆動される。 When a current flows through the coil 11 due to energization from a power supply (not shown) and a magnetic field is generated, the armature 13 is driven to the left from the position shown. That is, a magnetic field is generated in the coil 11, the armature 13 existing inside the coil 11 is drawn into the coil 11 by the magnetic flux, and the drive shaft 16 moves to the left and projects to the left. The armature 13 presses the spring 17 and stops at a position where the forces are balanced. When the current is cut off and the magnetic field in the coil disappears, the armature 13 is pushed back to the right by the elasticity of the spring 17, and stops at the position shown in FIG. Stop. In this way, the drive shaft 16 is driven in such a manner as to vibrate in both the left and right directions in FIG.
コイルが 3つの従来の磁気駆動装置の例としては、 特開平 6-315255 号公報に 開示された装置が知られている。 第 1 3図 (a ) に示す 「可動磁石式ァクチユエ ータ」は、少なくとも 2個の永久磁石を同極対向配置とした磁石可動体を用いて、 永久磁石の各磁極が発生する磁束を有効利用することにより、 推力の向上及び効 率の向上を図るものである。 同極対向された少なくとも 2個の永久磁石問に、 中 間部磁性体を設け、両端に位置する永久磁石の外側端面に、端部磁性体を設けて、 磁石可動体を構成する。 少なくとも 3連のコイルの内側に、 磁石可動体を移動自 在に設ける。 少なくとも 3連のコイルを、 各永久磁石の磁極間を境にして、 相異 なる方向に電流が流れるように結線する。  As an example of a conventional magnetic drive device having three coils, a device disclosed in JP-A-6-315255 is known. The “movable magnet factor actuator” shown in Fig. 13 (a) uses a magnet movable body in which at least two permanent magnets are arranged with the same polarity facing each other, and effectively uses the magnetic flux generated by each magnetic pole of the permanent magnet. By using it, the thrust and efficiency are improved. At least two permanent magnets facing the same pole are provided with an intermediate magnetic body, and end magnets are provided on the outer end faces of the permanent magnets located at both ends to form a movable magnet. A movable magnet is provided inside the at least three coils. At least three coils are connected so that current flows in different directions with the boundary between the magnetic poles of each permanent magnet.
コイルが 2つの従来の磁気駆動装置の例としては、 特開平 11-204329号公報に 開示された装置が知られている。 第 1 3図 (b ) に示す 「リニアソレノイドァク チユエータ」 は、 磁気回路のリラクタンスを小さく して有効磁束を増やし、 動作 抵抗を小さく し、 可動子のセンタリングをして、 応答性を上げるものである。 固 定子の円筒部から内径側に突出する径方向突出部が、 4つの鼓形ローラを転動可 能に支承する。 ローラは可動子の上下動の動作抵抗を小さくする、 ころがり軸受 として作用する。 磁性材料のローラは、 径方向突出部の内径部と、 可動子の外径 部、 つまり永久磁石や可動鉄心の外径部との間のリラタタンスを小さくする。  As an example of a conventional magnetic drive device having two coils, a device disclosed in JP-A-11-204329 is known. The “linear solenoid actuator” shown in Fig. 13 (b) reduces the reluctance of the magnetic circuit, increases the effective magnetic flux, reduces the operating resistance, and centers the mover to increase responsiveness. It is. A radial protrusion protruding from the cylindrical part of the stator toward the inner diameter side supports the four hourglass rollers so that they can roll. The roller acts as a rolling bearing that reduces the moving resistance of the mover in the vertical direction. The magnetic material roller reduces the relatance between the inner diameter of the radial projection and the outer diameter of the mover, that is, the outer diameter of the permanent magnet or the movable core.
しかし、 このような従来の磁気駆動装置においては、 強力な駆動力を持つ小型 の装置を実現できないという問題があった。 磁気駆動装置は、 コイルの巻回数 ' 電流値によって、 発生する磁力の上限が定まる。 そのため、 駆動用シャフ トに作 動する力も、 その上限値までに過ぎない。 より強力な駆動力を必要とするとき、 従来の形式の磁気駆動装置においては、 できるだけ大型化したヨークと、 その内 部に卷回数を多く したコイルが必要となる。 そのとき、 電流によるコイルの発熱 のため、 長時間にわたり連続駆動を行うことができなかった。  However, such a conventional magnetic drive device has a problem that a small device having a strong driving force cannot be realized. In magnetic drive devices, the upper limit of the generated magnetic force is determined by the number of turns of the coil and the current value. Therefore, the force acting on the drive shaft is only up to its upper limit. When a stronger driving force is required, the conventional type of magnetic drive requires a yoke as large as possible and a coil with a large number of turns therein. At that time, continuous heating could not be performed for a long time due to the heat generated by the coil due to the current.
本発明は、 上記従来の問題を解決して、 小型であっても、 強力な駆動力の得ら れる磁気駆動装置を提供することを目的として考えられたものである。 発明の開示 SUMMARY OF THE INVENTION The present invention has been conceived to solve the above-mentioned conventional problems and to provide a magnetic drive device capable of obtaining a strong driving force even in a small size. Disclosure of the invention
上記の課題を解決するために、 本発明では、 磁気駆動装置を、 強磁性材料で形 成した孔あき磁束集束用コアと、 磁束集束用コアの孔と略同じ内径であり相反す る方向の磁界を発生させるように軸を一致させて磁束集束用コアを間に挟んで直 線状に並べた 2個の空芯コイルと、 この空芯コイル内に揷通した永久磁石の駆動 部とを具備する構成とした。 このように構成したことにより、 2個の空芯コイル からの駆動力を加算でき、 同じ駆動力を得るための装置を従来の装置より小型と することができる。  In order to solve the above-mentioned problems, in the present invention, a magnetic driving device is provided with a perforated magnetic flux converging core formed of a ferromagnetic material, and a magnetic flux converging core having substantially the same inner diameter as the hole of the magnetic flux concentrating core and having opposite directions. Two air-core coils arranged in a straight line with their axes aligned so as to generate a magnetic field with a magnetic flux focusing core interposed therebetween, and a drive unit for a permanent magnet that passes through the air-core coils A configuration was provided. With this configuration, the driving forces from the two air-core coils can be added, and the device for obtaining the same driving force can be made smaller than a conventional device.
2個の空芯コイルの卷回数を等しく したので、 磁界により発生する力がバラン スして、 小型で強力な駆動装置とすることができる。  Since the number of turns of the two air-core coils is equal, the forces generated by the magnetic field are balanced, and a compact and powerful drive device can be obtained.
磁束集束用コアの外径を空芯コイルの外径より大きく したので、 効率的に空気 冷却することができる。  Since the outer diameter of the magnetic flux focusing core is larger than the outer diameter of the air-core coil, it is possible to efficiently cool the air.
空芯コイルに、 可変繰り返し周波数のパルス電流を流して駆動する構成とした ので、 所望の周期で駆動することができる。  Since the configuration is such that a pulse current having a variable repetition frequency is supplied to the air-core coil for driving, it can be driven at a desired cycle.
駆動部側とは反対側の箇所において磁束集束用コァに接触して磁束集束用コァ と空芯コイルとを取り囲む強磁性材料で構成された筐体を備えた構成としたの で、筐体が放熱作用と遮音作用を有するので、磁気駆動装置の動作が静穏になり、 長期の連続動作も可能となる。 図面の簡単な説明  Since the housing is made of a ferromagnetic material surrounding the magnetic flux focusing core and the air-core coil in contact with the magnetic flux focusing core at a position opposite to the drive unit side, the housing is configured as follows. Since it has a heat radiation effect and a sound insulation effect, the operation of the magnetic drive device is calm, and long-term continuous operation is possible. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1の実施の形態における磁気駆動装置の基本的構成を示 す縦断面図、  FIG. 1 is a longitudinal sectional view showing a basic configuration of a magnetic drive device according to a first embodiment of the present invention,
第 2図は、 本発明の第 1の実施の形態における磁気駆動装置の動作説明用の縦 断面図、  FIG. 2 is a longitudinal sectional view for explaining the operation of the magnetic drive device according to the first embodiment of the present invention,
第 3図は、 本発明の第 1の実施の形態における磁気駆動装置のコイル駆動回路 図、  FIG. 3 is a coil drive circuit diagram of the magnetic drive device according to the first embodiment of the present invention,
第 4図は、 本発明の第 2の実施の形態における磁気駆動装置を用いた空気ボン プの基本的構成を示す縦断面図、  FIG. 4 is a longitudinal sectional view showing a basic configuration of an air pump using a magnetic drive device according to a second embodiment of the present invention,
第 5図は、 本発明の第 2の実施の形態における磁気駆動装置のコイル駆動回路 図、 FIG. 5 shows a coil drive circuit of a magnetic drive device according to a second embodiment of the present invention. Figure,
第 6図は、 本発明の第 3の実施の形態における磁気駆動装置の構成を示す縦断 面図、  FIG. 6 is a longitudinal sectional view showing a configuration of a magnetic drive device according to a third embodiment of the present invention,
第 7図は、 本発明の第 4の実施の形態における磁気駆動装置の構成を示す縦断 面図、  FIG. 7 is a longitudinal sectional view showing a configuration of a magnetic drive device according to a fourth embodiment of the present invention,
第 8図は、 本発明の第 4の実施の形態における磁気駆動装置の別の構成を示す 縦断面図、  FIG. 8 is a longitudinal sectional view showing another configuration of the magnetic drive device according to the fourth embodiment of the present invention,
第 9図は、 本発明の第 5の実施の形態における磁気駆動装置の構成を示す縦断 面図、  FIG. 9 is a longitudinal sectional view showing a configuration of a magnetic drive device according to a fifth embodiment of the present invention,
第 1 0図は、 本発明の第 6の実施の形態における磁気駆動装置の構成を示す縦 断面図、  FIG. 10 is a longitudinal sectional view showing a configuration of a magnetic drive device according to a sixth embodiment of the present invention,
第 1 1図は、 本発明の第 6の実施の形態における磁気駆動装置の動作を示す動 作遷移図、  FIG. 11 is an operation transition diagram showing the operation of the magnetic drive device according to the sixth embodiment of the present invention,
第 1 2図は、 従来の磁気駆動装置の構成を示す縦断面図、  FIG. 12 is a longitudinal sectional view showing the configuration of a conventional magnetic drive device,
第 1 3図は、 従来の複数コイルの磁気駆動装置の構成を示す縦断面図である。 発明を実施するための最良の形態  FIG. 13 is a longitudinal sectional view showing the configuration of a conventional magnetic drive device having a plurality of coils. BEST MODE FOR CARRYING OUT THE INVENTION
(第 1の実施の形態)  (First Embodiment)
本発明の第 1の実施の形態は、 相反する方向の磁界を発生させるように、 2個 の空芯コイルの軸を一致させて直線状に並べ、 空芯コイルの間に空芯コイルと略 同じ内径の強磁性材料の孔あき磁束集束用コァを挟み、 空芯コィル内に永久磁石 を揷通して駆動部とした磁気駆動装置である。  According to the first embodiment of the present invention, two air-core coils are arranged in a straight line with the axes of the air-core coils coincident with each other so as to generate magnetic fields in opposite directions, and the air-core coils and the air-core coils are arranged between the air-core coils. This is a magnetic drive device in which a perforated magnetic flux focusing core made of a ferromagnetic material having the same inner diameter is sandwiched, and a permanent magnet is passed through an air-core coil as a drive unit.
第 1図は、 本発明の第 1の実施の形態における磁気駆動装置の基本的構成を示 す縦断面図である。 第 1図において、 磁束集束用コア 21 は、 2つのコイルの間 の磁束を収束するための平板リング状の強磁性体コアである。 コィノレ 22、 23は、 逆方向に巻かれた空芯コイルである。 コイルボビン 24、 25 は、 コイルを巻くた めのボビンである。 駆動部 26 は、 磁界の変化を機械的な力に変換する永久磁石 である。 電源端子 27は、 コイルに電流を供給する端子である。  FIG. 1 is a longitudinal sectional view showing a basic configuration of a magnetic drive device according to a first embodiment of the present invention. In FIG. 1, a magnetic flux converging core 21 is a flat ring-shaped ferromagnetic core for converging magnetic flux between two coils. The coils 22 and 23 are air-core coils wound in opposite directions. Coil bobbins 24 and 25 are bobbins for winding coils. The drive unit 26 is a permanent magnet that converts a change in a magnetic field into a mechanical force. The power supply terminal 27 is a terminal for supplying a current to the coil.
第 2図は、 本発明の第 1の実施の形態における磁気駆動装置の動作説明用の縦 断面図である。 第 2図 (a ) は、 コイル 22、 23 に電流が流れていない静止状態 を示す図である。 第 2図 (b ) は、 コイルに通電されて、 磁界が発生し始めた瞬 間の状態を示す図である。 第 2図 (c ) は、 磁界が定常状態になったときの図で ある。 FIG. 2 is a vertical view for explaining the operation of the magnetic drive device according to the first embodiment of the present invention. It is sectional drawing. FIG. 2 (a) is a diagram showing a stationary state in which no current flows through the coils 22 and 23. FIG. FIG. 2 (b) is a diagram illustrating the instantaneous state when a magnetic field starts to be generated when the coil is energized. Fig. 2 (c) is a diagram when the magnetic field is in a steady state.
第 3図は、 本発明の第 1の実施の形態における磁気駆動装置のコイル部分の駆 動回路図である。 第 3図において、 トランジスタ 31〜 34は、 電源からの電流を オンオフするスイッチング素子である。 電源 35 は、 コイルに電流を供給する電 源である。 接地 36は、 電源の電流帰還路である。  FIG. 3 is a drive circuit diagram of a coil portion of the magnetic drive device according to the first embodiment of the present invention. In FIG. 3, transistors 31 to 34 are switching elements for turning on and off a current from a power supply. The power supply 35 is a power supply that supplies a current to the coil. Ground 36 is the current return path for the power supply.
このように構成された本発明の第 1の実施の形態における磁気駆動装置の動作 を説明する。 最初に、 第 1図を参照しながら、 磁気駆動装置の機能の概略を説明 する。 強磁性材料で形成して孔をあけたリング状の磁束集束用コア 21 を挟むよ うに、 コィノレ 22、 23が設けられている。 両コイル 22、 23は空芯であって、 その 内径は、磁束集束用コア 21の内径と略同じである。 コイル 22、 23の巻回方向は、 互いに反対方向である。 そのため、 両コイルによって発生する磁界は、 互いに相 反する方向となる。  The operation of the thus configured magnetic drive device according to the first embodiment of the present invention will be described. First, the outline of the function of the magnetic drive device will be described with reference to FIG. Coins 22 and 23 are provided so as to sandwich a ring-shaped magnetic flux focusing core 21 formed of a ferromagnetic material and having a hole. Both coils 22 and 23 are air cores, and the inner diameter is substantially the same as the inner diameter of magnetic flux focusing core 21. The winding directions of the coils 22 and 23 are opposite to each other. Therefore, the magnetic fields generated by both coils are in directions opposite to each other.
コイル 22の卷き始め端子とコイル 23の巻き始め端子を共通接続し、 コイル 22 の巻き終わり端子とコイル 23 の巻き終わり端子を共通接続する。 共通接続した 各端子を電源端子 27に接続する。 コイル 22、 23の空芯部分には、 永久磁石より なる駆動部 26が揷通されている。 駆動部 26の端部には、 図示していない駆動力 取り出し機構を備えている。 コイル 22、 23を固定するため、 コイルボビン 24、 25 を使用している。  The winding start terminal of the coil 22 and the winding start terminal of the coil 23 are commonly connected, and the winding end terminal of the coil 22 and the winding end terminal of the coil 23 are commonly connected. Connect the commonly connected terminals to the power supply terminal 27. A drive unit 26 made of a permanent magnet is passed through the air core portions of the coils 22 and 23. A driving force take-out mechanism (not shown) is provided at an end of the driving section 26. Coil bobbins 24 and 25 are used to fix coils 22 and 23.
第 2図を参照しながら、 磁気駆動装置の動作を説明する。 コイルに電流が流れ ていなくて、 駆動部 26 が第 2図 (a ) の左側にある状態においては、 磁束集束 用コア 21は、 駆動部 26の永久磁石により、 第 2図 (a ) に示すように、 内側が N極で外側が S極となっている。 そのため、 駆動部 26と磁束集束用コア 21との 位置関係は、 駆動部 26がコイル 22より外方へ突出するように、 磁束集束用コア 21よりずれている。  The operation of the magnetic drive device will be described with reference to FIG. When no current is flowing through the coil and the drive unit 26 is on the left side of FIG. 2 (a), the magnetic flux focusing core 21 is driven by the permanent magnet of the drive unit 26 as shown in FIG. 2 (a). As shown, the inside is N pole and the outside is S pole. Therefore, the positional relationship between the driving unit 26 and the magnetic flux focusing core 21 is shifted from the magnetic flux focusing core 21 so that the driving unit 26 projects outward from the coil 22.
第 2図 (b ) に示すように、 コイル 22、 23 に電流を流して磁界を発生させる と、 磁束集束用コア 21は、 両コイル 22、 23の磁界により、 当初の磁化方向とは 反対方向に磁化される。 すなわち、 コイル 22、 23 の磁界による磁化は、 永久磁 石による磁化より大きいから、 磁束集束用コア 21 の極性は、 第 2図 (a ) に示 す極性とは逆になる。 このとき、 駆動部 26の右側の S極は、 磁束集束用コア 21 の内側の S極と極性が一致して、 強く反発し合うから、 駆動部 26 は、 図の右方 向への移動を開始する。 As shown in FIG. 2 (b), when a current is applied to the coils 22 and 23 to generate a magnetic field, the magnetic flux concentrating core 21 is deviated from the initial magnetization direction by the magnetic fields of the coils 22 and 23. It is magnetized in the opposite direction. That is, since the magnetization of the coils 22 and 23 by the magnetic field is larger than the magnetization by the permanent magnet, the polarity of the magnetic flux focusing core 21 is opposite to the polarity shown in FIG. 2 (a). At this time, the polarity of the S pole on the right side of the drive unit 26 matches the polarity of the S pole inside the magnetic flux focusing core 21 and repels strongly, so that the drive unit 26 moves to the right in the figure. Start.
駆動部 26が右側に移動して、 駆動部 26の左側の N極が、 磁気収束用コア 21 の内側の S極と対向する位置に来ると、 両磁極は互いに吸引し合って停止し、 第 2図 (c ) に示す状態になる。 第 2図 (b ) から第 2図 (c ) への状態変化は短 時間に生じる。 コイルの磁界による駆動部 26 への駆動力に加えて、 磁束集束用 コア 21の磁化による駆動部 26への反発力も大きな駆動力となる。 したがって、 永久磁石の駆動部 26には、 極めて大きな駆動力が与えられる。  When the drive unit 26 moves to the right side and the N pole on the left side of the drive unit 26 comes to a position facing the S pole inside the magnetic convergence core 21, the two magnetic poles attract each other and stop. 2 The state shown in Fig. (C) is obtained. The state change from Fig. 2 (b) to Fig. 2 (c) occurs in a short time. In addition to the driving force applied to the driving unit 26 by the magnetic field of the coil, the repulsive force applied to the driving unit 26 by the magnetization of the magnetic flux focusing core 21 is also a large driving force. Therefore, an extremely large driving force is given to the driving section 26 of the permanent magnet.
第 2図 (c ) に示す状態において、 コイルの磁界を反転させるように、 電流の 向きを反転させると、 磁束集束用コア 21の磁極が反転して、 駆動部 26には左方 向への駆動力が作用する。 駆動部 26 は、 瞬間的に第 2図 (b ) に示す位置へ移 動する。 このとき、 磁束集束用コア 21 の極性は、 第 2図 (b ) に示す極性とは 逆になつている。 このように、 駆動部 26 は、 コイルの磁界を反転するごとに、 左右方向に強力に速く駆動されるので、 振動体として利用することができる。 第 3図を参照しながら、 磁気駆動装置のコイルの駆動回路を説明する。 2つの コイル 22、 23に磁界を発生するための電源 35 と、 コイル 22、 23 との間に、 ト ランジスタ 31〜 34が接続されている。 トランジスタ 31、 32力 電源 35と接地 36 との間に直列に接続されており、 トランジスタ 33、 34 、 電源 35 と接地 36 と の間に直列に接続されていて、 ブリッジ接続の切換スィッチを構成している。 N P N型のトランジスタ 31、 33 をオンにする駆動パルスは、 電源電圧の正極性の パルスであり、 P N P型のトランジスタ 32、 34 をオンにする駆動パルスは、 接 地電圧の負極性のパルスである。 駆動部 26 を左方向へ動作させるための左動作 パルスは、 N P N型のトランジスタ 31 をオンにする正極性パルスと、 P N P型 のトランジスタ 34をオンにする負極性のパルスとのペアである。 駆動部 26を右 方向へ動作させるための右動作パルスは、 N P N型のトランジスタ 33 をオンに する正極性パルスと、 P N P型のトランジスタ 32 をオンにする負極性のパルス とのペアである。 In the state shown in FIG. 2 (c), when the direction of the current is reversed so as to reverse the magnetic field of the coil, the magnetic poles of the magnetic flux focusing core 21 are reversed, and the driving unit 26 is directed leftward. Driving force acts. The drive unit 26 momentarily moves to the position shown in FIG. 2 (b). At this time, the polarity of the magnetic flux focusing core 21 is opposite to the polarity shown in FIG. 2 (b). As described above, the driving unit 26 is driven strongly and quickly in the left-right direction every time the magnetic field of the coil is reversed, and thus can be used as a vibrator. The drive circuit of the coil of the magnetic drive device will be described with reference to FIG. Transistors 31 to 34 are connected between a power supply 35 for generating a magnetic field in the two coils 22 and 23 and the coils 22 and 23. Transistors 31 and 32 are connected in series between power supply 35 and ground 36, and are connected in series between transistors 33 and 34, power supply 35 and ground 36 to form a bridge-connected switch. ing. The drive pulse for turning on the NPN transistors 31 and 33 is a positive pulse of the power supply voltage, and the drive pulse for turning on the PNP transistors 32 and 34 is a negative pulse of the ground voltage . The left operation pulse for operating the drive unit 26 in the left direction is a pair of a positive pulse for turning on the NPN transistor 31 and a negative pulse for turning on the PNP transistor 34. The right operation pulse for operating the driving unit 26 in the right direction includes a positive pulse for turning on the NPN transistor 33 and a negative pulse for turning on the PNP transistor 32. Is a pair with
左動作パルスと右動作パルスとを、 それぞれ交互に、 駆動部 26 の移動周期に 対応した時間ごとに切り換えて印加することにより、 コイル 22、 23 に交番電流 を流す。 磁気駆動装置において、 パルスの繰り返し周期を一定とする場合と、 繰 り返し周期を可変とする場合とがある。 繰り返し周期を一定とする場合は、 駆動 速度が一定である。繰り返し周期を可変とすれば、駆動速度を変えることができ、 より微妙な駆動力の制御ができる。  An alternating current flows through the coils 22 and 23 by alternately applying the left operation pulse and the right operation pulse at intervals corresponding to the movement cycle of the drive unit 26, respectively. In a magnetic drive device, there are a case where a pulse repetition period is fixed and a case where a repetition period is variable. When the repetition period is constant, the driving speed is constant. If the repetition period is variable, the driving speed can be changed, and more delicate control of the driving force can be performed.
第 1図において、 磁束集束用コア 21 の直径方向の大きさは、 コイルの外径よ り大としている。 磁束集束用コア 21 力 S、 コイルより外方に突出している。 この 構成により、 磁束集束用コア 21 によってコイルを冷却することができて、 長時 間の連続動作に耐えられる。 また、 磁束集束用コア 21 の外形は、 円形に限るこ となく、 取り付ける装置に合わせて、 四角形などの角形に形成してもよい。  In FIG. 1, the size of the magnetic flux converging core 21 in the diameter direction is larger than the outer diameter of the coil. Magnetic flux focusing core 21 Force S, projecting outward from coil. With this configuration, the coil can be cooled by the magnetic flux concentrating core 21 and can withstand continuous operation for a long time. Further, the outer shape of the magnetic flux focusing core 21 is not limited to a circular shape, but may be formed in a square shape such as a square shape in accordance with a device to be mounted.
第 1図においては、 各コイルの卷回数を等しく構成しているが、 装置設計の都 合などで、 必ずしも同卷回数でなくてもよい。 駆動部 26 を駆動する際に、 コィ ルに流す電流の向きを、 両方向ではなく単一の方向とすることもできる。 1つの 駆動回路からの印加電流のみによって駆動すれば、 左右方向への駆動の強さに不 揃いが生じるが、 その状態での使用で不都合がないときは、 経済的な動作ができ る。 その場合、 磁界による駆動とは反対方向に永久磁石が移動するとき、 磁界に よる駆動と比較して不十分な強さの駆動力である。 このような反対方向への移動 のため、 コイルスプリングなどの弾性材を使用することができる。  Although the number of turns of each coil is configured to be equal in FIG. 1, the number of turns may not be the same due to the design of the device. When driving the driving unit 26, the direction of the current flowing through the coil may be a single direction instead of both directions. Driving only with an applied current from one drive circuit causes uneven driving strength in the left and right directions, but if there is no inconvenience when used in that state, economical operation is possible. In this case, when the permanent magnet moves in the opposite direction to the driving by the magnetic field, the driving force is insufficiently strong as compared with the driving by the magnetic field. For such movement in the opposite direction, an elastic material such as a coil spring can be used.
このように、 本発明の第 1の実施の形態においては、 磁気駆動装置を、 相反す る方向の磁界を発生させるように、 2個の空芯コイルの軸を一致させて直線状に 並べ、 空芯コィルの間に空芯コィルと略同じ内径の強磁性材料の孔あき磁束集束 用コアを挟み、空芯コイル内に永久磁石を揷通して駆動部とする構成としたので、 小型の装置でも、 大きな力で永久磁石を駆動することができる。  As described above, in the first embodiment of the present invention, the magnetic drive device is arranged in a straight line with the axes of the two air-core coils aligned so as to generate magnetic fields in opposite directions. Since a core for magnetic flux focusing with a hole made of a ferromagnetic material having substantially the same inside diameter as the air-core coil is sandwiched between the air-core coils and a permanent magnet is passed through the air-core coil to form a drive unit, a compact device is used. However, the permanent magnet can be driven with a large force.
(第 2の実施の形態)  (Second embodiment)
本発明の第 2の実施の形態は、 2個の空芯コイルの軸を一致させて直線状に並 ベて、 相反する方向の磁界を発生させ、 空芯コイルの間に強磁性体の孔あき磁束 集束用コアを挟み、 空芯コイル内の永久磁石を単一パルスで駆動して空気ポンプ を動かす磁気駆動装置である。 In the second embodiment of the present invention, two air-core coils are aligned in a straight line with their axes aligned to generate magnetic fields in opposite directions, and a ferromagnetic material hole is formed between the air-core coils. Perforated magnetic flux An air pump that drives the permanent magnet in the air-core coil with a single pulse with the focusing core in between This is a magnetic drive device for moving.
第 4図は、 本発明の第 2の実施の形態における磁気駆動装置を用いた空気ボン プの断面図である。 第 4図において、 永久磁石 41 は、 磁界の変化を機械的な力 に変換する駆動部材である。 ダイヤフラム 42は、 永久磁石 41の位置に応じて変 形して空気を吸い込んだり吐き出したりする金属膜である。 吸気弁 43 は、 空気 を吸い込むときに開く弁である。 空気吸入口 44 は、 外部から空気を吸い込む口 である。 排気弁 45は、 空気を吐き出すときに開く弁である。 空気排出口 46は、 外部に空気を吐き出す吐出口である。 スプリング 47は、 永久磁石 41の右側への 移動を制限する緩衝手段である。 筐体 49 は、 磁気駆動装置を全体的に囲んでい る非磁性体の保護部材である。その他の部分は、第 1の実施の形態と同じである。 第 5図は、 本発明の第 2の実施の形態における磁気駆動装置のコイル駆動回路 図である。 第 5図において、 トランジスタ 48 は、 コイルに流す電流をオンオフ するためのスィツチング素子である。  FIG. 4 is a cross-sectional view of an air pump using a magnetic drive device according to a second embodiment of the present invention. In FIG. 4, a permanent magnet 41 is a driving member that converts a change in a magnetic field into a mechanical force. The diaphragm 42 is a metal film that changes its shape according to the position of the permanent magnet 41 and sucks or discharges air. The intake valve 43 is a valve that opens when inhaling air. The air suction port 44 is a port for sucking air from outside. The exhaust valve 45 is a valve that opens when exhaling air. The air discharge port 46 is a discharge port that discharges air to the outside. The spring 47 is a buffer for limiting the movement of the permanent magnet 41 to the right. The housing 49 is a non-magnetic protection member that entirely surrounds the magnetic drive device. The other parts are the same as in the first embodiment. FIG. 5 is a coil drive circuit diagram of the magnetic drive device according to the second embodiment of the present invention. In FIG. 5, a transistor 48 is a switching element for turning on and off a current flowing through a coil.
このように構成された本発明の第 2の実施の形態における磁気駆動装置の動作 を説明する。 最初に、 第 4図に示す空気ポンプに用いる磁気駆動装置の動作の概 略を説明する。 この磁気駆動装置においては、 永久磁石 41 による駆動力は、 第 1図に示した第 1の実施の形態と異なり、 単方向性である。 コイル 22、 23 に通 電されていないとき、 永久磁石 41 は、 所定の位置に停止している。 電流が印加 されてコイルに磁界が発生すると、 永久磁石 41 は右方向に移動する。 電流を断 つと、 永久磁石 41は左方へ引き戻される。  The operation of the magnetic drive device according to the second embodiment of the present invention thus configured will be described. First, an outline of the operation of the magnetic drive device used for the air pump shown in FIG. 4 will be described. In this magnetic drive device, the driving force by the permanent magnet 41 is unidirectional, unlike the first embodiment shown in FIG. When the coils 22 and 23 are not energized, the permanent magnet 41 is stopped at a predetermined position. When a current is applied and a magnetic field is generated in the coil, the permanent magnet 41 moves rightward. When the current is cut off, the permanent magnet 41 is pulled back to the left.
第 4図を参照しながら、 磁気駆動装置を用いた空気ポンプの動作を説明する。 ダイヤフラム 42は、 永久磁石 41 と結合されており、 永久磁石 41 の動きに応じ て変形し、 体積を変える。 ダイヤフラム 42 と吸気弁 43 と排気弁 45 とにより、 空気ポンプを形成している。 空気吸入口 44は、 吸気弁 43につながっており、 空 気排出口 46は、 排気弁 45 とつながっている。 コイル状のスプリング 47力 永 久磁石 41とコイルボビン 25の軸周囲部との間に設けられている。  The operation of the air pump using the magnetic drive will be described with reference to FIG. The diaphragm 42 is connected to the permanent magnet 41 and deforms according to the movement of the permanent magnet 41 to change the volume. An air pump is formed by the diaphragm 42, the intake valve 43, and the exhaust valve 45. The air inlet 44 is connected to the intake valve 43, and the air outlet 46 is connected to the exhaust valve 45. The coiled spring 47 is provided between the permanent magnet 41 and the coil bobbin 25 around the shaft.
コイル 22、 23に通電されていないとき、 永久磁石 41は、 ダイヤフラム 42の 安定状態の位置に停止している。 電流が印加されてコイルに磁界が発生すると、 永久磁石 41 は、 ダイヤフラム 42を、 第 4図の右方向に引き込む。 永久磁石 41 は、 右端部近くまで押し付けられ、 スプリング 47 によって移動距離が制限され て止まる。 その間、 空気が空気吸入口 44から吸入され、 吸気弁 43から取り込ま れる。 電流を断つと、 永久磁石 41は、 ダイヤフラム 42によって左方へ引き戻さ れる。 永久磁石 41の復帰動作のとき、 排気弁 45から空気排出口 46を経て外部 へ排出される。 永久磁石 41 は、 慣性で左方へ行過ぎてから右方へ戻るので、 そ のとき、 吸気が行われる。 これを繰り返すことにより、 永久磁石 41 が連続的に 往復駆動されて、 吸排気が行われる。 この磁気駆動装置を用いた空気ポンプは、 吸気と排気の繰り返し周期が、 パルス印加の周期と同じであるから、 制御が容易 であり、 駆動力が大きいので、 小型化が可能である。 When the coils 22 and 23 are not energized, the permanent magnet 41 is stopped at the position where the diaphragm 42 is in a stable state. When a current is applied and a magnetic field is generated in the coil, the permanent magnet 41 pulls the diaphragm 42 rightward in FIG. Permanent magnet 41 Is pushed to near the right end, and the movement distance is limited by the spring 47 and stops. During that time, air is sucked in from the air inlet 44 and is taken in from the intake valve 43. When the current is interrupted, the permanent magnet 41 is pulled back to the left by the diaphragm 42. When the permanent magnet 41 returns, the air is discharged from the exhaust valve 45 to the outside via the air discharge port 46. Since the permanent magnet 41 goes too far to the left due to inertia and then returns to the right, air is taken in at that time. By repeating this, the permanent magnet 41 is driven to reciprocate continuously, and the intake and exhaust are performed. An air pump using this magnetic drive device is easy to control because the repetition cycle of intake and exhaust is the same as the pulse application cycle, and has a large driving force, and can be downsized.
第 5図を参照して、 コイル 22、 23 に磁界を発生させるために使用する駆動回 路を説明する。 N P N型のトランジスタ 48力 電源 35 とコイル 22、 23 との間 に接続されている。 N P N型のトランジスタ 48 をオンにする駆動パルスは、 電 源電圧の正極性のパルスである。 単一の動作パルスを、 永久磁石 41 の移動周期 に対応した時間ごとに印加して、 コイル 22、 23に電流を流す。 コイル 22、 23に 電流が流れると磁界が発生して、 磁束集束用コア 21が磁化され、 永久磁石 41を 引き込む。 コイル 22、 23の電流が断たれると、 磁束集束用コア 21の磁化が弱ま り、 永久磁石 41は、 所定の位置に戻る。  With reference to FIG. 5, a drive circuit used to generate a magnetic field in the coils 22 and 23 will be described. N PN type transistor 48 Force is connected between power supply 35 and coils 22 and 23. The drive pulse for turning on the NPN transistor 48 is a positive pulse of the power supply voltage. A single operation pulse is applied every time corresponding to the moving cycle of the permanent magnet 41 to flow current through the coils 22 and 23. When a current flows through the coils 22 and 23, a magnetic field is generated, the magnetic flux focusing core 21 is magnetized, and the permanent magnet 41 is drawn. When the currents of the coils 22 and 23 are cut off, the magnetization of the magnetic flux focusing core 21 weakens, and the permanent magnet 41 returns to a predetermined position.
この例では、 コイル 22、 23 の磁界を、 単一方向の駆動パルスにより発生して いるが、 このパルスを、 両極 ¾Ξのパルスとすることもできる。 この場合、 永久磁 石 41がダイヤフラム 42を右方向に引き込んだ後、 コイル 22、 23を逆方向に励 磁するため、 永久磁石 41には、 ダイヤフラム 42の復元力に磁界の力も加わり、 永久磁石 41を速やかに当初位置に戻すことができる。  In this example, the magnetic field of the coils 22 and 23 is generated by a unidirectional drive pulse, but this pulse may be a bipolar pulse. In this case, after the permanent magnet 41 draws the diaphragm 42 rightward, the coils 22 and 23 are excited in the opposite direction, so that the permanent magnet 41 also receives a magnetic field force in addition to the restoring force of the diaphragm 42. 41 can be quickly returned to its original position.
このように、 本発明の第 2の実施の形態においては、 磁気駆動装置を、 2個の 空芯コイルの軸を一致させて直線状に並べて、 相反する方向の磁界を発生させ、 空芯コイルの間に強磁性体の孔あき磁束集束用コアを挟み、 空芯コイル内の永久 磁石を単一パルスで駆動して空気ポンプを動かす構成としたので、 制御が容易な 小型の空気ポンプを実現できる。  As described above, in the second embodiment of the present invention, the magnetic drive device is arranged in a straight line with the axes of the two air-core coils coincident to generate magnetic fields in opposite directions, A small air pump that is easy to control is realized because the air pump is driven by a single pulse driving the permanent magnet in the air core coil with a ferromagnetic perforated magnetic flux focusing core sandwiched between them. it can.
(第 3の実施の形態)  (Third embodiment)
本発明の第 3の実施の形態は、 永久磁石の駆動部の端に、 永久磁石より軸方向 の長さが短レ、強磁性体を付加した磁気駆動装置である。 In the third embodiment of the present invention, the end of the drive section of the permanent magnet Is a magnetic drive device having a short length and a ferromagnetic material added.
第 6図は、 本発明の第 3の実施の形態における磁気駆動装置の構成を示す縦断 面図である。 第 6図において、 磁性材 28、 29は、 駆動部 26の永久磁石の両端に 接着した磁性体である。 保持筒 30は、 永久磁石の駆動部 26 と磁性材 28、 29 と を一体化して駆動部とするための筒である。  FIG. 6 is a longitudinal sectional view showing a configuration of a magnetic drive device according to a third embodiment of the present invention. In FIG. 6, the magnetic materials 28 and 29 are magnetic materials adhered to both ends of the permanent magnet of the driving unit 26. The holding cylinder 30 is a cylinder for integrating the permanent magnet drive unit 26 and the magnetic materials 28 and 29 into a drive unit.
このように構成された本発明の第 3の実施の形態における磁気駆動装置の動作 を説明する。 駆動部 26の永久磁石の両端に接着した磁性材 28、 29の長軸方向の 長さは、 駆動部 26の永久磁石より短い。 駆動部 26が 2個のコイル 22、 23によ り駆動されるとき、 磁性材 28、 29は、 駆動部 26 と同時に移動する。 駆動部 26 自体の質量を増加する代わりに、磁性材 28、 29を付加する。 駆動力は、駆動部 26 の質量と、 駆動部 26の移動速度との積に比例するから、 実質的に駆動部 26の質 量を増加させ、 駆動力を増加させている。  The operation of the thus configured magnetic drive device according to the third embodiment of the present invention will be described. The lengths of the magnetic members 28 and 29 adhered to both ends of the permanent magnet of the drive unit 26 in the major axis direction are shorter than the permanent magnets of the drive unit 26. When the driving unit 26 is driven by the two coils 22 and 23, the magnetic members 28 and 29 move simultaneously with the driving unit 26. Instead of increasing the mass of the drive unit 26 itself, magnetic materials 28 and 29 are added. Since the driving force is proportional to the product of the mass of the driving unit 26 and the moving speed of the driving unit 26, the mass of the driving unit 26 is substantially increased, and the driving force is increased.
このように本発明の第 3の実施の形態においては、 磁気駆動装置の永久磁石の 駆動部の端に、 永久磁石より軸方向の長さが短い強磁性体を付加したので、 短い 永久磁石の場合でも、 長い永久磁石と同じ駆動力を得ることができる。  As described above, in the third embodiment of the present invention, a ferromagnetic material having an axial length shorter than that of the permanent magnet is added to the end of the drive unit of the permanent magnet of the magnetic drive device. Even in this case, the same driving force as that of a long permanent magnet can be obtained.
(第 4の実施の形態)  (Fourth embodiment)
本発明の第 4の実施の形態は、 磁束集束用コアの外周に接触する強磁性材料の 筐体で、 磁束集束用コアと空芯コイルとを取り囲んだ磁気駆動装置である。  The fourth embodiment of the present invention is a magnetic drive device that surrounds the magnetic flux focusing core and the air core coil with a housing made of a ferromagnetic material that contacts the outer periphery of the magnetic flux focusing core.
第 7図は、 本発明の第 4の実施の形態における磁気駆動装置の構成を示す縦断 面図である。 第 7図において、 筐体 51 は、 磁束集束用コアと空芯コイルとを取 り囲む強磁性材料の部材である。コイル 22、 23と、駆動部 26と、コィルボビン 24、 25は、 第 1図に示した第 1の実施の形態と同様のものである。  FIG. 7 is a longitudinal sectional view showing a configuration of a magnetic drive device according to a fourth embodiment of the present invention. In FIG. 7, a housing 51 is a member made of a ferromagnetic material that surrounds the magnetic flux focusing core and the air-core coil. The coils 22, 23, the drive unit 26, and the coil bobbins 24, 25 are the same as those in the first embodiment shown in FIG.
第 8図は、 本発明の第 4の実施の形態における磁気駆動装置の別の構成を示す 縦断面図である。 第 8図において、 筐体 52 は、 磁束集束用コアと空芯コイルと を取り囲む強磁性材料の部材である。  FIG. 8 is a longitudinal sectional view showing another configuration of the magnetic drive device according to the fourth embodiment of the present invention. In FIG. 8, a housing 52 is a member made of a ferromagnetic material that surrounds the magnetic flux focusing core and the air-core coil.
このように構成された本発明の第 4の実施の形態における磁気駆動装置の動作 を説明する。 第 7図に示すように、 磁束集束用コア 21が、 駆動部 26の永久磁石 の反対側において、磁性体で構成された筐体 51と、接触位置 50で接触している。 接触位置 50では、 磁束集束用コア 21 と筐体 51 との問に、 非磁性体の介在物が 存在しない。 筐体 51は、 磁束集束用コア 21 と空芯のコイル 22、 23 との外側を 取り囲んでいる。 駆動部 26 の駆動時における緩衝材として、 2個の金属製スプ リング 47力 駆動部 26とコイルボビン 24、 25との間に設けられている。 The operation of the magnetic drive device according to the fourth embodiment of the present invention thus configured will be described. As shown in FIG. 7, the magnetic flux converging core 21 is in contact with a housing 51 made of a magnetic material at a contact position 50 on the opposite side of the drive unit 26 from the permanent magnet. At the contact position 50, a non-magnetic inclusion exists between the magnetic flux focusing core 21 and the housing 51. not exist. The housing 51 surrounds the outside of the magnetic flux focusing core 21 and the air-core coils 22 and 23. Two metal springs 47 are provided between the drive unit 26 and the coil bobbins 24 and 25 as a cushioning material when the drive unit 26 is driven.
図示しない電源から 2個のコイル 22、 23 に通電されたとき、 第 7図の左右方 向に駆動部 26が急速に移動することを繰り返す。 磁気駆動装置は、 駆動部 26の 運動により、 振動体 (バイブレータ) となる。 筐体 51 を保持するのみで、 装置 が振動していることを感知できる。 したがって、 携帯電話の 「マナーモード」 状 態における着信検知に使用することができる。  When power is supplied to the two coils 22 and 23 from a power source (not shown), the drive unit 26 repeatedly moves rapidly in the left and right directions in FIG. The magnetic drive device becomes a vibrator (vibrator) by the movement of the drive unit 26. By simply holding the housing 51, it is possible to detect that the device is vibrating. Therefore, it can be used for incoming call detection in the “manner mode” of a mobile phone.
コイル 22、 23により発生した磁力線は、 磁束集束用コア 21から筐体 51を経 て、 駆動部 26 の内部を通過するから、 発生した磁力線に対する損失が極めて少 ない。 筐体 51は熱の良導体であるので、 コイル 22、 23に対する放熱効果が大き レ、。 筐体 51 の外方に磁力線の漏れ出ることがないので、 周辺装置に対する磁気 ノイズの発生がない。  The lines of magnetic force generated by the coils 22 and 23 pass through the inside of the drive unit 26 from the magnetic flux focusing core 21 through the housing 51, and thus the loss of the generated lines of magnetic force is extremely small. Since the housing 51 is a good conductor of heat, the heat dissipation effect on the coils 22 and 23 is large. Since magnetic lines of force do not leak out of the housing 51, no magnetic noise is generated for peripheral devices.
第 8図に示す磁気駆動装置は、 第 7図に示した筐体 51 の構成を一部変更した ものである。筐体 52は、磁束集束用コア 21と同様の材質の磁性材料を使用して、 両者間の隙間が無いように構成している。 即ち、 磁束集束用コア 21と筐体 52と は一体化している。 そのため、 発生した磁力線の損失がさらに少なくなる。  The magnetic drive device shown in FIG. 8 is obtained by partially changing the configuration of the housing 51 shown in FIG. The housing 52 is made of a magnetic material similar to that of the magnetic flux focusing core 21 so that there is no gap therebetween. That is, the magnetic flux focusing core 21 and the housing 52 are integrated. Therefore, the loss of the generated magnetic field lines is further reduced.
このように、 本発明の第 4の実施の形態では、 磁気駆動装置を、 磁束集束用コ ァの外周に接触する強磁性材料の筐体で、 磁束集束用コアと空芯コイルとを取り 囲んだ構成としたので、 筐体の放熱作用と遮音作用で、 磁気駆動装置の動作が静 穏になり、 長期の連続動作も可能となる。  As described above, in the fourth embodiment of the present invention, the magnetic drive device is formed of a housing made of a ferromagnetic material that is in contact with the outer periphery of the magnetic flux focusing core, and surrounds the magnetic flux focusing core and the air-core coil. With this configuration, the heat dissipation and sound insulation of the housing makes the operation of the magnetic drive device quiet and allows long-term continuous operation.
(第 5の実施の形態)  (Fifth embodiment)
本発明の第 5の実施の形態は、 磁束集束用コアを、 軸方向の中間に非磁性材料 層を挟んだ 3層構造とした磁気駆動装置である。  The fifth embodiment of the present invention is a magnetic drive device in which the magnetic flux converging core has a three-layer structure in which a nonmagnetic material layer is interposed in the axial middle.
第 9図は、 本発明の第 5の実施の形態における磁気駆動装置の構成を示す縦断 面図である。 第 9図において、 磁束集束用コア 61、 62は、 非磁性材層 63を挟ん だコアである。  FIG. 9 is a longitudinal sectional view showing a configuration of a magnetic drive device according to a fifth embodiment of the present invention. In FIG. 9, the magnetic flux converging cores 61 and 62 are cores having a nonmagnetic material layer 63 interposed therebetween.
磁束集束用コアを、コア 61とコア 62とに分割する。その中間に、非磁性材層 63 を挟んで、 3層構造にする。 コイル 22、 23 より発生する磁力線は、 磁束集束用 コア 61、 62の何れか近い方を経て、 筐体 52を通過するようになる。 そのため、 磁力線の損失が極めて少なく、 かつ磁束集束用コアは小型となって、 装置を軽量 にできる。 The magnetic flux focusing core is divided into a core 61 and a core 62. A three-layer structure is formed with the nonmagnetic material layer 63 interposed therebetween. Lines of magnetic force generated from coils 22 and 23 are used for focusing magnetic flux After passing through the closer one of the cores 61 and 62, it passes through the housing 52. For this reason, the loss of the lines of magnetic force is extremely small, and the magnetic flux focusing core is reduced in size, so that the device can be reduced in weight.
上記のように、 本発明の第 5の実施の形態では、 磁気駆動装置の磁束集束用コ ァを、 軸方向の中間に非磁性材料層を挟んだ 3層構造としたので、 装置を小型軽 量にできる。  As described above, in the fifth embodiment of the present invention, the magnetic flux focusing core of the magnetic drive device has a three-layer structure in which the non-magnetic material layer is interposed in the middle in the axial direction. Can be quantity.
(第 6の実施の形態)  (Sixth embodiment)
本発明の第 6の実施の形態は、 2つのコィルの組の両側に磁束集束用コァを付 けた磁気駆動装置である。  The sixth embodiment of the present invention is a magnetic drive device in which magnetic flux focusing cores are provided on both sides of a set of two coils.
第 1 0図は、 本発明の第 6の実施の形態における磁気駆動装置の構成を示す縦 断面図である。 第 1 0図 (a ) は、 2つのコイルの組の両端側の磁束を収束する ための平板リング状の強磁性体の磁束集束用コァを設けた磁気駆動装置の構成を 示す縦断面図である。 第 1 0図 (b ) は、 2つのコイルの組の両端側の磁束を収 束するための円板状の強磁性体の磁束集束用コアを設けた磁気駆動装置の構成を 示す縦断面図である。 第 1 0図 (c ) は、 2つのコイルの組の中間と両端側の磁 束を収束するための平板リング状の強磁性体の磁束集束用コアを設けた磁気駆動 装置の構成を示す縦断面図である。 第 1 0図 (d ) は、 駆動部の長さの制限を説 明する図である。 第 1 0図において、 磁束集束用コア 21 は、 2つのコイルの外 側の磁束を収束するための平板リング状または円板状の強磁性体コアである。 そ の他の構成は第 1の実施の形態と同じである。  FIG. 10 is a longitudinal sectional view showing a configuration of a magnetic drive device according to a sixth embodiment of the present invention. FIG. 10 (a) is a longitudinal sectional view showing a configuration of a magnetic drive device provided with a plate-ring-shaped ferromagnetic flux focusing core for converging magnetic fluxes at both ends of a set of two coils. is there. FIG. 10 (b) is a longitudinal sectional view showing a configuration of a magnetic drive device provided with a disk-shaped ferromagnetic flux focusing core for converging magnetic fluxes at both ends of a set of two coils. It is. Fig. 10 (c) is a longitudinal section showing the configuration of a magnetic drive device provided with a flat ring-shaped ferromagnetic flux converging core for converging the magnetic flux between the middle and both ends of a set of two coils. FIG. FIG. 10 (d) is a diagram for explaining the restriction on the length of the drive unit. In FIG. 10, the magnetic flux converging core 21 is a flat ring-shaped or disk-shaped ferromagnetic core for converging the magnetic flux outside the two coils. Other configurations are the same as those of the first embodiment.
第 1 1図は、 本発明の第 6の実施の形態における磁気駆動装置の動作を示す動 作遷移図である。 第 1 1図 (a ) は、 コイルに電流を流していなくて、 駆動部の 永久磁石がコイルの左側にある状態を示す図である。 第 1 1図 (b ) は、 コイル に右駆動電流を流し始めた状態を示す図である。 第 1 1図 (c ) は、 コイルに右 駆動電流を流してから、 駆動部の永久磁石がコイルの右側に来て止まった状態を 示す図である。  FIG. 11 is an operation transition diagram showing the operation of the magnetic drive device according to the sixth embodiment of the present invention. FIG. 11 (a) is a diagram showing a state in which no current is flowing through the coil and the permanent magnet of the drive unit is on the left side of the coil. FIG. 11 (b) is a diagram showing a state where the right drive current has begun to flow through the coil. FIG. 11 (c) is a view showing a state in which the permanent magnet of the drive unit comes to the right side of the coil and stops after a right drive current is supplied to the coil.
このように構成された本発明の第 6の実施の形態における磁気駆動装置の動作 を説明する。 第 1 0図 (a ) に示すように、 2個の空芯のコイル 22、 23 を、 軸 を一致させて直線状に並べて、 相反する方向の磁界を発生させる。 強磁性材料で 形成した孔あきの磁束集束用コア 21を、 2個のコイル 22、 23の組の両端に設け る。 永久磁石を 2個のコイル 22、 23の内側に通して、 駆動部 26とする。 コイル 1つに対して 1つの磁束集束用コアを、 コイルの組の両端側に付け、 各々のコィ ルで発生させた磁界を、 磁束集束用コア 21 で集中的に集め、 その磁力を永久磁 石の駆動部 26に作用させる。 The operation of the magnetic drive device according to the sixth embodiment of the present invention thus configured will be described. As shown in FIG. 10 (a), two air-core coils 22, 23 are arranged in a straight line with their axes coincident to generate magnetic fields in opposite directions. With ferromagnetic materials The perforated magnetic flux converging core 21 is provided at both ends of a set of two coils 22 and 23. A permanent magnet is passed through the inside of the two coils 22 and 23 to form a drive unit 26. One magnetic flux focusing core is attached to each coil at both ends of the coil set, and the magnetic field generated by each coil is concentrated by the magnetic flux focusing core 21 and the magnetic force is permanently magnetized. Act on the stone drive 26.
第 1 0図 (b ) に示す構成の磁気駆動装置では、 穴あきでない円板状の磁束集 束用コア 21を、 2個の空芯のコイルの組の两端に設けた。 磁束集束用コア 21の 形状を、 リング形状ではなく、 円板型とすることで、 磁束集束用コア 21 と駆動 部 26 の永久磁石との間の距離を狭めて、 磁気抵抗を小さく している。 永久磁石 の駆動部 26 と磁束集束用コア 21 との間には、 スプリング 47が設けてある。 そ のため、 駆動部 26 は、 非動作時には中央部に安定して停止している。 第 1 0図 ( c ) に示す構成の磁気駆動装置では、 磁束集束用コア 21 を、 2個の空芯のコ ィル 22、 23 の組の中間にも設けた。 コイル間に磁気分離板としての磁束集束用 コア 21を付加したので、 動作効率が上がる。  In the magnetic drive device having the configuration shown in FIG. 10 (b), a disc-shaped magnetic flux focusing core 21 having no hole is provided at one end of a set of two air-core coils. The distance between the magnetic flux focusing core 21 and the permanent magnet of the drive unit 26 is reduced by making the shape of the magnetic flux focusing core 21 a disk shape instead of a ring shape, thereby reducing the magnetic resistance. . A spring 47 is provided between the drive unit 26 of the permanent magnet and the magnetic flux focusing core 21. Therefore, the drive unit 26 is stably stopped at the center when not operating. In the magnetic drive device having the configuration shown in FIG. 10 (c), the magnetic flux converging core 21 is also provided in the middle of the pair of two air-core coils 22,23. Since the magnetic flux focusing core 21 as a magnetic separation plate is added between the coils, the operation efficiency is improved.
これらの構成においては、 駆動部 26 の永久磁石の長さに制限がある。 第 1 0 図 (d ) に示すように、 コイルの組の両サイ ドの磁束集束用コア 21 に被らない 長さまでが、 駆動部 26 の永久磁石の長さの上限になる。 永久磁石が両磁束集束 用コア 21に被るような長さでは動作しない。  In these configurations, the length of the permanent magnet of the drive unit 26 is limited. As shown in FIG. 10 (d), the upper limit of the length of the permanent magnet of the drive unit 26 is up to the length that does not cover the magnetic flux focusing cores 21 of both sides of the coil set. It does not operate with such a length that the permanent magnet covers the two magnetic flux focusing cores 21.
第 1 1図を参照しながら、 磁気駆動装置の動作を説明する。 第 1 1図の動作遷 移図に示すように、 磁束集束用コア 21に集めた磁力線で、 駆動部 26の永久磁石 を反発 Z吸引する。 コイルに電流が流れていなくて、 駆動部 26が第 1 1図 (a ) の左側にある状態では、 左側の磁束集束用コア 21は、 駆動部 26の永久磁石によ り、 第 1 1図 (a ) に示すように、 内側が S極で外側が N極となっている。 右側 の磁束集束用コア 21は、 内側が N極で外側が S極となっている。 駆動部 26の左 端は、磁束集束用コア 21の内側と対向した位置にあり、 安定して停止している。 第 1 1図 (b ) に示すように、 コイル 22、 23 に電流を流して磁界を発生させ ると、 左側の磁束集束用コア 21は、 コイル 22の磁界により、 当初の磁化方向と は反対方向に磁化される。 コイル 22 の磁界による磁化は、 永久磁石による磁化 より大きいから、 磁束集束用コア 21 の極性は反転して、 第 1 1図 (a ) に示す 極性とは逆になる。 右側の磁束集束用コア 21は、 コイル 23の磁界により、 当初 の磁化方向と同じ方向に強く磁化される。 駆動部 26 の右側の S極は、 右側の磁 束集束用コア 21 の内側の N極と極性が反対であり、 強く吸引し合うから、 駆動 部 26は、 図の右方向への移動を開始する。 The operation of the magnetic drive device will be described with reference to FIG. As shown in the operation transition diagram in FIG. 11, the permanent magnets of the drive unit 26 are repelled and attracted by the magnetic flux lines collected in the magnetic flux focusing core 21. When no current is flowing through the coil and the drive unit 26 is on the left side of Fig. 11 (a), the magnetic flux focusing core 21 on the left side is driven by the permanent magnet of the drive unit 26 in Fig. 11 (a). As shown in (a), the inside is the S pole and the outside is the N pole. The magnetic flux focusing core 21 on the right side has an N pole on the inside and an S pole on the outside. The left end of the driving unit 26 is located at a position facing the inside of the magnetic flux converging core 21 and is stably stopped. As shown in Fig. 11 (b), when a current is applied to the coils 22 and 23 to generate a magnetic field, the magnetic flux focusing core 21 on the left side is opposite to the original magnetization direction due to the magnetic field of the coil 22. It is magnetized in the direction. Since the magnetization of the coil 22 due to the magnetic field is larger than that of the permanent magnet, the polarity of the magnetic flux focusing core 21 is reversed, as shown in FIG. 11 (a). It is the opposite of polarity. The right magnetic flux focusing core 21 is strongly magnetized by the magnetic field of the coil 23 in the same direction as the initial magnetization direction. The S pole on the right side of the drive unit 26 is opposite in polarity to the N pole inside the magnetic flux focusing core 21 on the right side and strongly attracts each other, so the drive unit 26 starts moving to the right in the figure. I do.
駆動部 26が右側に移動して、 駆動部 26の右側の S極が、 右側の磁気収束用コ ァ 21 の内側の N極と対向する位置に来ると、 両磁極は互いに吸引し合い停止し て、 第 1 1図 (c ) に示す状態になる。 第 1 1図 (c ) に示す状態において、 コ ィルの磁界を反転させるように、 電流の向きを反転させると、 磁束集束用コア 21 の磁極が反転して、 駆動部 26には左方向への駆動力が作用して、 駆動部 26は、 第 1 1図 (b ) に示す位置へ移動する。 このとき、 磁束集束用コア 21の極性は、 第 1 1図 (b ) に示す極性とは逆になつている。  When the drive unit 26 moves to the right and the S pole on the right side of the drive unit 26 comes to a position facing the N pole inside the magnetic focusing core 21 on the right side, both magnetic poles attract each other and stop. As a result, the state shown in FIG. 11 (c) is obtained. In the state shown in FIG. 11 (c), when the direction of the current is reversed so as to reverse the magnetic field of the coil, the magnetic poles of the magnetic flux focusing core 21 are reversed, and the driving unit 26 is turned leftward. The drive unit 26 moves to the position shown in FIG. 11 (b). At this time, the polarity of the magnetic flux focusing core 21 is opposite to the polarity shown in FIG. 11 (b).
このように、 本発明の第 6の実施の形態では、 磁気駆動装置を、 2つのコイル の組の両サイドに磁束集束用コアを付けた構成としたので、 効率的に永久磁石を 駆動することができる。 産業上の利用可能性  As described above, in the sixth embodiment of the present invention, the magnetic drive device is configured such that the magnetic flux focusing cores are attached to both sides of the two coil sets, so that the permanent magnets can be efficiently driven. Can be. Industrial applicability
以上の説明から明らかなように、 本発明においては、 磁気駆動装置を、 強磁性 材料で形成した孔あき磁束集束用コアと、 磁束集束用コアの孔と略同じ内径であ り相反する方向の磁界を発生させるように軸を一致させて磁束集束用コアを間に 挟んで直線状に並べた 2個の空芯コイルと、 空芯コイル内に揷通した永久磁石の 駆動部とを具備する構成としたので、 2個の空芯コイルからの駆動力を加算でき、 同じ駆動力を得るための装置を従来の装置より小型とすることができるという効 果を奏することができる。 すなわち、 磁束集束用コアを空芯コイルに付加したの で、 コイルによる磁力線を収束して、 駆動部となる永久磁石に強い駆動力を与え ることができる。 したがって、小型であっても強力な駆動力を得ることができる。  As is clear from the above description, in the present invention, the magnetic drive device is provided with a perforated magnetic flux converging core formed of a ferromagnetic material, and a magnetic flux concentrating core having substantially the same inner diameter as the hole of the magnetic flux concentrating core and having opposite directions. Equipped with two air-core coils arranged in a straight line with magnetic flux converging cores sandwiched between them so that their axes are aligned so as to generate a magnetic field, and a drive unit for a permanent magnet passed through the air-core coils With the configuration, the driving forces from the two air-core coils can be added, and an effect that a device for obtaining the same driving force can be made smaller than a conventional device can be obtained. That is, since the magnetic flux focusing core is added to the air-core coil, the lines of magnetic force generated by the coil can be converged and a strong driving force can be given to the permanent magnet serving as the driving unit. Therefore, a strong driving force can be obtained even with a small size.

Claims

請 求 の 範 囲 1 . 強磁性材料で形成した孔あきの磁束集束用コアと、 前記磁束集束用コアの 孔と略同じ内径であり相反する方向の磁界を発生させるように軸を一致させて前 記磁束集束用コアを間に挟んで直線状に並べた 2個の空芯コイルと、 前記空芯コ ィル内に揷通した永久磁石の駆動部とを具備することを特徴とする磁気駆動装  Scope of Claim 1. Perforated magnetic flux converging core formed of a ferromagnetic material, and a shaft having the same inner diameter as the hole of the magnetic flux converging core and having their axes aligned so as to generate magnetic fields in opposite directions. A magnetic drive comprising: two air-core coils arranged linearly with a magnetic flux focusing core interposed therebetween; and a permanent magnet drive unit penetrating the air-core coil. Dress
2 . 前記 2個の空芯コイルの巻回数を等しくしたことを特徴とする請求の範囲 1に記載の磁気駆動装置。 2. The magnetic drive device according to claim 1, wherein the number of turns of the two air-core coils is made equal.
3 . 前記磁束集束用コアの外径を前記空芯コイルの外径より大きくしたことを 特徴とする請求の範囲 1または 2に記載の磁気駆動装置。  3. The magnetic drive device according to claim 1, wherein an outer diameter of the magnetic flux focusing core is larger than an outer diameter of the air core coil.
4 . 前記空芯コイルに、 繰り返し周波数が一定なパルス電流を流して駆動する ことを特徴とする請求の範囲 1〜 3のいずれかに記載の磁気駆動装置。  4. The magnetic drive device according to claim 1, wherein a pulse current having a constant repetition frequency is applied to the air-core coil to drive the coil.
5 . 前記空芯コイルに、 可変繰り返し周波数のパルス電流を流して駆動するこ とを特徴とする請求の範囲 1〜 3のいずれかに記載の磁気駆動装置。  5. The magnetic drive device according to any one of claims 1 to 3, wherein a pulse current having a variable repetition frequency is supplied to the air-core coil for driving.
6 . 前記永久磁石の駆動部の端に、 前記永久磁石より軸方向の長さが短い強磁 性体を付加したことを特徴とする請求の範囲 1〜 5のいずれかに記載の磁気駆動  6. The magnetic drive according to any one of claims 1 to 5, wherein a ferromagnetic material having an axial length shorter than that of the permanent magnet is added to an end of the drive unit of the permanent magnet.
7 . 強磁性材料で形成した孔あきの磁束集束用コアと、 前記磁束集束用コアの 孔と略同じ内径であり相反する方向の磁界を発生させるように軸を一致させて前 記磁束集束用コアを間に挟んで直線状に並べた 2個の空芯コイルと、 前記空芯コ ィル内に揷通した永久磁石の駆動部と、 前記駆動部側とは反対側の箇所において 前記磁束集束用コァに接触して前記磁束集束用コアと前記空芯コイルとを取り囲 む強磁性材料で構成された筐体とを具備することを特徴とする磁気駆動装置。 7. A perforated magnetic flux concentrating core formed of a ferromagnetic material, and a magnetic flux concentrating core having the same inner diameter as the hole of the magnetic flux concentrating core and having the axes aligned so as to generate magnetic fields in opposite directions. , Two air-core coils arranged in a straight line with a space between them, a drive unit for a permanent magnet passed through the air-core coil, and the magnetic flux converging at a location opposite to the drive unit side. A magnetic drive device comprising: a housing made of a ferromagnetic material surrounding the magnetic flux converging core and the air-core coil in contact with a magnetic core.
8 . 前記磁束集束用コアと前記筐体は、 強磁性材料により一体化して形成され ていることを特徴とする請求の範囲 7に記載の磁気駆動装置。  8. The magnetic drive device according to claim 7, wherein the magnetic flux focusing core and the housing are integrally formed of a ferromagnetic material.
9 . 前記磁束集束用コアを、 軸方向の中間に非磁性材料層を挟んだ 3層構造と したことを特徴とする請求の範囲 7に記載の磁気駆動装置。  9. The magnetic drive device according to claim 7, wherein the magnetic flux converging core has a three-layer structure in which a nonmagnetic material layer is interposed in the middle in the axial direction.
1 0 . 強磁性材料で形成した孔あき磁束集束用コアと、 前記磁束集束用コアの 孔と略同じ内径であり相反する方向の磁界を発生させるように軸を一致させて直 線状に並べた 2個の空芯コイルと、 前記空芯コィル内に揷通した永久磁石の駆動 部とを具備し、 前記磁束集束用コアを前記 2個の空芯コィルの組の両端に設けた ことを特徴とする磁気駆動装置。 10. A perforated magnetic flux converging core formed of a ferromagnetic material; Two air-core coils arranged in a straight line with the same axis and the same axis so as to generate magnetic fields in opposite directions to the hole, and a drive unit for a permanent magnet passed through the air-core coil A magnetic drive device comprising: a magnetic flux converging core provided at both ends of a set of two air-core coils.
1 1 . 前記磁束集束用コアを、 前記 2個の空芯コイルで挟まれる位置にも設け たことを特徴とする請求の範囲 1 0に記載の磁気駆動装置。  11. The magnetic drive device according to claim 10, wherein the magnetic flux converging core is also provided at a position sandwiched between the two air-core coils.
1 2 . 強磁性材料で形成した円板状の磁束集束用コアと、 相反する方向の磁界 を発生させるように軸を一致させて直線状に並べた 2個の空芯コイルと、 前記空 芯コイル内に揷通した永久磁石の駆動部とを具備し、 前記磁束集束用コアを前記 2個の空芯コイルの組の両端に設けたことを特徴とする磁気駆動装置。  12. A disk-shaped magnetic flux converging core formed of a ferromagnetic material, two air-core coils arranged in a straight line with their axes aligned to generate magnetic fields in opposite directions, and the air-core A magnetic drive device, comprising: a permanent magnet drive unit penetrated in a coil; and the magnetic flux converging cores provided at both ends of a set of the two air-core coils.
PCT/JP2002/004490 2001-05-08 2002-05-08 Magnetically driving apparatus WO2002091551A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001-137789 2001-05-08
JP2001137789 2001-05-08
JP2001-298662 2001-09-27
JP2001298662 2001-09-27
JP2002028839A JP2003174759A (en) 2001-05-08 2002-02-05 Magnetic driver
JP2002-28839 2002-02-05

Publications (1)

Publication Number Publication Date
WO2002091551A1 true WO2002091551A1 (en) 2002-11-14

Family

ID=27346668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004490 WO2002091551A1 (en) 2001-05-08 2002-05-08 Magnetically driving apparatus

Country Status (2)

Country Link
JP (1) JP2003174759A (en)
WO (1) WO2002091551A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2453839A (en) * 2007-10-30 2009-04-22 Sheppard & Charnley Ltd An electromagnetic actuator assembly
JP2012121544A (en) * 2010-11-16 2012-06-28 Jtekt Corp Lock device and electric power steering device
DE10310448B4 (en) * 2002-03-07 2013-11-21 Eto Magnetic Gmbh Electromagnetic actuator
CN105896870A (en) * 2016-05-26 2016-08-24 歌尔声学股份有限公司 Linear vibration motor
EP3745568A1 (en) * 2019-05-31 2020-12-02 Minebea Mitsumi Inc. Vibration actuator and electronic device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725910B2 (en) * 2004-09-07 2011-07-13 日本パルスモーター株式会社 Linear actuator
JP2006246691A (en) * 2005-03-03 2006-09-14 Nippon Ekorojii Kk Linear oscillating actuator module
JP4802307B2 (en) 2005-06-29 2011-10-26 並木精密宝石株式会社 Vibration actuator
CN101217247A (en) * 2007-01-05 2008-07-09 叶建国 Electric machine (motor and generator) device
US8432242B2 (en) 2007-05-30 2013-04-30 Saia-Burgess, Inc. Soft latch bidirectional quiet solenoid
DE102008038926A1 (en) * 2007-08-16 2009-02-19 Vizaar Ag Electromagnetic linear motor
FR2984634B1 (en) 2011-12-19 2014-11-07 Univ Pierre Et Marie Curie Paris 6 LINEAR MINIATURE VITROTACTILE ACTUATOR
JP5889259B2 (en) * 2013-02-18 2016-03-22 日本電産コパル株式会社 Linear vibration actuator
KR20180059973A (en) * 2016-11-28 2018-06-07 (주)파트론 Linear vibration generating device
KR102021862B1 (en) * 2018-02-07 2019-09-17 엘지전자 주식회사 Linerar motor and linear compressor having the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314969U (en) * 1989-06-27 1991-02-14
EP0580117A2 (en) * 1992-07-20 1994-01-26 TDK Corporation Moving magnet-type actuator
JPH11155274A (en) * 1997-11-21 1999-06-08 Star Micronics Co Ltd Vibration device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314969U (en) * 1989-06-27 1991-02-14
EP0580117A2 (en) * 1992-07-20 1994-01-26 TDK Corporation Moving magnet-type actuator
JPH11155274A (en) * 1997-11-21 1999-06-08 Star Micronics Co Ltd Vibration device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10310448B4 (en) * 2002-03-07 2013-11-21 Eto Magnetic Gmbh Electromagnetic actuator
GB2453839A (en) * 2007-10-30 2009-04-22 Sheppard & Charnley Ltd An electromagnetic actuator assembly
JP2012121544A (en) * 2010-11-16 2012-06-28 Jtekt Corp Lock device and electric power steering device
CN105896870A (en) * 2016-05-26 2016-08-24 歌尔声学股份有限公司 Linear vibration motor
EP3745568A1 (en) * 2019-05-31 2020-12-02 Minebea Mitsumi Inc. Vibration actuator and electronic device
US11394285B2 (en) 2019-05-31 2022-07-19 Minebea Mitsumi Inc. Vibration actuator and electronic device
EP4160886A1 (en) * 2019-05-31 2023-04-05 Minebea Mitsumi Inc. Vibration actuator and electronic device

Also Published As

Publication number Publication date
JP2003174759A (en) 2003-06-20

Similar Documents

Publication Publication Date Title
US6249198B1 (en) Magnetic actuator
US6879064B2 (en) Linear motor and linear-motor based compressor
US6914351B2 (en) Linear electrical machine for electric power generation or motive drive
JP3303196B2 (en) Linear magnetic actuator
WO2002091551A1 (en) Magnetically driving apparatus
KR100442676B1 (en) Magnet movable electromagnetic actuator
JP3863429B2 (en) Linear vibration actuator
JP3927089B2 (en) Linear actuator, pump device and compressor device using the same
WO2006028126A1 (en) Electromagnetic actuator
JP4184273B2 (en) Electric converter, linear compressor and wireless transmission antenna
JP2004088884A (en) Linear vibration electric machine
WO1998019383A1 (en) Vibration generator
JP2001078417A (en) Linear actuator
JP2000224829A (en) Linear vibration actuator
JP2005261173A (en) Reciprocating linear driver
JP3873764B2 (en) Linear actuator
JP3649891B2 (en) Single-winding linear vibration actuator
JPH10146035A (en) Mounting structure of vibrator
JPH063190B2 (en) Electromagnetic pump drive
JPH10146564A (en) Magnet moving type vibrator and compressor with vibrator
WO2022181490A1 (en) Electromechanical converter
JPH0642464A (en) Cylindrical type electromagnetic vibrating pump
JP2003304674A (en) Linear actuator
JPH0421074B2 (en)
JP2003235232A (en) Linear actuator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC

122 Ep: pct application non-entry in european phase