WO1998019383A1 - Vibration generator - Google Patents

Vibration generator Download PDF

Info

Publication number
WO1998019383A1
WO1998019383A1 PCT/JP1997/003886 JP9703886W WO9819383A1 WO 1998019383 A1 WO1998019383 A1 WO 1998019383A1 JP 9703886 W JP9703886 W JP 9703886W WO 9819383 A1 WO9819383 A1 WO 9819383A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
vibration generator
coil
generator according
housing
Prior art date
Application number
PCT/JP1997/003886
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Nakazaki
Nobutaka Nakamura
Masayuki Mouri
Takafumi Yamamoto
Kazushige Matsuoka
Taisuke Ueda
Original Assignee
Omron Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corporation filed Critical Omron Corporation
Publication of WO1998019383A1 publication Critical patent/WO1998019383A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system

Definitions

  • the present invention relates to a vibration generator for a vibration calling device used for a pager, a cellular phone, and the like.
  • vibration generators using movable permanent magnets have been proposed for these devices.
  • the movable part is sealed with the lower yoke 44 and the upper yoke 43 at both ends of the case 41 via the mouth spring springs 48 and the upper spring springs 45 arranged on both end faces of the movable part.
  • a loosely fixed housing 43 and a low-frequency oscillation circuit 40 are integrally fixed. Then, vibration is generated by applying a low-frequency current to the drive coil 44 (Japanese Utility Model Laid-open No. 5-284864, Japanese Utility Model No. 5-61058).
  • the permanent magnet which is In order to vibrate in the case, the repulsive force of the spring generated by the contact between the spring and the permanent magnet is used. For this reason, there is a limit to the frequency that the vibration generator can follow.
  • the length of the cylindrical case since it is necessary to add the length of the cylindrical case to the vibration range by the number of turns of the spring as the length of the cylindrical case, there is a limit to miniaturization.
  • the service life was limited due to the fatigue characteristics of the spring.
  • the present invention has been made in view of the above problems, and has as its object to provide a vibration generator that can vibrate up to a high frequency, and that can be downsized and have a long life. Disclosure of the invention
  • a vibration generator of the present invention comprises: a permanent magnet movable in a passage formed in a housing; A coil for applying a driving force to the permanent magnet by applying a signal; and a magnetic repulsion unit provided on at least one side of the passage and applying a magnetic repulsive force to the proximity of the permanent magnet; It is equipped with.
  • a driving force is applied to the permanent magnet by the magnetic field of the coil each time a pulse is applied to the coil.
  • the driving force causes the permanent magnet to move in the housing below the coil.
  • the permanent magnet receives repulsion in the direction opposite to the direction of movement due to the magnetic force of the magnetic repulsion means as it moves right or left. Therefore, each time the coil is turned on or off, the position of the permanent magnet determines the direction of the force applied to the permanent magnet.
  • the permanent magnet reciprocates in the housing in response to the ON / OFF of the coil, and vibrates even at a high frequency.
  • a permanent magnet is housed in the housing, a repulsion means is provided at at least one end in the housing, and a drive coil for energizing a pulse is provided on the outer periphery of the housing. Then, the attractive force and the repulsive force of the drive coil and the repulsive force of the magnetic repulsive means act on the mover, which is a permanent magnet, to vibrate the permanent magnet. For this reason, power consumption is small and a small vibration generator can be manufactured at low cost. Further, since the movable permanent magnet does not come into contact with the magnetic repulsion means, a long-life vibration generator can be obtained.
  • a second feature of the present invention is that the coil includes at least two coils that apply a forward and a reverse magnetic field to the permanent magnet when a pulse signal is applied.
  • a third feature is that the magnetic repulsion means is composed of a permanent magnet disposed on one side of the housing.
  • a fourth feature is that the magnetic repulsion means is a permanent magnet, is disposed on both sides of the movable permanent magnet, and has different magnetic forces.
  • a fifth feature is that the inner diameter of the housing is configured to be larger at the cylinder end than at the center of the cylinder, and a permanent magnet having an outer diameter larger than the inner diameter of the center of the cylinder is magnetically repelled within the cylinder end. That is, it was mounted as a means.
  • a sixth feature is that the magnetic repulsion means is composed of another coil different from a driving coil provided outside one end of the housing.
  • the seventh feature is that another coil different from the coil that provides the driving force turns ON in response to a request signal from the outside.
  • An eighth feature is that the casing has an arc shape in a side view.
  • a ninth feature is that the pulse signal that applies a driving force to the coil is an alternating signal whose polarity alternates between positive and negative.
  • a tenth feature is that the movable permanent magnet is configured to move two permanent magnets in the axial direction. Are joined through a non-magnetic material.
  • a first feature is that a ventilation hole is provided for communicating the passage of the housing with the outside of the housing.
  • the permanent magnet hardly receives air resistance (movement resistance) when moving in the passage, the permanent magnet moves smoothly, and the magnetic efficiency with respect to the permanent magnet improves.
  • a first feature is that the ventilation holes are provided at both ends of the passage.
  • the permanent magnet is less susceptible to air resistance in the forward and return paths, and the magnetic efficiency for the permanent magnet is further improved.
  • a thirteenth feature is that the housing has a ventilation passage having a diameter larger than that of the movable permanent magnet in the vicinity of the magnetic repulsion means, and the ventilation hole is provided with the ventilation passage. Communication with the use passage.
  • air can be efficiently taken in and out of the passage and the outside of the spool when the permanent magnet reciprocates.
  • a fourteenth feature is that the frequency of a pulse signal for applying a driving force to the coil is switched so as to increase stepwise as the operation time elapses.
  • FIG. 1 is an external perspective view of a vibration generator showing a first embodiment of the present invention.
  • FIG. 2 is an internal structural view showing the vibration generator according to the first embodiment, partially cut away.
  • FIG. 3 is a cross-sectional view of the vibration generator according to the first embodiment.
  • FIGS. 4A to 4C are diagrams showing positions of movable permanent magnets for explaining the operation principle of the vibration generator according to the first embodiment.
  • 5A to 5D are diagrams showing positions of movable permanent magnets for explaining the operation principle of the vibration generator according to the first embodiment.
  • FIG. 6 is a diagram illustrating the force applied to the movable permanent magnet from the magnetic field of the coil and the magnetic field of the fixed permanent magnet for explaining the operation principle of the vibration generator according to the first embodiment.
  • FIG. 7 is a diagram illustrating the force applied to the movable permanent magnet from the magnetic field of the coil and the magnetic field of the fixed permanent magnet for explaining the operation principle of the vibration generator according to the first embodiment.
  • FIG. 8 is a diagram illustrating the force applied to the movable permanent magnet from the magnetic field of the coil and the magnetic field of the fixed permanent magnet for explaining the operation principle of the vibration generator according to the first embodiment.
  • FIG. 9 is an external perspective view of a vibration generator according to the second embodiment of the present invention.
  • FIG. 10 is an internal structural diagram showing the vibration generator according to the second embodiment, partially cut away.
  • FIG. 11 is a cross-sectional view of the vibration generator according to the second embodiment.
  • FIG. 12 is a diagram showing a main part of a vibration generator according to a third embodiment of the present invention.
  • FIG. 13 is a diagram showing a schematic configuration of a vibration generator according to a fourth embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a waveform applied to the coil of the vibration generator according to each of the above-described embodiments.
  • FIG. 15 is a cross-sectional view of a vibration generator provided with a shield plate.
  • FIG. 16 is a diagram showing waveforms applied to a coil for describing a vibration generator according to a fifth embodiment of the present invention.
  • FIGS. 17A to 17D are diagrams showing positions of movable permanent magnets for explaining the operation principle of the vibration generator according to the fifth embodiment.
  • FIGS. 18A and 18B are diagrams showing positions of movable permanent magnets for explaining the operation principle of the vibration generator according to the fifth embodiment.
  • FIG. 19 is a diagram showing the force applied to the movable permanent magnet from the magnetic field of the coil and the magnetic field of the fixed permanent magnet for explaining the operation principle of the vibration generator according to the fifth embodiment.
  • FIG. 20 is a diagram showing the force applied to the movable permanent magnet from the magnetic field of the coil and the magnetic field of the fixed permanent magnet to explain the operation principle of the vibration generator according to the fifth embodiment.
  • FIG. 21 is a diagram illustrating a force applied to a movable permanent magnet from a magnetic field of a coil and a magnetic field of a fixed permanent magnet to explain the operation principle of the vibration generator according to the fifth embodiment.
  • FIG. 22 is a sectional view of a main part of a vibration generator according to a sixth embodiment of the present invention.
  • FIG. 23 is a side view of the vibration generator according to the sixth embodiment.
  • FIG. 24 is an end view of the vibration generator according to the sixth embodiment.
  • FIG. 25 shows the operation of the vibration generator according to the sixth embodiment.
  • FIG. 9 is a cross-sectional view of a main part for describing a normal state when the flip-flop is turned on.
  • FIG. 26 shows the operation of the vibration generator according to the sixth embodiment.
  • FIG. 3 is a cross-sectional view of a main part for describing the direction of magnetic flux when N is applied.
  • FIG. 27 shows the operation of the vibration generator according to the sixth embodiment.
  • FIG. 4 is a cross-sectional view of a main part for explaining movement of a movable permanent magnet when the position is changed to N.
  • FIG. 28 is a fragmentary cross-sectional view for explaining the operation of the vibration generator according to the sixth embodiment, particularly, the movement of the movable permanent magnet when the switch is turned off.
  • FIG. 29 is a cross-sectional view of the vibration generator when two drive coils are used.
  • FIG. 30 is a diagram showing the magnetic field of the coil and the force applied to the movable permanent magnet from the fixed permanent magnet, for explaining the operation principle of the vibration generator.
  • FIG. 31 is a sectional view of a main part of a vibration generator according to a seventh embodiment of the present invention.
  • FIG. 32 is a side view of the vibration generator according to the seventh embodiment.
  • FIG. 33 is an end view of the vibration generator according to the seventh embodiment.
  • FIG. 34 is a sectional view of a main part of a vibration generator according to an eighth embodiment of the present invention.
  • FIG. 35 is a side view of the vibration generator according to the eighth embodiment.
  • FIG. 36 is an end view of the vibration generator according to the eighth embodiment.
  • FIG. 37 is a cross-sectional view of a vibration generator including a shield plate.
  • FIG. 38A and FIG. 38B are diagrams illustrating the operation of the vibration generator according to the ninth embodiment of the present invention.
  • FIG. 39 is a waveform diagram for explaining the vibration generator according to the ninth embodiment of the present invention.
  • FIG. 40 is a cross-sectional view showing a conventional vibration generator. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is an external perspective view of a vibration generator showing a first embodiment of the present invention.
  • FIG. 2 is an internal structural view showing the vibration generator of FIG. 1 in a partially cutaway manner.
  • Figure FIG. 3 is a sectional view of the vibration generator of FIG.
  • the vibration generator of the first embodiment includes a housing 1 which is a cylindrical body having an inner space 2, a fixed permanent magnet 3 fixed to one end of the inner space 2 of the housing 1, A fixed permanent magnet 4 fixed to the other end of the cavity 2, a movable permanent magnet 5 movably housed between the fixed permanent magnets 3, 4 of the inner cavity 2, and wound around the outer periphery of the housing 1.
  • the fixed permanent magnet 3 and the fixed permanent magnet 4 have different magnetic forces, and the permanent magnet 3 has a larger magnetic force here. In this way, by making the magnetic force different, the movable permanent magnet 5 is located on the minus side when the drive coil 6 is not energized, so that the initial operation is smooth.
  • the housing 1 has an outer peripheral portion 1c around which the drive coil 6 is wound, and outer peripheral portions 1a, 1b around which the drive coil 6 is not wound.
  • the outer peripheral portion 1c is set to have a smaller diameter than the outer peripheral portions 1a and 1. In this manner, the outer peripheral surface can be made substantially the same as the outer peripheral portions 1a and 1b in a state where the drive coil 6 is wound around the outer peripheral portion 1c. Therefore, a small-sized vibration generator having a small outer diameter can be obtained.
  • the outer peripheral portion 1a is formed shorter in the axial direction than the outer peripheral portion 1b.
  • An outer peripheral portion 1c is formed between the outer peripheral portions 1a and 1b.
  • the inside diameter of both ends of the case 1 to which the fixed permanent magnet 3 and the fixed permanent magnet 4 are fixed is set to be larger than the diameter of the inner space 2. Then, the fixed permanent magnets 3 and 4 having a large diameter and a short length are positioned on both sides of the housing 1. By doing so, a vibration generator having a short length can be obtained as a result.
  • the operation principle of the vibration generator according to the first embodiment will be described with reference to FIGS. 4A to 8.
  • the coil 6 is not energized by a pulse, and when the coil 6 is turned off, the movable permanent magnet 5 is fixed to the magnetic flux of the movable permanent magnet 5 and the fixed permanent magnets disposed so as to face both poles. It is located where the magnetic fluxes 3 and 4 are balanced [Position 1 in FIGS. 4A and 6].
  • the horizontal axis indicates the position of the permanent magnet 5, and the intersection with the vertical axis, that is, the zero point indicates the position where the movable permanent magnet 5 balances when the coil is turned off.
  • the vertical axis indicates the force that the movable permanent magnet 5 receives.
  • Curve A represents the force that the movable permanent magnet 5 receives from the magnetic field of the coil 6.
  • Curve B shows the force that the movable permanent magnet 5 receives from the magnetic field of the fixed permanent magnets 3 and 4 when the coil is turned off.
  • Curve C shows the force that the movable permanent magnet 5 receives from the magnetic field of the coil and the magnetic field of the fixed permanent magnet when the coil is ON.
  • the movable permanent magnet 5 When the movable permanent magnet 5 is present at the position shown in FIG. 4A, a pulse is applied to the coil 6 and when the coil 6 is turned on, the magnetic flux generated in the coil 6 causes the magnetic flux to be out of balance. Therefore, the movable permanent magnet 5 receives a force to the right at the position shown in FIG. 4A, and moves to a position where the magnetic flux is balanced (position ⁇ in FIGS. 4B and 6) with kinetic energy.
  • the movable permanent magnet 5 moves to the position ⁇ [FIG. 5B] in FIG. 7 where the potential energy S 3 is consumed. At this time, the potential energy S 3 of the movable permanent magnet 5 is used for the potential energy S 4 for returning to the position 1 in FIG. 7 and the energy for moving the housing 1.
  • the movable permanent magnet 5 repeats the reciprocating motion while increasing the energy, and the energy for moving the housing 1 increases accordingly. This energy saturates at a certain point and performs stable oscillation. Thus, the movable permanent magnet 5 vibrates in the housing 1.
  • FIG. 9 is an external perspective view of a vibration generator according to the second embodiment of the present invention.
  • FIG. 10 is an internal structural diagram showing the vibration generator of FIG. 9 in a partially cutaway manner.
  • FIG. 11 is a cross-sectional view of the vibration generator shown in FIG.
  • the vibration generator according to the second embodiment includes a housing 1 which is a cylindrical tube having an inner space 2, a fixed permanent magnet 3 fixed to one end of the inner space 2 of the housing 1. , A fixed permanent magnet 4 fixed to the other end of the inner space portion 2, a movable permanent magnet 5 movably housed between the fixed permanent magnets 3, 4 of the inner space portion 2, and an outer periphery of the housing 1.
  • a terminal 8 for energizing the battery.
  • the difference between the vibration generator according to the second embodiment and the vibration generator according to the first embodiment is that the movable permanent magnet 5 is connected to two permanent magnets 5a and 5b by combining them. And a non-magnetic joining member 5c which is formed in an intended manner.
  • the inner diameter of the housing 1 is the same, and the outer circumference has a larger outer diameter at the portion where the drive coil 6 is wound, but this may be the same as in the first embodiment.
  • the vibration generator when the pulse signal is supplied from the pulse power source 7 to the drive coil 6 when the movable permanent magnet 5 is present at the position shown in FIG. 11, the left side of the drive coil 6 The N pole and the S pole are on the right.
  • the movable permanent magnet 5 that is moving to the right in response to the fixed permanent magnet 4 before energization moves the S pole of the permanent magnet 5 b by the N pole of the electromagnetic coil 6 and moves to the right. Since the energization by the pulse signal of the pulse power supply 7 is immediately turned off, the sucked movable permanent magnet 5 moves rightward as it is.
  • FIG. 12 is a diagram showing a housing of a vibration generator according to a third embodiment of the present invention.
  • the basic configuration as a vibration generator is the same as in the first embodiment.
  • the feature of the vibration generator according to this embodiment is that the shape of the housing 1 is an arc shape in a side view using a part of a donut-shaped housing. As a result, not only the horizontal direction but also the vertical direction in the figure can be set as the vibration range.
  • FIG. 13 is a view showing a vibration generator according to a fourth embodiment of the present invention.
  • the feature of the vibration generator according to the fourth embodiment is that a coil is used instead of the fixed permanent magnet of the vibration generator according to the first embodiment.
  • a second coil 13 and a third coil 14 are provided at both ends of the housing 1. It differs from that of the first embodiment in that a movable permanent magnet 5 is provided in the inner space 2 of the housing 1 and a coil 6 is provided on the outer periphery of the housing 1 and is energized and excited by a pulse generator 7. There is no place.
  • the second and third coils 13 and 14 are continuously energized by the DC power supply 10.
  • the second coil 13 performs the same function as the fixed permanent magnet 3
  • the third coil 14 performs the same function as the fixed permanent magnet 4.
  • the vibration action may be considered to be similar to that of the first embodiment.
  • the pulse signal applied to the coil 6 is a voltage of 0 (V) to (V) as shown in FIG.
  • a magnetic flux corresponding to the voltage (V) is generated in the coil 6, and the magnetic flux ⁇ leaks outside.
  • the magnetic information on the magnetic card may be destroyed.
  • shield 15 it is conceivable to cover the entire outer periphery of housing 1 with shield 15 as shown in Fig. 15. Can be In this case, a thick shield plate must be used to shield the large magnetic flux, resulting in a large vibration generator. This is inconsistent with the demand for smaller mobile terminals equipped with vibration generators, and the need for smaller vibration generators accordingly.
  • the pulse voltage applied to the drive coil of the vibration generator according to each of the above-described embodiments is changed from the waveform shown in FIG. 14 to the waveform of the voltage O Ei iV).
  • the alternating voltage in Fig. 16 that changes from l / S Ei to l / 2 Ei may be used.
  • the amount of magnetic flux generated from coil 6 is 1/2 of that in the case of voltage (V). Accordingly, the thickness of the shield plate 15 can be reduced, and the vibration generator can be downsized.
  • the movable permanent magnet 5 When the coil 6 is OFF, the movable permanent magnet 5 is located where the magnetic flux of the movable permanent magnet 5 and the magnetic flux of the fixed permanent magnets 3 and 4 arranged to oppose both poles are balanced (Fig. 17). A and position i in Figure 19).
  • FIG. 22 is a sectional view of a main part of a vibration generator according to a sixth embodiment of the present invention
  • FIG. 23 is a diagram showing the side surface portion
  • FIG. 24 is a diagram showing the same end surface portion.
  • the vibration generator includes a spool 1 which is a cylindrical cylinder having a passage 2 which is an inner space therein, a movable permanent magnet 5 movable in the passage 2 of the spool 1, and a periphery of the spool 1.
  • a magnetic field that gives an attractive force to one magnetic pole side (here, the N pole side) of the movable permanent magnet 5 is generated by applying a pulse signal.
  • Coils 6a and 6b which are magnetic field generating means for generating a magnetic field that gives a repulsive force to the other magnetic pole side (here, the S pole side), and movable permanent magnets provided at both ends of the passage 2 5 is provided with fixed permanent magnets 3 and 4 which are repulsive means for applying a repulsive force to the proximity of 5, and ventilation holes 21 and 22 for communicating the passage 2 with the outside of the spool 1.
  • the movable permanent magnet 5 has a columnar shape, and the left side of the drawing has an N pole and the right side has an S pole.
  • holding plates 3 a and 4 a of permanent magnets are fixed so as to close the openings at both ends of the passage 2.
  • Disk-shaped fixed permanent magnets 3 and 4 are fixed to the holding plates 3 a and 4 a so as to face the movable permanent magnets 5.
  • the fixed permanent magnet 3 has an S pole on the left and an N pole on the right.
  • the fixed permanent magnet 4 has an S pole on the left and an N pole on the right.
  • the magnetic poles of the movable permanent magnet 5 and the fixed permanent magnets 3 and 4 are set so as to repel each other. Of course, the magnetic poles may be opposite to those shown in the figure.
  • the coils 6a, 6b are wound around bobbin equivalent portions on both sides of the center of the spool 1, but the winding directions are opposite to each other and are connected in series.
  • the coils 6 a and 6 b are connected to a pair of coil terminals 23 inserted into a through hole 20 formed in the center of the spool 1. Therefore, a pulse signal is supplied to the coils 6a and 6b through the coil terminals 23.
  • an N-pole magnetic field is generated on the left side of the coil 6b and an S-pole magnetic field is generated on the right side, while an S-pole magnetic field is generated on the left side of the coil 6a.
  • a magnetic field is generated, and a magnetic field of N pole is generated on the right side. Therefore, an attractive force is applied to the N pole side of the movable permanent magnet 5 and a repulsive force is applied to the S pole side.
  • the ventilation holes 21 and 22 are provided at both ends of the passage 2 and open from the outer peripheral surface (side peripheral surface) of the spool 1 to the outside of the spool 1.
  • the spool 1 is provided near the fixed permanent magnets 3 and 4 for ventilation of a diameter larger than the diameter of the passage 2. It has passages 2a and 2b.
  • the ventilation holes 21 and 22 communicate with the ventilation passages 2'a and 2b.
  • four vent holes 21 and 22 are provided at equal angle (90 °) intervals. Accordingly, the passage 2 communicates with the outside of the spool 1 through the ventilation passages 2a and 2b and the ventilation holes 21 and 22 at both ends.
  • a switch 30 equivalently indicates ON / OFF of the pulse signal.
  • switch 30 When switch 30 is ON, it indicates that the pulse signal is being supplied.
  • the pulse signal is, for example, a voltage OE ⁇ V) as shown in FIG. 14 and has the same ON period and OFF period.
  • the switch 30 is normally OFF as shown in FIG. Therefore, based on the relationship between the magnetic poles of the movable permanent magnet 5 and the magnetic poles of the fixed permanent magnets 3 and 4 shown in FIG.
  • the switch 30 is turned on as shown in FIG. 26, as described above, the magnetic field of the N pole is generated on the left side of the coil 6 and the S pole is generated on the right side, while the S pole is generated on the left side of the coil 6a and the magnetic field is generated on the right side.
  • An N-pole magnetic field is generated.
  • the magnetic flux directions of the magnets 3, 4, and 5 are in the lower arrow direction
  • the magnetic flux directions of the coils 6a and 6b are in the upper arrow direction.
  • the movable permanent magnet 5 and the fixed permanent magnet 4 have N poles facing each other. Therefore, when the movable permanent magnet 5 approaches the fixed permanent magnet 4, the movable permanent magnet 5 moves rightward due to the repulsive force as shown in FIG. And movable eternal When the permanent magnet 5 approaches the fixed permanent magnet 3, the S poles of the movable permanent magnet 5 and the fixed permanent magnet 3 face each other, so that the movable permanent magnet 5 moves to the left due to the repulsive force. When the movable permanent magnet 5 reaches almost the center of the passage 2, the switch 30 is turned on again, and the movable permanent magnet 5 is accelerated to the left as described above. By repeating the movement of the movable permanent magnet 5, vibration is amplified and generated, and the entire vibration generator vibrates.
  • the movable permanent magnet 5 reciprocates, air enters and exits between the passage 2 and the outside of the spool 1 through the ventilation holes 21 and 22, so that the movable permanent magnet 5 is less likely to receive air resistance and moves smoothly. I do. That is, when the movable permanent magnet 5 moves to the left side, the left side of the passage 2 with the movable permanent magnet 5 interposed therebetween tends to have a positive pressure, and the right side has a negative pressure. However, the air on the left side of the passage 2 flows out of the spool 1 through the ventilation hole 21, and the air on the right side of the passage 2 flows out of the spool 1 through the ventilation hole 22. When the movable permanent magnet 5 moves to the right, the opposite effect occurs.
  • ventilation holes 21 and 22 are provided at both ends of the passage 2. For this reason, for example, as compared with the case where the movable permanent magnet 5 is provided only on one end side, the movable permanent magnet 5 is less susceptible to air resistance in the forward path and the return path, and the magnetic efficiency for the movable permanent magnet 5 is further improved. Further, the ventilation holes 21 and 22 are provided in the ventilation passages 2 a and 2 b having a diameter larger than the diameter of the passage 2. For this reason, air can flow in and out more efficiently hydrodynamically than, for example, a ventilation passage having a diameter smaller than the diameter of the passage 2.
  • FIG. 29 has the same structure as FIG. 28, and operates in the same manner.
  • the movable permanent magnet 5 When one coil is used, the movable permanent magnet 5 The force received is as shown by curve A in Figure 6. As shown in FIG. 6, the force received by the movable permanent magnet 5 is largest at the end position on the left side from the point 0, and decreases on the right side from the point 0. Further, beyond the position ⁇ in FIG. 6, the magnetic field of the coil exerts a force in a direction that hinders the driving of the movable permanent magnet 5. For this reason, on the left side of the point 0, the energy applied to the movable permanent magnet 5 due to the ON / OFF of the coil greatly increases. On the right side of the zero point, the energy applied to the movable permanent magnet 5 does not increase much.
  • the force that the movable permanent magnet 5 receives from the magnetic field of the coil shown on the left side of the curve A at point 0 is mainly used (that is, the pole surface on one side of the movable permanent magnet 5). Can utilize the magnetic flux).
  • two coils as shown in Fig. 29 (similar to Fig. 22)
  • two coils 6a are used so that the magnetic fluxes of the adjacent coils 6a and 6b face each other.
  • 6b the force received by the movable permanent magnet 5 from the magnetic field of the coil becomes as shown by the curve A in FIG.
  • the force received by the movable permanent magnet 5 does not decrease as shown by the curve A in FIG.
  • the energy applied to the movable permanent magnet 5 by turning on and off the coil is large on the left and right sides of the zero point, and the force received by the movable permanent magnet 5 from the magnetic field of the coil can be used effectively (that is, , The pole faces of the movable permanent magnet 5 are available). Therefore, a greater force can be obtained than when one coil is used.
  • FIG. 31 is a sectional view of a main part of a vibration generator according to a seventh embodiment of the present invention
  • FIG. 32 is a side view thereof
  • FIG. 32 is an end view thereof.
  • This vibration generator has the same structure as that shown in FIG. 22 except that the form of the ventilation holes 21 and 22 is different. That is, the ventilation holes 21 and 22 do not open from the outer peripheral surface of the spool 1 but hold the fixed permanent magnet.
  • the holding plates 3a and 4a open to the outside of the spool 1.
  • the air holes 21 and 22 here have a slit shape formed at equal angular intervals as shown in FIG.
  • the air inflow / outflow action caused by the reciprocating motion of the movable permanent magnet 5 is the same as that in the sixth embodiment.
  • FIG. 34 is a sectional view showing a principal part of a vibration generator according to an eighth embodiment of the present invention.
  • FIG. 35 shows the same side view
  • FIG. 36 shows the same end view.
  • This vibration generator also differs only in the form of the ventilation holes 21 and 22.
  • the ventilation holes 21 and 22 are open from the outer peripheral surface of the spool 1, and are not circular as shown in FIG. 23 but are squares having a large opening area. The air entry / exit action is the same as above.
  • the pulse signals applied to the coils 4 and 5 are as shown in FIG. 0 (V) to E, (V).
  • the leakage of the magnetic flux to the outside becomes large for the same reason as when one coil is used as the drive coil, and there is a possibility that the magnetic information of the magnetic card is destroyed.
  • portable terminals equipped with vibration generators are being miniaturized more and more, which contradicts the demand for smaller vibration generators.
  • the pulse voltage applied to the vibration generator of each of the sixth, seventh, and eighth embodiments obtains the same amount of vibration as the waveform of voltage 0 ⁇ E i (V) as shown in FIG. Therefore, the alternating voltage may be changed from / to E E, (the ninth embodiment).
  • the amount of magnetic flux generated from the coils 6a and 6b is 1/2 that of the case of 0 ⁇ ⁇ , (V).
  • Shield board 1 5 accordingly The thickness can be reduced and the vibration generator can be downsized.
  • the application of the pulse signal to the drive coil is performed by receiving a signal based on a call in the case of a mobile phone or the like.
  • the pulse signal given to the drive coil in each of the above embodiments has a duty ratio of 1: 1 as shown in FIG. 14, and has a constant frequency. If the frequency is increased in each of the above-mentioned vibration generators, the vibration energy will increase, but the maximum vibration will be obtained at about 130 Hz from the relationship with the amount of human perceived vibration.
  • these vibration generators have a maximum continuous response frequency and a maximum self-starting frequency.
  • the maximum continuous response frequency is the frequency of the drive voltage pulse for obtaining the so-called maximum vibration amount, which is about 130 Hz for this vibration generator. Exceeding or rapidly increasing the frequency will cause loss of synchronism and the amount of vibration will drop sharply.
  • the maximum self-starting frequency is the frequency at which step-out does not occur even if driving is suddenly started at that frequency. Naturally, only vibration lower than the maximum continuous response frequency vibration can be obtained. In this vibration generator, it is about 110Hz.
  • the frequency of the pulse signal applied to the drive coil 6 is 105 Hz as shown in FIG. 39, and the next five pulses are 120 Hz as shown in FIG. Then, the next 5 pulses are at 125 Hz, and the continuous oscillation may be 130 Hz at the end, and the frequency may be increased step by step.
  • the vibration generator according to the present invention may be applied to the vibration generator of another embodiment regardless of the above-described embodiment.

Abstract

An inexpensive vibration generator which does not consume much electric power and has a small size and a long service life is provided with fixed permanent magnets (3 and 4) fixed to both ends of a cylindrical enclosure (1), a mobile permanent magnet (5) housed in the hollow section (2) of the enclosure (1), and a driving coil (6) which is provided on the outer circumference of the enclosure (1) to generate magnetism when the coil (6) is energized with electric power from a pulsative power source (7). The generator vibrates when a driving force generated by the changes of the magnetism generated from the coil (6) and magnetic fluxes from the fixed permanent magnets (3 and 4) and mobile permanent magnet (5) is applied to the mover (5) of the mobile permanent magnet (5) to allow the magnet (5) to make reciprocating motions in the hollow section (2) of the enclosure (1).

Description

W 明 細 書 振動発生器 技術分野  W Description Vibration generator Technical field
この発明は、 ポケッ トベルや携帯電話等に用いる振動呼び出し装置用の 振動発生器に関する。 背景技術  The present invention relates to a vibration generator for a vibration calling device used for a pager, a cellular phone, and the like. Background art
近年、 普及しているポケッ トベルや携帯電話等では、 呼び出しのあった ことを所有者に知らせる場合に、 音声を用いると、 近隣に迷惑がかかる。 このため、 振動発生器を用いて呼び出しを知らせるものが増えている。 こ れらの機器に用いられる振動発生器としては、 可動永久磁石を用いたもの がいくつか提案されている。 この種の振動発生器としては、 例えば、 図 4 0に示すように、 非磁性材からなり、 かつ、 外周に段付きの凹部を設けた 筐体ケース 4 1と、 この筐体ケース 4 1の凹部に卷回した駆動コイル 4 2 と、 駆動コイル 4 2の内径に筐体ケース 4 1の長軸方向に着磁した永久磁 石 4 7と一体に重り 4 6を取付けた可動部と、 この可動部の両端面に配し た口ァスプリングばね 4 8およびァッパースプリングばね 4 5を介し、 筐 体ケース 4 1両端のロアヨーク 4 4およびアッパーヨーク 4 3により、 前 記可動部を封止遊嵌固定した筐体 4 3と、 低周波発振回路 4 0とを一体に 固定して構成されたものがある。 そして、 駆動コイル 4 4に低周波電流を 流すことにより振動が発生する (実開平 5— 2 8 4 6 4号、 実開平 5— 6 0 1 5 8号) 。  In recent years, in the case of pagers and mobile phones that have become widespread, using voice to inform the owner that a call has been made may cause annoyance to nearby people. For this reason, the use of a vibration generator to notify a call is increasing. Several types of vibration generators using movable permanent magnets have been proposed for these devices. As this type of vibration generator, for example, as shown in FIG. 40, a case 41 made of a non-magnetic material and having a stepped recess on the outer periphery, A drive coil 42 wound around the concave portion, and a movable part having a weight 46 attached integrally to a permanent magnet 47 magnetized in the longitudinal direction of the housing case 41 on the inner diameter of the drive coil 42. The movable part is sealed with the lower yoke 44 and the upper yoke 43 at both ends of the case 41 via the mouth spring springs 48 and the upper spring springs 45 arranged on both end faces of the movable part. There is a case in which a loosely fixed housing 43 and a low-frequency oscillation circuit 40 are integrally fixed. Then, vibration is generated by applying a low-frequency current to the drive coil 44 (Japanese Utility Model Laid-open No. 5-284864, Japanese Utility Model No. 5-61058).
しかしながら、 前述の振動発生器では、 可動子である永久磁石を筒体 ケース内で振動させるため、 スプリングと永久磁石との接触によって生じ るスプリングの反発力を利用している。 このため、 前記振動発生器では追 従できる周波数に限界がある。 また、 筒体ケースの長さ寸法としてスプリ ングの卷数分だけ筒方向の長さ寸法を振動範囲に加える必要があるので、 小型化に限界がある。 さらに、 スプリングの疲労特性から長寿命化にも限 界があるという問題があった。 However, in the above-mentioned vibration generator, the permanent magnet which is In order to vibrate in the case, the repulsive force of the spring generated by the contact between the spring and the permanent magnet is used. For this reason, there is a limit to the frequency that the vibration generator can follow. In addition, since it is necessary to add the length of the cylindrical case to the vibration range by the number of turns of the spring as the length of the cylindrical case, there is a limit to miniaturization. In addition, there was a problem that the service life was limited due to the fatigue characteristics of the spring.
この発明は前記問題点に着目してなされたものであって、 高い周波数ま で振動が可能であり、 小型化、 長寿命化を実現し得る振動発生器を提供す ることを目的としている。 発明の開示  The present invention has been made in view of the above problems, and has as its object to provide a vibration generator that can vibrate up to a high frequency, and that can be downsized and have a long life. Disclosure of the invention
前記目的を達成するため、 本発明の第 1の特徴は、 この発明の振動発生 器は、 筐体に形成された通路内を移動可能な永久磁石と、 前記通路の周囲 に卷回され、 パルス信号の通電により、 前記永久磁石に対して駆動力を与 えるコイルと、 前記通路の少なくとも一方側に設けられ、 前記永久磁石の 近接に対して磁気的な反発力を与える磁気的反発手段と、 を備えているこ とである。  In order to achieve the above object, a first feature of the present invention is that a vibration generator of the present invention comprises: a permanent magnet movable in a passage formed in a housing; A coil for applying a driving force to the permanent magnet by applying a signal; and a magnetic repulsion unit provided on at least one side of the passage and applying a magnetic repulsive force to the proximity of the permanent magnet; It is equipped with.
本発明の第 1の特徴によれば、 この振動発生器では、 コイルにパルス通 電する度に、 このコイルの磁界により、 永久磁石に駆動力が与えられる。 そして、 この駆動力により、 コイル下の筐体内を永久磁石が移動する。 ま た、 右あるいは左への移動の進行で、 磁気的反発手段の磁気力により、 永 久磁石は移動方向と反対方向に反発を受ける。 このため、 コイルが O Nま たは O F Fされる毎に、 永久磁石の位置により、 永久磁石に加えられる力 の方向が決まる。 この結果、 コイルの O N/0 F Fに応じて永久磁石が筐 体内を往復運動するので、 高い周波数でも振動する。 また、 筐体内に永久磁石を収納する一方、 筐体内の少なくとも一方端 に反発手段を備え、 かつ、 筐体外周にパルス通電する駆動コイルを設けて ある。 そして、 永久磁石である可動子には駆動コイルによる吸引力、 反発 力と、 磁気的反発手段による反発力とが作用し、 永久磁石を振動させる。 このため、 電力消費が少なく、 小型の振動発生器を安価に製造できる。 さらに、 移動可能な永久磁石と磁気的反発手段とは接触しないので、 長寿命の振動発生器を得ることができる。 According to the first feature of the present invention, in this vibration generator, a driving force is applied to the permanent magnet by the magnetic field of the coil each time a pulse is applied to the coil. The driving force causes the permanent magnet to move in the housing below the coil. In addition, the permanent magnet receives repulsion in the direction opposite to the direction of movement due to the magnetic force of the magnetic repulsion means as it moves right or left. Therefore, each time the coil is turned on or off, the position of the permanent magnet determines the direction of the force applied to the permanent magnet. As a result, the permanent magnet reciprocates in the housing in response to the ON / OFF of the coil, and vibrates even at a high frequency. In addition, a permanent magnet is housed in the housing, a repulsion means is provided at at least one end in the housing, and a drive coil for energizing a pulse is provided on the outer periphery of the housing. Then, the attractive force and the repulsive force of the drive coil and the repulsive force of the magnetic repulsive means act on the mover, which is a permanent magnet, to vibrate the permanent magnet. For this reason, power consumption is small and a small vibration generator can be manufactured at low cost. Further, since the movable permanent magnet does not come into contact with the magnetic repulsion means, a long-life vibration generator can be obtained.
本発明の第 2の特徴は、 前記コイルが、 パルス信号の通電により、 前 記永久磁石に順方向及び逆方向の磁界を与える少なくとも 2つのコイルか らなることである。  A second feature of the present invention is that the coil includes at least two coils that apply a forward and a reverse magnetic field to the permanent magnet when a pulse signal is applied.
第 3の特徴は、 前記磁気的反発手段が、 筐体の一方側に配置された永久 磁石からなることである。  A third feature is that the magnetic repulsion means is composed of a permanent magnet disposed on one side of the housing.
第 4の特徴は、 前記磁気的反発手段が、 永久磁石であり、 前記移動可能 な永久磁石の両側に配置され、 それそれ異なる磁力を有することである。 第 5の特徴は、 前記筐体の内径が筒中央部よりも筒端で大となるように 構成され、 筒端内に、 筒中央部の内径よりも外径が大きい永久磁石を磁気 的反発手段として装着したことである。  A fourth feature is that the magnetic repulsion means is a permanent magnet, is disposed on both sides of the movable permanent magnet, and has different magnetic forces. A fifth feature is that the inner diameter of the housing is configured to be larger at the cylinder end than at the center of the cylinder, and a permanent magnet having an outer diameter larger than the inner diameter of the center of the cylinder is magnetically repelled within the cylinder end. That is, it was mounted as a means.
第 6の特徴は、 前記磁気的反発手段が、 筐体の一端外部に設けられた駆 動力を与えるコイルと異なる他のコイルからなることである。  A sixth feature is that the magnetic repulsion means is composed of another coil different from a driving coil provided outside one end of the housing.
第 7 の特徴は、 駆動力を与えるコイルと異なる他のコイルが、 外部か らの要請信号に応じて O Nすることである。  The seventh feature is that another coil different from the coil that provides the driving force turns ON in response to a request signal from the outside.
第 8の特徴は、 前記筐体が側面視円弧状のものであることである。 第 9の特徴は、 前記コイルに駆動力を与えるパルス信号が、 正負交互に 極性が変化する交番信号であることである。  An eighth feature is that the casing has an arc shape in a side view. A ninth feature is that the pulse signal that applies a driving force to the coil is an alternating signal whose polarity alternates between positive and negative.
第 1 0の特徴は、 前記移動可能な永久磁石が、 2つの永久磁石を軸方向 に非磁性材を介して接合したものであることである。 A tenth feature is that the movable permanent magnet is configured to move two permanent magnets in the axial direction. Are joined through a non-magnetic material.
第 1 1の特徴は、 前記筐体の通路と筐体外部とを連通する通気孔を備 えたことである。  A first feature is that a ventilation hole is provided for communicating the passage of the housing with the outside of the housing.
第 1 1の特徴によれば、 永久磁石が通路を移動するときに空気抵抗 (動 作抵抗)を受け難く、 永久磁石がスムーズに移動し、 永久磁石に対する磁 気効率が良くなる。  According to the eleventh feature, the permanent magnet hardly receives air resistance (movement resistance) when moving in the passage, the permanent magnet moves smoothly, and the magnetic efficiency with respect to the permanent magnet improves.
第 1 2の特徴は、 前記通気孔が、 前記通路の両端側にそれそれ設けら れていることである。  A first feature is that the ventilation holes are provided at both ends of the passage.
第 1 2の特徴によれば、 永久磁石が往路、 復路で空気抵抗をより受け 難くなり、 永久磁石に対する磁気効率がより一層良くなる。  According to the first and second features, the permanent magnet is less susceptible to air resistance in the forward and return paths, and the magnetic efficiency for the permanent magnet is further improved.
第 1 3の特徴は、 前記筐体が、 前記磁気的反発手段の近傍に、 移動可 能な永久磁石の通路径ょりも大きい径の通気用通路を有し、前記通気孔が、 その通気用通路に連通していることである。  A thirteenth feature is that the housing has a ventilation passage having a diameter larger than that of the movable permanent magnet in the vicinity of the magnetic repulsion means, and the ventilation hole is provided with the ventilation passage. Communication with the use passage.
第 1 3の特徴によれば、 永久磁石が往復運動するときの通路とスプー ル外部との空気の出し入れが効率良く行われる。  According to the thirteenth feature, air can be efficiently taken in and out of the passage and the outside of the spool when the permanent magnet reciprocates.
第 1 4の特徴は、 前記コイルに駆動力を与えるパルス信号が、 その周波 数を動作時間の経過とともに段階的に高くなるように切り替えられること である。  A fourteenth feature is that the frequency of a pulse signal for applying a driving force to the coil is switched so as to increase stepwise as the operation time elapses.
第 1 4の特徴によれば、 所有者にソフ 卜な振動を与えることができると ともに、 脱調を防止できるという効果がある。 図面の簡単な説明  According to the fourteenth feature, there is an effect that a soft vibration can be given to the owner and step-out can be prevented. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 この発明の第 1実施形態を示す振動発生器の外観斜視図である。 図 2は、 第 1実施形態に係る振動発生器を部分的に切欠いて示す内部構 造図である。 図 3は、 第 1実施形態を示す振動発生器の断面図である。 FIG. 1 is an external perspective view of a vibration generator showing a first embodiment of the present invention. FIG. 2 is an internal structural view showing the vibration generator according to the first embodiment, partially cut away. FIG. 3 is a cross-sectional view of the vibration generator according to the first embodiment.
図 4 Aないし図 4 Cは、 第 1実施形態に係る振動発生器の動作原理を説 明するための可動永久磁石の位置を示す図である。  FIGS. 4A to 4C are diagrams showing positions of movable permanent magnets for explaining the operation principle of the vibration generator according to the first embodiment.
図 5 Aないし図 5 Dは、 第 1実施形態に係る振動発生器の動作原理を説 明するための可動永久磁石の位置を示す図である。  5A to 5D are diagrams showing positions of movable permanent magnets for explaining the operation principle of the vibration generator according to the first embodiment.
図 6は、 第 1実施形態に係る振動発生器の動作原理を説明するため、 コ ィルの磁界および固定永久磁石の磁界から可動永久磁石が受ける力を示す 図である。  FIG. 6 is a diagram illustrating the force applied to the movable permanent magnet from the magnetic field of the coil and the magnetic field of the fixed permanent magnet for explaining the operation principle of the vibration generator according to the first embodiment.
図 7は、 第 1実施形態に係る振動発生器の動作原理を説明するため、 コ ィルの磁界および固定永久磁石の磁界から可動永久磁石が受ける力を示す 図である。  FIG. 7 is a diagram illustrating the force applied to the movable permanent magnet from the magnetic field of the coil and the magnetic field of the fixed permanent magnet for explaining the operation principle of the vibration generator according to the first embodiment.
図 8は、 第 1実施形態に係る振動発生器の動作原理を説明するため、 コ ィルの磁界および固定永久磁石の磁界から可動永久磁石が受ける力を示す 図である。  FIG. 8 is a diagram illustrating the force applied to the movable permanent magnet from the magnetic field of the coil and the magnetic field of the fixed permanent magnet for explaining the operation principle of the vibration generator according to the first embodiment.
図 9は、この発明の第 2実施形態を示す振動発生器の外観斜視図である。 図 1 0は、 第 2実施形態に係る振動発生器を部分的に切欠いて示す内部 構造図である。  FIG. 9 is an external perspective view of a vibration generator according to the second embodiment of the present invention. FIG. 10 is an internal structural diagram showing the vibration generator according to the second embodiment, partially cut away.
図 1 1は、 第 2実施形態に係る振動発生器の断面図である。  FIG. 11 is a cross-sectional view of the vibration generator according to the second embodiment.
図 1 2は、 この発明の第 3実施形態に係る振動発生器の要部を示す図で ある。  FIG. 12 is a diagram showing a main part of a vibration generator according to a third embodiment of the present invention.
図 1 3は、 この発明の第 4実施形態に係る振動発生器の概略構成を示す 図である。  FIG. 13 is a diagram showing a schematic configuration of a vibration generator according to a fourth embodiment of the present invention.
図 1 4は、 前述の各実施形態に係る振動発生器のコイルに対する印加波 形を示す図である。  FIG. 14 is a diagram illustrating a waveform applied to the coil of the vibration generator according to each of the above-described embodiments.
図 1 5は、 シールド板を備えた振動発生器の断面図である。 図 1 6は、 この発明の第 5実施形態に係る振動発生器を説明するための コイルに対する印加波形を示す図である。 FIG. 15 is a cross-sectional view of a vibration generator provided with a shield plate. FIG. 16 is a diagram showing waveforms applied to a coil for describing a vibration generator according to a fifth embodiment of the present invention.
図 1 7 Aないし図 1 7 Dは、 第 5実施形態に係る振動発生器の動作原理 を説明するための可動永久磁石の位置を示す図である。  FIGS. 17A to 17D are diagrams showing positions of movable permanent magnets for explaining the operation principle of the vibration generator according to the fifth embodiment.
図 1 8 Aおよび図 1 8 Bは、 第 5実施形態に係る振動発生器の動作原理 を説明するための可動永久磁石の位置を示す図である。  FIGS. 18A and 18B are diagrams showing positions of movable permanent magnets for explaining the operation principle of the vibration generator according to the fifth embodiment.
図 1 9は、 第 5実施形態に係る振動発生器の動作原理を説明するため、 コィルの磁界および固定永久磁石の磁界から可動永久磁石が受ける力を示 す図である。  FIG. 19 is a diagram showing the force applied to the movable permanent magnet from the magnetic field of the coil and the magnetic field of the fixed permanent magnet for explaining the operation principle of the vibration generator according to the fifth embodiment.
図 2 0は、 第 5実施形態に係る振動発生器の動作原理を説明するため、 コイルの磁界および固定永久磁石の磁界から可動永久磁石が受ける力を示 す図である。  FIG. 20 is a diagram showing the force applied to the movable permanent magnet from the magnetic field of the coil and the magnetic field of the fixed permanent magnet to explain the operation principle of the vibration generator according to the fifth embodiment.
図 2 1は、 第 5実施形態に係る振動発生器の動作原理を説明するため、 コイルの磁界および固定永久磁石の磁界から可動永久磁石が受ける力を示 す図である。  FIG. 21 is a diagram illustrating a force applied to a movable permanent magnet from a magnetic field of a coil and a magnetic field of a fixed permanent magnet to explain the operation principle of the vibration generator according to the fifth embodiment.
図 2 2は、 この発明の第 6実施形態に係る振動発生器の要部断面図であ る。  FIG. 22 is a sectional view of a main part of a vibration generator according to a sixth embodiment of the present invention.
図 2 3は、 第 6実施形態に係る振動発生器の側面図である。  FIG. 23 is a side view of the vibration generator according to the sixth embodiment.
図 2 4は、 第 6実施形態に係る振動発生器の端面図である。  FIG. 24 is an end view of the vibration generator according to the sixth embodiment.
図 2 5は、 第 6実施形態に係る振動発生器の動作、 特に、 スィッチを 0 FIG. 25 shows the operation of the vibration generator according to the sixth embodiment.
F Fしたときの通常の状態を説明するための要部断面図である。 FIG. 9 is a cross-sectional view of a main part for describing a normal state when the flip-flop is turned on.
図 2 6は、 第 6実施形態に係る振動発生器の動作、 特に、 スィッチを 0 FIG. 26 shows the operation of the vibration generator according to the sixth embodiment.
Nしたときの磁束の方向を説明するための要部断面図である。 FIG. 3 is a cross-sectional view of a main part for describing the direction of magnetic flux when N is applied.
図 2 7は、 第 6実施形態に係る振動発生器の動作、 特に、 スィッチを 0 FIG. 27 shows the operation of the vibration generator according to the sixth embodiment.
Nしたときの可動永久磁石の移動を説明するための要部断面図である。 図 2 8は、 第 6実施形態に係る振動発生器の動作、 特に、 スィッチを 0 F Fしたときの可動永久磁石の移動を説明するための要部断面図である。 図 2 9は、駆動コイルを 2個使用した場合の振動発生器の断面図である。 図 3 0は、 前記振動発生器の動作原理を説明するため、 コイルの磁界お よび固定永久磁石から可動永久磁石が受ける力を示す図である。 FIG. 4 is a cross-sectional view of a main part for explaining movement of a movable permanent magnet when the position is changed to N. FIG. 28 is a fragmentary cross-sectional view for explaining the operation of the vibration generator according to the sixth embodiment, particularly, the movement of the movable permanent magnet when the switch is turned off. FIG. 29 is a cross-sectional view of the vibration generator when two drive coils are used. FIG. 30 is a diagram showing the magnetic field of the coil and the force applied to the movable permanent magnet from the fixed permanent magnet, for explaining the operation principle of the vibration generator.
図 3 1は、 この発明の第 7実施形態に係る振動発生器の要部断面図であ る。  FIG. 31 is a sectional view of a main part of a vibration generator according to a seventh embodiment of the present invention.
図 3 2は、 第 7実施形態に係る振動発生器の側面図である。  FIG. 32 is a side view of the vibration generator according to the seventh embodiment.
図 3 3は、 第 7実施形態に係る振動発生器の端面図である。  FIG. 33 is an end view of the vibration generator according to the seventh embodiment.
図 3 4は、 この発明の第 8実施形態に係る振動発生器の要部断面図であ る。  FIG. 34 is a sectional view of a main part of a vibration generator according to an eighth embodiment of the present invention.
図 3 5は、 第 8実施形態に係る振動発生器の側面図である。  FIG. 35 is a side view of the vibration generator according to the eighth embodiment.
図 3 6は、 第 8実施形態に係る振動発生器の端面図である。  FIG. 36 is an end view of the vibration generator according to the eighth embodiment.
図 3 7は、 シールド板を備えた振動発生器の断面図である。  FIG. 37 is a cross-sectional view of a vibration generator including a shield plate.
図 3 8 Aおよび図 3 8 Bは、 この発明の第 9実施形態に係る振動発生器 の動作を説明する図である。  FIG. 38A and FIG. 38B are diagrams illustrating the operation of the vibration generator according to the ninth embodiment of the present invention.
図 3 9は、 この発明の第 9実施形態に係る振動発生器を説明するための 波形図である。  FIG. 39 is a waveform diagram for explaining the vibration generator according to the ninth embodiment of the present invention.
図 4 0は、 従来の振動発生器を示す断面図である。 発明を実施するための最良の形態  FIG. 40 is a cross-sectional view showing a conventional vibration generator. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明にかかる実施形態を図 1ないし図 3 9の添付図面に従って 詳細に説明する。  Hereinafter, embodiments according to the present invention will be described in detail with reference to the accompanying drawings of FIGS. 1 to 39.
図 1は、この発明の第 1実施形態を示す振動発生器の外観斜視図である。 図 2は、 図 1の振動発生器を部分的に切欠いて示す内部構造図である。 図 3は、 図 1の振動発生器の断面図である。 FIG. 1 is an external perspective view of a vibration generator showing a first embodiment of the present invention. FIG. 2 is an internal structural view showing the vibration generator of FIG. 1 in a partially cutaway manner. Figure FIG. 3 is a sectional view of the vibration generator of FIG.
第 1実施形態の振動発生器は、 内空部 2を有する円筒状の筒体である筐 体 1と、 筐体 1の内空部 2の一方端に固着される固定永久磁石 3と、 内空 部 2の他方端に固着される固定永久磁石 4と、 内空部 2のこれら固定永久 磁石 3、 4間で移動可能に収納される可動永久磁石 5と、 筐体 1の外周に 卷回される駆動コイル 6と、 所定の周期でパルス信号を発生するパルス電 源 7と、 このパルス電源 7からのパルス信号を印加して駆動コイル 6に通 電するための端子 8とを備えている。 固定永久磁石 3および固定永久磁石 4は、 それそれ異なる磁力の大きさのものを用いており、 ここでは永久磁 石 3の磁力を大きくしている。 このように、 磁力を異ならせておくことに より、駆動コイル 6の非通電時に可動永久磁石 5がー方側に位置するので、 初期動作がスムーズとなる。  The vibration generator of the first embodiment includes a housing 1 which is a cylindrical body having an inner space 2, a fixed permanent magnet 3 fixed to one end of the inner space 2 of the housing 1, A fixed permanent magnet 4 fixed to the other end of the cavity 2, a movable permanent magnet 5 movably housed between the fixed permanent magnets 3, 4 of the inner cavity 2, and wound around the outer periphery of the housing 1. A driving coil 6, a pulse power supply 7 for generating a pulse signal at a predetermined cycle, and a terminal 8 for applying a pulse signal from the pulse power supply 7 and conducting electricity to the driving coil 6. . The fixed permanent magnet 3 and the fixed permanent magnet 4 have different magnetic forces, and the permanent magnet 3 has a larger magnetic force here. In this way, by making the magnetic force different, the movable permanent magnet 5 is located on the minus side when the drive coil 6 is not energized, so that the initial operation is smooth.
筐体 1は、 駆動コイル 6を巻回する外周部 1 cと、 駆動コイル 6を卷回 しない外周部 1 a、 1 bとを有している。 そして、 外周部 1 cは外周部 1 a、 1 よりも径が小さく設定されている。このようにすることによって、 駆動コイル 6を外周部 1 cに卷回した状態で、 その外周面を外周部 1 a、 l bとほぼ同じとすることができる。 このため、 外径の小さい小型の振動 発生器を得ることができる。 なお、 外周部 1 aは外周部 1 bよりも軸方向 で短く形成されている。 そして、 外周部 1 aと 1 bとの間に外周部 1 cが 形成されている。  The housing 1 has an outer peripheral portion 1c around which the drive coil 6 is wound, and outer peripheral portions 1a, 1b around which the drive coil 6 is not wound. The outer peripheral portion 1c is set to have a smaller diameter than the outer peripheral portions 1a and 1. In this manner, the outer peripheral surface can be made substantially the same as the outer peripheral portions 1a and 1b in a state where the drive coil 6 is wound around the outer peripheral portion 1c. Therefore, a small-sized vibration generator having a small outer diameter can be obtained. The outer peripheral portion 1a is formed shorter in the axial direction than the outer peripheral portion 1b. An outer peripheral portion 1c is formed between the outer peripheral portions 1a and 1b.
また、 筐体 1は、 内空部 2の径に対し、 固定永久磁石 3及び固定永久磁 石 4を固着する筐体 1の両端の内径をより大きく設定してある。 そして、 筐体 1の両側に、 径が大きく、 かつ、 長さの短い固定永久磁石 3、 4の位 置決めを行う。 このようにすることにより、 結果として長さの短い振動発 生器を得ることができる。 次に、 第 1実施形態に係る振動発生器の動作原理を示す図 4 Aないし図 8を用いて説明する。 In the case 1, the inside diameter of both ends of the case 1 to which the fixed permanent magnet 3 and the fixed permanent magnet 4 are fixed is set to be larger than the diameter of the inner space 2. Then, the fixed permanent magnets 3 and 4 having a large diameter and a short length are positioned on both sides of the housing 1. By doing so, a vibration generator having a short length can be obtained as a result. Next, the operation principle of the vibration generator according to the first embodiment will be described with reference to FIGS. 4A to 8.
この振動発生器では、 コイル 6にパルス通電されず、 コイル 6が O F Fの時、 可動永久磁石 5は、 この可動永久磁石 5の磁束と、 その両極に対 向するように配置された固定永久磁石 3、 4の磁束とが釣り合うところに 位置する 〔図 4A及び図 6の位置①〕 。  In this vibration generator, the coil 6 is not energized by a pulse, and when the coil 6 is turned off, the movable permanent magnet 5 is fixed to the magnetic flux of the movable permanent magnet 5 and the fixed permanent magnets disposed so as to face both poles. It is located where the magnetic fluxes 3 and 4 are balanced [Position 1 in FIGS. 4A and 6].
図 6、 図 7、 図 8において、 横軸は永久磁石 5の位置を示し、 縦軸との 交点、 すなわち、 0点はコイル OFF時に可動永久磁石 5が釣り合う位置 を示している。 縦軸は可動永久磁石 5が受ける力を示している。 また、 曲 線 Aは、 コイル 6の磁界から可動永久磁石 5が受ける力を示している。 曲 線 Bは、 コイル OFFの場合に固定永久磁石 3、 4の磁界から可動永久磁 石 5が受ける力を示している。 曲線 Cは、 コイル ONの場合にコイルの磁 界および固定永久磁石の磁界から可動永久磁石 5が受ける力を示している。  6, 7, and 8, the horizontal axis indicates the position of the permanent magnet 5, and the intersection with the vertical axis, that is, the zero point indicates the position where the movable permanent magnet 5 balances when the coil is turned off. The vertical axis indicates the force that the movable permanent magnet 5 receives. Curve A represents the force that the movable permanent magnet 5 receives from the magnetic field of the coil 6. Curve B shows the force that the movable permanent magnet 5 receives from the magnetic field of the fixed permanent magnets 3 and 4 when the coil is turned off. Curve C shows the force that the movable permanent magnet 5 receives from the magnetic field of the coil and the magnetic field of the fixed permanent magnet when the coil is ON.
( 1) 図 4Aで示す位置に可動永久磁石 5が存在する時に、 コイル 6に パルス通電され、 コイル 6が ONすると、 コイル 6内に発生した磁束によ り、 磁束のバランスが崩れる。 このため、 可動永久磁石 5が図 4 Aで示す 位置で右側に力を受け、 磁束の釣り合う位置 〔図 4B及び図 6の位置②〕 まで運動エネルギーを与えられて移動する。  (1) When the movable permanent magnet 5 is present at the position shown in FIG. 4A, a pulse is applied to the coil 6 and when the coil 6 is turned on, the magnetic flux generated in the coil 6 causes the magnetic flux to be out of balance. Therefore, the movable permanent magnet 5 receives a force to the right at the position shown in FIG. 4A, and moves to a position where the magnetic flux is balanced (position の in FIGS. 4B and 6) with kinetic energy.
(2) その後、 可動永久磁石 5は運動エネルギー Si を消費するまで移 動する 〔図 4C、 図 6の位置③〕 。 可動永久磁石 5の持っている運動エネ ルギー は、 図 6の位置②に戻ろうとする位置エネルギー S2 と、 筐体 1を動かす (振動) エネルギーとに使用される。 (2) Thereafter, the movable permanent magnet 5 moves until the kinetic energy Si is consumed [position 3 in FIGS. 4C and 6]. Kinetic energy have the movable permanent magnet 5, and the potential energy S 2 of returning to a position ② in Fig. 6, the housing 1 moves (vibration) is used and energy.
(3) この図 6の位置③でコイル 6の通電が OFFすると、 磁束の釣り 合いの位置は図 7の位置①に再び戻る。 これにより可動永久磁石 5は位置 エネルギー S2 より大きい位置エネルギー S3 を与えられ、 図 7の位置① 〔図 5A〕 まで移動する。 (3) When energization of the coil 6 is turned off at the position (3) in Fig. 6, the magnetic flux balance position returns to the position (2) in Fig. 7 again. Accordingly movable permanent magnets 5 is given a potential energy S 2 is greater than the potential energy S 3, the position of FIG. 7 ① Move to [Fig. 5A].
(4) その後、 位置エネルギー S3 を消費する図 7の位置④ 〔図 5B〕 まで可動永久磁石 5が移動する。 この時、 可動永久磁石 5の持っていた位 置エネルギー S3は図 7の位置①に戻ろうとする位置エネルギー S4 と、 筐体 1を動かすエネルギーとに使用される。 (4) Thereafter, the movable permanent magnet 5 moves to the position の [FIG. 5B] in FIG. 7 where the potential energy S 3 is consumed. At this time, the potential energy S 3 of the movable permanent magnet 5 is used for the potential energy S 4 for returning to the position ① in FIG. 7 and the energy for moving the housing 1.
( 5) この図 7の位置④で、 コイルが ONすると、 磁束の釣り合いの位 置は図 8の位置②に移る。 これにより可動永久磁石 5は S4 より大きなェ ネルギ一 S5 を与えられ、 図 8の位置② 〔図 5C〕 まで移動する。 (5) When the coil is turned on at the position (1) in FIG. 7, the position of the magnetic flux balance moves to the position (2) in FIG. Thus the movable permanent magnet 5 is a profound E Nerugi one S 5 from S 4, it moves the position ② until [Figure 5C] in FIG.
( 6) その後、 エネルギー S5を消費する図 8の位置⑤ 〔図 5D〕 まで 可動永久磁石 5が移動する。 この時、 可動永久磁石 5の持っていたエネル ギ一 S5 は、 図 8の位置②に戻ろうとする位置エネルギー S6 と筐体 1を 動かすエネルギーとに使用される。 (6) Thereafter, the position ⑤ movable permanent magnet 5 until [Figure 5D] in FIG. 8 that consume energy S 5 is moved. At this time, the energy S 5 of the movable permanent magnet 5 is used for the potential energy S 6 for returning to the position ② in FIG. 8 and the energy for moving the housing 1.
以後、 前述の (3) から (6) を繰り返すことにより、 可動永久磁石 5 はエネルギーを増大させながら往復運動を繰り返し、 それに伴い筐体 1を 動かすエネルギーも増大する。 このエネルギーはある点で飽和し、 安定な 振動を行う。 このようにして可動永久磁石 5は筐体 1内で振動する。  Thereafter, by repeating the above (3) to (6), the movable permanent magnet 5 repeats the reciprocating motion while increasing the energy, and the energy for moving the housing 1 increases accordingly. This energy saturates at a certain point and performs stable oscillation. Thus, the movable permanent magnet 5 vibrates in the housing 1.
図 9は、この発明の第 2実施形態を示す振動発生器の外観斜視図である。 図 1 0は、 図 9の振動発生器を部分的に切欠いて示す内部構造図である。 図 1 1は、 図 9に示す振動発生器の断面図である。  FIG. 9 is an external perspective view of a vibration generator according to the second embodiment of the present invention. FIG. 10 is an internal structural diagram showing the vibration generator of FIG. 9 in a partially cutaway manner. FIG. 11 is a cross-sectional view of the vibration generator shown in FIG.
第 2実施形態に係る振動発生器は、 内空部 2を有する円筒状の筒体であ る筐体 1と、 筐体 1の内空部 2の一方端に固着される固定永久磁石 3と、 内空部 2の他方端に固着される固定永久磁石 4と、 内空部 2のこれら固定 永久磁石 3、 4間で移動可能に収納される可動永久磁石 5と、 筐体 1の外 周に卷回される駆動コイル 6と、 所定の周期でパルス信号を発生するパル ス電源 7と、 このパルス電源 7からのパルス信号を印加して駆動コイル 6 に通電するための端子 8とを備えている。 この点で、 第 1実施形態のもの と同様である。 この第 2の実施形態にかかる振動発生器が、 第 1の実施形 態のものと相違する点は、可動永久磁石 5が 2個の永久磁石 5 a、 5 bと、 これらを結合して一体的に形成する非磁性の接合部材 5 cとから構成され ていることである。 なお、 筐体 1の内径は同一であり、 外周は駆動コイル 6を卷回した部分で外径が大きくなっているが、 これについては第 1の実 施形態と同様にしてもよい。 The vibration generator according to the second embodiment includes a housing 1 which is a cylindrical tube having an inner space 2, a fixed permanent magnet 3 fixed to one end of the inner space 2 of the housing 1. , A fixed permanent magnet 4 fixed to the other end of the inner space portion 2, a movable permanent magnet 5 movably housed between the fixed permanent magnets 3, 4 of the inner space portion 2, and an outer periphery of the housing 1. A driving coil 6 wound around the motor, a pulse power supply 7 for generating a pulse signal at a predetermined cycle, and a pulse signal from the pulse power supply 7 And a terminal 8 for energizing the battery. In this respect, it is similar to that of the first embodiment. The difference between the vibration generator according to the second embodiment and the vibration generator according to the first embodiment is that the movable permanent magnet 5 is connected to two permanent magnets 5a and 5b by combining them. And a non-magnetic joining member 5c which is formed in an intended manner. Note that the inner diameter of the housing 1 is the same, and the outer circumference has a larger outer diameter at the portion where the drive coil 6 is wound, but this may be the same as in the first embodiment.
第 2実施形態に係る振動発生器では、 図 1 1に示す位置に可動永久磁石 5が存在する場合に、 パルス電源 7よりパルス信号が駆動コイル 6に通電 されると、 駆動コイル 6の左側が N極、 右側が S極となる。 通電前に固定 永久磁石 4に反発して右側に移動しつつある可動永久磁石 5は、 永久磁石 5 bの S極が電磁コイル 6の N極によって吸引され、 さらに右方に移動す る。 パルス電源 7のパルス信号による通電はすぐに O F Fとなるので、 吸 引された可動永久磁石 5はそのまま右方に移動する。 しかし、 固定永久磁 石 3に近接すると、 その N極と永久磁石 5 aの N極とが反発し合い、 その 反発力で可動永久磁石 5が、 今度は左方に移動する。 反発力により、 可動 永久磁石 5を形成する永久磁石 5 aの S極が駆動コィル 6の左端に接近し た時点で、 駆動コイル 6にパルス通電を行う。 これにより、 既に駆動コィ ル 6の N極と、 永久磁石 5 aの S極とが吸引し合い、 この吸引力により可 動永久磁石 5が、 さらに左方に移動しょうとする。 そして、 すぐに駆動コ ィルの通電が 0 F Fするので、 可動永久磁石 5は駆動コィル 6の磁気力の 影響を受けず、 そのまま左方に移動する。 しかし、 永久磁石 5 bの N極が 固定永久磁石 4の N極に近接すると、 両者の反発により、 今度は可動永久 磁石 5が再び右方向に移動する。 このようにして、 内空部 2内における可 動永久磁石 5の往復移動、 つまり振動が維持される。 この第 2実施形態に 係る振動発生器によれば、 可動永久磁石 5の左右両方向への移動が駆動コ ィル 6のパルス通電によって助長される。 In the vibration generator according to the second embodiment, when the pulse signal is supplied from the pulse power source 7 to the drive coil 6 when the movable permanent magnet 5 is present at the position shown in FIG. 11, the left side of the drive coil 6 The N pole and the S pole are on the right. The movable permanent magnet 5 that is moving to the right in response to the fixed permanent magnet 4 before energization moves the S pole of the permanent magnet 5 b by the N pole of the electromagnetic coil 6 and moves to the right. Since the energization by the pulse signal of the pulse power supply 7 is immediately turned off, the sucked movable permanent magnet 5 moves rightward as it is. However, when approaching the fixed permanent magnet 3, its N pole and the N pole of the permanent magnet 5a repel each other, and the repulsive force causes the movable permanent magnet 5 to move to the left. When the S pole of the permanent magnet 5 a forming the movable permanent magnet 5 approaches the left end of the drive coil 6 due to the repulsive force, pulse current is applied to the drive coil 6. As a result, the N pole of the drive coil 6 and the S pole of the permanent magnet 5a have already attracted each other, and the movable permanent magnet 5 attempts to move further to the left due to this attractive force. Then, since the energization of the drive coil is immediately turned off, the movable permanent magnet 5 moves to the left without being affected by the magnetic force of the drive coil 6. However, when the N pole of the permanent magnet 5 b approaches the N pole of the fixed permanent magnet 4, the repulsion of both causes the movable permanent magnet 5 to move rightward again. In this way, the reciprocating movement of the movable permanent magnet 5 in the inner space 2, that is, the vibration is maintained. In this second embodiment According to such a vibration generator, the movement of the movable permanent magnet 5 in both the left and right directions is promoted by the pulse conduction of the drive coil 6.
図 1 2は、 この発明の第 3の実施形態である振動発生器の筐体を示す図 である。 振動発生器としての基本構成は、 第 1の実施形態と同じである。 この実施形態に係る振動発生器の特徴は、 筐体 1の形状をドーナッツ状の 筐体の一部を用いた側面視、 円弧状としたことである。 これにより、 図に おいて左右方向のみならず、 上下方向も振動域とすることができる。  FIG. 12 is a diagram showing a housing of a vibration generator according to a third embodiment of the present invention. The basic configuration as a vibration generator is the same as in the first embodiment. The feature of the vibration generator according to this embodiment is that the shape of the housing 1 is an arc shape in a side view using a part of a donut-shaped housing. As a result, not only the horizontal direction but also the vertical direction in the figure can be set as the vibration range.
図 1 3は、 この発明の第 4実施形態である振動発生器を示す図である。 この第 4実施形態に係る振動発生器の特徴は、 第 1実施形態に係る振動発 生器の固定永久磁石の代わりにコイルを用いたことである。 図 1 3におい て、 筐体 1の両端部に、 第 2のコイル 1 3と、 第 3のコイル 1 4とを設け ている。 筐体 1の内空部 2内に可動永久磁石 5を備え、 筐体 1の外周にパ ルス発生器 7によって通電され、 励磁されるコイル 6を備える点で、 第 1 実施形態のものと変わるところはない。 携帯電話器に付設されている場合 で、 電話の呼び出しがあると、 直流電源 1 0により、 第 2、 第 3のコイル 1 3、 1 4に連続的に通電される。 そして、 通電の間、 第 2のコイル 1 3 は固定永久磁石 3と、 第 3のコイル 1 4は固定永久磁石 4と同様の機能を 果たす。 振動作用は第 1実施形態のものと同様であると考えてよい。  FIG. 13 is a view showing a vibration generator according to a fourth embodiment of the present invention. The feature of the vibration generator according to the fourth embodiment is that a coil is used instead of the fixed permanent magnet of the vibration generator according to the first embodiment. In FIG. 13, a second coil 13 and a third coil 14 are provided at both ends of the housing 1. It differs from that of the first embodiment in that a movable permanent magnet 5 is provided in the inner space 2 of the housing 1 and a coil 6 is provided on the outer periphery of the housing 1 and is energized and excited by a pulse generator 7. There is no place. In the case where the mobile phone is attached to a mobile phone, when a telephone call is made, the second and third coils 13 and 14 are continuously energized by the DC power supply 10. During energization, the second coil 13 performs the same function as the fixed permanent magnet 3, and the third coil 14 performs the same function as the fixed permanent magnet 4. The vibration action may be considered to be similar to that of the first embodiment.
前記した各実施形態の振動発生器で、コイル 6に印加するパルス信号は、 図 1 4に示すように、 0 (V)から (V)の電圧である。 しかし、 この駆動 信号波形では、 電圧 (V)に相当するだけの磁束 がコイル 6に 発生し、 その磁束 <^ が外部に漏れてしまう。 その結果、 この振動発生器 を搭載した携帯端末器などが磁気カードの近くに置かれた場合などには、 磁気カードの磁気情報を破壊してしまうおそれがある。 その対策として、 図 1 5に示すように、 筐体 1の外周全体をシールド 1 5で覆うことが考え られる。 この場合、 大きな磁束をシールドするために、 厚みの大きいシー ルド板を使用する必要があり、 結果として振動発生器が大きくなってしま う。 これでは、 振動発生器を搭載する携帯端末器がどんどん小型化され、 振動発生器もそれに応じて小型化が要請されていることと相反することに なる。 In the vibration generator of each of the above-described embodiments, the pulse signal applied to the coil 6 is a voltage of 0 (V) to (V) as shown in FIG. However, in this drive signal waveform, a magnetic flux corresponding to the voltage (V) is generated in the coil 6, and the magnetic flux <^ leaks outside. As a result, when a portable terminal equipped with the vibration generator is placed near a magnetic card, the magnetic information on the magnetic card may be destroyed. As a countermeasure, it is conceivable to cover the entire outer periphery of housing 1 with shield 15 as shown in Fig. 15. Can be In this case, a thick shield plate must be used to shield the large magnetic flux, resulting in a large vibration generator. This is inconsistent with the demand for smaller mobile terminals equipped with vibration generators, and the need for smaller vibration generators accordingly.
そこで、 本発明の第 5実施形態の振動発生器には、 前記各実施形態に 係る振動発生器の駆動コイルに印加するパルス電圧を、 図 14に示すもの に代え、 電圧 O Ei iV) の波形と同一振動量を得るため、 — l/S Ei から l/2 Ei に変化する図 1 6の交番電圧とすればよい。 この場合、 コ ィル 6から発生する磁束量は電圧 (V)の場合に比し、 1/2とな る。 それに応じてシールド板 15の厚みを薄くでき、 振動発生器の小型化 を実現できる。  Therefore, in the vibration generator according to the fifth embodiment of the present invention, the pulse voltage applied to the drive coil of the vibration generator according to each of the above-described embodiments is changed from the waveform shown in FIG. 14 to the waveform of the voltage O Ei iV). In order to obtain the same amount of vibration as-, the alternating voltage in Fig. 16 that changes from l / S Ei to l / 2 Ei may be used. In this case, the amount of magnetic flux generated from coil 6 is 1/2 of that in the case of voltage (V). Accordingly, the thickness of the shield plate 15 can be reduced, and the vibration generator can be downsized.
次に、 この振動発生器において、 コイル 6に、 図 1 6に示すような交 番電圧を加えた時の動作原理を説明する。  Next, the principle of operation of the vibration generator when an alternating voltage as shown in FIG. 16 is applied to the coil 6 will be described.
コイル 6が OFFの時、 可動永久磁石 5は、 可動永久磁石 5の磁束と、 その両極に対抗するように配置された固定永久磁石 3、 4の磁束とが釣り 合うところに位置する (図 17 A及び図 19の位置①) 。  When the coil 6 is OFF, the movable permanent magnet 5 is located where the magnetic flux of the movable permanent magnet 5 and the magnetic flux of the fixed permanent magnets 3 and 4 arranged to oppose both poles are balanced (Fig. 17). A and position i in Figure 19).
( 1) コイル 6に + 1/2 Eの電圧を印加すると、 コイル内に発生した 磁束により磁束のバランスが崩れる。 このため、 可動永久磁石 5は図 17 Aで示す矢印方向に力を受け、 磁束の釣り合う位置 (図 1 9の位置②) ま で運動エネルギー S を与えられ、 移動する。  (1) When a voltage of +1/2 E is applied to the coil 6, the magnetic flux generated in the coil causes the magnetic flux to lose its balance. For this reason, the movable permanent magnet 5 receives a force in the direction of the arrow shown in FIG. 17A, is given kinetic energy S to a position where the magnetic flux is balanced (position ② in FIG. 19), and moves.
(2) その後、 可動永久磁石 5は運動エネルギー S iを消費するまで移 動する (図 17B及び図 1 9の位置③) 。 可動永久磁石 5の持っていた運 動エネルギー S iは、 図 1 9の位置②に戻ろうとする位置エネルギー S 2 と、 筐体 1を動かすエネルギーとに使用される。 (3) 可動永久磁石 5が図 1 9の位置③にあるとき、 コイルに— 1/2 Eの電圧を印加すると、 磁束の釣り合いの位置は 0点からずれた図 20の 位置⑤となり、 可動永久磁石 5は S 2より大きな S 3の位置エネルギーを 与えられ、 右側に向かって移動する。 (2) Thereafter, the movable permanent magnet 5 moves until the kinetic energy S i is consumed (position ③ in FIGS. 17B and 19). Exercise energy S i had a movable permanent magnet 5, and the potential energy S 2 of returning to a position ② in Fig. 1 9 is used and the energy to move the housing 1. (3) When the movable permanent magnet 5 is at the position (3) in Fig. 19 and a voltage of-1/2 E is applied to the coil, the position of the magnetic flux is shifted from the zero point to the position (2) in Fig. 20, and the movable The permanent magnet 5 is given a potential energy of S 3 larger than S 2 and moves toward the right side.
(4)図 20の位置④で、再びコイルに + 1/2 Eの電圧を印加すると、 可動永久磁石 5は S3を消費する位置⑥まで移動する。 持っていたエネル ギ一 S 3は、 図 1 9の位置②に戻ろうとする位置エネルギー S4と、 筐体 1を動かすエネルギーとに使用される。 (4) at the position ④ in FIG. 20, again applying a voltage of + 1/2 E to the coil, the movable permanent magnet 5 moves to the position ⑥ to consume S 3. The energy S 3 possessed is used for potential energy S 4 for returning to the position ② in FIG. 19 and energy for moving the housing 1.
(5)この図 20の位置⑥で、 コイルに— 1/2 Eの電圧を印加すると、 再び磁束の釣り合いの位置は図 2 1の位置⑤に移り、 これにより可動永久 磁石 5は S4より大きな S5のエネルギーを与えられ、 左側に移動する。 (5) When a voltage of -1/2 E is applied to the coil at the position の in FIG. 20, the position of the magnetic flux is shifted to the position の in FIG. 21 again, whereby the movable permanent magnet 5 is moved from S 4 given the energy of the large S 5, moves to the left.
( 6 ) 図 2 1の位置④で、 再びコイル 6に + 1/2 Eの電圧を印加する と、 可動永久磁石 5は S5を消費する位置⑦まで移動する。 持っていたェ ネルギ一 S5は、 図 2 1の位置②に戻ろうとする位置エネルギー S 6と、 筐体 1を動かすエネルギーとに使用される。 (6) When a voltage of +1/2 E is again applied to the coil 6 at the position (1) in FIG. 21, the movable permanent magnet 5 moves to the position ( 5 ) where S5 is consumed. The energy S 5 held is used for the potential energy S 6 for returning to the position の in FIG. 21 and the energy for moving the housing 1.
以後、 (3) から (6) を繰り返すことにより、 可動永久磁石 5のエネ ルギ一が増大しながら往復運動を繰り返し、 それに伴い筐体 1を動かすェ ネルギーも増大する。 このようにして可動永久磁石 5は筐体 1内で振動す る。  Thereafter, by repeating the steps (3) to (6), the energy of the movable permanent magnet 5 increases and reciprocates while repeating the reciprocating movement. As a result, the energy for moving the housing 1 increases. Thus, the movable permanent magnet 5 vibrates in the housing 1.
図 22は、 この発明の第 6実施形態を示す振動発生器の要部断面図であ り、図 23は同側面部を示す図であり、図 24は同端面部を示す図である。 この振動発生器は、 内部に内空部である通路 2を有する円筒状の筒体であ るスプール 1と、 このスプール 1の通路 2内を移動可能な可動永久磁石 5 と、 スプール 1の周囲に設けられ、 パルス信号の通電により、 可動永久磁 石 5の一方の磁極側 (ここでは N極側) に吸引力を与える磁界を発生させ ると共に、 他方の磁極側 (ここでは S極側) に反発力を付与する磁界を発 生させる磁界発生手段であるコイル 6 a、 6 bと、 通路 2の両端側に設け られ、 可動永久磁石 5の近接に対して反発力を付与する反発手段である固 定永久磁石 3、 4と、通路 2とスプール 1の外部とを連通する通気孔 2 1、 2 2とを備える。 FIG. 22 is a sectional view of a main part of a vibration generator according to a sixth embodiment of the present invention, FIG. 23 is a diagram showing the side surface portion, and FIG. 24 is a diagram showing the same end surface portion. The vibration generator includes a spool 1 which is a cylindrical cylinder having a passage 2 which is an inner space therein, a movable permanent magnet 5 movable in the passage 2 of the spool 1, and a periphery of the spool 1. A magnetic field that gives an attractive force to one magnetic pole side (here, the N pole side) of the movable permanent magnet 5 is generated by applying a pulse signal. Coils 6a and 6b, which are magnetic field generating means for generating a magnetic field that gives a repulsive force to the other magnetic pole side (here, the S pole side), and movable permanent magnets provided at both ends of the passage 2 5 is provided with fixed permanent magnets 3 and 4 which are repulsive means for applying a repulsive force to the proximity of 5, and ventilation holes 21 and 22 for communicating the passage 2 with the outside of the spool 1.
可動永久磁石 5は、 円柱状を呈し、 図面の左側が N極、 右側が S極にな つている。 通路 2の両端側、 即ちスプール 1の両端には、 それそれ固定永 久磁石の保持板 3 a、 4 aが通路 2の両端開口を塞く、ように取付けられて いる。 保持板 3 a、 4 aに円板状の固定永久磁石 3、 4がそれそれ可動永 久磁石 5に対向するように固定されている。固定永久磁石 3は左側が S極、 右側が N極で、 固定永久磁石 4は左側が S極、 右側が N極である。 可動永 久磁石 5と固定永久磁石 3、 4とは、 それそれ互いに反発し合うように磁 極が設定されている。 勿論、 磁極は図示の例とは反対でも構わない。  The movable permanent magnet 5 has a columnar shape, and the left side of the drawing has an N pole and the right side has an S pole. At both ends of the passage 2, that is, at both ends of the spool 1, holding plates 3 a and 4 a of permanent magnets are fixed so as to close the openings at both ends of the passage 2. Disk-shaped fixed permanent magnets 3 and 4 are fixed to the holding plates 3 a and 4 a so as to face the movable permanent magnets 5. The fixed permanent magnet 3 has an S pole on the left and an N pole on the right. The fixed permanent magnet 4 has an S pole on the left and an N pole on the right. The magnetic poles of the movable permanent magnet 5 and the fixed permanent magnets 3 and 4 are set so as to repel each other. Of course, the magnetic poles may be opposite to those shown in the figure.
コイル 6 a、 6 bは、 スプール 1の中央を挟んでそれそれ両側のボビン 相当部分に卷回されているが、 巻付方向が互いに逆方向になっており、 直 列に接続されている。 コイル 6 a、 6 bは、 スプール 1の中央部分に形成 された貫通孔 2 0に挿通された一対のコイル端子 2 3に接続されている。 このため、 コイル端子 2 3を通じてパルス信号がコイル 6 a、 6 bに通電 される。 ここでは、 コイル 6 a、 6 bに通電した場合、 コイル 6 bの左側 には N極の磁界が、 右側には S極の磁界が発生する一方、 コイル 6 aの左 側には S極の磁界が、 右側には N極の磁界が発生する。 このため、 可動永 久磁石 5の N極側に吸引力が、 S極側に反発力が与えられる。  The coils 6a, 6b are wound around bobbin equivalent portions on both sides of the center of the spool 1, but the winding directions are opposite to each other and are connected in series. The coils 6 a and 6 b are connected to a pair of coil terminals 23 inserted into a through hole 20 formed in the center of the spool 1. Therefore, a pulse signal is supplied to the coils 6a and 6b through the coil terminals 23. Here, when the coils 6a and 6b are energized, an N-pole magnetic field is generated on the left side of the coil 6b and an S-pole magnetic field is generated on the right side, while an S-pole magnetic field is generated on the left side of the coil 6a. A magnetic field is generated, and a magnetic field of N pole is generated on the right side. Therefore, an attractive force is applied to the N pole side of the movable permanent magnet 5 and a repulsive force is applied to the S pole side.
通気孔 2 1、 2 2は、 通路 2の両端側に設けられ、 スプール 1の外周面 (側周面) からスプール 1の外部に開口する。 この実施形態では、 スプー ル 1は、 固定永久磁石 3、 4の近傍に、 通路 2の径より大きい径の通気用 通路 2 a、 2 bを有している。 そして、 通気孔 2 1、 22は通気用通路 2' a、 2 bに連通している。 又、 通気孔 2 1、 22は、 等角度 (90° ) 間 隔を置いてそれそれ 4つ設けられている。 従って、 通路 2は、 その両端側 において、 通気用通路 2 a、 2 b及び通気孔 2 1、 22を通じてスプール 1の外部に連通する。 The ventilation holes 21 and 22 are provided at both ends of the passage 2 and open from the outer peripheral surface (side peripheral surface) of the spool 1 to the outside of the spool 1. In this embodiment, the spool 1 is provided near the fixed permanent magnets 3 and 4 for ventilation of a diameter larger than the diameter of the passage 2. It has passages 2a and 2b. The ventilation holes 21 and 22 communicate with the ventilation passages 2'a and 2b. Also, four vent holes 21 and 22 are provided at equal angle (90 °) intervals. Accordingly, the passage 2 communicates with the outside of the spool 1 through the ventilation passages 2a and 2b and the ventilation holes 21 and 22 at both ends.
次に、 上記のように構成した本実施形態に係る振動発生器の動作につい て図 25〜図 28を参照しながら説明する。 図 25〜図 28において、 ス イッチ 30は、 パルス信号の ON/0 F Fを等価的に示すものである。 そ して、 スィッチ 30が ONのときは、 パルス信号を通電していることを示 す。 なお、 パルス信号は、 例えば、 図 14に示すように、 電圧 O E^V) で、 ON期間と OFF期間とが同じ信号である。  Next, the operation of the vibration generator according to the present embodiment configured as described above will be described with reference to FIGS. 25 to 28, a switch 30 equivalently indicates ON / OFF of the pulse signal. When switch 30 is ON, it indicates that the pulse signal is being supplied. The pulse signal is, for example, a voltage OE ^ V) as shown in FIG. 14 and has the same ON period and OFF period.
スィッチ 30は、 通常は図 25に示すように OFFとなっている。 この ため、 図 22に示す可動永久磁石 5の磁極と固定永久磁石 3、 4の磁極と の関係から、 可動永久磁石 5は通路 2のほぼ中央に位置する。 ここで、 図 26のようにスィッチ 30が ONとなると、 前記したようにコイル 6わの 左側に N極、右側に S極の磁界が発生する一方、 コイル 6 aの左側に S極、 右側に N極の磁界が発生する。 それにより、 磁石 3、 4、 5の磁束方向 は下段の矢印方向になり、 コイル 6 a、 6 bの磁束方向は上段の矢印方向 となる。 磁束方向が同方向の場合は吸引力が、 逆方向の場合は反発力が作 用するので、 結果的に可動永久磁石 5は、 図 27に示すように図面の左側 に移動する。そして、可動永久磁石 5が固定永久磁石 4に接近した時点で、 スィッチ 30が OFFとなる。  The switch 30 is normally OFF as shown in FIG. Therefore, based on the relationship between the magnetic poles of the movable permanent magnet 5 and the magnetic poles of the fixed permanent magnets 3 and 4 shown in FIG. Here, when the switch 30 is turned on as shown in FIG. 26, as described above, the magnetic field of the N pole is generated on the left side of the coil 6 and the S pole is generated on the right side, while the S pole is generated on the left side of the coil 6a and the magnetic field is generated on the right side. An N-pole magnetic field is generated. As a result, the magnetic flux directions of the magnets 3, 4, and 5 are in the lower arrow direction, and the magnetic flux directions of the coils 6a and 6b are in the upper arrow direction. If the direction of the magnetic flux is the same, the attractive force acts, and if the direction is the opposite, the repulsive force acts. As a result, the movable permanent magnet 5 moves to the left side of the drawing as shown in FIG. Then, when the movable permanent magnet 5 approaches the fixed permanent magnet 4, the switch 30 is turned off.
可動永久磁石 5と固定永久磁石 4とは互いに N極同士が対面している。 このため、 可動永久磁石 5が固定永久磁石 4に接近すると、 今度は図 28 に示すように反発力で可動永久磁石 5が右側に移動する。 そして、 可動永 久磁石 5が固定永久磁石 3に接近すると、 可動永久磁石 5と固定永久磁石 3とは互いに S極同士が対面するので、 反発力により可動永久磁石 5は左 側に移動する。 可動永久磁石 5が通路 2のほぼ中央付近に達した時点で、 再度スィツチ 3 0が O Nとなり、 前記したように可動永久磁石 5は左側へ 加速される。このような可動永久磁石 5の運動が繰り返されることにより、 振動が増幅 ·発生し、 振動発生器全体が振動することになる。 The movable permanent magnet 5 and the fixed permanent magnet 4 have N poles facing each other. Therefore, when the movable permanent magnet 5 approaches the fixed permanent magnet 4, the movable permanent magnet 5 moves rightward due to the repulsive force as shown in FIG. And movable eternal When the permanent magnet 5 approaches the fixed permanent magnet 3, the S poles of the movable permanent magnet 5 and the fixed permanent magnet 3 face each other, so that the movable permanent magnet 5 moves to the left due to the repulsive force. When the movable permanent magnet 5 reaches almost the center of the passage 2, the switch 30 is turned on again, and the movable permanent magnet 5 is accelerated to the left as described above. By repeating the movement of the movable permanent magnet 5, vibration is amplified and generated, and the entire vibration generator vibrates.
一方、 可動永久磁石 5が往復運動するとき、 空気は通路 2とスプール 1 の外部との間を通気孔 2 1、 2 2を通じて出入するので、 可動永久磁石 5 は空気抵抗を受け難くスムーズに移動する。 つまり、 可動永久磁石 5が左 側に移動するときは、 可動永久磁石 5を挟んで通路 2の左側が正圧に、 右 側が負圧になろうとする。 しかし、 通路 2の左側の空気は通気孔 2 1を通 じてスプール 1の外部に流出し、 通路 2の右側には通気孔 2 2を通じてス プール 1の外部から空気が流入する。 可動永久磁石 5が右側に移動すると きは、 その逆の作用が生じる。  On the other hand, when the movable permanent magnet 5 reciprocates, air enters and exits between the passage 2 and the outside of the spool 1 through the ventilation holes 21 and 22, so that the movable permanent magnet 5 is less likely to receive air resistance and moves smoothly. I do. That is, when the movable permanent magnet 5 moves to the left side, the left side of the passage 2 with the movable permanent magnet 5 interposed therebetween tends to have a positive pressure, and the right side has a negative pressure. However, the air on the left side of the passage 2 flows out of the spool 1 through the ventilation hole 21, and the air on the right side of the passage 2 flows out of the spool 1 through the ventilation hole 22. When the movable permanent magnet 5 moves to the right, the opposite effect occurs.
特に、 通気孔 2 1、 2 2が通路 2の両端側に設けられている。 このため、 例えば、 一端側にのみ設ける場合に比べて、 可動永久磁石 5は往路 '復路 で空気抵抗をより受け難くなり、 可動永久磁石 5に対する磁気効率が一層 向上する。 又、 通気孔 2 1、 2 2は通路 2の径より大きい径の通気用通路 2 a、 2 bに設けられている。 このため、 例えば、 通路 2の径より小さ ぃ径の通気用通路の場合に比べて、 流体力学的に空気の出入が効率良く行 われる。 なお、 図 2 9も図 2 8と同様の構造であり、 同じように動作する。 上記実施形態である振動発生器の動作原理は、 コイルに流れる電流の 0 N/ 0 F Fによる可動永久磁石が受ける力の変化からも説明できる。 コィ ルが 1個の場合は、 図 4〜図 8で説明した通りである。  In particular, ventilation holes 21 and 22 are provided at both ends of the passage 2. For this reason, for example, as compared with the case where the movable permanent magnet 5 is provided only on one end side, the movable permanent magnet 5 is less susceptible to air resistance in the forward path and the return path, and the magnetic efficiency for the movable permanent magnet 5 is further improved. Further, the ventilation holes 21 and 22 are provided in the ventilation passages 2 a and 2 b having a diameter larger than the diameter of the passage 2. For this reason, air can flow in and out more efficiently hydrodynamically than, for example, a ventilation passage having a diameter smaller than the diameter of the passage 2. FIG. 29 has the same structure as FIG. 28, and operates in the same manner. The principle of operation of the vibration generator according to the above embodiment can also be explained from the change in the force applied to the movable permanent magnet due to the current flowing through the coil of 0 N / 0 FF. In the case of one coil, it is as described in FIGS.
1個のコイルを使用する場合では、 コィルの磁界から可動永久磁石 5が 受ける力は、 図 6の曲線 Aに示すようになる。 この可動永久磁石 5が受け る力は、 図 6に示すように、 0点より左側の端位置が最も大きく、 0点よ り右側は減少していく。 さらに、 図 6の位置④を越えると、 コイルの磁界 は可動永久磁石 5の駆動を妨げる方向に力が働く。 このため、 0点より左 側では、コイルの ON/OFFによる可動永久磁石 5に与えるエネルギーの増 大が大きい。 また、 0点より右側では、 可動永久磁石 5に与えるエネルギ —の増大が少ない。 すなわち、 コイル 1個の場合では、 曲線 A の 0点よ り左側に示されるコイルの磁界から可動永久磁石 5が受ける力を主に活用 している (つまり、 可動永久磁石 5の片側の極面の磁束を利用できる) 。 これに対し、 2個のコイルを使用する場合は、 図 2 9 (図 2 2と同様) に示すように、 隣り合うコイル 6a、 6bの磁束が対向するように 2個のコ ィル 6 a、 6b を巻き付けると、 コイルの磁界から可動永久磁石 5が受ける 力は、 図 3 0の曲線 A に示すようになる。 この可動永久磁石 5が受ける 力は、 0点より右側においても図 6の曲線 A のように減少することはな く、 可動永久磁石 5の駆動を妨げる方向の力も生じない。 このため、 0点 の左側、 右側においても、 コイルの ON/OFF による可動永久磁石 5に与 えるエネルギーの増大が大きく、 コイルの磁界から可動永久磁石 5が受け る力を有効に活用できる(つまり、 可動永久磁石 5の両極面を利用できる)。 したがって、 1個のコイルを使用する場合に比べ、 さらに大きな力を得る ことができる。 When one coil is used, the movable permanent magnet 5 The force received is as shown by curve A in Figure 6. As shown in FIG. 6, the force received by the movable permanent magnet 5 is largest at the end position on the left side from the point 0, and decreases on the right side from the point 0. Further, beyond the position の in FIG. 6, the magnetic field of the coil exerts a force in a direction that hinders the driving of the movable permanent magnet 5. For this reason, on the left side of the point 0, the energy applied to the movable permanent magnet 5 due to the ON / OFF of the coil greatly increases. On the right side of the zero point, the energy applied to the movable permanent magnet 5 does not increase much. In other words, in the case of a single coil, the force that the movable permanent magnet 5 receives from the magnetic field of the coil shown on the left side of the curve A at point 0 is mainly used (that is, the pole surface on one side of the movable permanent magnet 5). Can utilize the magnetic flux). On the other hand, when two coils are used, as shown in Fig. 29 (similar to Fig. 22), two coils 6a are used so that the magnetic fluxes of the adjacent coils 6a and 6b face each other. , 6b, the force received by the movable permanent magnet 5 from the magnetic field of the coil becomes as shown by the curve A in FIG. The force received by the movable permanent magnet 5 does not decrease as shown by the curve A in FIG. 6 even on the right side of the point 0, and no force is generated in the direction that hinders the driving of the movable permanent magnet 5. Therefore, the energy applied to the movable permanent magnet 5 by turning on and off the coil is large on the left and right sides of the zero point, and the force received by the movable permanent magnet 5 from the magnetic field of the coil can be used effectively (that is, , The pole faces of the movable permanent magnet 5 are available). Therefore, a greater force can be obtained than when one coil is used.
図 3 1は、 この発明の第 7実施形態である振動発生器の要部断面図を示 し、 図 3 2は同側面図を、 図 3 2は同端面図を示す。 但し、 同じ要素には 同一符号を付してある。 この振動発生器は、 通気孔 2 1、 2 2の形態が異 なる以外は、 上記図 2 2に示すものと同じ構造である。即ち、 通気孔 2 1、 2 2は、 スプール 1の外周面から開口するのではなく、 固定永久磁石の保 持板 3 a、 4 aからスプール 1の外部に開口している。 ここでの通気孔 2 1、 2 2は、 図 3 3に示すように等角度間隔で形成されたスリッ ト状を呈 する。 可動永久磁石 5の往復運動に伴う空気の出入作用は、 前記第 6の実 施形態の場合と同等である。 FIG. 31 is a sectional view of a main part of a vibration generator according to a seventh embodiment of the present invention, FIG. 32 is a side view thereof, and FIG. 32 is an end view thereof. However, the same elements are denoted by the same reference numerals. This vibration generator has the same structure as that shown in FIG. 22 except that the form of the ventilation holes 21 and 22 is different. That is, the ventilation holes 21 and 22 do not open from the outer peripheral surface of the spool 1 but hold the fixed permanent magnet. The holding plates 3a and 4a open to the outside of the spool 1. The air holes 21 and 22 here have a slit shape formed at equal angular intervals as shown in FIG. The air inflow / outflow action caused by the reciprocating motion of the movable permanent magnet 5 is the same as that in the sixth embodiment.
図 3 4は、 この発明の第 8実施形態に係る振動発生器の要部断面図を示 す図であり、 図 3 5は同側面図、 図 3 6は同端面図を示す。 この振動発生 器も、 通気孔 2 1、 2 2の形態が異なるだけである。通気孔 2 1、 2 2は、 スプール 1の外周面から開口し、 図 2 3のような円形ではなく、 開口面積 が広い四角形である。 空気の出入作用は、 前記と同等である。  FIG. 34 is a sectional view showing a principal part of a vibration generator according to an eighth embodiment of the present invention. FIG. 35 shows the same side view, and FIG. 36 shows the same end view. This vibration generator also differs only in the form of the ventilation holes 21 and 22. The ventilation holes 21 and 22 are open from the outer peripheral surface of the spool 1, and are not circular as shown in FIG. 23 but are squares having a large opening area. The air entry / exit action is the same as above.
上記した駆動コイルに 2個のコイルを用いる第 6、 第 7、 第 8の各実 施形態を示す振動発生器において、 コイル 4、 5に印加するパルス信号は、 図 1 4に示すように、 0 (V)から E , (V)の電圧である。 しかし、 この駆動 信号波形では、 駆動コイルに 1個のコイルを用いた場合と同様の理由で、 磁束の外部への漏れが大となり、 磁気カードの磁気情報を破壊してしまう おそれがある。 その対策として、 やはり図 3 7に示すように、 筐体 1の外 周全体をシールド 1 5で覆うことが考えられる。 この場合、 大きな磁束を シ一ルドするために、 厚みの大きいシールド板を使用する必要があり、 結 果として振動発生器が大きくなつてしまう。 これでは、 振動発生器を搭載 する携帯端末器がどんどん小型化され、 振動発生器もそれに応じて小型化 が要請されていることと相反することになる。  In the vibration generators according to the sixth, seventh, and eighth embodiments in which two coils are used as the drive coils, the pulse signals applied to the coils 4 and 5 are as shown in FIG. 0 (V) to E, (V). However, in this drive signal waveform, the leakage of the magnetic flux to the outside becomes large for the same reason as when one coil is used as the drive coil, and there is a possibility that the magnetic information of the magnetic card is destroyed. As a countermeasure, it is conceivable to cover the entire outer periphery of the housing 1 with the shield 15 as shown in FIG. In this case, it is necessary to use a thick shield plate in order to shield a large magnetic flux, and as a result, the vibration generator becomes large. In this case, portable terminals equipped with vibration generators are being miniaturized more and more, which contradicts the demand for smaller vibration generators.
そこで、 第 6、 第 7及び第 8の各実施形態の振動発生器に印加するパル ス電圧を、 図 1 6に示すように、 電圧 0→E i (V)の波形と同一振動量を 得るため、 — 1 / 2 から 1 / 2 E , に変化する交番電圧とすればよい (第 9実施形態) 。 この場合、 コイル 6 a、 6 bから発生する磁束量は 0 →Έ , (V)の場合に比し、 1 / 2となる。 それに応じてシ一ルド板 1 5の 厚みを薄くでき、 振動発生器の小型化を実現できる。 Therefore, the pulse voltage applied to the vibration generator of each of the sixth, seventh, and eighth embodiments obtains the same amount of vibration as the waveform of voltage 0 → E i (V) as shown in FIG. Therefore, the alternating voltage may be changed from / to E E, (the ninth embodiment). In this case, the amount of magnetic flux generated from the coils 6a and 6b is 1/2 that of the case of 0 → Έ, (V). Shield board 1 5 accordingly The thickness can be reduced and the vibration generator can be downsized.
この振動発生器において、 コイル 6 a、 6 bに、 図 16に示す信号が + 1/2 V- - 1/2 V→+ 1/2 Vに変化して印加されると、 可動永久磁 石 5は、 図 38A→図 38B→図 38A→図 38B で示すように位置が変 化する。 このため、 通路 2内で可動永久磁石 5が往復運動し、 そのエネル ギ一の一部が筐体に伝わり、 振動する。  In this vibration generator, when the signal shown in FIG. 16 is applied to the coils 6a and 6b while changing from +1/2 V- -1/2 V to +1/2 V, the movable permanent magnet 5, the position changes as shown in Fig. 38A → Fig. 38B → Fig. 38A → Fig. 38B. Therefore, the movable permanent magnet 5 reciprocates in the passage 2, and a part of the energy is transmitted to the housing and vibrates.
また、 各実施形態における駆動コイルへのパルス信号の印加は、 携帯電 話等の場合、 呼び出しがあったことに基づく信号を受けて行われることに なる。  In addition, in each embodiment, the application of the pulse signal to the drive coil is performed by receiving a signal based on a call in the case of a mobile phone or the like.
なお、 上記各実施形態で駆動コイルに与えるパルス信号は、 図 14に示 すように、 デュティ 1 : 1のものであり、 一定の周波数の信号である。 上 記の各振動発生器において周波数を高くすれば、 振動エネルギーは高くな るが、 人間の体感振動量との関係から 130HZ程度で最大の振動が得ら れるようになる。  Note that the pulse signal given to the drive coil in each of the above embodiments has a duty ratio of 1: 1 as shown in FIG. 14, and has a constant frequency. If the frequency is increased in each of the above-mentioned vibration generators, the vibration energy will increase, but the maximum vibration will be obtained at about 130 Hz from the relationship with the amount of human perceived vibration.
また、 これらの振動発生器では、 最大連続応答周波数と最大自起動周波 数とを持つ。 最大連続応答周波数とは、 いわゆる最大の振動量を得る時の 駆動電圧パルスの周波数であり、 この振動発生器では 130 H z程度であ る。 この周波数を越えるか、 あるいは、 急激に周波数を上昇させると、 脱 調が起き、 振動量が急激に下がる。 最大自起動周波数とは、 その周波数で 急に駆動し始めても脱調の起きない周波数のことである。 当然、 最大連続 応答周波数の振動量よりも低い振動しか得られない。この振動発生器では、 1 10HZ程度である。  In addition, these vibration generators have a maximum continuous response frequency and a maximum self-starting frequency. The maximum continuous response frequency is the frequency of the drive voltage pulse for obtaining the so-called maximum vibration amount, which is about 130 Hz for this vibration generator. Exceeding or rapidly increasing the frequency will cause loss of synchronism and the amount of vibration will drop sharply. The maximum self-starting frequency is the frequency at which step-out does not occur even if driving is suddenly started at that frequency. Naturally, only vibration lower than the maximum continuous response frequency vibration can be obtained. In this vibration generator, it is about 110Hz.
振動発生器を携帯電話器に使用する場合、 いきなり最大連続応答周波数 で振動させ、 この大きな振動を所持者が急に受けると、 刺激が強すぎる。 また、 急に最大連続応答周波数まで立上らせると、 脱調を起こすおそれも ある。 そこで、 第 10実施形態に係る振動発生器のように、 駆動コイル 6 に印加するパルス信号の周波数を図 39に示すように、 スタート時の 5パ ルスは 105 HZで、 次の 5パルスは 120HZで、 さらに次の 5パルス は 1 25 HZで、 最後に 130 HZの連続発振とし、 段階的に周波数を順 次上げてもよい。 When a vibration generator is used in a mobile phone, it vibrates suddenly at the maximum continuous response frequency, and when the holder suddenly receives this large vibration, the stimulation is too strong. Also, suddenly rising to the maximum continuous response frequency may cause step-out. is there. Therefore, as in the vibration generator according to the tenth embodiment, the frequency of the pulse signal applied to the drive coil 6 is 105 Hz as shown in FIG. 39, and the next five pulses are 120 Hz as shown in FIG. Then, the next 5 pulses are at 125 Hz, and the continuous oscillation may be 130 Hz at the end, and the frequency may be increased step by step.
この振動発生器では、 振動開始時には振動が弱く、 徐々に強くなつてゆ くので、 所持者にソフトな振動を与え、 刺激が強烈でない。 また、 振動も 最大自起動周波数から周波数を上げてゆくので、 最大連続応答周波数とな つても脱調を生ずることがない。 産業上の利用の可能性  With this vibration generator, the vibration is weak at the start of the vibration and gradually increases, so that soft vibration is given to the holder and the stimulation is not intense. In addition, since the frequency of the vibration increases from the maximum self-starting frequency, no step-out occurs even at the maximum continuous response frequency. Industrial applicability
本発明にかかる振動発生器は、 前述の実施形態にかかわらず、 他の実施 形態の振動発生器に適用してもよい。  The vibration generator according to the present invention may be applied to the vibration generator of another embodiment regardless of the above-described embodiment.

Claims

請 求 の 範 囲 The scope of the claims
1 . 筐体に形成された通路内を移動可能な永久磁石と、  1. A permanent magnet movable in a passage formed in the housing;
前記通路の周囲に卷回され、 パルス信号の通電により、 前記永久磁石に 対して駆動力を与えるコイルと、  A coil wound around the passage and applying a driving force to the permanent magnet by energizing a pulse signal;
前記通路の少なくとも一方側に設けられ、 前記永久磁石の近接に対して 磁気的な反発力を与える磁気的反発手段と、  Magnetic repulsion means provided on at least one side of the passage, and for applying a magnetic repulsive force to the proximity of the permanent magnet;
を備えたことを特徴とする振動発生器。  A vibration generator comprising:
2 . 前記コイルは、 パルス信号の通電により、 前記永久磁石に順方向 及び逆方向の磁界を与える少なくとも 2つのコイルからなることを特徴と する請求項 1記載の振動発生器。  2. The vibration generator according to claim 1, wherein the coil includes at least two coils for applying a forward and a reverse magnetic field to the permanent magnet by applying a pulse signal.
3 . 前記磁気的反発手段は、 筐体の一方側に配置された永久磁石であ ることを特徴とする請求項 1または請求項 2記載の振動発生器。  3. The vibration generator according to claim 1, wherein the magnetic repulsion means is a permanent magnet disposed on one side of a housing.
4 . 前記磁気的反発手段は、 永久磁石であり、 前記移動可能な永久磁 石の両側に配置され、 それそれ異なる磁力を有することを特徴とする請求 項 1または請求項 2記載の振動発生器。  4. The vibration generator according to claim 1 or 2, wherein the magnetic repulsion means is a permanent magnet, is disposed on both sides of the movable permanent magnet, and has different magnetic forces. .
5 . 前記筐体は、 内径が筒中央部より、 筒端で大となるように構成さ れ、 筒端内に、 筒中央部の内径よりも外径が大きい永久磁石を磁気的反発 手段として装着したことを特徴とする請求項 3または請求項 4記載の振動 発生器。  5. The casing is configured such that the inner diameter is larger at the end of the cylinder than at the center of the cylinder, and a permanent magnet having an outer diameter larger than the inner diameter of the center of the cylinder is provided inside the end of the cylinder as magnetic repulsion means. 5. The vibration generator according to claim 3, wherein the vibration generator is mounted.
6 . 前記磁気的反発手段は、 筐体の一端外部に設けられた前記駆動力 を与えるコイルと異なる他のコイルであることを特徴とする請求項 1また は請求項 2記載の振動発生器。  6. The vibration generator according to claim 1, wherein the magnetic repulsion means is another coil different from the coil that provides the driving force and that is provided outside one end of the housing.
7 . 前記駆動力を与えるコイルと異なる他のコイルは、 外部からの要 請信号に応じて O Nすることを特徴とする請求項 4記載の振動発生器。  7. The vibration generator according to claim 4, wherein another coil different from the coil providing the driving force is turned ON in response to a request signal from the outside.
8 . 前記筐体は側面視円弧状のものであることを特徴とする請求項 1 ないし 7のいずれか 1項に記載の振動発生器。 8. The casing according to claim 1, wherein the casing has an arc shape in a side view. The vibration generator according to any one of claims 1 to 7.
9 . 前記コイルに駆動力を与えるパルス信号は、 正負交互に極性が変 化する交番信号であることを特徴とする請求項 1ないし 8のいずれか 1項 に記載の振動発生器。  9. The vibration generator according to any one of claims 1 to 8, wherein the pulse signal that applies a driving force to the coil is an alternating signal whose polarity changes alternately between positive and negative.
1 0 . 前記移動可能な永久磁石は、 2つの永久磁石が軸方向に非磁性 材を介して接合されたものであることを特徴とする請求項 1ないし 9のい ずれか 1項に記載の振動発生器。  10. The movable permanent magnet according to any one of claims 1 to 9, wherein the movable permanent magnet is formed by joining two permanent magnets in the axial direction via a non-magnetic material. Vibration generator.
1 1 . 前記筐体の通路と筐体外部とを連通する通気孔を備えることを 特徴とする請求項 1ないし 1 0のいずれか 1項に記載の振動発生器。  11. The vibration generator according to any one of claims 1 to 10, further comprising a ventilation hole communicating the passage of the housing and the outside of the housing.
1 2 . 前記通気孔は、 前記通路の両端側にそれそれ設けられているこ とを特徴とする請求項 1 1記載の振動発生器。  12. The vibration generator according to claim 11, wherein the ventilation holes are provided at both ends of the passage.
1 3 . 前記筐体は、 前記磁気的反発手段の近傍に、 移動可能な永久磁 石の通路径より大きい径の通気用通路を有し、 前記通気孔は、 その通気用 通路に連通していることを特徴とする請求項 1 0記載の振動発生器。  13. The housing has a ventilation passage having a diameter larger than a movable permanent magnet passage diameter in the vicinity of the magnetic repulsion means, and the ventilation hole communicates with the ventilation passage. 10. The vibration generator according to claim 10, wherein:
1 4 . 前記コイルに駆動力を与えるパルス信号は、 周波数が動作時間 の経過とともに段階的に高くなるように切り替えられることを特徴とする 請求項 1ないし 1 3のいずれか 1項に記載の振動発生器。  14. The vibration according to any one of claims 1 to 13, wherein the pulse signal for applying a driving force to the coil is switched such that a frequency increases stepwise with the elapse of an operation time. Generator.
PCT/JP1997/003886 1996-10-30 1997-10-27 Vibration generator WO1998019383A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP28827396 1996-10-30
JP8/288273 1996-10-30
JP34718496 1996-12-26
JP8/347184 1996-12-26
JP18628697 1997-07-11
JP9/186286 1997-07-11
JP9/270268 1997-10-03
JP27026897 1997-10-03

Publications (1)

Publication Number Publication Date
WO1998019383A1 true WO1998019383A1 (en) 1998-05-07

Family

ID=27475268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003886 WO1998019383A1 (en) 1996-10-30 1997-10-27 Vibration generator

Country Status (1)

Country Link
WO (1) WO1998019383A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003065552A2 (en) * 2002-01-30 2003-08-07 Koninklijke Philips Electronics N.V. Device for producing mechanical vibrations
WO2003065553A2 (en) * 2002-01-30 2003-08-07 Koninklijke Philips Electronics N.V. Device for producing mechanical vibrations
WO2010135383A3 (en) * 2009-05-18 2011-02-24 Resonant Systems, Inc. Linear-resonant vibration module
US8684980B2 (en) 2010-07-15 2014-04-01 Corinthian Ophthalmic, Inc. Drop generating device
US8733935B2 (en) 2010-07-15 2014-05-27 Corinthian Ophthalmic, Inc. Method and system for performing remote treatment and monitoring
US8936021B2 (en) 2003-05-20 2015-01-20 Optimyst Systems, Inc. Ophthalmic fluid delivery system
US9087145B2 (en) 2010-07-15 2015-07-21 Eyenovia, Inc. Ophthalmic drug delivery
WO2016114384A1 (en) * 2015-01-16 2016-07-21 日本電産コパル株式会社 Vibrating actuator
WO2016131032A1 (en) * 2015-02-13 2016-08-18 Resonant Systems, Inc. Oscillating-resonant-module controller
JP2016150333A (en) * 2015-02-19 2016-08-22 日本電産コパル株式会社 Vibration actuator
US10154923B2 (en) 2010-07-15 2018-12-18 Eyenovia, Inc. Drop generating device
US10639194B2 (en) 2011-12-12 2020-05-05 Eyenovia, Inc. High modulus polymeric ejector mechanism, ejector device, and methods of use
CN112797112A (en) * 2021-01-08 2021-05-14 温州大学 Semi-actively controlled magnetic hydrodynamic vibration absorber
US11938056B2 (en) 2017-06-10 2024-03-26 Eyenovia, Inc. Methods and devices for handling a fluid and delivering the fluid to the eye

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494812U (en) * 1977-12-19 1979-07-05
JPS6270675U (en) * 1985-10-23 1987-05-06
JPH0451077U (en) * 1990-08-30 1992-04-30
JPH06315255A (en) * 1993-04-26 1994-11-08 Tdk Corp Moving-magnet actuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494812U (en) * 1977-12-19 1979-07-05
JPS6270675U (en) * 1985-10-23 1987-05-06
JPH0451077U (en) * 1990-08-30 1992-04-30
JPH06315255A (en) * 1993-04-26 1994-11-08 Tdk Corp Moving-magnet actuator

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003065553A2 (en) * 2002-01-30 2003-08-07 Koninklijke Philips Electronics N.V. Device for producing mechanical vibrations
WO2003065552A3 (en) * 2002-01-30 2003-11-13 Koninkl Philips Electronics Nv Device for producing mechanical vibrations
WO2003065553A3 (en) * 2002-01-30 2003-11-13 Koninkl Philips Electronics Nv Device for producing mechanical vibrations
WO2003065552A2 (en) * 2002-01-30 2003-08-07 Koninklijke Philips Electronics N.V. Device for producing mechanical vibrations
US8936021B2 (en) 2003-05-20 2015-01-20 Optimyst Systems, Inc. Ophthalmic fluid delivery system
WO2010135383A3 (en) * 2009-05-18 2011-02-24 Resonant Systems, Inc. Linear-resonant vibration module
US8093767B2 (en) 2009-05-18 2012-01-10 Brian Marc Pepin Linear-resonant vibration module
US8684980B2 (en) 2010-07-15 2014-04-01 Corinthian Ophthalmic, Inc. Drop generating device
US8733935B2 (en) 2010-07-15 2014-05-27 Corinthian Ophthalmic, Inc. Method and system for performing remote treatment and monitoring
US9087145B2 (en) 2010-07-15 2015-07-21 Eyenovia, Inc. Ophthalmic drug delivery
US11839487B2 (en) 2010-07-15 2023-12-12 Eyenovia, Inc. Ophthalmic drug delivery
US11398306B2 (en) 2010-07-15 2022-07-26 Eyenovia, Inc. Ophthalmic drug delivery
US11011270B2 (en) 2010-07-15 2021-05-18 Eyenovia, Inc. Drop generating device
US10073949B2 (en) 2010-07-15 2018-09-11 Eyenovia, Inc. Ophthalmic drug delivery
US10154923B2 (en) 2010-07-15 2018-12-18 Eyenovia, Inc. Drop generating device
US10839960B2 (en) 2010-07-15 2020-11-17 Eyenovia, Inc. Ophthalmic drug delivery
US10639194B2 (en) 2011-12-12 2020-05-05 Eyenovia, Inc. High modulus polymeric ejector mechanism, ejector device, and methods of use
US10646373B2 (en) 2011-12-12 2020-05-12 Eyenovia, Inc. Ejector mechanism, ejector device, and methods of use
WO2016114384A1 (en) * 2015-01-16 2016-07-21 日本電産コパル株式会社 Vibrating actuator
WO2016131032A1 (en) * 2015-02-13 2016-08-18 Resonant Systems, Inc. Oscillating-resonant-module controller
JP2016150333A (en) * 2015-02-19 2016-08-22 日本電産コパル株式会社 Vibration actuator
US11938056B2 (en) 2017-06-10 2024-03-26 Eyenovia, Inc. Methods and devices for handling a fluid and delivering the fluid to the eye
CN112797112A (en) * 2021-01-08 2021-05-14 温州大学 Semi-actively controlled magnetic hydrodynamic vibration absorber

Similar Documents

Publication Publication Date Title
JPH11168869A (en) Vibration generator
WO1998019383A1 (en) Vibration generator
KR100541113B1 (en) A vertical vibrator of pattern coil type
JP2020022346A (en) Linear vibration motor
JP2004343931A (en) Vibratory linear actuator and electric toothbrush using the same
JP2004050154A (en) Vibration generating device
CN110875680A (en) Vibration actuator and portable electronic device provided with same
JPH11197601A (en) Portable electronic apparatus
JP4422354B2 (en) Electro-mechanical-acoustic transducer
EP1091477B1 (en) Vibration generator
WO2002091551A1 (en) Magnetically driving apparatus
JP3165856B2 (en) Vibration generator
JPH11155274A (en) Vibration device
KR101793072B1 (en) Horizontal vibration device
JP3545650B2 (en) Electromagnetic device and its driving circuit
US10868464B2 (en) Linear vibration motor
JPH0985169A (en) Vibration generator for silent alarm for portable device
JP3833607B2 (en) Vibration generator
JPH10146035A (en) Mounting structure of vibrator
JPH11155273A (en) Vibration device
JP2001347227A (en) Oscillator
JPH10164809A (en) Vibration generator
JPH11178305A (en) Oscillating device
US20030173835A1 (en) Vibrating linear actuator and portable information apparatus having the same
EP1115192A3 (en) Vibrator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09284620

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA