JP2005261173A - Reciprocating linear driver - Google Patents

Reciprocating linear driver Download PDF

Info

Publication number
JP2005261173A
JP2005261173A JP2004116237A JP2004116237A JP2005261173A JP 2005261173 A JP2005261173 A JP 2005261173A JP 2004116237 A JP2004116237 A JP 2004116237A JP 2004116237 A JP2004116237 A JP 2004116237A JP 2005261173 A JP2005261173 A JP 2005261173A
Authority
JP
Japan
Prior art keywords
coil
yoke
magnet
magnetic
linear drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004116237A
Other languages
Japanese (ja)
Inventor
Mutsuo Hirano
睦夫 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004116237A priority Critical patent/JP2005261173A/en
Publication of JP2005261173A publication Critical patent/JP2005261173A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform reciprocating motions directly at DC current with a simple structure. <P>SOLUTION: Two annular coil yokes 1 winding exciting coils 2 are faced each other in the magnetic flux generating direction. A magnet yoke fastening a plurality of magnets on a magnet body or a back yoke is installed between the annular coil yokes 1 as an oscillating element 9. The signal detected in a non-contact sensor is alternately inverted by electronic controller on the surface of a case between coil yokes with the oscillating element 9 sandwiched. Otherwise, a rocker lever tilting mechanism comprising a sensor magnet as a mechanical means and a switch detect a transmitting condition. The mechanism alternately inverts and distributes both poles of the DC current by the response motion. A signal amplification alternating current including an AD by the device capable of energizing/applying to the exciting coils 2 as a pseudo alteration current directly applies to the exciting coils 2 by change-over means such as the switch. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、回転モ−タ−と同様に直流電流によりモ−タ−シャフトを回転ではなく往復運動をさせ、多様な伝達媒体へシャフトを連結することにより、もしくは装置自身で往復運動、振動またはリニア動作等の機能を果たすものである。すなわち、二つの電磁石磁界の間に永久磁石ないしその構造体を遥動子として往復もしくはシャフトで左右に遥動できるようにし、その電磁石コイルの直流電流正負極をスイッチング機構で交番反転させ遥動子を動作もしくは遥動子結合シャフトの往復動作を連結媒体へ伝達ないし制御等をさせることのできる往復運動リニア駆動装置に関する。  In the present invention, the motor shaft is reciprocated instead of rotated by direct current in the same manner as the rotating motor, and the shaft is connected to various transmission media, or the device itself reciprocates, vibrates or It performs functions such as linear operation. That is, a permanent magnet or its structure can be reciprocated between two electromagnet magnetic fields so that it can reciprocate or swing left and right with a shaft, and the DC current positive and negative electrodes of the electromagnet coil are alternately reversed by a switching mechanism. Or a reciprocating motion linear drive device capable of transmitting or controlling a reciprocating motion of a swinger coupling shaft to a connecting medium.

従来、この種に近い製品はモ−タのシャフト回転運動を円盤カム機構等で直線運動に変えている。また直接リニア動作させるエアポンプなどはAC交流電源の固定波長により往復振動をさせている。同様リニア動作させるものとしては電磁弁やソレノイドバルブがある。一般市場では直接リニア駆動する装置が見当たらず、回転モ−タを利用して対応している。また振動装置として応用する場合はシャフトに錘を取り付けてアンバランス遥動機構として利用している。同様モ−タに往復動作をさせる場合は直流モ−タ正逆回転制御回路等各種考案によりシャフトに取り付けたカムやワイヤ巻取り機構によりリニア動作をさせている。また直流電流で直接リニア動作させる電磁弁やソレノイドはあっても長時間連続的往復運動を期待できるものではない。モ−タ正逆動作のための電子制御回路は簡単なものから複雑で高度な制御がいろいろ考案されているが、直接リニア駆動できる装置があれば余分なものである。現時点ではダイレクトに直流電流による往復動作ができる低コストリニアモ−タ等は見当たらない。  Conventionally, a product close to this type has changed the motor shaft rotational motion into a linear motion by a disk cam mechanism or the like. An air pump or the like that is directly operated linearly vibrates in a reciprocating manner with a fixed wavelength of an AC AC power source. Similarly, there are electromagnetic valves and solenoid valves for linear operation. In the general market, there is no direct linear drive device, and this is handled by using a rotating motor. When applied as a vibration device, a weight is attached to the shaft and used as an unbalance swing mechanism. Similarly, when the motor is reciprocated, a linear operation is performed by a cam or wire winding mechanism attached to the shaft by various devices such as a DC motor forward / reverse rotation control circuit. Moreover, even if there are solenoid valves and solenoids that are directly operated linearly with a direct current, long-term continuous reciprocation cannot be expected. Various electronic control circuits for motor forward / reverse operation have been devised, from simple ones to complicated and sophisticated controls. However, if there is a device that can be directly linearly driven, it is unnecessary. At present, there are no low-cost linear motors that can be directly reciprocated by direct current.

解決しようとする問題点は、回転モ−タを使わず直接、直流電流で往復動作させることができるリニアモ−タである。磁極の交番によりマグネットは吸引反発することは自明であるが、安価な機構で、その磁束エネルギ−を効率よく運動エネルギ−に変換させ往復動作させるには、コイルヨ−ク直前で直流正負極をタイミング良く反転させ、交番電流として励磁コイルに印可通電することである。直流を交番電流に変換させることは電子回路では簡単に構成できるが機械式にくらべ複雑であり、小型化低価格を要求される往復リニアモ−タには実用的でない。低コストで操作容易の機構とするには直流電流を交番電流に自己動作で変換できる回転モ−タの回転部ブラシに相当する部品が必要である。さらに高い電気エネルギ−変換効率で、バランスのとれた往復動作をさせるための機構が必要であり、長寿命でメンテナンス性も高く、制御容易の構造で、遥動子結合シャフトにより外部にそのリニア動作を伝達し、各種プランジャ−やリニア駆動機構として応用利用するだけではなく、遥動子自身をフリ−ピストンとしてポンプや振動機として利用することのできる内部構造を持った装置である。  The problem to be solved is a linear motor that can be directly reciprocated by a direct current without using a rotating motor. It is obvious that the magnet attracts and repels due to the alternating magnetic poles. However, in order to efficiently convert the magnetic flux energy into kinetic energy and reciprocate with an inexpensive mechanism, the DC positive and negative electrodes are timed immediately before the coil yoke. It is reversed and applied to the exciting coil as an alternating current. Converting direct current to alternating current can be easily configured in an electronic circuit, but is more complicated than a mechanical type, and is not practical for a reciprocating linear motor that requires a smaller size and lower cost. In order to make the mechanism easy to operate at low cost, a part corresponding to the rotating part brush of the rotating motor capable of converting direct current into alternating current by self-operation is required. In addition, it requires a mechanism for balanced reciprocation with high electrical energy conversion efficiency, long life, high maintainability, and easy-to-control structure. This is an apparatus having an internal structure that can be used not only as various plungers and linear drive mechanisms but also as a free piston and as a pump or vibrator.

本発明の請求項1に係わる往復運動リニア駆動装置は、単純機構でより高いメンテナンス性と運動エネルギ−変換効率を達成できる磁気回路を構成し、直流電流で往復動作をさせるため、永久磁石固定磁束とコイル変動磁束の反発吸引動作を自己スイッチング機構で行なわせるため、遥動子の移動を非接触方式で光、磁束変化やコイルインピ−ダンスの変化で捕らえるセンサ−とスイッチング回路機構により構成し、該遥動子が所定の位置に到達した時点で正負極同時反転を行い、擬似交番電流として励磁コイルに印加通電し、電圧−電流制御により該遥動子をコイルヨ−ク間に低速から高速で往復させその動作をリニアエネルギ−や振動エネルギ−として応用利用する。  The reciprocating linear drive device according to claim 1 of the present invention constitutes a magnetic circuit that can achieve higher maintainability and kinetic energy conversion efficiency with a simple mechanism, and reciprocates with a direct current. In order to perform the repulsive and attracting action of the coil fluctuation magnetic flux with the self-switching mechanism, it is constituted by a sensor and a switching circuit mechanism that captures the movement of the swinging element in a non-contact manner by a change in light, magnetic flux and coil impedance, When the swinger reaches a predetermined position, the positive and negative electrodes are simultaneously reversed, and the excitation coil is energized as a pseudo-alternating current, and the swinger is reciprocated between the coil yokes at low to high speed by voltage-current control. The operation is applied and utilized as linear energy or vibration energy.

すなわち、直流電流通電により励磁コイルに発生するNS両磁極を同一面に誘導する電磁軟鉄で形成し、中心に貫通軸孔を持った凹状容器に環状コイルを挿入固着したコイルヨ−クを二つ所定間隔で対面させ、中間にその変動磁束で吸引反発する磁石で構成された遥動子を配置するものである。遥動子は基本的にはコイル磁束に吸引反発するものであれば永久磁石単体でもよいが、対面コイルヨ−クの励磁コイルの磁束は容器内外輪周端に誘導されているのでこの誘導磁界と対面反応する磁石磁界が必要である。当該装置を小型化する場合、遥動子の質量をできるだけ軽くする必要があり、磁石単体を遥動子として使用できる。すなわち円周方向に着磁したリング状希土類マグネット等を遥動子として通常はシャフトを連結して外力利用するが磁石そのものをピストン等としポンプ装置などにも応用できる。鉄材で形成された円板状バックヨ−クの両面に磁石を接着したマグネットヨ−クはコイル側変動磁束に対し安定して反応する強力な磁界を形成し、高反発高吸引動作ができるが重量が軽くできず小型化しにくい。しかし多数個の円盤状磁石の磁極方向を揃えて、バックヨ−クにコイルヨ−クの内輪側生成磁束圏と合致する様に放射状に固着したヨ−ク構造体とするとかなり大型の装置も構成できる。厚み方向に着磁すなわち上下面にNS磁極を形成しているリング状磁石の両磁束磁界は、外周縁を鍔状に立ち上げた円板状バックヨ−クに中心を合わせえて固着すると片側開放面側の磁束は磁石表面内輪部位に、対極側すなわちバックヨ−クに接着された側の磁束磁界はヨ−ク外輪周鍔に誘導される。マグネットヨ−ク両面に接着する磁石の磁極はコイルヨ−ク側の磁束と対称反応できる磁界配置とする。よってコイル側の電流正負極の組み合わせにより対抗配線すれば、対面磁石磁極磁界と対応動作できるのでマグネットヨ−クの両面に固着されるマグネット磁極は左右両面異なっても支障はない。この往復運動を外部へ伝播させるため遥動子には一体的に形成された真鍮やアルミ材で加工された非磁性体材質で形成されるシャフトが片側もしくは両側へ延長配置されている。またコイルヨ−ク軸孔には該遥動子シャフトを保持スライドさせる軸受が設けられさらに圧縮スプリング受部を兼ねた構造としている。遥動子はシャフトに挿入装填された圧縮スプリングに両側を挟まれコイルヨ−ク間に中間保持されている。遥動子はコイルヨ−ク単体の磁界反発の組み合わせでも動作するが動作が不安定で遥動子のコイルヨ−ク面への激突を避ける機構が難しいがスプリングで中間に懸垂させることでバランスを保持することができる。シャフトは磁石単体構造の場合も同様遥動子の片側もしくは両側に遥動子と一体的に形成し、片端または両端がケ−ス外へ外部伝達シャフトとして伸びている。That is, two coil yokes in which NS magnetic poles generated in the exciting coil by DC current conduction are formed of electromagnetic soft iron that guides to the same surface and an annular coil is inserted and fixed in a concave container having a through-shaft hole in the center are predetermined. A swinging element composed of magnets facing each other at an interval and attracted and repelled by the varying magnetic flux is arranged in the middle. Basically, the swinging element may be a permanent magnet as long as it attracts and repels the coil magnetic flux. However, the magnetic flux of the exciting coil of the facing coil yoke is induced at the peripheral end of the inner and outer rings of the container. A magnetic field that reacts face-to-face is required. When downsizing the device, it is necessary to make the mass of the swing element as light as possible, and a single magnet can be used as the swing element. That is, a ring-shaped rare earth magnet or the like magnetized in the circumferential direction is normally used as a swinging element by connecting a shaft to use external force. However, the magnet itself can be used as a piston or the like and applied to a pump device or the like. A magnet yoke with magnets attached to both sides of a disk-shaped back yoke made of iron material forms a strong magnetic field that reacts stably to the coil side fluctuation magnetic flux, and can perform high repulsion and high suction operation, but it is heavy. However, it is difficult to reduce the size. However, if the magnetic pole directions of a large number of disk-shaped magnets are aligned, and the yoke structure is fixed radially to the back yoke so as to match the inner ring-side generated magnetic field of the coil yoke, a considerably large device can be configured. . Both sides of the magnetic field of the ring-shaped magnet that is magnetized in the thickness direction, that is, the NS magnetic poles on the upper and lower surfaces, are fixed to the disk-shaped back yoke with the outer peripheral edge raised like a bowl. The magnetic flux on the side is induced on the inner ring portion of the magnet surface, and the magnetic flux magnetic field on the opposite electrode side, that is, the side bonded to the back yoke, is induced on the yoke outer ring. The magnetic poles of the magnets bonded to both sides of the magnet yoke are arranged in a magnetic field arrangement that can react symmetrically with the magnetic flux on the coil yoke side. Therefore, if the wiring is countered by a combination of current positive and negative electrodes on the coil side, it can operate corresponding to the facing magnetic pole magnetic field, so there is no problem even if the magnetic poles fixed on both sides of the magnet yoke are different on the left and right sides. In order to propagate this reciprocating motion to the outside, a shaft made of a non-magnetic material processed from brass or aluminum formed integrally with the swing is extended to one side or both sides. In addition, the coil yoke shaft hole is provided with a bearing for holding and sliding the swing shaft, and further serves as a compression spring receiving portion. The swinging member is sandwiched between compression coil springs inserted into the shaft and held between the coil yokes. The swing element works even with a combination of magnetic field repulsion of the coil yoke alone, but the operation is unstable and it is difficult to avoid the collision of the swing element with the coil yoke surface, but the balance is maintained by hanging it in the middle with a spring. can do. In the case of a single magnet structure, the shaft is also formed integrally with the swaying member on one side or both sides of the swaying member, and one or both ends of the shaft extend outside the case as an external transmission shaft.

これらの構造体を直流電流で往復動作させるためには、擬似交番電流をコイルに通電印加する必要がある。遥動子を反転させるためには、センサ−により遥動子の上死点の位置感知と、高速で直流両極を同時に反転し通電するスイッチング機構があればよい。その感知方法として遥動子の外輪外周部からの磁界磁場を感知するか、シャフトに埋め込まれた磁石等のセンサ−感応機構、励磁コイルのマグネット運動による電流変化を感知する電子回路、ホトセンサ−によるシャフト位置感知センサ−等いろいろな方法により駆動させることができる。反転回路は回転モ−タ−の正逆転制御回路とほとんど類似であるので応用利用できる。そのため電極反転スイッチング回路と遥動子位置センサ−および配線機構をアルミ材や樹脂材質等の円筒状ケ−スで一体的にケ−シングする。In order to reciprocate these structures with a direct current, it is necessary to energize and apply a pseudo alternating current to the coil. In order to reverse the swaying element, it is only necessary to have a sensor that senses the position of the top dead center of the swaying element and a switching mechanism that simultaneously reverses the DC poles at a high speed. As a sensing method, a magnetic field from the outer ring outer periphery of the rotor is sensed, or a sensor such as a magnet embedded in the shaft, a sensitive mechanism, an electronic circuit that senses a current change due to the magnet movement of the exciting coil, or a photo sensor. It can be driven by various methods such as a shaft position sensor. Since the inverting circuit is almost similar to the forward / reverse control circuit of the rotation motor, it can be applied. Therefore, the electrode inversion switching circuit, the swing position sensor, and the wiring mechanism are integrally cased by a cylindrical case made of an aluminum material or a resin material.

請求項2の発明に係わる往復運動リニア駆動装置は、磁気回路の効率を最大限かつ効果的に利用するための遥動子構造に関するもので、揺動子をバックヨ−クと永久磁石2個で構成し固定磁極磁界を相手方コイルヨ−ク変動磁束磁界と高効率で反応させるため、バックヨ−ク両面に接着する磁石磁極面を両面とも同極とし外周端に誘導する対極を両面磁石とも同極とし、さらに該接着磁石外周縁とバックヨ−ク鍔内周縁との隙間を少なくともヨ−ク内径寸法の約10%以上の間隙を設けコイルヨ−ク側の生成磁界圏と対応させることのできる有効磁界圏を確保したことを特長とするものである。The reciprocating linear drive device according to the invention of claim 2 relates to a swing structure for maximally and effectively utilizing the efficiency of the magnetic circuit, and the oscillator is composed of a back yoke and two permanent magnets. In order to make the fixed magnetic pole magnetic field react with the counterpart coil yoke magnetic flux magnetic field with high efficiency, the magnetic pole surfaces bonded to both sides of the back yoke are the same polarity on both sides, and the counter electrode guided to the outer edge is the same polarity on the double sided magnets. Further, an effective magnetic field zone in which the gap between the outer peripheral edge of the adhesive magnet and the inner peripheral edge of the back yoke is provided with a gap of at least about 10% of the inner diameter of the yoke and can be made to correspond to the generated magnetic field on the coil yoke side. It is characterized by ensuring.

請求項3の発明に係わる往復運動リニア駆動装置は、直流電源により遥動子を往復運動させるために機械的手段で該遥動子の動作位置を正確に感知し、励磁コイルに吸引反発誘導磁束を発生せしめる電流の正負極反転機構に関するものである。大型サイズの装置では本体基本構造をできるだけシンプルにする目的から、非接触でその目的を達成する方法が採用されるが、小型化の場合さらに低コストを求められる。本考案は電子回路や複雑なセンサ−等使用せず、簡単な機構でその目的を達成しようとするものである。According to a third aspect of the present invention, the reciprocating linear drive device accurately senses the operating position of the swaying element by mechanical means to reciprocate the swaying element by a DC power source, and attracts repulsion induction magnetic flux to the exciting coil. The present invention relates to a positive / negative polarity reversal mechanism of a current that generates a current. In a large-sized apparatus, a method of achieving the purpose without contact is adopted for the purpose of simplifying the basic structure of the main body as much as possible. However, in the case of downsizing, further cost reduction is required. The present invention aims to achieve the object with a simple mechanism without using an electronic circuit or a complicated sensor.

すなわち回転モ−タのブラシに相当する感知ロッカ−レバ−を組み込むため揺動子を挟むようにその左右のコイルヨ−ク中間位置に小幅溝を開口し、薄板状ないし細径棒状のロッカ−レバ−を配置し、該レ−バ両端もしくは中間位置2点からは内径方向に伸びたロッカ−レバ−ア−ムが突き出し、遥動子により押されてコイルヨ−ク端面部直前で捨置される機構とし、該レバ−中央部にはセンサ−感知用磁石を固着もしくは突起部を形成してある。その真上もしくは当該磁石磁界感知範囲に磁束感応型リ−ドスイッチもしくはラッチ式マイクロスイッチ等を配置し、遥動子がコイルヨ−ク直前の所定の感知位置に移動したら、反転電流に切り替えて遥動子を反対側に移動させる機能構造を構成している。すなわち本装置の回路スイッチを入れると中間保持されている遥動子はすぐに片側は吸引状態で反対側は反発励磁状態で一定方向のコイルヨ−ク側に移動する。中間位置でロッカ−レバ−のア−ムをコイルヨ−ク側に押し出す。コイルヨ−クと接触する寸前でレバ−中央部の磁石磁界を感知するリ−ドスイッチが働き片側回路の正負の電流極を直接切り替える。同時に円筒ケ−ス反対側に設置してあるもう一つの回路系内のリ−ドスイッチも動作し電流極を反転通電する。この二つのロッカ−レバ−動作により励磁コイルに正負極が反転されて直流電流が印加され遥動子は反対側に移動する、しかしア−ムは捨置きされるため反転電流は継続してコイルに印加継続通電され反対ア−ムが押されるとまた反転電流に切り替わる動作を繰り返す機構となっている。ロッカ−レバ−の中央に配置された微小マグネットの移動距離はロッカ−ア−ムの移動距離に同期するが磁束感知を正確に調整するため磁界遮断ないし調整板としてパ−マロイ等の薄板をリ−ドスイッチとの間に配置して調整する。リ−ドスイッチはトランスファ−型とし正負回路におのの組み込み、常にどちらかの電流が流れるような回路とし、ロッカ−レバ−のスイッチ動作は必ず遥動方向と逆の通電回路が働く配線回路となっているので電気的ミス動作では当該装置が途中停止することはない。すなわちこの機構で重要な動作は、遥動子の位置をセンシングするだけではなく、遥動子がコイルヨ−ク直前でア−ムを押してリ−ドスイッチを動作させ反転電流をコイルに通電し反発磁束を発生させて、同時に反対側コイルヨ−クは吸引磁束を発生させ、遥動子が反対側のア−ムを押して復帰させるまで継続通電する回路である。That is, in order to incorporate a sensing rocker lever corresponding to a brush of a rotating motor, a narrow groove is opened at the middle position between the left and right coil yokes so as to sandwich the oscillator, and a rocker lever with a thin plate shape or a thin rod shape is formed. A rocker lever arm extending in the inner diameter direction protrudes from both ends of the lever or at two intermediate positions, and is pushed by the swinger and disposed just before the end face of the coil yoke. The mechanism is structured such that a sensor-sensing magnet is fixed or a projection is formed at the center of the lever. If a magnetic flux sensitive read switch or a latch type micro switch is arranged directly above or in the magnet magnetic field sensing range, and the slider moves to a predetermined sensing position immediately before the coil yoke, it switches to the reversal current and It constitutes a functional structure that moves the mover to the opposite side. That is, when the circuit switch of this apparatus is turned on, the swinging member held in the middle immediately moves to the coil yoke side in a certain direction with one side attracted and the other side repulsive. Push the arm of the rocker lever toward the coil yoke at the intermediate position. A lead switch that senses the magnetic field in the center of the lever just before coming into contact with the coil yoke works to directly switch the positive and negative current poles of one side circuit. At the same time, a lead switch in another circuit system installed on the opposite side of the cylindrical case is also operated to reversely energize the current electrode. By these two rocker lever operations, the positive and negative electrodes are reversed to the exciting coil, a direct current is applied, and the swinger moves to the opposite side. However, the arm is discarded, so the reversed current continues to the coil. When the opposite arm is pressed while the voltage is continuously applied, the operation of switching to the reverse current is repeated. The moving distance of the micro magnet arranged at the center of the rocker lever is synchronized with the moving distance of the rocker arm, but a thin plate such as a permalloy is used as a magnetic field block or adjustment plate to adjust magnetic flux sensing accurately. -Place and adjust between the switch. The lead switch is a transfer type that is built into the positive and negative circuits, so that one of the currents always flows, and the rocker lever switch operation is always a wiring circuit in which an energization circuit opposite to the swing direction works. Therefore, the device does not stop halfway during an electrical error operation. In other words, the important operation of this mechanism is not only sensing the position of the swaying element, but the swaying element pushes the arm just before the coil yoke to operate the lead switch, energizing the coil with reversal current and repelling it. At the same time, the opposite coil yoke generates a magnetic flux and continuously energizes until the swinging member pushes the opposite arm to return.

請求項4の発明に係わる往復運動リニア駆動装置は、ロッカ−レバ−機構と切り替えスイッチであるリ−ドスイッチ等の制御機構部分を別ケ−スに収めた制御ユニットとし、本体構造ケ−スとネジ等の締結手段で一体的に形成した。この結果、メンテナンス性、信頼性や生産性向上が図れコストも下げることができる。すなわち第一の本体ケ−スにはあらかじめ所定の位置にロッカ−レバ−ないし該レバ−のア−ム挿入用の細溝が加工してあり、制御ユニット固定用のネジ孔が加工されている。この溝孔に沿わせるように制御ユニット裏側のケ−スから両端ア−ムが突出したロッカ−レバ−を挿入し、ケ−ス両端のネジ等で固定するものである。According to a fourth aspect of the present invention, there is provided a reciprocating linear drive device comprising a control unit in which a rocker lever mechanism and a control mechanism such as a lead switch as a changeover switch are housed in separate cases. And a fastening means such as a screw. As a result, maintenance, reliability, and productivity can be improved and costs can be reduced. That is, the first main body case is pre-processed with a rocker lever or a narrow groove for arm insertion of the lever at a predetermined position, and a screw hole for fixing the control unit. . A rocker lever with both end arms protruding from the case on the back side of the control unit is inserted so as to be along the groove, and fixed with screws or the like at both ends of the case.

請求項5の発明に係わる往復運動リニア駆動装置は、高効率で交番電流に反応することができるので入力電源ソ−スとして直流電源だけでなく、交流や音楽信号等の変動交番増幅電流にも動作できる。そこで直流電源電極反転回路をバイパスすることで音楽信号等の増幅電流を直接コイルヨ−クの励磁コイルに通電印加し、マグネットヨ−ク磁束と反応動作させることにより、音楽連動振動装置としてまたは信号増幅電流同期駆動装置として応用できることを特長とした往復運動リニア駆動装置。Since the reciprocating linear drive device according to the invention of claim 5 can react to the alternating current with high efficiency, not only the direct current power source but also the alternating alternating current such as alternating current or music signal can be used as the input power source. Can work. Therefore, by bypassing the DC power supply electrode inversion circuit, amplifying current such as a music signal is directly applied to the exciting coil of the coil yoke and reacted with the magnet yoke magnetic flux, so that it can be used as a music-linked vibration device or signal amplification. A reciprocating linear drive device that can be applied as a current synchronous drive device.

請求項1の発明によれば、通常防犯カメラのシャッタ−動作や各種バイブレ−タ等の駆動は回転モ−タ−によるか、特殊な電子回路により正逆回転制御によりカム等を介在させてそのリニア動作を取り出しているが、当該機構では直流電源を投入すれば直接往復動作を伝達でき、一時的な電流のON−OFFでも動作し、さらに電圧調整によりそのパワ−コントロ−ルもでき、ロッカ−レバ−長、ア−ム位置、感知センサ−のエリア調整で簡単にその振幅−遥動距離調整も行なえる。また構造が簡単なので直流ブラシ型モ−タと同じように親指ほどの小さな往復リニアモ−タから超大型サイズまで共通構造で生産でき、ポンプや、振動装置、各種スイッチャ−、プランジャ−等のリニアエンジンとしてさまざまな家電機器、事務機器、おもちゃ等に応用展開できるものである。  According to the first aspect of the present invention, the shutter operation of the security camera and the drive of various vibrators are usually driven by a rotating motor, or a cam or the like is interposed by forward / reverse rotation control by a special electronic circuit. Although the linear operation is taken out, the mechanism can transmit the reciprocal motion directly when the DC power is turned on, it can operate even when the current is temporarily turned on and off, and the power can be controlled by adjusting the voltage. -Adjusting the lever length, arm position, and area of the sensing sensor makes it easy to adjust the amplitude and swing distance. In addition, since the structure is simple, it can be produced in a common structure from a reciprocating linear motor as small as a thumb to a super large size like a DC brush type motor, and linear engines such as pumps, vibration devices, various switchers, plungers, etc. It can be applied to various home appliances, office equipment, toys, etc.

請求項2の発明によれば、当該装置の効率に影響する機構は遥動磁石の明確な磁束分離とコイルヨ−ク変動生成磁界とマグネットヨ−ク固定磁界をできるだけ大きくし、お互いの磁界が対抗反応できる有効磁束圏の形成である。そのため従来の磁気回路の考え方とは異なり磁束は一箇所に集中させる必要はない。お互いの磁界磁束圏を相互カバ−する吸引反発磁気回路であればよい。そのため磁気色回路が単純化でき高効率の磁気応用機構ができる。According to the second aspect of the present invention, the mechanism that affects the efficiency of the apparatus is to increase the clear magnetic flux separation of the swing magnet, the coil yoke fluctuation generating magnetic field, and the magnet yoke fixed magnetic field as much as possible. It is the formation of an effective magnetosphere that can react. Therefore, unlike the conventional magnetic circuit concept, it is not necessary to concentrate the magnetic flux in one place. Any attractive repulsion magnetic circuit that covers the magnetic field magnetosphere of each other may be used. Therefore, the magnetic color circuit can be simplified and a highly efficient magnetic application mechanism can be achieved.

請求項3の発明に係わる往復運動リニア駆動装置は、メモリ−機能を持たせたロッカ−レバ−機構により直流電源を擬似交番電流としてコイルヨ−ク励磁コイルに印加通電でき、遥動子を往復動作できることである。またリ−ドスイッチもしくはマイクロスイッチはトランスファ−型ないしラッチ式とし直流正負回路におのの組み込み、常にどちらかの電流が流れるような回路とし、ロッカ−レバ−のスイッチ動作は必ず遥動方向と逆の通電回路が働く配線回路としているので当該装置が途中停止することはない。すなわちこの機構で重要な工程は、遥動子の位置をセンシングするだけではなく、遥動子がコイルヨ−ク直前でリ−ドスイッチが働き反転電流をコイルに通電し反発磁束を発生させて、なおかつ反対側コイルヨ−クは吸引磁束が発生し、遥動子がロッカ−レバ−のア−ムを押し戻すまで継続通電する機械的メモリ−機能である。よって機構が単純化され操作容易な往復運動リニア駆動装置が構成できた。A reciprocating linear drive device according to a third aspect of the present invention can apply and energize a coil yoke exciting coil by using a rocker lever mechanism having a memory function as a quasi-alternating current and a reciprocating motion of a swinging element. It can be done. Also, the lead switch or micro switch is a transfer type or latch type, and is incorporated in the DC positive / negative circuit, so that one of the currents always flows. The switch operation of the rocker lever must always be in the far direction. Since the reverse energization circuit works, the device does not stop halfway. That is, the important process in this mechanism is not only sensing the position of the swing element, but also the lead switch works immediately before the coil yoke, and a reversal current is passed through the coil to generate a repulsive magnetic flux. The opposite coil yoke has a mechanical memory function in which energization continues until energizing magnetic flux is generated and the swinger pushes back the arm of the rocker lever. Therefore, a reciprocating linear drive device with a simplified mechanism and easy operation could be constructed.

請求項4の発明によれば、制御部分と駆動部分が完全に分離できるので、コンパクト化が図れ、操作性、メンテナンス性も向上する。また遥動子の振幅調整は遥動子間の反転位置すなわちロッカ−レバ−のア−ム位置と磁気センサ−の距離を変えることにより調整できるのでこれらの機能を別ユニット化することにより生産性が高まり、調整、補修も容易になり機種多様化が図れる。According to the invention of claim 4, since the control portion and the drive portion can be completely separated, it is possible to achieve compactness and improve operability and maintainability. Also, the amplitude adjustment of the swing element can be adjusted by changing the reversal position between the swing elements, that is, the distance between the arm position of the rocker lever and the magnetic sensor, so productivity can be increased by making these functions separate units. As a result, adjustments and repairs become easier and the model can be diversified.

請求項5の発明によれば、高効率な遥動装置であるので直流電流の電極スイッチング交番回路を分離し、直接交流電流または変動交番増幅電流を通電することにより振動装置や低音域音楽体感装置として応用利用できる。According to the invention of claim 5, since it is a high-efficiency swing device, it is possible to isolate a direct current electrode switching alternating circuit and directly apply an alternating current or a variable alternating amplification current to thereby vibrate a vibration device or a low-frequency music sensation device. Can be used as an application.

本発明装置は回転モ−タと同様な気軽さで、往復動作をすることができる直流駆動の汎用リニアモ−タを提供することにあり、各種小型ポンプ動力源、DCソレノイド等の電磁開閉モ−タ、家電機器や事務機器への応用、おもちゃへの応用、各種警報装置また音楽信号や低周波域のマッサ−ジ交番波長信号をハイカットフィルタ−などの回路を必要とせずに、単純増幅した低周波域の電流で駆動できる振動装置として、応用展開ができるものでなくてはならない。そこで、できるだけ小型化、高寿命、防爆性等が低価格で提供されなくてはならない。そこで性能や小型化を図るためには希土類マグネット等の高磁力材を使用し、固着されるマグネッのヨ−ク面への接着磁極面はNS極どちらでもよいが、強磁面を表に、裏側をヨ−ク固着面とし、対面している二つのコイルヨ−ク極性は該マグネット磁極面と相反動作する結線配線にする。電源として一般的な乾電池や家庭用AC−DCアダプタ−を使用することができる。  It is an object of the present invention to provide a DC-driven general-purpose linear motor that can reciprocate with the same ease as a rotary motor, and to provide electromagnetic switching motors such as various small pump power sources and DC solenoids. Applications that are applied to home appliances and office equipment, toys, various alarm devices, music signals, and low-frequency massage alternating wavelength signals without the need for circuits such as high-cut filters. As a vibration device that can be driven by a current in the frequency range, it must be applicable. Therefore, miniaturization, long life, explosion-proof properties, etc. must be provided at a low price as much as possible. Therefore, in order to achieve performance and miniaturization, a high magnetic force material such as a rare earth magnet is used, and either the NS pole can be used as the adhesion magnetic pole surface to the yoke surface of the magnet to be fixed. The back side is a yoke fixing surface, and the two coil yoke polarities facing each other are connected wirings that operate in opposition to the magnetic pole surface. A general dry battery or household AC-DC adapter can be used as a power source.

図1は本発明の往復運動リニア駆動装置本体の外観図でケ−ス片側中央部からは外部出力軸に連結するシャフトが伸びており、本体を構造体に固定するための放熱器兼固定金具31がネジでコイルヨ−ク底部2に両端固定されている。本装置は二重ケ−ス7、11で構成されている。その間隙内部にはロッカ−レバ−12と感知磁石16、リ−ドスイッチ14,15、直流・交流電源ソ−ス切り替えスイッチ21や配線端子台18等が基板上26に構成され、それらの部材が収納されている。  FIG. 1 is an external view of a main body of a reciprocating linear drive device according to the present invention. A shaft connected to an external output shaft extends from a central portion on one side of a case, and a radiator / fixing bracket for fixing the main body to a structure. 31 is fixed at both ends to the coil yoke bottom 2 with screws. This apparatus is composed of double cases 7 and 11. Inside the gap, a rocker lever 12, a sensing magnet 16, lead switches 14, 15, a DC / AC power source switch 21 and a wiring terminal block 18 are formed on a substrate 26, and these members Is stored.

図2は該装置の側面断面図で、遥動子9は希土類金属のネオジウムマグネットで円周方向に着磁しているが極性は励磁コイルに対応させればどちらでもよい。実施例では外輪をN極着磁とし、内部内輪側をS極着磁としている。相対するコイルヨ−ク1には励磁コイル2が挿入固着されている。マグネット遥動子9中心から左右に伸びるシャフト4はコイルヨ−ク軸孔1を貫通し、外部へ往復運動を伝達するため伸びている。このコイルヨ−ク軸孔には軸受兼バネ受座5が形成されシャフトに挿入されている圧縮バネ8が配置されている。この圧縮バネは遥動子シャフト4に挿入され遥動子9を左右から押えコイルヨ−ク1間中間に非通電時に位置するように形成されている。また二重ケ−ス間隙部分にはマグネット揺動子9を挟むようにロッカ−レバ−12が左右のコイルヨ−ク中間部ケ−ス壁面開口部24より内部にア−ム13を出し、該ア−ムには緩衝用ゴム部材等16が接着等で装着され揺動子外輪でコイルヨ−ク近傍所定位置まで移動捨置きされる機構をなし、該ロッカ−レバ−12中央部には微小サイズの磁石16が固着されている。その外側には該磁石16の磁束を感知し直流電流の電極反転切り替え動作するトランスファ−型リ−ドスイッチ14、15が直流電流の両極に各々直列に結線されている。このリ−ドスイッチ14,15は基板上26に固定されており基板上には切り替え配線がレイアウトされておりさらに入力電源端子台、励磁コイルへの出力端子台も配置されている。励磁コイル2が装填されているコイルヨ−ク1底部すなわちケ−ス両端部溝空間部にはコイルリ−ド線3,6が引き出され、ON−OFF温度センサ−10が回路に直列に入れられており、該センサ−10からのリ−ド線3はもう一方のコイルリ−ド線6とともにセンサ−制御ユニットケ−ス端子板18に接続されている。また両側のコイルヨ−ク底は本体装置固定のための取り付け金具兼ヒ−トシンク31で目的物等にネジ34で締結される。FIG. 2 is a side cross-sectional view of the apparatus. The swing element 9 is magnetized in the circumferential direction by a rare earth metal neodymium magnet, but the polarity may be any as long as it corresponds to the exciting coil. In the embodiment, the outer ring is N pole magnetized and the inner inner ring side is S pole magnetized. An exciting coil 2 is inserted and fixed to the opposing coil yoke 1. A shaft 4 extending left and right from the center of the magnet swinger 9 passes through the coil yoke shaft hole 1 and extends to transmit the reciprocating motion to the outside. In the coil yoke shaft hole, a bearing / spring seat 5 is formed, and a compression spring 8 inserted into the shaft is disposed. This compression spring is inserted into the swing shaft 4 and is formed so as to be positioned between the coil coil yoke 1 and the coil yoke 1 from the left and right when not energized. In addition, the rocker lever 12 puts out the arm 13 from the wall surface opening 24 in the middle of the left and right coil yokes so that the magnet rocker 9 is sandwiched between the gaps in the double case. The arm has a mechanism in which a rubber member 16 for buffering or the like is attached by adhesion or the like and is moved to a predetermined position in the vicinity of the coil yoke by a rocker outer ring, and a small size is provided in the center of the rocker lever 12 The magnet 16 is fixed. On the outside thereof, transfer type lead switches 14 and 15 which sense the magnetic flux of the magnet 16 and perform the DC inversion switching operation are respectively connected in series to both poles of the direct current. The lead switches 14 and 15 are fixed on the substrate 26, the switching wiring is laid out on the substrate, and the input power supply terminal block and the output terminal block to the exciting coil are also arranged. The coil lead wires 3 and 6 are drawn out at the bottom of the coil yoke 1 where the exciting coil 2 is loaded, that is, the groove space at both ends of the case, and the ON-OFF temperature sensor 10 is put in series with the circuit. The lead wire 3 from the sensor 10 is connected to the sensor control unit case terminal board 18 together with the other coil lead wire 6. The coil yoke bottoms on both sides are fastened to the object or the like with screws 34 by mounting brackets / heat sinks 31 for fixing the main unit.

図3は磁石をバックヨ−ク両面に取り付けマグネットヨ−クを形成した遥動子を持った本体装置で制御回路部を別ユニットケ−スに収めた本体装置正面図。本体固定金具と一体化した放熱器31が発熱するコイルヨ−ク1の熱を効果的に発散冷却する。当該放熱器31は軸方向すなわち幅を自由に伸ばすことができるので負荷による発熱対策が容易にできる。図4は別ユニットケ−スを取り外した本体側面断面図。より小型化できるためまたメンテナンス性を向上させるために制御回路部すべて別ケ−スユニット23に収めて着脱できるようにした。図5は当該ユニット23の正面図を示し、ロッカ−レバ−一組で直流電源両性極反転ができるように感知磁石の磁束により感応するリ−ドスイッチ14,15が平行に2本配置している。このリ−ドスイッチ14,15は暫定正極回路と負極回路に直列に配線してある。また遥動子中間部に取り付けられている感知磁石16が一部顔をだしておりリ−ドスイッチ14,15との間にはその磁束磁界を精度よく感知調製できるようにパ−マロイ等の材質でシ−ト状の磁束磁界遮断調整シ−ト30が配置されている。遥動子9に押されて移動するロッカ−レバ−12中間部に固着してある感知用磁石16の磁束移動を感知してリ−ドスイッチ14,15は正負両極の交番切り替えを行なう。  FIG. 3 is a front view of the main body apparatus in which a control circuit unit is housed in a separate unit case in a main body apparatus having a swinger in which magnets are attached to both sides of a back yoke to form a magnet yoke. The heat of the coil yoke 1 that generates heat is effectively diverged and cooled by the radiator 31 integrated with the main body fixing bracket. Since the heat radiator 31 can freely extend in the axial direction, that is, the width, it is easy to take measures against heat generation by a load. FIG. 4 is a side cross-sectional view of the main body with another unit case removed. In order to further reduce the size and improve the maintainability, all the control circuit units are housed in a separate case unit 23 so that they can be attached and detached. FIG. 5 shows a front view of the unit 23, in which two lead switches 14 and 15 which are sensitive to the magnetic flux of the sensing magnet are arranged in parallel so that the DC power supply amphopolar reversal can be performed by a pair of rocker levers. Yes. The lead switches 14 and 15 are wired in series with the temporary positive circuit and the negative circuit. Also, a sensing magnet 16 attached to the middle part of the swinging part has a part of the face, and a magnetic flux magnetic field between the lead switches 14 and 15 can be accurately detected and adjusted such as permalloy. A sheet-like magnetic flux magnetic field cutoff adjusting sheet 30 made of a material is disposed. The lead switches 14 and 15 detect the movement of the magnetic flux of the sensing magnet 16 fixed to the intermediate portion of the rocker lever 12 which is moved by being pushed by the swinging element 9, and switches the positive and negative poles alternately.

図6は当該制御ユニットの側面断面図で両ケ−スサイドに励磁コイルリ−ド端子台18が取り付けられており、中間からはソ−ス電源端子台19が形成されている。また直流電源と交番交流電源両方が使用できるように切り替えスイッチ21が配置され、基板中央付近にはLEDランプ22がコイルヨ−クの異常温度時に警報点滅するよう回路構成されており、基板26下部面には摺動ガイドとしてすべりのよい薄板樹脂材等で形成されたスライダ−板が配置してありその下部本体ケ−スとの間にはロッカ−レバ−が適当圧でスライダ−25に接しており、遥動子9の押移力で動作するように調整されている。ロッカ−レバ−12は遥動子移動距離を調整する場合や消耗した場合、交換できるようなケ−ス構造となっており、ネジ20でケ−スは簡単脱着できる構造となっている。図7は制御ユニットケ−ス背面図で、背面は本体ケ−ス側面沿うように局面構成されている。中央開口部37はロッカ−レバ−ア−ム差込用細溝2ケ形成され該ケ−スを固定するネジ孔が両端に設けられている。FIG. 6 is a side sectional view of the control unit. Excitation coil lead terminal blocks 18 are attached to both case sides, and a source power terminal block 19 is formed from the middle. Further, a changeover switch 21 is arranged so that both a DC power supply and an alternating AC power supply can be used, and the LED lamp 22 is arranged in the vicinity of the center of the board so that an alarm blinks when the coil yoke has an abnormal temperature. The slider plate made of a thin plate resin material or the like having a good sliding property is disposed as a sliding guide, and a rocker lever is in contact with the slider 25 with an appropriate pressure between the lower body case. And adjusted to operate with the displacement force of the swinging element 9. The rocker lever 12 has a case structure that can be replaced when the moving distance of the slider is adjusted or worn, and the case can be easily detached with the screw 20. FIG. 7 is a rear view of the control unit case, and the rear surface is configured to be along the side surface of the main body case. The central opening 37 is formed with two rocker lever arm insertion narrow grooves, and screw holes for fixing the case are provided at both ends.

図8−1は永久磁石単体の着磁説明図。図8−2は本装置の磁石単体遥動子の磁気回路説明図であり、永久磁石単体で吸引反発ができる磁気回路および磁束磁界を説明している。リング状の円板磁石を円周方向に磁極を構成させ、コイルヨ−ク交番磁束磁界に対面させて往復運動をさせている。遥動子を軽くできるために小さな装置には向いているが、コイルヨ−クの磁界変動の影響を受けやすい。図9−1は本装置のマグネットヨ−ク複合磁石の磁気回路および磁束磁界説明図。図9−2は永久磁石をバックヨ−クに固着した磁極磁束の配置を図示している。永久磁石を両面にその磁束を厚み方向に着磁して接着もしくは多数枚の円板状で同様厚み方向に着磁した磁石を接着しても構成できるバックヨ−ク式の遥動子でその磁界を内輪と外輪に誘導できるので大型構造に適している。また変動磁界磁束に影響されにくく強力な磁界を構成できる。バックヨ−クに磁石を接着しているが、両面とも同極を固着し、バックヨ−ク外輪に双方とも同じ磁極を生成させている。コイルヨ−ク磁極を変更すれば遥動子外輪の両サイドに両極構成もできるが実験の結果、外輪鍔両面は同極形成の方が磁極レベルは高くなりパワ−がだせるので実施例ではこの方式は採用した。さらに磁石とバックヨ−ク外輪鍔との間隙はバックヨ−ク内径寸法の15%程の隙間をとり磁界形成圏をコイル生成変動磁界圏と対称構築した。これにより遥動子の反発吸引力は増加し効率が向上する。図10は本装置の電気回路基本ブロック図。基本回路であり必要に応じて保護回路やノイズ防止回路の付加が必要である。遥動子の移動位置感知方法は磁束感知のほかホ−ル素子やホトセンシング等の非接触で感知でき速度制御ないしパワ−制御等は直流モ−タの正逆転回路や制御機構の考案応用が容易にできる。FIG. 8-1 is an explanatory diagram of magnetization of a single permanent magnet. FIG. 8-2 is an explanatory diagram of a magnetic circuit of a single magnet swinger of the present apparatus, illustrating a magnetic circuit and a magnetic flux magnetic field that can be attracted and repelled by a single permanent magnet. A ring-shaped disc magnet is formed with magnetic poles in the circumferential direction, and is caused to reciprocate by facing a coil yoke alternating magnetic flux magnetic field. Although it is suitable for small devices because the swinging element can be lightened, it is easily affected by fluctuations in the magnetic field of the coil yoke. FIG. 9A is an explanatory diagram of a magnetic circuit and a magnetic flux magnetic field of a magnet yoke composite magnet of this apparatus. FIG. 9-2 illustrates the arrangement of the magnetic pole magnetic flux in which the permanent magnet is fixed to the back yoke. A magnetic field with a back-yoke type swing that can be constructed by magnetizing a permanent magnet on both sides and adhering the magnetic flux in the thickness direction, or by adhering multiple magnets magnetized in the same thickness direction. Is suitable for large structures. In addition, a strong magnetic field can be configured which is not easily affected by the changing magnetic field magnetic flux. A magnet is bonded to the back yoke, but the same pole is fixed on both sides, and the same magnetic pole is generated on both sides of the back yoke. If the coil yoke magnetic pole is changed, a double pole configuration can be made on both sides of the swing outer ring. However, as a result of the experiment, the poles on both sides of the outer ring are formed with the same magnetic pole level and power is increased. Adopted. Further, the gap between the magnet and the back yoke outer ring is about 15% of the inner diameter of the back yoke, and the magnetic field forming sphere is constructed symmetrically with the coil generation variable magnetic field sphere. This increases the repulsive suction force of the swinging element and improves the efficiency. FIG. 10 is a basic block diagram of an electric circuit of the apparatus. It is a basic circuit and it is necessary to add a protection circuit and a noise prevention circuit as necessary. In addition to magnetic flux sensing, the moving position sensing method can be sensed in a non-contact manner such as a hall element or photo sensing, and speed control or power control can be devised and applied to DC motor forward / reverse circuits and control mechanisms. Easy to do.

本発明装置は、一般産業用の単純なプランジャ−用途から、その長寿命とシンプル構造から各種ポンプ駆動装置、振動、リニア駆動から家庭用電気製品やおもちゃ等コンパクト性と高い制御性能、単純性などから今後幅広く応用利用される。  The device of the present invention is a simple plunger for general industries, its long life and simple structure, various pump drive devices, vibration, linear drive, household appliances and toys, etc. Compactness, high control performance, simplicity, etc. Will be widely applied in the future.

本体装置の側面図Side view of the main unit 本体装置の側面断面図Side sectional view of the main unit 制御ユニット交換式本体装置の正面図Front view of control unit exchangeable main unit 制御ユニット交換式本体装置の側面および部分断面図Side and partial cross-sectional view of control unit replaceable main unit 制御ユニットケ−ス上面図および部分断面図Control unit case top view and partial sectional view 制御ユニットケ−ス側面断面図Side view of control unit case 制御ユニットケ−ス背面図Control unit case rear view 単体磁石遥動子磁気回路説明図Single-magnet magnetic rotor magnetic circuit explanatory diagram 複合磁石遥動子磁気回路説明図Composite magnet swaying magnetic circuit explanatory diagram 電気回路ブロック図Electrical circuit block diagram

符号の説明Explanation of symbols

1−−−コイルヨ−ク
2−−−励磁コイル
3−−−励磁コイルリ−ド線暫定正極側
4−−−遥動子シャフト
5−−−軸受兼バネ受座
6−−−励磁コイルリ−ド線暫定負極側
7−−−外ケ−ス
8−−−圧縮バネ
9−−−遥動子/永久磁石
10−−−温度センサ−
11−−−内ケ−ス
12−−−ロッカ−レバ−
13−−−ロッカ−レバ−ア−ム
14−−−リ−ドスイッチ暫定正極回路用
15−−−リ−ドスイッチ暫定負極回路用
16−−−感知用磁石
17−−−ア−ム緩衝ゴム
18−1−−−励磁コイルリ−ド線固定端子台暫定正極用
18−2−−−励磁コイルリ−ド線固定端子台暫定負極用
19−−−電源ソ−スリ−ド線固定端子台
20−−−制御ユニットケ−ス固定ネジ
21−−−電源ソ−ス切り替えスイッチ
22−−−ランプ
23−−−制御ユニット
24−−−ロッカ−ア−ム開口部
25−−−スライダ−シ−ト
26−−−制御基板
27−−−遥動子バックヨ−ク
28−−−リング状永久磁石(厚み方向上下着磁)
29−−−バックヨ−ク立上鍔部
30−−−磁束遮断調整シ−ト(パ−マロイ)
31−−−固定金具兼放熱器
32−−−放熱器固定ネジ
33−−−放熱フィン
34−−−本体装置固定ネジ
35−−−防振ゴム
36−−−電源ソ−ス
37−−−ロッカ−レバ−ア−ム溝穴(制御ユニット背面)
1 --- Coil yoke 2 --- Excitation coil 3 --- Excitation coil lead wire Temporary positive electrode side 4 --- Swinger shaft 5 --- Bearing and spring seat 6 --- Excitation coil lead Wire temporary negative electrode side 7 --- Outer case 8 --- Compression spring 9 --- Swinger / Permanent magnet 10 --- Temperature sensor--
11 --- Inner case 12 --- Rocker lever
13 --- Rocker lever arm 14 --- Lead switch for temporary positive circuit 15 --- Lead switch for temporary negative circuit 16 --- Sensing magnet 17 --- Arm buffer Rubber 18-1 --- Excitation coil lead wire fixed terminal block for temporary positive electrode 18-2 --- Excitation coil lead wire fixed terminal block for temporary negative electrode 19 --- Power source lead wire fixed terminal block 20 --- Control unit case fixing screw 21 --- Power source switch 22 --- Lamp 23 --- Control unit 24 --- Rocker arm opening 25 --- Slider sheet 26 --- Control board 27 --- Swing back yoke 28 --- Ring-shaped permanent magnet (up and down magnetization in the thickness direction)
29 --- Back yoke 30 --- Magnetic flux cutoff adjustment sheet (Permalloy)
31 --- Fixing bracket and radiator 32 --- Radiator fixing screw 33 --- Radiation fin 34 --- Main unit fixing screw 35 --- Vibration isolation rubber 36 --- Power source 37 --- Rocker lever arm slot (on back of control unit)

Claims (5)

環状に卷回した励磁コイルを、中心に貫通軸孔を設けた電磁軟鉄材でなる円筒凹型容器に挿入固着したコイルヨ−ク二組を所定間隔で開口面を対面させ円筒ケ−スに固定し、その中間に円周方向に着磁した円板状永久磁石単体を遥動子として、もしくは厚み方向に着磁したリング状磁石二組を磁束誘導する鉄鋼材質でなる円板状バックヨ−ク両面に接着固定したマグネットヨ−クを、すなわち遥動子が同一方向に移動するように磁束磁界を形成するコイルヨ−クと向き合うように、該磁石磁極磁束を誘導する構造を具えた遥動子を配置し、該揺動子中心からはネジ等で締結一体化されたシャフトがケ−ス外に伸張形成されている。該シャフト両側に挿入された圧縮スプリングはコイルヨ−ク軸孔中間部に設けられた軸受を兼ねたバネ受座で遥動子を左右コイルヨ−ク間の中間位置に保持し、コイルヨ−ク直近円筒ケ−ス表面部に該遥動子の位置を感知する非接触手段によるセンサ−が遥動子を挟んで対称設置されその感知信号をもとにケ−ス内もしくは装置外に設けられる電子的制御回路で励磁コイルに通電する直流電流の正負極性を同時反転し、遥動子を反対コイルヨ−ク方向に移動させる動作を繰り返すことにより遥動子ないし遥動子と一体結合のシャフトを往復動作させることのできる直流電流による往復運動リニア駆動装置。  Two coil yokes, in which an exciting coil wound in an annular shape, is inserted and fixed in a cylindrical concave container made of an electromagnetic soft iron material with a through-shaft hole in the center, are fixed to the cylindrical case with the opening surfaces facing each other at a predetermined interval. Disc-shaped back yokes made of a steel material that induces magnetic flux by using two disc-shaped permanent magnets magnetized in the circumferential direction in the middle as a single rotor or two ring-shaped magnets magnetized in the thickness direction A magnetic yoke having a structure for inducing the magnetic pole magnetic flux so that the magnetic yoke is bonded and fixed to the coil yoke, that is, a coil yoke that forms a magnetic flux magnetic field so that the swinging element moves in the same direction. A shaft, which is arranged and fastened and integrated with a screw or the like from the center of the oscillator, extends out of the case. The compression springs inserted on both sides of the shaft are spring seats that also serve as bearings provided in the middle part of the coil yoke shaft hole, and the swinger is held at an intermediate position between the left and right coil yokes. A sensor by non-contact means that senses the position of the swing element on the surface of the case is placed symmetrically with the swing element in between, and is provided in the case or outside of the apparatus based on the detection signal. By reversing the positive / negative polarity of the direct current that flows through the exciting coil in the control circuit and moving the swinging element in the opposite coil yoke direction, the reciprocating movement of the swinging element or the shaft integrally coupled with the swinging element is performed. Reciprocating linear drive device with direct current that can be made. 前記第1項記載の往復運動リニア駆動装置において、コイルヨ−ク間を遥動する円板状遥動子は外周を両面とも固着する磁石の厚み高さの鍔を立ち上げ、中心に軸穴をもち左右対称形状に加工された鉄鋼材質形成のマグネットヨ−クに厚み方向に着磁したリング状永久磁石の中心を合わせて該ヨ−ク両面に同磁極面で接着固定し外周縁両面に立ち上がる鍔に対極を誘導させると同時に磁石外周縁とヨ−ク鍔内周縁との空間隙間を対面するコイルヨ−ク側生成磁極磁界圏と相対反応させるために遥動子ヨ−ク鍔内径の少なくとも10%以上の間隙を設け有効相対磁界を形成できるようにしたことを特長とする往復運動リニア駆動装置。  In the reciprocating linear drive device according to the first aspect, the disc-shaped swinging member that swings between the coil yokes raises a ridge of the thickness and height of the magnet that fixes the outer periphery on both sides, and has a shaft hole at the center. The center of the ring-shaped permanent magnet magnetized in the thickness direction is aligned with the steel yoke formed of steel material that has been processed symmetrically, and the both sides of the yoke are bonded and fixed with the same magnetic pole surface. At least 10 of the inner diameter of the swing yoke is used to induce a counter electrode in the rod and to react with the coil yoke side generated magnetic field magnetosphere facing the space gap between the outer periphery of the magnet and the inner periphery of the yoke. Reciprocating linear drive device characterized in that an effective relative magnetic field can be formed by providing a gap of at least%. 前記第1項および第2項記載の往復運動リニア駆動装置において、コイルヨ−クと遥動子機構を第一の円筒ケ−スに内蔵し、第一のケ−ス円筒表面上、揺動子を挟むようにその左右のコイルヨ−ク中間位置に細溝を開口し、該細溝にそって往復移動する中間部に磁石を固着した薄板ないし棒状のロッカ−レバ−を配置し、該レバ−の両端もしくは所定中間位置から内径方向にア−ムを遥動子が押せる長さに突出させて、該中間部磁石真上ないし該磁束検知範囲にリ−ドスイッチを配し、該スイッチの感応動作により、励磁コイルへの直流電流の正負極性を反転通電する機構とし、また該レバ−中間の磁石を突起形状としマイクロスイッチ等の機械的手段により当該位置を検知同様反転動作ができるようにし、これらの機構を第一の円筒ケ−スと第二のケ−ス間に収めた装置としたことを特徴とする往復運動リニア駆動装置。  2. The reciprocating linear drive device according to claim 1 or 2, wherein the coil yoke and the swing mechanism are built in the first cylindrical case, and the oscillator is mounted on the surface of the first case cylinder. A thin plate or rod-like rocker lever with a magnet fixed to an intermediate portion reciprocating along the narrow groove is disposed at the middle position between the left and right coil yokes so as to sandwich the lever. The arm is protruded in the inner diameter direction from both ends or a predetermined intermediate position to a length that can be pushed by the swaying element, and a lead switch is arranged directly above the intermediate magnet or in the magnetic flux detection range. By the operation, a mechanism for reversing the positive and negative polarity of the direct current to the exciting coil, and the lever intermediate magnet is formed in a protruding shape so that the position can be reversed similarly to the detection of the position by mechanical means such as a micro switch, These mechanisms are connected to the first cylindrical case. Second bristle - reciprocating linear drive, characterized in that the device of matches between the scan. 前記第3項記載の往復運動リニア駆動装置において、一組のロッカ−レバ−中間部に設けられた感知用磁石の真上ないしその磁界影響内に正負極両回路に各々設けるリ−ドスイッチを2本を並行配置し、またはロッカレバ−中間部に設けられた突起部により感知動作するマイクロスイッチ等を含め、ロッカ−レバ−、センサ−スイッチ制御回路、電源端子またはそれらを一体的に組み込んだ回路基板ユニットを別ケ−スに納め、本体ケ−スにネジ等の締結手段により取り付け交換できることを特長とした往復運動リニア駆動装置。  4. The reciprocating linear drive device according to claim 3, wherein a lead switch provided in each of the positive and negative circuits is provided directly above the sensing magnet provided in the middle part of the pair of rocker levers or within the magnetic field effect thereof. Rocker lever, sensor switch control circuit, power supply terminal, or a circuit in which they are integrated, including two micro switches arranged in parallel, or a micro switch that senses and operates by a protrusion provided in the middle part of the rocker lever A reciprocating linear drive device characterized in that the substrate unit is housed in a separate case and can be mounted and replaced on the main body case by a fastening means such as a screw. 前記第1項、第2、第3項および第4項記載の直流電源駆動の往復運動リニア駆動装置において、入力電源ソ−スとして交流や音楽信号等の変動交番増幅電流にも動作対応できるよう直流電源極性反転回路をスイッチ手段を介して分離し直接コイルヨ−クの電磁コイルに当該変動増幅電流を通電印加して往復動作させることができることを特長とした往復運動リニア駆動装置。  In the DC power supply reciprocating linear drive device according to any one of the first, second, third, and fourth items, the input power source can be adapted to operate with alternating alternating amplification currents such as alternating current and music signals. A reciprocating linear drive device characterized in that a DC power source polarity reversing circuit can be separated via a switching means and the fluctuation amplification current can be applied directly to an electromagnetic coil of a coil yoke to reciprocate.
JP2004116237A 2004-03-14 2004-03-14 Reciprocating linear driver Pending JP2005261173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004116237A JP2005261173A (en) 2004-03-14 2004-03-14 Reciprocating linear driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004116237A JP2005261173A (en) 2004-03-14 2004-03-14 Reciprocating linear driver

Publications (1)

Publication Number Publication Date
JP2005261173A true JP2005261173A (en) 2005-09-22

Family

ID=35086349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004116237A Pending JP2005261173A (en) 2004-03-14 2004-03-14 Reciprocating linear driver

Country Status (1)

Country Link
JP (1) JP2005261173A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110882A (en) * 2005-10-13 2007-04-26 Mutsuo Hirano Reciprocating linear engine
JP2009183456A (en) * 2008-02-06 2009-08-20 Tamiya Inc Model toy and drive unit of the same
JP2016512946A (en) * 2013-03-19 2016-05-09 ジャン ソクホJANG, Sukho Electric generator combined with electric power generation using a coil plate having a split coil body and a reciprocating magnet plate having a split magnet
CN107284546A (en) * 2017-07-19 2017-10-24 孟喆 A kind of physical machine people and pole-climbing method with pole-climbing function
CN110165864A (en) * 2019-05-15 2019-08-23 浙江省东阳市东磁诚基电子有限公司 Linear motion motor and application method
CN113949200A (en) * 2020-07-17 2022-01-18 日本电产株式会社 Motor and electric product
CN116083903A (en) * 2023-03-20 2023-05-09 宁夏众盈机械制造有限公司 Laser cladding device for sprocket

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913084U (en) * 1982-07-16 1984-01-26 ミサワホ−ム株式会社 Electromagnetic reciprocating device
JPS5987112U (en) * 1982-12-02 1984-06-13 日新工機株式会社 Two-way self-holding solenoid
JPH10243688A (en) * 1997-02-25 1998-09-11 Matsushita Electric Works Ltd Method of controlling start of linear vibration motor
JP2000050608A (en) * 1998-07-28 2000-02-18 Matsushita Electric Works Ltd Control method for drive of linear vibrating motor
JP2000091119A (en) * 1998-09-07 2000-03-31 Nissan Motor Co Ltd Electromagnetic driving system valve operating apparatus in electromagnetic driving equipment and internal combustion engine
JP2003154081A (en) * 2001-11-26 2003-05-27 Tdk Corp Vibration speaker-built-in type ball shooting operation handle of pachinko game machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913084U (en) * 1982-07-16 1984-01-26 ミサワホ−ム株式会社 Electromagnetic reciprocating device
JPS5987112U (en) * 1982-12-02 1984-06-13 日新工機株式会社 Two-way self-holding solenoid
JPH10243688A (en) * 1997-02-25 1998-09-11 Matsushita Electric Works Ltd Method of controlling start of linear vibration motor
JP2000050608A (en) * 1998-07-28 2000-02-18 Matsushita Electric Works Ltd Control method for drive of linear vibrating motor
JP2000091119A (en) * 1998-09-07 2000-03-31 Nissan Motor Co Ltd Electromagnetic driving system valve operating apparatus in electromagnetic driving equipment and internal combustion engine
JP2003154081A (en) * 2001-11-26 2003-05-27 Tdk Corp Vibration speaker-built-in type ball shooting operation handle of pachinko game machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110882A (en) * 2005-10-13 2007-04-26 Mutsuo Hirano Reciprocating linear engine
JP2009183456A (en) * 2008-02-06 2009-08-20 Tamiya Inc Model toy and drive unit of the same
JP2016512946A (en) * 2013-03-19 2016-05-09 ジャン ソクホJANG, Sukho Electric generator combined with electric power generation using a coil plate having a split coil body and a reciprocating magnet plate having a split magnet
CN107284546A (en) * 2017-07-19 2017-10-24 孟喆 A kind of physical machine people and pole-climbing method with pole-climbing function
CN107284546B (en) * 2017-07-19 2023-11-10 江苏大发建设工程有限公司 Physical robot with pole-climbing function and pole-climbing method
CN110165864A (en) * 2019-05-15 2019-08-23 浙江省东阳市东磁诚基电子有限公司 Linear motion motor and application method
CN113949200A (en) * 2020-07-17 2022-01-18 日本电产株式会社 Motor and electric product
CN116083903A (en) * 2023-03-20 2023-05-09 宁夏众盈机械制造有限公司 Laser cladding device for sprocket

Similar Documents

Publication Publication Date Title
JP3382061B2 (en) Linear vibration motor
US7151332B2 (en) Motor having reciprocating and rotating permanent magnets
AU753137B2 (en) Magnetic actuator
JP3927089B2 (en) Linear actuator, pump device and compressor device using the same
JP6697835B2 (en) Swing motor and electric clipper
US10615677B2 (en) Actuator, air pump, beauty treatment device, and laser scanning device
JP2010265805A (en) Electromagnetic driving device of magnetism intensifying type
JP2006325381A (en) Reciprocating linear engine
JP2005503747A (en) Electric converter, linear compressor and wireless transmission antenna
JP2005261173A (en) Reciprocating linear driver
WO2002091551A1 (en) Magnetically driving apparatus
JP3468011B2 (en) Startup control method for linear vibration motor
CN107919781B (en) Linear vibration motor
JP2007110882A (en) Reciprocating linear engine
CN209844808U (en) High-frequency direct-acting type power motor
GB2079381A (en) Alternating current energised gas pumping device
JP2013128367A (en) Vibration device, bell ringing device, and resonance device
US20210142937A1 (en) Linear Actuation System Having Side Stators
KR100942866B1 (en) Revolver make use of a bibrator
JP2007289911A (en) Resonance motor
JP2005133555A (en) Elastic vibrating plate fan
JP3382062B2 (en) Linear vibration motor
JP2006271178A (en) Reciprocating linear engine
KR102125489B1 (en) magnetic force formation method and vertical vibration using upper and lower magnetic
JP2004229345A (en) Linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525