WO2006016535A1 - フィルム外装電気デバイスおよびその製造方法 - Google Patents

フィルム外装電気デバイスおよびその製造方法 Download PDF

Info

Publication number
WO2006016535A1
WO2006016535A1 PCT/JP2005/014428 JP2005014428W WO2006016535A1 WO 2006016535 A1 WO2006016535 A1 WO 2006016535A1 JP 2005014428 W JP2005014428 W JP 2005014428W WO 2006016535 A1 WO2006016535 A1 WO 2006016535A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
heat
exterior
electrical device
resin layer
Prior art date
Application number
PCT/JP2005/014428
Other languages
English (en)
French (fr)
Inventor
Makihiro Otohata
Hiroshi Yageta
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to KR1020077004313A priority Critical patent/KR100887792B1/ko
Priority to DE602005024287T priority patent/DE602005024287D1/de
Priority to CN2005800273065A priority patent/CN101010817B/zh
Priority to AT05768917T priority patent/ATE485604T1/de
Priority to US11/573,538 priority patent/US8283061B2/en
Priority to EP05768917A priority patent/EP1793436B1/en
Publication of WO2006016535A1 publication Critical patent/WO2006016535A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • H01M50/325Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/08Cooling arrangements; Heating arrangements; Ventilating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • H01G2/103Sealings, e.g. for lead-in wires; Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/12Vents or other means allowing expansion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electric device represented by a battery or a capacitor, and in particular, a film-covered electric device in which an electric device element such as a chemical cell element or a capacitor element is sealed with a film outer material On the way.
  • a film-covered electrical device is a film-covered battery.
  • the battery element is sandwiched from both sides in the thickness direction thereof with an outer film having a dimension larger than the planar dimension of the battery element, and the facing outer films are joined to each other at the outer periphery of the battery element.
  • a battery element is hermetically sealed (hereinafter, also simply referred to as "sealed").
  • the positive electrode and negative electrode tabs are connected to the battery element as an electrode, and when the battery element is sealed, these tabs are pulled out from the exterior film.
  • a laminated film in which a metal layer and a heat-fusing resin layer are laminated is used as the exterior film, and the battery element is sealed by heat-fusing the heat-fusing resin layers.
  • gas species may be generated due to the electrolysis of the electrolyte solvent.
  • decomposition of electrolyte salt etc. will generate a substance that is the source of gas species.
  • the battery control circuit may fail for some reason and an abnormal voltage may be applied, or the environment may become hotter due to some reason. A large amount of gas may be generated.
  • Japanese Patent Application Laid-Open No. 2004-55290 discloses a heat-fused portion 106 formed by heat-sealing an exterior film 104 around a battery element (not shown).
  • a film-clad battery 101 is disclosed in which a portion protrudes toward a region for housing a battery element.
  • a gas release portion 107 is formed on the exterior film 104 with its tip facing the protruding portion of the heat seal portion. The gas release portion 107 is formed by not heat-sealing the exterior film 104.
  • FIG. 2 is a cross-sectional view of the film-clad battery shown in FIG. 1 at a gas release portion.
  • the exterior film 104 is disposed with the heat-bonded resin layers 111 facing each other, and in the heat-bonded portion 106, the heat-bonded resin layers 111 are integrated by heat-bonding. It has been The outer layer of the heat fusible resin layer 111 is a metal layer 112.
  • the bowing stress of the outer film 104 is applied to the inner edge of the heat-sealed portion 106, and the peeling of the outer film 104 destroys the heat-bonded resin layer 111. It progresses while doing.
  • the gas release portion does not function as a safety valve, and pressure release is performed until the exfoliation reaches the outer edge of the exterior film. Can not be done. As a result, the opening pressure becomes high.
  • the direction of the peeling at the interface between the heat-bonding resin layer and the metal layer is not fixed, so the pressure release position may be widely dispersed. There is sex. That is, in the conventional pressure release structure, depending on the progress of peeling, the release pressure and the pressure release position may become unstable.
  • the above-mentioned matters are not limited to the film-clad battery, and are common problems to the film-clad electrical device in which an electric device element capable of generating a gas is sealed with the film casing.
  • An object of the present invention is to provide a film-covered electrical device and a method of manufacturing the same, which can set the open pressure and the pressure release position at the time of expansion of the outer covering film due to abnormal gas generation easily and reliably. It is to provide.
  • a film-covered electrical device of the present invention has an electrical device element and an exterior film sealing the electrical device element. Exterior film is small
  • the heat-fusing resin layer is opposed to each other to enclose the electric device element, and the heat-fusing resin layers opposed to each other are heat-sealed at the outer peripheral portion.
  • the sheath film seals the electric device element with the heat-sealed area as the heat-sealing portion and the space inside the heat-sealed portion as the electric device element housing portion.
  • the heat fusion is performed in a continuous region including a part of the heat fusion part so that at least one of the facing exterior films has a part exposed to the electric device element storage part and another part in contact with the outside air.
  • a cross-linked structure is formed by cross-linking the resin layer! Scold.
  • the heat-sealing resin layers of the facing armored film are heat-sealed with each other, whereby the electric device element is sealed.
  • the region including a part of the heat-fused portion formed by heat-fusing at least one of the facing exterior films cross-links the heat-fused resin layer in the specific region as described above. As a result, a crosslinked structure part is formed.
  • the area where the cross-linked structure is formed peels off with a small force compared to the other areas.
  • peeling preferentially proceeds at the interface of the facing exterior film in the region where the crosslinked structure portion is formed.
  • the peeling position and the pressure release position are identified, which facilitates the setting of the release pressure.
  • the heat fusion bonding portion is formed to have a protruding fusion bonding portion protruding toward the electric device element storage portion, and the cross-linked structure includes the protruding fusion bonding portion. Preferred to form in the range. Since the bowing stress applied to the heat-sealed portion concentrates on the protruding and welded portion, the progress of the peeling in the region where the crosslinked structure portion is formed is promoted.
  • a gas release portion communicating with the outside air and not communicating with the battery element storage portion is provided on the outer peripheral portion of the exterior film, and the bridging structure includes a region in contact with the gas release portion as another portion contacting with the outside air.
  • the pressure release is reliably performed from the gas release portion.
  • the gas released at the time of pressure release can be guided to a suitable position.
  • the crosslinked structure portion may be formed by subjecting the heat fusible resin layer of the exterior film to a crosslinking treatment, or by forming a crosslinked resin sheet fused to the exterior film. It is also good.
  • an electrical device element is surrounded by an covering film including at least a heat-fusing resin layer, and the outer peripheries of the facing covering films are heat-sealed.
  • a method of manufacturing a film-covered electrical device in which the thermally fused area is used as the thermally fused area and the space inside the space is used as the electrical device element storage area to seal the electrical device element.
  • the thermally fused area is used as the thermally fused area and the space inside the space is used as the electrical device element storage area to seal the electrical device element.
  • the facing exterior film is continuous in a continuous region including a part of the region to be a heat fusion portion of the exterior film.
  • the part is formed in advance.
  • the film-covered electrical device of the present invention as described above is obtained by surrounding the electric device element with the covering film and heat-sealing the facing outer peripheral portions in the same manner as usual using the covering film having the crosslinked structure formed therein. Is obtained.
  • the crosslinked structure portion can be formed by irradiation of an electron beam to the thermally fused resin layer.
  • the peeling force in the region where the crosslinked structure part is formed can be easily controlled by the irradiation amount of the electron beam at the time of forming the crosslinked structure part.
  • a cross-linked structure portion is formed in a partial region of the heat-fused resin layer, and the exterior film is heat-fused using this cross-linked structure portion, thereby achieving an abnormal state.
  • the release pressure and the pressure release position at the time of expansion of the exterior film due to gas generation can be easily and reliably set.
  • FIG. 1 is a perspective view of a conventional film-clad battery.
  • FIG. 2 is a cross-sectional view of the heat sealed portion of the film-clad battery shown in FIG.
  • FIG. 3 is a cross-sectional view of the heat-sealed portion for explaining an example of the progress of peeling of the exterior film in the film-clad battery shown in FIG. [4]
  • FIG. 1 it is a cross-sectional view of a heat-sealed portion when peeling of the outer-coating film proceeds at the interface between the heat-sealed resin layer and the metal layer.
  • FIG. 6 A partial plan view of the film-clad battery shown in FIG. 5 around a pressure release structure.
  • FIG. 7 is a cross-sectional view taken along the line A-A in FIG.
  • FIG. 9 A graph showing experimental results comparing the peel strength in the case of cross-linking treatment to the exterior film and in the case of non-crosslinking treatment.
  • FIG. 10 is a plan view of a film-clad battery according to a second embodiment of the present invention.
  • FIG. 11 A plan view of a film-clad battery according to a third embodiment of the present invention.
  • FIG. 12 is a cross-sectional view taken along the line B-B in FIG.
  • ⁇ 13 A plan view of a film-clad battery according to a fourth embodiment of the present invention.
  • FIG. 14 A plan view showing a modification of the film-clad battery shown in FIG.
  • FIG. 15 is a plan view showing another modified example of the film-clad battery shown in FIG.
  • FIG. 16 A sectional view in the vicinity of a heat-sealed part of a film-clad battery, for describing a further embodiment of the present invention.
  • a flat, substantially rectangular battery element 2 having a structure in which a plurality of positive electrodes and a plurality of negative electrodes are stacked, a positive electrode tab 3a connected to the positive electrode and the negative electrode of battery element 2, and A film-clad battery 1 according to a first embodiment of the invention is shown, having a negative electrode tab 3 b and two armor films 4, 5 sealing the battery element 2.
  • Battery element 2 has a structure in which a plurality of positive electrodes and a plurality of negative electrodes made of metal foils coated with electrode materials on both sides are alternately stacked via a separator. An electrode material is applied from one side of each positive electrode and each negative electrode, and an uncoated portion is provided so as to protrude. The uncoated portions of the positive electrode and the uncoated portions of the negative electrode are respectively provided. It is collectively ultrasonically welded and connected to the positive electrode tab 3a and the negative electrode tab 3b. The ultrasonically welded uncoated portions of the positive and negative electrodes are called current collectors. That is, the positive electrode tab 3a and the negative electrode tab 3b are connected to the current collector of the battery element 2, respectively.
  • the positive electrode and the negative electrode constituting the battery element 2 are overlapped with the uncoated portions of the electrode material in the same direction. Therefore, the positive electrode tab 3 a and the negative electrode tab 3 b are connected to the same side of the battery element 2.
  • the positive electrode tab 3a and the negative electrode tab 3b are electrodes for electrical connection with the outside, and as shown in FIG. 6, the tip portions of the positive electrode tab 3a and the negative electrode tab 3b are outside the exterior films 4 and 5 Have been pulled out.
  • the planar shape of the film-covered battery 1 is substantially rectangular, and the positive electrode tab 3a and the negative electrode tab 3b are drawn from the short side of the rectangle.
  • an aluminum foil is used as a metal foil constituting a positive electrode
  • a copper foil is used as a metal foil constituting a negative electrode
  • an aluminum plate is used for the positive electrode tab 3a
  • a nickel plate or a copper plate is used for the negative electrode tab 3b.
  • the negative electrode tab 3b is made of a copper plate, the surface is nickel-plated Good luck.
  • the separator is a sheet-like member which can be impregnated with an electrolytic solution, such as a microporous film (microporous film), a non-woven fabric or a woven fabric, which is made of thermoplastic resin such as polyolefin. be able to.
  • an electrolytic solution such as a microporous film (microporous film), a non-woven fabric or a woven fabric, which is made of thermoplastic resin such as polyolefin.
  • the exterior films 4 and 5 have a planar dimension larger than the planar dimension of the battery element 2 in order to surround the battery element 2 from both sides in the thickness direction, and overlap around the battery element 2
  • the battery element 2 is sealed by heat-sealing the facing surfaces. Therefore, the periphery of the battery element 2 is a sealed region all around, and particularly the heat-sealed region is hatched as a heat-sealed portion 6 in the drawing.
  • One of the exterior films 4 has a cup portion 4 a in the central region in order to form a battery element storage portion which is a space surrounding the battery element 2.
  • the heat sealing portion 6 is formed over the entire circumference of the cup portion 4a.
  • the processing of the cup 4a can be performed by deep drawing.
  • a cup may be formed on both of the exterior films 4 and 5 in which the cup 4a is formed only on one of the envelope films 4.
  • the exterior may be formed without forming the cup.
  • the flexibility of the films 4 and 5 may be used to enclose the battery element 2.
  • the exterior films 4 and 5 are laminate films.
  • FIG. 1 Typically, as shown in FIG.
  • the protective film 13 may be provided as needed if it has at least the heat-fusion layer resin 11 and the non-air-permeable layer 12.
  • the metal thin film constituting the non-air-permeable layer 12 for example, foils of Al, Ti, Ti alloy, Fe, stainless steel, Mg alloy, etc. having a thickness of 10 to L 00 m can be used. .
  • the heat fusible resin used for the heat fusible resin layer 11 will be described later.
  • the thickness of the heat sealing resin layer 11 is preferably 10 to 200 ⁇ m, and more preferably 30 to: LOO ⁇ m is there.
  • a pressure release structure is provided in part of the sealing region.
  • the pressure release structure is located between the positive electrode tab 3a and the negative electrode tab 3b in the present embodiment.
  • a protruding fusion part 6a formed by projecting a part of the inner edge of the thermal fusion part 6 toward the battery element side, and a protrusion fusion part 6a from the outer edge of the exterior films 4 and 5
  • a gas release portion 7 whose tip end reaches the protruding fusion portion 6a.
  • the gas release portion 7 is formed as a region between the exterior films 4 and 5 in which the exterior films 4 and 5 merely face each other without heat fusion of the exterior films 4 and 5.
  • the gas release unit 7 is in communication with the outside air.
  • the gas release portion 7 is formed at a position separated from the battery element storage portion, and therefore, the gas release portion 7 communicates with the battery element storage portion.
  • a cross-linked structure portion 8 is formed by a cross-linking treatment on a part of the heat-fusion resin layer 11 of the exterior film 5 on the lower side, ie, where the cup portion is not formed.
  • the crosslinked structure portion 8 is formed at least in a region including the protruding fusion portion 6 a. Accordingly, the cross-linked structure portion 8 is one continuous region in which one portion is exposed to the battery element storage portion and the other portion is exposed to the gas release portion 7.
  • the cross-linked structure portion 8 is formed in a region including the protruding fusion-bonded portion 6a, so in the protruding fusion-bonded portion 6a, the heat-fusing resin layer 11 of the upper exterior film 4 is a cross-linking of the lower exterior film 5. Heat-sealed with structure 8
  • the cross-linked structure portion 8 is shown as indicating its position. The same applies to the plan view of the film-clad battery showing the following embodiments.
  • the cross-linked structure portion 8 can be formed by irradiating the heat-fused resin layer 11 with an electron beam. There is also a method of adding a crosslinking agent to the resin as a method of crosslinking the heat fusible resin, but it is easy to use only a specific position using a mask that shields the electron beam by using the electron beam.
  • the cross-linked structure portion 8 can be formed selectively.
  • the thermally fusible resin constituting the thermally fusible resin layer 11 is formed.
  • the resin composition it is possible to use a resin composition which is capable of heat fusion and which can form the crosslinked structure portion 8 by irradiation of an electron beam.
  • the heat-bonding resin layer 11 is made of
  • the resin may be a single resin, a mixture of multiple resins, or an electron beam-decomposable resin, to which an electron beam reactive compound is added (including mixing and coating, etc. The same applies hereinafter).
  • the composition can be used.
  • polyolefin homopolymers such as polyethylene (high / medium / low density polyethylene, linear low density polyethylene) and polypropylene; propylene / ethylene copolymer, propylene and Z or ethylene
  • Polyolefin copolymers such as copolymers with ⁇ -olefin such as butene 1; ethylene / vinyl acetate copolymer (EVA), ethylene acetylarylate copolymer ( ⁇ ), ethylene methyl methacrylate copolymer (EMA), ethylene-glycidyl metatarylate copolymer (EGMA), etc.
  • EVA ethylene / vinyl acetate copolymer
  • EMA ethylene acetylarylate copolymer
  • EMA ethylene methyl methacrylate copolymer
  • EGMA ethylene-glycidyl metatarylate copolymer
  • the resin which has can be mentioned.
  • the electron beam reactive compound is not particularly limited as long as it is a compound that reacts by irradiation of an electron beam, but compounds that are polyfunctional and capable of forming a crosslinked structure are preferable.
  • triethylene glycol di (meth) atalylate trimethylol propane tri (meth) atalylate, pentaerythritol tetra atalylate, dipentaerythritol hexatatalylate, pentaerythritol tritalylate hexamethylene diisosocyanate urethane
  • Polyfunctional acrylic compounds such as polymers; Monofunctional acrylic compounds such as methyl (meth) atalylate, methoxypolyethylene glycol (meth) atalylate; Mixtures of polyfunctional acrylic compounds and monofunctional allyl compounds; Cycloaliphatic epoxy compounds such as 4-epoxycyclohexylmethyl-3,4'-epoxy cyclohexane carboxylate, 1,4 (6-methyl-3,4 epoxy
  • the irradiation of the heat-fusion resin layer 11 with the electron beam is specifically performed before the sealing step of the battery element 2.
  • the bridge structure portion 8 is not formed with respect to the exterior film 5 alone, and the area is masked with an electron beam shielding member.
  • the electron beam shielding member any material can be used as long as it does not form the cross-linked structure 8 and the region is not irradiated with the electron beam, for example, aluminum, iron, etc. And metallic materials such as lead, titanium and copper, or glass materials. Among these, metal materials such as aluminum and iron are preferable from the viewpoint of easy processing and shaping into a desired shape.
  • a cross-linked structure portion 8 is formed by irradiating a predetermined region with an electron beam on one of the two exterior films 4 and 5 as described above.
  • the battery element 2 in which the positive electrode tab 3 a and the negative electrode tab 3 b are connected is prepared in advance, and is surrounded by the exterior films 4 and 5 described above.
  • the exterior films 4 and 5 are oriented in such a manner that the thermal fusion resin layers 11 face each other.
  • the regions facing the battery element 2 of the exterior films 4 and 5 are pressed and heated with a heat fusion head (not shown) to form a heat fusion part 6, thereby Seal the battery element 2
  • a heat fusion head having a pressing surface corresponding to the shape of the heat fusion part 6 is used as the heat fusion head at the time of heat fusion, a special method for forming the protruding fusion part 6 a and the gas release part 7 Process is unnecessary.
  • the outer covering films 4 and 5 and the heat sealing head are positioned relative to each other so that the position where the protruding fusion part 6 a is formed coincides with the position of the crosslinked structure part 8 of the outer covering film 5.
  • exterior films 4 and 5 are heat-sealed in a batch or for each side first, and exterior films 4 and 5 are formed into a bag shape with one side open.
  • the remaining one side force of the bag-like exterior films 4 and 5 which have been formed can also be formed by injecting the electrolyte solution and then thermally fusing the remaining one side.
  • heat fusion of the other side is performed in a reduced pressure atmosphere (in a reduced pressure chamber)
  • the film-sheathed battery 1 after sealing is returned to the atmospheric pressure atmosphere, whereby the exterior films 4 and 5 have atmospheric pressure.
  • the battery pack 2 can be pressed onto the battery element 2 to bring the exterior films 4 and 5 into close contact with the battery element 2.
  • the gas is discharged from the battery element 2 by applying a voltage outside the standard range during use or temporarily raising the temperature.
  • the internal pressure of the film-clad battery 1 rises.
  • the battery element storage portion which is a space surrounding the battery element 2 in the exterior films 4 and 5
  • the inner edge of the heat-sealing portion 6 pulls the exterior films 4 and 5 Peeling stress acts.
  • the protrusion fusion bonding portion 6a is a region in which the crosslinked structure portion 8 of the exterior film 5 and the heat fusion resin layer 11 of the exterior film 4 are thermally fused, as clearly shown in FIG.
  • the cross-linked structure part 8 is completely integrated with the heat-bonded resin layer 11 even if the two are heat-sealed together at a high temperature at a high temperature as compared with the heat-bonded resin layer 11 There is a boundary between the cross-linked structure 8 and the heat-fused resin layer 11.
  • “it is difficult to soften at high temperature” means, for example, when the temperature and temperature characteristics at the time of raising the temperature while pressurizing the resin with a constant stress, so-called creep curve, the temperature is taken as the temperature on the horizontal axis. Mean that the slope of the creep curve is reduced.
  • the communication between the battery element storage portion and the gas release portion 7 causes the gas in the battery element storage portion to be released to the outside of the film-covered battery 1 through the gas release portion 7 and the pressure in the battery element storage portion is released. Be done. As described above, since the peeling interface of the exterior films 4 and 5 is defined by the crosslinked structure portion 8, the gas opening pressure is stable, and the pressure release is reliably performed at the gas release portion 7. A highly reliable film-clad battery 1 is provided.
  • the crosslinked resin layer and the non-crosslinked resin layer are thermally fused
  • the crosslinked resin layer and the non-crosslinked resin layer are non-crosslinked.
  • the crosslinked polymer chains must flow Since the force S can not be obtained, it is unlikely that the polymer chains in the non-crosslinked resin layer melt and unite with each other.
  • non-crosslinked polymer chains are also present in gaps or inside of the matrix of crosslinked polymer chains.
  • Such cross-linked, free polymer chains are assembled, and in minute parts, the polymer chains can melt and flow at temperatures above the melting point.
  • the cross-linked resin layer and the non-cross-linked resin layer are heat-sealed, it is in the cross-linked resin layer that contributes to the fusion between the two resin layers at the welded interface.
  • the cross-linked polymer chains in the cross-linked resin layer do not form a continuous integral with the non-cross-linked resin layer.
  • Such continuous non-integral portions are present at the fusion interface of the two resin layers, and therefore, when a peeling stress is applied to both resin layers, the fusion interface of both resin layers is present. That is, peeling proceeds at the interface of the exterior films 4 and 5.
  • the degree of crosslinking of the crosslinked resin layer when the degree of crosslinking of the crosslinked resin layer is changed, the proportion of the above-mentioned minute portion in which free polymer chains which are not crosslinked are gathered changes.
  • the ratio of the aggregates or crystals continuously integrated between the resin layers through the fused interface changes.
  • the degree of crosslinking of the crosslinked resin layer is lowered, the proportion of the minute portion increases, and the proportion of aggregates or crystals continuously integrated among the resin layers increases.
  • the higher the proportion of continuously integrated aggregates or crystals between the resin layers the higher the fusion strength of each resin layer. Since the degree of crosslinking of the crosslinked resin layer can be controlled by changing the irradiation amount of the electron beam, etc., the fusion strength of each resin layer can also be freely controlled by controlling the irradiation amount of the electron beam. Become.
  • the fusion bonding strength means, in other words, peel strength. That is, the fusion strength is high The more it peels, the higher the peel strength.
  • the present inventors conducted the following peeling test to examine the difference in peel strength depending on the presence or absence of the crosslinked structure layer.
  • a crosslinked structure layer was formed on one side of the facing exterior films, the crosslinked structure layer and the non-crosslinked structure layer were opposed, and a part of the exterior film was thermally fused to a width of 10 mm.
  • a sheath film not having a crosslinked structure layer was used, and similarly, a part of the sheath film was heat-sealed with a heat-sealing width of 10 mm.
  • the heat-sealed portion of the exterior film is heat-sealed in the direction perpendicular to the width direction of the heat-sealed, and the same length including the portion, etc.
  • the samples were used as invention samples (Sinv-1, Sinv-2) and comparative samples (Scom-1, Scom-2), respectively.
  • the open pressure of the gas in the present embodiment depends on the peel strength of the exterior films 4 and 5 at the protruding fusion part 6 a.
  • the fusion bonding strength depends on the irradiation amount of the electron beam at the time of forming the crosslinked structure portion 8 as described above. If the irradiation amount of the electron beam is large, the degree of crosslinking of the heat-fused resin layer 11 irradiated with the electron beam tends to be high, and the peel strength of the exterior films 4 and 5 at the protruding fusion portion 6a tends to be small. By reducing the peel strength pressure is released at lower pressure. That is, the release pressure can be arbitrarily set by appropriately adjusting the degree of crosslinking of the heat-fused resin layer 11.
  • a preferable designed open pressure is 0.05 MPa to 1 MPa as a rise from atmospheric pressure, and more preferably 0.1 MPa to 0.2 MPa. If the open pressure is lower than 0, 05MPa, a large current will temporarily flow or the primary temperature will rise. Even minor troubles such as when it happens may be released, and it will easily lead to a problem that the film-clad battery 1 will not operate. On the other hand, if the open pressure is higher than I MPa, the possibility of the gas being released in an unintended direction is increased, before the separation to the gas release part 7 proceeds before the exfoliation proceeds.
  • FIG. 10 An example is shown in FIG. 10 as a second embodiment of the present invention.
  • a film-clad battery 21 shown in FIG. 10 has a pressure release structure at its long side. Also in the present embodiment, the positive electrode tab 23a and the negative electrode tab 23b are drawn from the short side of the film-clad battery 21. Therefore, in the present embodiment, in the pressure release structure, the positive electrode tab 23a and the negative electrode tab 23b are drawn. It is provided on the side different from the side.
  • the battery element (not shown) is enclosed from the both sides in the thickness direction so as to be sandwiched between the two exterior films 24, and the positive electrode tab 23a and the negative electrode are thermally fused by thermally bonding the peripheral portion of the exterior film 24 all around.
  • the tab 23b is sealed in a state of being bowed out.
  • the configuration of the battery element and the layer configuration of the exterior film 24 are the same as in the first embodiment, and thus the detailed description thereof is omitted.
  • a protruding fused part 26 a formed by projecting a part of the inner edge of the heat fused part 26 formed by heat fusing of the exterior film 24 to the battery element side, and the exterior film 24
  • a gas release portion 27 extends from the outer edge toward the protruding fusion portion 26a, and the tip reaches the protruding fusion portion 26a.
  • the gas release portion 27 is formed as a region where the exterior film 24 merely faces each other without heat fusion of the exterior film 24, whereby the gas release portion 27 communicates with the outside air.
  • the battery element and the thermal adhesion part 26 are provided on the side from which the positive electrode tab 23a and the negative electrode tab 23b are drawn. Since a space for the current collecting portion is required between them, the heat sealing portion 26 can be provided with a protruding sealing portion without changing the external dimensions of the film-clad battery 21.
  • the pressure release structure is provided on the side of the positive electrode tab 23a and the negative electrode tab 23b that have been bowed I /! In such a case, there is no space as described above between the battery element and the heat seal 26 on that side. Therefore, if it is attempted to simply add the protruding fusion part 26 a to the heat fusion part 26, the outer dimensions of the film-clad battery 21 become large.
  • the exterior film 24 is formed so as to partially project outward, so that a cove-like area communicating with the battery element storage part is formed by the overhanging part.
  • the protruding fusion part 26a is formed in the cove-shaped area. Both sides of the protruding fusion part 26a are formed as a non-fusion part 24a in which the exterior film 24 is not heat-fused.
  • the cove-shaped region communicated with the battery element storage part and forming the protruding fusion part 26 a in this region the stress of the film-covered battery 21 is suppressed while minimizing the increase in the external dimension of the film-clad battery 21. It is possible to form a protruding fusion part 26a having a function as a concentration part.
  • a crosslinked structure 28 is formed in the heat-fused resin layer by irradiation of the electron beam.
  • the cross-linked structure portion 28 is formed in a region including the protrusion fusion bonding portion 26 a, and a portion thereof is exposed to the battery element storage portion and the gas release portion 27. Therefore, the exfoliation of the exterior film 24 caused by the rise in the internal pressure of the battery element storage portion is the same as in the first embodiment, at the boundary between the cross-linked structure 8 and the heat-fusion resin layer of the other exterior film. Proceed along. Therefore, also in the present embodiment, a highly reliable film-clad battery 21 is provided in which the open pressure of the gas is stable and the pressure release is reliably performed at the gas release portion 27.
  • FIGS. 11 and 12 show a film-clad battery according to a third embodiment of the present invention.
  • the film-clad battery 31 of the present embodiment is different from the second embodiment in that a tube 39 is connected to the gas release portion 37.
  • a protruding fusion part 36a is formed as a stress concentration part in a part of the heat fusion part 36, and a gas release part 37, which is a space where the exterior film 34 is not heat fused.
  • a front end portion facing the protruding fusion portion 36a, and in the region including the protruding fusion portion 36a, one of the heat sealing resin layer of the two exterior films 34 has a crosslinked structure portion Forming 38 is the same as in the second embodiment.
  • One end portion of the tube 39 is airtightly connected to the gas release portion 37, and the other end portion opened is routed to an appropriate position which has no influence even if the gas generated from the battery element 32 is released. There is. Since the other end of the tube 39 is open, the gas release portion 37 communicates with the outside air via the tube 39.
  • the battery element storage portion which is a space for storing the battery element 32, rises, and the exterior film 34 is peeled off at the protruding fusion portion 36a.
  • the battery element storage portion force also introduces a gas into the gas release portion 37, and the introduced gas also discharges the open end force of the tube 39 through the tube 39.
  • the gas release position can be set arbitrarily. Further, since the gas discharge position can be arbitrarily set by the tube 39, the position of the pressure release structure can also be set arbitrarily.
  • the present embodiment is particularly effective in the case where there is a component sensitive to the influence of gas around the film-clad battery 31 and it is not preferable to release the gas directly from the gas release portion 37. If the open end of the tube 39 is placed at a position away from the film-clad battery 31, the gas can be released to a position away from the film-clad battery 31.
  • the tube 39 functions effectively only when the peeling interface of the package film 34 is defined and the battery element storage portion and the gas release portion 37 can be reliably communicated with each other.
  • the tube 39 is preferably composed of a flexible member.
  • the tube 39 can be easily routed, and also after the installation of the film-clad battery 31, the position of gas release can be freely changed. it can.
  • the connection of the tube 39 to the gas release portion 37 is performed by sandwiching the end of the tube 39 between the two armor films 34 and adhering the outer edge of the armor film 34 to the outer peripheral surface of the tube 39 in that state. It can be carried out.
  • the bonding method of the outer covering film 34 and the tube 39 is not particularly limited as long as the tube 39 can be airtightly connected, and bonding can be performed by an adhesive. If the tube 39 is made of thermoplastic resin, heat fusion is performed.
  • the tube 39 can be connected by heat fusible.
  • Heat sealing of tube 39 inserts tube 39 in forming gas release 37
  • the fusion film 34 is heat-sealed leaving the opening for the heat treatment, and then the end of the tube 39 is inserted into the gas release part 37 through the opening, and the tube 39 is heat sealed to the fixation film 34 in that state. It may be carried out by fusing.
  • the tube 39 is placed at a predetermined position sandwiched between the exterior film 34, and the tube 39 is connected simultaneously with the formation of the heat sealing portion 36 to the exterior film 34. can do.
  • the cross-linked structure portion is a region that is difficult to soften at high temperature compared to other regions, and as a result, the region in which the cross-linked structure portion is formed itself has peel strength compared to other regions. Become smaller. Therefore, in the case where the peeling position can be sufficiently defined only by forming the cross-linked structure, the cross-linked structure may be formed only on a part of the thermally fused part without providing the stress concentration part.
  • FIG. 13 a film-clad battery according to a fourth embodiment of the present invention is shown.
  • the film-clad battery 41 of the present embodiment uses a rectangular outer packaging film 44, and a heat-sealed portion 46 is formed over the entire circumference with a constant width over the entire circumference, and thereby a battery element ( Not shown) is sealed.
  • the heat-sealed resin layer is formed by exposing the inner edge of the heat-sealed portion 46 to the battery element storage portion storing the battery element and aligning the outer edge with the outer edge of the heat-sealed portion 46.
  • a crosslinked structure portion 48 is formed. That is, the cross-linked structure portion 48 is formed by communicating a portion other than the portion exposed to the battery element storage portion with the outside air.
  • the area in which the crosslinked structure portion 48 is formed is exfoliated compared to the other area of the thermally fused portion The strength is getting smaller. Therefore, the peeling of the exterior film 44 accompanying the internal pressure rise of the film-clad battery 41 preferentially progresses in the region where the crosslinked structure portion 48 is formed.
  • the exfoliation reaches the outer edge of the cross-linked structure 48, the battery element housing and the ambient air communicate with each other, and gas is released from the outer edge of the region where the cross-linked structure 48 is formed to release pressure.
  • the shape and size of the cross-linked structure portion 48 are determined in such a manner that the cross-linked structure portion 48 partially It is not particularly limited as long as it is shaped or sized such that the other part not exposed in the battery element storage part communicates with the outside air.
  • FIG. 13 shows an example in which the cross-linked structure portion 48 is formed in a rectangular shape
  • the cross-linked structure portion 58 may be formed in a trapezoidal shape as in, for example, the film-clad battery 51 shown in FIG.
  • FIG. 14 shows a cross-linked structure 58 formed such that the inner edge length L1 is longer than the outer edge length L2 and the dimension is reduced outward from the edge on the battery element storage side.
  • FIG. 15 shows another example of the pressure release structure having no stress concentration portion.
  • the film-clad battery 61 shown in FIG. 15 is obtained by applying the tube 69 shown in the third embodiment to the example shown in FIG. That is, the gas release portion 67 is formed on the exterior film 64 by causing the tip portion to face the region where the crosslinked structure portion 68 is formed and the exterior films 64 are not heat-sealed together.
  • the tube 69 is airtightly connected to the tube 67.
  • the gas release part 67 may be in direct communication with the outside air without providing the tube 69.
  • the cross-linked structure portion is an exterior that faces the resin sheet which is cross-linked rather than formed in the exterior film itself.
  • it may be formed by fusing a crosslinked resin sheet on one of the facing exterior films.
  • FIG. 16 A cross-sectional view of the example near the heat-sealed portion is shown in FIG.
  • a cross-linked resin sheet 78 is sandwiched between the two exterior films 74 and 75 in a part of the heat sealing part 76.
  • the resin sheet 78 is partially exposed in the battery element storage portion storing the battery element 72, and the other portion is exposed in the gas release portion 77, and if this condition is satisfied.
  • the size, shape and the like are not particularly limited, and may be arranged in the same manner as each of the examples described above, including other structures.
  • the resin sheet 78 is used as an exterior film on either of two facing exterior films 74 and 75. It is provided by being heat-sealed beforehand before heat-sealing Rum 74 and 85 comrades.
  • the resin that makes up the resin sheet 78 has the heat fusible resin layer 74a, 75a of the exterior film 74, 75 to ensure the minimum fusible strength necessary to seal the battery element 72. It is preferable to use the same kind of resin.
  • the form of the resin sheet 78 may be a film or a mesh. If it is in the form of mesh, it is expected that the necessary fusion strength can be secured by the anchor effect produced by the penetration of the thermally fused resin layer 74a, 75a melted by heat fusion into the mesh of the resin sheet 78.
  • the fusion strength with the exterior films 74, 75 can be optionally controlled by appropriately adjusting the degree of crosslinking of the resin sheet 78. Peeling of the heat-sealed portion 76 occurs either at the interface between one of the outer covering film 74 and the resin sheet 78 or at the other between the outer covering film 75 and the resin sheet 78. In any case, peeling progresses in the area where the resin sheet 78 intervenes.
  • the crosslinked structure portion is formed of the resin sheet 78, the same effect as each of the above-described examples can be obtained.
  • the cross-linked structure portion is formed of the resin sheet 78 different from the exterior films 74 and 75, it can be easily distinguished whether or not the cross-linked structure portions are formed on the exterior films 74 and 75. This facilitates the control of parts during the manufacturing process, and widens the choice of materials for the exterior films 74, 75 (especially the heat-bonded resin layers 74a, 75a).
  • both the exteriors may be provided if sufficient adhesive force is obtained to seal the battery element.
  • the crosslinked structure may be formed in the film. In that case, the irradiation dose of the electron beam to each exterior film may be equal! /, Mutually different! /, But! /. When this configuration is applied to the example shown in FIG. 16, a cross-linked resin sheet is fused to each exterior film.
  • the power of two exterior films sandwiching the battery element from both sides in the thickness direction and heat-sealing four sides is shown.
  • Fold The battery element may be sealed by holding the battery element in place, opening it, and heat sealing the three sides.
  • a positive electrode, a negative electrode and a separator are formed in a strip shape, showing a laminated type in which a plurality of positive electrodes and a plurality of negative electrodes are alternately stacked. It may be a wound-type battery element in which positive electrodes and negative electrodes are alternately arranged by stacking the negative electrodes, winding them, and compressing them in a flat shape.
  • any battery element used for a normal battery is applicable as long as it contains a positive electrode, a negative electrode and an electrolyte.
  • Battery elements in common lithium ion secondary batteries include a positive electrode plate obtained by applying a positive electrode active material such as lithium manganese oxide, lithium cobaltate, etc. to both sides of an aluminum foil, etc. It is formed by making the negative electrode plate which apply
  • the present invention covers an electrical device such as a capacitor element exemplified in a capacitor such as an electric double layer capacitor, an electrolytic capacitor, etc. which can store electric energy inside and generate gas by chemical reaction or physical reaction. It is applicable to film-sealed electric devices.
  • the positive electrode tab and the negative electrode tab are drawn out from the same side of the film-clad battery, they have different sides, for example, two opposing sides or two adjacent sides. It may be pulled out from the side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)

Abstract

 異常時のガス発生による外装フィルムの膨張時の開放圧力および圧力開放位置を容易かつ確実に設定する。  フィルム外装電池1は、電池要素2と、電池要素2を封止するための2枚の外装フィルム4,5とを有する。外装フィルム4,5は、熱融着樹脂層と非通気層とを含んでおり、熱融着樹脂層同士を対向させて電池要素2を挟み、周縁部を熱融着することによって電池要素2を封止する。2枚の外装フィルム4,5のうち一方には、熱融着によって形成される熱融着部6の一部の領域において、電池要素収納部に露出する部位と外気と接する他の部位とを有するように、熱融着樹脂層が架橋された架橋構造部8が形成されている。

Description

明 細 書
フィルム外装電気デバイスおよびその製造方法
技術分野
[0001] 本発明は、電池やキャパシタに代表される電気デバイスに関し、特に、化学電池要 素やキャパシタ要素などの電気デバイス要素をフィルム力 なる外装材で封止したフ イルム外装電気デバイスおよびその製造方法に関する。
背景技術
[0002] フィルム外装電気デバイスの一種に、フィルム外装電池がある。従来、フィルム外装 電池としては、電池要素をその厚み方向両側から、電池要素の平面寸法よりも大きな 寸法を有する外装フィルムで挟み、電池要素の外周で、対向する外装フィルム同士 を接合することによって、電池要素を気密封止(以下、単に「封止」ともいう)した構成 のものが知られている。電池要素には電極として正極および負極のタブが接続され ており、電池要素が封止された状態では、これらタブは外装フィルムから引き出され た状態とされる。外装フィルムには一般に、金属層と熱融着榭脂層とを積層したラミネ 一トフイルムが用いられ、電池要素の封止は熱融着榭脂層同士の熱融着によって行 われる。
[0003] 金属缶などフィルム以外の他の外装材を用いた場合と同様、フィルムを外装材とす る電池においても、電池内部への外気の進入や電解液の漏れが生じないように、熱 融着部分での封止信頼性が確保されることが要求される。特に、非水電解液を含む 電池 (以下、「非水電解電池」ともいう)では、封止信頼性は重要である。熱融着不良 があった場合、外気の成分により電解液が劣化し、電池性能が著しく低下する。
[0004] ところで、電池の使用時に、規格範囲外の電圧が電池に印加されたりすると、電解 液溶媒の電気分解によりガス種が発生することがある。さら〖こ、電池が規格範囲外の 高温で使用されたりしても、電解質塩の分解などによりガス種のもとになる物質が生 成される。基本的には、規格範囲内で電池を使用してガスを発生させないようにする ことが理想である。しかし、電池の制御回路が何らかの原因で故障して異常な電圧が 印加されたり、何らかの原因で周囲が以上に高温となったりすることもあり、場合によ つては大量にガスが発生することもある。
[0005] 電池内部でのガスの発生は、電池の内圧上昇をもたらす。内圧が極度に上昇する ことにより電池が暴発するのを防ぐために、外装材として金属缶を用いた電池の多く は、電池の内圧が上昇した際にガスを電池の外部へ逃がす圧力安全弁を有している 。しかし、フィルムを外装材とするフィルム外装電池においては、圧力安全弁を設ける ことが構造上難しい。フィルム外装電池では内圧が上昇しすぎるとフィルムが膨張し、 最終的にはフィルムが破裂してその箇所力 ガスが噴出する力 破裂がどの箇所で 発生するか特定できない。そのため、破裂した箇所によっては周囲の機器や部材に 悪影響を及ぼすことがある。
[0006] そこで、従来のフィルム外装電池においては、こういった電池内部でのガスの発生 による不具合を解消するための圧力開放構造が ヽくつか提案されて!ヽる。
[0007] 例えば、特開 2004— 55290号公報には、図 1に示すように、電池要素(不図示)の 周囲で外装フィルム 104を熱融着することによって形成した熱融着部 106の一部を、 電池要素を収納する領域に向力つて突出させたフィルム外装電池 101が開示されて いる。外装フィルム 104には、ガス開放部 107が、その先端部を熱融着部の突出した 部分に臨ませて形成されている。ガス開放部 107は、外装フィルム 104を熱融着しな いことによって形成される。
[0008] このフィルム外装電池 101においては、ガスの発生によって内圧が上昇して外装フ イルム 104が膨張すると、熱融着部 106に引き剥がし応力が働く。熱融着部 106は、 その一部が突出して形成されているので、引き剥がし応力は、熱融着部の突出した 部分に集中し、他の部分と比べてこの部分で優先的に外装フィルム 104の剥離が進 行する。外装フィルム 104の剥離がガス開放部 107まで達すると、フィルム外装電池 101の内部と外気が連通し、ガス開放部 107からガスが放出される。
発明の開示
[0009] 上述した従来の圧力開放構造では、外装フィルムの剥離が、対向する外装フィルム の熱融着榭脂層の間で進行する場合は問題ない。しかし、それ以外の箇所で剥離 が進行すると、圧力開放構造として十分に機能しなくなることがあるという問題点があ [0010] 以下に、その問題点について、図 2〜4を参照して説明する。
[0011] 図 2は、図 1に示したフィルム外装電池の、ガス開放部での断面図である。図 2に示 すように、外装フィルム 104は、熱融着榭脂層 111同士を対面させて配され、熱融着 部 106においては、熱融着榭脂層 111同士が熱融着によって一体ィ匕されている。熱 融着榭脂層 111の外側の層は金属層 112である。この状態でフィルム外装電池の内 圧が上昇すると、外装フィルム 104の弓 Iき剥がし応力が熱融着部 106の内縁に加わ り、外装フィルム 104の剥離が、熱融着榭脂層 111を破壊しながら進行する。
[0012] このとき、図 3に示すように、熱融着榭脂層 111の破壊が熱融着榭脂層 111の厚さ 方向の成分を有する方向に進行すると、剥離位置は、熱融着榭脂層 111と金属層 1 12との界面へ移行する。剥離位置が一旦、熱融着榭脂層 111と金属層 112との界 面へ移行すると、それ以降は図 3に太線で示すように熱融着榭脂層 111と金属層 11 2との界面に沿って剥離が進行する。最終的には、図 4に示すように、剥離がガス開 放部 107を経由せず外装フィルム 104の外端縁に達した段階で、フィルム外装電池 の内部と外気が連通し、圧力が開放される。
[0013] このように、熱融着榭脂層と金属層との界面で剥離が進行すると、ガス開放部は安 全弁として機能せず、剥離が外装フィルムの外端縁に達するまで圧力開放がなされ ない。結果的に、開放圧力が高くなつてしまう。また、剥離が熱融着部の突出した部 分を通過した後は、熱融着榭脂層と金属層との界面での剥離の進行方向が定まらな いので、圧力開放位置が大きくばらつく可能性がある。つまり、従来の圧力開放構造 では、剥離の進行状況によっては、開放圧力および圧力開放位置が不安定となるこ とがあった。
[0014] 上述のことは、フィルム外装電池に限らず、ガスを発生する可能性のある電気デバ イス要素を外装フィルムで封止したフィルム外装電気デバイスに共通の課題である。
[0015] 本発明の目的は、異常時のガス発生による外装フィルムの膨張時の開放圧力およ び圧力開放位置を容易かつ確実に設定することのできる、フィルム外装電気デバィ スおよびその製造方法を提供することにある。
[0016] 上記目的を達成するため本発明のフィルム外装電気デバイスは、電気デバイス要 素と、電気デバイス要素を封止した外装フィルムと、を有する。外装フィルムは、少な くとも熱融着榭脂層を含み、熱融着榭脂層同士を対向させて電気デバイス要素を包 囲し、対向した熱融着榭脂層同士が外周部で熱融着されている。これによつて、外装 フィルムは、熱融着された領域を熱融着部とするとともにその内側の空間を電気デバ イス要素収納部として電気デバイス要素を封止する。対向した外装フィルムの少なく とも一方には、電気デバイス要素収納部に露出する部位および外気と接する他の部 位を有するように、熱融着部の一部を含む連続した領域で、熱融着榭脂層が架橋処 理された架橋構造部が形成されて!ヽる。
[0017] 本発明のフィルム外装電気デバイスにおいては、対向する外装フィルムは熱融着 榭脂層同士が熱融着され、これによつて電気デバイス要素が封止される。熱融着に よって形成された熱融着部の一部を含む領域では、対向した外装フィルムの少なくと も一方が、上記のように特定の領域で熱融着榭脂層に架橋処理が施されて架橋構 造部が形成されている。熱融着部に引き剥がし応力が作用した際、架橋構造部が形 成された領域では他の領域と比較して小さな力で剥離する。そのため、フィルム外装 電気デバイスの内圧上昇によって熱融着部に引き剥がし応力が作用すると、架橋構 造部が形成された領域において、対向する外装フィルムの界面で優先的に剥離が 進行する。その結果、剥離位置および圧力開放位置が特定され、このことから開放 圧力の設定も容易になる。
[0018] 本発明のフィルム外装電気デバイスにおいて、熱融着部を、電気デバイス要素収 納部に向力つて突出した突出融着部を有する形状とし、架橋構造部をこの突出融着 部を含む範囲に形成することが好まし 、。熱融着部に加わる弓 Iき剥がし応力は突出 融着部に集中するので、架橋構造部が形成された領域での剥離の進行が促進され る。また、外気と連通し且つ電池要素収納部と連通しないガス開放部を外装フィルム の外周部に有し、架橋構造部が、外気と接する他の部位としてガス開放部と接した領 域を含んでいる構成とすることも好ましい。この構成によれば、圧力開放は確実にガ ス開放部からなされる。この場合、ガス開放部にチューブを接続することで、圧力開 放時に放出されるガスが適宜位置に導かれる。また、架橋構造部は、外装フィルムの 熱融着榭脂層自身に架橋処理を施すことによって形成してもよいし、架橋処理され た榭脂シートを外装フィルムに融着することによって形成してもよい。 [0019] 本発明のフィルム外装電気デバイスの製造方法は、電気デバイス要素を、少なくと も熱融着榭脂層を含む外装フィルムで包囲し、対向した外装フィルムの外周部同士 を熱融着することによって、熱融着された領域を熱融着部とするとともにその内側の 空間を電気デバイス要素収納部として電気デバイス要素を封止するフィルム外装電 気デバイスの製造方法であり、以下の工程を有する。すなわち、電気デバイス要素収 納部に露出する部位と外気と接する他の部位とを有するように、外装フィルムの熱融 着部とされる領域の一部を含む連続した領域で、対向する外装フィルムの少なくとも 一方の熱融着榭脂層を架橋処理して架橋構造部を形成する工程、架橋構造部を形 成した外装フィルムで、熱融着榭脂層を対向させて電気デバイス要素を挟んで包囲 する工程、および電気デバイス要素を包囲することによって対向した外装フィルムの 外周部同士を熱融着し、電気デバイス要素を封止する工程である。
[0020] このように、本発明のフィルム外装電気デバイスの製造方法は、外装フィルムを熱 融着する前に、外装フィルムの所定の領域に、熱融着榭脂層を架橋処理した架橋構 造部を予め形成しておく。架橋構造部が形成された外装フィルムを用い、通常と同様 に電気デバイス要素を外装フィルムで包囲し、その対面した外周部同士を熱融着す ることで、前述した本発明のフィルム外装電気デバイスが得られる。
[0021] 架橋構造部は、熱融着榭脂層への電子線の照射によって形成することができる。
架橋構造部が形成された領域での剥離力は、架橋構造部を形成する際の電子線の 照射量によって容易に制御できる。
[0022] 本発明によれば、熱融着榭脂層の一部の領域に架橋構造部を形成し、この架橋構 造部を利用して外装フィルムを熱融着することで、異常時のガス発生による外装フィ ルムの膨張時の開放圧力および圧力開放位置を容易かつ確実に設定することがで きる。
図面の簡単な説明
[0023] [図 1]従来のフィルム外装電池の斜視図である。
[図 2]図 1に示すフィルム外装電池の熱融着部での断面図である。
[図 3]図 1に示すフィルム外装電池において、外装フィルムの剥離の進行状況の一例 を説明するための、熱融着部での断面図である。 圆 4]図 1に示すフィルム外装電池において、外装フィルムの剥離が熱融着榭脂層と 金属層との界面で進行した場合の、熱融着部での断面図である。
圆 5]本発明の第 1の実施形態によるフィルム外装電池の分解斜視図である。
[図 6]図 5に示すフィルム外装電池の、圧力開放構造の周囲での部分平面図である。
[図 7]図 6の A— A線断面図である。
圆 8]図 7において突出融着部で外装フィルムが剥離した状態を示す図である。
[図 9]外装フィルムに架橋処理した場合と架橋処理しな ヽ場合での、剥離強度を比較 した実験結果を示すグラフである。
圆 10]本発明の第 2の実施形態によるフィルム外装電池の平面図である。
圆 11]本発明の第 3の実施形態によるフィルム外装電池の平面図である。
[図 12]図 11の B— B線断面図である。
圆 13]本発明の第 4の実施形態によるフィルム外装電池の平面図である。
[図 14]図 13に示すフィルム外装電池の一変形例を示す平面図である。
[図 15]図 13に示すフィルム外装電池の他の変形例を示す平面図である。
圆 16]本発明のさらなる実施形態を説明するための、フィルム外装電池の熱融着部 近傍での断面図である。
符号の説明
1, 21, 31, 41, 51, 61 フィルム外装電池
2, 32, 72 電池要素
3a, 23a 正極タブ
3b, 23b 負極タブ
4, 5, 24, 34, 44, 54, 64, 74, 75 外装フィルム
4a カップ部
6, 26, 36, 46, 76 熱融着部
6a, 26a, 36a 突出融着部
7, 27, 37, 67, 77 ガス開放部
8, 28, 38, 48, 58, 68 架橋構造部
11 熱融着榭脂層 12 非通気層
13 保護層
24a 非融着部
39, 69 チューブ
78 榭脂シート
発明を実施するための最良の形態
[0025] 図 1を参照すると、複数の正極および複数の負極を積層した構造を有する扁平な 略直方体状の電池要素 2と、電池要素 2の正極および負極にそれぞれ接続された正 極タブ 3aおよび負極タブ 3bと、電池要素 2を封止する 2枚の外装フィルム 4, 5とを有 する、本発明の第 1の実施形態によるフィルム外装電池 1が示されている。
[0026] 電池要素 2は、それぞれ電極材料が両面に塗布された金属箔からなる複数の正極 と複数の負極とが、セパレータを介して交互に積層された構造を有する。各正極およ び各負極の一辺からはそれぞれ電極材料が塗布されて 、な 、未塗布部分が突出し て設けられており、正極の未塗布部分同士、および負極の未塗布部分同士がそれぞ れ一括して超音波溶接されて、正極タブ 3aおよび負極タブ 3bと接続されている。正 極および負極の超音波溶接された未塗布部分は集電部と呼ばれる。つまり、正極タ ブ 3aおよび負極タブ 3bは、それぞれ電池要素 2の集電部に接続されている。
[0027] 電池要素 2を構成する正極および負極は、電極材料の未塗布部分を同じ向き揃え て重ねられている。したがって、正極タブ 3aおよび負極タブ 3bは、電池要素 2の同じ 辺に接続されている。正極タブ 3aおよび負極タブ 3bは、外部との電気的接続用の電 極となるものであり、図 6に示すように、正極タブ 3aおよび負極タブ 3bの先端部分は 外装フィルム 4, 5の外側へ引き出されている。本実施形態では、フィルム外装電池 1 の平面形状を略長方形とし、正極タブ 3aおよび負極タブ 3bを、その長方形の短辺か ら引き出している。
[0028] リチウムイオン電池などの非水電解質電池の場合、一般に、正極を構成する金属 箔にはアルミニウム箔が用いられ、負極を構成する金属箔には銅箔が用いられる。さ らに、正極タブ 3aにはアルミニウム板が用いられ、負極タブ 3bにはニッケル板または 銅板が用いられる。負極タブ 3bを銅板で構成する場合、表面にニッケルめっきを施 してちよい。
[0029] セパレータは、ポリオレフイン等の熱可塑性榭脂から作られた、マイクロポーラスフィ ルム (微多孔フィルム)、不織布あるいは織布など、電解液を含浸することができるシ ート状の部材を用いることができる。
[0030] 外装フィルム 4, 5は、電池要素 2をその厚み方向両側から挟んで包囲するため、電 池要素 2の平面寸法よりも大きな平面寸法を有するものであり、電池要素 2の周囲で 重なり合った対向面同士を熱融着することで、電池要素 2が封止される。したがって、 電池要素 2の周囲は全周に亘つて封止領域とされ、特にその熱融着された領域を、 図面では熱融着部 6として斜線で示している。一方の外装フィルム 4には、電池要素 2を包囲する空間である電池要素収納部を形成するために、中央領域にカップ部 4a を有する。熱融着部 6は、このカップ部 4aの周囲全周に亘つて形成されている。カツ プ部 4aの加工は、深絞り成形によって行うことができる。本実施形態では、一方の外 装フィルム 4のみにカップ部 4aを形成している力 両方の外装フィルム 4, 5にカップ 部を形成してもよいし、また、カップ部を形成せずに外装フィルム 4, 5の柔軟性を利 用して電池要素 2を包囲してもよい。
[0031] 外装フィルム 4, 5は、ラミネートフィルムである。外装フィルム 4, 5を構成するラミネ 一トフイルムとしては、柔軟性を有しており、かつ電解液が漏洩しないように熱融着に よって電池要素 2を封止できるものが用いられる。代表的には、図 7に示されるように
、熱融着性榭脂からなる熱融着榭脂層 11と、金属薄膜など力もなる非通気層 12と、 ポリエチレンテレフタレートなどのポリエステルやナイロンなどのフィルムからなる保護 層 13とをこの順番に積層したものが挙げられる。外装フィルム 4, 5は、これらのうち少 なくとも熱融着層榭脂 11と非通気層 12とを有していればよぐ保護層 13は必要に応 じて設けられる。電池要素 2を封止するに際しては、熱融着榭脂層 11を対向させて 電池要素 2を包囲する。
[0032] 非通気層 12を構成する金属薄膜としては、例えば、厚さが 10〜: L 00 mの、 Al、 T i、 Ti合金、 Fe、ステンレス、 Mg合金などの箔を用いることができる。熱融着榭脂層 1 1に用いられる熱融着性榭脂にっ 、ては後述する。良好な熱融着を行うためには、 熱融着榭脂層 11の厚さは 10〜200 μ mが好ましぐより好ましくは 30〜: LOO μ mで ある。
[0033] 封止領域の一部には、圧力開放構造が設けられている。圧力開放構造は、本実施 形態では、正極タブ 3aと負極タブ 3bとの間に位置している。圧力開放構造は、熱融 着部 6の内縁の一部を電池要素側に突出させて形成した突出融着部 6aと、外装フィ ルム 4, 5の外縁から突出融着部 6aに向力つて延び、かつ先端が突出融着部 6aに達 するガス開放部 7とを有する。ガス開放部 7は、外装フィルム 4, 5を熱融着せず単に 外装フィルム 4, 5同士が向き合つているだけの外装フィルム 4, 5間の領域として形成 されている。これによりガス開放部 7は外気と連通している。また、ガス開放部 7は、電 池要素収納部とは隔てられた位置に形成され、したがって、ガス開放部 7は電池要 素収納部とは連通して ヽな 、。
[0034] さらに、下側すなわちカップ部が形成されていない方の外装フィルム 5の熱融着榭 脂層 11の一部には、架橋処理によって架橋構造部 8が形成されている。架橋構造部 8は、少なくとも突出融着部 6aを含む領域に形成されている。したがって、架橋構造 部 8は、一部位が電池要素収納部に露出し、他の一部位がガス開放部 7に露出して いる一つの連続した領域である。架橋構造部 8は突出融着部 6aを含む領域に形成さ れているため、突出融着部 6aでは、上側の外装フィルム 4の熱融着榭脂層 11は下 側の外装フィルム 5の架橋構造部 8と熱融着されている。
[0035] なお、実際のフィルム外装電池 1ではその外側からは架橋構造部 8を目視すること はできないが、図 6では、架橋構造部 8をその位置を示すものとして表している。この ことは、以降の実施形態を示すフィルム外装電池の平面図にぉ 、ても同様である。
[0036] 架橋構造部 8は、熱融着榭脂層 11に電子線を照射することによって形成することが できる。熱融着性榭脂の架橋方法としては、榭脂に架橋剤を添加する方法もあるが、 電子線を利用することによって、電子線を遮蔽するマスクを用いて容易に、特定の位 置のみに選択的に架橋構造部 8を形成することができる。
[0037] このように、熱融着榭脂層 11には電子線を照射することによって架橋構造部 8が形 成されるので、熱融着榭脂層 11を構成する熱融着性榭脂としては、熱融着が可能で あり、かつ電子線の照射によって架橋構造部 8を形成することのできる榭脂組成物を 用いることができる。このような榭脂組成物であれば、熱融着榭脂層 11を構成する榭 脂には、単独の榭脂、複数種の樹脂の混合物、あるいは、電子線分解型の榭脂であ つても電子線反応性化合物を添加 (混合'塗布等も含む。以下同様。)した樹脂組成 物を用いることができる。
[0038] このような榭脂組成物としては、ポリエチレン (高 ·中 ·低密度ポリエチレン、直鎖状 低密度ポリエチレン)およびポリプロピレン等のポリオレフインホモポリマー;プロピレン エチレン共重合体、プロピレンおよび Zまたはエチレンとブテン 1などの α—ォ レフインとの共重合体等のポリオレフイン共重合体;エチレン 酢酸ビニル共重合体( EVA)、エチレン ェチルアタリレート共重合体(ΕΕΑ)、エチレン メチルアタリレー ト共重合体 (EMA)、エチレンーグリシジメタタリレート共重合体 (EGMA)等の、変成 ポリオレフイン等の—(CH -CHX)—なる繰り返し単位 (Xは、 H、 CH等の置換基)
2 3
を有する榭脂を挙げることができる。
[0039] また、ポリイソプチレン、ポリメタアタリレート、ポリフッ化ビ-リデン等の電子線分解 型の榭脂であっても、以下に示すような電子線反応性化合物を添加すれば、熱融着 榭脂層 11を構成する榭脂として使用可能である。
[0040] 電子線反応性化合物としては、電子線の照射により反応する化合物であれば特に 限定されないが、多官能であって架橋構造を形成しうるものが好ましい。例えば、トリ エチレングリコールジ (メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレート、 ペンタエリスリトールテトラアタリレート、ジペンタエリスリトールへキサアタリレート、ペン タエリスリトールトリアタリレートへキサメチレンジイソシァネートウレタンポリマー等の多 官能アクリル系化合物;メチル (メタ)アタリレート、メトキシポリエチレングリコール (メタ )アタリレート等の単官能アクリル系化合物;多官能アクリル系化合物と単官能アタリ ル系化合物との混合物; 3, 4—エポキシシクロへキシルメチルー 3' , 4'—エポキシ シクロへキサンカルボキシレート、 1, 4 (6—メチルー 3, 4 エポキシシクロへキシ ルメチルカルボキシレート)ブタン等の脂環式エポキシ化合物;ビュルピロリドン、ビ- ルアセテート、ビュルピリジン、スチレン等のビュル化合物等を用いることができる。こ れらの電子線反応化合物は、熱融着性榭脂層の全体に混入されていてもよいし、表 面に塗布されていてもよい。
[0041] 熱融着榭脂層 11への電子線の照射は、電池要素 2の封止工程の前、具体的には 、外装フィルム 4, 5で電池要素 2を包囲する前に、外装フィルム 5単体に対して、架 橋構造部 8を形成しな ヽ領域を電子線遮蔽部材でマスクして行う。電子線遮蔽部材 としては、架橋構造部 8を形成しな 、領域へ電子線が照射されな!、ようにすることが できるものであれば任意の材料を用いることができ、例えば、アルミニウム、鉄、鉛、チ タン、銅等の金属材料、あるいはガラス材が挙げられる。これらの中でも、所望の形状 への加工や成形が容易であると!/ヽぅ観点から、アルミニウムや鉄などの金属材料が好 ましい。
[0042] 次に、本実施形態のフィルム外装電池 1の製造方法の一例を説明する。
[0043] まず、 2枚の外装フィルム 4, 5のうち一方の外装フィルム 5に、上述のようにして所 定の領域に電子線を照射することによって架橋構造部 8を形成する。
[0044] 次 、で、予め用意してぉ 、た、正極タブ 3aおよび負極タブ 3bを接続した電池要素 2を、上記の外装フィルム 4, 5で挟んで包囲する。この際、外装フィルム 4, 5は、熱融 着榭脂層 11同士を対向させた向きとする。その後、外装フィルム 4, 5の、電池要素 2 の周囲で対向している領域を、熱融着ヘッド (不図示)で加圧および加熱して熱融着 部 6を形成し、これによつて電池要素 2を封止する。熱融着の際、熱融着ヘッドとして 、熱融着部 6の形状に対応した加圧面を有する熱融着ヘッドを用いれば、突出融着 部 6aおよびガス開放部 7を形成するための特別な工程は不要となる。また、突出融 着部 6aを形成する位置が外装フィルム 5の架橋構造部 8の位置と一致するように、外 装フィルム 4, 5と熱融着ヘッドとが相対的に位置決めされる。
[0045] 電池要素 2の封止は、例えば、外装フィルム 4, 5の 3辺を一括または各辺ごとに先 に熱融着して、外装フィルム 4, 5を 1辺が開放した袋状に形成しておき、その袋状と なった外装フィルム 4, 5の開放している残りの 1辺力も電解液を注入し、その後、残り の 1辺を熱融着することによって行うことができる。また、残りの 1辺の熱融着を減圧雰 囲気中(減圧チャンバ内)で行えば、封止後のフィルム外装電池 1を大気圧雰囲気中 に戻すことによって、外装フィルム 4, 5は大気圧によって電池要素 2に押し付けられ、 外装フィルム 4, 5を電池要素 2に密着させることができる。
[0046] 以上のように構成されたフィルム外装電池 1によれば、使用中に規格範囲外の電圧 が印加されたり、一時的に高温になったりすることなどによって電池要素 2からガスが 発生すると、フィルム外装電池 1の内圧が上昇する。内圧が上昇すると、外装フィルム 4, 5内の電池要素 2を包囲する空間である電池要素収納部はドーム状に膨らもうとし 、熱融着部 6の内縁には外装フィルム 4, 5の引き剥がし応力が作用する。
[0047] 熱融着部 6には前述した突出融着部 6aが形成されているので、引き剥がし応力は 、この突出融着部 6aに集中し、外装フィルム 4, 5の剥離は突出融着部 6aで優先的 に進行する。突出融着部 6aは、図 7に明確に示すように、外装フィルム 5の架橋構造 部 8と外装フィルム 4の熱融着榭脂層 11とが熱融着された領域である。架橋構造部 8 は、熱融着榭脂層 11と比べて高温で軟ィ匕しにくぐ両者を熱融着しても架橋構造部 8と熱融着榭脂層 11とは完全には一体化せず、架橋構造部 8と熱融着榭脂層 11と の間に境界が存在している。ここで、「高温で軟ィ匕しにくい」とは、例えば榭脂を一定 の応力で加圧しながら昇温させたときの温度 ひずみ特性、いわゆるクリープ曲線に おいて、横軸を温度としたときにそのクリープ曲線の傾きが小さくなることをいう。
[0048] 突出融着部 6aでは架橋構造部 8と熱融着榭脂層 11とが熱融着された構造となって いるため、外装フィルム 4, 5の剥離は、外装フィルム 5の架橋構造部 8と外装フィルム 4の熱融着榭脂層 11との境界に沿って進行する。剥離の進行に伴い、図 8に示すよ うに、突出融着部 6aにおいては、外装フィルム 4, 5は外装フィルム 4の架橋されてい な ヽ熱融着榭脂層 11と外装フィルム 5の架橋構造部 8との境界で分離し、電池要素 収納部とガス開放部 7とが連通する。電池要素収納部とガス開放部 7とが連通するこ とにより、電池要素収納部内のガスはガス開放部 7を介してフィルム外装電池 1の外 部へ放出され、電池要素収納部の圧力が開放される。このように、架橋構造部 8によ つて外装フィルム 4, 5の剥離界面が規定されるので、ガスの開放圧力が安定しており 、かつ、圧力開放がガス開放部 7で確実になされる、信頼性の高いフィルム外装電池 1が提供される。
[0049] 以下に、外装フィルム 4, 5のうちの一方に、架橋構造部 8を形成することによって、 外装フィルム 4, 5の界面で剥離が進行する原理につ 、て説明する。
[0050] 架橋された榭脂層(以下、架橋榭脂層という)と架橋されていない榭脂層(以下、非 架橋榭脂層)とを熱融着した場合、架橋榭脂層と非架橋榭脂層との融着界面では次 のようなことが起こる。架橋榭脂層においては、架橋された高分子鎖は流動すること 力 Sできないため、非架橋榭脂層中の高分子鎖との間で相互に溶融し合って一体ィ匕 することは起こりにくい。ただし、架橋榭脂層であってもその架橋度によっては、架橋 された高分子鎖のマトリクスの隙間あるいは内部に、架橋されていない高分子鎖も存 在する。そのような架橋されて 、な 、フリーな高分子鎖が集まって 、る微小部分では 、高分子鎖は融点以上の温度で溶融 ·流動することができる。
[0051] したがって、上記微小部分が非架橋榭脂層との融着界面に接しているような場合、 互いに接している架橋榭脂層および非架橋榭脂層を融点以上の温度に加熱すると 、融着界面を通じて各榭脂層間で高分子鎖が相互に流動し合う。そして加熱された 各榭脂層が冷却されて固化したときには、架橋榭脂層中の架橋されていない高分子 鎖と、架橋榭脂層中の高分子鎖とが混ざり合った凝集体あるいは結晶体が、融着界 面を通じて各榭脂層間で連続一体ィ匕した状態で形成されることが可能となる。
[0052] 以上のように、架橋榭脂層と非架橋榭脂層とを熱融着した場合は、融着界面では、 両榭脂層同士の融着に寄与するのは架橋榭脂層中の架橋されていない高分子鎖で あり、架橋榭脂層中の架橋された高分子鎖は非架橋榭脂層と連続一体ィ匕はしていな い。このような、連続一体ィ匕していない部分が存在するのは両榭脂層の融着界面で あり、したがって、両榭脂層に引き剥がし応力が作用すると、両榭脂層の融着界面、 すなわち外装フィルム 4, 5の界面で剥離が進行する。
[0053] ここで、架橋榭脂層の架橋度を変化させると、架橋されていないフリーな高分子鎖 が集まっている上記微小部分の占める割合が変化する。その結果、架橋榭脂層と非 架橋榭脂層とを熱融着させたとき、融着界面を通じて各榭脂層間で連続一体化した 上記凝集体あるいは結晶体の割合が変化する。具体的には、架橋榭脂層の架橋度 を低くすると、上記微小部分の占める割合が高くなり、各榭脂層間で連続一体化した 凝集体あるいは結晶体の割合が高くなる。各榭脂層間で連続一体ィ匕した凝集体ある いは結晶体の割合が高ければ高いほど、各榭脂層の融着強度は高くなる。架橋榭 脂層の架橋度は、電子線の照射量を変化させることなどにより制御可能であるから、 電子線の照射量を制御することにより各榭脂層の融着強度も自由に制御できること になる。
[0054] 融着強度は、別の言い方をすれば剥離強度を意味する。すなわち、融着強度が高 ければそれだけ剥離しに《なり、剥離強度も高くなる。本発明者は、架橋構造層の 有無による剥離強度の違いを調べるため、以下のような引き剥がし試験を行った。
[0055] まず、対向させる外装フィルムのうち一方の側に架橋構造層を形成し、架橋構造層 と非架橋構造層とを対向させて外装フィルムの一部を 10mm幅で熱融着した。比較 のため、架橋構造層を形成していない外装フィルムを用い、同様に、外装フィルムの 一部を 10mmの熱融着幅で熱融着した。次いで、熱融着したそれぞれの外装フィル ムについて、外装フィルムの熱融着した部分を、熱融着の幅方向と直角な方向に、 熱融着して ヽな 、部分も含めて同じ長さに切り出し、それぞれ発明サンプル (Sinv- 1、 Sinv—2)および比較サンプル(Scom—l、 Scom—2)とした。
[0056] これら発明サンプルおよび比較サンプルをそれぞれ 2つずつ作製し、熱融着されて いない部分をチャックして、熱融着された部分を 180° 方向に引き剥がしていき、そ のときに作用する力を測定した。その測定結果を図 9に示す。図 9において、横軸は 引き剥がし長さを示している力 これはチャック間の距離を意味している。したがって 、この引き剥がし長さは、実際には外装フィルムの延びも含まれており、熱融着部が 完全に引き剥がされた際のチャック間の距離は約 25mmとなっている。図 9から明ら かなように、 Sinv— 1、 Sinv— 2は、 Scorn- 1, Scom—2と比較して全般的に小さな引 き剥がし力で剥離している。すなわち、対向する外装フィルムの界面に架橋構造層が 存在することで、剥離強度が小さくなる。
[0057] 本実施形態でのガスの開放圧力は、突出融着部 6aにおける外装フィルム 4, 5の剥 離強度に依存する。融着強度は、上述したように架橋構造部 8を形成する際の電子 線の照射量に依存する。電子線の照射量が大きければ、電子線を照射した熱融着 榭脂層 11の架橋度が高くなり、突出融着部 6aでの外装フィルム 4, 5の剥離強度は 小さくなる傾向にある。剥離強度を小さくすることによって、より低い圧力で圧力開放 がなされる。すなわち、熱融着榭脂層 11の架橋度を適宜調整することによって、開放 圧力を任意に設定することができる。
[0058] フィルム外装電池 1においては、好ましい設計上の開放圧力は、大気圧からの上昇 分として 0. 05MPa〜lMPaであり、より好ましくは 0. lMPa〜0. 2MPaである。開 放圧力が 0, 05MPaよりも低いと、一時的に大電流が流れたり一次的に高温になつ たりしたときなどの軽微なトラブルでも開放してしま 、、フィルム外装電池 1が作動しな くなるという不具合を招き易くなる。一方、開放圧力が IMPaよりも高いと、ガス開放部 7まで剥離が進行する前に他の部位で開放し、意図しない方向へガスが噴出してし まう可能性が増大する。
[0059] 上述した実施形態では、 1つの圧力開放構造をフィルム外装電池 1の短辺の、特に 正極タブ 3aおよび負極タブ 3bが引き出された辺に配置した例を示した。ただし、圧 力開放構造の数、および配置する位置は、フィルム外装電池 1の使用目的や使用条 件等に応じて適宜変更することができる。図 10に、その一例を本発明の第 2の実施 形態として示す。
[0060] 図 10に示すフィルム外装電池 21は、その長辺に圧力開放構造を有する。本実施 形態においても、正極タブ 23aおよび負極タブ 23bはフィルム外装電池 21の短辺か ら引き出されており、したがって本実施形態では、圧力開放構造は正極タブ 23aおよ び負極タブ 23bが引き出された辺とは異なる辺に設けられている。電池要素(不図示 )はその厚み方向両側から 2枚の外装フィルム 24に挟まれるように包囲され、外装フ イルム 24の周縁部を全周にわたって熱融着することによって、正極タブ 23aおよび負 極タブ 23bが弓 Iき出された状態で封止されて 、る。電池要素の構成および外装フィ ルム 24の層構成は第 1の実施形態と同様であるので、その詳細な説明は省略する。
[0061] 圧力開放構造は、外装フィルム 24の熱融着によって形成された熱融着部 26の内 縁の一部を電池要素側に突出させて形成した突出融着部 26aと、外装フィルム 24の 外縁から突出融着部 26aに向力つて延び、かつ先端が突出融着部 26aに達するガス 開放部 27とを有する。ガス開放部 27は、外装フィルム 24を熱融着せず単に外装フィ ルム 24同士が向き合つているだけの領域として形成され、これによりガス開放部 27 は外気と連通している。
[0062] 圧力開放構造を正極タブ 23aおよび負極タブ 23bが弓 |き出された辺に設ける場合 は、正極タブ 23aおよび負極タブ 23bが引き出された辺においては電池要素と熱融 着部 26との間に集電部のためのスペースが必要となるため、フィルム外装電池 21の 外形寸法を変更することなく熱融着部 26に突出融着部を設けることができる。しかし 、圧力開放構造を正極タブ 23aおよび負極タブ 23bが弓 Iき出されて!/、な 、辺に設け る場合は、その辺においては電池要素と熱融着部 26との間に上記のようなスペース はない。そのため、熱融着部 26に単純に突出融着部 26aを付加しょうとすると、フィ ルム外装電池 21の外形寸法が大きくなつてしまう。
[0063] そこで本実施形態では、外装フィルム 24を部分的に外側に張り出した形状とし、こ の張り出した部分で電池要素収納部に連通した入り江状の領域が形成されるように 熱融着部 26を形成するとともに、入り江状の領域に突出融着部 26aを形成している。 突出融着部 26aの両側は外装フィルム 24が熱融着されていない非融着部 24aとして 形成される。このように、電池要素収納部に連通した入り江状の領域を形成し、この 領域に突出融着部 26aを形成することで、フィルム外装電池 21の外形寸法の増大を 最小限に抑えつつ、応力集中部としての機能を有する突出融着部 26aを形成するこ とがでさる。
[0064] さらに、本実施形態においても、 2枚の外装フィルム 24のうち 1枚には、電子線の照 射により熱融着榭脂層に架橋構造部 28が形成されて ヽる。
[0065] 架橋構造部 28は、突出融着部 26aを含む領域に形成され、その一部が電池要素 収納部およびガス開放部 27に露出している。したがって、電池要素収納部の内圧上 昇に伴う外装フィルム 24の剥離は、第 1の実施形態と同様に、架橋構造部 8ともう一 方の外装フィルムの熱融着榭脂層との境界に沿って進行する。したがって、本実施 形態でも、ガスの開放圧力が安定しており、かつ圧力開放がガス開放部 27で確実に なされる、信頼性の高いフィルム外装電池 21が提供される。
[0066] 図 11および図 12には、本発明の第 3の実施形態によるフィルム外装電池が示され る。
[0067] 本実施形態のフィルム外装電池 31は、第 2の実施形態と比較して、ガス開放部 37 にチューブ 39を接続した点が異なる。その他、圧力開放構造として、熱融着部 36の 一部に応力集中部として突出融着部 36aが形成されていること、外装フィルム 34が 熱融着されていない空間であるガス開放部 37が、突出融着部 36aに先端部を臨ま せて形成されていること、および突出融着部 36aを含む領域において 2枚の外装フィ ルム 34のうち一方の熱融着榭脂層に架橋構造部 38を形成すること等は、第 2の実 施形態と同様である。 [0068] チューブ 39は、一端部がガス開放部 37に気密に接続され、開放した他端部は、電 池要素 32から発生したガスが放出されても影響のない適宜位置に引き回されている 。チューブ 39の他端部は開放しているので、ガス開放部 37はチューブ 39を介して外 気と連通している。電池要素 32からガスが発生すると、電池要素 32を収納する空間 である電池要素収納部の内圧が上昇し、それに伴い、突出融着部 36aで外装フィル ム 34が剥離する。この剥離によって、電池要素収納部力もガス開放部 37にガスが導 入され、導入されたガスは、チューブ 39を通って、チューブ 39の開放端力も放出さ れる。
[0069] このように、ガス開放部 37にチューブ 39を接続することによって、ガスの放出位置 を任意に設定することができる。また、ガスの放出位置をチューブ 39によって任意に 設定できるので、圧力開放構造の位置も任意に設定することができる。本実施形態 は、フィルム外装電池 31の周囲にガスの影響を受け易い部材ゃ機器が存在しており 、ガス開放部 37からガスを直接放出させるのが好ましくな 、場合に特に有効である。 チューブ 39の開放端をフィルム外装電池 31から離した位置に設置すれば、フィルム 外装電池 31から離れた位置にガスを放出させることができる。チューブ 39は、外装フ イルム 34の剥離界面を規定し電池要素収納部とガス開放部 37とが確実を連通させ ることができてはじめて、有効に機能する。
[0070] チューブ 39は、可撓性を有する部材で構成するのが好ましい。可撓性を有する部 材でチューブ 39を構成することで、チューブ 39の引き回しを容易に行うことができ、 また、フィルム外装電池 31の設置後も、ガスの放出位置を自由に変更することができ る。ガス開放部 37へのチューブ 39の接続は、 2枚の外装フィルム 34の間にチューブ 39の端部を挟み、その状態で外装フィルム 34の外縁部をチューブ 39の外周面に接 着することによって行うことができる。外装フィルム 34とチューブ 39との接着方法は、 チューブ 39を気密に接続できれば特に限定されず、接着剤によって接着することも できるし、チューブ 39が熱可塑性榭脂からなるものであれば熱融着によって接着す ることもできる。特に、チューブ 39を外装フィルム 34の熱融着榭脂層を構成する熱融 着性榭脂と同種の榭脂で構成すれば、熱融着によってチューブ 39を接続することが できる。チューブ 39の熱融着は、ガス開放部 37を形成する際にチューブ 39を挿入 するための口部を残して外装フィルム 34を熱融着し、次いで、口部を介してガス開放 部 37内にチューブ 39の端部を挿入し、その状態でチューブ 39を外装フィルム 34に 熱融着することによって行ってもよい。あるいは、電池要素 32の封止の際に、チュー ブ 39を外装フィルム 34間に挟まれる所定の位置に設置しておき、外装フィルム 34へ の熱融着部 36の形成と同時にチューブ 39を接続することができる。
[0071] 本実施形態では、第 2の実施形態にチューブ 39を適用した例を示したが、第 1の実 施形態にも同様に適用することができる。
[0072] 上述した各実施形態は何れも、外装フィルムの剥離を優先的に進行させる応力集 中部を熱融着部に設け、その部分に架橋構造部を形成した例を示した。架橋構造部 は、前述したように、他の領域と比べて高温で軟ィ匕しにくい領域であり、結果的に架 橋構造部が形成された領域自身も他の領域と比べて剥離強度が小さくなつて 、る。 したがって、架橋構造部を形成するだけで十分に剥離位置を規定できる場合は、応 力集中部を設けず単に熱融着部の一部に架橋構造部を形成した構成とすることもで きる。その幾つかの例を以下に示す。
[0073] 図 13を参照すると、本発明の第 4の実施形態によるフィルム外装電池が示される。
本実施形態のフィルム外装電池 41は、矩形状の外装フィルム 44を用いており、その 周縁部に、全周にわたって一定の幅で熱融着部 46が形成され、これによつて電池要 素(不図示)が封止されている。熱融着部 46の一部には、内縁を、電池要素を収納 する電池要素収納部に露出させ、かつ、外縁を熱融着部 46の外縁と一致させて、熱 融着榭脂層に架橋構造部 48が形成されている。つまり、架橋構造部 48は、電池要 素収納部に露出した部位以外の部位を外気と連通させて形成されている。
[0074] 本実施形態のように、応力集中部を熱融着部 46に設けない構造としても、架橋構 造部 48が形成された領域は熱融着部 46の他の領域と比べて剥離強度が小さくなつ ている。そのため、フィルム外装電池 41の内圧上昇に伴う外装フィルム 44の剥離は 、架橋構造部 48が形成された領域で優先的に進行する。剥離が架橋構造部 48の 外縁まで達することによって、電池要素収納部と外気とが連通し、架橋構造部 48が 形成された領域の外縁からガスが放出されて圧力解放がなされる。
[0075] 架橋構造部 48の形状やサイズは、架橋構造部 48が、一部が電池要素収納部に露 出し、かつ、電池要素収納部に露出していない他の部位が外気と連通するような形 状やサイズであれば特に限定されない。図 13では矩形状に架橋構造部 48を形成し た例を示したが、例えば図 14に示すフィルム外装電池 51のように、台形形状に架橋 構造部 58を形成してもよい。図 14には、内縁の長さ L1が外縁の長さ L2よりも長ぐ 電池要素収納部側の縁から外側に向力つて寸法が小さくなるように形成された架橋 構造部 58が示される。架橋構造部 58をこのように形成することで、架橋構造部 58が 外装フィルム 54の剥離の進行に合わせた形状となるので、剥離をよりスムーズに進 行させることができる。
[0076] 図 15に、応力集中部を有しない圧力開放構造の他の例を示す。図 15に示すフィ ルム外装電池 61は、図 14に示した例に、第 3の実施形態で示したチューブ 69を適 用したものである。すなわち、外装フィルム 64には、その架橋構造部 68が形成され た領域に先端部を臨ませて、外装フィルム 64同士を熱融着しないことによってガス開 放部 67が形成され、このガス開放部 67にチューブ 69が気密に接続されている。この ように、架橋構造部 68がガス開放部 67およびチューブ 69を介して外気と連通する構 造としても、安定した圧力で、かつ特定の位置力もガスを放出させることができる。外 装フィルム 64の外縁からガスを放出しても構わない場合は、第 1の実施形態のように 、チューブ 69を設けずガス開放部 67が外気と直接連通する構成としてもょ ヽ。
[0077] また、上述した例では外装フィルム自身に架橋構造部を形成した例を示したが、架 橋構造部は、外装フィルム自身に形成するのではなぐ架橋させた榭脂シートを対向 する外装フィルム間に挟むこと、言い換えれば、対向する外装フィルムの一方に、架 橋させた榭脂シートを融着させることによって形成してもよい。その例の、熱融着部近 傍での断面図を図 16に示す。図 16に示す例では、熱融着部 76の一部において、 2 枚の外装フィルム 74, 75間に、架橋処理された榭脂シート 78が挟み込まれている。 榭脂シート 78は、一部位が、電池要素 72を収納している電池要素収納部に露出し、 他の一部位がガス開放部 77に露出しており、この条件を満たしていれば、そのサイ ズゃ形状等は特に限定されず、他の構造も含めて、上述した各例と同様に配置する ことができる。
[0078] 榭脂シート 78は、対向する 2枚の外装フィルム 74, 75のいずれか一方に、外装フィ ルム 74, 85同士を熱融着する前に、予め熱融着されることによって設けられている。 榭脂シート 78を構成する榭脂は、電池要素 72を封止するのに必要な最低限の融着 強度を確保するために、外装フィルム 74, 75の熱融着榭脂層 74a, 75aと同種の榭 脂を用いるのが好ましい。また、榭脂シート 78の形態としては、フィルム状であっても よいし、メッシュ状であってもよい。メッシュ状とすれば、熱融着によって溶融した熱融 着榭脂層 74a, 75aが榭脂シート 78の網目中に浸透することによって生じるアンカー 効果による、必要な融着強度の確保が期待できる。もちろん、榭脂シート 78の形態に かかわらず、榭脂シート 78の架橋度を適宜調整することによって、外装フィルム 74, 75との融着強度を任意に制御することもできる。熱融着部 76の剥離は、一方の外装 フィルム 74と榭脂シート 78との界面、またはもう一方の外装フィルム 75と榭脂シート 7 8の界面のいずれかで生じる。いずれの場合でも、榭脂シート 78が介在した領域で 剥離が進行する。
[0079] このように、榭脂シート 78によって架橋構造部を形成しても、上述した各例と同様の 効果が得られる。特に本例においては、架橋構造部を外装フィルム 74, 75とは別の 榭脂シート 78で形成するので、外装フィルム 74, 75に架橋構造部を形成しているか 否かの区別が容易に行え、製造工程中での部品管理が容易になるとともに、外装フ イルム 74, 75 (特に熱融着榭脂層 74a, 75a)の材料の選択の幅が広がる。
[0080] 以上、本発明について代表的な幾つかの例を挙げて説明したが、本発明はこれら に限定されるものではなぐ本発明の技術的思想の範囲内で適宜変更されうることは 明らかである。
[0081] 例えば、上述した例では 2枚の外装フィルムのうち 1枚に架橋構造部を形成した例 を示したが、電池要素を封止するのに十分な接着力が得られれば双方の外装フィル ムに架橋構造部を形成してもよい。その場合の、各外装フィルムへの電子線の照射 量は等しくてもよ!/、し互いに異なって!/、てもよ!/、。この構成を図 16に示した例に適用 する場合は、各外装フィルムにそれぞれ、架橋処理された榭脂シートを融着すること になる。
[0082] また、上述した例では 2枚の外装フィルムで電池要素をその厚み方向両側から挟ん で周囲の 4辺を熱融着した例を示した力 その他にも、 1枚の外装フィルムを 2つ折り にして電池要素を挟み、開放して!/、る 3辺を熱融着することによって電池要素を封止 してちよい。
[0083] 電池要素の構造について、上述した例では複数の正極および複数の負極を交互 に積層した積層型を示した力 正極、負極およびセパレータを帯状に形成し、セパレ ータを挟んで正極および負極を重ね合わせ、これを捲回した後、扁平状に圧縮する ことによって、正極と負極とを交互に配置させた捲回型の電池要素であってもよ 、。
[0084] また、電池要素としては、正極、負極および電解質を含むものであれば、通常の電 池に用いられる任意の電池要素が適用可能である。一般的なリチウムイオン二次電 池における電池要素は、リチウム 'マンガン複合酸ィ匕物、コバルト酸リチウム等の正極 活物質をアルミニウム箔などの両面に塗布した正極板と、リチウムをドープ '脱ドープ 可能な炭素材料を銅箔などの両面に塗布した負極板とを、セパレータを介して対向 させ、それにリチウム塩を含む電解液を含浸させて形成される。電池要素としては、こ の他に、ニッケル水素電池、ニッケルカドミウム電池、リチウムメタル一次電池あるい は二次電池、リチウムポリマー電池等、他の種類の化学電池の電池要素が挙げられ る。さらに、本発明は、電気二重層キャパシタなどのキャパシタゃ電解コンデンサなど に例示されるキャパシタ要素のような、電気エネルギーを内部に蓄積し化学反応また は物理反応でガスを発生し得る電気デバイスを外装フィルムで封止した電気デバィ スに適用可能である。
[0085] さらに、上述した各例では正極タブと負極タブとをフィルム外装電池の同じ辺から引 き出した例を示したが、これらは互いに異なる辺、例えば対向する 2辺、あるいは隣り 合う 2辺から引き出されてもよい。

Claims

請求の範囲
[1] 電気デバイス要素と、
少なくとも熱融着榭脂層を含み、該熱融着榭脂層同士を対向させて前記電気デバ イス要素を包囲し、対向した前記熱融着榭脂層同士が外周部で熱融着されることに よって、前記熱融着された領域を熱融着部とするとともにその内側の空間を電気デ バイス要素収納部として前記電気デバイス要素を封止した外装フィルムとを有し、 対向した前記外装フィルムの少なくとも一方に、前記電気デバイス要素収納部に露 出する部位および外気と接する他の部位を有するように、前記熱融着部の一部を含 む連続した領域で、架橋処理された榭脂からなる架橋構造部が形成されて!ヽるフィ ルム外装電気デバイス。
[2] 前記熱融着部は、前記電気デバイス要素収納部に向かって突出した突出融着部 を有し、前記架橋構造部は前記突出融着部を含む範囲に形成されている、請求項 1 に記載のフィルム外装電気デバイス。
[3] 前記外装フィルムには、前記電気デバイス要素収納部に連通した入り江状の非熱 融着領域が形成されるように前記熱融着部が形成され、前記非熱融着領域に前記 突出融着部が位置して!/ヽる、請求項 2に記載のフィルム外装電気デバイス。
[4] 外気と連通し且つ前記電気デバイス要素収納部と連通しな!/ヽガス開放部を前記外 装フィルムの外周部に有し、前記架橋構造部は前記外気と接する他の部位として該 ガス開放部と接した領域を含んで ヽる、請求項 1に記載のフィルム外装電気デバイス
[5] 前記ガス開放部は、対向する前記外装フィルム同士が熱融着されていない領域と して形成されて ヽる、請求項 4に記載のフィルム外装電気デバイス。
[6] 前記ガス開放部にチューブが接続されている。請求項 5に記載のフィルム外装電気 デバイス。
[7] 前記チューブは、対向する前記外装フィルムに挟まれて、外周面が前記外装フィル ムと接着されて 、る、請求項 6に記載のフィルム外装電気デバイス。
[8] 前記チューブは、前記熱融着榭脂と同種の榭脂からなり熱融着によって前記外装 フィルムと接着されて ヽる、請求項 7に記載のフィルム外装電気デバイス。
[9] 前記架橋構造部は、前記外装フィルムの熱融着榭脂層に架橋処理を施すことで形 成されて!/ヽる、請求項 1に記載のフィルム外装電気デバイス。
[10] 前記架橋構造部は、前記外装フィルムに融着された、架橋処理された榭脂シート によって形成されて ヽる、請求項 1に記載のフィルム外装電気デバイス。
[11] 電気デバイス要素を、少なくとも熱融着榭脂層を含む外装フィルムで包囲し、対向 した外装フィルムの外周部同士を熱融着することによって、熱融着された領域を熱融 着部とするとともにその内側の空間を電気デバイス要素収納部として前記電気デバ イス要素を封止するフィルム外装電気デバイスの製造方法であって、
前記電気デバイス要素収納部に露出する部位と外気と接する他の部位とを有する ように、前記外装フィルムの前記熱融着部とされる領域の一部を含む連続した領域 で、対向する前記外装フィルムの少なくとも一方に、架橋処理された榭脂からなる架 橋構造部を形成する工程と、
前記架橋構造部を形成した外装フィルムで、前記熱融着榭脂層を対向させて前記 電気デバイス要素を挟んで包囲する工程と、
前記電気デバイス要素を包囲することによって対向した前記外装フィルムの外周部 同士を熱融着し、前記電気デバイス要素を封止する工程とを有する、フィルム外装電 気デバイスの製造方法。
[12] 前記架橋構造部を形成する工程は、前記外装フィルムの前記架橋構造部を形成 すべき領域に電子線を照射することを含む、請求項 11に記載のフィルム外装電気デ バイスの製造方法。
[13] 前記外装フィルムを熱融着して前記電気デバイス要素を封止する工程は、外気と 連通するガス開放部を、前記外装フィルムの外縁から前記架橋構造部の前記他の 部位にわたって前記外装フィルムを熱融着しない領域を設けることによって形成する ことを含む、請求項 11に記載のフィルム外装電気デバイスの製造方法。
[14] 前記ガス開放部にチューブを接続する工程をさらに有する、請求項 13に記載のフ イルム外装電気デバイスの製造方法。
[15] 前記チューブを接続する工程は、対向する前記外装フィルム間に前記チューブを 挟み、前記チューブと前記外装フィルムとを接着することを含む請求項 14に記載の フィルム外装電気デバイスの製造方法。
[16] 前記架橋構造部を形成する工程は、前記外装フィルムの熱融着榭脂層に架橋処 理を施すことを含む、請求項 11に記載のフィルム外装電気デバイスの製造方法。
[17] 前記架橋構造部を形成する工程は、前記外装フィルムに、架橋処理された榭脂シ 一トを融着することを含む、請求項 11に記載のフィルム外装電気デバイスの製造方 法。
PCT/JP2005/014428 2004-08-11 2005-08-05 フィルム外装電気デバイスおよびその製造方法 WO2006016535A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020077004313A KR100887792B1 (ko) 2004-08-11 2005-08-05 필름 외장 전기 디바이스 및 그 제조 방법
DE602005024287T DE602005024287D1 (de) 2004-08-11 2005-08-05 Filmeingeschlossene elektrische einrichtung und herstellungsverfahren dafür
CN2005800273065A CN101010817B (zh) 2004-08-11 2005-08-05 膜封装的电气装置及其制造方法
AT05768917T ATE485604T1 (de) 2004-08-11 2005-08-05 Filmeingeschlossene elektrische einrichtung und herstellungsverfahren dafür
US11/573,538 US8283061B2 (en) 2004-08-11 2005-08-05 Film-encased electric device and production method therefor
EP05768917A EP1793436B1 (en) 2004-08-11 2005-08-05 Film-enclosed electric device and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-234524 2004-08-11
JP2004234524A JP4232038B2 (ja) 2004-08-11 2004-08-11 フィルム外装電気デバイスおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2006016535A1 true WO2006016535A1 (ja) 2006-02-16

Family

ID=35839305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014428 WO2006016535A1 (ja) 2004-08-11 2005-08-05 フィルム外装電気デバイスおよびその製造方法

Country Status (8)

Country Link
US (1) US8283061B2 (ja)
EP (1) EP1793436B1 (ja)
JP (1) JP4232038B2 (ja)
KR (1) KR100887792B1 (ja)
CN (2) CN101010817B (ja)
AT (1) ATE485604T1 (ja)
DE (1) DE602005024287D1 (ja)
WO (1) WO2006016535A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115478A (ja) * 2005-10-19 2007-05-10 Toshiba Battery Co Ltd 非水電解質電池
JP2010503150A (ja) * 2006-08-28 2010-01-28 エルジー・ケム・リミテッド 一方向排気バルブを包含する二次バッテリー
EP2312670A3 (en) * 2007-02-21 2011-05-11 Nec Corporation Packaged battery, stacked battery assembly, and film-covered battery
US20130115487A1 (en) * 2011-11-08 2013-05-09 Sk Innovation Co., Ltd. Battery cell and battery module including the same
CN109004282A (zh) * 2018-07-25 2018-12-14 柔电(武汉)科技有限公司 超薄软包锂电池用封头、封头组件、封装装置及封装方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4232038B2 (ja) 2004-08-11 2009-03-04 日本電気株式会社 フィルム外装電気デバイスおよびその製造方法
CN102280604B (zh) 2005-03-17 2014-11-12 日本电气株式会社 覆膜电气设备及其制造方法
JP4968423B2 (ja) * 2005-05-30 2012-07-04 大日本印刷株式会社 リチウム電池の外装体
JP4649294B2 (ja) * 2005-08-30 2011-03-09 株式会社東芝 非水電解質電池および携帯情報機器
CN101390201B (zh) 2005-12-28 2010-12-08 日本电气株式会社 场效应晶体管和用于制备场效应晶体管的多层外延膜
JP4925427B2 (ja) * 2006-09-27 2012-04-25 日立マクセルエナジー株式会社 ラミネート形非水二次電池
JP2008091583A (ja) * 2006-09-30 2008-04-17 Nippon Chemicon Corp ラミネートフィルム封止形コンデンサ
KR100944987B1 (ko) * 2007-12-14 2010-03-02 주식회사 엘지화학 신규한 실링부 구조를 포함하는 이차전지
US8999546B2 (en) 2009-01-12 2015-04-07 A123 Systems Llc Structure of prismatic battery modules with scalable architecture
JP5059890B2 (ja) 2009-03-31 2012-10-31 Jmエナジー株式会社 ラミネート外装蓄電デバイス
JP2010267593A (ja) * 2009-05-18 2010-11-25 Fuji Heavy Ind Ltd 蓄電デバイス
JP5364548B2 (ja) * 2009-12-03 2013-12-11 Udトラックス株式会社 モジュール蓄電体及びその製造方法
US9240578B2 (en) 2010-03-09 2016-01-19 Samsung Sdi Co., Ltd. Secondary battery
JP5035397B2 (ja) 2010-07-28 2012-09-26 Tdk株式会社 電気化学デバイス
CN102623749A (zh) * 2011-01-26 2012-08-01 深圳市崧鼎实业有限公司 一种电芯封装方法及装置
JP2015507828A (ja) * 2012-01-09 2015-03-12 ヒソン ケミカル リミテッド 二次電池用アルミニウムパウチフィルム、これを含む包装材、これを含む二次電池および二次電池用アルミニウムパウチフィルムの製造方法
JP5423825B2 (ja) * 2012-02-06 2014-02-19 大日本印刷株式会社 リチウム電池の外装体
KR20140013132A (ko) * 2012-07-09 2014-02-05 에스케이이노베이션 주식회사 이차전지
JP6152260B2 (ja) * 2012-11-01 2017-06-21 昭和電工パッケージング株式会社 電池用外装材及び電池
JP6426895B2 (ja) 2013-05-31 2018-11-21 昭和電工パッケージング株式会社 電池用外装材及び電池
CN103383995B (zh) * 2013-07-29 2016-01-20 宁波慧通新能源科技有限公司 防爆电池
WO2015068548A1 (ja) * 2013-11-11 2015-05-14 日産自動車株式会社 フィルム外装電池の製造方法
US20150187508A1 (en) * 2013-12-26 2015-07-02 Minwax Electronic Enterprise Ltd. Electrolytic Capacitor
JP2015153971A (ja) * 2014-02-18 2015-08-24 ローム株式会社 コンデンサ装置
PL225943B1 (pl) * 2014-09-05 2017-06-30 Krawczyk Zenon P P H U Zenex Kondensator mocy z urzadzeniem zabezpieczajacym
JP6634671B2 (ja) * 2014-12-10 2020-01-22 日本電気株式会社 二次電池、電動車両、蓄電システム、および製造方法
KR102071894B1 (ko) * 2015-11-12 2020-01-31 주식회사 엘지화학 시트 개봉부를 포함하는 전지케이스 및 이를 포함하는 전지셀
CN205406573U (zh) * 2016-03-02 2016-07-27 宁德时代新能源科技股份有限公司 软包二次电池壳体
JP7061971B2 (ja) * 2016-05-20 2022-05-02 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション マルチセル・ウルトラキャパシタ
WO2017201173A1 (en) 2016-05-20 2017-11-23 Avx Corporation Nonaqueous electrolyte for an ultracapacitor
JP6644650B2 (ja) * 2016-06-29 2020-02-12 太陽誘電株式会社 蓄電セル、外装フィルム及び蓄電モジュール
CN106606844B (zh) * 2016-09-27 2019-08-20 简极科技有限公司 一种多气囊智能球及其生产工艺
CN106606845A (zh) * 2016-09-27 2017-05-03 简极科技有限公司 一种双气囊智能球及其生产工艺
KR102347901B1 (ko) * 2017-10-17 2022-01-06 주식회사 엘지에너지솔루션 균열 방지 구조를 포함하는 파우치형 전지케이스 및 이의 제조방법
KR102019682B1 (ko) * 2017-12-08 2019-09-09 주식회사 엘지화학 열가소성 수지가 채워진 벤트를 포함하는 이차전지용 전지케이스
CN110311062B (zh) * 2018-03-27 2021-09-21 比亚迪股份有限公司 一种用于托盘的保护罩以及电池包
CN108598552B (zh) * 2018-04-04 2019-11-26 乐清市钜派企业管理咨询有限公司 一种阻水阻燃的锂电池封装用复合膜及其制备方法
DE102018125842A1 (de) * 2018-10-18 2020-04-23 Bayerische Motoren Werke Aktiengesellschaft Zellgehäuse für eine Batteriezelle einer Hochvoltbatterie eines Kraftfahrzeugs, Batteriezelle, Hochvoltbatterie sowie Kraftfahrzeug
KR20210058159A (ko) * 2019-11-13 2021-05-24 주식회사 엘지화학 이차 전지 및 실링 블록
EP4307415A4 (en) * 2021-04-09 2024-10-23 Ningde Amperex Technology Ltd BATTERY CELL AND ELECTRICAL DEVICE
CN215896547U (zh) * 2021-08-17 2022-02-22 宁德新能源科技有限公司 封装壳、电池及用电设备
KR20230081208A (ko) * 2021-11-30 2023-06-07 에스케이온 주식회사 배터리 셀

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235845A (ja) * 1998-12-16 2000-08-29 Japan Storage Battery Co Ltd 薄型電池
EP1063713A2 (en) 1999-06-24 2000-12-27 Nec Corporation Method for production of battery
JP2002319379A (ja) * 2001-04-20 2002-10-31 Dainippon Printing Co Ltd 電池用包装材料及びそれを用いた電池
JP2002362617A (ja) * 2001-06-01 2002-12-18 Toppan Printing Co Ltd 包装体
JP2004055290A (ja) * 2002-07-18 2004-02-19 Nec Corp フィルム外装電池及びその製造方法
JP2004213963A (ja) * 2002-12-27 2004-07-29 Nissan Motor Co Ltd 薄型電池

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4613550A (en) * 1985-08-30 1986-09-23 Gnb Incorporated Venting system for electric storage batteries
JP3063924B2 (ja) 1991-06-28 2000-07-12 株式会社ユアサコーポレーション 薄形電池
JP3293287B2 (ja) * 1993-12-07 2002-06-17 松下電器産業株式会社 角形密閉式アルカリ蓄電池とその単位電池
JPH1055792A (ja) 1996-08-12 1998-02-24 Yuasa Corp 薄形電池
JP3554155B2 (ja) 1997-07-24 2004-08-18 東芝電池株式会社 リチウム二次電池及びその製造方法
JP3638765B2 (ja) * 1997-09-05 2005-04-13 株式会社リコー 非水系偏平型電池
JP2000306565A (ja) * 1999-02-15 2000-11-02 Konno Kogyosho:Kk 密閉型電池の保安機構
EP1047137A3 (en) * 1999-04-19 2002-02-27 Japan Storage Battery Co., Ltd. Battery sealed in battery case of resin film
JP3837004B2 (ja) 2000-03-17 2006-10-25 Tdk株式会社 シート型電池
JP4862211B2 (ja) 2000-08-08 2012-01-25 株式会社Gsユアサ 密閉型二次電池
FR2819036B1 (fr) * 2001-01-04 2004-01-16 Cit Alcatel Soupape et generateur electrochimique comprenant une telle soupape
JP2002324526A (ja) 2001-04-24 2002-11-08 Toyota Motor Corp 電池用被覆構造物、方法、および異常加熱時の空気混入を防止可能な電池
JP4953527B2 (ja) 2001-07-27 2012-06-13 パナソニック株式会社 電池
JP2003132868A (ja) 2001-10-25 2003-05-09 Mitsubishi Cable Ind Ltd シート状電池
KR20030066895A (ko) 2002-02-05 2003-08-14 삼성에스디아이 주식회사 이차 전지
JP3859645B2 (ja) 2004-01-16 2006-12-20 Necラミリオンエナジー株式会社 フィルム外装電気デバイス
JP4232038B2 (ja) 2004-08-11 2009-03-04 日本電気株式会社 フィルム外装電気デバイスおよびその製造方法
CN102280604B (zh) * 2005-03-17 2014-11-12 日本电气株式会社 覆膜电气设备及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235845A (ja) * 1998-12-16 2000-08-29 Japan Storage Battery Co Ltd 薄型電池
EP1063713A2 (en) 1999-06-24 2000-12-27 Nec Corporation Method for production of battery
JP2002319379A (ja) * 2001-04-20 2002-10-31 Dainippon Printing Co Ltd 電池用包装材料及びそれを用いた電池
JP2002362617A (ja) * 2001-06-01 2002-12-18 Toppan Printing Co Ltd 包装体
JP2004055290A (ja) * 2002-07-18 2004-02-19 Nec Corp フィルム外装電池及びその製造方法
JP2004213963A (ja) * 2002-12-27 2004-07-29 Nissan Motor Co Ltd 薄型電池

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115478A (ja) * 2005-10-19 2007-05-10 Toshiba Battery Co Ltd 非水電解質電池
JP2010503150A (ja) * 2006-08-28 2010-01-28 エルジー・ケム・リミテッド 一方向排気バルブを包含する二次バッテリー
JP4927169B2 (ja) * 2006-08-28 2012-05-09 エルジー・ケム・リミテッド 一方向排気バルブを包含する二次バッテリー
EP2312670A3 (en) * 2007-02-21 2011-05-11 Nec Corporation Packaged battery, stacked battery assembly, and film-covered battery
US8722241B2 (en) 2007-02-21 2014-05-13 Nec Corporation Packaged battery, stacked battery assembly, and film-covered battery
US9653715B2 (en) 2007-02-21 2017-05-16 Nec Corporation Packaged battery, stacked battery assembly, and film-covered battery
US20130115487A1 (en) * 2011-11-08 2013-05-09 Sk Innovation Co., Ltd. Battery cell and battery module including the same
US8920950B2 (en) * 2011-11-08 2014-12-30 Sk Innovation Co., Ltd. Pouch type battery cell and module having exhaust part in a region of the sealing part
CN109004282A (zh) * 2018-07-25 2018-12-14 柔电(武汉)科技有限公司 超薄软包锂电池用封头、封头组件、封装装置及封装方法
CN109004282B (zh) * 2018-07-25 2023-11-03 柔电(武汉)科技有限公司 超薄软包锂电池用封头、封头组件、封装装置及封装方法

Also Published As

Publication number Publication date
JP4232038B2 (ja) 2009-03-04
CN101010817B (zh) 2013-03-27
US8283061B2 (en) 2012-10-09
JP2006054099A (ja) 2006-02-23
CN101010817A (zh) 2007-08-01
EP1793436A1 (en) 2007-06-06
EP1793436B1 (en) 2010-10-20
EP1793436A4 (en) 2009-04-15
US20080233468A1 (en) 2008-09-25
DE602005024287D1 (de) 2010-12-02
CN103187177A (zh) 2013-07-03
KR20070038168A (ko) 2007-04-09
KR100887792B1 (ko) 2009-03-09
ATE485604T1 (de) 2010-11-15

Similar Documents

Publication Publication Date Title
WO2006016535A1 (ja) フィルム外装電気デバイスおよびその製造方法
JP4900339B2 (ja) フィルム外装電気デバイスおよびその製造方法
JP5010467B2 (ja) フィルム外装電気デバイスおよびその製造方法
KR100705101B1 (ko) 압력 개방구를 갖는 필름 피복 전기 장치
KR100821856B1 (ko) 안전성이 향상된 이차전지
JP3363910B2 (ja) 非水系薄型電池
JP4622019B2 (ja) 扁平電池
KR100708023B1 (ko) 필름 외장 전기 디바이스 및 그 제조 방법
JP4775555B2 (ja) フィルム外装電池およびその製造方法
JP4977475B2 (ja) フィルム外装電気デバイス用ケース
KR100515833B1 (ko) 젤리-롤형의 전극조립체와 이를 채용한 이차전지
KR100365769B1 (ko) 배터리 제조 방법
JPH1055792A (ja) 薄形電池
KR102692525B1 (ko) 파우치 셀
JP2000077042A (ja) リチウム2次電池のケ―ス
JPH09161759A (ja) セパレータ
KR20070104689A (ko) 분리막 필름에 의해 감싸인 전극조립체를 포함하고 있는안전성이 향상된 이차전지
JP3061457B2 (ja) 有機電解液電池
JP2000173563A (ja) 薄型電池用袋体
KR100467701B1 (ko) 안전장치가 설치된 파우치형 리튬이차전지
KR20000059693A (ko) 리튬 이온 폴리머 전지

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11573538

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580027306.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005768917

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077004313

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020077004313

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005768917

Country of ref document: EP