WO2006013841A1 - 受信方法及び受信回路 - Google Patents

受信方法及び受信回路 Download PDF

Info

Publication number
WO2006013841A1
WO2006013841A1 PCT/JP2005/014088 JP2005014088W WO2006013841A1 WO 2006013841 A1 WO2006013841 A1 WO 2006013841A1 JP 2005014088 W JP2005014088 W JP 2005014088W WO 2006013841 A1 WO2006013841 A1 WO 2006013841A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
voltage signal
output voltage
reset signal
Prior art date
Application number
PCT/JP2005/014088
Other languages
English (en)
French (fr)
Inventor
Makoto Nakamura
Yuhki Imai
Masatoshi Tobayashi
Yoshikazu Urabe
Hatsushi Iizuka
Original Assignee
Nippon Telegraph And Telephone Corporation
Ntt Electronics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph And Telephone Corporation, Ntt Electronics Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to US11/659,413 priority Critical patent/US8144813B2/en
Publication of WO2006013841A1 publication Critical patent/WO2006013841A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3084Automatic control in amplifiers having semiconductor devices in receivers or transmitters for electromagnetic waves other than radiowaves, e.g. lightwaves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver
    • H04B10/6933Offset control of the differential preamplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/375Circuitry to compensate the offset being present in an amplifier

Definitions

  • the present invention relates to an optical receiving technique for performing digital signal transmission in an optical communication system.
  • the present invention relates to a technology for converting an optical signal into an electric signal (current signal) by a light receiving element and then converting the current signal into a voltage signal to shape and amplify the waveform.
  • the present invention relates to a reception technique that responds to a burst data signal at high speed and can receive a minute signal to a large signal, and has a high sensitivity and a wide dynamic range.
  • the present invention is applied as a receiving circuit which is a constituent circuit of an optical terminal equipment (OLT) for a station in an optical subscriber transmission system.
  • OLT optical terminal equipment
  • the configuration of a conventional receiving circuit includes a photodiode (PD) 100, a bump circuit 200B, and a post-amplifier circuit 300B.
  • the preamplifier circuit 200B is a transimpedance core that performs current / voltage conversion by an amplifier 201 and a feedback resistor 202. Functions as a circuit.
  • the post-amplifier circuit 300B is configured to compensate for the offset of the data signal by the amplifier 301 and the offset compensation circuit 302.
  • FIG. 2 shows a waveform diagram of the basic operation of this receiving circuit.
  • the preamplifier circuit 200B has a current signal I that is optically Z-converted by the photodiode 100.
  • Output voltage signal V (output data signal Data) generated by converting and amplifying in is output.
  • the preamplifier circuit 200B Since the offset compensation circuit is not provided in the preamplifier circuit 200B, the preamplifier circuit 200B is activated even when the input current signal I has a level difference (amplitude difference).
  • Output voltage signal V is generated and output while maintaining the level.
  • the post-amplifier circuit 300B in the subsequent stage detects the level of the output voltage signal V to detect the offset.
  • the post-amplifier circuit 300B detects an amplitude difference for each packet of the output data signal Data by the offset compensation circuit 302 and outputs an offset voltage V that is a difference up to the “0” level force amplitude center.
  • the signal is corrected and amplified by the amplifier circuit 301.
  • an external reset signal RST2 for initializing (resetting) the offset compensation circuit 302 at the timing immediately before the packet is received is offset. Input to the compensation circuit 302.
  • the offset compensation circuit 302 outputs to the offset compensation circuit 302.
  • the gain of the preamplifier circuit 200B is high.
  • the gain force is switched to low gain, if there is a circuit delay between the level detection and the gain switching, the waveform of the output voltage signal V will be knocked out.
  • V the gain (conversion gain) of the preamplifier circuit 200B.
  • the gain is proportional to the value of the feedback resistor 202, and a high resistance is used to obtain a high gain, and a low resistance is used to obtain a low gain.
  • FIG. 5 shows an example of an operation waveform when the value of the feedback resistor 202 is switched.
  • Preamplifier circuit 200B force Input current signal I with maximum gain (resistance value of feedback resistor 202 is RF1)
  • the gain is switched to low (the resistance value of feedback resistor 202 is switched from RF1 to RF2).
  • a gain switching delay occurs due to a circuit delay caused by a switching control circuit (not shown), and the output voltage signal V of the preamplifier circuit 200B has a resistance value RF1 at the head of the signal.
  • a large-amplitude output amplified with a gain corresponding to is output.
  • the offset compensation circuit 302 detects the level of the protruding signal head portion (first bit) as the detection level, the level of the output voltage signal V corresponding to the resistance value RF2 is detected.
  • the offset compensation voltage signal V detected by the offset compensation circuit 302 is shifted by a normal value.
  • the input signal of the offset compensation circuit 302 is Bria aoc
  • the waveform of the output voltage signal V of the post-amplifier circuit 300B shown in Fig. 5 is used at the level corresponding to the resistance value RF2.
  • the present invention has been made in view of the above points, and provides a receiving method and a receiving circuit that can operate with high sensitivity and a wide dynamic range and can support burst transmission. For the purpose.
  • a first feature of the present invention is that, in the preamplifier circuit, the level of the output voltage signal is adjusted by switching the gain used when the input current signal is converted into the voltage signal, and the offset of the postamplifier circuit is adjusted.
  • the output voltage signal is offset-compensated, wherein the preamplifier circuit detects a level change of the output voltage signal to generate a reset signal, and the preamplifier circuit generates the output signal.
  • the generated reset signal is added to the voltage signal with a polarity opposite to that of the output voltage signal, and the post-amplifier circuit detects the reset signal added to the output voltage signal, and detects the detected reset signal.
  • the gist of the invention is that the offset compensation circuit is reset by using.
  • a second feature of the present invention is configured to convert an input current signal into a voltage signal, and includes a preamplifier circuit including an amplifier having a variable gain used in the conversion.
  • a post-amplifier circuit having an offset compensation circuit configured to receive an output voltage signal of the preamplifier circuit and to output an offset compensation signal for the output voltage signal.
  • the preamplifier circuit includes a level detection circuit configured to detect a level change of the output voltage signal of the amplifier, and the level detection circuit.
  • the reset signal generation circuit configured to generate a reset signal, and the reset signal generated by the reset signal generation circuit with respect to the output voltage signal of the amplifier And an adder that adds signals with the opposite polarity of the output voltage signal, wherein the postamplifier circuit receives the output voltage signal of the preamplifier circuit and detects the reset signal based on the received output voltage signal.
  • the gist of the invention is that the offset compensation circuit is reset using the detected reset signal, and further includes a reset signal detection circuit.
  • the preamplifier circuit and the postamplifier circuit are differential circuits, and the reset that is calculated to a differential output voltage signal output from the preamplifier circuit.
  • the signal may be configured to be a differential signal.
  • the level detection circuit of the preamplifier circuit includes a comparator configured to detect a level change of the output voltage signal of the amplifier, and the preamplifier circuit
  • the reset signal generation circuit generates a reset signal having a pulse width corresponding to a delay time of the delay circuit based on an output signal of the comparator and a signal obtained by delaying and inverting the output signal of the comparator by a delay circuit. It may be configured to include an AND circuit.
  • the comparator of the level detection circuit is a plurality of comparators having the same or different comparison reference values
  • the reset signal generation circuit is set to the number of the plurality of comparators.
  • a pair of the corresponding delay circuit and the AND circuit, and an OR circuit configured to receive the output of each AND circuit in the set and output the reset signal.
  • the adding unit of the preamplifier circuit is configured to output an output voltage signal of the amplifier or a signal having a polarity opposite to that of the output voltage signal.
  • the selector is configured to select one of the selectors, and the selector is configured to select and output the set potential by outputting the reset signal of the reset signal generation circuit. Have you been?
  • the reset signal detection circuit of the post-amplifier circuit receives an output voltage signal of the preamplifier circuit from a potential of “0” sign of the output voltage signal.
  • a comparator configured to compare with a low threshold may be included.
  • the reset signal detection circuit of the post-amplifier circuit includes an operational amplifier in which an offset is set, and a positive logic input to one input terminal of the operational amplifier. By comparing a data signal and a negative logic data signal input to the other input terminal, the reset signal is added to the output data signal of the preamplifier circuit to detect the reset signal. .
  • FIG. 1 is a circuit diagram of a conventional receiving circuit.
  • FIG. 2 is an operation waveform diagram of the conventional receiving circuit.
  • FIG. 3 is a circuit diagram of another conventional receiving circuit.
  • FIG. 4 is a diagram for explaining input / output characteristics when the gain is variable in a conventional preamplifier circuit.
  • FIG. 5 is an operation waveform diagram of another conventional receiving circuit.
  • FIG. 6 is a circuit diagram showing the principle and configuration of a receiving circuit according to the present invention.
  • FIG. 7 is an operation waveform diagram of the receiving circuit according to the present invention.
  • FIG. 8 is a diagram for explaining the effect of the receiving circuit according to the present invention.
  • FIG. 9 is a circuit diagram of a receiving circuit according to Embodiment 1 of the present invention.
  • FIG. 10 (a) is an operation waveform diagram of a conventional receiving circuit
  • FIG. 10 (b) is an operation waveform diagram of the receiving circuit according to Embodiment 1 of the present invention.
  • FIG. 11 is a circuit diagram of a receiving circuit according to Embodiment 2 of the present invention.
  • FIG. 12 is a circuit diagram of a preamplifier circuit of a receiving circuit according to Embodiment 3 of the present invention.
  • FIG. 13 is an operation waveform diagram of the preamplifier circuit of the receiving circuit according to the third embodiment of the present invention.
  • FIG. 14 is a circuit diagram of a preamplifier circuit of a receiving circuit according to Embodiment 4 of the present invention.
  • FIG. 15 is a circuit diagram of a preamplifier circuit of the receiving circuit according to Embodiment 4 of the present invention.
  • Is FIG. 16 is a circuit diagram of a post-amplifier circuit of a receiving circuit according to Embodiment 5 of the present invention.
  • FIG. 17 is an operation waveform diagram of the post-amplifier circuit of the receiving circuit according to the fifth embodiment of the present invention.
  • FIG. 18 is a circuit diagram of a post-amplifier circuit of a receiving circuit according to Embodiment 6 of the present invention.
  • FIG. 19 is an operation waveform diagram of the post-amplifier circuit of the receiving circuit according to the sixth embodiment of the present invention.
  • FIG. 6 shows a circuit diagram of the principle configuration of the receiving circuit according to the present invention.
  • the receiving circuit according to the present invention includes a preamplifier circuit 200 having a gain switching function and a post-amplifier circuit 300 having an offset compensation function.
  • the preamplifier circuit 200 constitutes a transimpedance amplifier core circuit that converts a current signal into a voltage signal by the amplifier 201 and the feedback resistor 202.
  • the preamplifier circuit 200 includes an output voltage signal V (output data signal Da core) of the amplifier 201.
  • the reset signal generation circuit 204 is configured.
  • the internal reset signal RST1 is added to the output voltage signal V of the preamplifier circuit 200 with the opposite polarity to the output voltage signal V in the adder (buffer circuit) 205.
  • the gain switching is performed by switching the resistance value of the feedback resistor 202, and the output of the level detection circuit 203 can be used as a control signal for switching the resistance value.
  • the post-amplifier circuit 300 includes a reset signal detection circuit 303 configured to detect the internal reset signal RST1 in addition to the amplifier 301 and the offset compensation circuit 302.
  • the reset signal RST3 detected by the reset signal detection circuit 303 The offset compensation circuit 302 can be reset. Note that the offset compensation circuit 302 can also be reset by an external reset signal RST2.
  • the circuit 302 can be reset, the waveform deterioration of the output data signal due to gain switching can be improved.
  • FIG. 7 shows operation waveforms of the receiving circuit according to the present invention shown in FIG. 7 shows the operation waveform of the input current signal I of the preamplifier circuit 200 and the operation of the output voltage signal V of the amplifier 201.
  • the input current signal I includes an idle for settling of the receiving circuit.
  • the signal is prepended to the data frame for information transmission, and the receiver circuit must stabilize within this idle signal time.
  • the preamplifier circuit 200 has an input current signal I with a maximum gain (the resistance value of the feedback resistor 202 is RF1) in the initial state.
  • the resistance value of 202 switches to RF2).
  • the resistance value is RF2 and RF1.
  • the reset signal detection circuit 303 of the post-amplifier circuit 300 at the subsequent stage takes out the internal reset signal RST1 added to the input data signal and sets it as the reset signal RST3 for resetting the offset compensation circuit 302.
  • the output aoc of the preamplifier circuit 200 As shown in the waveform diagram of the offset compensation voltage signal V in Fig. 7, the output aoc of the preamplifier circuit 200
  • the reset signal RST3 is detected every time the gain of the preamplifier circuit 200 is switched, and even if a level fluctuation occurs due to the delay time of the gain switching of the preamplifier circuit 200, the offset compensation circuit 302 is reset every time. Done.
  • the output voltage signal V of the post-amplifier circuit 300 is the post-amplifier circuit 300 out2 in FIG.
  • the offset compensation out2 is output before the reset signal RST3.
  • the output voltage signal V of the post-amplifier circuit 300 will be distorted in the waveform aoc out2 type.
  • the receiving circuit of the present invention even if the level of the output voltage signal V of the preamplifier circuit 200 changes due to the gain switching, the outl in the post-amplifier circuit 300 at the subsequent stage is changed.
  • the offset compensation voltage signal V of the offset compensation circuit 302 is initialized at each gain switching (aoc)
  • FIG. 8 shows an outline of the effect of the present invention.
  • the burst data signal cannot be responded at high speed, and when the burst data signal is responded at high speed, the input dynamic range cannot be widened.
  • FIG. 9 shows a receiving circuit according to Embodiment 1 of the present invention.
  • the receiving circuit according to the first embodiment is configured to input the external reset signal RST2 to the level detection circuit 203 and the reset signal detection circuit 303.
  • FIG. 10 (b) shows operation waveforms of the receiving circuit according to the first embodiment.
  • the output signal signal Data is the only signal sent to the preamplifier circuit 200B and the postamplifier circuit 300B, and the reset for the offset compensation circuit 302 of the postamplifier circuit 300B is performed.
  • the only signal was the external reset signal RST2 (see Fig. 10 (a)).
  • the internal reset signal RST1 is added to the leading idle signal portion in the packet of the output data signal Data.
  • the output data signal Data are superimposed with the opposite polarity to the output data signal Data, and transmitted from the preamplifier circuit 200 to the postamplifier circuit 300.
  • the offset compensation circuit 302 is reset again.
  • the level detection operation is initialized when the level detection circuit 203 receives the external reset signal RST2.
  • the reset signal detection circuit 303 also outputs the reset signal RST3 to the offset compensation circuit 302 by receiving the external reset signal RST2.
  • a differential signal is generated by the core circuit including the differential amplifier 201A and the feedback resistors 202A and 202B, and reset by the differential type level detection circuit 203A.
  • the level detection for generating the signal RST1 is performed, and the generated reset signal RST1 is superimposed on the differential data signal and transmitted to the post-amplifier circuit 300.
  • the differential data signal is received, the reset signal RST3 is extracted by the differential reset signal detection circuit 303A, and the gain of the differential offset compensation circuit 302A changes. It is reset according to
  • FIG. 11 shows a receiving circuit according to Embodiment 2 of the present invention.
  • the input data signal is a differential signal
  • the preamplifier circuit 200 A and the postamplifier circuit 300 A are configured by a differential circuit
  • the output data signal between 200A and the post-amplifier circuit 300A is also a differential signal.
  • the internal reset signal RST1 added to the output data signal Data which is a differential signal is also a differential signal.
  • the receiving circuit according to the second embodiment includes a preamplifier circuit 200A.
  • a differential amplifier 201A feedback resistors 202A and 202B, a level detection circuit 203A, a reset signal generation circuit 204A, and a differential addition unit (buffer circuit) 205A.
  • the receiving circuit according to the second embodiment includes a differential amplifier 301A, an offset compensation circuit 302A, and a reset signal detection circuit 303A in the post-amplifier circuit 300A.
  • FIG. 12 shows a specific example of the preamplifier circuit 200 of the receiving circuit (receiving circuit shown in FIG. 9) according to Embodiment 3 of the present invention.
  • the level detection circuit 203 includes a hysteresis type comparator 2031 that is reset by an external reset signal RST2.
  • the reset signal generation circuit 204 includes a delay circuit 2041 and an AND circuit 2042.
  • the calorie calculation unit 205 is configured by a selector 2051.
  • the selector 2051 outputs the output voltage signal V of the amplifier 201 (the input data signal Datajn of the adding unit 205), or
  • V is set to the output data of the preamplifier circuit 200.
  • the data signal is configured to be selected as Data_out.
  • FIG. 13 shows an operation waveform of the receiving circuit according to the second modification.
  • the comparator 2031 has a level of the output voltage signal V of the amplifier 201 higher than a predetermined value. When the output voltage signal V of the comparator 2031 is set to a high level
  • the output voltage signal V of the comparator 2031 passes through the delay circuit 2041 and the AND circuit 2
  • the AND circuit 2042 is configured to generate an internal reset signal RST1 having a pulse width corresponding to the delay time in the delay circuit 2041.
  • the selector 2051 selects and outputs the input data signal Datajn of the adder 205.
  • the input data of the adder 205 Select and output voltage signal V with the opposite polarity to signal Data in.
  • Reset signal RST1 is generated, and the output data signal Data_out is a voltage signal V having the opposite polarity to the input data signal Datajn only during the period when the internal reset signal RST1 is output.
  • refl is output (that is, the internal reset signal RST1 is added to the input data signal of the adder 205).
  • the specific differential output waveform to which the internal reset signal RST1 has been added is the output of the reset signal RST1 as shown in the data signal (forward) DataP and data signal (inverted) DataN in FIG. During this period, the signal signal is output at a level opposite to the signal polarity.
  • the preamplifier circuit 200 of the receiving circuit according to the fourth embodiment is configured so that the gain can be switched in a plurality of stages.
  • the preamplifier circuit 200 shown in FIG. 14 is configured so that the gain can be switched in three stages, large, medium, and small, and the preamplifier circuit 200 shown in FIG. It is configured to be replaced.
  • the level detection circuit 203 includes two hysteresis type comparators 2031
  • the reset signal generation circuit 204 includes two delay circuits 20411.
  • the level detection circuit 203 includes n hysteresis type comparators 2031 l to 2031 n
  • the reset signal generation circuit 204 includes n delay circuits 20411 to 2041 n and n number of delay circuits 20411 to 2041 n.
  • the AND circuit is composed of 20421 to 2042n and one OR circuit 2043.
  • the comparators operate sequentially (and the detected comparator maintains the detection status unless reset by the external reset signal RST2), but each time the internal reset signal RST1 is generated by the AND circuit, the internal reset The signal RST1 is output to the adder 205 via the OR circuit 2043.
  • the internal reset signal RST1 is output to the adding unit 205 and added to the input data signal Dataj n of the adding unit 205 every time the gain is switched.
  • FIG. 16 shows a specific example of the post-amplifier circuit 300 of the receiving circuit (receiving circuit shown in FIG. 9) according to Embodiment 5 of the present invention.
  • the reset signal detection circuit 303 uses the ref2 to which the comparison value (threshold value) V is set.
  • It comprises a comparator 3031 and an OR circuit 3032 to which the output signal of the comparator 3031 and the external reset signal RST2 are input.
  • comparison value Vref 2 is set to a value lower than potential V of “0” sign of input data signal Datajn of post-amplifier circuit 300.
  • FIG. 17 shows operation waveforms of the receiving circuit according to the fifth embodiment of the present invention.
  • the post-amplifier circuit 300 receives the input data signal D atajn added with the internal reset signal RST1.
  • the comparator 3031 compares the input data signal Data in with the reference value (threshold value) V, and the reference ref2
  • the internal reset signal RST1 added to the input data signal Data jn has a polarity opposite to that of the input data signal Datajn, so that the reference value V is set as described above.
  • the internal reset signal RSTl can be detected by setting.
  • the internal reset signal RST1 or the external reset signal RST2 detected in this way is input from the OR circuit 3032 to the offset compensation circuit 302 as the reset signal RST3.
  • FIG. 18 shows a specific example of the post-amplifier circuit 300 of the receiving circuit (receiving circuit shown in FIG. 9) according to Embodiment 6 of the present invention.
  • the reset signal detection circuit 303A sets the offset V to the off-off state.
  • Amplifier 3033 and an OR circuit 3032 are both Amplifier 3033 and an OR circuit 3032.
  • FIG. 19 shows operating waveforms of the receiving circuit according to Embodiment 6 of the present invention.
  • the post-amplifier circuit 300 receives a normal data signal DataPjn and an inverted data signal DataNjn added with the internal reset signal RST1.
  • the internal reset signal RST1 or the external reset signal RST2 detected in this way is input from the OR circuit 3032 to the offset compensation circuit 302 as the reset signal RST3.
  • a receiving circuit of a digital transmission system can achieve high sensitivity, a wide dynamic range, and a high-speed response corresponding to a burst data signal.
  • high-sensitivity characteristics can be obtained without using an expensive APD (avalanche photodiode), thereby enabling low-cost transmission equipment.
  • APD active photodiode
  • it is effective in optical access systems because it can handle burst data signals.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Optical Communication System (AREA)
  • Electronic Switches (AREA)

Abstract

 本発明に係る受信方法は、プリアンプ回路200において、入力された電流信号を電圧信号に変換する際の利得を切り替えて出力電圧信号のレベルを調整し、ポストアンプ回路300のオフセット補償回路302において、該出力電圧信号をオフセット補償する。プリアンプ回路200において、出力電圧信号に対して、生成したリセット信号を出力電圧信号と逆極性で加算する。ポストアンプ回路300において、出力電圧信号に加算されたリセット信号を検出し、検出したリセット信号を用いてオフセット補償回路302をリセットする。

Description

明 細 書
受信方法及び受信回路
技術分野
[0001] 本発明は、光通信方式におけるディジタル信号伝送を行う光受信技術に関する。
詳しくは、本発明は、受光素子により光信号を電気信号 (電流信号)に変換した後、 当該電流信号を電圧信号に変換して波形整形及び増幅する技術に関する。
[0002] 特に、本発明は、バーストデータ信号に高速に応答し、微小信号から大信号まで受 信でき、高感度で広ダイナミックレンジな受信技術に関する。具体的には、本発明は 、光加入者伝送システムにおいて局用光終端装置 (OLT)の構成回路である受信回 路として適用される。
背景技術
[0003] 光加入者伝送システムにお ヽて、特に、加入者ごとのデータ信号のパケットを時間 多重する PON (Passive Optical Network)方式において、加入者ごとに伝送距離が 異なるため、局用終端装置において、受信レベルの異なる光信号を受信する必要が ある。
[0004] 受信回路においては、この受信レベル差を補償して後段の識別器が識別再生可 能な一定レベルの信号を生成する必要がある。
[0005] 従来、それぞれの受信レベル差を補償する手段として、受信信号のレベルを検出 して増幅器の利得を制御する方法と、受信信号のレベルを検出して振幅中心の差、 すなわち、オフセットを補償する方法とが知られている。
[0006] 特に、データ信号のパケット間隔の短い PON方式においては、受信レベル差の高 速補償が要求されるため、応答速度の速い後者のオフセット補償方式が用いられて いる。すなわち、このオフセットをキャンセルして高い受信感度を実現するために、ォ フセット補償回路 (AOC)が従来用いられてきた。
[0007] 図 1に示すように、従来の受信回路の構成は、フォトダイオード (PD) 100と、ブリア ンプ回路 200Bと、ポストアンプ回路 300Bとを具備する。プリアンプ回路 200Bは、増 幅器 201と帰還抵抗 202とによって電流/電圧変換を行うトランスインピーダンスコア 回路として機能する。また、ポストアンプ回路 300Bは、増幅器 301とオフセット補償 回路 302とによって、データ信号のオフセットを補償するように構成されている。
[0008] 図 2に、この受信回路の基本動作の波形図を示す。
[0009] プリアンプ回路 200Bは、フォトダイオード 100によって光 Z電気変換された電流信 号 I
inを受信し、受信した電流信号 (入力電流信号) I
inを変換して増幅することによって 生成した出力電圧信号 V (出力データ信号 Data)を出力する。
outl
[0010] プリアンプ回路 200Bには、オフセット補償回路が設けられていないので、プリアン プ回路 200Bは、入力電流信号 Iにレベル差 (振幅差)がある場合であっても、かかる
in
レベルを保持したままで出力電圧信号 V を生成して出力する。
outl
[0011] 後段のポストアンプ回路 300Bは、出力電圧信号 V のレベルを検出してオフセッ
outl
トを補正し、歪みのない高品質な波形の出力電圧信号 V を出力する。
out2
[0012] 具体的には、ポストアンプ回路 300Bは、オフセット補償回路 302によって出力デー タ信号 Dataのパケットごとに振幅差を検出して" 0"レベル力 振幅中心までの差分で あるオフセット電圧 V を補正し、増幅回路 301によって増幅する。
aoc
[0013] 出力データ信号 Dataのパケットごとにレベル検出を行うために、当該パケットが受信 される直前のタイミングで、オフセット補償回路 302を初期化(リセット)するための外 部リセット信号 RST2が、オフセット補償回路 302に入力される。
[0014] し力しながら、上述の従来の受信回路では、プリアンプ回路 200Bの出力電圧信号 V のレベルが、パケット内で変動するようなことがあると、オフセット補償回路 302に outl
おいて、レベル検出誤差が生じ、オフセット補償の精度が悪くなり波形品質の劣化が 生じるという問題点があった。
[0015] 特に、プリアンプ回路 200Bにおける入力のダイナミックレンジを広くするために、図 3に示すように、帰還抵抗 202の値を切り替えることによって利得を切り替えるようにし た場合、プリアンプ回路 200Bの利得が高利得力も低利得に切り替わる時、レベルを 検出してから利得切り替えまでに回路遅延があると、出力電圧信号 V の波形にノッ
outl
チが生じる結果、レベル検出誤差を引き起こすという問題点があった。
[0016] 図 4に、プリアンプ回路 200Bの帰還抵抗 202の値を切り替えた (RF1, RF2, · · -R
Fn)場合の入出力特性を示す。入力電流信号 Iに対する出力振幅(出力電圧信号
in V )の比が、プリアンプ回路 200Bの利得 (変換利得)であるから、図 4における傾き outl
が大き 、ほど高利得で、図 4における傾きが緩やかなほど低利得であることを示して いる。
[0017] また、利得は、帰還抵抗 202の値に比例しており、高利得を得るためには高抵抗が 用いられ、低利得を得るためには低抵抗が用いられる。
[0018] 図 5に、帰還抵抗 202の値が切り替わる場合の動作波形例を示す。
[0019] プリアンプ回路 200B力 最大利得 (帰還抵抗 202の抵抗値が RF1)で入力電流信 号 I
inを待ち受けている場合、入力電流信号 I
inが十分大きいと低利得に切り替わる (帰 還抵抗 202の抵抗値ら RF1から RF2に切り替わる)。
[0020] この時、切り替え制御回路(図示せず)による回路遅延により、利得の切り替え遅延 が生じ、プリアンプ回路 200Bの出力電圧信号 V は、信号先頭部分に抵抗値 RF1
outl
に相当した利得で増幅された大きな振幅の出力が出てしまう。
[0021] オフセット補償回路 302は、この突出した信号先頭部分 (先頭ビット)のレベルを検 出レベルとして検出してしまうため、抵抗値 RF2に相当した出力電圧信号 V のレ
outl ベルを検出できない。この場合、オフセット補償回路 302が検出するオフセット補償 電圧信号 V が正常値カゝらずれてしまう。
aoc
[0022] なお、図 5に示すオフセット補償電圧信号 V の波形図には、オフセット補償電圧信
aoc
号 V の波形 (一点鎖線)に加えて、オフセット補償回路 302の入力信号であるブリア aoc
ンプ回路 200の出力電圧信号 V (実線)と、検出レベルの波形 (破線)とが記載さ
outl
れている。 従って、ポストアンプ回路 300Bの出力電圧信号 V では、先頭ビットの
out2
レベルに対応したオフセット補償がなされることになるため、抵抗値 RF2に相当する 部分のレベルでは、図 5に示すポストアンプ回路 300Bの出力電圧信号 V の波形
out2 図に示すような正常な波形出力 (破線)が得られず、歪み劣化した波形 (実線)となつ てしまうという問題点があった。
[0023] 特に、高速動作では、信号速度に対する回路遅延時間が大きくなるため、この影響 が相対的に大きくなるという問題点があった。
[0024] すなわち、従来、受信レベルの異なるデータ信号のパケットを受信するには、高速 にオフセットを補償する必要があり、さらに、高感度及び広ダイナミックレンジィ匕には、 プリアンプ回路 200Bの利得を切り替える必要がある力 動作速度の高速ィ匕に伴い 波形のレベル変動が生じてしま 、、ポストアンプ回路 300Bのオフセット補償回路 30 2におけるオフセット補償誤差を引き起こす結果、波形劣化が生じ伝送特性が劣化 するという問題点があった。
[0025] 上記のように、従来のバースト伝送に対応する受信回路では、入力信号のダイナミ ックレンジを広くしょうとした場合、プリアンプ回路の利得を切り替えることが行われる 力 高速動作に伴い切り替え制御回路の遅延時間によりレベル変動が生じ、後段の ポストアンプ回路のレベル検出誤差を引き起こしてしまい、オフセットを正確に補正で きないため、波形歪みが生じ感度劣化を生じせしめるという問題点があった。
発明の開示
[0026] そこで、本発明は、以上の点に鑑みてなされたもので、高感度及び広ダイナミックレ ンジで動作可能で、かつバースト伝送に対応することができる受信方法及び受信回 路を提供することを目的とする。
[0027] 本発明の第 1の特徴は、プリアンプ回路において、入力された電流信号を電圧信 号に変換する際に用いられる利得を切り替えて出力電圧信号のレベルを調整し、ポ ストアンプ回路のオフセット補償回路において、該出力電圧信号をオフセット補償す る受信方法であって、前記プリアンプ回路において、前記出力電圧信号のレベル変 化を検出して、リセット信号を生成し、前記プリアンプ回路において、前記出力電圧 信号に対して、生成した前記リセット信号を前記出力電圧信号と逆極性で加算し、前 記ポストアンプ回路において、前記出力電圧信号に加算された前記リセット信号を検 出し、検出した前記リセット信号を用いて前記オフセット補償回路をリセットするように したことを要旨とする。
[0028] 本発明の第 2の特徴は、入力された電流信号を電圧信号に変換するように構成さ れており、該変換の際に用いられる利得が可変である増幅器を有するプリアンプ回 路と、該プリアンプ回路の出力電圧信号を受信し、該出力電圧信号用のオフセット補 償信号を出力するように構成されて ヽるオフセット補償回路を有するポストアンプ回 路とを具備する受信回路であって、前記プリアンプ回路は、前記増幅器の出力電圧 信号のレベル変化を検出するように構成されているレベル検出回路と、該レベル検 出回路が前記レベル変化を検出すると、リセット信号を生成するように構成されてい るリセット信号生成回路と、前記増幅器の出力電圧信号に対して、該リセット信号生 成回路で生成されたリセット信号を該出力電圧信号の逆極性で加算する加算部とを 具備し、前記ポストアンプ回路は、前記プリアンプ回路の前記出力電圧信号を受信し 、受信した前記出力電圧信号に基づいて前記リセット信号を検出し、検出した前記リ セット信号を用いて前記オフセット補償回路をリセットするように構成されて 、るリセッ ト信号検出回路を具備することを要旨とする。
[0029] 本発明の第 2の特徴において、前記プリアンプ回路及び前記ポストアンプ回路は、 差動型の回路であり、前記プリアンプ回路から出力される差動の出力電圧信号にカロ 算される前記リセット信号は、差動信号であるように構成されて 、てもよ 、。
[0030] 本発明の第 2の特徴において、前記プリアンプ回路の前記レベル検出回路は、前 記増幅器の出力電圧信号のレベル変化を検出するように構成されているコンパレー タを具備し、前記プリアンプ回路の前記リセット信号生成回路は、前記コンパレータ の出力信号と前記コンパレータの出力信号を遅延回路で遅延させインバートした信 号とに基づいて、前記遅延回路の遅延時間に相当するパルス幅のリセット信号を生 成するように構成されて 、る AND回路を具備してもよ 、。
[0031] 本発明の第 2の特徴において、前記レベル検出回路の前記コンパレータは、同一 又は異なる比較基準値を有する複数のコンパレータであり、前記リセット信号生成回 路は、前記複数のコンパレータの数に対応する前記遅延回路と前記 AND回路との 組と、該組における各 AND回路の出力を受信して前記リセット信号を出力するように 構成されて ヽる OR回路と具備してもよ 、。
[0032] 本発明の第 2の特徴において、前記プリアンプ回路の前記加算部は、前記増幅器 の出力電圧信号、又は、該出力電圧信号と逆極性の信号が出力されるように設定さ れた電位の一方を選択するように構成されて ヽるセレクタを具備し、前記セレクタは、 前記リセット信号生成回路の前記リセット信号を出力することにより、前記設定された 電位を選択して出力するように構成されて 、てもよ 、。
[0033] 本発明の第 2の特徴において、前記ポストアンプ回路の前記リセット信号検出回路 は、前記プリアンプ回路の出力電圧信号を、該出力電圧信号の「0」符号の電位より 低い閾値と比較するように構成されて 、るコンパレータを具備してもよ 、。
[0034] 本発明の第 2の特徴において、前記ポストアンプ回路の前記リセット信号検出回路 は、オフセットが設定されたオペアンプを具備しており、該オペアンプの一方の入力 端子に入力された正論理のデータ信号と他方の入力端子に入力された負論理のデ ータ信号とを比較することにより、前記プリアンプ回路の前記出力データ信号に加算 されて 、る前記リセット信号を検出するように構成されて 、てもよ 、。
図面の簡単な説明
[0035] [図 1]図 1は、従来の受信回路の回路図である。
[図 2]図 2は、従来の受信回路の動作波形図である。
[図 3]図 3は、従来の他の受信回路の回路図である。
[図 4]図 4は、従来のプリアンプ回路において利得を可変とした場合の入出力特性を 説明するための図である。
[図 5]図 5は、従来の他の受信回路の動作波形図である。
[図 6]図 6は、本発明に係る受信回路の原理及び構成を示す回路図である。
[図 7]図 7は、本発明に係る受信回路の動作波形図である。
[図 8]図 8は、本発明に係る受信回路の効果を説明するための図である。
[図 9]図 9は、本発明の実施例 1に係る受信回路の回路図である。
[図 10]図 10 (a)は、従来の受信回路の動作波形図であり、図 10 (b)は、本発明の実 施例 1に係る受信回路の動作波形図である。
[図 11]図 11は、本発明の実施例 2に係る受信回路の回路図である。
[図 12]図 12は、本発明の実施例 3に係る受信回路のプリアンプ回路の回路図である
[図 13]図 13は、本発明の実施例 3に係る受信回路のプリアンプ回路の動作波形図で ある。
[図 14]図 14は、本発明の実施例 4に係る受信回路のプリアンプ回路の回路図である [図 15]図 15は、本発明の実施例 4に係る受信回路のプリアンプ回路の回路図である [図 16]図 16は、本発明の実施例 5に係る受信回路のポストアンプ回路の回路図であ る。
[図 17]図 17は、本発明の実施例 5に係る受信回路のポストアンプ回路の動作波形図 である。
[図 18]図 18は、本発明の実施例 6に係る受信回路のポストアンプ回路の回路図であ る。
[図 19]図 19は、本発明の実施例 6に係る受信回路のポストアンプ回路の動作波形図 である。
発明を実施するための最良の形態
[0036] 図 6に、本発明に係る受信回路の原理構成の回路図を示す。本発明に係る受信回 路は、利得切り替え機能を備えたプリアンプ回路 200と、オフセット補償機能を備え たポストアンプ回路 300とを具備して 、る。
[0037] プリアンプ回路 200は、増幅器 201と帰還抵抗 202とによって、電流信号を電圧信 号に変換するトランスインピーダンスアンプコア回路を構成する。
[0038] また、プリアンプ回路 200は、増幅器 201の出力電圧信号 V (出力データ信号 Da core
ta)のレベル変化を検出するように構成されているレベル検出回路 203と、当該レべ ル検出回路 203がレベル変化を検出するごとに内部リセット信号 (利得切り替え通知 信号) RST1を生成するように構成されているリセット信号生成回路 204とを具備して いる。
[0039] 内部リセット信号 RST1は、加算部 (バッファ回路) 205において、プリアンプ回路 2 00の出力電圧信号 V に対して、当該出力電圧信号 V と反対の極性で加算され core core
、ポストアンプ回路 300に送られる。
[0040] なお、利得切り替えは、帰還抵抗 202の抵抗値を切り替えることにより行われ、当該 抵抗値を切り替えるための制御信号としてレベル検出回路 203の出力を用いること ができる。
[0041] ポストアンプ回路 300は、増幅器 301及びオフセット補償回路 302に加えて、内部 リセット信号 RST1を検出するように構成されているリセット信号検出回路 303を備え ている。リセット信号検出回路 303によって検出されたリセット信号 RST3によって、ォ フセット補償回路 302をリセットすることができる。 なお、オフセット補償回路 302は、 外部リセット信号 RST2によってもリセットされ得る。
[0042] 本構成によれば、プリアンプ回路 200で利得の切り替えが行われ、増幅器 201の出 力電圧信号 V のレベルが変化するごとに、ポストアンプ回路 300のオフセット補償
core
回路 302をリセットすることができるので、利得切り替えによる出力データ信号の波形 劣化を改善することができる。
[0043] 図 7に、図 6に示す本発明に係る受信回路の動作波形を示す。図 7には、プリアン プ回路 200の入力電流信号 Iの動作波形と、増幅器 201の出力電圧信号 V の動
in core 作波形と、プリアンプ回路 200の出力電圧信号 V の動作波形と、外部リセット信号
outl
RST2の動作波形と、内部リセット信号 RST3の動作波形と、オフセット補償電圧信 号 V の動作波形と、ポストアンプ回路 300の出力電圧信号 V の動作波形とを示 aoc out 2
す。
[0044] 図 7に示すように、入力電流信号 Iには、受信回路のセットリングのためのアイドル
in
信号が、情報伝送のためのデータフレームの前に付けられており、このアイドル信号 時間内で受信回路は安定ィ匕しなければならな 、。
[0045] また、このアイドル信号時間が短いほど伝送効率は向上するので、高速に応答する 受信回路が要求される。
[0046] プリアンプ回路 200は、初期状態では最大利得 (帰還抵抗 202の抵抗値が RF1) で入力電流信号 I
in (入力データ信号)を待ち受けるように設定されており、小さなレべ ルの入力電流信号 I
in (入力データ信号)に対してはそのままの利得で動作するが、入 力電流信号 I ベルが
in (入力データ信号)のレ 大きくなつた場合は、低利得 (帰還抵抗
202の抵抗値が RF2)に切り替わる。なお、抵抗値は、 RF2く RF1である。
[0047] このとき、増幅器 201の出力電圧信号 V に見られるように、利得切り替えに動作
core
遅延があると、入力データ信号の先頭で高利得に対応した振幅の大きな出力データ 信号を出力してしまうが、レベル検出回路 203が、このレベル変化を検出し、リセット 信号生成回路 204が、内部リセット信号 RST1を生成して入力データ信号に加算す ること〖こよって、出力電圧信号 V の波形は、図 7に示す波形となる。
outl
[0048] このとき、内部リセット信号 RST1は、入力データ信号と同じ極性で加算されると入 力データ信号との区別がつかなくなるため、入力データ信号とは逆極性の信号として 加算される。
[0049] また、後段のポストアンプ回路 300のリセット信号検出回路 303において、入力デ ータ信号に加算された内部リセット信号 RST1を取り出して、オフセット補償回路 302 のリセット用のリセット信号 RST3とする。
[0050] プリアンプ回路 200の利得切り替えに遅延時間があると、図 7のプリアンプ回路 200 の出力電圧信号 V の波形図に示すように、レベル変動が生じる。し力しながら、図 outl
7のオフセット補償電圧信号 V の波形図に示すように、プリアンプ回路 200の出力 aoc
電圧信号 V (実線)の先頭パルスのレベルが大きくても、その後にリセット信号 RST outl
3によりオフセット補償電圧信号 V (破線)力 0"レベルにリセットされる。
aoc
[0051] すなわち、リセット信号 RST3は、プリアンプ回路 200の利得切り替えごとに検出さ れ、プリアンプ回路 200の利得切り替えの遅延時間によってレベル変動が生じても、 その度ごとにオフセット補償回路 302のリセットが行われる。
[0052] 一方、ポストアンプ回路 300の出力電圧信号 V は、図 7のポストアンプ回路 300 out2
の出力電圧信号 V の波形図に示すように、リセット信号 RST3前では、オフセット補 out2
償電圧信号 V が適正でないため、ポストアンプ回路 300の出力電圧信号 V に波 aoc out2 形歪みが生じるが、リセット信号 RST3以後は、適正な波形のポストアンプ回路 300 の出力電圧信号 V が出力される。
out2
[0053] 従って、本発明に係る受信回路によれば、利得切り替えにより、プリアンプ回路 200 の出力電圧信号 V のレベルが変化しても、後段のポストアンプ回路 300における outl
オフセット補償回路 302のオフセット補償電圧信号 V を利得切り替えごとに初期化( aoc
しセット)することが可能なため、広ダイナミックレンジかつ高速応答が可能となる。
[0054] 図 8に、本発明の効果の概要を示す。図 1及び図 3で説明した従来技術では、入力 ダイナミックレンジが広い場合は、バーストデータ信号に高速応答できず、バーストデ ータ信号に高速応答する場合は、入力ダイナミックレンジを広くとれなカゝつたが、本発 明によれば、バースト伝送に対応した高感度で広ダイナミックレンジな受信回路を提 供することができる。
[0055] [実施例 1] 図 9に、本発明の実施例 1に係る受信回路を示す。図 9において、図 6で説明したも のと同じものには同じ符号を付けた。本実施例 1に係る受信回路は、外部リセット信 号 RST2を、レベル検出回路 203とリセット信号検出回路 303とに入力するように構 成されている。
[0056] 図 10 (b)に、本実施例 1に係る受信回路の動作波形を示す。図 1及び図 3で説明し た従来の受信回路では、プリアンプ回路 200B力 ポストアンプ回路 300Bへ送られ る信号は、出力データ信号 Dataのみであり、ポストアンプ回路 300Bのオフセット補償 回路 302用のリセット信号は、外部リセット信号 RST2のみであった(図 10 (a)参照)。
[0057] 一方、本実施例 1の受信回路では、利得切り替えがあった場合、図 10 (b)に示すよ うに、出力データ信号 Dataのパケットにおける先頭のアイドル信号部分に、内部リセッ ト信号 RST1が、出力データ信号 Dataと反対の極性で重ね合わされて、プリアンプ回 路 200からポストアンプ回路 300へ送信される。
[0058] これ〖こより、トランスインピーダンスアンプコア回路の利得切り替えにより、プリアンプ 回路 200の出力電圧信号の振幅レベルが変動しても、オフセット補償回路 302に再 度リセットが掛けられる。
[0059] また、本実施例 1の受信回路では、レベル検出回路 203において、外部リセット信 号 RST2を受信することにより、レベル検出動作が初期化される。また、リセット信号 検出回路 303は、外部リセット信号 RST2を受信することによつても、オフセット補償 回路 302にリセット信号 RST3を出力する。
[0060] 実施例 2に係る受信回路では、プリアンプ回路 200において、差動増幅器 201Aと 帰還抵抗 202A、 202Bとからなるコア回路によって差動信号が生成され、差動型の レベル検出回路 203Aによってリセット信号 RST1を生成するレベル検出が行われ、 生成されたリセット信号 RST1は差動データ信号に重ね合わされてポストアンプ回路 300に送信される。
[0061] 一方、ポストアンプ回路 300においては、差動データ信号が受信され、差動型のリ セット信号検出回路 303Aによってリセット信号 RST3が抽出され、差動型のオフセッ ト補償回路 302Aが利得変化に応じてリセットされる。
[0062] [実施例 2] 図 11に、本発明の実施例 2に係る受信回路を示す。本実施例 2に係る受信回路に おいて、入力データ信号は、差動信号であり、これに合わせて、プリアンプ回路 200 A及びポストアンプ回路 300Aは、差動回路によって構成されており、プリアンプ回路 200Aとポストアンプ回路 300Aとの間の出力データ信号も差動信号である。さらに、 差動信号である出力データ信号 Dataに加算する内部リセット信号 RST1も差動信号 である。
[0063] このように、本実施例 2に係る受信回路を構成することによって、高速でも雑音の影 響を受けに《安定した信号伝送が可能である。
[0064] 図 11に示すように、本実施例 2に係る受信回路は、プリアンプ回路 200Aにおいて
、差動増幅器 201Aと、帰還抵抗 202A、 202Bと、レベル検出回路 203Aと、リセット 信号生成回路 204Aと、差動型の加算部 (バッファ回路) 205Aとを具備している。
[0065] また、本実施例 2に係る受信回路は、ポストアンプ回路 300Aにおいて、差動増幅 器 301Aと、オフセット補償回路 302Aと、リセット信号検出回路 303Aとを具備してい る。
[0066] [実施例 3]
図 12に、本発明の実施例 3に係る受信回路(図 9に示す受信回路)のプリアンプ回 路 200の具体例を示す。
[0067] 図 12に示すように、レベル検出回路 203は、外部リセット信号 RST2によりリセットさ れるヒステリシス型のコンパレータ 2031により構成されて!、る。
[0068] また、リセット信号生成回路 204は、遅延回路 2041と AND回路 2042とにより構成 されている。
[0069] さらに、カロ算部 205は、セレクタ 2051により構成されている。なお、セレクタ 2051は 、増幅器 201の出力電圧信号 V (加算部 205の入力データ信号 Datajn)、又は、
core
当該入力データ信号 Datajnと反対極性の電圧信号 (該出力電圧信号 V と逆極性
core
の信号が出力されるように設定された電位) V を、プリアンプ回路 200の出力デー
refl
タ信号 Data_outとして選択するように構成されて 、る。
[0070] 図 13に、本変更例 2に係る受信回路の動作波形を示す。
[0071] コンパレータ 2031は、増幅器 201の出力電圧信号 V のレベルが所定値より高い とき、コンパレータ 2031の出力電圧信号 V を高レベルにするように構成されている
cmp
。コンパレータ 2031の出力電圧信号 V は、遅延回路 2041を経由して AND回路 2
cmp
042に入力されると共に、直接、 AND回路 2042に入力される。
[0072] AND回路 2042は、遅延回路 2041における遅延時間に相当するパルス幅の内部 リセット信号 RST1を生成するように構成されて 、る。
[0073] セレクタ 2051は、内部リセット信号 RST1が低レベルのときは、加算部 205の入力 データ信号 Datajnを選択して出力する力 内部リセット信号 RST1が高レベルのとき は、加算部 205の入力データ信号 Data inと反対極性の電圧信号 V を選択して出
refl
力するように構成されている。
[0074] このようにして、増幅器 201の出力電圧信号 V のレベルが所定値を超えると、内
core
部リセット信号 RST1が生成され、出力データ信号 Data_outには内部リセット信号 RS T1が出力されている期間だけ、入力データ信号 Datajnと反対極性の電圧信号 V
refl が出力される(つまり、加算部 205の入力データ信号に対して内部リセット信号 RST1 が加算される)。
[0075] 内部リセット信号 RST1が加算された具体的な差動出力波形は、図 13のデータ信 号 (正転) DataP及びデータ信号 (反転) DataNに示すように、リセット信号 RST1が出 力されている期間、データ信号の信号極性のが反対のレベルを出力する。
[0076] [実施例 4]
図 14及び図 15に、本発明の実施例 4に係る受信回路のプリアンプ回路を示す。本 実施例 4に係る受信回路のプリアンプ回路 200は、複数段階で利得が切り替えられ るように構成されている。
[0077] 図 14に示すプリアンプ回路 200は、大、中、小のように 3段階に利得が切り替えら れるように構成されており、図 15に示すプリアンプ回路 200は、 n段階に利得が切り 替えられるように構成されて 、る。
[0078] 図 14において、レベル検出回路 203は、 2個のヒステリシス型のコンパレータ 2031
1, 20312で構成されており、リセット信号生成回路 204は、 2個の遅延回路 20411
, 20412と、 2個の AND回路 20421, 20422と、 1個の OR回路 2043とで構成され ている。 [0079] 図 15において、レベル検出回路 203は、 n個のヒステリシス型のコンパレータ 2031 l〜2031nで構成されており、リセット信号生成回路 204は、 n個の遅延回路 20411 〜2041nと、 n個の AND回路 20421〜2042nと、 1個の OR回路 2043とで構成さ れている。
[0080] 帰還抵抗 202の抵抗値が、複数回に亘つて異なる値に切り替えられるとき、増幅器 201の出力電圧信号 V の振幅が、力かる切り替えに応じて順次変化すると、異なる core
コンパレータが、順次動作する(ー且検出動作したコンパレータは、外部リセット信号 RST2によりリセットされない限り、検出状態を保持する)が、その度に AND回路で内 部リセット信号 RST1が生成され、当該内部リセット信号 RST1は OR回路 2043を経 由して加算部 205に出力される。
[0081] このように、利得が 3種類以上に切り替えられるときも、その切り替えごとに、内部リ セット信号 RST1が、加算部 205に出力されて、加算部 205の入力データ信号 Dataj nに加算される。
[0082] [実施例 5]
図 16に、本発明の実施例 5に係る受信回路(図 9に示す受信回路)のポストアンプ 回路 300の具体例を示す。
[0083] 図 16に示すように、リセット信号検出回路 303は、比較値(閾値) V が設定された ref2
コンパレータ 3031と、当該コンパレータ 3031の出力信号と外部リセット信号 RST2と が入力される OR回路 3032とによって構成されて!、る。
[0084] ここで、比較値 Vref2は、ポストアンプ回路 300の入力データ信号 Datajnの「0」符 号の電位 Vよりも低い値に設定されている。
0
[0085] 図 17に、本発明の実施例 5に係る受信回路の動作波形を示す。
[0086] ポストアンプ回路 300には、内部リセット信号 RST1が加算された入力データ信号 D atajnが入力される。
[0087] コンパレータ 3031は、入力データ信号 Data inと基準値(閾値) V とを比較し、基 ref2
準値 Vref2よりも入力データ信号 Datajnが低 、とき、リセット信号 RST3を出力する。
[0088] 入力データ信号 Data jnに加算された内部リセット信号 RST1は、前記したように、 入力データ信号 Datajnの極性と反対の極性であるので、基準値 V を上記のように 設定することにより、内部リセット信号 RSTlを検出することができる。
[0089] このように検出された内部リセット信号 RST1又は外部リセット信号 RST2が、 OR回 路 3032からリセット信号 RST3としてオフセット補償回路 302に入力される。
[0090] [実施例 6]
図 18に、本発明の実施例 6に係る受信回路(図 9に示す受信回路)のポストアンプ 回路 300の具体例を示す。
[0091] 図 18に示すように、リセット信号検出回路 303Aは、オフセット V を設定したォペア off
ンプ 3033と OR回路 3032とによって構成されている。
[0092] 図 19に、本発明の実施例 6に係る受信回路の動作波形を示す。
[0093] ポストアンプ回路 300には、内部リセット信号 RST1が加算された正転データ信号 D ataPjnと反転データ信号 DataNjnとが入力される。
[0094] この両データ信号を、 DataP in力 ¾ataN inに対して正となるオフセット V を設定した off オペアンプ 3033に入力すると、オペアンプ 3033において、データ信号 DataPjn, D ataNjnの極性と反対の極性で加算されている内部リセット信号 RSTlのみが検出さ れる。
[0095] このように検出された内部リセット信号 RST1又は外部リセット信号 RST2が、 OR回 路 3032からリセット信号 RST3としてオフセット補償回路 302に入力される。
産業上の利用の可能性
[0096] 以上説明したように、本発明によれば、ディジタル伝送システムの受信回路にお!/ヽ て、高感度及び広ダイナミックレンジかつバーストデータ信号に対応した高速応答が 可能となる。これにより、高価な APD (アバランシェフオトダイオード)を用いずに高感 度な特性が得られるため伝送装置の低コストィ匕が可能となる。特に、バーストデータ 信号に対応することができるため、光アクセスシステムにおいて有効である。

Claims

請求の範囲
[1] プリアンプ回路において、入力された電流信号を電圧信号に変換する際に用いら れる利得を切り替えて出力電圧信号のレベルを調整し、ポストアンプ回路のオフセッ ト補償回路において、該出力電圧信号をオフセット補償する受信方法であって、 前記プリアンプ回路において、前記出力電圧信号のレベル変化を検出して、リセッ ト信号を生成し、
前記プリアンプ回路において、前記出力電圧信号に対して、生成した前記リセット 信号を前記出力電圧信号と逆極性で加算し、
前記ポストアンプ回路において、前記出力電圧信号に加算された前記リセット信号 を検出し、検出した前記リセット信号を用いて前記オフセット補償回路をリセットするよ うにしたことを特徴とする受信方法。
[2] 入力された電流信号を電圧信号に変換するように構成されており、該変換の際に 用いられる利得が可変である増幅器を有するプリアンプ回路と、
該プリアンプ回路の出力電圧信号を受信し、該出力電圧信号用のオフセット補償 電圧信号を出力するように構成されて ヽるオフセット補償回路を有するポストアンプ 回路とを具備する受信回路であって、
前記プリアンプ回路は、
前記増幅器の出力電圧信号のレベル変化を検出するように構成されているレベル 検出回路と、
該レベル検出回路が前記レベル変化を検出すると、リセット信号を生成するように 構成されて!、るリセット信号生成回路と、
前記増幅器の出力電圧信号に対して、該リセット信号生成回路で生成されたリセッ ト信号を該出力電圧信号の逆極性で加算する加算部とを具備し、
前記ポストアンプ回路は、前記プリアンプ回路の出力電圧信号を受信し、受信した 前記出力電圧信号に基づいて前記リセット信号を検出し、検出した前記リセット信号 を用いて前記オフセット補償回路をリセットするように構成されて ヽるリセット信号検出 回路を具備することを特徴とする受信回路。
[3] 前記プリアンプ回路及び前記ポストアンプ回路は、差動型の回路であり、 前記プリアンプ回路から出力される差動の出力電圧信号に加算される前記リセット 信号は、差動信号であることを特徴とする請求項 2に記載の受信回路。
[4] 前記プリアンプ回路の前記レベル検出回路は、前記増幅器の出力電圧信号のレ ベル変化を検出するように構成されて 、るコンパレータを具備し、
前記プリアンプ回路の前記リセット信号生成回路は、前記コンパレータの出力信号 と前記コンパレータの出力信号を遅延回路で遅延させインバートした信号とに基づい て、前記遅延回路の遅延時間に相当するパルス幅のリセット信号を生成するように構 成されている AND回路を具備することを特徴とする請求項 2又は 3に記載の受信回 路。
[5] 前記レベル検出回路の前記コンパレータは、同一又は異なる比較基準値を有する 複数のコンパレータであり、
前記リセット信号生成回路は、前記複数のコンパレータの数に対応する前記遅延 回路と前記 AND回路との組と、該組における各 AND回路の出力を受信して前記リ セット信号を出力するように構成されて 、る OR回路と具備することを特徴とする請求 項 4に記載の受信回路。
[6] 前記プリアンプ回路の前記加算部は、前記増幅器の出力電圧信号、又は、該出力 電圧信号と逆極性の信号が出力されるように設定された電位の一方を選択するよう に構成されて 、るセレクタを具備し、
前記セレクタは、前記リセット信号生成回路の前記リセット信号を出力することにより
、前記設定された電位を選択して出力するように構成されていることを特徴とする請 求項 2乃至 5の 、ずれか一項に記載の受信回路。
[7] 前記ポストアンプ回路の前記リセット信号検出回路は、前記プリアンプ回路の出力 電圧信号を、該出力電圧信号の「0」符号の電位より低い閾値と比較するように構成 されているコンパレータを具備することを特徴とする請求項 2に記載の受信回路。
[8] 前記ポストアンプ回路の前記リセット信号検出回路は、オフセットが設定されたオペ アンプを具備しており、該オペアンプの一方の入力端子に入力された正論理のデー タ信号と他方の入力端子に入力された負論理のデータ信号とを比較することにより、 前記プリアンプ回路の前記出力データ信号に加算されている前記リセット信号を検 出するように構成されて 、ることを特徴とする受信回路。
PCT/JP2005/014088 2004-08-03 2005-08-02 受信方法及び受信回路 WO2006013841A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/659,413 US8144813B2 (en) 2004-08-03 2005-08-02 Receiving method and receiving circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004226858A JP4088679B2 (ja) 2004-08-03 2004-08-03 受信方法および受信回路
JP2004-226858 2004-08-03

Publications (1)

Publication Number Publication Date
WO2006013841A1 true WO2006013841A1 (ja) 2006-02-09

Family

ID=35787125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014088 WO2006013841A1 (ja) 2004-08-03 2005-08-02 受信方法及び受信回路

Country Status (4)

Country Link
US (1) US8144813B2 (ja)
JP (1) JP4088679B2 (ja)
CN (1) CN100463362C (ja)
WO (1) WO2006013841A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10343284B2 (en) 2015-08-26 2019-07-09 Berkshire Grey, Inc. Systems and methods for providing contact detection in an articulated arm

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044228A (ja) * 2007-08-06 2009-02-26 Ntt Electornics Corp 光受信回路
JP4927664B2 (ja) * 2007-08-14 2012-05-09 日本電信電話株式会社 前置増幅回路
JP5339088B2 (ja) * 2007-11-30 2013-11-13 日本電気株式会社 光受信回路および信号処理方法
KR100972033B1 (ko) * 2008-08-13 2010-07-23 한국전자통신연구원 전치 증폭기와 후치 증폭기가 단일로 집적된 기가비트 수동형 광 네트워크용 버스트 모드 수신기
CN102944714B (zh) * 2012-11-07 2015-07-08 四川和芯微电子股份有限公司 差分信号检测装置
JP6253347B2 (ja) * 2013-10-29 2017-12-27 三菱電機株式会社 信号検出回路、光受信器、親局装置及び信号検出方法
JP6537757B2 (ja) * 2017-03-13 2019-07-03 三菱電機株式会社 信号伝送装置
US11677371B2 (en) * 2020-08-06 2023-06-13 Semiconductor Components Industries, Llc Offset compensation circuitry for an amplification circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11112439A (ja) * 1997-10-07 1999-04-23 Fujitsu Ltd 光バースト受信装置および方法
JP2000252774A (ja) * 1999-02-26 2000-09-14 Nec Corp Agc付きバーストモード光受信回路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2656734B2 (ja) 1994-09-12 1997-09-24 宮城日本電気株式会社 光受信回路
DE69721610T2 (de) * 1996-02-23 2004-03-25 Matsushita Electric Industrial Co., Ltd., Kadoma Burstsignal-Verstärker und optische Empfangsschaltungsanordnung
JPH1084231A (ja) * 1996-05-24 1998-03-31 Toshiba Corp デジタル信号受信回路
JP3514993B2 (ja) * 1998-12-10 2004-04-05 日本オプネクスト株式会社 光受信回路及び当該回路を用いた光モジュール
JP2002164855A (ja) * 2000-11-29 2002-06-07 Oki Electric Ind Co Ltd 光受信回路
JP4169985B2 (ja) * 2002-02-19 2008-10-22 三菱電機株式会社 前置増幅器の利得切り替え回路
JP3539952B2 (ja) * 2002-06-13 2004-07-07 沖電気工業株式会社 レベル識別回路
JP3466181B1 (ja) * 2002-06-24 2003-11-10 沖電気工業株式会社 オフセット電圧キャンセル回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11112439A (ja) * 1997-10-07 1999-04-23 Fujitsu Ltd 光バースト受信装置および方法
JP2000252774A (ja) * 1999-02-26 2000-09-14 Nec Corp Agc付きバーストモード光受信回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMASHITA S. ET AL: "Novel cell-AC technique for burst-mode CMOS pre-amplifier with wide dynamic range and high sensitivity for ATM-PON system", IEEE J. SOLID-STATE CIRCUITS, vol. 37, no. 7, July 2002 (2002-07-01), pages 881 - 886, XP001221311 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10343284B2 (en) 2015-08-26 2019-07-09 Berkshire Grey, Inc. Systems and methods for providing contact detection in an articulated arm

Also Published As

Publication number Publication date
US8144813B2 (en) 2012-03-27
JP4088679B2 (ja) 2008-05-21
CN100463362C (zh) 2009-02-18
US20070292139A1 (en) 2007-12-20
JP2006050146A (ja) 2006-02-16
CN101002381A (zh) 2007-07-18

Similar Documents

Publication Publication Date Title
WO2006013841A1 (ja) 受信方法及び受信回路
JP6223584B2 (ja) 光受信器、光終端装置および光通信システム
US8165478B2 (en) Optical receiver
US7212041B2 (en) Weighted multi-input variable gain amplifier
JP4833124B2 (ja) トランスインピーダンスアンプ及びトランスインピーダンスアンプの制御方法
JP4261514B2 (ja) バースト先頭検出回路
JP5305932B2 (ja) 前置増幅器
JP2009049488A (ja) 前置増幅回路
JP4558829B2 (ja) 光受信器
JP2003318680A (ja) 差動出力型バーストモード光受信機
KR101519443B1 (ko) 광 수신기
JP2000174827A (ja) 光受信回路及び当該回路を用いた光モジュール
JP3259707B2 (ja) Agc付きバーストモード光受信回路
JP6661057B1 (ja) リミッティング増幅回路
JP2007036329A (ja) 増幅回路およびトランスインピーダンスアンプ
JP3816895B2 (ja) 信号レベル検出装置を備えるバーストモード光受信機
JP3606143B2 (ja) オフセット制御回路及びそれを用いた光受信器並びに光通信システム
JP4546348B2 (ja) トランスインピーダンスアンプ
JP2962218B2 (ja) ディジタル光受信回路
JP4597718B2 (ja) バースト光受信回路
JP3230574B2 (ja) 光受信回路
JP4592857B2 (ja) Atc機能付受信装置
JP2001211040A (ja) デジタル信号増幅回路及び光受信回路
JP2007081510A (ja) 光バースト信号受信装置及びバーストパケット検出方法
JPH114265A (ja) 増幅器、識別器、光受信器およびバースト光伝送システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580026306.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11659413

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11659413

Country of ref document: US