WO2006012840A1 - Laserdotierung von festkörpern mit einem linienfokussierten lasterstrahl und darauf basierende herstellung von solarzellen-emittern - Google Patents
Laserdotierung von festkörpern mit einem linienfokussierten lasterstrahl und darauf basierende herstellung von solarzellen-emittern Download PDFInfo
- Publication number
- WO2006012840A1 WO2006012840A1 PCT/DE2005/001280 DE2005001280W WO2006012840A1 WO 2006012840 A1 WO2006012840 A1 WO 2006012840A1 DE 2005001280 W DE2005001280 W DE 2005001280W WO 2006012840 A1 WO2006012840 A1 WO 2006012840A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid
- laser
- dopant
- medium
- region
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 91
- 239000007787 solid Substances 0.000 title claims abstract description 55
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 239000002019 doping agent Substances 0.000 claims description 46
- 239000004065 semiconductor Substances 0.000 claims description 33
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 30
- 229910052710 silicon Inorganic materials 0.000 claims description 30
- 239000010703 silicon Substances 0.000 claims description 30
- 238000004544 sputter deposition Methods 0.000 claims description 21
- 230000005855 radiation Effects 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 11
- 238000009792 diffusion process Methods 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 238000002161 passivation Methods 0.000 claims description 3
- 238000004528 spin coating Methods 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 2
- 238000007639 printing Methods 0.000 claims description 2
- 238000007650 screen-printing Methods 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 238000001179 sorption measurement Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 36
- 235000012431 wafers Nutrition 0.000 description 26
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 230000007547 defect Effects 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 208000031872 Body Remains Diseases 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/073—Shaping the laser spot
- B23K26/0738—Shaping the laser spot into a linear shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
- H01L21/2251—Diffusion into or out of group IV semiconductors
- H01L21/2254—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
- H01L21/2251—Diffusion into or out of group IV semiconductors
- H01L21/2254—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
- H01L21/2255—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
- H01L21/2251—Diffusion into or out of group IV semiconductors
- H01L21/2254—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
- H01L21/2255—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
- H01L21/2256—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides through the applied layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/268—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a method for the generation of a doped region in a solid according to the preamble of patent claim 1 and to an apparatus for carrying out the method.
- the invention further relates to a method based on the method according to the invention for producing an emitter region of a solar cell.
- the invention further relates to a method based on the inventive method for producing an ohmic contact between a semiconductor and a metal.
- the solar cell emitter is produced by a high-temperature step.
- the diffusion of the dopant generally phosphorus
- the time required for this is about 30 minutes.
- the conventional production of the solar cell emitter by diffusion in a diffusion furnace is thus energy and time consuming.
- the upper region of the semiconductor conductor is thereby melted, and during this period of melting, dopant atoms diffuse into the molten region of the semiconductor.
- the previously molten region of the semiconductor recrystallizes, with the dopant atoms being incorporated into the crystal lattice. In this way, it is possible in principle to produce near-surface doped regions of high dopant concentration in a solid. So far, however, it has not been possible to perform the laser doping of a semiconductor such as silicon in such a way that the silicon can recrystallise in a molten surface layer having a thickness of approximately 1 ⁇ m or less without defects.
- a medium containing a dopant is first brought into contact with a surface of the solid. Subsequently, by irradiation with laser pulses, a region of the solid is melted below the surface contacted with the medium, so that the dopant diffuses into the molten region and recrystallizes the melted region during cooling.
- the laser beam is focused in a line focus on the solid.
- the width of the line focus is preferably chosen smaller than 10 microns.
- the focus width can be in a range of 5 ⁇ m to 10 ⁇ m.
- the focus width may also be about 5 microns or less.
- the method according to the invention is a low-temperature method of doping solids, which produces doped regions of high crystallinity and freedom from defects.
- the method according to the invention thus makes it possible to carry out the previous processing of semiconductor wafers in chips
- the laser beam was formed into a 5 ⁇ m wide and several 100 ⁇ m long line.
- the length of the line focus is generally preferably in a range of 100 ⁇ m to 10 mm.
- the depth extent of the regions to be doped can be determined by a suitable choice of the wavelength of the laser. This is done by selecting such a wavelength that the absorption length or penetration depth of the laser radiation in the solid body corresponds to the desired depth extent of the region to be doped. For solar cell emitters, a depth of 1 ⁇ m or less is often chosen. Accordingly, when the solid state of the semiconductor is silicon, the wavelength of the laser radiation should be 600 nm or less.
- the pulse length should be chosen such that the heat diffusion length of the dopant atoms in the molten solid is of the order of magnitude of the desired depth extent. If the Solid body of the semiconductor is silicon and the desired depth is 1 micron, the pulse length should be below half of 100 ns, in particular below 50 ns.
- a region is to be doped whose lateral expansions are larger than the laser focus in at least one direction, so that the radiation beam must be scanned over the solid body.
- the solid is mounted on an X-Y linear displacement table and the laser beam remains stationary in space.
- the solid body remains stationary and the optical system of the laser beam is designed to scrape the laser beam over the solid.
- the medium containing the dopant can be applied to the interface in the form of a liquid or solid coating by means of a spin coating or screen printing or film printing process.
- the medium is gaseous and is in direct contact with the surface of the solid.
- the medium containing the dopant is applied to the solid in the form of a solid coating by a sputtering process, wherein the laser beam does not necessarily have to be formed into a line focus during subsequent melting , It may be provided that the medium is first applied to a starting substrate, then sputtered from the starting substrate in a first sputtering process step and deposited on an intermediate target, and finally in a second sputtering process step Sputtered intermediate target and deposited on the solid to be doped.
- the starting substrate such as the intermediate target can be given by silicon substrates such as silicon wafers.
- the medium can consist essentially or entirely of the dopant itself and can be applied in powder form, for example, on the starting substrate.
- the dopant elements phosphorus, arsenic, antimony, boron, aluminum, gallium, indium, tantalum or titanium which are usually provided, can therefore first be deposited in powder form on a silicon wafer and subsequently these elements can be transferred from the silicon wafer to the silicon wafer Sputtered between target.
- the layer finally deposited on the solid to be doped by the intermediate target can thus consist of more than 90% of the doping material, since during sputtering at most in the first sputtering process step small
- a solid to be doped is mentioned in this application, then a semiconductor to be doped itself may be meant hereby.
- the solid contains a main body, which is the actual semiconductor body to be doped, and an intermediate layer applied to a surface of the main body, wherein the medium is applied to the intermediate layer according to a further inventive method ,
- the laser beam it is not absolutely necessary for the laser beam to be formed into a line contour in the subsequent laser beam doping.
- Such an embodiment is given, for example, when an intermediate layer acting as an antireflection layer for the laser radiation is applied to the semiconductor body.
- the antireflection coating ensures that the complete light output of the laser Radiation exploited and used to melt the lying under the Zwi ⁇ rule layer surface area of the semiconductor body.
- the dopant may then diffuse into the semiconductor body during reflow through the intermediate layer.
- the intermediate layer it is also possible in this way to produce high dopant concentrations in the semiconductor body since, in particular, previously very high dopant concentrations on the intermediate layer can be generated beforehand in particular by the sputtering methods described above.
- the dopant also diffuses through the intermediate layer at high speed.
- the intermediate layer may alternatively or additionally be formed as a passivation layer for passivation of the surface of the semiconductor body.
- the intermediate layer may in particular contain silicon nitride, silicon dioxide or amorphous silicon or be composed of one of these materials.
- the intermediate layer can be produced by a sputtering method.
- dopant layer and intermediate layer can be produced in one and the same sputtering system.
- the method according to the invention can be used in particular for the production of an emitter region of a solar cell, wherein regions of a semiconductor surface which are used as solar cell emitters are doped by the method according to the invention.
- the inventive method can also be used for the production of an ohmic contact between a semiconductor and a metal, wherein in a semiconductor, a doped region according to the inventive method is generated and then applied to the doped region, a metallic layer.
- ohmic contacts with very low contact resistance can be generated on both p-type and n-type wafers.
- the methods described in this application also allow the production of point contacts or strip contacts.
- the invention also relates to a device for carrying out the method according to the invention, which has a pulsed laser beam source, a cylindrical lens for the generation of the line focus and an objective for the reduced imaging of the line focus on the surface of the solid.
- This device preferably has an autofocus device, which measures the distance of the solid-body surface to a reference point and regulates the distance between the objective and the solid-state surface in such a way that the focus length remains within the depth of focus on the solid surface. This ensures that, even with curved or rough surfaces, the focus position can be kept within the depth of focus on the wafer surface.
- Fig. 1 shows an embodiment of a device for
- Fig. 3 shows an embodiment for carrying out the method according to the invention with an additional antireflection layer on the semiconductor body.
- the pulse frequency is typically in a range between 10 kHz to 100 kHz.
- the optimal pulse energy density is in the range of 2 to 6 J / cm- 2 .
- the laser beam is then passed through a cylindrical lens, optionally after an expansion, to produce a line focus.
- the laser beam is imaged by a lens on the silicon wafer.
- the silicon wafer is supported on an XY linear translation stage with the XY plane perpendicular to the laser beam. Due to the displacement of the silicon wafer with respect to the incident radiation beam, a larger area can be scanned on the silicon wafer.
- a commercial phosphorus-containing doping liquid was applied to the silicon wafer by means of a spin coating method with the aid of a spin coater. The doping is carried out by one or more laser pulses, wherein the wafer surface is briefly melted to a depth of 1 .mu.m or less, and phosphorus atoms pass from the dosing liquid into the liquid silicon. After cooling and solidification of the melt, a highly doped n-type emitter region is completed.
- Boron-doped p + -type emitters have also already been processed on a Si-n-type wafer using the method according to the invention.
- the radiation beam is preferably guided continuously over the wafer surface at a predetermined speed. It is determined in advance how many laser pulses are necessary for each area of the surface in order to achieve a sufficient degree of doping.
- the raster or scan speed can then be determined from this number and the pulse frequency.
- the scan speed is in a range of 0.1 to 0.5 m / s. Alternatively, however, it may also be provided to move the displacement table in dis ⁇ continuous steps, which correspond substantially to the ⁇ width.
- the silicon wafer is stationarily charged with a predetermined number of laser pulses, and then, without exposure to laser pulses, the line focus is moved perpendicular to the alignment of the line to a next point.
- FIGS. 2a, b show a variant of the process according to the invention, in which the medium is applied in the form of a solid coating by a two-stage sputtering process to the solid to be doped.
- a dopant 2 for example pure phosphorus
- the powdered dopant 2 is sputtered in a first sputtering process step and thus applied to an intermediate target 3 likewise formed by a silicon wafer and deposited on this intermediate target 3 as dopant layer 4.
- a coherent dopant layer 4 which may have, for example, a dopant concentration of more than 90%.
- silicon may also be present in the dopant layer 4 which has additionally been removed by the silicon wafer 1 in the first sputtering process step.
- the dopant layer 4 is then sputtered and in this way deposited on the actual solid body 5 to be doped in the form of a second dopant layer 6.
- this dopant layer 6 has an even greater spatial homogeneity in its material composition, so that a very homogeneous dopant distribution in the solid body 5 can be achieved during the subsequent laser beam doping.
- the dopant layer 6 may have a thickness of a few nm, for example 1-10 nm.
- the laser beam is focused onto the solid body 5 with the applied dopant layer and, for a short time, melted in a surface area, whereby a line focus does not necessarily have to be used.
- the dopant of the dopant layer 6 then diffuses into the molten near-surface W
- FIG. 3 shows a further variant of the method according to the invention, in which an antireflection coating 11 is applied on a semiconductor body, such as a silicon wafer 10, above a region of the semiconductor body 10 to be doped.
- the antireflection layer 11 is designed in such a way that the laser radiation used later for the melting undergoes the lowest possible reflection coefficient so that its light output can be almost completely coupled into the semiconductor body 10.
- a medium 12 containing the dopant is then applied to the antireflection layer 11.
- the medium can, for example, itself consist of the dopant and be applied to the antireflection coating 11 by a sputtering process.
- doping elements such as phosphorus or the like can be applied to the antireflection film 11 in a high concentration.
- the antireflection coating 11 can likewise be produced by a sputtering process, preferably in one and the same sputtering chamber.
- the laser beam is focused on the semiconductor body 10 and, in this way, briefly melted in a surface area, whereby a line focus does not necessarily have to be used.
- the dopant then diffuses through the antireflection layer 11 into the molten near-surface region of the semiconductor body 10 and is incorporated in the lattice structure of the semiconductor body during recrystallization.
- multistage emitters are also known, which according to previous methods also require high temperature processes as well as photolithographic structuring methods.
- the inventive method can additionally and simultaneously provide lateral structuring of the doping concentration for generating multi-stage emitters.
- the so-called “back surface field” which reduces the recombination of minority carriers on the rear side can also be produced additionally (or per se)
- the process is as described above, with boron-containing doping paste the rear side of the p-type wafer is applied and then the surface is treated with the laser.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- High Energy & Nuclear Physics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Photovoltaic Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Recrystallisation Techniques (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05771164A EP1738402B1 (de) | 2004-07-26 | 2005-07-21 | Laserdotierung von festkörpern mit einem linienfokussierten lasterstrahl und darauf basierende herstellung von solarzellen-emittern |
JP2007522910A JP2008507849A (ja) | 2004-07-26 | 2005-07-21 | 線形焦点式レーザビームを用いた固形物のレーザドーピング方法、および該方法に基づいて製造された太陽電池エミッタ |
DE502005005402T DE502005005402D1 (de) | 2004-07-26 | 2005-07-21 | Laserdotierung von festkörpern mit einem linienfokellung von solarzellen-emittern |
US11/627,372 US20080026550A1 (en) | 2004-07-26 | 2007-01-25 | Laser doping of solid bodies using a linear-focussed laser beam and production of solar-cell emitters based on said method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004036220A DE102004036220B4 (de) | 2004-07-26 | 2004-07-26 | Verfahren zur Laserdotierung von Festkörpern mit einem linienfokussierten Laserstrahl |
DE102004036220.3 | 2004-07-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/627,372 Continuation US20080026550A1 (en) | 2004-07-26 | 2007-01-25 | Laser doping of solid bodies using a linear-focussed laser beam and production of solar-cell emitters based on said method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006012840A1 true WO2006012840A1 (de) | 2006-02-09 |
Family
ID=35429291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2005/001280 WO2006012840A1 (de) | 2004-07-26 | 2005-07-21 | Laserdotierung von festkörpern mit einem linienfokussierten lasterstrahl und darauf basierende herstellung von solarzellen-emittern |
Country Status (9)
Country | Link |
---|---|
US (1) | US20080026550A1 (de) |
EP (1) | EP1738402B1 (de) |
JP (1) | JP2008507849A (de) |
KR (1) | KR20070049174A (de) |
CN (1) | CN101053065A (de) |
AT (1) | ATE408895T1 (de) |
DE (2) | DE102004036220B4 (de) |
ES (1) | ES2314688T3 (de) |
WO (1) | WO2006012840A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006003607A1 (de) * | 2006-01-25 | 2007-08-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und Vorrichtung zur lokalen Dotierung von Festkörpern sowie dessen Verwendung |
DE102010010813A1 (de) | 2010-03-03 | 2011-09-08 | Centrotherm Photovoltaics Ag | Verfahren zur Dotierung eines Halbleitersubstrats und Solarzelle mit zweistufiger Dotierung |
US8586862B2 (en) | 2009-11-18 | 2013-11-19 | Solar Wind Technologies, Inc. | Method of manufacturing photovoltaic cells, photovoltaic cells produced thereby and uses thereof |
US8796060B2 (en) | 2009-11-18 | 2014-08-05 | Solar Wind Technologies, Inc. | Method of manufacturing photovoltaic cells, photovoltaic cells produced thereby and uses thereof |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7442629B2 (en) | 2004-09-24 | 2008-10-28 | President & Fellows Of Harvard College | Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate |
US7057256B2 (en) | 2001-05-25 | 2006-06-06 | President & Fellows Of Harvard College | Silicon-based visible and near-infrared optoelectric devices |
EP1988773B1 (de) * | 2006-02-28 | 2014-04-23 | Basf Se | Antimikrobielle verbindungen |
US8542102B2 (en) * | 2006-05-04 | 2013-09-24 | Intermec Ip Corp. | Method for operating an RFID network |
JP2008283069A (ja) * | 2007-05-11 | 2008-11-20 | Sony Corp | 照射装置、半導体装置の製造装置、半導体装置の製造方法および表示装置の製造方法 |
JP2011514664A (ja) * | 2008-01-31 | 2011-05-06 | プレジデント アンド フェローズ オブ ハーバード カレッジ | パルスレーザ照射を介してドープされる材料の平坦面の工学 |
US20090239363A1 (en) * | 2008-03-24 | 2009-09-24 | Honeywell International, Inc. | Methods for forming doped regions in semiconductor substrates using non-contact printing processes and dopant-comprising inks for forming such doped regions using non-contact printing processes |
KR100974221B1 (ko) | 2008-04-17 | 2010-08-06 | 엘지전자 주식회사 | 레이저 어닐링을 이용한 태양전지의 선택적 에미터형성방법 및 이를 이용한 태양전지의 제조방법 |
US8053867B2 (en) | 2008-08-20 | 2011-11-08 | Honeywell International Inc. | Phosphorous-comprising dopants and methods for forming phosphorous-doped regions in semiconductor substrates using phosphorous-comprising dopants |
US8679959B2 (en) * | 2008-09-03 | 2014-03-25 | Sionyx, Inc. | High sensitivity photodetectors, imaging arrays, and high efficiency photovoltaic devices produced using ion implantation and femtosecond laser irradiation |
US7951696B2 (en) * | 2008-09-30 | 2011-05-31 | Honeywell International Inc. | Methods for simultaneously forming N-type and P-type doped regions using non-contact printing processes |
US20100147383A1 (en) * | 2008-12-17 | 2010-06-17 | Carey James E | Method and apparatus for laser-processing a semiconductor photovoltaic apparatus |
WO2010071638A1 (en) * | 2008-12-17 | 2010-06-24 | Sionyx, Inc. | Method and apparatus for laser-processing a semiconductor photovoltaic apparatus |
US8518170B2 (en) | 2008-12-29 | 2013-08-27 | Honeywell International Inc. | Boron-comprising inks for forming boron-doped regions in semiconductor substrates using non-contact printing processes and methods for fabricating such boron-comprising inks |
US7820532B2 (en) * | 2008-12-29 | 2010-10-26 | Honeywell International Inc. | Methods for simultaneously forming doped regions having different conductivity-determining type element profiles |
FR2941156A1 (fr) * | 2009-01-19 | 2010-07-23 | Cummins Filtration | Dispositif de filtration pour liquide circulant dans un moteur ou un equipement hydraulique, comprenant des moyens de chauffage du liquide jouxtant les moyens de filtration |
CN102484051B (zh) * | 2009-02-11 | 2015-07-29 | 新南创新私人有限公司 | 光致电压器件结构和方法 |
DE102009010841A1 (de) | 2009-02-27 | 2010-09-02 | Jenoptik Automatisierungstechnik Gmbh | Laserkristallisation durch Bestrahlung |
WO2010104842A1 (en) * | 2009-03-09 | 2010-09-16 | Sionyx, Inc. | Multi-junction semiconductor photovoltaic apparatus and methods |
US20120145229A1 (en) * | 2009-03-17 | 2012-06-14 | Wuxisuntech Power Co., Ltd. | Irradiating A Plate Using Multiple Co-Located Radiation Sources |
US20100243041A1 (en) * | 2009-03-26 | 2010-09-30 | Bp Corporation North America Inc. | Apparatus and Method for Solar Cells with Laser Fired Contacts in Thermally Diffused Doped Regions |
US8207051B2 (en) | 2009-04-28 | 2012-06-26 | Sionyx, Inc. | Semiconductor surface modification |
JP2010283339A (ja) * | 2009-05-02 | 2010-12-16 | Semiconductor Energy Lab Co Ltd | 光電変換装置及びその作製方法 |
DE102009022018A1 (de) | 2009-05-19 | 2010-11-25 | Rena Gmbh | Metallisierungsverfahren zur Herstellung von Solarzellen |
KR101155563B1 (ko) * | 2009-05-27 | 2012-06-19 | 주식회사 효성 | 레이저를 이용한 태양전지 제조방법 |
US8324089B2 (en) | 2009-07-23 | 2012-12-04 | Honeywell International Inc. | Compositions for forming doped regions in semiconductor substrates, methods for fabricating such compositions, and methods for forming doped regions using such compositions |
KR101893331B1 (ko) * | 2009-09-17 | 2018-08-30 | 사이오닉스, 엘엘씨 | 감광성 이미징 장치 및 이와 관련된 방법 |
US9911781B2 (en) | 2009-09-17 | 2018-03-06 | Sionyx, Llc | Photosensitive imaging devices and associated methods |
US9673243B2 (en) | 2009-09-17 | 2017-06-06 | Sionyx, Llc | Photosensitive imaging devices and associated methods |
WO2011038718A2 (de) | 2009-09-30 | 2011-04-07 | Systaic Cells Gmbh | Behandlung und herstellung selektiver emitter von solarzellen |
CA2780913A1 (en) | 2009-11-18 | 2011-05-26 | B-Solar Ltd. | Method of manufacturing photovoltaic cells, photovoltaic cells produced thereby and uses thereof |
DE102009053776A1 (de) | 2009-11-19 | 2011-06-01 | Systaic Cells Gmbh | Emitterbildung mit einem Laser |
TWI528418B (zh) | 2009-11-30 | 2016-04-01 | 應用材料股份有限公司 | 在半導體應用上的結晶處理 |
DE102009059193B4 (de) * | 2009-12-17 | 2024-02-15 | Innolas Solutions Gmbh | Verfahren zur Dotierung von Halbleitermaterialien |
CN102222717A (zh) * | 2010-04-16 | 2011-10-19 | 益通光能科技股份有限公司 | 形成太阳能电池的方法 |
US8692198B2 (en) | 2010-04-21 | 2014-04-08 | Sionyx, Inc. | Photosensitive imaging devices and associated methods |
EP2583312A2 (de) | 2010-06-18 | 2013-04-24 | Sionyx, Inc. | Lichtempfindliche hochgeschwindigkeitsvorrichtungen und verfahren dafür |
DE102010044480A1 (de) | 2010-09-03 | 2012-03-08 | Institut Für Photonische Technologien E.V. | Verfahren und Vorrichtung zur Herstellung einer Dünnschichtsolarzelle |
DE102010048522A1 (de) | 2010-10-14 | 2012-04-19 | Manz Automation Ag | Optisches System mit kaskadierten, verstellbaren Strahlteilern |
DE102010061296A1 (de) | 2010-12-16 | 2012-06-21 | Schott Solar Ag | Verfahren zum Herstellen von elektrisch leitenden Kontakten auf Solarzellen sowie Solarzelle |
CN102142479A (zh) * | 2010-12-18 | 2011-08-03 | 广东爱康太阳能科技有限公司 | 一种选择性发射极及氮化硅薄膜开槽同步实现工艺 |
JP2014500633A (ja) | 2010-12-21 | 2014-01-09 | サイオニクス、インク. | 基板損傷の少ない半導体素子および関連方法 |
KR101046953B1 (ko) * | 2011-01-20 | 2011-07-06 | 주식회사 엘티에스 | 레이저를 이용한 태양전지의 선택적 에미터 제조장치 |
JP2014514733A (ja) | 2011-03-10 | 2014-06-19 | サイオニクス、インク. | 3次元センサ、システム、および関連する方法 |
US9496308B2 (en) | 2011-06-09 | 2016-11-15 | Sionyx, Llc | Process module for increasing the response of backside illuminated photosensitive imagers and associated methods |
DE102011107605A1 (de) | 2011-06-30 | 2013-01-03 | Iai Industrial Systems B.V. | Verfahren zur Herstellung mono- oder polykristalliner Solarzellen basierend auf n-Silizium |
CN102263164A (zh) * | 2011-07-06 | 2011-11-30 | 杨雪 | 硅太阳能电池金属半导体接触合金化制备工艺 |
US20130016203A1 (en) | 2011-07-13 | 2013-01-17 | Saylor Stephen D | Biometric imaging devices and associated methods |
JP5853333B2 (ja) * | 2011-08-12 | 2016-02-09 | 株式会社ブイ・テクノロジー | レーザードーピング方法及びレーザードーピング装置 |
US8629294B2 (en) | 2011-08-25 | 2014-01-14 | Honeywell International Inc. | Borate esters, boron-comprising dopants, and methods of fabricating boron-comprising dopants |
US8865507B2 (en) | 2011-09-16 | 2014-10-21 | Sionyx, Inc. | Integrated visible and infrared imager devices and associated methods |
US8664015B2 (en) * | 2011-10-13 | 2014-03-04 | Samsung Sdi Co., Ltd. | Method of manufacturing photoelectric device |
US8975170B2 (en) | 2011-10-24 | 2015-03-10 | Honeywell International Inc. | Dopant ink compositions for forming doped regions in semiconductor substrates, and methods for fabricating dopant ink compositions |
DE102011055604A1 (de) | 2011-11-22 | 2013-05-23 | Helmholtz-Zentrum Dresden - Rossendorf E.V. | Funktionalisierte Festkörperoberflächen von Metallen, Halbleitern und Isolatoren mit Nanostrukturen |
DE102012202367A1 (de) | 2012-02-16 | 2013-08-22 | Robert Bosch Gmbh | Verfahren und Anordnung zur Herstellung einer Halbleitereinrichtung |
US9064764B2 (en) | 2012-03-22 | 2015-06-23 | Sionyx, Inc. | Pixel isolation elements, devices, and associated methods |
CN102723265B (zh) * | 2012-06-18 | 2014-12-24 | 苏州阿特斯阳光电力科技有限公司 | 一种硅片的铝掺杂方法 |
CN102916077A (zh) * | 2012-09-27 | 2013-02-06 | 奥特斯维能源(太仓)有限公司 | 一种用于提高金属电极与晶体硅附着力的激光掺杂工艺 |
DE102012221409A1 (de) | 2012-11-22 | 2014-05-22 | Helmholtz-Zentrum Dresden - Rossendorf E.V. | Funktionalisierte Festkörperoberflächen aus Zwei- und Mehrstoffsystemen mit Komposit-Nanostrukturen aus Metallen, Halbleitern und Isolatoren |
JP6466346B2 (ja) | 2013-02-15 | 2019-02-06 | サイオニクス、エルエルシー | アンチブルーミング特性を有するハイダイナミックレンジcmos画像センサおよび関連づけられた方法 |
US9939251B2 (en) | 2013-03-15 | 2018-04-10 | Sionyx, Llc | Three dimensional imaging utilizing stacked imager devices and associated methods |
WO2014209421A1 (en) | 2013-06-29 | 2014-12-31 | Sionyx, Inc. | Shallow trench textured regions and associated methods |
WO2015043606A1 (en) * | 2013-09-27 | 2015-04-02 | Danmarks Tekniske Universitet | Nanostructured silicon based solar cells and methods to produce nanostructured silicon based solar cells |
DE102013112638A1 (de) | 2013-11-15 | 2015-05-21 | Universität Stuttgart | Verfahren zur Herstellung rückseitenkontaktierter Solarzellen aus kristallinem Silizium |
WO2017072758A1 (en) | 2015-10-25 | 2017-05-04 | Solaround Ltd. | Method of bifacial cell fabrication |
CN105428224B (zh) * | 2015-12-03 | 2018-06-12 | 上海大族新能源科技有限公司 | 硅片硼掺杂方法 |
DE102016107802A1 (de) | 2016-04-27 | 2017-11-02 | Universität Stuttgart | Verfahren zur Herstellung rückseitenkontaktierter Solarzellen aus kristallinem Silizium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3420719A (en) * | 1965-05-27 | 1969-01-07 | Ibm | Method of making semiconductors by laser induced diffusion |
US4370175A (en) * | 1979-12-03 | 1983-01-25 | Bernard B. Katz | Method of annealing implanted semiconductors by lasers |
US4436557A (en) * | 1982-02-19 | 1984-03-13 | The United States Of America As Represented By The United States Department Of Energy | Modified laser-annealing process for improving the quality of electrical P-N junctions and devices |
US20020191301A1 (en) * | 2001-06-15 | 2002-12-19 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation stage, laser irradiation optical system, laser irradiation apparatus, laser irradiation method, and method of manufacturing a semiconductor device |
US6531681B1 (en) * | 2000-03-27 | 2003-03-11 | Ultratech Stepper, Inc. | Apparatus having line source of radiant energy for exposing a substrate |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3329704A (en) * | 1964-04-07 | 1967-07-04 | Jr Charles V Goebel | Production of normal alpha, omega-dicyanoalkanes |
US3640782A (en) * | 1967-10-13 | 1972-02-08 | Gen Electric | Diffusion masking in semiconductor preparation |
US4147563A (en) * | 1978-08-09 | 1979-04-03 | The United States Of America As Represented By The United States Department Of Energy | Method for forming p-n junctions and solar-cells by laser-beam processing |
JPH01248615A (ja) * | 1988-03-30 | 1989-10-04 | Nec Corp | 半導体装置の製造方法 |
JPH02205668A (ja) * | 1989-01-31 | 1990-08-15 | Kobe Steel Ltd | スパッタリングターゲット |
US5316969A (en) * | 1992-12-21 | 1994-05-31 | Board Of Trustees Of The Leland Stanford Junior University | Method of shallow junction formation in semiconductor devices using gas immersion laser doping |
WO1995000865A1 (en) * | 1993-06-17 | 1995-01-05 | Xmr, Inc. | Improved optical beam integration system |
US5538564A (en) * | 1994-03-18 | 1996-07-23 | Regents Of The University Of California | Three dimensional amorphous silicon/microcrystalline silicon solar cells |
JP3669384B2 (ja) * | 1995-08-22 | 2005-07-06 | 独立行政法人理化学研究所 | 半導体基板中へのドーピング層の形成方法 |
JPH10161195A (ja) * | 1996-12-02 | 1998-06-19 | Sony Corp | オートフォーカス方法及びオートフォーカス装置 |
US5918140A (en) * | 1997-06-16 | 1999-06-29 | The Regents Of The University Of California | Deposition of dopant impurities and pulsed energy drive-in |
JP3639423B2 (ja) * | 1997-12-26 | 2005-04-20 | 新日本無線株式会社 | 半導体熱拡散層の形成方法 |
DE19813188A1 (de) * | 1998-03-25 | 1999-10-07 | Siemens Solar Gmbh | Verfahren zur einseitigen Dotierung eines Halbleiterkörpers |
AUPP437598A0 (en) * | 1998-06-29 | 1998-07-23 | Unisearch Limited | A self aligning method for forming a selective emitter and metallization in a solar cell |
JP2001110864A (ja) * | 1999-10-06 | 2001-04-20 | Seiko Epson Corp | 多結晶性半導体膜の検査方法および多結晶性半導体膜の検査装置 |
US6329704B1 (en) * | 1999-12-09 | 2001-12-11 | International Business Machines Corporation | Ultra-shallow junction dopant layer having a peak concentration within a dielectric layer |
EP1329946A3 (de) * | 2001-12-11 | 2005-04-06 | Sel Semiconductor Energy Laboratory Co., Ltd. | Herstellungsverfahren von Halbleitervorrichtungen mit Laserkristallisationsschritt |
JP2003209271A (ja) * | 2002-01-16 | 2003-07-25 | Hitachi Ltd | 太陽電池およびその製造方法 |
US7405114B2 (en) * | 2002-10-16 | 2008-07-29 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus and method of manufacturing semiconductor device |
-
2004
- 2004-07-26 DE DE102004036220A patent/DE102004036220B4/de not_active Expired - Fee Related
-
2005
- 2005-07-21 KR KR1020077004389A patent/KR20070049174A/ko not_active Application Discontinuation
- 2005-07-21 WO PCT/DE2005/001280 patent/WO2006012840A1/de active IP Right Grant
- 2005-07-21 EP EP05771164A patent/EP1738402B1/de not_active Not-in-force
- 2005-07-21 ES ES05771164T patent/ES2314688T3/es active Active
- 2005-07-21 JP JP2007522910A patent/JP2008507849A/ja active Pending
- 2005-07-21 AT AT05771164T patent/ATE408895T1/de not_active IP Right Cessation
- 2005-07-21 CN CNA2005800288130A patent/CN101053065A/zh active Pending
- 2005-07-21 DE DE502005005402T patent/DE502005005402D1/de not_active Expired - Fee Related
-
2007
- 2007-01-25 US US11/627,372 patent/US20080026550A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3420719A (en) * | 1965-05-27 | 1969-01-07 | Ibm | Method of making semiconductors by laser induced diffusion |
US4370175A (en) * | 1979-12-03 | 1983-01-25 | Bernard B. Katz | Method of annealing implanted semiconductors by lasers |
US4436557A (en) * | 1982-02-19 | 1984-03-13 | The United States Of America As Represented By The United States Department Of Energy | Modified laser-annealing process for improving the quality of electrical P-N junctions and devices |
US6531681B1 (en) * | 2000-03-27 | 2003-03-11 | Ultratech Stepper, Inc. | Apparatus having line source of radiant energy for exposing a substrate |
US20020191301A1 (en) * | 2001-06-15 | 2002-12-19 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation stage, laser irradiation optical system, laser irradiation apparatus, laser irradiation method, and method of manufacturing a semiconductor device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006003607A1 (de) * | 2006-01-25 | 2007-08-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und Vorrichtung zur lokalen Dotierung von Festkörpern sowie dessen Verwendung |
US8586862B2 (en) | 2009-11-18 | 2013-11-19 | Solar Wind Technologies, Inc. | Method of manufacturing photovoltaic cells, photovoltaic cells produced thereby and uses thereof |
US8796060B2 (en) | 2009-11-18 | 2014-08-05 | Solar Wind Technologies, Inc. | Method of manufacturing photovoltaic cells, photovoltaic cells produced thereby and uses thereof |
DE102010010813A1 (de) | 2010-03-03 | 2011-09-08 | Centrotherm Photovoltaics Ag | Verfahren zur Dotierung eines Halbleitersubstrats und Solarzelle mit zweistufiger Dotierung |
WO2011107092A2 (de) | 2010-03-03 | 2011-09-09 | Centrotherm Photovoltaics Ag | Verfahren zur dotierung eines halbleitersubstrats und solarzelle mit zweistufiger dotierung |
Also Published As
Publication number | Publication date |
---|---|
US20080026550A1 (en) | 2008-01-31 |
EP1738402A1 (de) | 2007-01-03 |
DE102004036220A1 (de) | 2006-03-23 |
ES2314688T3 (es) | 2009-03-16 |
ATE408895T1 (de) | 2008-10-15 |
CN101053065A (zh) | 2007-10-10 |
JP2008507849A (ja) | 2008-03-13 |
DE502005005402D1 (de) | 2008-10-30 |
DE102004036220B4 (de) | 2009-04-02 |
KR20070049174A (ko) | 2007-05-10 |
EP1738402B1 (de) | 2008-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1738402B1 (de) | Laserdotierung von festkörpern mit einem linienfokussierten lasterstrahl und darauf basierende herstellung von solarzellen-emittern | |
EP1319254B1 (de) | Verfahren zur Herstellung eines Halbleiter-Metallkontaktes durch eine dielektrische Schicht | |
EP0536431B1 (de) | Laserbearbeitungsverfahren für einen Dünnschichtaufbau | |
DE4315959C2 (de) | Verfahren zur Herstellung einer strukturierten Schicht eines Halbleitermaterials sowie einer Dotierungsstruktur in einem Halbleitermaterial unter Einwirkung von Laserstrahlung | |
EP1977442B1 (de) | Verfahren zur herstellung eines halbleiterbauelements mit unterschiedlich stark dotierten bereichen | |
DE69827319T2 (de) | Solarzelle und Verfahren zu deren Herstellung | |
DE69334075T2 (de) | Verbesserte rückseiten-hydrierungstechnik für fehlerpassivierung in silizium-sonnenzellen. | |
DE102007036921A1 (de) | Verfahren zur Herstellung von Siliziumsolarzellen | |
EP2299496A2 (de) | Verfahren zur Herstellung eines Kontaktbereichs eines elektronischen Bauteils | |
DE102013013514A1 (de) | Thermische laserausheil- bzw. -annealingverfahren ohne schmelzen für dünne wafer | |
DE102010006315B4 (de) | Verfahren zur lokalen Hochdotierung und Kontaktierung einer Halbleiterstruktur, welche eine Solarzelle oder eine Vorstufe einer Solarzelle ist | |
DE69813787T2 (de) | Verfahren und vorrichtung zum aktivieren von verunreinigungen in einem halbleiter | |
WO2015071217A1 (de) | Verfahren zur herstellung rückseitenkontaktierter solarzellen aus kristallinem silizium | |
WO2011107092A2 (de) | Verfahren zur dotierung eines halbleitersubstrats und solarzelle mit zweistufiger dotierung | |
DE102009059193B4 (de) | Verfahren zur Dotierung von Halbleitermaterialien | |
DE102007011749A1 (de) | Verfahren zur Herstellung von Solarzellen mit mittels eines Ultrakurzpulslasers lokal entfernten Dielektrikumschichten | |
WO2014023798A9 (de) | Verfahren zur ablation einer schicht | |
EP4402728A1 (de) | Dotieren eines siliziumsubstrats durch laserdotierung mit anschliessendem hochtemperaturschritt | |
DE3038910A1 (de) | Verfahren zur herstellung eines infrarotempfindlichen silizium-substrats mit integrierter verarbeitungselektronik | |
WO1989012317A1 (en) | Process and device for crystallization of thin semiconductor layers on a substrate material | |
EP2643858B1 (de) | Halbleiterbauelement und verfahren zu seiner herstellung | |
DE102013209983A1 (de) | Verfahren zur Herstellung einer Dünnschichtsolarzelle und einer Verbindungshalbleiterschicht hierfür | |
DE102017116833A1 (de) | Herstellungsverfahren für eine metallische Kontaktierungsstruktur und photovoltaische Solarzelle mit einer metallischen Kontaktierungsstruktur | |
WO1998017831A1 (de) | Verfahren zur veränderung der struktur von dünnen, oberflächennahen materialschichten | |
DE202011104644U1 (de) | Verarbeiteter Silizium-Wafer oder Siliziumchip oder fotovoltaische Zelle und eine Vorrichtung, eine Abtragungsvorrichtung, eine Steuervorrichtung und ein Computerprogrammprodukt zur Herstellung derselben. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005771164 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2005771164 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11627372 Country of ref document: US Ref document number: 2007522910 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077004389 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580028813.0 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 11627372 Country of ref document: US |
|
WWG | Wipo information: grant in national office |
Ref document number: 2005771164 Country of ref document: EP |