CN101053065A - 用线性聚焦的激光束对固体进行激光掺杂以及基于所述方法制造太阳能电池发射极 - Google Patents

用线性聚焦的激光束对固体进行激光掺杂以及基于所述方法制造太阳能电池发射极 Download PDF

Info

Publication number
CN101053065A
CN101053065A CNA2005800288130A CN200580028813A CN101053065A CN 101053065 A CN101053065 A CN 101053065A CN A2005800288130 A CNA2005800288130 A CN A2005800288130A CN 200580028813 A CN200580028813 A CN 200580028813A CN 101053065 A CN101053065 A CN 101053065A
Authority
CN
China
Prior art keywords
solid
laser
aforesaid right
medium
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800288130A
Other languages
English (en)
Inventor
于尔根·H·维尔纳
于尔根·克勒
艾恩华·埃斯图罗-布雷顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN101053065A publication Critical patent/CN101053065A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0738Shaping the laser spot into a linear shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • H01L21/2256Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides through the applied layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Laser Beam Processing (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

在一种根据本发明的激光掺杂方法中,首先使包含掺杂物的介质与固体的表面形成接触。然后,通过激光脉冲的照射短时融化固体的在与介质接触的表面下的区域,使得掺杂物扩散进熔化的区域中并且在熔化区域冷却期间使熔融区域结晶。激光束以线性焦点聚焦在固体上,其中线性焦点的宽度优选小于10μm。

Description

用线性聚焦的激光束对固体进行激光掺杂以及基于所述方法制造太阳能电池发射极
本发明涉及一种根据权利要求1的前序部分所述的用于在固体中产生掺杂区域的方法,本发明也涉及一种用于实施该方法的装置。此外,本发明还涉及一种基于根据本发明的方法的、用于制造太阳能电池的发射极区域的方法。另外,本发明还涉及一种基于根据本发明的方法的、在半导体和金属之间产生欧姆接触的方法。
在由单晶硅或者多晶硅构成的太阳能电池的商业制造中,通过制造中的高温步骤来产生太阳能电池发射极,接着在温度为大约1000K的扩散炉中扩散掺杂物、一般为磷。为此所需的时间大约为30分钟。因此,传统的通过在扩散炉中扩散来制造太阳能电池发射极是耗能且耗时的。
此外,由于在传统的扩散工艺中发射极扩散的工艺时间冗长,所以在制造系统中仅能分批地实施制造。然而,低成本制造太阳能电池要求工艺中简单且快速的各个步骤,这些步骤可以集成为一个连续的、即在线(inline)制造工艺。通过在扩散炉中扩散来制造太阳能电池反射器不能满足这些要求。
在US 5,918,140中公开了一种用于激光掺杂半导体的方法,其中首先将包含掺杂物的材料的薄层施加到半导体表面上,接着将半导体表面暴露于脉冲激光辐射,其中在半导体表面和施加的掺杂物层之间的接触面的区域中,激光脉冲的能量被吸收并且转换成热能。这导致半导体的上部区域融化并且因此导致在融化期间掺杂物原子扩散到半导体的熔化区域中。在激光脉冲的下降时间中和在此之后,半导体的熔融区域再结晶,因此掺杂物原子混进晶格中。通过这种方式原理上可能在固体中产生高掺杂浓度的靠近表面的掺杂区域。然而,至今还不能对半导体例如硅实施激光掺杂,使得在融化的表面层中能够使硅再结晶大约1μm或者更小的厚度而没有缺陷。在测试中,使用市面上可得到的激光处理系统在硅中产生掺杂区域,这些区域随后作为太阳能电池发射极使用。结果是,太阳能电池发射极的质量非常差,特别是太阳能电池的空载电压和效率是非常低的。此外,TEM分析显示太阳能电池发射极特别受到高位错密度而损坏。
因此,本发明的目的是,说明借助激光掺杂在固体中产生掺杂区域的方法,通过这些方法可以在掺杂的区域中得到固体的高度无缺陷性,或者借助这些方法,传统的方法可以以其它方式在提供掺杂物层、实现高掺杂浓度或者激光束功率的耦合输入的效率方面得以改善。
通过权利要求1和其它独立权利要求所述的特征来实现该目的。另一些有利的实施例和方面是从属权利要求的主题。同样说明了一种借助根据本发明的方法产生太阳能电池的发射极区域的方法。也说明了一种借助根据本发明的方法在半导体和金属之间产生欧姆接触的方法。此外,还说明了一种用于实施根据本发明的方法的装置。
在根据本发明的用于在固体中产生掺杂区域的方法中,首先将包含掺杂物的介质与固体的表面形成接触。然后,借助激光脉冲照射,使固体的与介质所接触的表面下的区域融化,使得掺杂物扩散进熔融的区域中并且在熔融区域冷却期间再结晶。
根据本发明的方法的重要方面是,激光束线性地聚焦在固体上,优选的是,选择线性焦点的宽度小于10μm。例如,焦点宽度可以在5μm到10μm范围内。然而,焦点宽度甚至也可为大约5μm或者更小。
同时测试证实,通过为激光掺杂方法提供线性焦点可以产生再结晶的具有高无缺陷性的掺杂区域。这通过根据本发明的方法来实现,而不需要高温过程和冗长的工艺时间。相反,根据本发明的方法是一种产生高结晶度和无缺陷的掺杂区域的掺杂固体的低温方法。
因此,根据本发明的方法使得能够替代半导体晶片在高温炉中的成批处理(batch=Betrieb),而用后勤上更有效的在线过程来替换,并且直接集成到电子部件(例如太阳能电池)的生产线中。
在所实施的测试中,激光束形成5μm宽且数百微米长的线,线性焦点的长度一般优选在100μm至10mm的范围内。
在根据本发明的方法中,待掺杂的区域的深度的范围可通过合适地选择激光波长来确定。这通过选择这样的波长来完成,使得激光辐射在固体中的吸收长度或者穿透深度与待掺杂区域中所希望的深度范围相应。对于太阳能电池发射极,通常选择该深度为1μm或者更小。当固体是半导体硅时,激光辐射的波长应为600nm或者更小。
此外,当希望待掺杂区域为确定的深度时,脉冲宽度应这样选择,使得掺杂物原子在熔融固体中的热扩散长度为所希望的深度范围的量级。当固体为半导体硅并且所希望的深度范围为1μm时,脉冲宽度应低于100ns,特别是低于50ns。
通常,应掺杂其横向伸展至少在一个方向上大于激光焦点的区域,使得辐射束必须被扫描经过固体。在固体与辐射束之间产生垂直于线性焦点的线而对准的相对运动。优选地,固体安装在X-Y线性移动台上并且激光束保持不动。然而,也可以设置固体保持不动而配置激光束的光学系统,使激光束在固体上扫描。
包含掺杂物的介质可以以液体或者固体涂层的形式通过旋涂或者通过丝网印刷或者薄膜印刷方法被施加到界面上。然而,还可能的是,介质是气态的,并且与固体的表面直接接触。
另一种根据本发明的方法的重要方面是,通过溅射方法将固体涂层形式的、包含掺杂物的介质施加到固体上,其中在稍后的融化中不必将激光束成形为线性焦点。在此可以设置,首先将该介质施加到起始衬底上,接着在第一溅射方法步骤中被从起始衬底溅射并沉积到中间目标上,最后在第二溅射方法步骤中从中间目标被溅射并且沉积到待掺杂的固体上。
在该设置中,类似中间目标,起始衬底可以总是包括硅衬底,如硅晶片。该介质可以基本上或者完全由掺杂物本身构成,并且例如粉末状沉积在起始衬底上。因此,特别是通常提供的掺杂物元素,例如磷、砷、锑、硼、铝、镓、铟、钽或者钛,首先可以粉末状地沉积在硅晶片上,接着这些元素可以从硅晶片溅射到中间目标上。最后,从中间目标沉积到待掺杂的固体的层因此可以超过90%由掺杂物构成,因为在第一溅射步骤中在溅射时仅仅少量衬底硅被一同溅射。因此,在这种方法中,在待掺杂的固体上仅仅需要很薄的、例如仅仅几纳米厚度的掺杂物层,以在固体中产生很高的掺杂物浓度,例如达到1022/cm3
应理解的是,本申请上下文中的待掺杂的固体可以为待掺杂的半导体本身,但是也应理解的是,固体包含主体,该主体是实际待掺杂的半导体本体,还包含沉积到主体的表面上的中间层,其中按照根据本发明的另一种方法,介质沉积在中间层上。在该设置中,并非强制地要求在后来激光束掺杂中激光束被线性聚焦。当作为对激光辐射的抗反射层起作用的中间层被施加到半导体本体上时,例如则给出这种实施形式。抗反射层使得激光辐射的全部光功率都被利用,并且用于融化位于中间层下的半导体材料的表面区域。然后,掺杂物可以在融化期间通过中间层扩散进半导体本体中。尽管有中间层,在半导体本体中仍能以这样的方式产生高掺杂物浓度,因为特别是通过前述的溅射方法事先在中间层上产生很高的掺杂物浓度。由于高掺杂物梯度,掺杂物也以高速扩散通过中间层。
中间层可以替代地或附加地构造成用于使半导体本体的表面钝化的钝化层。
特别是,中间层也可以包含氮化硅,二氧化硅或者无定形硅或者由这些材料其中之一构造。
中间层可以通过溅射方法来产生。特别是当掺杂物层通过溅射方法来产生时,可以在同一个的溅射装置中产生掺杂物层和中间层。
根据本发明的方法可以特别是用于制造太阳能电池的发射极区域,其中通过根据本发明的方法掺杂半导体表面的、用作太阳能电池发射极的区域。
此外,根据本发明的方法也可以用于在半导体和金属之间制造欧姆接触,其中在半导体中,根据本发明的方法生成被掺杂的区域,接着金属层被施加到该掺杂的区域上。通过这种方式,在p型晶片和n型晶片上都能够产生很低的接触电阻的欧姆接触。在该申请中所描述的方法此外也允许产生点接触或者带接触。
本发明也涉及一种用于实施根据本发明的方法的装置,该装置包括脉冲激光束源、用于产生线性焦点的圆柱透镜和用于将线性焦点缩小地成像到固体的表面上的物镜。
该装置优选具有自动聚焦装置,该自动聚焦装置测量固体表面距参考点的间距并且调整物镜与固体表面之间的间距,使得焦点位置维持在固体表面上的焦深之内。通过这种方式,即使表面弯曲或者粗糙也可以使焦点位置保持在晶片表面上的焦深之内。
参照附图将详述根据本发明的方法的实施例和用于实施根据本发明的方法的装置。其中:
图1是用于实施根据本发明的方法的装置的实施例的图示;
图2a,b是通过使用两步的溅射方法实施根据本发明的方法的实施例的图示;
图3是具有在半导体本体上的附加的抗反射层的、用于实施根据本发明的方法的实施例的图示。
在图1所示的装置中,作为激光束源在这种情况下使用了调Q Nd:YV04激光器,其通过使频率加倍而发射具有波长为λ=532nm的激光辐射。脉冲频率典型地在10kHz至100kHz范围内。当激光掺杂硅时,最佳脉冲能量密度在2至6J/cm-2的范围内。
然后,(必要时在扩宽之后)通过圆柱透镜引导激光束以产生线性焦点。在该情况中,圆柱透镜具有f=200mm的焦距。
最后,通过物镜将激光束成像在硅晶片上,在该实施例中该物镜具有f=50mm的焦距。物镜将线性焦点缩小地成像在硅晶片上。在此,必需保证,甚至在表面弯曲或者粗糙的情况下,在晶片表面上焦点位置也总是维持在成像光学系统的焦深内。这可以通过自动聚焦装置来实现,该聚焦装置在工艺期间不断地测量晶片表面距参考点的间距并且修正物镜与硅晶片之间的间距。在所示的实施例中,物镜的位置通过使它在激光束的中心线上移动来修正,同样也可设置硅晶片的位置在激光束的中心线上移动来修正。
硅晶片安装在X-Y线性移动台上,X-Y平面垂直于激光束。通过使硅晶片相对于碰撞的辐射束移动,可以在硅晶片上扫描更大的区域。
在制造太阳能电池发射极的测试中,借助旋涂器通过旋涂方法将市面上可得到的含磷的掺杂物液体施加到硅晶片上。通过一个或者多个激光脉冲来实施掺杂,其中晶片表面直到1μm或者更小的深度被迅速熔化并且磷原子从掺杂物液体进入液态硅中。在熔融物冷却和固化之后完成高掺杂的n型发射极区域。
n型Si晶片上的硼掺杂的p+型发射极也已通过根据本发明的方法处理过。
在确定对表面的每个区域需要多少个激光脉冲以达到令人满意的掺杂程度之后,优选连续地以预定的速度引导辐射束经过晶片表面。从该数量和脉冲频率可以确定扫描速度。优选地,扫描速度在0.1至0.5m/s的范围内。然而,作为上面的替换方案,也可以设置,以基本上与焦点宽度相应的离散步来移动移动台。在每个到达的点,硅晶片被固定地施加以预先给定数量的激光脉冲,并且随后线性焦点没有施加以激光脉冲地垂直于线的取向而移向下一个点。
当使用30W激光系统时可以达到大约10cm2/s的产量。
现在参照图2a、b,图示了根据本发明的方法的一种变形方案,其中以固体涂层的形式通过两步的溅射方法将介质施加到待掺杂的固体上。首先,掺杂物2(例如纯磷)以粉末形式施加到作为起始衬底的硅晶片1上。然后,在图2a中在第一溅射步骤中,溅射粉末状的掺杂物2并且施加到同样通过硅晶片形成的中间目标3上并且作为掺杂物层4沉积在该中间目标3上。由此首先实现了,提供了相连接的掺杂物层4,其例如可以具有超过90%的掺杂物浓度。除掺杂物(例如磷)本身外,掺杂物层也可以含有硅,硅是在第一溅射步骤中从硅晶片1中被附加地去除的。
在如图2b中所示的第二溅射步骤中,掺杂物层4随后被溅射并且例如以第二掺杂物层6的形式沉积在实际要掺杂的固体5上。与掺杂物层4比较,该掺杂物层6的特征是其材料成分的更好的均匀性,使得在随后的激光束掺杂中在固体5中可以实现非常均匀的掺杂物分布。掺杂物层6可以为仅仅数nm、例如1-10nm的厚度。
之后,激光束聚焦在具有沉积的掺杂物层的固体材料5上并且例如在表面区域短暂地熔化,只是不必一定使用线性焦点。然后,掺杂层6的掺杂物扩散进固体5的熔融的接近表面的区域并且在再结晶时合并进固体的晶格结构中。
现在,参照图3示出了根据本发明的方法的另一变形方案,其中在半导体本体10的待掺杂的区域上方,抗反射层11施加在半导体本体、例如硅晶片10上。抗反射层11这样构造,使得对于后来用于熔化的激光辐射具有尽可能低的反射系数,以致于其光功率几乎完全耦合输入到半导体本体10中。
然后,含有掺杂物的介质12施加到抗反射层11上。该介质本身可以例如由掺杂物构成,并且通过溅射方法施加到抗反射层11上。如上所述,特别是使用两步的溅射方法,掺杂物元素例如磷等可以以高浓度施加到抗反射层11上。同样可以通过溅射方法、优选地是在同一溅射室中产生抗反射层11。
然后,激光束聚焦到半导体本体10上并且在表面区域短暂地用于融化,对此并非必须使用线性焦点。接着,掺杂物通过抗反射层11扩散进半导体本体10的熔融的靠近表面的区域并且在再结晶时混进半导体本体的晶格结构中。
对于特别有效的太阳能电池,还公开了多级发射极,根据迄今公知的方法,多级发射极此外需要进一步的高温处理以及光刻结构化方法。通过根据本发明的方法利用具有比较高的脉冲频率的激光,可以额外地并且同时地实现掺杂物浓度的横向结构化,以产生多级发射极。
借助根据本发明的方法也可以附加地(或者例如单独地)产生所谓的“背面场(back surface field)”,其减小了背面少数载流子的复合。该工艺如上所述,其中含硼的掺杂物糊剂被施加到p型晶片的背面并且接着用激光处理表面。

Claims (21)

1.一种在固体中产生掺杂的区域的方法,其中
将包含掺杂物的介质与所述固体的表面形成接触,
通过激光脉冲照射使所述固体的在与所述介质接触的表面下的区域融化,使得所述掺杂物扩散进所述熔化的区域中,并且在所述熔化的区域冷却期间再结晶,
其特征在于,所述激光束以线性焦点聚焦到所述固体上。
2.根据权利要求1所述的方法,其特征在于,所述线性焦点的宽度小于10μm。
3.根据权利要求1所述的方法,其特征在于,所述线性焦点的长度在100μm至10mm的范围内。
4.根据上述权利要求中任一项所述的方法,其特征在于,所述激光的波长这样选择,使得所述激光辐射在所述固体中的吸收长度与预定的长度、特别是1μm相应。
5.根据权利要求4所述的方法,其特征在于,所述固体为硅并且所述激光辐射的波长小于600nm。
6.根据上述权利要求中任一项所述的方法,其特征在于,所述脉冲宽度这样地选择,使得所述掺杂物原子在所述熔化的固体中的热扩散长度与预定的长度、特别是1μm相应。
7.根据权利要求6所述的方法,其特征在于,所述固体为硅并且所述脉冲宽度小于100ns,特别是小于50ns。
8.根据上述权利要求中任一项所述的方法,其特征在于,辐射束扫过所述表面,其方式是在所述固体与所述辐射束之间产生相对运动。
9.根据上述权利要求中任一项所述的方法,其特征在于,所述液体或固体涂层形式的介质通过旋涂方法或者丝网印刷或者薄膜印刷方法施加到所述表面上。
10.根据上述权利要求中任一项或者根据权利要求1的前序部分所述的方法,其特征在于,所述介质以固体涂层(6)形式通过溅射方法来施加。
11.根据权利要求10所述的方法,其特征在于,
首先将所述介质施加到起始衬底(1)上,
在第一溅射步骤中被从所述起始衬底(1)进行溅射,并且沉积到中间目标(3)上,以及
在第二溅射步骤中从所述中间目标(3)被溅射并且沉积到所述待掺杂的固体(5)上。
12.根据权利要求11所述的方法,其特征在于,所述中间目标(3)为硅衬底。
13.根据权利要求11或者12所述的方法,其特征在于,所述介质由所述掺杂物构成并且粉末状地被施加到所述起始衬底(1)上。
14.根据上述权利要求中任一项或者权利要求1的前序部分所述的方法,其特征在于,所述固体包含主体(10)和施加在所述主体(10)的表面上的中间层(11),并且所述介质被施加在所述中间层(11)上。
15.根据权利要求14所述的方法,其特征在于,所述中间层(11)为钝化层。
16.根据权利要求14或者15所述的方法,其特征在于,所述中间层(11)作为对所述激光辐射的抗反射层。
17.根据上述权利要求14至16中任一项所述的方法,其特征在于,所述中间层(11)包含氮化硅、二氧化硅或者无定形硅或者由这些材料中的其中一种构造。
18.一种通过根据上述权利要求中任一项所述的用于在半导体中产生掺杂的区域的方法来制造太阳能电池的发射极区域的方法。
19.一种在半导体和金属之间产生欧姆接触的方法,在该方法中按照权利要求1至17中任一项所述地在半导体中产生掺杂的区域并且随后将金属层施加到所述掺杂的区域上。
20.一种用于实施根据上述权利要求中任一项所述的方法的装置,所述装置包括
脉冲激光束源,
用于产生线性焦点的圆柱透镜,
用于使所述线性焦点缩小地成像到所述固体的表面上的物镜。
21.根据权利要求20所述的装置,其特征在于自动聚焦装置,其测量所述固体表面距参考点的间距并且这样地调整物镜与固体表面之间的间距,使得在所述固态表面上维持焦点位置在焦深内。
CNA2005800288130A 2004-07-26 2005-07-21 用线性聚焦的激光束对固体进行激光掺杂以及基于所述方法制造太阳能电池发射极 Pending CN101053065A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004036220A DE102004036220B4 (de) 2004-07-26 2004-07-26 Verfahren zur Laserdotierung von Festkörpern mit einem linienfokussierten Laserstrahl
DE102004036220.3 2004-07-26

Publications (1)

Publication Number Publication Date
CN101053065A true CN101053065A (zh) 2007-10-10

Family

ID=35429291

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800288130A Pending CN101053065A (zh) 2004-07-26 2005-07-21 用线性聚焦的激光束对固体进行激光掺杂以及基于所述方法制造太阳能电池发射极

Country Status (9)

Country Link
US (1) US20080026550A1 (zh)
EP (1) EP1738402B1 (zh)
JP (1) JP2008507849A (zh)
KR (1) KR20070049174A (zh)
CN (1) CN101053065A (zh)
AT (1) ATE408895T1 (zh)
DE (2) DE102004036220B4 (zh)
ES (1) ES2314688T3 (zh)
WO (1) WO2006012840A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010105382A1 (en) * 2009-03-17 2010-09-23 Wuxi Suntech Power Co., Ltd. Irradiating a plate using multiple co-located radiation sources
CN102142479A (zh) * 2010-12-18 2011-08-03 广东爱康太阳能科技有限公司 一种选择性发射极及氮化硅薄膜开槽同步实现工艺
CN102222717A (zh) * 2010-04-16 2011-10-19 益通光能科技股份有限公司 形成太阳能电池的方法
CN102263164A (zh) * 2011-07-06 2011-11-30 杨雪 硅太阳能电池金属半导体接触合金化制备工艺
CN102640263A (zh) * 2009-11-30 2012-08-15 应用材料公司 在半导体应用上的结晶处理
CN102723265A (zh) * 2012-06-18 2012-10-10 苏州阿特斯阳光电力科技有限公司 一种硅片的铝掺杂方法
CN102916077A (zh) * 2012-09-27 2013-02-06 奥特斯维能源(太仓)有限公司 一种用于提高金属电极与晶体硅附着力的激光掺杂工艺
CN103038898A (zh) * 2010-03-03 2013-04-10 森特瑟姆光伏股份有限公司 用于对半导体基底进行掺杂的方法和具有两级掺杂的太阳能电池
CN102017088B (zh) * 2008-01-31 2013-08-07 哈佛大学校长及研究员协会 在经脉冲激光照射而掺杂的材料上构造平坦表面
CN105793999A (zh) * 2013-09-27 2016-07-20 丹麦科技大学 纳米结构的硅基太阳能电池和生产纳米结构的硅基太阳能电池的方法
US10229951B2 (en) 2010-04-21 2019-03-12 Sionyx, Llc Photosensitive imaging devices and associated methods
US10244188B2 (en) 2011-07-13 2019-03-26 Sionyx, Llc Biometric imaging devices and associated methods
US10269861B2 (en) 2011-06-09 2019-04-23 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US10347682B2 (en) 2013-06-29 2019-07-09 Sionyx, Llc Shallow trench textured regions and associated methods
US10361083B2 (en) 2004-09-24 2019-07-23 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US10505054B2 (en) 2010-06-18 2019-12-10 Sionyx, Llc High speed photosensitive devices and associated methods

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057256B2 (en) 2001-05-25 2006-06-06 President & Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices
DE102006003607A1 (de) * 2006-01-25 2007-08-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur lokalen Dotierung von Festkörpern sowie dessen Verwendung
AU2007220596B2 (en) * 2006-02-28 2012-07-12 Basf Se Antimicrobial compounds
US8203433B2 (en) * 2006-05-04 2012-06-19 Intermec Ip Corp. Method for commissioning an RFID network
JP2008283069A (ja) * 2007-05-11 2008-11-20 Sony Corp 照射装置、半導体装置の製造装置、半導体装置の製造方法および表示装置の製造方法
US20090239363A1 (en) * 2008-03-24 2009-09-24 Honeywell International, Inc. Methods for forming doped regions in semiconductor substrates using non-contact printing processes and dopant-comprising inks for forming such doped regions using non-contact printing processes
KR100974221B1 (ko) 2008-04-17 2010-08-06 엘지전자 주식회사 레이저 어닐링을 이용한 태양전지의 선택적 에미터형성방법 및 이를 이용한 태양전지의 제조방법
US8053867B2 (en) 2008-08-20 2011-11-08 Honeywell International Inc. Phosphorous-comprising dopants and methods for forming phosphorous-doped regions in semiconductor substrates using phosphorous-comprising dopants
US8679959B2 (en) * 2008-09-03 2014-03-25 Sionyx, Inc. High sensitivity photodetectors, imaging arrays, and high efficiency photovoltaic devices produced using ion implantation and femtosecond laser irradiation
US7951696B2 (en) * 2008-09-30 2011-05-31 Honeywell International Inc. Methods for simultaneously forming N-type and P-type doped regions using non-contact printing processes
US20100147383A1 (en) * 2008-12-17 2010-06-17 Carey James E Method and apparatus for laser-processing a semiconductor photovoltaic apparatus
EP2380213A1 (en) * 2008-12-17 2011-10-26 Sionyx, Inc. Method and apparatus for laser-processing a semiconductor photovoltaic apparatus
US8518170B2 (en) 2008-12-29 2013-08-27 Honeywell International Inc. Boron-comprising inks for forming boron-doped regions in semiconductor substrates using non-contact printing processes and methods for fabricating such boron-comprising inks
US7820532B2 (en) * 2008-12-29 2010-10-26 Honeywell International Inc. Methods for simultaneously forming doped regions having different conductivity-determining type element profiles
FR2941156A1 (fr) * 2009-01-19 2010-07-23 Cummins Filtration Dispositif de filtration pour liquide circulant dans un moteur ou un equipement hydraulique, comprenant des moyens de chauffage du liquide jouxtant les moyens de filtration
EP2396810B1 (en) * 2009-02-11 2016-06-08 NewSouth Innovations Pty Limited Photovoltaic device structure and method
DE102009010841A1 (de) 2009-02-27 2010-09-02 Jenoptik Automatisierungstechnik Gmbh Laserkristallisation durch Bestrahlung
US20100224229A1 (en) * 2009-03-09 2010-09-09 Pralle Martin U Multi-junction semiconductor photovoltaic apparatus and methods
EP2412030A2 (en) * 2009-03-26 2012-02-01 BP Corporation North America Inc. Apparatus and method for solar cells with laser fired contacts in thermally diffused doped regions
US8207051B2 (en) 2009-04-28 2012-06-26 Sionyx, Inc. Semiconductor surface modification
JP2010283339A (ja) * 2009-05-02 2010-12-16 Semiconductor Energy Lab Co Ltd 光電変換装置及びその作製方法
DE102009022018A1 (de) 2009-05-19 2010-11-25 Rena Gmbh Metallisierungsverfahren zur Herstellung von Solarzellen
KR101155563B1 (ko) * 2009-05-27 2012-06-19 주식회사 효성 레이저를 이용한 태양전지 제조방법
US8324089B2 (en) 2009-07-23 2012-12-04 Honeywell International Inc. Compositions for forming doped regions in semiconductor substrates, methods for fabricating such compositions, and methods for forming doped regions using such compositions
KR102234065B1 (ko) * 2009-09-17 2021-03-31 사이오닉스, 엘엘씨 감광성 이미징 장치 및 이와 관련된 방법
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9673243B2 (en) 2009-09-17 2017-06-06 Sionyx, Llc Photosensitive imaging devices and associated methods
WO2011038718A2 (de) 2009-09-30 2011-04-07 Systaic Cells Gmbh Behandlung und herstellung selektiver emitter von solarzellen
EP2502277A2 (en) 2009-11-18 2012-09-26 Solar Wind Technologies, Inc. Method of manufacturing photovoltaic cells, photovoltaic cells produced thereby and uses thereof
US8796060B2 (en) 2009-11-18 2014-08-05 Solar Wind Technologies, Inc. Method of manufacturing photovoltaic cells, photovoltaic cells produced thereby and uses thereof
US8586862B2 (en) 2009-11-18 2013-11-19 Solar Wind Technologies, Inc. Method of manufacturing photovoltaic cells, photovoltaic cells produced thereby and uses thereof
DE102009053776A1 (de) 2009-11-19 2011-06-01 Systaic Cells Gmbh Emitterbildung mit einem Laser
DE102009059193B4 (de) * 2009-12-17 2024-02-15 Innolas Solutions Gmbh Verfahren zur Dotierung von Halbleitermaterialien
DE102010044480A1 (de) 2010-09-03 2012-03-08 Institut Für Photonische Technologien E.V. Verfahren und Vorrichtung zur Herstellung einer Dünnschichtsolarzelle
DE102010048522A1 (de) 2010-10-14 2012-04-19 Manz Automation Ag Optisches System mit kaskadierten, verstellbaren Strahlteilern
DE102010061296A1 (de) 2010-12-16 2012-06-21 Schott Solar Ag Verfahren zum Herstellen von elektrisch leitenden Kontakten auf Solarzellen sowie Solarzelle
WO2012088319A2 (en) 2010-12-21 2012-06-28 Sionyx, Inc. Semiconductor devices having reduced substrate damage and associated methods
KR101046953B1 (ko) * 2011-01-20 2011-07-06 주식회사 엘티에스 레이저를 이용한 태양전지의 선택적 에미터 제조장치
KR102025522B1 (ko) 2011-03-10 2019-11-26 사이오닉스, 엘엘씨 3차원 센서, 시스템, 및 관련 방법
DE102011107605A1 (de) 2011-06-30 2013-01-03 Iai Industrial Systems B.V. Verfahren zur Herstellung mono- oder polykristalliner Solarzellen basierend auf n-Silizium
JP5853333B2 (ja) * 2011-08-12 2016-02-09 株式会社ブイ・テクノロジー レーザードーピング方法及びレーザードーピング装置
US8629294B2 (en) 2011-08-25 2014-01-14 Honeywell International Inc. Borate esters, boron-comprising dopants, and methods of fabricating boron-comprising dopants
US8865507B2 (en) 2011-09-16 2014-10-21 Sionyx, Inc. Integrated visible and infrared imager devices and associated methods
US8664015B2 (en) * 2011-10-13 2014-03-04 Samsung Sdi Co., Ltd. Method of manufacturing photoelectric device
US8975170B2 (en) 2011-10-24 2015-03-10 Honeywell International Inc. Dopant ink compositions for forming doped regions in semiconductor substrates, and methods for fabricating dopant ink compositions
DE102011055604A1 (de) * 2011-11-22 2013-05-23 Helmholtz-Zentrum Dresden - Rossendorf E.V. Funktionalisierte Festkörperoberflächen von Metallen, Halbleitern und Isolatoren mit Nanostrukturen
DE102012202367A1 (de) 2012-02-16 2013-08-22 Robert Bosch Gmbh Verfahren und Anordnung zur Herstellung einer Halbleitereinrichtung
US9064764B2 (en) 2012-03-22 2015-06-23 Sionyx, Inc. Pixel isolation elements, devices, and associated methods
DE102012221409A1 (de) 2012-11-22 2014-05-22 Helmholtz-Zentrum Dresden - Rossendorf E.V. Funktionalisierte Festkörperoberflächen aus Zwei- und Mehrstoffsystemen mit Komposit-Nanostrukturen aus Metallen, Halbleitern und Isolatoren
JP6466346B2 (ja) 2013-02-15 2019-02-06 サイオニクス、エルエルシー アンチブルーミング特性を有するハイダイナミックレンジcmos画像センサおよび関連づけられた方法
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
DE102013112638A1 (de) 2013-11-15 2015-05-21 Universität Stuttgart Verfahren zur Herstellung rückseitenkontaktierter Solarzellen aus kristallinem Silizium
CN108352413B (zh) 2015-10-25 2021-11-02 索拉昂德有限公司 双面电池制造方法
CN105428224B (zh) * 2015-12-03 2018-06-12 上海大族新能源科技有限公司 硅片硼掺杂方法
DE102016107802A1 (de) 2016-04-27 2017-11-02 Universität Stuttgart Verfahren zur Herstellung rückseitenkontaktierter Solarzellen aus kristallinem Silizium

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3329704A (en) * 1964-04-07 1967-07-04 Jr Charles V Goebel Production of normal alpha, omega-dicyanoalkanes
US3420719A (en) * 1965-05-27 1969-01-07 Ibm Method of making semiconductors by laser induced diffusion
US3640782A (en) * 1967-10-13 1972-02-08 Gen Electric Diffusion masking in semiconductor preparation
US4147563A (en) * 1978-08-09 1979-04-03 The United States Of America As Represented By The United States Department Of Energy Method for forming p-n junctions and solar-cells by laser-beam processing
US4370175A (en) * 1979-12-03 1983-01-25 Bernard B. Katz Method of annealing implanted semiconductors by lasers
US4436557A (en) * 1982-02-19 1984-03-13 The United States Of America As Represented By The United States Department Of Energy Modified laser-annealing process for improving the quality of electrical P-N junctions and devices
JPH01248615A (ja) * 1988-03-30 1989-10-04 Nec Corp 半導体装置の製造方法
JPH02205668A (ja) * 1989-01-31 1990-08-15 Kobe Steel Ltd スパッタリングターゲット
US5316969A (en) * 1992-12-21 1994-05-31 Board Of Trustees Of The Leland Stanford Junior University Method of shallow junction formation in semiconductor devices using gas immersion laser doping
WO1995000865A1 (en) * 1993-06-17 1995-01-05 Xmr, Inc. Improved optical beam integration system
US5538564A (en) * 1994-03-18 1996-07-23 Regents Of The University Of California Three dimensional amorphous silicon/microcrystalline silicon solar cells
JP3669384B2 (ja) * 1995-08-22 2005-07-06 独立行政法人理化学研究所 半導体基板中へのドーピング層の形成方法
JPH10161195A (ja) * 1996-12-02 1998-06-19 Sony Corp オートフォーカス方法及びオートフォーカス装置
US5918140A (en) * 1997-06-16 1999-06-29 The Regents Of The University Of California Deposition of dopant impurities and pulsed energy drive-in
JP3639423B2 (ja) * 1997-12-26 2005-04-20 新日本無線株式会社 半導体熱拡散層の形成方法
DE19813188A1 (de) * 1998-03-25 1999-10-07 Siemens Solar Gmbh Verfahren zur einseitigen Dotierung eines Halbleiterkörpers
AUPP437598A0 (en) * 1998-06-29 1998-07-23 Unisearch Limited A self aligning method for forming a selective emitter and metallization in a solar cell
JP2001110864A (ja) * 1999-10-06 2001-04-20 Seiko Epson Corp 多結晶性半導体膜の検査方法および多結晶性半導体膜の検査装置
US6329704B1 (en) * 1999-12-09 2001-12-11 International Business Machines Corporation Ultra-shallow junction dopant layer having a peak concentration within a dielectric layer
US6531681B1 (en) * 2000-03-27 2003-03-11 Ultratech Stepper, Inc. Apparatus having line source of radiant energy for exposing a substrate
TW558861B (en) * 2001-06-15 2003-10-21 Semiconductor Energy Lab Laser irradiation stage, laser irradiation optical system, laser irradiation apparatus, laser irradiation method, and method of manufacturing semiconductor device
EP1329946A3 (en) * 2001-12-11 2005-04-06 Sel Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including a laser crystallization step
JP2003209271A (ja) * 2002-01-16 2003-07-25 Hitachi Ltd 太陽電池およびその製造方法
US7405114B2 (en) * 2002-10-16 2008-07-29 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and method of manufacturing semiconductor device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10741399B2 (en) 2004-09-24 2020-08-11 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US10361083B2 (en) 2004-09-24 2019-07-23 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
CN102017088B (zh) * 2008-01-31 2013-08-07 哈佛大学校长及研究员协会 在经脉冲激光照射而掺杂的材料上构造平坦表面
US8603902B2 (en) 2008-01-31 2013-12-10 President And Fellows Of Harvard College Engineering flat surfaces on materials doped via pulsed laser irradiation
CN101970168A (zh) * 2009-03-17 2011-02-09 无锡尚德太阳能电力有限公司 使用多个共定位辐射源来照射板件
WO2010105382A1 (en) * 2009-03-17 2010-09-23 Wuxi Suntech Power Co., Ltd. Irradiating a plate using multiple co-located radiation sources
CN102640263A (zh) * 2009-11-30 2012-08-15 应用材料公司 在半导体应用上的结晶处理
CN102640263B (zh) * 2009-11-30 2015-11-25 应用材料公司 在半导体应用上的结晶处理
CN103038898A (zh) * 2010-03-03 2013-04-10 森特瑟姆光伏股份有限公司 用于对半导体基底进行掺杂的方法和具有两级掺杂的太阳能电池
CN102222717A (zh) * 2010-04-16 2011-10-19 益通光能科技股份有限公司 形成太阳能电池的方法
US10229951B2 (en) 2010-04-21 2019-03-12 Sionyx, Llc Photosensitive imaging devices and associated methods
US10505054B2 (en) 2010-06-18 2019-12-10 Sionyx, Llc High speed photosensitive devices and associated methods
CN102142479A (zh) * 2010-12-18 2011-08-03 广东爱康太阳能科技有限公司 一种选择性发射极及氮化硅薄膜开槽同步实现工艺
US10269861B2 (en) 2011-06-09 2019-04-23 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
CN102263164A (zh) * 2011-07-06 2011-11-30 杨雪 硅太阳能电池金属半导体接触合金化制备工艺
US10244188B2 (en) 2011-07-13 2019-03-26 Sionyx, Llc Biometric imaging devices and associated methods
CN102723265B (zh) * 2012-06-18 2014-12-24 苏州阿特斯阳光电力科技有限公司 一种硅片的铝掺杂方法
CN102723265A (zh) * 2012-06-18 2012-10-10 苏州阿特斯阳光电力科技有限公司 一种硅片的铝掺杂方法
CN102916077A (zh) * 2012-09-27 2013-02-06 奥特斯维能源(太仓)有限公司 一种用于提高金属电极与晶体硅附着力的激光掺杂工艺
US10347682B2 (en) 2013-06-29 2019-07-09 Sionyx, Llc Shallow trench textured regions and associated methods
US11069737B2 (en) 2013-06-29 2021-07-20 Sionyx, Llc Shallow trench textured regions and associated methods
CN105793999A (zh) * 2013-09-27 2016-07-20 丹麦科技大学 纳米结构的硅基太阳能电池和生产纳米结构的硅基太阳能电池的方法

Also Published As

Publication number Publication date
DE102004036220B4 (de) 2009-04-02
JP2008507849A (ja) 2008-03-13
DE502005005402D1 (de) 2008-10-30
US20080026550A1 (en) 2008-01-31
KR20070049174A (ko) 2007-05-10
ES2314688T3 (es) 2009-03-16
ATE408895T1 (de) 2008-10-15
EP1738402A1 (de) 2007-01-03
WO2006012840A1 (de) 2006-02-09
EP1738402B1 (de) 2008-09-17
DE102004036220A1 (de) 2006-03-23

Similar Documents

Publication Publication Date Title
CN101053065A (zh) 用线性聚焦的激光束对固体进行激光掺杂以及基于所述方法制造太阳能电池发射极
US4151008A (en) Method involving pulsed light processing of semiconductor devices
US7517774B2 (en) Laser annealing method
US9431563B2 (en) Solar cell element and method for manufacturing solar cell element
JP2003258285A (ja) 表面凹凸構造の作製方法及び太陽電池
CN1614756A (zh) 半导体器件及其制造方法
JP5305431B2 (ja) 太陽光発電に用いられる半導体への不純物導入方法
WO2004109783A1 (ja) 半導体装置の製造方法
KR20130021365A (ko) 2단계 도핑을 가진 반도체 기판의 도핑 방법 및 태양전지
WO2011120089A1 (en) Control of laser processing steps in solar cell manufacture
EP1387396A2 (en) Method for fabricating semicondutor device
US20120077305A1 (en) Controlling laser annealed junction depth by implant modification
KR20120112586A (ko) 도핑 반도체 물질용 시스템 및 방법
US20120074117A1 (en) In-situ heating and co-annealing for laser annealed junction formation
KR101107766B1 (ko) 접합 형성 방법 및 이를 이용하여 형성된 피처리물
CN1706029A (zh) 薄膜半导体的制造方法
Bovatsek et al. High-speed fabrication of laser doping selective emitter solar cells using 532nm continuous wave (cw) and modelocked quasi-cw laser sources
Hettiarachchi et al. Solution grown double heterostructure on a large hybrid halide perovskite crystal
EP3291310B1 (en) Method of manufacturing a solar cell
DE102018132244B4 (de) Verfahren zur Herstellung von dotierten Halbleiterschichten
FR2552265A1 (fr) Procede de formation d'une jonction pn
Gaspar et al. Sequential Silicon Surface Melting and Atmospheric Pressure Phosphorus Doping for Crystalline Tunnel Junction Formation in Silicon/Perovskite Tandem Solar Cells
Nishimura et al. Improved electronic properties of laser-doped emitters by reducing surface roughness
KAHLERT Optics for laser crystallization technology
CN1702878A (zh) 半导体装置及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20071010