WO2006008963A1 - 位相合成ダイバーシティ受信機 - Google Patents

位相合成ダイバーシティ受信機 Download PDF

Info

Publication number
WO2006008963A1
WO2006008963A1 PCT/JP2005/012450 JP2005012450W WO2006008963A1 WO 2006008963 A1 WO2006008963 A1 WO 2006008963A1 JP 2005012450 W JP2005012450 W JP 2005012450W WO 2006008963 A1 WO2006008963 A1 WO 2006008963A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
feature extraction
modulated
frequency
modulation
Prior art date
Application number
PCT/JP2005/012450
Other languages
English (en)
French (fr)
Inventor
Yuji Yamamoto
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to US11/658,019 priority Critical patent/US20080031389A1/en
Priority to JP2006528924A priority patent/JP4361089B2/ja
Priority to EP05758203A priority patent/EP1770876A1/en
Publication of WO2006008963A1 publication Critical patent/WO2006008963A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/084Equal gain combining, only phase adjustments

Definitions

  • the present invention relates to a phase synthesis diversity receiver that suppresses the influence of multipath fading during reception and a reception method thereof.
  • a combination diversity reception system in which a plurality of reception antennas are provided, a plurality of modulation signals are combined and demodulated, There are proposed a space diversity reception method for selecting and receiving a reception antenna with good reception quality from among the reception antennas, and a reception method for canceling multi-nos distortion using an adaptive digital filter from a modulated signal.
  • Fig. 1 (a) is a block diagram showing a configuration of a receiver to which a conventional combined diversity reception system having two reception antennas is applied, and is disclosed in Japanese Patent Laid-Open No. 06-216815. It has the same configuration as the above.
  • this receiver includes two systems of receiving units RXa and RXb to which receiving antennas la and lb for receiving incoming radio waves are connected, an adder 7 and a demodulation circuit 8. It is configured.
  • Each receiving unit RXa, RXb includes RF amplifiers 2a, 2b, mixers 3a, 3b, IF amplifiers 4a, 4b, I
  • F filters 5a and 5b are provided.
  • the RF amplifiers 2a and 2b amplify the received signals by band limiting, and output the amplified signals to the mixers 3a and 3b.
  • band limiting band tuning according to the reception frequency is performed according to the control voltage to which the PLL circuit power (not shown) is supplied.
  • the outputs from the RF amplifiers 2a and 2b and the local oscillator 6 are output. Is multiplied by a local signal (local signal) to generate an intermediate frequency signal with a carrier frequency of 10.7 MHz, for example.
  • the IF filters 5a and 5b perform predetermined band division and supply them to the adder 7, whereby the IF filters 5a and 5b are output.
  • the added signal IFab obtained by adding the modulated signals IFA and IFB to be output is output from the adder 7, and the demodulated circuit 8 demodulates the added signal IFab to generate and output a demodulated signal.
  • the signal power of the addition signal IFab is doubled.
  • the reception quality can be improved under no flat fading.
  • FIG. 1 (b) is a block diagram showing a configuration of a receiver to which a conventional space diversity reception system including two reception antennas is applied.
  • this receiver is similar to the receiver of FIG. 1 (a) in that two receivers RXa, RXb and a local oscillator to which two receiving antennas 1a, lb are connected are connected. 6, demodulation circuits 8 a and 8 b, level extraction circuits 9 a and 9 b, noise extraction circuits 11 a and l ib corresponding to each system, and further a signal noise level comparison circuit 10 and a switching circuit 12. Configured.
  • the receiving antennas la and lb receive incoming radio waves and output high-frequency received signals
  • the receiving units RXa and RXb perform band tuning and the like, and the modulated signals IFA and IFB are sent to the demodulation circuits 8a and 8b.
  • the demodulation circuits 8a and 8b demodulate the modulation signals IFA and IFB to generate demodulation signals Sda and Sdb and supply them to the noise extraction circuits 11a and l ib and the switching circuit 12.
  • the level extraction circuits 9a and 9b extract the signal components of the respective modulation signals IFA and IFB and supply them to the signal noise level comparison circuit 10.
  • the noise extraction circuits 11a and l ib receive the demodulated signals Sda and Sd b The noise component contained in is extracted and supplied to the signal noise level comparison circuit 10.
  • the signal noise level comparison circuit 10 extracts the signal component and noise from the level extraction circuit 9a. Calculate the intensity ratio (DU ratio) with the noise component from circuit 11a, the intensity ratio (DU ratio) between the signal component from level extraction circuit 9b and the noise component from noise extraction circuit l ib, and By comparing the DU ratios of the two, control is performed so that the switching circuit 12 is switched to the system side where a large DU ratio is obtained.
  • the signal noise level comparison circuit 10 switches the switching circuit 12 to the demodulation circuit 8a side when the DU ratio of the system on the demodulation circuit 8a side is larger than the DU ratio of the system on the demodulation circuit 8b side.
  • the demodulated signal Sda with good reception quality is output.
  • the switch circuit 12 is switched to the demodulator circuit 8b side, and a demodulated signal Sdb with good reception quality is output.
  • a so-called desired wave extracted by the level extraction circuits 9a and 9b and a so-called disturbance extracted by the noise extraction circuits 11a and 1 lb.
  • the reception quality is improved by selecting a demodulated signal with a large DU ratio from the intensity ratio (DU ratio) with the wave (Undesired Wave).
  • selecting one of the demodulated signals Sda and Sdb output from the demodulating circuits 8a and 8b by the switching circuit 12 is substantially the same as receiving using one receiving antenna. Therefore, there is a problem that a sufficient effect cannot be obtained under frequency selective fuzzing with a force delayed wave which is an effective reception method under flat fading without a delayed wave.
  • FIG. 2 is a block diagram showing the configuration of a conventional receiver that employs the above-described method using an adaptive digital filter (hereinafter referred to as “phased array reception method”) and includes two reception antennas. is there.
  • phased array reception method an adaptive digital filter
  • this phased array receiver has two receivers RXa and RXb to which two receiving antennas la and lb are connected, and a local receiver.
  • the oscillator 6 includes an adaptive synthesis unit ADF, a tap coefficient changing unit 13, and a demodulation circuit 8.
  • receiving units RXa and RXb When receiving antennas la and lb receive incoming radio waves and output each received signal at a high frequency, receiving units RXa and RXb perform band tuning and output modulated signals IFA and IFB, and an adaptive combining unit The ADF converts these modulated signals IFA and IFB into digital data string signals by an AZD converter (not shown) and inputs them.
  • the adaptive synthesizer ADF taps the n-stage delay element Da that shifts the modulation signal IFA converted into the digital data string in synchronization with a predetermined sampling frequency, and the input / output of each delay element Da.
  • N + 1 coefficient multipliers (sign omitted) for multiplying coefficients a0 to an, n stages of delay elements Db that shift the signal IFB converted to digital data string in synchronization with a predetermined sampling frequency, and each delay element Db N + 1 coefficient multipliers (sign not shown) that multiply tap input and output by tap coefficients b0 to bn, and add all outputs of these 2n + 2 coefficient multipliers and add the signal Y (t ) And an adder 12 for outputting.
  • the adaptive synthesis unit ADF has a configuration as an equalizer having a feed-forward (FIR type) digital filter unit.
  • the tap coefficient changing unit 13 outputs the signal Y (t) output from the adder 12 and the signal Y (t-1) output one sampling period ago.
  • the envelope of signal Y (t) is detected by calculating the sum of squares SUM.
  • the error Err between the reference value K consisting of a constant value and the sum of squares SUM is calculated, and the tap coefficients a0 to an, b0 are brought close to the error Err force ⁇ .
  • ⁇ bn is adaptively variably adjusted.
  • the tap coefficient changing unit 13 automatically adjusts the multipath distortion by adaptively variably adjusting the coefficient coefficient tap coefficients a0 to an and b0 to bn so that the error Err approaches 0.
  • the signal Y (t) having a constant amplitude approximating the reference value (constant value) K is output from the adder 12.
  • the tap coefficient updating algorithm in the tap coefficient changing unit 13 is called CMA (Constant Modulus Algorithm).
  • CMA Constant Modulus Algorithm
  • the CMA can adaptively variably adjust the tap coefficients a0 to an and b0 to bn of the adaptive combining unit ADF to obtain multiple
  • the signal Y (t) corresponding to the modulated signal with suppressed path distortion is generated to improve the reception quality.
  • phased array reception type receiver it is possible to improve reception quality under both frequency selective fading and flat fading.
  • a frequency-selective Fading Daka FM wave is frequently generated, and the property of the FM modulation is constant regardless of the modulation signal, so that a modulation signal Y (t) having a constant amplitude is generated.
  • the CMA that variably adjusts the tap coefficients a0 to an and b0 to bn is widely used in receivers that receive FM broadcasts.
  • Patent Document 1 Japanese Patent Laid-Open No. 06-216815
  • each of the receivers of the above-described conventional combined diversity reception system, space diversity reception system, and phased array reception system has the following problems.
  • the IF filter 5a is used to frequency-divide the commonly used 10.7MHz intermediate frequency signal.
  • , 5b is made of ceramic filter.
  • the switching circuit 12 outputs the demodulated signals Sda and Sdb output from the demodulator circuits 8a and 8b. If one of these is selected, reception is actually performed using one receiving antenna. Therefore, there is a force delay wave force S that is an effective reception method under flat fusing without a delay wave. There is a problem that sufficient effects cannot be obtained under such frequency selective fading.
  • the conventional phased array reception type receiver shown in FIG. 2 has been developed in recent years in order to improve reception quality during reception under flat fading and frequency selective fading. It was made.
  • the adaptive synthesis unit ADF operates to generate and output a modulation signal Y (t) having a constant amplitude approximate to the reference value (constant value) K.
  • the modulation signal is limited to IFA and I FB force FM waves.
  • the present invention has been made in view of such conventional problems, and can improve reception quality for both FM modulated waves and AM modulated waves, and further flat fading. It is an object of the present invention to provide a receiver that is effective even under a frequency selective fading and a receiving method.
  • the invention of claim 1 is a phase combining diversity receiver having receiving means for generating and outputting a modulated signal of each of the signal powers received by a plurality of receiving antennas, wherein each of the modulated signals Extraction means for extracting the features of the envelope and outputting each feature extraction signal, and each feature extraction output from the feature extraction means Adding means for generating an added feature extraction signal by adding the signals; and each modulated signal is shifted by a predetermined delay time, and each modulated signal is multiplied by a tap coefficient.
  • the invention according to claim 6 is a reception method in a phase combining diversity receiver having receiving means for generating and outputting a modulated signal of each signal power received by a plurality of receiving antennas,
  • the feature extraction process of extracting the envelope of the modulation signal and generating each feature extraction signal, and adding each of the feature extraction signals generated in the feature extraction process generates an added feature extraction signal And adding each of the modulated signals by a predetermined delay time, multiplying the shifted signal by a tap coefficient to generate a multiplication result for each of the modulated signals, and
  • An adaptive synthesis step for generating a modulation signal as a prediction signal by adding, and the addition feature extraction signal for the modulation signal as the prediction signal generated in the adaptive synthesis step.
  • a tap coefficient changing step of automatically adjusting the tap coefficient so as to approximate the signal.
  • FIG. 1 is a block diagram showing a configuration of a receiver to which a conventional combined diversity reception system is applied and a receiver to which a space diversity reception system is applied.
  • FIG. 2 is a block diagram showing the configuration of a receiver to which a conventional space diversity reception method is applied.
  • FIG. 3 is a block diagram showing a configuration of a phase synthesis diversity receiver according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing a configuration of a phase combining diversity receiver according to an embodiment.
  • FIG. 5 is a block diagram showing a configuration of a main part of the phase synthesis diversity receiver shown in FIG. 4.
  • FIG. 6 is a block diagram showing a configuration of a main part of the phase combining diversity receiver shown in FIG.
  • FIG. 3 is a block diagram showing a configuration of a phase synthesis diversity receiver (hereinafter simply referred to as “receiver”) according to this embodiment.
  • this receiver includes a plurality of receiving units RXa and RXb to which a plurality of receiving antennas 10a and 10b are connected, and a demodulation circuit 70, an adaptive combining unit ADF, and a feature extracting unit 3
  • the number of receiving antennas and receiving units can be determined as an appropriate number, but as a typical case, in the present embodiment, two antennas 10a are used. , 10b is connected to two receivers RXa, RXb.
  • the receiving unit RXa performs band tuning or the like on the high-frequency received signal output from the receiving antenna 10a that receives the incoming radio wave, and outputs the modulated signal IFA.
  • the receiving unit RXb performs band tuning or the like on the high-frequency received signal output from the receiving antenna 10a to generate the modulated signal I
  • each receiving unit RXa, RXb outputs a local signal (local signal) output from the oral oscillator 20 and the receiving antennas 10a, 10b when channel selection is performed by a user or the like.
  • the intermediate frequency signal of the intermediate frequency is generated, and further, each of the intermediate frequency signals is amplified to perform band division, so that the feature extraction units 30, 40 and adaptive synthesis are performed.
  • the feature extraction unit 30 performs envelope detection on the amplitude of the modulation signal IFA, and extracts a predetermined frequency band component of the detected envelope detection signal, so that the feature of the modulation signal IFA subjected to AM modulation is extracted.
  • the feature extraction signal EVa indicating the feature of the modulation signal IFA that is subjected to FM modulation or the feature extraction signal EVa that indicates the feature of the FM-modulated signal is output.
  • Envelope detection means for detecting the modulation signal IFA with an envelope, and a low frequency for switching the cut-off frequency according to the broadcast selected by the user or the like.
  • a band-pass filter is provided.
  • the low-pass filter switches to the cut-off frequency fl associated with AM modulation, By passing the envelope detection signal, the AM modulated signal I
  • the low-pass filter switches to the cut-off frequency f2 associated with FM modulation and passes the envelope detection signal, thereby extracting the feature extraction signal having the characteristics of the modulation signal IFA that is FM modulated.
  • Output EVa The low-pass filter switches to the cut-off frequency f2 associated with FM modulation and passes the envelope detection signal, thereby extracting the feature extraction signal having the characteristics of the modulation signal IFA that is FM modulated.
  • the modulation signal IFA in the broadcast selected by the user or the like is AM-modulated or FM-modulated. It is necessary to know.
  • the low-pass filter determines the cutoff frequency of the low-pass filter according to the selection operation as the frequency f.
  • the cutoff frequency of the low-pass filter is set to the frequency f according to the selection operation.
  • the feature extraction unit 40 has the same configuration as the feature extraction unit 30. In other words, it is configured to have envelope detection means for detecting the amplitude of the modulation signal IFB and outputting the envelope detection signal, and a low-pass filter capable of switching the force-off frequency. .
  • the low-pass filter in the feature extraction unit 40 switches to the cutoff frequency fl and converts the envelope detection signal.
  • a feature extraction signal EVb indicating the features of the modulation signal IFB that is passed and AM-modulated is output.
  • the low-pass filter in the feature extraction unit 40 switches to the cut-off frequency f2 and outputs the envelope detection signal. Modulation signal that is passed through and FM modulated Feature extraction signal indicating the characteristics of IFB Outputs EVb.
  • the adding unit 50 adds the feature extraction signals EVa and EVb supplied from the feature extraction units 30 and 40 and taps the added signal (hereinafter referred to as "added feature extraction signal") Esum. This is supplied to the number changing unit 60.
  • the adaptive synthesizer ADF includes a so-called feedforward type first adaptive filter that inputs a modulation signal IFA, a feedforward type second adaptive filter that inputs a modulation signal IFB, and first and second adaptive filters.
  • the first adaptive filter shifts the input modulation signal IFA by a predetermined delay time, and includes tapped delay means having n delay elements (n is an appropriate integer) and input of each delay element. It is composed of n + 1 coefficient multipliers that multiply the output by tap coefficients! Speak.
  • the second adaptive filter includes a tapping delay means having n delay elements that shift the input modulation signal IFB by a predetermined delay time, and multiplies a tap coefficient by the input / output of each delay element n + 1 And having a coefficient unit.
  • the adder adds the outputs of the 2n + 2 coefficient units in total (ie, 2n + 2 outputs) to generate and output a modulation signal Y (t) as a prediction signal. To do.
  • the modulation signals IFA and IFB are input sequences IF At and IFBt for each delay time, the coefficient coefficient tap coefficients are ai and bi, and the modulation signal Y (t) as a prediction signal is the output sequence Yt for each delay time.
  • Variable i the modulation signals IFA and IFB are input sequences IF At and IFBt for each delay time, the coefficient coefficient tap coefficients are ai and bi, and the modulation signal Y (t) as a prediction signal is the output sequence Yt for each delay time.
  • the adaptive combining unit ADF performs the arithmetic processing represented by the following equation (3) and outputs the output sequence Yt that is a modulation signal.
  • the tap coefficient changing unit 60 calculates an error Err between the envelope of the modulation signal Y (t) and the amplitude of the added feature extraction signal Esum, so that the error Err approaches 0,
  • the tap coefficients a0 to an and b0 to bn of the adaptive synthesis unit ADF are adaptively modulated by the tap coefficient update signal EX.
  • each tap coefficient a0 to an and b0 to bn is adaptively enabled by the tap coefficient changing unit 60.
  • the demodulating circuit 70 demodulates the modulated signal Y (t) that is to be output from the adaptive combining unit ADF, and the demodulated signal Sd is generated and output.
  • the error Err between the envelope of the modulation signal Y (t) output from the adaptive synthesis unit ADF and the added feature extraction signal Esum approaches 0.
  • the modulation signal Y (t) can be approximated (similar) to the phase of the added feature extraction signal Esum. it can.
  • the modulation signal Y (t) output from the adaptive combining unit ADF is converted to the AM-modulated modulation signal IFA. Therefore, phase synthesis is performed so that it approximates to the added feature extraction signal Esum that is extracted based on IF B. Therefore, adaptive control is possible for AM-modulated modulation signals IFA and IFB. .
  • the modulation signal Y (t) output from the adaptive combining unit ADF is converted into an FM-modulated modulation signal IFA, Since phase synthesis is performed so as to approximate the added feature extraction signal Esum that has been extracted based on IFB, the adaptive control for the FM-modulated modulation signals IFA and IFB is possible.
  • the cut-off frequency fl of the low-pass filter in the feature extraction units 30, 40 should be originally obtained.
  • Detection signal (demodulated signal AM demodulated by demodulator circuit 70) If the frequency is set higher than the signal band of Sd (generally 5 kHz), it can be applied to an AM modulated wave.
  • the cutoff frequency fl of the low-pass filter is set to, for example, 10 kHz as a frequency higher than the signal band of the above-described AM detection signal Sd, the envelope of the AM-modulated modulation signals IFA and IFB
  • the detection signal (that is, the envelope detection signal having the characteristic of AM modulation) passes through the low-pass filter, and is supplied to the adding unit 50 as the feature extraction signals EVa and EVb. .
  • the tap coefficient changing unit 60 makes the tap coefficient so that the error Err between the addition feature extraction signal Esum and the signal Y (t), which has the AM modulation feature from the adding unit 50, approaches zero.
  • the adaptive synthesis unit ADF can phase-synthesize the modulated signal Y (t) with the phase of the AM-modulated modulation signals IFA and IFB in the same phase, and eliminate noise under flat fading. The effect can be maximized.
  • the cut-off frequency fl of the low-pass filter in the feature extraction units 30, 40 is set to a frequency higher than the signal band of the AM detection signal Sd, it can be applied to an AM modulated wave. It is possible to maximize the noise removal effect under flat fading.
  • the cut-off frequency f2 of the low-pass filter in the feature extraction unit 30, 40 is used as the frequency selective filter.
  • the frequency selective filter By setting the frequency lower than the AM fluctuation frequency (generally around 10Hz), the amplitude of the modulation signals IFA and IFB will fluctuate in AM due to the singing. It is possible to improve reception quality under frequency selective fading.
  • the cutoff frequency f2 of the low-pass filter is set to a frequency lower than the above-mentioned AM fluctuation frequency, for example, When set to 10 Hz, FM-modulated modulation signals IFA and IFB envelope detection signals (that is, almost flat envelope detection signals with FM modulation characteristics) pass through the low-pass filter.
  • the feature extraction signals EVa and EVb are supplied to the adding unit 50.
  • the tap coefficient changing unit 60 taps the error Err between the addition feature extraction signal Esum and the modulation signal Y (t), which has the FM modulation feature from the addition unit 50, to be close to zero.
  • the adaptive synthesizer ADF can phase-synthesize the modulated signal Y (t) with the phase of the FM-modulated modulation signals IFA and IFB in-phase in an adaptive manner, with flat fading and frequency selectivity. The reception quality can be improved under fading.
  • each IF filter for band division provided in the receivers RXa and RXb is formed of a ceramic filter
  • the adaptive synthesizer ADF performs phase synthesis.
  • variation in group delay can be absorbed.
  • each IF filter can be formed of a ceramic filter, and a process for adjusting variation in group delay is also required, so that mass productivity can be improved.
  • FIG. 4 is a block diagram showing the configuration of the phase combining diversity receiver of this embodiment, and the same or corresponding parts as those in FIG. 3 are denoted by the same reference numerals.
  • 5 and 6 are block diagrams showing the configuration of the main part.
  • FIG. 4 the configuration of the receiver of the present embodiment will be described in comparison with the receiver shown in FIG.
  • the receiving units RXa and RXb both have the same configuration, and RF amplifiers 14a and 14b that amplify high-frequency received signals output from the receiving antennas 10a and 10b that receive incoming radio waves, By multiplying the local signal (local signal) supplied from the oscillator 20 and the received signal from the RF amplifiers 14a and 14b, the mixers 15a and 15b that generate an intermediate frequency signal and the intermediate frequency signal are amplified.
  • the local oscillator 20 generates the above-described local signal in accordance with an instruction of a synchronization control signal LO supplied from a system controller 80 described later. Further, the system controller 20 supplies the tuning control signal LO to the local oscillator 20 in accordance with the channel selection command CNT that is also input by the user's isotropic force via the operation unit 90.
  • the adaptive synthesizer ADF is a tapped delay means having an n-stage delay element Da that inputs and shifts the modulation signal IFA in synchronization with the sampling frequency of the AZD conversions 18a and 18b (not shown)
  • the input and output of each delay element Da is multiplied by tap coefficients a0 to an, n + 1 coefficient units (symbol omitted), and the modulation signal IFB is input in synchronization with the above sampling frequency.
  • a tapped delay means having n stages of delay elements Db (symbol omitted), and n + 1 coefficient units (symbol omitted) for multiplying the input and output of each delay element Db by tap coefficients b0 to bn
  • An adder 19 that generates and outputs a modulation signal Y (t) as a prediction signal by adding all outputs of these 2n + 2 coefficient units is provided.
  • the adaptive synthesizer ADF outputs the modulation signal Y (t) as the output sequence Yi by performing the arithmetic processing represented by the above equation (3) on the input modulation signals IFA and IFB. To do.
  • the feature extraction unit 30 that inputs the modulation signal IFA and outputs the feature extraction signal EVa is formed by the envelope detection unit 31 and the low-pass filter 32, and the modulation signal IFB is generated.
  • a feature extraction unit 40 that inputs and outputs a feature extraction signal EVb is formed by an envelope detection unit 41 and a low-pass filter 42.
  • tap coefficients a0 to an , b0 to bn are provided with tap coefficient changing unit 70 that outputs tap coefficient update signal EX, demodulating circuit 70 that digitally demodulates modulated signal Y (t), system controller 80, and operating unit 90 It has been.
  • envelope detection circuits 31, 41, the low-pass filters 32, 42, and the system controller 80 have the configuration shown in FIG.
  • the envelope detection circuit 31 includes a delay element 310 having a delay time ⁇ corresponding to the reciprocal of the above sampling frequency, multipliers 311, 312 and an adder 313. .
  • multiplier 312 performs a square operation of modulated signal IFA
  • multiplier 311 performs a square operation of modulated signal IFA delayed by delay element 310
  • adder 313 performs multiplier 311.
  • 312 is added to output the envelope detection signal Ea indicating the envelope of the modulation signal IFA.
  • the modulation signal IFA and the envelope detection signal Ea are expressed as an input sequence IF A (t) and an output sequence Ea (t) for each sampling period, the arithmetic processing represented by the following equation (4) As a result, the envelope detection signal Ea (t) is generated and output.
  • the envelope detection circuit 41 has a configuration similar to that of the envelope detection circuit 31, and includes a delay element 410 having a delay time ⁇ corresponding to the reciprocal of the sampling frequency, multipliers 411, 41 2, and An adder 413 is included.
  • multiplier 412 performs a square operation of modulated signal IFB
  • multiplier 411 performs a square operation of modulated signal IFB delayed by delay element 410
  • adder 413 provides multiplier 411.
  • 412 is added to output the envelope detection signal Eb indicating the envelope of the modulation signal IFB.
  • the modulation signal IFB and the envelope detection signal Eb are represented by an input sequence IF B (t) and an output sequence Eb (t) for each sampling period, the arithmetic processing represented by the following equation (5) To generate and output an envelope detection signal Eb (t).
  • the low-pass filter 32 is composed of a calorie calculator 320, 321, 324, 325, delay elements 322, 323 having a delay time ⁇ corresponding to the reciprocal of the sampling frequency, and a multiplier. It is constituted by a second-order IIR type digital inductor having the coefficient multipliers 326, 327, 328, and 329.
  • the system controller 80 includes a tap coefficient storage unit 81 in which coefficient value data kl, k2, k3, and k4 for changing the coefficient values of the coefficient units 326, 327, 328, and 329 are stored in advance. Is provided.
  • the tuning control unit 82 in the system controller 80 sends the tuning control signal LO to the local oscillator 20
  • the coefficient value data kl, k2, k3, k4 associated with AM modulation to the tap coefficient register 326, 327, 328, 329
  • the cutoff frequency of the low-pass filter 32 is switched to the frequency fl.
  • the tuning control unit 82 in the system controller 80 supplies the tuning control signal LO to the oral oscillator 20 and the coefficient value data kl, k2, k3,
  • the cutoff frequency of the low-pass filter 32 is switched to the frequency f2 by supplying k4 to the tap coefficient register 81 force coefficient unit 326, 327, 328, 329.
  • the tuning control unit 82 selects whether the selected broadcast is AM-modulated or FM-modulated. Tap the coefficient value data kl, k2, k3, k4 associated with AM modulation, or the coefficient value data kl, k2, k3, k4 associated with FM modulation detected by the station command CNT. ⁇ ⁇ 81 Power and Coefficient Units 326, 327, 328, 329 are now supplied!
  • the cut-off frequency f 1 of the low-pass filter 32 corresponding to FM modulation is 1 OkHz
  • the cut-off frequency f 2 of the low-pass filter 32 corresponding to FM modulation is 1
  • Coefficient value data kl, k2, k3, k4 for setting to OHz is stored in the tap coefficient storage unit 81 in advance.
  • the low-pass filter 42 is also configured by a second-order I IR type digital inductor having the same configuration as the low-pass filter 32. That is, the Karo arithmetic units 420, 421, 424, 425, delay elements 422, 423 having a delay time corresponding to the reciprocal of the above sampling frequency, and multipliers 426, 427, 428, 429, which are multipliers, are provided. Consists of a secondary IIR type digital filter.
  • the tuning control unit 82 in the system controller 80 sends the tuning control signal LO to the local oscillator 20.
  • the coefficient value data kl, k2, k3, k4 associated with AM modulation is also supplied to the coefficient coefficient units 426, 427, 428, 429.
  • the cutoff frequency of the pass filter 42 is switched to the frequency (ie, 10 kHz) fl.
  • the tuning control unit 82 in the system controller 80 uses the tuning control signal LO as a whole.
  • the coefficient value data is supplied to the oscillator 20 and associated with the FM modulation.
  • the cutoff frequency of the low-pass filter 42 is set to the frequency (that is, 10 Hz) f2. Switch to.
  • the tap coefficient changing unit 60 includes a subtractor 61 that outputs an error Err by subtracting the modulation signal Y (t) as a prediction signal for the addition feature extraction signal Esum force, and a predetermined calculation so that the error Err approaches 0.
  • the adaptive synthesizer ADF includes a tap coefficient calculator 62 that calculates tap coefficients a0 to an and b0 to bn of the coefficient units in the ADF. Then, the tap coefficient calculation unit 62 adjusts the tap coefficients a0 to an and b0 to bn of each coefficient unit based on the tap coefficient update signal EX, thereby modulating the modulated signal Y that approximates the phase of the added feature extraction signal Esum. (t) is output from the adder 19.
  • the receivers RXa and RXb In response to the command from the system controller 80, the receivers RXa and RXb output the modulated signals IFA and IFB that have been subjected to AM modulation, and the envelope detection circuits 31, 41 output the modulated signals IFA and IFB. Envelope detection signals Ea and Eb indicating the envelope are output. Furthermore, according to a command from the system controller 80, the cutoff frequency fl of the low-pass filters 32 and 42 becomes 10 kHz, so that the envelope detection signals Ea and Eb pass through the low-pass filters 32 and 42.
  • the feature extraction signals EVa and EVb having the characteristics of the AM modulated wave are input to the adder 50, and the addition feature extraction signal Esum obtained by adding the feature extraction signals EVa and EVb from the adder 50 is the tap coefficient changing unit. Supplied to 60.
  • the adaptive synthesis unit ADF receives the modulation signals IFA and IFB, performs the arithmetic processing represented by the equation (3), and outputs the modulation signal Y (t) as a prediction signal.
  • the tap coefficient changing unit 60 adjusts each tap coefficient aO to an of the coefficient unit in the adaptive synthesis unit ADF so that the error Err between the modulation signal Y (t) and the added feature extraction signal Esum becomes 0.
  • b0 to bn are automatically adjusted to output the modulation signal Y (t) approximated to the phase of the added feature extraction signal Esum from the adaptive synthesis unit ADF
  • the modulation circuit 70 demodulates the modulation signal Y (t) This Outputs the demodulated signal Sd.
  • the adaptive synthesis unit ADF uses the phase of the AM-modulated modulated signals IFA and IFB. Can be combined in phase to synthesize the modulated signal Y (t), and the noise removal effect under flat fading can be maximized.
  • the receivers RXa and RXb In response to the command from the system controller 80, the receivers RXa and RXb output the modulation signals IFA and IFB that are FM-modulated, and the envelope detection circuits 31, 41 output the modulation signals IFA and IFB. Almost flat envelope detection signals Ea and Eb indicating the envelope are output.
  • the cutoff frequency f2 of the low-pass filters 32 and 42 is 10 Hz, so that almost the DC components of the envelope detection signals Ea and Eb are reduced by the low-pass filter 32. 42, and the feature extraction signals EVa and EVb having the characteristics of the FM modulated wave are input to the adder 50, and further the feature extraction signals EVa and EVb are added from the adder 50.
  • the signal Esum is supplied to the tap coefficient changing unit 60.
  • the adaptive synthesis unit ADF receives the modulation signals IFA and IFB, performs the arithmetic processing represented by the equation (3), and outputs the modulation signal Y (t) as a prediction signal.
  • the tap coefficient changing unit 60 adjusts the tap coefficients aO to an of the coefficient units in the adaptive synthesis unit ADF so that the error Err between the modulation signal Y (t) and the added feature extraction signal Esum becomes zero.
  • b0 to bn are automatically adjusted to output the modulation signal Y (t) approximated to the phase of the added feature extraction signal Esum from the adaptive synthesis unit ADF, and the modulation circuit 70 demodulates the modulation signal Y (t) This outputs the demodulated signal Sd.
  • the tap feature changing unit 60 when demodulating the FM modulated signal IFA, IFB power demodulated signal Sd, the tap feature changing unit 60 has the feature of the FM modulation and the added feature extraction signal Esum and the signal Y
  • the tap coefficient of the coefficient unit in the adaptive synthesizer ADF is adjusted so that the error Err with (t) approaches 0. Therefore, the adaptive synthesizer ADF performs the modulation signal IFA,
  • the modulation signal Y (t) can be phase-synthesized with the IFB phase adaptively in-phase, and reception quality can be improved under flat fading and frequency selective fading.
  • each IF filter 17a, 17b for band division provided in the receivers RXa, RXb is formed of a ceramic filter
  • the adaptive synthesizer A DF When phase synthesis is performed, variations in group delay can be absorbed. For this reason, each IF filter 17a, 17b can be formed of a ceramic filter, and a process for adjusting variation in group delay is also required, so that mass productivity can be improved. .
  • the receiver of this embodiment includes an adaptive synthesis unit ADF, envelope detection circuits 31, 41, low-pass filters 32, 42, an adder 50, and a tap coefficient changing unit 60, respectively. It can be configured with a digital signal processor (DSP), or it can be configured to perform all program processing!
  • DSP digital signal processor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

 本発明は、FM及びAM変調波に対する受信品質の向上等を図り、フラットフェージングと周波数選択性フェージング下においても有効な受信機を提供することを目的とする。  受信部RXa,RXbから出力される変調信号IFA,IFBを入力し、適応フィルタで適応処理を行うことにより予測信号としての変調信号Y(t)を生成する適応合成部ADFと、変調信号IFA,IFBの包絡線を特徴抽出して特徴抽出信号EVa,EVbを出力する特徴抽出部30,40と、特徴抽出信号EVa,EVbを加算して加算特徴抽出信号Esumを生成する加算部50と、変調信号Y(t)を加算特徴抽出信号Esumに近似させるように、適応合成部ADFの適応フィルタのタップ係数を調整するタップ係数変更部60を備えて構成する。そして、変調信号IFA,IFBがAM変調された信号である場合には、特徴抽出部30,40の通過周波数帯域を、AM復調される復調信号Sdの周波数帯域より高い所定周波数のカットオフ周波数f1に切り替え、変調信号IFA,IFBがFM変調された信号である場合には、特徴抽出部30,40の通過周波数帯域を、変調信号IFA,IFBの周波数選択性フェージングに起因して生じるAM変動周波数f2よりも低い所定周波数のカットオフ周波数に切り替える。

Description

明 細 書
位相合成ダイバーシティ受信機
技術分野
[0001] 本発明は、受信に際してマルチパスフェージングの影響を抑制する位相合成ダイ バーシティ受信機及びその受信方法に関する。
背景技術
[0002] 1つの受信アンテナによって放送電波を受信する車載型カーラジオ等の移動体受 信機にあっては、車両が移動すると、受信信号のレベルや位相が急激に変動するい わゆるマルチパスフェージングが発生し、受信品質の劣化を招くという問題がある。
[0003] 従来、このマルチパスフェージングに起因する受信品質劣化の防止対策として、複 数の受信アンテナを設けておき、複数の変調信号を合成して復調を行う合成ダイバ 一シティ受信方式と、複数の受信アンテナのうち受信品質の良好な受信アンテナを 選択して受信するスペースダイバーシティ受信方式と、変調信号から適応ディジタル フィルタを用いてマルチノ ス歪みをキャンセルする受信方式が提案されて 、る。
[0004] 図 1 (a)は、 2つの受信アンテナを備えた従来の合成ダイバーシティ受信方式を適 用した受信機の構成を表したブロック図であり、特開平 06— 216815号公報に開示 されたものと同様の構成を有している。
[0005] 図 1 (a)において、この受信機は、到来電波を受信する受信アンテナ la, lbが接続 された 2系統の受信部 RXa, RXbと、加算器 7及び復調回路 8を有して構成されてい る。
[0006] 各々の受信部 RXa, RXbは、 RFアンプ 2a, 2b、ミキサ 3a, 3b、 IFアンプ 4a, 4b、 I
Fフィルタ 5a, 5bを有して構成されている。
[0007] 受信アンテナ la, lbが到来電波を受信して高周波数の各受信信号を出力すると、
RFアンプ 2a, 2bが各々の受信信号を帯域制限して増幅し、ミキサ 3a, 3bへ出力す る。ここで、帯域制限に際して、図示しない PLL回路力も供給される制御電圧に従つ て、受信周波数に応じた帯域同調を行うようになって!/、る。
[0008] ミキサ 3a, 3bでは、 RFアンプ 2a, 2bの各出力とローカルオシレータ 6から出力され るローカル信号 (局発信号)との掛け合わせが行われ、搬送周波数が例えば 10. 7M Hzとなる中間周波信号が生成される。
[0009] そして、各々の中間周波信号を IFアンプ 4a, 4bが増幅した後、 IFフィルタ 5a, 5b が所定の帯域分割を行って加算器 7に供給することにより、 IFフィルタ 5a, 5bから出 力される変調信号 IFA, IFBが加算された加算信号 IFabが加算器 7から出力され、 その加算信号 IFabを復調回路 8が復調することによって、復調信号を生成して出力 する。
[0010] このように、合成ダイバーシティ受信方式を適用した受信機では、変調信号 IFA, I FBの位相が同相となる場合に、加算信号 IFabの信号電力が 2倍となることから、遅 延波の無いフラットフェージング下において受信品質を向上させることができる。
[0011] 特にキャリア周波数の低い AM放送波を受信する場合、その効果が大きぐ受信感 度の向上を図ることが可能である。
[0012] 図 1 (b)は、 2つの受信アンテナを備えた従来のスペースダイバーシティ受信方式を 適用した受信機の構成を表したブロック図である。
[0013] 図 1 (b)において、この受信機は、図 1 (a)の受信機と同様に、 2つの受信アンテナ 1 a, lbが接続される 2系統の受信部 RXa, RXbとローカルオシレータ 6を有すると共に 、各系統に対応する復調回路 8a, 8bとレベル抽出回路 9a, 9bとノイズ抽出回路 11a , l ibとを有し、更に、信号ノイズレベル比較回路 10及び切替回路 12を有して構成 されている。
[0014] 受信アンテナ la, lbが到来電波を受信して高周波数の各受信信号を出力すると、 受信部 RXa, RXbが帯域同調等を行って、変調信号 IFA, IFBを復調回路 8a, 8bと レベル抽出回路 9a, 9bに供給する。更に、復調回路 8a, 8bが変調信号 IFA, IFBを 復調することにより、復調信号 Sda, Sdbを生成してノイズ抽出回路 11a, l ibと切替 回路 12に供給する。
[0015] レベル抽出回路 9a, 9bは、各々の変調信号 IFA, IFBの信号成分を抽出して信号 ノイズレベル比較回路 10に供給し、ノイズ抽出回路 11a, l ibは、復調信号 Sda, Sd bに含まれて ヽるノイズ成分を抽出して信号ノイズレベル比較回路 10に供給する。
[0016] 信号ノイズレベル比較回路 10は、レベル抽出回路 9aからの信号成分とノイズ抽出 回路 11aからのノイズ成分との強度比(DU比)と、レベル抽出回路 9bからの信号成 分とノイズ抽出回路 l ibからのノイズ成分との強度比 (DU比)とを演算し、更に、両者 の DU比を比較して、大きな DU比が得られた系統側に切替回路 12を切り替えさせる ように制御する。
[0017] すなわち、信号ノイズレベル比較回路 10は、復調回路 8a側の系統の DU比が復調 回路 8b側の系統の DU比よりも大きい場合には、切替回路 12を復調回路 8a側に切 り替えさせ、受信品質の良好な復調信号 Sdaを出力させる。一方、復調回路 8b側の 系統の DU比が復調回路 8a側の系統の DU比よりも大きい場合には、切替回路 12を 復調回路 8b側に切り替えさせ、受信品質の良好な復調信号 Sdbを出力させる。
[0018] このように、スペースダイバーシティ受信方式を適用した受信機では、レベル抽出 回路 9a, 9bで抽出されるいわゆる希望波(Desired Wave)と、ノイズ抽出回路 11a, 1 lbで抽出されるいわゆる妨害波(Undesired Wave)との強度比(DU比)のうち、大き な DU比の得られる復調信号を選択することによって、受信品質の向上を図ることとし ている。
[0019] ただし、切替回路 12が復調回路 8a, 8bから出力される復調信号 Sda, Sdbのうちの 1つを選択することは、 1つの受信アンテナを使用して受信することと実質的に同じで あるため、遅延波の無いフラットフェージング下では有効な受信方式ではある力 遅 延波のある周波数選択性フ ージング下では十分な効果が得られな 、と 、う課題が ある。
[0020] 図 2は、上述の適応ディジタルフィルタを用いる方式 (以下「フェイズドアレイ受信方 式」と称する)を適用し、 2つの受信アンテナを備えた従来の受信機の構成を表した ブロック図である。
[0021] このフェイズドアレイ受信方式の受信機は、図 1 (a) (b)の受信機と同様に、 2つの 受信アンテナ la, lbが接続される 2系統の受信部 RXa, RXbと、ローカルオシレータ 6と、適応合成部 ADFと、タップ係数変更部 13と、復調回路 8を有して構成されてい る。
[0022] 受信アンテナ la, lbが到来電波を受信して高周波数の各受信信号を出力すると、 受信部 RXa, RXbが帯域同調等を行って変調信号 IFA, IFBを出力し、適応合成部 ADFが、それらの変調信号 IFA, IFBを図示していない AZD変換器でディジタル データ列の信号に変換して入力するようになっている。
[0023] ここで、適応合成部 ADFは、ディジタルデータ列に変換された変調信号 IFAを所 定サンプリング周波数に同期してシフトする n段の遅延素子 Daと、各遅延素子 Daの 入出力にタップ係数 a0〜anを乗算する n+ 1個の係数器 (符号省略)と、ディジタル データ列に変換された信号 IFBを所定サンプリング周波数に同期してシフトする n段 の遅延素子 Dbと、各遅延素子 Dbの入出力にタップ係数 b0〜bnを乗算する n+ 1個 の係数器 (符号省略)と、これら 2n+ 2個の係数器の全ての出力を加算して、その加 算結果である信号 Y(t)を出力する加算器 12とを有して構成されている。
[0024] 別言すれば、適応合成部 ADFは、フィードフォワード型(FIR型)のディジタルフィ ルタ部を有する等価器としての構成を有して 、る。
[0025] タップ係数変更部 13は、次式(1)で表されるように、加算器 12から出力される信号 Y(t)と 1サンプリング周期前に出力された信号 Y(t-1)との二乗和 SUMを演算すること によって、信号 Y(t)の包絡線を検出する。更に、次式(2)で表されるように、定数値か らなる基準値 Kと二乗和 SUMとの誤差 Errを演算し、誤差 Err力^に近づくようにタツ プ係数 a0〜an, b0〜bnを適応的に可変調整する。
[0026] [数 1]
SUM = Y(t) a + Y(t - 1 ) 2 ·■- ( 1 )
[0027] [数 2]
Figure imgf000006_0001
[0028] このように、タップ係数変更部 13は、誤差 Errが 0に近づくように係数器のタップ係 数 a0〜an, b0〜bnを適応的に可変調整することによって、マルチパス歪みを自動的 にキャンセルさせ、基準値 (定数値) Kに近似した一定振幅となる信号 Y(t)を加算器 1 2から出力させる。
[0029] なお、このタップ係数変更部 13におけるタップ係数更新アルゴリズムは、 CMA(Co nstant Modulus Algorithm)と呼ばれている。 [0030] そして、復調回路 8が、マルチパス歪みのキャンセルされた信号 Y(t)をディジタル復 調することにより、ディジタルデータ列力もなる復調信号を出力する。
[0031] 以上説明したように、従来のフェイズドアレイ受信方式の受信機では、 CMAによつ て適応合成部 ADFのタップ係数 a0〜an, b0〜bnを適応的に可変調整することにより 、マルチパス歪みを抑制した変調信号に相当する信号 Y(t)を生成して、受信品質の 向上を図ることとしている。
[0032] 更に、フェイズドアレイ受信方式の受信機では、周波数選択性フェージング下とフラ ットフェージング下の両方の状況において受信品質の向上を図ることが可能となって いる。
[0033] 特に、周波数選択性フェージンダカFM波で多く発生し、その FM変調の性質が変 調信号によらず振幅が一定であることから、一定振幅の変調信号 Y(t)を生成するよう にタップ係数 a0〜an, b0〜bnを可変調整する CMAは、 FM放送を受信する受信機 にお 、て広く利用されて 、る。
[0034] 特許文献 1 :特開平 06— 216815号公報
発明の開示
発明が解決しょうとする課題
[0035] ところで、上述した従来の合成ダイバーシティ受信方式と、スペースダイバーシティ 受信方式と、フェイズドアレイ受信方式の各受信機では、次のような問題があった。
[0036] まず、図 1 (a)に示した従来の合成ダイバーシティ受信方式の受信機では、一般に 使用されている 10. 7MHzの中間周波信号を周波数分割するために、 IFフィルタ 5a
, 5bがセラミックフィルタで形成されている。
[0037] このため、 IFフィルタ 5a, 5bの素子間での群遅延のばらつきが無視できなくなって
、加算器 7で合成される変調信号 IFA, IFBの位相が同相となるという要件が補償さ れ得なくなり、受信品質のさらなる向上を図ることが難しいという課題があった。
[0038] また、上述の素子間での群遅延のばらつきを低減するための調整が煩雑であり、当 該受信機の量産性の向上を図ることが困難となっていた。
[0039] また、合成ダイバーシティ受信方式の受信機では、変調信号 IFA, IFBの位相が同 相となるという要件が満たされた場合には、フラットフェージング下において受信品質 を向上させることができる力 周波数選択性フェージング下では効果が少ないという 問題がある。
[0040] 次に、図 1 (b)に示した従来のスペースダイバーシティ受信方式の受信機では、上 述したように、切替回路 12が復調回路 8a, 8bから出力される復調信号 Sda, Sdbのう ちの 1つを選択すると、実質的には、 1つの受信アンテナを使用して受信することとな るため、遅延波の無いフラットフ ージング下では有効な受信方式である力 遅延波 力 Sあるような周波数選択性フェージング下では十分な効果が得られな 、と 、う課題が ある。
[0041] 次に、図 2に示した従来のフェイズドアレイ受信方式の受信機は、近年開発された ものであり、フラットフェージングと周波数選択性フェージング下における受信に際し て、受信品質を向上させるためになされたものである。
[0042] しかし、 CMA〖こよると、適応合成部 ADFは基準値 (定数値) Kに近似した一定振 幅となる変調信号 Y(t)を生成して出力するように動作することから、変調信号 IFA, I FB力FM波である場合に限られてしまう。
[0043] このため、従来のフェイズドアレイ受信方式の受信機では、 FM変調された変調波 におけるマルチパス歪みを抑制することが可能である力 それ以外の変調波におけ るマルチパス歪みの抑制、例えば AM変調波におけるマルチパス歪み、又は、 AM 変調波と FM変調波との両者におけるマルチパス歪みを抑制することができな力つた
[0044] 本発明は、このような従来の問題に鑑みてなされたものであり、 FM変調波と AM変 調波との両者に対して受信品質の向上等を図ることができ、更にフラットフェージング 下と周波数選択性フェージング下にお!/ヽても有効な受信機と、その受信方法を提供 することを目的とする。
課題を解決するための手段
[0045] 請求項 1に記載の発明は、複数の受信アンテナによって受信された信号力 各々 の変調信号を生成して出力する受信手段を有する位相合成ダイバーシティ受信機 であって、前記各々の変調信号の包絡線の特徴を抽出し、各々の特徴抽出信号を 出力する特徴抽出手段と、前記特徴抽出手段より出力される前記各々の特徴抽出 信号を加算することで加算特徴抽出信号を生成する加算手段と、前記各々の変調 信号を所定遅延時間毎にシフトし、該シフトした信号にタップ係数を乗算することによ つて前記各々の変調信号毎の乗算結果を生成すると共に、前記乗算結果を加算す ることで予測信号としての変調信号を生成する適応合成手段と、前記適応合成手段 で生成される前記予測信号としての変調信号を前記加算特徴抽出信号に近似させ るように、前記タップ係数を自動調整するタップ係数変更手段と、を有することを特徴 とする。
[0046] 請求項 6に記載の発明は、複数の受信アンテナによって受信された信号力 各々 の変調信号を生成して出力する受信手段を有する位相合成ダイバーシティ受信機 における受信方法であって、前記各々の変調信号の包絡線の特徴を抽出し、各々 の特徴抽出信号を生成する特徴抽出工程と、前記特徴抽出工程で生成される前記 各々の特徴抽出信号を加算することで加算特徴抽出信号を生成する加算工程と、 前記各々の変調信号を所定遅延時間毎にシフトし、該シフトした信号にタップ係数を 乗算することによって前記各々の変調信号毎の乗算結果を生成すると共に、前記乗 算結果を加算することで予測信号としての変調信号を生成する適応合成工程と、前 記適応合成工程で生成される前記予測信号としての変調信号を前記加算特徴抽出 信号に近似させるように、前記タップ係数を自動調整するタップ係数変更工程とを有 することを特徴とする。
図面の簡単な説明
[0047] [図 1]従来の合成ダイバーシティ受信方式を適用した受信機とスペースダイバーシテ ィ受信方式を適用した受信機の構成を表したブロック図である。
[図 2]従来のスペースダイバーシティ受信方式を適用した受信機の構成を表したプロ ック図である。
[図 3]本発明の実施形態に係る位相合成ダイバーシティ受信機の構成を表したブロッ ク図である。
[図 4]実施例の位相合成ダイバーシティ受信機の構成を表したブロック図である。
[図 5]図 4に示した位相合成ダイバーシティ受信機要部の構成を表したブロック図で ある。 [図 6]更に、図 4に示した位相合成ダイバーシティ受信機要部の構成を表したブロック 図である。
発明を実施するための最良の形態
[0048] 発明を実施するための最良の形態について、図 3を参照して説明する。図 3は、こ の実施形態に係る位相合成ダイバーシティ受信機 (以下、単に「受信機」と称する)の 構成を表したブロック図である。
[0049] 図 3において、この受信機は、複数の受信アンテナ 10a, 10bが接続される複数の 受信部 RXa, RXbと、復調回路 70とを有する他、適応合成部 ADFと、特徴抽出部 3
0, 40と、加算部 50及びタップ係数変更部 60とを有して構成されている。
[0050] なお、受信アンテナと受信部との個数にっ 、ては、適宜の複数個に決めることがで きるものであるが、典型的な場合として、本実施形態では、 2個のアンテナ 10a, 10b が接続される 2系統の受信部 RXa, RXbを有した構成として 、る。
[0051] 受信部 RXaは、到来電波を受信する受信アンテナ 10aから出力される高周波数の 受信信号に帯域同調等し、変調信号 IFAを出力する。また、受信部 RXbも同様に、 受信アンテナ 10aから出力される高周波数の受信信号に帯域同調等し、変調信号 I
FBを出力する。
[0052] すなわち、各々の受信部 RXa, RXbは、ユーザー等によって選局が行われると、口 一カルオシレータ 20から出力されるローカル信号 (局発信号)と、受信アンテナ 10a, 10bから出力される高周波数の受信信号とを掛け合わすことで、中間周波数の中間 周波信号を生成し、更に、各々の中間周波信号を増幅して帯域分割を行うことにより 、特徴抽出部 30, 40及び適応合成部 ADFに供給するための変調信号 IFA, IFBを 出力する。
[0053] 特徴抽出部 30は、変調信号 IFAの振幅を包絡線検波し、検出した包絡線検波信 号の所定の周波数帯域成分を抽出することによって、 AM変調されている変調信号 I FAの特徴を示す特徴抽出信号 EVa、又は、 FM変調されている変調信号 IFAの特 徴を示す特徴抽出信号 EVaを出力する。
[0054] より詳細に特徴抽出部 30の構成を述べると、変調信号 IFAを包絡線検波する包絡 線検波手段と、ユーザー等が選局した放送に応じてカットオフ周波数を切り替える低 域通過型フィルタが設けられて 、る。
[0055] すなわち、ユーザー等が選局した放送の変調信号 IFAが AM変調されたものであ れば、低域通過型フィルタは、 AM変調に対応付けられているカットオフ周波数 flに 切り替えて、包絡線検波信号を通過させることにより、 AM変調されている変調信号 I
FAの特徴を有する特徴抽出信号 EVaを出力する。
[0056] 一方、ユーザー等が選択した放送の変調信号 IFA力FM変調されたものであれば
、低域通過型フィルタは、 FM変調に対応付けられているカットオフ周波数 f2に切り 替えて、包絡線検波信号を通過させることにより、 FM変調されている変調信号 IFA の特徴を有する特徴抽出信号 EVaを出力する。
[0057] ここで、低域通過型フィルタがカットオフ周波数 fl, f2を切り替える際の条件として、 ユーザー等が選択した放送における変調信号 IFAが AM変調されたもの力、 FM変 調されたものなのかを知る必要がある。
[0058] そこで、低域通過型フィルタは、ユーザー等が放送内容を AM変調して送信する放 送局を選んだ場合、その選択操作に応じて低域通過型フィルタのカットオフ周波数 を周波数 f 1に切り替え、ユーザー等が放送内容を FM変調して送信する放送局を選 んだ場合、その選択操作に応じて低域通過型フィルタのカットオフ周波数を周波数 f
2に切り替える。
[0059] 特徴抽出部 40は、特徴抽出部 30と同様の構成を有している。すなわち、変調信号 IFBの振幅を包絡線検波し、その包絡線検波信号を出力する包絡線検波手段と、力 ットオフ周波数を切り替えることが可能な低域通過型フィルタとを有して構成されてい る。
[0060] そして、放送内容を AM変調して送信する放送局がユーザー等によって選択される と、特徴抽出部 40内の低域通過型フィルタは、カットオフ周波数 flに切り替えて包絡 線検波信号を通過させ、 AM変調されて ヽる変調信号 IFBの特徴を示す特徴抽出 信号 EVbを出力する。
[0061] また、放送内容を FM変調して送信する放送局がユーザー等によって選択されると 、特徴抽出部 40内の低域通過型フィルタは、カットオフ周波数 f2に切り替えて包絡 線検波信号を通過させ、 FM変調されて ヽる変調信号 IFBの特徴を示す特徴抽出信 号 EVbを出力する。
[0062] 次に、加算部 50は、特徴抽出部 30, 40から供給される特徴抽出信号 EVa, EVb を加算し、その加算した信号 (以下「加算特徴抽出信号」と称する) Esumをタップ係 数変更部 60に供給する。
[0063] 適応合成部 ADFは、変調信号 IFAを入力するいわゆるフィードフォワード型の第 1 適応フィルタと、変調信号 IFBを入力するフィードフォワード型の第 2適応フィルタと、 第 1,第 2適応フィルタの出力を加算する加算器とを有し、該加算器カゝら予測信号と しての変調信号 Y(t)を出力する。
[0064] すなわち、第 1適応フィルタは、入力する変調信号 IFAを所定の遅延時間ずっシフ トする n個 (nは適宜の整数)の遅延素子を有するタップ付き遅延手段と、各遅延素子 の入出力にタップ係数を乗算する n+ 1個の係数器とを有して構成されて!ヽる。
[0065] 第 2適応フィルタは、入力する変調信号 IFBを所定の遅延時間ずつシフトする n個 の遅延素子を有するタップ付き遅延手段と、各遅延素子の入出力にタップ係数を乗 算する n+ 1個の係数器とを有して構成されて!、る。
[0066] そして、加算器が、それら合計 2n+ 2個の係数器の出力(すなわち、 2n+ 2個の出 力)を加算することで、予測信号としての変調信号 Y(t)を生成して出力する。
[0067] つまり、変調信号 IFA, IFBを遅延時間毎の入力系列 IF At, IFBt、係数器のタップ 係数を ai, bi、予測信号としての変調信号 Y(t)を遅延時間毎の出力系列 Yt、変数 iを
0〜nまでの整数とすると、適応合成部 ADFは、次式(3)で表される演算処理を行つ て、変調信号である出力系列 Ytを出力する。
[0068] [数 3]
Yt= ∑ (ai- IFAt-i + bi- IFBt-i ) " - (3)
0
[0069] 次に、タップ係数変更部 60は、変調信号 Y(t)の包絡線と、加算特徴抽出信号 Esu mの振幅との誤差 Errを演算し、その誤差 Errが 0に近づくように、タップ係数更新信 号 EXによって適応合成部 ADFの各タップ係数 a0〜an, b0〜bnを適応的に可変調 整する。
[0070] そして、タップ係数変更部 60によって各タップ係数 a0〜an, b0〜bnが適応的に可 変調整されて、適応合成部 ADFから出力されることとなる変調信号 Y(t)を復調回路 7 0が復調することによって、復調信号 Sdを生成して出力する。
[0071] 以上説明したように、本実施形態の受信機によれば、適応合成部 ADFから出力さ れる変調信号 Y(t)の包絡線と加算特徴抽出信号 Esumとの誤差 Errが 0に近づくよう に、適応合成部 ADFのタップ係数 a0〜an, b0〜bnを調整することで、変調信号 Y(t) を加算特徴抽出信号 Esumの位相に近似させて (近づけさせて)合成することができ る。
[0072] このため、放送内容を AM変調して送信する放送局の放送波を受信する際には、 適応合成部 ADFから出力される変調信号 Y(t)が、 AM変調された変調信号 IFA, IF Bに基づいて特徴抽出された加算特徴抽出信号 Esumに近似することとなるように位 相合成が行われることとなるため、 AM変調された変調信号 IFA, IFBに対する適応 制御が可能である。
[0073] また、放送内容を FM変調して送信する放送局の放送波を受信する際には、適応 合成部 ADFから出力される変調信号 Y(t)が、 FM変調された変調信号 IFA, IFB〖こ 基づいて特徴抽出された加算特徴抽出信号 Esumに近似することとなるように位相合 成が行われることとなるため、 FM変調された変調信号 IFA, IFBに対する適応制御 が可能である。
[0074] 更に、放送内容を AM変調して送信する放送局の放送波を受信する際には、特徴 抽出部 30, 40内の低域通過型フィルタのカットオフ周波数 flを、本来求めるべき A M検波信号 (復調回路 70で AM復調される復調信号) Sdの信号帯域 (一般的には 5 kHzである)よりも高 、周波数に設定すれば、 AM変調波への適用が可能である。
[0075] すなわち、低域通過型フィルタのカットオフ周波数 flを、上述の AM検波信号 Sdの 信号帯域よりも高い周波数として例えば、 10kHzに設定すると、 AM変調された変調 信号 IFA, IFBの包絡線検波信号 (すなわち、 AM変調の特徴を有している包絡線 検波信号)が低域通過型フィルタを通過することとなり、特徴抽出信号 EVa, EVbとな つて加算部 50に供給されることになる。
[0076] このため、タップ係数変更部 60が、加算部 50からの AM変調の特徴を有することと なる加算特徴抽出信号 Esumと信号 Y(t)との誤差 Errを 0に近づけるようにタップ係数 を調整すると、適応合成部 ADFが、 AM変調された変調信号 IFA, IFBの位相を適 応的に同相にして変調信号 Y(t)を位相合成することができ、フラットフェージング下で のノイズ除去効果を最大にすることができる。
[0077] このように、特徴抽出部 30, 40内の低域通過型フィルタのカットオフ周波数 flを、 A M検波信号 Sdの信号帯域よりも高 、周波数に設定すれば、 AM変調波への適用が 可能であり、且つフラットフェージング下でのノイズ除去効果を最大にすることが可能 となっている。
[0078] 更に、放送内容を FM変調して送信する放送局の放送波を受信する際には、特徴 抽出部 30, 40内の低域通過型フィルタのカットオフ周波数 f2を、周波数選択性フエ 一ジングに起因して変調信号 IFA, IFBの振幅が AM変動することとなるその AM変 動周波数 (一般的には 10Hz程度である)よりも低い周波数に設定することにより、フ ラットフエージング下と周波数選択性フェージング下において、受信品質を向上させ ることがでさる。
[0079] すなわち、放送内容を FM変調して送信する放送局の放送波を受信する際に、低 域通過型フィルタのカットオフ周波数 f2を、上述の AM変動周波数よりも低 、周波数 として例えば、 10Hzに設定すると、 FM変調された変調信号 IFA, IFBの包絡線検 波信号 (すなわち、 FM変調の特徴を有しているほぼ平坦な包絡線検波信号)が低 域通過型フィルタを通過することとなり、特徴抽出信号 EVa, EVbとなって加算部 50 に供給されること〖こなる。
[0080] このため、タップ係数変更部 60が、加算部 50からの FM変調の特徴を有することと なる加算特徴抽出信号 Esumと変調信号 Y(t)との誤差 Errを 0に近づけるようにタップ 係数を調整すると、適応合成部 ADFが、 FM変調された変調信号 IFA, IFBの位相 を適応的に同相にして変調信号 Y(t)を位相合成することができ、フラットフェージング 下と周波数選択性フェージング下において、受信品質を向上させることができる。
[0081] このように、本実施形態の受信機によれば、 FM変調と AM変調との両者に対して 受信品質の向上等を図ることができ、更にフラットフェージング下と周波数選択性フエ 一ジング下における受信状況においても、マルチパス歪みの抑制を図ることが可能 である。 [0082] 更に、本実施形態の受信機によれば、受信部 RXa, RXbに設けられている帯域分 割用の各々の IFフィルタをセラミックフィルタで形成した場合、適応合成部 ADFが位 相合成を行うと、群遅延のばらつきを吸収することができる。このため、各々の IFフィ ルタをセラミックフィルタで形成することが可能となり、また、群遅延のばらつきを調整 するための工程も必要となるため、量産性の向上を図ることが可能である。
実施例
[0083] 次に、より具体的な実施例について、図 4ないし図 6を参照して説明する。図 4は、 本実施例の位相合成ダイバーシティ受信機の構成を表したブロック図であり、図 3と 同一又は相当する部分を同一符号で示している。また、図 5及び図 6は、要部の構成 を表したブロック図である。
[0084] まず、図 4において、本実施例の受信機の構成を、図 3に示した受信機と対比して 説明する。
[0085] 受信部 RXa, RXbは共に同様の構成を有しており、到来電波を受信する受信アン テナ 10a, 10bから出力される高周波数の受信信号を増幅する RFアンプ 14a, 14bと 、ローカルオシレータ 20から供給されるローカル信号(局発信号)と RFアンプ 14a, 1 4bからの上記受信信号とを掛け合わせることで、中間周波信号を生成するミキサ 15 a, 15bと、中間周波信号を増幅する IFアンプ 16a, 16bと、増幅された中間周波信 号を帯域分割することによって変調信号を出力する IFフィルタ 17a, 17bと、各々の 変調信号をディジタルデータ列の変調信号 IFA, IFBにアナログディジタル変換して 出力する AZD変翻 18a, 18bを有して構成されている。
[0086] ここで、ローカルオシレータ 20は、後述のシステムコントローラ 80から供給される同 調制御信号 LOの指示に従って上述のローカル信号を発生する。また、システムコン トローラ 20は、ユーザー等力も操作部 90を介して入力される選局指令 CNTに従って 、同調制御信号 LOをローカルオシレータ 20に供給するようになっている。
[0087] 適応合成部 ADFは、 AZD変翻 18a, 18bのサンプリング周波数に同期して、変 調信号 IFAを入力してシフトする n段の遅延素子 Daを有するタップ付き遅延手段 (符 号省略)と、各遅延素子 Daの入出力にタップ係数 a0〜anを乗算する n+ 1個の係数 器 (符号省略)と、同じく上述のサンプリング周波数に同期して、変調信号 IFBを入力 してシフトする n段の遅延素子 Dbを有するタップ付き遅延手段 (符号省略)と、各遅 延素子 Dbの入出力にタップ係数 b0〜bnを乗算する n+ 1個の係数器 (符号省略)と 、これら 2n+ 2個の係数器の全ての出力を加算することにより、予測信号としての変 調信号 Y(t)を生成して出力する加算器 19とを具備して構成されている。
[0088] したがって、適応合成部 ADFは、入力する変調信号 IFA, IFBに対し、前記式(3) で表される演算処理を行うことで、出力系列 Yiとしての変調信号 Y(t)を出力する。
[0089] 更に、本受信機では、変調信号 IFAを入力して特徴抽出信号 EVaを出力する特徴 抽出部 30が、包絡線検出部 31及び低域通過型フィルタ 32によって形成され、変調 信号 IFBを入力して特徴抽出信号 EVbを出力する特徴抽出部 40が、包絡線検出部 41及び低域通過型フィルタ 42によって形成されている。
[0090] そして更に、特徴抽出信号 EVa, EVbを加算する加算器 50と、加算器 50から出力 される加算特徴抽出信号 Esumと変調信号 Y(t)とに基づ 、てタップ係数 a0〜an, b0 〜bnを自動調整するためのタップ係数更新信号 EXを出力するタップ係数変更部 70 と、変調信号 Y(t)をディジタル復調する復調回路 70と、システムコントローラ 80、及び 操作部 90が設けられている。
[0091] ここで、包絡線検波回路 31, 41と低域通過型フィルタ 32, 42及びシステムコント口 ーラ 80は、図 5に示す構成を有している。
[0092] まず、包絡線検波回路 31は、上述のサンプリング周波数の逆数に相当する遅延時 間 ΔΤを有する遅延素子 310と、乗算器 311, 312及び加算器 313を有して構成さ れている。
[0093] そして、乗算器 312が、変調信号 IFAの 2乗演算を行い、乗算器 311が、遅延素子 310で遅延された変調信号 IFAの 2乗演算を行い、加算器 313が、乗算器 311, 31 2の出力を加算することで、変調信号 IFAの包絡線を示す包絡線検波信号 Eaを出 力する。
[0094] すなわち、変調信号 IFAと包絡線検波信号 Eaをサンプリング周期毎の入力系列 IF A(t)と出力系列 Ea(t)として表すものとすると、次式 (4)で表される演算処理を行うこと で、包絡線検波信号 Ea(t)を生成して出力する。
[0095] [数 4] Ea(t) = IFA(t— l)2 + IFA(t)2 …(4)
[0096] 包絡線検波回路 41も、包絡線検波回路 31と同様の構成を有し、上述のサンプリン グ周波数の逆数に相当する遅延時間 ΔΤを有する遅延素子 410と、乗算器 411, 41 2及び加算器 413を有して構成されて 、る。
[0097] そして、乗算器 412が、変調信号 IFBの 2乗演算を行い、乗算器 411が、遅延素子 410で遅延された変調信号 IFBの 2乗演算を行い、加算器 413が、乗算器 411, 41 2の出力を加算することで、変調信号 IFBの包絡線を示す包絡線検波信号 Ebを出 力する。
[0098] すなわち、変調信号 IFBと包絡線検波信号 Ebをサンプリング周期毎の入力系列 IF B(t)と出力系列 Eb(t)で表すものとすると、次式 (5)で表される演算処理を行うことで、 包絡線検波信号 Eb(t)を生成して出力する。
[0099] [数 5]
Eb(t) = IFB(t— I)2 + IFB(t)2 …(5)
[0100] 次に、低域通過型フイノレタ 32は、カロ算器 320, 321, 324, 325と、上述のサンプリ ング周波数の逆数に相当する遅延時間 ΔΤを有する遅延素子 322, 323と、乗算器 である係数器 326, 327, 328, 329とを有する 2次 IIR型デイジタノレフイノレタによって 構成されている。
[0101] ここで、システムコントローラ 80には、係数器 326, 327, 328, 329の各々の係数 値を変更するための係数値データ kl, k2, k3, k4を予め記憶したタップ係数記憶部 81が設けられている。
[0102] そして、ユーザー等が操作部 90を介して、放送内容を AM変調して送信する放送 局を選局すると、システムコントローラ 80内の同調制御部 82が、同調制御信号 LOを ローカルオシレータ 20に供給すると共に、 AM変調に対応付けられて ヽる係数値デ ータ kl, k2, k3, k4をタップ係数記'隐咅 81力ら係数器 326, 327, 328, 329に供給 させることにより、低域通過型フィルタ 32のカットオフ周波数を周波数 flに切り替えさ せる。
[0103] また、ユーザー等が操作部 90を介して、放送内容を FM変調して送信する放送局 を選局すると、システムコントローラ 80内の同調制御部 82が、同調制御信号 LOを口 一カルオシレータ 20に供給すると共に、 FM変調に対応付けられて 、る係数値デー タ kl, k2, k3, k4をタップ係数記'隐咅 81力ら係数器 326, 327, 328, 329に供給さ せることにより、低域通過型フィルタ 32のカットオフ周波数を周波数 f2に切り替えさせ る。
[0104] つまり、ユーザー等が操作部 90を介して所望の放送局を選局すると、同調制御部 82は、その選局された放送が AM変調されたもの力 FM変調されたものかを選局指 令 CNTによって検知し、 AM変調に対応付けられている係数値データ kl, k2, k3, k 4、又は FM変調に対応付けられている係数値データ kl, k2, k3, k4をタップ係数記 '隐咅 81力ら係数器 326, 327, 328, 329に供給するようになって!/、る。
[0105] なお、本実施例では、 FM変調に対応する低域通過型フィルタ 32のカットオフ周波 数 f 1を 1 OkHz、 FM変調に対応する低域通過型フィルタ 32のカツトオフ周波数 f 2を 1 OHzに設定するための係数値データ kl, k2, k3, k4が、タップ係数記憶部 81に予め 記憶されている。
[0106] 次に、低域通過型フィルタ 42も、低域通過型フィルタ 32と同様の構成を有した 2次 I IR型デイジタノレフイノレタにて構成されている。すなわち、カロ算器 420, 421, 424, 42 5と、上述のサンプリング周波数の逆数に相当する遅延時間を有する遅延素子 422, 423と、乗算器である係数器 426, 427, 428, 429とを有する 2次 IIR型デイジタノレフ ィルタによって構成されて 、る。
[0107] そして、ユーザー等が操作部 90を介して、放送内容を AM変調して送信する放送 局を選局すると、システムコントローラ 80内の同調制御部 82が、同調制御信号 LOを ローカルオシレータ 20に供給すると共に、 AM変調に対応付けられて ヽる係数値デ ータ kl, k2, k3, k4をタップ係数記憶咅 81力も係数器 426, 427, 428, 429に供給 させることにより、低域通過型フィルタ 42のカットオフ周波数を周波数 (すなわち、 10 kHz) flに切り替えさせる。
[0108] また、ユーザー等が操作部 90を介して、放送内容を FM変調して送信する放送局 を選局すると、システムコントローラ 80内の同調制御部 82が、同調制御信号 LOを口 一カルオシレータ 20に供給すると共に、 FM変調に対応付けられて 、る係数値デー タ kl, k2, k3, k4をタップ係数記憶咅 81力も係数器 426, 427, 428, 429に供給さ せることにより、低域通過型フィルタ 42のカットオフ周波数を周波数 (すなわち、 10H z) f2に切り替えさせる。
[0109] 次に、タップ係数変更部 60の構成を図 6に基づいて説明する。
タップ係数変更部 60は、加算特徴抽出信号 Esum力も予測信号としての変調信号 Y(t)を減算することによって誤差 Errを出力する減算器 61と、誤差 Errを 0に近づける ベく、所定の演算アルゴリズムに基づ 、て適応合成部 ADF内の係数器のタップ係数 a0〜an, b0〜bnを演算するタップ係数演算部 62とを備えて構成されている。そして、 タップ係数演算部 62が、タップ係数更新信号 EXに基づいて各々の係数器のタップ 係数 a0〜an, b0〜bnを調整することにより、加算特徴抽出信号 Esumの位相に近似 した変調信号 Y(t)を加算器 19から出力させる。
[0110] 次に、力かる構成を有する本実施例の受信機の動作について説明する。
まず、ユーザー等が放送内容を AM変調して送信する放送局を選局した場合の動 作について説明する。
[0111] 力かる場合には、システムコントローラ 80からの指令に従って、受信部 RXa, RXbが AM変調された変調信号 IFA, IFBを出力し、包絡線検波回路 31, 41から変調信号 IFA, IFBの包絡線を示す包絡線検波信号 Ea, Ebが出力される。更に、システムコ ントローラ 80からの指令に従って、低域通過型フィルタ 32, 42のカットオフ周波数 fl が 10kHzとなるため、包絡線検波信号 Ea, Ebが低域通過型フィルタ 32, 42を通過 することとなり、 AM変調波の特徴を有した特徴抽出信号 EVa, EVbが加算器 50に 入力し、更に、加算器 50から特徴抽出信号 EVa, EVbが加算された加算特徴抽出 信号 Esumがタップ係数変更部 60に供給される。
[0112] 更に、適応合成部 ADFでは、変調信号 IFA, IFBを入力して、前記式(3)で表され る演算処理を行 、、予測信号として変調信号 Y(t)を出力する。
[0113] そして、タップ係数変更部 60が、その変調信号 Y(t)と加算特徴抽出信号 Esumとの 誤差 Errが 0になるように適応合成部 ADF内の係数器の各タップ係数 aO〜an, b0〜 bnを自動調整することにより、加算特徴抽出信号 Esumの位相に近似した変調信号 Y (t)を適応合成部 ADFから出力させ、その変調信号 Y(t)を変調回路 70が復調するこ とで復調信号 Sdを出力する。
[0114] このように、 AM変調された変調信号 IFA, IFB力 復調信号 Sdを復調する際には 、タップ係数変更部 60が AM変調の特徴を有することとなる加算特徴抽出信号 Esum と信号 Y(t)との誤差 Errを 0に近づけるように、適応合成部 ADF内の係数器のタップ 係数を調整することとなるため、適応合成部 ADFが、 AM変調された変調信号 IFA, IFBの位相を適応的に同相にして変調信号 Y(t)を位相合成することができ、フラット フェージング下でのノイズ除去効果を最大にすることができる。
[0115] 次に、ユーザー等が放送内容を FM変調して送信する放送局を選局した場合の動 作について説明する。
[0116] 力かる場合には、システムコントローラ 80からの指令に従って、受信部 RXa, RXbが FM変調された変調信号 IFA, IFBを出力し、包絡線検波回路 31, 41から変調信号 IFA, IFBの包絡線を示すほぼ平坦な包絡線検波信号 Ea, Ebが出力される。
[0117] 更に、システムコントローラ 80からの指令に従って、低域通過型フィルタ 32, 42の カットオフ周波数 f2が 10Hzとなるため、包絡線検波信号 Ea, Ebのほぼ直流成分が 低域通過型フィルタ 32, 42を通過することとなり、 FM変調波の特徴を有した特徴抽 出信号 EVa, EVbが加算器 50に入力し、更に、加算器 50から特徴抽出信号 EVa, EVbが加算された加算特徴抽出信号 Esumがタップ係数変更部 60に供給される。
[0118] 一方、適応合成部 ADFでは、変調信号 IFA, IFBを入力して、前記式(3)で表さ れる演算処理を行 、、予測信号として変調信号 Y(t)を出力する。
[0119] そして、タップ係数変更部 60が、その変調信号 Y(t)と加算特徴抽出信号 Esumとの 誤差 Errが 0になるように適応合成部 ADF内の係数器の各タップ係数 aO〜an, b0〜 bnを自動調整することにより、加算特徴抽出信号 Esumの位相に近似した変調信号 Y (t)を適応合成部 ADFから出力させ、その変調信号 Y(t)を変調回路 70が復調するこ とで復調信号 Sdを出力する。
[0120] このように、 FM変調された変調信号 IFA, IFB力 復調信号 Sdを復調する際には 、タップ係数変更部 60が FM変調の特徴を有することとなる加算特徴抽出信号 Esum と信号 Y(t)との誤差 Errを 0に近づけるように、適応合成部 ADF内の係数器のタップ 係数を調整することとなるため、適応合成部 ADFが、 FM変調された変調信号 IFA, IFBの位相を適応的に同相にして変調信号 Y(t)を位相合成することができ、フラット フェージング下と周波数選択性フェージング下において、受信品質を向上させること ができる。
[0121] 以上説明したように、本実施例の受信機によれば、 FM変調と AM変調との両者に 対して受信品質の向上等を図ることができ、更にフラットフェージング下と周波数選択 性フェージング下における受信状況においても、マルチパス歪みの抑制を図ることが 可能である。
[0122] 更に、本実施例の受信機によれば、受信部 RXa, RXbに設けられている帯域分割 用の各々の IFフィルタ 17a, 17bをセラミックフィルタで形成した場合、適応合成部 A DFが位相合成を行うと、群遅延のばらつきを吸収することができる。このため、各々 の IFフィルタ 17a, 17bをセラミックフィルタで形成することが可能となり、また、群遅延 のばらつきを調整するための工程も必要となるため、量産性の向上を図ることが可能 である。
[0123] なお、本実施例の受信機は、適応合成部 ADFと、包絡線検波回路 31, 41と、低 域通過型フィルタ 32, 42、加算器 50、タップ係数変更部 60を夫々ハードウェアで形 成するようにしてもょ ヽし、ディジタルシグナルプロセッサ(DSP)を用いて!/ヽゎゆるプ ログラム処理を行う構成としてもょ 、。
[0124] また、適応合成部 ADFと包絡線検波回路 31, 41と低域通過型フィルタ 32, 42と 加算器 50とタップ係数変更部 60と復調回路 70と同等の機能を発揮するコンビユー タプログラムを作成し、そのコンピュータプログラムをパーソナルコンピュータ(PC)に 設けられて 、るマイクロプロセッサ (MPU)に実行させるようにしてもよ!、。

Claims

請求の範囲
[1] 複数の受信アンテナによって受信された信号力も各々の変調信号を生成して出力 する受信手段を有する位相合成ダイバーシティ受信機であって、
前記各々の変調信号の包絡線の特徴を抽出し、各々の特徴抽出信号を出力する 特徴抽出手段と、
前記特徴抽出手段より出力される前記各々の特徴抽出信号を加算することで加算 特徴抽出信号を生成する加算手段と、
前記各々の変調信号を所定遅延時間毎にシフトし、該シフトした信号にタップ係数 を乗算することによって前記各々の変調信号毎の乗算結果を生成すると共に、前記 乗算結果を加算することで予測信号としての変調信号を生成する適応合成手段と、 前記適応合成手段で生成される前記予測信号としての変調信号を前記加算特徴 抽出信号に近似させるように、前記タップ係数を自動調整するタップ係数変更手段と 、を有することを特徴とする位相合成ダイバーシティ受信機。
[2] 前記特徴抽出手段は、
前記各々の変調信号の包絡線を検波して、各々の包絡線検波信号を出力する包 絡線検波手段と、
前記各々の包絡線検波信号を通過させ、前記各々の特徴抽出信号として出力す る低域通過型フィルタ手段とを有することを特徴とする請求項 1に記載の位相合成ダ ィバーシティ受信機。
[3] 前記低域通過型フィルタ手段は、
前記受信手段から出力される前記変調信号が AM変調された信号である場合には 、 AM復調される復調信号の周波数帯域より高い所定周波数のカットオフ周波数に 切り替え、前記受信手段から出力される前記変調信号が FM変調された信号である 場合には、前記受信手段から出力される前記変調信号の周波数選択性フ ージン グに起因して生じる AM変動周波数よりも低い所定周波数のカットオフ周波数に切り 替えることを特徴とする請求項 2に記載の位相合成ダイバーシティ受信機。
[4] 前記タップ係数変更手段は、
前記受信手段から出力される前記変調信号が FM変調された信号である場合には 、前記加算特徴抽出信号を所定値の基準信号に代えて、前記適応合成手段で生成 される前記予測信号としての変調信号を前記基準信号に近似させるように、前記タツ プ係数を自動調整することを特徴とする請求項 1〜3の何れか 1項に記載の位相合 成ダイバーシティ受信機。
[5] 更に、前記適応合成手段で生成される前記予測信号としての変調信号を復調する 復調手段を有することを特徴とする請求項 1〜4の何れか 1項に記載の位相合成ダイ バーシティ受信機。
[6] 複数の受信アンテナによって受信された信号力も各々の変調信号を生成して出力 する受信手段を有する位相合成ダイバーシティ受信機における受信方法であって、 前記各々の変調信号の包絡線の特徴を抽出し、各々の特徴抽出信号を生成する 特徴抽出工程と、
前記特徴抽出工程で生成される前記各々の特徴抽出信号を加算することで加算 特徴抽出信号を生成する加算工程と、
前記各々の変調信号を所定遅延時間毎にシフトし、該シフトした信号にタップ係数 を乗算することによって前記各々の変調信号毎の乗算結果を生成すると共に、前記 乗算結果を加算することで予測信号としての変調信号を生成する適応合成工程と、 前記適応合成工程で生成される前記予測信号としての変調信号を前記加算特徴 抽出信号に近似させるように、前記タップ係数を自動調整するタップ係数変更工程と 、を有することを特徴とする受信方法。
PCT/JP2005/012450 2004-07-22 2005-07-06 位相合成ダイバーシティ受信機 WO2006008963A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/658,019 US20080031389A1 (en) 2004-07-22 2005-07-06 Phase Synthesizing Diversity Receiver
JP2006528924A JP4361089B2 (ja) 2004-07-22 2005-07-06 位相合成ダイバーシティ受信機
EP05758203A EP1770876A1 (en) 2004-07-22 2005-07-06 Phase combining diversity receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004214276 2004-07-22
JP2004-214276 2004-07-22

Publications (1)

Publication Number Publication Date
WO2006008963A1 true WO2006008963A1 (ja) 2006-01-26

Family

ID=35785083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012450 WO2006008963A1 (ja) 2004-07-22 2005-07-06 位相合成ダイバーシティ受信機

Country Status (4)

Country Link
US (1) US20080031389A1 (ja)
EP (1) EP1770876A1 (ja)
JP (1) JP4361089B2 (ja)
WO (1) WO2006008963A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148787A (zh) * 2010-02-10 2011-08-10 思亚诺移动芯片有限公司 用于降低或消除接收信号噪声的方法、电路和系统
KR101779829B1 (ko) * 2011-10-07 2017-10-11 삼성전자주식회사 포락선 검출 장치 및 방법
KR101815942B1 (ko) * 2011-12-02 2018-01-09 삼성전자주식회사 엔벨로프를 검출하는 방법 및 장치
CN106301741B (zh) * 2016-08-24 2019-03-12 上海交通大学 一种基于信道频选特性的时频资源分配方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277324A (ja) * 1989-04-18 1990-11-13 Fujitsu Ltd ディジタル無線方式
JPH03502515A (ja) * 1988-02-11 1991-06-06 リリング ケニス エフ 多重通路伝送低減装置
JPH06164434A (ja) * 1992-11-24 1994-06-10 Toyota Central Res & Dev Lab Inc アダプティブアンテナ
JPH07336130A (ja) * 1994-06-08 1995-12-22 Toyota Central Res & Dev Lab Inc 移動体用アンテナ装置
JPH08331468A (ja) * 1995-03-28 1996-12-13 Pioneer Electron Corp テレビジョン信号受信装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035856B2 (ja) * 1978-10-28 1985-08-16 ヤマハ株式会社 受信機
US4797950A (en) * 1986-11-10 1989-01-10 Kenneth Rilling Multipath reduction system
US4939789A (en) * 1987-01-20 1990-07-03 Matsushita Electric Industrial Co., Ltd. Signal receiver for terrestrial and satellite broadcastings
US5929811A (en) * 1995-03-28 1999-07-27 Rilling; Kenneth F. Adaptive array with automatic loop gain control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03502515A (ja) * 1988-02-11 1991-06-06 リリング ケニス エフ 多重通路伝送低減装置
JPH02277324A (ja) * 1989-04-18 1990-11-13 Fujitsu Ltd ディジタル無線方式
JPH06164434A (ja) * 1992-11-24 1994-06-10 Toyota Central Res & Dev Lab Inc アダプティブアンテナ
JPH07336130A (ja) * 1994-06-08 1995-12-22 Toyota Central Res & Dev Lab Inc 移動体用アンテナ装置
JPH08331468A (ja) * 1995-03-28 1996-12-13 Pioneer Electron Corp テレビジョン信号受信装置

Also Published As

Publication number Publication date
US20080031389A1 (en) 2008-02-07
EP1770876A1 (en) 2007-04-04
JPWO2006008963A1 (ja) 2008-07-31
JP4361089B2 (ja) 2009-11-11

Similar Documents

Publication Publication Date Title
CN105515633B (zh) 用于实施信号质量度量和天线分集切换控制的方法和装置
JP2778936B2 (ja) 多重アンテナfm受信機
JP5766369B2 (ja) ダイバーシチ受信装置及びダイバーシチ受信方法
KR100522604B1 (ko) 다중 주파수 네트워크 방송 시스템에서의 채널 관리 방법및 장치
JP3836125B1 (ja) 復調装置、受信装置及び復調方法
JP2003037540A (ja) 放送信号受信装置及び放送信号処理方法
WO2006008963A1 (ja) 位相合成ダイバーシティ受信機
US20100029237A1 (en) Radio receiving apparatus and radio receiving method
EP1659707B1 (en) Apparatus and method for processing digital multimedia broadcast (DMB) signals
JP4892280B2 (ja) 受信装置及び適応アルゴリズム制御方法
JP2007208658A (ja) ダイバーシチ受信装置
JPWO2010097866A1 (ja) 受信装置
JP4735312B2 (ja) 受信装置とこれを用いた電子機器
JP4769182B2 (ja) ダイバーシティ受信装置
JP3845317B2 (ja) Fm受信機のマルチパス干渉除去装置および方法
JP2015109594A (ja) ダイバーシチ受信装置及びダイバーシチ受信方法
JP4066759B2 (ja) ダイバーシチ受信装置
JP4886642B2 (ja) 受信装置および受信方法
JP2007189316A (ja) ダイバーシティ受信装置
JP4627094B2 (ja) ダイバーシティ受信機
JP2009033497A (ja) 受信装置
US8611937B2 (en) FM receiving device and filtering method
JP2000013289A (ja) ダイバーシチ受信装置
JP2643902B2 (ja) ダイバーシティ受信装置
JP2003204273A (ja) デジタル放送受信機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006528924

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005758203

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005758203

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11658019

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11658019

Country of ref document: US