WO2005124388A1 - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
WO2005124388A1
WO2005124388A1 PCT/JP2005/011402 JP2005011402W WO2005124388A1 WO 2005124388 A1 WO2005124388 A1 WO 2005124388A1 JP 2005011402 W JP2005011402 W JP 2005011402W WO 2005124388 A1 WO2005124388 A1 WO 2005124388A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
characteristic
radar device
determination unit
receiving circuit
Prior art date
Application number
PCT/JP2005/011402
Other languages
English (en)
French (fr)
Inventor
Nobukazu Shima
Original Assignee
Fujitsu Ten Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ten Limited filed Critical Fujitsu Ten Limited
Priority to US10/596,096 priority Critical patent/US7429947B2/en
Priority to JP2006514847A priority patent/JPWO2005124388A1/ja
Priority to CN2005800013547A priority patent/CN1898578B/zh
Priority to EP05753290A priority patent/EP1760488B1/en
Priority to DE602005016404T priority patent/DE602005016404D1/de
Publication of WO2005124388A1 publication Critical patent/WO2005124388A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4021Means for monitoring or calibrating of parts of a radar system of receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4056Means for monitoring or calibrating by simulation of echoes specially adapted to FMCW
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters

Definitions

  • the present invention relates to an FM-CW radar apparatus using a transmission signal obtained by frequency-modulating (F M) a continuous wave (C W), and receiving a reflected wave by the transmission signal.
  • F M frequency-modulating
  • C W continuous wave
  • a transmission unit that radiates a transmission signal as an electromagnetic wave and a plurality of element antennas that receive the electromagnetic wave that reaches an object and receives the electromagnetic wave reflected from the object as a reception signal are provided.
  • An array antenna is provided.
  • Each element antenna is connected to a plurality of input terminals of the switching switch, and is selectively connected to one of the plurality of input terminals to an output terminal of the switching switch.
  • each antenna A radar with a common front end and a configuration in which each antenna is sequentially switched and connected eliminates the need to provide a high-frequency (RF) receiving circuit directly connected to each antenna and corresponding to each antenna Equipment is being developed.
  • RF radio frequency
  • It also has a transmitter, an array antenna, a switch, a receiver, and a digital signal processor.
  • the antennas in the array antenna are sequentially switched and connected, and digital beamforming is performed by the digital signal processor.
  • An FM-CW radar apparatus that performs processing to detect an object is disclosed in, for example, Japanese Patent Application Laid-Open No. H11-131168.
  • the switching switch selectively switches any of the antennas to a receiving unit that generates a beat signal, and a plurality of antennas are switched in one cycle of a frequency modulation repetition cycle. A part is selected, and switching connection is repeatedly performed between the selected antennas.
  • This configuration enables expensive sets of RF receivers, high-bandwidth mixers, analog-to-digital (AD) converters, and other expensive devices to be combined, regardless of the number of antennas.
  • the electronic scanning method is used in which the antennas are sequentially switched and the DBF processing is performed to detect the phase difference of the received signal.
  • the electronic scanning method is used in which the antennas are sequentially switched and the DBF processing is performed to detect the phase difference of the received signal.
  • an abnormality will be detected in the detection of the phase difference of the received signal.
  • the conventional FM-CW radar device disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 11-311668 discloses a receiving device including an RF receiving circuit, a high-band mixer, and an AD converter.
  • the circuit section has only one set. Since the received signal is processed by the receiving circuit section, even if the above-described characteristic change occurs in the receiving circuit section itself, the processing result is P2005 / 011402
  • the present invention makes it possible to make a self-judgment of the characteristic change of the receiving circuit unit by using the receiving circuit unit itself.
  • the object of the present invention is to provide a radar device capable of correcting its characteristics and outputting diag information when an abnormality occurs. Disclosure of the invention
  • a transmitting unit that radiates a transmission signal, a plurality of antennas that receive a reflected wave from an object due to the transmission signal, and output terminals of the plurality of antennas are provided.
  • a first switch section that is selectively switched and connected to the input terminal; and a part of the transmission signal, the reception signal from each antenna input to the input terminal of the first switch section being transmitted.
  • a down-converter for down-conversion using the first converter, an output of the down-converter, a second switch for selectively connecting the output of the down-converter to first to n-th filter circuits, and a first to n-th filter.
  • Each output of the filter circuit is input to the first to n-th AD converters, and a predetermined process is performed on the first to n-th output signals output from the first to n-th AD converters, Distance to or relative to the object
  • a digital signal processing unit for detecting a speed; and two output signals selected from first to n-th output signals output based on the received signal received by a specific antenna selected from the plurality of antennas.
  • a signal characteristic judging unit for judging a change in the characteristics of the first to n-th output signals and correcting the difference between the characteristics.
  • the signal characteristic determination unit compares the signal level and the phase or phase included in each of the first processed signal and the second processed signal, thereby determining the characteristics of the first to n-th output signals. Make a judgment of change I decided.
  • the signal characteristic determination unit controls the first switch to select a specific antenna of the plurality of antennas, and controls the second switch to control the first switch based on a reception signal of the specific antenna. If it is determined that there is the characteristic difference, the first to n-th regulators respectively connected to the input sides of the first to n-th AD converters are generated. And to correct the characteristic difference.
  • each of the first to n-th adjusters includes a variable gain amplifier and / or a variable phase shifter controlled by the signal characteristic judging unit.
  • the signal characteristic determining unit determines that there is the characteristic difference
  • the signal characteristic determining unit calculates a correction value for the first to n-th output signals according to the characteristic difference, and the digital signal processing unit performs the correction.
  • the first to n-th output signals are corrected based on the values.
  • the signal characteristic determination unit intermittently performs the determination process related to the characteristic change during a recognition process of detecting a distance to the object or a relative speed to the object by the digital signal processing unit. And When it is recognized that the relative distance to the object does not change, the signal characteristic determination unit performs a determination process related to the characteristic change.
  • the signal characteristic determination unit includes the device When it is recognized that the vehicle on which the vehicle is mounted is running and stopped, the determination process relating to the characteristic change is performed.
  • the signal characteristic determination unit performs a determination process related to the characteristic change when a signal level and / or phase of the first to n-th output signals is equal to or more than a predetermined value or within a predetermined range.
  • the characteristic determining unit stores the calculated correction value in association with the first to n-th output signals, and based on the first to n-th output signals corrected by the correction value. 2 the recognition process is executed.
  • the signal characteristic determination unit performs a determination process on a characteristic change of the first to n-th output signals in accordance with an external instruction.
  • the signal characteristic determination unit performs an initial adjustment of the device, Judgment processing relating to the characteristic change is performed, and when there is the characteristic change, the calculated correction value is stored in association with the first to n-th output signals.
  • the signal characteristic determination unit when determining that there is a change in the characteristic, notifies an external unit. If the signal characteristic determination unit determines that there is a change in the characteristic, the signal characteristic determination unit determines that there is a change in the characteristic. When is not within the predetermined range, the diag information is output to the outside.
  • the radar apparatus of the present invention it is not necessary to prepare a special correction device, and even during normal operation, a filter that accurately and quickly processes a received signal received by the array antenna. It is determined that there is a characteristic change in the receiving circuit system including the circuit and the AD conversion unit, or that a change has occurred. Based on the result, correction processing can be performed on the receiving circuit system. In the adjustment, it is possible to easily correct the variation of the characteristics of the received signal due to the difference in the processing performance of the receiving circuit system.Also, it is possible to always correct the temperature fluctuation due to the environmental change during operation, and to always improve the accuracy. Can be planned.
  • the radar apparatus of the present invention even if there is originally a performance difference among a plurality of receiving circuit systems provided corresponding to a plurality of receiving antennas, or aging of each receiving circuit system itself. Even if the characteristics of the receiver are degraded due to noise or abnormal operation of each receiver circuit during operation of the radar device, correction processing can be performed in response to changes in characteristics due to the abnormality. Accuracy can be improved. Brief Description of Drawings The present invention will be described below with reference to the accompanying drawings.
  • FIG. 1 is a diagram illustrating a basic configuration of an FM-CW type radar apparatus that performs digital beamforming.
  • FIG. 2 is a waveform diagram illustrating a characteristic change between output signals of the two receiving circuit systems after down-conversion in the radar device shown in FIG.
  • FIG. 3 is a waveform diagram illustrating a principle of correcting a characteristic difference between output signals of the two receiving circuit systems after down-compression in a radar apparatus using the FM_CW method.
  • FIG. 4 is a diagram illustrating a configuration according to an embodiment of a radar device according to the present invention.
  • FIG. 5 is a flowchart illustrating a procedure of a processing operation related to signal characteristic determination in the radar device according to the present invention.
  • FIG. 6 is a diagram illustrating a configuration of a radar device according to another embodiment of the present invention. Embodiment of the Invention
  • the radar device outputs, for example, a continuous wave of frequency-modulated triangular waves toward a target vehicle, such as a vehicle ahead, and receives a reflected wave from the transmitted wave. For example, the distance to the vehicle in front is calculated. That is, the transmitted wave from the radar device is reflected by the vehicle ahead, and the received signal of the reflected wave is mixed with the transmitted signal. To obtain a beat signal (radar signal). This beat signal is subjected to fast Fourier transform for frequency analysis. Since the frequency-analyzed beat signal has a peak at which the power becomes large relative to the target, the peak frequency for this peak is obtained.
  • This peak frequency contains information on the distance, and due to the Doppler effect due to the relative speed with the vehicle ahead, the peak section and the down section in each of the triangular waves related to the FM-CW wave have this peak frequency.
  • the frequencies are different.
  • the distance to the vehicle ahead and the relative speed can be obtained from the peak frequencies in the up section and the down section.
  • a pairing process is performed to acquire a pair of peak frequencies of an up section and a down section for each vehicle.
  • an FM modulated wave obtained by adding a modulating signal from a modulating signal generator to a voltage controlled oscillator and performing FM modulation is transmitted as a transmitting signal via a transmitting antenna.
  • the signal is transmitted to the outside, and a part of the transmission signal is branched and added to the down-compartment mixer.
  • the reflected wave reflected from the target object is received by the receiving antenna, and mixed with the output signal of the voltage controlled oscillator by the mixer to generate a beat signal.
  • This beat signal is input to an AD converter via a band-pass filter circuit, where it is digitally sampled and then subjected to signal processing in a digital signal processing unit by a high-speed pulley transform or the like to obtain distance and relative speed. Is required.
  • each received signal of an array antenna composed of multiple receiving antennas is converted to digital form, captured by the digital signal processing unit, and adjusted for beam scanning and side lobe characteristics. This is performed in the digital signal processing unit.
  • a radar device that uses DBF processing performs the function of the phase shifter of a phased array antenna radar by digital signal processing.
  • a modulation signal is added from a modulation signal generator to a voltage-controlled oscillator to perform FM modulation, the FM modulation wave is transmitted as a transmission signal to the outside via a transmission antenna, and a part of the transmission signal is transmitted. Is branched and added to a plurality of mixers corresponding to the number of receiving antennas.
  • a reflected wave reflected from an object is received by a plurality of receiving antennas, and a received signal from each receiving antenna is input to a plurality of mixers via respective amplifiers, where a signal from a voltage-controlled oscillator is used.
  • Each beat signal is generated by mixing with the output signal.
  • Each of the generated beat signals is converted into a digital signal by each AD converter through each of the band-pass filter circuits, and sent to a digital signal processing unit.
  • the digital signals from each channel are phase-shifted, all channels are combined, and a multi-beam is formed.
  • a feature of the DBF is that when signals from all the receiving antennas are captured as digital signals, beam combining can be performed in any direction based on the signals, so that multiple beams can be formed by a single capture.
  • Fig. 1 shows a specific example of such an improved DBF FM-CW radar system.
  • the configuration of the radar device shown in FIG. 1 is the basis of the radar device of the present embodiment.
  • This radar device is provided with an array antenna including a plurality of antennas.
  • the array antenna includes a transmitting antenna AT, and receiving antennas AR1 and AR2.
  • a transmitting unit is formed by the transmitting antenna AT, the amplifier 1, the voltage-controlled oscillator 2 denoted by VCO, and the modulation signal generator 3 denoted by MOD.
  • the receiving devices AR1 and AR2 are added to the radar device.
  • the first switch 4, labeled SW1 which is selectively connected to the width switch 5, the mixer 6, which mixes a part of the transmission signal with the reception signal, and the mixed signals, BP1, BP2
  • the output of each of the second switch 7 and the band-pass filters 8 1 and 8 2, described as SW 2, which are alternatively input to the indicated band-pass filter circuits 8 1 and 8 2, are input to the DSP
  • the AD converters 9 1 and 9 2 are incorporated in the digital signal processing unit 9 described as, and are described as AD 1 and AD 2.
  • the amplifier 5 and the mixer 6 form a down-conversion unit, and the bandpass filters 81 and 82 and the AD converters 91 and 92 form a reception circuit unit.
  • the number of receiving antennas is two, and a receiving circuit including a band-pass filter circuit and an AD converter is set in correspondence with the two antennas.
  • FIG. 1 typically shows an example in which two reception antennas are provided, and the configuration of the reception circuit section includes a band-pass filter corresponding to the number of reception antennas.
  • a plurality of receiving circuit systems including a circuit and an A / D converter are provided, and are selectively switched and connected by a second switch.
  • an FM signal is generated by adding the modulation signal from the modulation signal generator 3 to the output signal of the voltage controlled oscillator 2, and this FM modulation signal is used as a transmission signal.
  • the signal is transmitted to the outside via the transmitting antenna AT.
  • a part of the transmission signal is branched and added to the mixer 6 which is a downconverter.
  • the reflected wave of the transmission signal reflected from the object is received by a plurality of reception antennas AR 1 and AR 2 as a reception signal.
  • the signal paths of the receiving antennas AR 1 and AR 2 are channels chl and chn, respectively.
  • each output terminal of the plurality of receiving antennas is selected via the amplifier 5 to the input terminal of the mixer 6 of the down-conversion unit.
  • the signals are sequentially switched and connected, and the signals from each channel ch1 and ch2 that are input to the downcomer section are switched.
  • This switching operation is controlled by a signal output from a switching signal generator provided in the digital signal processing unit 9.
  • the switching signal is a clock signal having a predetermined frequency
  • the reception signals of the channels ch1 and ch2 are connected to the channel switching at the rising edge and the falling edge of the switching signal at the predetermined frequency.
  • the channel ch i is connected to the amplifier 5 during a predetermined time due to the clock signal
  • the channel ch 2 is connected to the amplifier 5 during the next predetermined time.
  • the channels c hi and ch 2 are alternately connected to the amplifier 5. In this way, the channels are switched at the same time interval.
  • the received signal input to the amplifier 5 is input to a mixer 6 which is a down-conversion unit, mixed with a transmission signal from the voltage-controlled oscillator 2 and down-converted to generate a beat signal.
  • This beat signal is output to the second switch 7.
  • the second switch 7 sequentially inputs this beat signal to two channels having band-pass filter circuits 81, 82 and AD converters 91, 92, respectively. To switch.
  • This switching operation is controlled by a signal from a switching signal generator provided in the digital signal processing unit 9 and is synchronized with the antenna switching operation by the first switch 4 at the above-described cycle.
  • the non-pass filter circuits 8 1 and 8 2 are connected to AD converters 9 1 and 9 2, respectively.
  • the signals input to the non-pass filter circuits 8 1 and 8 2 The signal is converted into a digital signal by 1 and 82, and the digital signal is processed by a digital signal processor 9 by a fast Fourier transform or the like. And digital from each channel The signal is phase processed, all channels are combined, and distance and relative speed are measured.
  • the number of receiving antennas is the same as the number of bandpass filter circuits, but the number of nonpass filter circuits may be smaller than the number of receiving antennas.
  • the number of bandpass filter circuits is required as many as the receiving antennas must be switched at the same time. For example, if the number of receiving antennas switched in synchronization is two, the number of non-pass filter circuits may be two.
  • a third switching switch is separately inserted to make one AD converter, and a plurality of bandpass filters are switched by the third switching switch. It may be connected.
  • the switching operation of the third switching switch is controlled by a signal output from the switching signal generator 5 of the digital signal processing unit 9, and is performed in synchronization with the switching operation of the receiving antenna.
  • FIG. 2 shows an input waveform to the receiving circuit unit during a recognition process for detecting a distance and a relative speed in the radar device, and an input waveform to the AD converter in the receiving circuit unit.
  • A) of FIG. 2 shows the waveform of the output signal from channel 1 and channel 2 which are switched by the first switch 4 and input to the down-convert section
  • (b) of FIG. Are switched by the second switch 7, input to the respective band-pass filter circuits 81 or 82, and show the waveform of the input signal to the AD converter 91 or 92 after being processed there. ing.
  • the two receiving circuits that constitute the receiving circuit have the same characteristics. Since the receiving antennas AR 1 and AR 2 also have the same characteristics, the signal waveforms of the channels ch 1 and ch 2 in the output signal of the downcomparator have the same waveform, Is an answer shifted by the switching period of the first switch 4. However, for example, if there is a difference in the characteristics of each receiving antenna, as shown in (a) of Fig. 2, the signal waveforms of the down-compartmented SPDT input signal on channels ch1 and ch2 also differ from each other. It will be of shape.
  • the waveforms of the channel signals ch1 and ch2 included in the SPDT input signal are different from each other, the waveforms are as shown in (b) of FIG.
  • the channel signals ch1 and ch2 which are filtered by the non-pass filter circuits 81 and 82 and input to the AD converters 91 and 92, also have mutually different waveforms.
  • the channel signal ch h i is lower than the amplitude of the channel signal ch 2
  • the gain of the channel signal ch 1 is smaller, and the channel signals ch 1 and ch 2 are out of phase. If azimuth detection is performed based on these channel signals ch 1 and ch 2, there will be a difference in signal level and phase between waveforms, so that azimuth detection in recognition processing will be abnormal.
  • the radar device of the present embodiment by performing a correction for eliminating a characteristic difference between a plurality of receiving circuit systems that affects the accuracy of azimuth detection, a change in characteristics of each receiving circuit system, or a recognition process based on a variation.
  • the above effects can be eliminated.
  • the radar device of the present embodiment by utilizing the fact that the radar device is provided with a plurality of receiving circuit systems, a common channel signal is supplied to each of the receiving circuit systems. A characteristic difference between the receiving circuit systems is detected, and the self-determination regarding the abnormality of the receiving circuit system is performed based on the characteristic difference.
  • a first antenna is selected such that a specific antenna among a plurality of receiving antennas is selected and a received signal received by the specific antenna is supplied to each receiving circuit system.
  • the first switch 4 and the second switch 7 are switched and connected to the corresponding receiving antenna and the receiving circuit system in synchronization with each other.
  • the first switch 4 is controlled so as to be fixedly connected to only the specific antenna, and the second switch 7 selects two sets of receiving circuit systems from a plurality of receiving circuit systems. , Are controlled so as to be switched and connected.
  • control is performed so as to supply a channel signal related to the reception signal received by the specific antenna to each of the reception circuit systems.
  • FIG. 3 The principle of the self-determination regarding the abnormality of the receiving circuit system is shown in FIG. 3 by the waveform of the channel signal in the example of the radar device shown in FIG. FIG. 3A shows the waveform of the output signal output from the second switch 7.
  • the receiving antenna AR 1 is selected as a specific antenna by the first switch 4.
  • the receiving antenna AR1 receives the reflected wave from the transmitting signal transmitted from the transmitting antenna AT.
  • a beat signal is generated in the data section.
  • the beat signal is switched by the second switch 7 in a switching cycle during the normal recognition processing, and channel signals chll and chl 2 are generated.
  • the channel signal ch11 is indicated by a thick line, and the channel ch12 is indicated by a thin line.
  • the channel signals ch11 and ch12 alternately appear at a switching cycle, and the envelope of these signals is shown.
  • Line is a beat signal. Therefore, the channel signal ch 11 is input to the non-pass filter circuit 81, and the channel signal ch 12 is input to the non-pass filter circuit 82.
  • FIG. 3 shows the waveform of the input signal of the AD converters 91 and 92, which is the output of the bandpass filter circuit.
  • the waveform of the input signal of the AD converter 91 is represented by a channel signal ch11
  • the waveform of the input signal of the AD converter 92 is represented by a channel signal ch12.
  • the waveforms shown in (b) of Fig. 3 if the characteristics of the two selected receiver circuits are the same, the waveforms of channel signal ch11 and channel signal ch12 are also the same. However, if there is a characteristic difference between these receiving circuit systems, a deviation occurs in the amplitude and the phase or phase of the signal waveform. Therefore, if a signal level and / or phase shift between the channel signal ch 11 and the channel signal ch 12 is detected, the characteristic difference between these receiving circuit systems can be determined by itself.
  • FIG. 4 shows the configuration of the radar apparatus according to the present embodiment. Since the radar apparatus of the present embodiment shown in FIG. 4 uses the configuration of the radar apparatus shown in FIG. 1 as it is, the same components are denoted by the same reference numerals.
  • the digital signal processing unit 9 is additionally provided with a signal characteristic determination unit 93.
  • the signal characteristic determining section 93 controls the switching operation of the first switching switch 4 and the second switching switch 7 only when determining the signal characteristics of the receiving circuit system, and receives the signal with a specific antenna.
  • a characteristic difference between a plurality of receiving circuit systems is determined.
  • the signal level and / or phase of the channel signal is corrected based on the determination result.
  • the adjusters 101 and 100 are provided in the middle of each signal circuit system. 2 is inserted between the bandpass filter circuit and the AD converter in the middle of each signal circuit system, and each of the adjusters is controlled by the signal characteristic determination section 93 to determine the signal level and the signal level when the signal characteristic is determined. Alternatively, the phase is adjusted in an analogous manner and the adjusted value is held. As a result, the characteristic difference of the receiving circuit system is corrected during the normal recognition processing.
  • the adjusters 101 and 102 include a variable gain amplifier and a phase shifter, and are denoted by LZP in the figure.
  • the adjustment function for the channel signal can be realized by inserting an adjuster into the receiving circuit system as shown in FIG. 4, but the digital signal processing unit 9 converts the channel signal into an AD signal.
  • the converted processing signal may be adjusted softly to correct the characteristic difference in the receiving circuit system during the normal recognition processing.
  • the correction value for correcting the characteristic difference is stored in the storage unit for use in digital signal processing.
  • the digital signal processing unit 9 determines the characteristic change of the channel signal between the receiving circuit systems, and follows the method of eliminating the characteristic difference of the receiving circuit system in accordance with the method of eliminating the characteristic difference.
  • the procedure of the actual correction process performed by the included signal characteristic determination unit 93 will be described with reference to the flowchart shown in FIG.
  • the procedure of the correction process shown in FIG. 5 is an example of the case of the radar device shown in FIG.
  • the digital signal processing unit 9 starts normal recognition processing, which is the main processing of the processing unit
  • the signal characteristic determination unit 93 is activated.
  • the signal characteristic determination unit 93 is provided with a timer, and by this activation, the timer starts operating. For example, it is determined whether 10 seconds have elapsed (step S1).
  • step S1 if 10 seconds have not elapsed (Y in step S1), the digital signal processing unit 9 executes normal recognition processing, and performs the first switch 4 and the second switch. The switching operation is synchronized with that of the switch 7 (step S2).
  • the digital signal processing section 9 causes the channel signals ch 1 and ch 2 input from the band-pass filter circuits 81 and 82 to perform AD conversion processing (step S 3). , And normal recognition processing such as azimuth detection is performed (step S4). Thereafter, the process returns to step S1, and the digital signal processing unit 9 continues the normal recognition processing until 10 seconds have elapsed.
  • the signal characteristic determination unit 93 controls the first switch 4 to receive the antennas AR 1 and AR 2. One of them is set as a specific antenna and fixedly turned on (step S5). In FIG. 4, the receiving antenna AR1 is selected as the specific antenna, and the channel signal ch1 received by the receiving antenna AR1 is used as a reference for comparison.
  • the signal characteristic judging unit 93 controls the switching connection of the second switch, generates the channel signal chl, the channel signals chl 1 and chl 2, and outputs the non-pass filter circuits 81 and 82.
  • the AD converters 91 and 92 perform the AD conversion processing on the outputs of the band-pass filter circuits 81 and 82 (step S6).
  • the signal characteristic determination unit 93 compares the AD converted signal related to the channel signal ch11 with the AD converted signal related to the channel signal ch12 (step S7).
  • a shift related to a signal level and / or phase included in the channel signal ch11 and the channel signal ch12 is determined, and the shift amount is calculated. This shift amount becomes a correction value for eliminating the characteristic difference.
  • step S8 based on the calculated shift amount, it is determined whether the signal levels and / or phases of both the channel signal ch11 and the channel signal ch12 are equal (step S8).
  • step S8 if it is determined that the signal levels and the Z or the phase are equivalent (Y in step S8), there may have been a difference in the characteristics of the respective receiving circuit systems during the manufacturing process. This indicates that there is a possibility that the performance of the receiving circuit has not deteriorated so much, and that the previous correction has been made assuming that no characteristic change has occurred in the receiving circuit.
  • the correction value obtained by the processing and already set is maintained and the previous state is maintained (step S9). Then, return to step S1, and T JP2005 / 011402
  • the digital signal processing unit 9 performs normal recognition processing.
  • step S10 it is further determined whether the signal level values and / or the phase values are out of the predetermined range. This is mainly for determining the failure state of the receiving circuit system.
  • step S10 If the signal level value and / or the phase value are within a predetermined range (N in step S10), there is a possibility that the performance of the receiving circuit system has deteriorated, or the temperature of the operating environment. This indicates that the characteristics may have changed due to the effect of fluctuations.
  • a correction value is generated based on the deviation calculated in step A7, and the correction value obtained in the current correction process is calculated. , The preset correction value obtained in the previous correction process is updated (step S11). Then, returning to step S1, the digital signal processing section 9 performs a normal recognition process. At the time of this update, the fact that there has been a change in the characteristics of the receiving circuit system may be notified externally.
  • step S10 If the signal level value and Z or phase value are out of the predetermined range (Y in step S10), it indicates that the receiving circuit system is in an abnormal processing state, This indicates that there is a risk of seriously affecting the normal recognition processing in the signal processing unit 9. In this case, the diagnostic information is output and an abnormality in the receiving circuit system is notified to the outside (step S 1 2).
  • a judgment process regarding a change in the characteristics of the receiving circuit system can be performed.
  • One of the receiving circuits can automatically detect the sudden occurrence of an abnormality, and can reliably report that the radar device is incorrectly recognized.
  • the output destination of the diag information in step S12 includes an electronic control unit (ECU) for performing navigation processing, an auto-cruise control (ACC), and the like.
  • ECU electronice control unit
  • ACC auto-cruise control
  • the signal characteristic determining unit 93 controls the switching connection between the first switch 4 and the second switch, and based on the channel ch1 received by the specific antenna, Generate signal ch11 and channel signal ch1, and input the same channel signal to each receiving circuit. With the channel signals having the same characteristics, the processing results of the respective receiving circuit systems can be compared. For this reason, even if the characteristics of each receiving circuit system change, or if the characteristics of each receiving circuit system vary, the receiving circuit system is determined so as not to affect the normal recognition processing. Can be corrected with the corrected value.
  • the signal characteristic determination unit 93 controls these adjusters to control each of the receiving circuit systems. Although the correction process is performed, it may be necessary to determine whether the adjustment mechanism of these adjusters is functioning properly. In such a case, for example, if the variable gain amplifier included in each adjuster is of a type that is turned on and off for adjustment, the difference between the on / off control states between the receiving circuit systems By comparing with each other, it can be determined whether each adjustment mechanism is normal. If there is a difference in the ON / OFF control state between each adjustment mechanism, it can be adjusted.
  • the signal characteristic determination unit included in the digital signal processing unit determines the characteristic change of the channel signal between the reception circuit systems, and determines the characteristic of the reception circuit system. It has been described that the correction processing is performed so as to eliminate the difference. Therefore, a specific calculation example of the correction value in the correction processing will be described below.
  • channel The AD-converted channels chll and chl2 of the received signal of h1 are used. Let the received signals be (t) and E 2 (t), respectively, and all of the received signals are only those received by reflected waves from known targets. Each received signal is
  • C 2 indicates the amplitude
  • ⁇ (t) and ⁇ 2 (t) indicate the phase.
  • ⁇ 2 (t) 2 ⁇ ft _ ⁇
  • the received signal ⁇ 2 (t) force received signal E! (t) is shown to have a phase shift ⁇ .
  • each of the amplitude and the phase of each normally received signal becomes C i ⁇ C s ⁇
  • the amplitude correction value is k to correct the characteristics of each receiving circuit system so that the received signal “ch 1 1” and the received signal “chl 2” are the same.
  • the phase shift correction value is ⁇
  • the amplitudes C ⁇ and C 2 , and the phases 0 and 0 2 are:
  • the received value of the channel ch12 is corrected in the same way as the received signal of the channel ch11 by the correction values k and ⁇ .
  • the correction processing is realized for the received signals related to the two channels with reference to either of the received signals. Therefore, in step S6 of the flowchart of FIG. 5, the FFT processing is performed on the AD-converted received signal, and in step S7, the result of the FFT processing corresponds to the known target distance position. From the solutions of the real and imaginary frequencies, the amplitude values C i and C 2 and the phase values 0 and ⁇ 2 are calculated.
  • the correction values k and ⁇ according to 2 can be obtained.
  • the correction values k and ⁇ relating to channel ch 1 1 and channel ch 1 2 obtained from channel ch 1 have been described.
  • the antenna AR2 is switched and fixed, and the received signals of channel ch2 1 and channel ch2 2 are obtained from channel ch2.
  • the correction values k and ⁇ for the channel ch 21 and the channel ch 22 can be obtained.
  • comparing the two sets of correction values obtained, 5 011402 The characteristic difference between antennas AR 1 and AR 2 can be determined.
  • the process of determining a change in the characteristics of the receiving circuit system may be performed at any time by sending a processing command to the signal characteristic determination unit 93 from outside the radar device. For example, it can be used when the inspector instructs at the stage of product inspection at the time of factory shipment to equalize the quality of the shipped product.
  • the user of the radar device can issue a processing instruction at an arbitrary timing to improve the accuracy of the radar device recognition processing.
  • the signal characteristic determination unit 93 is activated intermittently and automatically during the normal recognition processing in the radar apparatus, and the correction processing is performed each time. , You can also set.
  • the correction process is performed at predetermined time intervals by the timer. However, one correction process may be performed every predetermined number of normal recognition processes.
  • the vehicle speed may be detected from a speedometer or the like of the vehicle, and the correction processing of the receiving circuit system may be executed when the vehicle is stopped.
  • the vehicle speed is not 0 and the vehicle is traveling, normal recognition processing is continued.
  • a correction value is calculated according to the above-described correction processing procedure.
  • a correction process is performed to maintain the correction value or to update the correction value.
  • the correction processing is executed only when the vehicle outputting the diag information is stopped, but when the vehicle is stopped, Since the distance to the target in front of the vehicle is fixed, the input of the received signal is stable, and the accuracy of the capturing process can be expected to be improved.
  • the object of the present invention can also be achieved by simply performing the correction process periodically at a predetermined number of times without setting the condition for performing the correction process only when the vehicle is stopped.
  • the vehicle is stopped, that is, when the input of the received signal is stable, and the judgment process related to the change in the characteristics of the receiving circuit system is executed accurately, the vehicle is stopped. It is only necessary that the channel signal input to the receiving circuit system be stable, for example, when the relative distance to the target in front of the vehicle is stable even while driving. However, it may be executed only when the reception level is high.
  • the determination process regarding the characteristic change of the receiving circuit system is mainly performed in accordance with the time condition, but when the temperature related to the use environment of the radar device changes, the receiving circuit system is determined.
  • characteristic changes 2 may be performed.
  • a temperature sensor is provided directly on or near the radar device, and this sensor detects the temperature related to the receiving circuit system.
  • the performance and processing characteristics of the receiving circuit system are affected by changes in temperature, and the degree of change varies for each receiving circuit system.
  • the signal characteristic determination unit 93 executes a determination process regarding a characteristic change of the receiving circuit system. Try to do it.
  • the correction process can be accurately performed in accordance with the environmental change of the radar device. By combining the correction process following the environmental change with the intermittent correction process described above, more accurate correction can be performed.
  • the above-described embodiment of the radar apparatus according to the present invention is based on the configuration of the radar apparatus shown in FIG. 1, and this radar apparatus is provided with an array antenna having a plurality of antennas.
  • the antenna antenna includes, for example, a transmitting antenna AT, receiving antennas AR1 and AR2.
  • the above-described embodiment of the radar apparatus according to the present invention is not limited to application only when the array antenna is configured by a transmission-only antenna and a plurality of reception-only antennas. This is also applied to the case where is used for both transmission and reception.
  • an application example in which an array antenna is configured by a plurality of antennas for both transmission and reception will be described with reference to another embodiment of the radar apparatus according to the present invention shown in FIG.
  • FIG. 6 Another embodiment of the DBF type FM-CW system radar apparatus shown in FIG. 6 is based on the configuration of the radar apparatus of the present embodiment shown in FIG. 4, but in this other embodiment, , Transmit only antenna and multiple receive Instead of an antenna configuration using a combination of dedicated antennas, an antenna array A including a plurality of transmitting / receiving antennas A1 to Am is employed.
  • This radar device includes an antenna array A, an amplifier 1, a voltage-controlled oscillator 2 denoted as VCO, and a modulation signal generator 3 denoted as MOD, and forms a transmission unit.
  • the radar device is connected to the antennas A1 to Am in the antenna array A by selectively switching to the amplifier 1 at the time of transmission, and further selectively switching each antenna to the amplifier 5 at the time of reception.
  • a third switch 41 described as SW 3 to be connected is provided.
  • a mixer 6 for mixing a part of the transmission signal with the reception signal, and the mixed signal is selectively input to a band-pass filter circuit 8 — 1 to 8 — n denoted by BP 1 to BP n.
  • a fourth switch 71 labeled SW4 is provided.
  • Each of the outputs of the band-pass filters 8-1 to 8-n is input, incorporated into the digital signal processing unit 9 denoted as DSP, and AD converters 9 11 to 1 denoted as AD 1 to AD n. 9 1 n are provided.
  • the amplifier 5 and the mixer 6 form a downconverter, and the bandpass filters 8-1 to 8-n and the AD converters 9-1 to 9-1 n form a receiving circuit.
  • the receiving circuit section a plurality of receiving circuit systems each including a pair of a band-pass filter circuit and an AD converter are provided corresponding to the number of receiving antennas, and the receiving circuit is selected by the fourth switch 71. In this case, the connection is switched.
  • the digital signal processing section 9 of the radar apparatus includes a signal characteristic determination section 9 3 Is provided. Then, the signal characteristic determining section 93 only determines the signal characteristic of the receiving circuit system, The switching operation of the third switch 41 and the fourth switch 71 is controlled, and based on the channel signal outputs of the AD converters 9_1 to 9-1n obtained from the received signal received by the specific antenna. Then, the characteristic difference between the plurality of receiving circuit systems is determined. Based on the determination result, the signal level and the phase or phase of the channel signal are corrected.
  • each signal circuit system in order to correct the signal level and / or phase of the channel signal, each signal circuit system On the way, a regulator including a variable gain amplifier and a phase shifter may be inserted between the A / D converter and the band-pass filter circuit in the middle of each signal circuit system.
  • the processing signal after AD conversion of the channel signal may be adjusted softly so that the characteristic difference in the receiving circuit system is corrected during the normal recognition processing.
  • the signal characteristic determination section 93 is started.
  • the digital signal processing unit 9 executes normal recognition processing until a timer provided in the signal characteristic determination unit 93 starts operating and a predetermined time has elapsed.
  • the third switch 41 and the fourth switch 71 are controlled.
  • the signal characteristic determination unit 93 controls the third switch 41 to, for example, use the antenna A 1 as a transmission antenna. Therefore, connect to amplifier 1.
  • the antenna A1 is selected as the specific antenna, and the channel signal ch1 received by the antenna A1 is used as a criterion for comparison.
  • the signal characteristic determination unit 93 controls the third switch 41 to connect the antenna A 1 to the amplifier 5, and further controls the fourth switch to change the channel signal ch 1 to the channel
  • the signals chll and chl 2 are generated, input to the respective non-pass filter circuits 8-1 and 8-2, and the outputs of the band-pass filter circuits 8-1 and 8-2 are respectively converted to the AD converter 9 Perform AD conversion processing in 1 and 9-2.
  • the signal characteristic determination unit 93 compares the AD converted signal related to the channel signal ch h1 l with the AD converted signal related to the channel signal ch h12. Here, based on each AD conversion signal, a shift related to the signal level and / or phase included in the channel signal ch hi1 and the channel signal ch12 is determined, and the shift amount is calculated. This shift amount serves as a correction value for eliminating a characteristic difference between the receiving circuit systems.
  • the digital signal processing unit 9 continues the normal recognition processing while maintaining the correction value already set.
  • the signal level value and Z or phase value are out of the predetermined range to determine the failure state of the receiving circuit system. If the signal level value and / or phase value is within the predetermined range, the performance of the receiving circuit system is deteriorating, or the characteristics change due to the temperature fluctuation of the operating environment. Is calculated because it indicates that A correction value is generated based on the deviation amount, and the previously set correction value is updated with the correction value obtained this time.
  • the digital signal processing unit 9 performs a normal recognition process. At the time of this update, the fact that the characteristics of the receiving circuit system have changed may be notified to the outside.
  • the digital signal processing section 9 When the signal level value and / or the phase value is out of the predetermined range, it indicates that the receiving circuit system is in an abnormal processing state. Since there is a risk of seriously affecting the normal recognition processing in the digital signal processing section 9, the digital signal processing section 9 outputs the diagnostic information and externally notifies an abnormality of the receiving circuit system.
  • the output destination of the diag information is, for example, a digital signal processing unit. 9 If connected to a network such as a LAN in a vehicle or a CAN, the network is connected to the network.
  • the navigation processing ECU 11 and the ACC ECU 12 are listed, and the digital signal processing unit 9 transmits the diag information to these output destinations.
  • the signal characteristic judging unit 93 controls the switching in the third switch 41 and the fourth switch 71, and based on the channel ch1 received by the specific antenna, Generate the channel signal ch11 and channel signal ch12, and input the same channel signal to each receiving circuit. With the channel signals having the same characteristics, the processing results of the respective receiving circuits can be compared. For this reason, even if the characteristics of each receiving circuit system change or the characteristics of each receiving circuit system vary, the trapping obtained for the relevant receiving circuit system is not affected. It can be corrected with a positive value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本発明のレーダ装置では、受信回路部の特性の変化が、通常動作時及び出荷の初期調整時に補正され、また、動作中の環境変化による温度変動、或いは経年劣化による該変化が、随時補正される。 複数の受信アンテナに対応した複数の受信回路系を有するレーダ装置において、第1スイッチで選択された一つのアンテナで受信した受信チャネル信号から、第2スイッチの切換え動作で、同一特性のチャネル信号ch1とch2を生成し、夫々を各受信回路系に入力する。AD変換された各チャネル信号のレベルと位相を比較して特性変化を検出する。各受信回路系の検出結果により、各受信回路系の特性又は各AD変換出力信号の特性を補正する。

Description

レーダ装置
技術の分野
本発明は、 連続波 (C W ) を周波数変調 (F M ) した送信信号を 用いる F M— C Wレーダ装置であって、 送信信号による反射波の受 明
信が切換えられる複数のアンテナを備え、 ディジタルビームフォー 田
ミ ング (D B F ) 処理が行われる電子スキャン方式によるレーダ装 食
置に関する。
背景技術
従来の D B F型のレーダ装置においては、 送信信号を電磁波と し て放射する送信部と、 電磁波が物体に到達して、 この物体から反射 された電磁波を受信信号として受信する複数の素子アンテナからな るアレーアンテナが備えられている。 各素子アンテナは、 切換えス ィ ツチの複数の入力端子にそれぞれ接続され、 この複数の入力端子 のいずれか 1つと択一的に切換えスィ ツチの出力端子に切換え接続 される。 出力端子から得られた選択されたアンテナからの受信信号 を、 送信信号の一部を用いてダゥンコンバートすることによって、 送信信号と受信信号との差信号が生成され、 受信部の信号処理部に おいて、 この差信号がディジタル信号に変換され、 このディジタル 信号に対して所定の処理を施すことによって、 物体までの距離又は 相対速度が検出されるよ うになっている。 これは、 例えば、 特開平 1 1 — 1 6 0 4 2 3号公報に開示されている。
また、 例えば、 特開平 1 1— 6 4 4 8 5号公報に開示されている ように、 アレーアンテナ構成のレーダ装置において、 各アンテナに 共通に 1つのフロ ン トエン ドを備え、 各アンテナを順次切換え接続 するように構成することによ り、 各アンテナに直結し、 夫々に対応 した高周波 (R F) 受信回路を設ける必要を無く したレーダ装置が 開発されている。
また、 送信部、 アレーアンテナ部、 切換えスィ ッチ部、 受信回路 部、 そして、 ディジタル信号処理部を備え、 アレーアンテナ部の各 アンテナを順次切換え接続し、 ディジタル信号処理部でディジタル ビームフォーミ ング処理を施して物体の検知を行う FM— CWレー ダ装置が、 例えば、 特開平 1 1 一 3 1 1 6 6 8号公報に開示されて いる。 このレーダ装置では、 切換えスィ ッチ部が、 ビート信号を生 成する受信部に各アンテナのいずれかを選択的に切換えており、 周 波数変調の繰り返し周期における 1周期の中で複数のアンテナの一 部を選択し、 選択されたアンテナ間において切換え接続を繰り返し 行う ようにしている。 この構成により、 R F受信回路、 高帯域のミ キサ、 アナログ一ディジタル (AD) 変換器等の高価なデパイスを アンテナの数に関係なく、 一組で済むようにしている。
以上に述べたよ うな従来技術による F N— CWレーダ装置では、 各アンテナを順次切換えながら、 D B F処理を施して、 受信信号の 位相差を検出する電子スキヤン方式が採用されているので、 受信回 路部に、 何らかの部品故障、 使用環境の温度変動などによる特性変 化が存在すると、 受信信号の位相差の検知に異常を来たすことにな る。
しかしながら、 前出の特開平 1 1 — 3 1 1 6 6 8号公報に開示さ れた従来技術による FM— CWレーダ装置は、 R F受信回路、 高帯 域のミキサ、 AD変換器等を含む受信回路部は、 1組のみを備えて いるだけである。 受信信号がこの受信回路部で処理されるので、 受 信回路部自体に上述の特性変化が発生していても、 その処理結果に P2005/011402
、 位相差検知の異常があるとの判断できないという問題があった。
そこで、 本発明は、 受信回路部自体を利用して、 該受信回路部の 特性変化を自己判断できるようにし、 その自己判断の結果、 受信回 路部に特性変化が存在すると判断された場合には、 その特性を補正 でき、 異常の発生時には、 ダイァグ情報などを出力できるレーダ装 置を提供することを目的とする。 発明の開示
以上の課題を解決するため、 本発明のレーダ装置では、 送信信号 を放射する送信部と、 前記送信信号による物体からの反射波を受信 する複数のアンテナと、 前記複数のアンテナの各出力端子を入力端 子に択一的に順次切換え接続する第 1 スィ ッチ部と、 前記第 1 スィ ッチ部の前記入力端子に入力された各アンテナからの受信信号を前 記送信信号の一部を用いてダウンコンバートするダウンコンバー ト 部と、 前記ダウンコンバート部の出力を、 第 1乃至第 nのフィルタ 回路に択一的に切換え接続する第 2スィ ッチ部と、 前記第 1乃至第 nのフィルタ回路の各出力を、 第 1乃至第 nの A D変換器に入力し 、 該第 1乃至第 nの A D変換器から出力される第 1乃至第 nの出力 信号に所定の処理を施して、 前記物体までの距離又は前記物体との 相対速度を検出するディジタル信号処理部と、 前記複数のアンテナ から選択された特定アンテナで受信された前記受信信号に基づいて 出力された第 1乃至第 nの出力信号のうちから選択された 2出力信 号を比較して、 該第 1乃至第 nの出力信号の特性変化を判断し、 該 特性の差を補正する信号特性判断部とを備えること した。
そして、 前記信号特性判断部は、 前記第 1処理信号と前記第 2処 理信号の夫々に含まれる信号レベル及びノ又は位相を比較すること によ り前記第 1乃至第 nの出力信号における特性変化の判断を行う こととした。
前記信号特性判断部は、 前記第 1スィ ッチを制御して、 前記複数 のアンテナの特定アンテナを選択し、 前記第 2スィ ッチを制御して 、 該特定アンテナの受信信号から前記第 1乃至第 nの出力信号を生 成すること と し、 前記特性差があると判断した場合、 前記第 1乃至 第 nの A D変換器の入力側に夫々接続された第 1乃至第 nの調整器 を制御し、 該特性差を補正すること と した。
さらに、 前記第 1乃至第 nの調整器の各々には、 前記信号特性判 断部によって制御される可変利得増幅器及び 又は可変位相器を含 めるようにした。
また、 前記信号特性判断部は、 前記特性差があると判断した場合 、 該特性差に応じた前記第 1乃至第 nの出力信号に対する補正値を 演算し、 前記ディジタル信号処理部は、 前記補正値に基づいて、 前 記第 1乃至第 nの出力信号を補正すること と した。
前記信号特性判断部は、 前記ディジタル信号処理部による前記物 体までの距離又は前記物体との相対速度を検出する認識処理中にお いて、 間欠的に、 前記特性変化に係る判断処理を行う ことと した。 前記信号特性判断部は、 前記物体との相対的な前記距離が変化し ないと認識されたとき、 前記特性変化に係る判断処理を行う こと と し、 特に、 前記信号特性判断部は、 当該装置が搭載された車両が走 行停止中であることが認識されたとき、 前記特性変化に係る判断処 理を行うよ うにした。
また、 前記信号特性判断部は、 前記第 1乃至第 nの出力信号の信 号レベル及び又は位相が所定値以上又は所定範囲内にあるとき、 前 記特性変化に係る判断処理を行い、 前記信号特性判断部は、 演算し た前記補正値を前記第 1乃至第 nの出力信号に関連付けて記憶し、 前記補正値により補正された前記第 1乃至第 nの出力信号に基づい 2 て前記認識処理が実行されるようにした。
前記信号特性判断部は、 外部指示に従って、 前記第 1乃至第 nの 出力信号の特性変化に係る判断処理を行う こと と し、 前記信号特性 判断部は、 当該装置の初期調整と して、 前記特性変化に係る判断処 理を行い、 該特性変化がある場合に、 演算した前記補正値を前記第 1乃至第 nの出力信号に関連付けて記憶すること とした。
前記信号特性判断部は、 前記特性変化がある と判断したとき、 外 部に報知すること と し、 さ らに、 前記信号特性判断部は、 前記特性 変化があると判断したとき、 該特性変化が所定範囲内にない場合に 、 ダイァグ情報を外部に出力すること とした。
以上のように、 本発明のレーダ装置によれば、 特別に補正のため の装置を用意する必要がなく、 通常動作時においても、 的確に且つ 迅速に、 アレイァンテナで受信した受信信号を処理するフィルタ回 路と A D変換部を含む受信回路系に特性変化があること、 或いは、 発生したことが判断され、 その結果により、 受信回路系に対して補 正処理を実行できるので、 工場出荷時の初期調整において、 簡単に 、 受信回路系の処理性能の差による受信信号の特性のパラツキを補 正でき、 また、 動作中の環境変化による温度変動に対しても、 随時 補正でき、 常に、 精度向上を図ることができる。
また、 本発明のレーダ装置によれば、 複数の受信アンテナに対応 して備えられた複数の受信回路系に、 元々、 性能差があっても、 或 いは、 各受信回路系自体の経年変化による特性劣化、 レーダ装置動 作中の各受信回路系の異常動作が生じても、 その異常による特性変 化などに対応して補正処理を行うことができるので、 常に、 レーダ 装置の認識処理の精度向上を図ることができる。 図面の簡単な説明 本発明を添付の図面を参照しながら、 以下に説明する。
図 1 は、 ディジタルビームフォーミング処理を行う F M— C W方 式によるレーダ装置の基本構成を説明する図である。
図 2は、 図 1に示されたレーダ装置におけるダウンコンバー ト後 の 2受信回路系に係る出力信号間の特性変化を説明する波形図であ る。
図 3は、 F M _ C W方式によるレーダ装置におけるダウンコンパ ート後の 2受信回路系に係る出力信号間の特性差を補正する原理を 説明する波形図である。
図 4は、 本発明によるレーダ装置の実施形態に係る構成を説明す る図である。
図 5は、 本発明によるレーダ装置における信号特性判断に係る処 理動作の手順を説明するフローチャート図である。
図 6は、 本発明によるレーダ装置の別の実施形態に係る構成を説 明する図である。 発明の実施の形態
次に、 本発明によるレーダ装置の実施形態を説明するが、 その実 施形態について説明する前に、 本発明によ り もたらされる効果を明 確にするために、 本実施形態のレーダ装置の基本となるディジタル ビームフォーミング (D B F ) 処理を行う電子スキャン方式による レーダ装置について説明する。
ー 〇 ¥レーダ装置は、 例えば、 三角波形状の周波数変調され た連続の送信波を、 ターゲッ トである、 前方の車両などに向けて出 力し、 その送信波による反射波を受信することによ り、 例えば、 前 方の車両との距離を求めている。 即ち、 レーダ装置からの送信波が 前方の車両で反射され、 反射波の受信信号と送信信号をミキシング して得られるビー ト信号 (レーダ信号) を得る。 このビー ト信号を 高速フーリエ変換して周波数分析を行う。 周波数分析されたビート 信号には、 ターゲッ トに対してパワーが大きく なるピークが生じる ので、 このピークに対するピーク周波数を取得する。
このピーク周波数には、 距離に関する情報が含まれており、 前方 車両との相対速度による ドップラ効果のために、 F M— C W波に係 る三角波の各々におけるアップ区間とダウン区間とでは、 このピー ク周波数は異なる。 そして、 このアップ区間とダウン区間のピーク 周波数から、 前方の車両との距離及び相対速度が得られる。 なお、 前方の車両が複数存在する場合には、 ペアリ ング処理によって、 各 車両に対して一対のアップ区間とダウン区間のピーク周波数を取得 するようにしている。
以上のような距離及び相対速度を検出できる F M— C Wレーダ装 置では、 電圧制御発振器に変調信号発生器から変調信号を加えて F M変調した F M変調波が、 送信信号と して送信アンテナを介して外 部に送信されると共に、 送信信号の一部が分岐されて、 ダウンコン パート部であるミキサに加えられる。 一方、 ターゲッ トである物体 から反射された反射波を受信アンテナで受信し、 ミキサで電圧制御 発振器の出力信号と ミキシン.グし、 ビート信号が生成される。 この ビー ト信号は、 パン ドパスフィルタ回路を介して A D変換器に入力 され、 そこで、 ディジタルサンプリ ングされた後、 ディジタル信号 処理部で高速プーリェ変換等により信号処理がされて、 距離および 相対速度が求められる。
ディジタルビームフォーミ ング (D B F ) 処理は、 複数の受信ァ ンテナで構成されるアレーアンテナの各々の受信信号を A D変換し て、 ディジタル信号処理部に取り込み、 ビーム走査やサイ ドローブ 特性等の調整をディジタル信号処理部で行われる。 D B F処理を採用したレーダ装置は、 フェーズドアレーアンテナ レーダの移相器の機能をディジタル信号処理で行うものである。 こ の D B F型レーダ装置では、 電圧制御発振器に変調信号発生器から 変調信号を加えて F M変調し、 FM変調波を送信信号として、 送信 アンテナを介して外部に送信すると共に、 送信信号の一部が分岐さ れて、 受信アンテナの数に対応した複数のミキサに加えられる。 一 方、 物体から反射された反射波は、 複数の受信アンテナで受信され 、 各受信アンテナからの受信信号は、 夫々の増幅器を経て、 複数の ミキサに入力され、 ここで、 電圧制御発振器からの出力信号と ミキ シングされて、 夫々のビート信号が生成される。
生成された各ビー ト信号は、 夫々のパンドパスフィルタ回路を経 て、 各 AD変換器によってディジタル信号に変換され、 ディジタル 信号処理部に送られる。 ディジタル信号処理部 (D S P) では、 各 チャンネルからのディジタル信号を移相処理し、 全チャンネルの合 成を行い、 マルチビームが形成される。
D B Fの特徴は、 全受信アンテナの信号をディジタル信号として 取り込むと、 それをもとに、 任意の方向にビーム合成ができるため 、 1回の取り込みで複数のビームを形成できることである。
この様な D B F型の FM— CW方式のレーダ装置を改良した具体 例が、 図 1 に示されている。 図 1 に示されたレーダ装置の構成が、 本実施形態のレーダ装置の基本となっている。 このレーダ装置には 、 複数のアンテナによるアレーアンテナが備えられ、 図 1の例では 、 アレーアンテナは、 送信アンテナ A T、 受信アンテナ AR 1、 A R 2が含まれている。 送信アンテナ AT、 増幅器 1、 V C Oと表記 された電圧制御発振器 2、 そして、 MODと表記された変調信号発 生器 3によって、 送信部が形成されている。
さ らに、 そのレーダ装置には、 受信アンテナ AR 1、 AR 2を増 幅器 5に択一的に切換え接続する S W 1 と表記された第 1スィ ッチ 4、 送信信号の一部を受信信号とミキシングするミキサ 6、 ミキシ ングされた信号を B P 1、 B P 2 と表記されたパンドパスフィルタ 回路 8 1 と 8 2に択一的に入力する SW 2 と表記された第 2スイ ツ チ 7、 バン ドパスフィルタ 8 1 と 8 2の各々の出力が入力され、 D S Pと表記されたディジタル信号処理部 9に組み込まれ、 AD 1、 A D 2 と表記された AD変換器 9 1 と 9 2が備えられている。
増幅器 5 と ミキサ 6によ りダウンコンバート部が形成され、 パン ドパスフィルタ 8 1、 8 2 と、 AD変換器 9 1、 9 2 とで、 受信回 路部が形成されている。 図 1に示されたレーダ装置の例では、 受信 アンテナが、 2個の場合であって、 この 2個のアンテナに対応させ て、 パン ドパスフィルタ回路と AD変換器とを組とする受信回路系 が 2個備えられている。 図 1では、 代表的に、 2個の受信アンテナ が備えられている例が示されたものであり、 受信回路部の構成と し ては、 受信アンテナの個数に対応して、 パン ドパスフィルタ回路と A D変換器の耝による受信回路系が複数備えられ、 第 2スィ ッチに よって択一的に切換え接続されるようになっている。
この様に構成されたレーダ装置において、 電圧制御発振器 2の出 力信号に、 変調信号発生器 3からの変調信号を加えて FM変調信号 を生成し、 この FM変調信号が、 送信信号と して、 送信アンテナ A Tを介して、 外部に送信される。 それと共に、 該送信信号の一部が 分岐されてダウンコンバー ト部であるミキサ 6に加えられる。 一方 、 物体から反射された送信信号による反射波は、 受信信号として複 数の受信アンテナ AR 1、 AR 2で受信される。 ここで、 受信アン テナ AR 1、 AR 2の信号路をそれぞれチャンネル c h l、 c h n とする。 第 1スィ ッチ 4で、 複数の受信アンテナの各出力端子を、 増幅器 5を介してダウンコンバート部のミキサ 6の入力端子に、 択 一的に順次切換え接続し、 ダウンコンパ一ト部に入力する各チヤン ネル c h 1、 c h 2からの信号を切換える。
この切換え動作は、 ディジタル信号処理部 9に備えられた切換え 信号発生器から出力される信号により制御される。 この切換え信号 は、 所定周波数を有するクロック信号であり、 チャネル c h l、 c h 2の受信信号は、 所定周波数による切換え信号の立ち上がりエツ ジ及び立ち下りエッジで、 チャンネルの切換え接続が行われる。 そ の結果、 クロ ック信号による所定時間の間に、 チャネル c h i が增 幅器 5 と接続され、 次の所定時間の間に、 チャネル c h 2が増幅器 5 と接続される。 以降、 同様に、 次の所定時間の間に、 チャネル c h i と c h 2 とが交互に、 増幅器 5 と接続される。 この様に、 全て 同じ時間間隔の周期で、 チャネルが切換えられる。
増幅器 5に入力された受信信号は、 ダウンコンバート部であるミ キサ 6に入力され、 電圧制御発振器 2からの送信信号とミキシング されてダウンコンバートされ、 ビート信号が生成される。 このビー ト信号は、 第 2スィ ッチ 7に出力される。 第 2スィ ッチ 7は、 この ビー ト信号が、 バン ドパスフィルタ回路 8 1、 8 2、 及び、 A D変 換器 9 1、 9 2をそれぞれ有する 2チヤンネルに択一的に順次入力 されるように、 切り換える。 この切換え動作は、 ディジタル信号処 理部 9に備えられた切換え信号発生器からの信号によ り制御され、 上述した周期で、 第 1スィ ッチ 4によるアンテナ切換え動作と同期 している。
ノ ン ドパスフィルタ回路 8 1 と 8 2は、 それぞれ A D変換器 9 1 と 9 2に接続されており、 ノ ンドパスフィルタ回路 8 1 と 8 2に入 力した信号は、 それぞれ A D変換器 8 1 と 8 2によってディジタル 信号に変換され、 ディジタル信号処理部 9で、 高速フーリエ変換等 により信号処理がされる。 そして、 各チャンネルからのディジタル 信号について位相処理され、 全チャンネルの合成が行われ、 距離及 び相対速度が測定される。
図 1に示されたレーダ装置では、 受信アンテナの数と、 パンドパ スフィルタ回路の数を同じとしたが、 ノ ンドパスフィルタ回路の数 は、 受信アンテナの数よ り少なくてもよい。 しかし、 パンドパスフ ィルタ回路の数は、 同時に受信アンテナを切り換えなければならな い数だけ必要である。 例えば、 同期して切り換える受信アンテナの 数が 2であれば、 ノ ンドパスフィルタ回路の数も 2でよい。
また、 図 1では、 A D変換器を複数設けたが、 別途に第 3切換え スィ ッチを挿入し、 A D変換器を 1つにし、 第 3切換えスィ ッチに よって複数のパンドパスフィルタが切換え接続されるようにしても よい。 この場合、 第 3切換えスィ ッチの切換え動作は、 ディジタル 信号処理部 9の切換え信号発生器 5から出力される信号によって制 御され、 受信アンテナの切換え動作と同期して行われる。
図 1 に示されたように、 これまでに提案された D B F型の F M— C W方式のレーダ装置においては、 受信回路部として、 受信アンテ ナの数に対応した分だけ、 パンドバスフィルタ回路と A D変換器と の組による受信回路系を備えている。 ここで、 レーダ装置における 距離及び相対速度検出のための認識処理中における受信回路部への 入力波形と、 受信回路部における A D変換器への入力波形について 、 図 2に示した。 図 2の ( a ) は、 第 1スィ ッチ 4でチャネル c h 1 と c h 2が切換えられて、 ダウンコンバー ト部に入力され、 そこ からの出力信号の波形を示し、 図 2の ( b ) は、 第 2スィ ッチ 7で 切換えられて、 各々をパンドパスフィルタ回路 8 1又は 8 2に入力 し、 そこで処理された後の A D変換器 9 1又は 9 2への入力信号の 波形を示している。
ところで、 受信回路部を構成する 2受信回路系が同じ特性を有し ていれば、 受信アンテナ A R 1 と A R 2も、 同一特性を有している ので、 ダウンコンパ一ト部の出力信号におけるチャネル c h 1 と c h 2に係る信号波形は、 同一波形となり、 時間的には第 1スィ ッチ 4の切換え周期だけずれている答である。 しかし、 例えば、 各受信 アンテナの特性に差異があると、 図 2の ( a ) に示されるよ うに、 ダウンコンパート処理された S P D T入力信号のチャネル c h 1 と c h 2に係る信号波形も互いに異なつた形状のものとなる。
そこで、 図 2の ( a ) に示されるように、 S P D T入力信号に含 まれるチャネル信号 c h 1 と c h 2の波形が互い異なっている場合 には、 図 2の ( b ) に示されるよ う に、 ノ ン ドパスフィルタ回路 8 1 と 8 2でフィルタ処理され、 A D変換器 9 1 と 9 2に入力される チャネル信号 c h 1 と c h 2も、 互いに異なった波形となる。 チヤ ネル信号 c h i は、 チャネル信号 c h 2の振幅よ り低く、 チャネル 信号 c h 1側のゲインが小さく、 また、 チヤネル信号 c h 1 と c h 2 とは、 位相がずれていることが分かる。 これらのチャネル信号 c h 1 と c h 2 とに基づいて方位検出を行う と、 各波形間に、 信号レ ベル及び位相にずれがあるため、 認識処理における方位検出に異常 が発生することとなる。
図 2の場合は、 各受信アンテナ間の特性差に起因したものと して 説明したが、 各受信アンテナが同一特性であるときでも、 複数の受 信回路系が備えられている場合、 各受信回路系間の特性差が存在す るときには、 各受信回路系で処理された各チャネル信号にも、 図 2 の ( b ) に示されたものと同様の現象が発生する。 複数の受信回路 系が備えられているときに、 方位検出に異常が発生する基となる要 因と しては、 1 ) 製造時などのように、 各受信回路系のゲイ ン、 位 相が未調整である場合、 2 ) レーダ装置の使用環境の影響によ り各 受信回路系のゲイン、 位相にパラツキが発生する場合、 3 ) 特定の 受信回路系に故障などの異常が発生した場合などが挙げられる。 そこで、 本実施形態のレーダ装置では、 方位検出の的確性に影響 する複数の受信回路系の間における特性差を無くす補正を行う こと によって、 各受信回路系の特性変化、 或いは、 パラツキによる認識 処理上の影響を排除できるようにした。 このため、 本実施形態のレ ーダ装置では、 このレーダ装置に複数の受信回路系が備えられてい ることを利用して、 各受信回路系に共通するチャネル信号を供給す ることで、 各受信回路系の間の特性差を検出し、 その特性差によつ て、 受信回路系の異常に関する自己判断を行う ようにした。
各受信回路系に共通するチャネル信号を供給する仕方として、 複 数の受信アンテナにおける特定アンテナを選択して、 この特定アン テナで受信した受信信号を各受信回路系に供給するよ うに、 第 1ス イ ッチ 4 と第 2スィ ッチとを制御する。 通常認識処理中においては 、 第 1 スィ ッチ 4 と第 2スィ ッチ 7 とは同期して、 対応する受信ァ ンテナと受信回路系とを切換え接続しているが、 受信回路系の異常 自己判断時には、 第 1スィ ッチ 4は、 特定アンテナのみに固定的に 接続するように制御され、 第 2スィ ッチ 7は、 複数の受信回路系か ら 2組の受信回路系を選択して、 各々を切換え接続するように制御 される。 これで、 特定アンテナで受信した受信信号に係るチャネル 信号を当該受信回路系の夫々に供給するように制御される。
その受信回路系の異常に関する自己判断の原理を、 図 3において 、 図 1 に示されたレーダ装置を例にしたチャネル信号の波形で示し た。 図 3の ( a ) には、 第 2スィ ッチ 7から出力される出力信号の 波形が示されている。 このとき、 受信アンテナ A R 1力 第 1スィ ツチ 4によって、 特定アンテナとして選択されている。 受信アンテ ナ A R 1が、 送信アンテナ A Tから送信された送信信号による反射 波を受信する。 そして、 この受信信号に基づいて、 ダウンコンパ一 タ部でビー ト信号が生成される。 このビー ト信号は、 第 2スィ ッチ 7によって、 通常認識処理中における切換え周期で、 切換えられ、 チャネル信号 c h l l と c h l 2が生成される。
このチヤネル信号 c h 1 1 は、 太線で示され、 チャネル c h 1 2 は、 細線で示されるように、 チャネル信号 c h 1 1 と c h 1 2 とは 、 切換え周期で交互に現れ、 これらの信号の包絡線が、 ビー ト信号 になっている。 そこで、 チヤネル信号 c h 1 1 は、 ノ ンドパスフィ ルタ回路 8 1 に、 チャネル信号 c h 1 2は、 ノ ンドパスフィルタ回 路 8 2に夫々入力される。
図 3の ( b ) には、 パンドパスフィルタ回路の出力であり、 A D 変換器 9 1 、 9 2の入力信号の波形が示されている。 A D変換器 9 1の入力信号の波形は、 チャネル信号 c h 1 1で表され、 A D変換 器 9 2の入力信号の波形が、 チャネル信号 c h 1 2で表されている 。 図 3の ( b ) に示された波形から分かるように、 選択された 2組 の受信回路系に係る特性が同じであれば、 チャネル信号 c h 1 1 と チャネル信号 c h 1 2の波形も同一のものとなるが、 これらの受信 回路系に特性差があれば、 信号波形における振幅及びノ又は位相に ずれが発生することになる。 そのため、 チャネル信号 c h 1 1 とチ ャネル信号 c h 1 2 との信号レベル及び 又は位相のずれを検出す れば、 これらの受信回路系の間における特性差を自己判断できる。
次に、 上述した受信回路系の異常に関する自己判断の原理を、 図 1に示したレーダ装置に適用した本実施形態について、 図 4及び図 5を参照しながら説明する。 その本実施形態のレーダ装置の構成が 、 図 4に示されている。 図 4に示された本実施形態のレーダ装置は 、 図 1に示されたレーダ装置の構成をそのまま利用しているので、 同じ構成部分には、 同じ符号が付されている。
ここで、 本実施形態のレーダ装置においては、 図 1のレーダ装置 のディジタル信号処理部 9に、 信号特性判断部 9 3が追加的に設け られている。 そして、 この信号特性判断部 9 3は、 受信回路系の信 号特性判断時のみ、 第 1切換スィ ッチ 4 と第 2切換スィ ッチ 7の切 換え動作を制御し、 特定アンテナで受信した受信信号から得られた A D変換器 9 1及び 9 2のチャネル信号出力に基づいて、 複数の受 信回路系における特性差を判断する。 その判断結果により、 チヤネ ル信号の信号レベル及び/又は位相を補正する。
さ らに、 図 3に示した本実施形態のレーダ装置の例では、 チヤネ ル信号の信号レベル及び/又は位相を補正するため、 各信号回路系 の途中に、 調整器 1 0 1、 1 0 2が、 各信号回路系の途中であるパ ンドパスフィルタ回路と A D変換器との間に挿入され、 その調整器 の各々は、 信号特性判断部 9 3によって、 信号特性判断時に信号レ ベル及び 又は位相がアナ口グ的に調整され、 その調整値を保持す るものである。 これによつて、 通常認識処理時において、 受信回路 系の特性差が補正される。 調整器 1 0 1、 1 0 2は、 可変利得増幅 器、 位相器を含み、 図中では、 L Z Pと表記されている。
また、 チャネル信号に対する調整機能は、 図 4に示されるよ うに 、 ハード的に、 調整器を受信回路系内に挿入するこ とで実現できる が、 ディジタル信号処理部 9内において、 チャネル信号を A D変換 した後の処理信号をソフ ト的に調整するよ うにして、 通常認識処理 時において、 受信回路系における特性差が補正されるようにしても よい。 この場合には、 特性差を補正する補正値をディジタル信号処 理に使用するため、 記憶部に記憶しておく。
以上のことは、 各受信回路系の間において、 特性差が元々存在し ていても、 或いは、 動作中に特性差が発生していても、 以後の処理 にあたっては、 この保持された、 或いは、 記憶された補正値に従つ て、 各受信回路系で処理された出力信号が自動的に補正されること になるので、 通常の認識処理上では、 各受信回路系間の特性差が解 消されている。 3個以上の複数の受信アンテナ.を備えたレーダ装置 の場合でも、 特定アンテナに関連する受信回路系と、 他の受信アン テナに関連する受信回路系とを組み合わせて、 上述の手法を繰り返 すことにより、 全ての受信回路系に対して、 受信回路系間の特性差 を補正することができ、 全体として、 揃った特性が得られる。
次に、 これまでに説明してきたように、 受信回路系間におけるチ ャネル信号に係る特性変化を判断することによ り、 受信回路系の特 性差を解消する仕方に従い、 ディジタル信号処理部 9に含まれてい る信号特性判断部 9 3における実際の補正処理の手順について、 図 5に示されたフローチャートを参照して説明する。
図 5に示された補正処理の手順は、 図 4に示されたレーダ装置の 場合を例にしている。 先ず、 最初に、 ディジタル信号処理部 9にお いて、 処理部のメィン処理である通常の認識処理が開始されると、 信号特性判断部 9 3が起動される。 信号特性判断部 9 3には、 タイ マが備えられ、 この起動によ り、 タイマが動作を開始し、 例えば、 1 0秒経過したかどうかが判断される (ステップ S 1 ) 。
ここで、 1 0秒経過していない場合には (ステップ S 1の Y ) 、 ディジタル信号処理部 9は、 通常の認識処理を実行すること と し、 第 1 スィ ッチ 4 と第 2 スィ ッチ 7 とを同期した切換え動作に制御す る (ステップ S 2 ) 。
そして、 ディジタル信号処理部 9は、 パン ドパスフィルタ回路 8 1 、 8 2から入力されたチャネル信号 c h 1 、 c h 2に対して、 A D変換処理を行わせ (ステップ S 3 ) 、 次いで、 F F T処理を行わ せ、 方位検出などの通常の認識処理が行われる (ステップ S 4 ) 。 その後、 ステップ S 1 に戻り、 1 0秒経過するまで、 ディジタル信 号処理部 9は、 通常の認識処理を続行する。 一方、 1 0秒が経過したと判断された場合には (ステップ S 1 の N) 、 信号特性判断部 9 3が、 第 1スィ ッチ 4を制御して、 受信ァ ンテナ AR 1、 AR 2のいずれか一方を特定アンテナと して、 固定 的にオン状態に制御する (ステップ S 5 ) 。 図 4では、 特定アンテ ナは、 受信アンテナ AR 1が選択され、 受信アンテナ AR 1で受信 したチャネル信号 c h 1が比較判断の基準となっている。
次いで、 信号特性判断部 9 3は、 第 2スィ ッチの切換え接続を制 御し、 チヤネル信号 c h l力、らチャネル信号 c h l 1 と c h l 2を 生成し、 ノ ンドパスフィルタ回路 8 1 と 8 2の各々に入力させ、 パ ンドパスフィルタ回路 8 1 と 8 2の出力を、 A D変換器 9 1 と 9 2 に AD変換処理を行わせる (ステップ S 6 ) 。
ここで、 信号特性判断部 9 3は、 チャネル信号 c h 1 1 に係る A D変換信号と、 チャネル信号 c h 1 2に係る AD変換信号とを比較 する (ステップ S 7 ) 。 ここでは、 各 A D変換信号に基づいて、 チ ャネル信号 c h 1 1 とチャネル信号 c h 1 2 とに含まれる信号レべ ル及び/又は位相に係るずれが判断され、 そのずれ量が演算される 。 このずれ量は、 特性差を解消するための補正値となる。
次いで、 演算されたずれ量に基づいて、 チャネル信号 c h 1 1 と チャネル信号 c h 1 2 との双方に係る信号レベル及び 又は位相が 同等であるかどうかが判断される (ステップ S 8 ) 。
ここで、 各信号レベル及び Z又は位相が同等であると判断された 場合には (ステップ S 8の Y) 、 製造過程で、 元々、 各受信回路系 の特性差があった可能性があって、 補正済みであり、 或いは、 それ 程、 受信回路系の性能劣化が進んでいない可能性があることを示す ものであり、 受信回路系に特性変化が発生していないと して、 前回 の補正処理で求められ、 既に設定された補正値を維持し、 前の状態 と しておく (ステップ S 9 ) 。 そして、 ステップ S 1に戻り、 ディ T JP2005/011402 ジタル信号処理部 9は、 通常の認識処理を行う。
また、 各信号レベル及び/又は位相が同等でないと判断された場 合には (ステップ S 8 の N ) 、 さらに、 信号レベル値及び/又は位 相値が所定の範囲外のものであるかどうか判断される (ステップ S 1 0 ) 。 これは、 主と して、 受信回路系の故障状態を判断するもの である。
信号レベル値及び/又は位相値が所定の範囲内のものである場合 には (ステップ S 1 0の N ) 、 受信回路系の性能劣化が進んでいる 可能性があり、 或いは、 動作環境の温度変動の影響で特性に変化が 発生した可能性があることを示すものであり、 ステップ A 7におい て演算されたずれ量に基づいて補正値を生成し、 今回の補正処理で 求められた補正値によって、 前回の補正処理で求められた既設定の 補正値を更新する (ステップ S 1 1 ) 。 そして、 ステップ S 1 に戻 り、 ディジタル信号処理部 9は、 通常の認識処理を行う。 なお、 こ の更新時に、 当該受信回路系について、 特性変化があったことを外 部に報知するよ うにしてもよい。
また、 信号レベル値及び Z又は位相値が所定の範囲外のものであ る場合には (ステップ S 1 0 の Y ) 、 当該受信回路系が異常処理状 態になっていることを示し、 ディジタル信号処理部 9における通常 の認識処理に、 重大な影響を与える危険性があることを示すもので あり、 この場合には、 ダイァグ情報を出力し、 外部に受信回路系の 異常を報知する (ステップ S 1 2 ) 。
例えば、 当該認識処理中の流れからは発生し得ないような、 受信 回路系からの出力に信号レベルの急激な変動が生じた場合に、 受信 回路系の特性変化に関する判断処理を実行すれば、 受信回路系の一 つに、 突然に異常が発生したことを自動的に検知することができ、 レーダ装置の認識が誤っていることを確実に報知することができる P T/JP2005/011402
。 なお、 ステップ S 1 2におけるダイァグ情報の出力先としては、 ナビゲーシヨ ン処理を行う電子制御装置 (E C U ) 、 オートクルー ズ制御 ( A C C ) などが挙げられる。
以上のよ うに、 信号特性判断部 9 3は、 第 1スィ ッチ 4と第 2ス イ ッチとの切換え接続を制御して、 特定アンテナで受信されたチヤ ンネル c h 1に基づいて、 チャネル信号 c h 1 1 とチャネル信号 c h 1 を生成するよ うにし、 各受信回路系に同じチャネル信号を入力 する。 この同じ特性を有するチャネル信号によって、 各受信回路系 の処理結果を比較できるよ うになつている。 そのため、 各受信回路 系自体に特性の変化が発生し、 或いは、 各受信回路系の特性にパラ ツキがあっても、 通常の認識処理に影響しないよ うに、 当該受信回 路系に対して求めた補正値で補正することができる。
なお、 各受信回路系に調整器 1 0 1 と 1 0 2が挿入されている場 合には、 信号特性判断部 9 3がこれらの調整器を制御することによ り、 各受信回路系に対する補正処理が行われるが、 これらの調整器 による調整機構が正常に機能しているかどうかが判断される必要性 があることも有り得る。 この様な場合、 例えば、 各調整器に含まれ る可変利得増幅器が、 調整のためオン . オフ制御される形式のもの であれば、 各受信回路系間で、 このオン · オフ制御状態の差を比較 することで、 各調整機構が正常であるかどうかを判断することがで きる。 各調整機構間で、 オン ' オフ制御状態に差異があれば、 調整 することができる。
以上で、 図 5のフローチャートに示されたように、 ディジタル信 号処理部に含まれている信号特性判断部が、 受信回路系間における チャネル信号に係る特性変化を判断し、 受信回路系の特性差を解消 するように補正処理することについて説明された。 そこで、 以下に 、 この補正処理における補正値の具体的な算出例を説明する。 ここで説明される補正値の算出例では、 チャンネル。 h 1の受信 信号に係る A D変換されたチヤンネル c h l l と c h l 2の 2つの 受信信号を用いる。 それぞれの受信信号を、 ( t ) 、 E 2 ( t ) とし、 いずれの受信信号も既知のターゲッ トからの反射波による 受信信号のみとする。 各受信信号は、
E 1 ( t ) = C 1 - e - 3 2 " f t = C 1 - e - j 9 1 ( t )
E 2 ( t ) = C 2 - e - j ( 2 7t f t - s ) = C 2 - e - j 9 2 ( t ) と表される。 ここで、 、 C 2 は、 振幅を、 そして、 Θ ( t ) 、 Θ 2 ( t ) は、 位相をそれぞれ示している。 なお、 Θ 2 ( t ) = 2 π f t _ δであり、 受信信号 Ε 2 ( t ) 力 受信信号 E! ( t ) に対する位相ずれ δ を有していることを示している。
ところで、 各受信回路系に特性差がある状態では、 通常に受信さ れる各受信信号における振幅と位相のそれぞれが、 C i ^ C s Θ
! ≠ Θ 2 の関係にあるとする。 一方、 各受信回路系に特性差がない ものとすれば、 C丄 = C 2 、 Θ ! = Θ 2 の関係が成立し、 チャンネ ル c h l l とチャンネル c h l 2 との受信信号は同じ信号になる箬 である。
そこで、 この原理を利用して、 受信信号 「 c h 1 1」 と受信信号 「 c h l 2」 とが同じになるように、 各受信回路系の特性を補正す るため、 振幅の補正値を、 k とし、 位相のずれ補正値を、 δ とする と、 振幅 C丄 と C 2 、 位相 0 と 0 2 については、
C! = k C 2 、
θ 1 = Θ 2 + δ
と表される。
この様に表されたとき、 補正後のチャンネル c h 1 2の受信信号 を、 E 2 ' ( t ) とすると、 E 2 , ( t ) = k C 2 - e - j , e 2 ( t ) + s l
となる。 ここで、 上述した = k C 2 、 Θ ! = Θ 2 + δ の関係に よ り、
Ε 2 ' ( t ) = C 1 · e - 1 2 π f '
= E !
とすることができるので、 補正値 k及び δによ り、 チャンネル c h 1 2の受信信号がチヤンネル c h 1 1 の受信信号と同じに補正され たことになる。
以上のよ うに、 補正値 k及び δ に基づいて、 2つのチャンネルに 係る受信信号について、 どちらかの受信信号を基準にして、 補正処 理が実現される。 そこで、 図 5のフローチャー トのステップ S 6に おいて、 A D変換された受信信号に対する F F T処理が実行され、 ステップ S 7において、 F F T処理の結果により、 既知のターゲッ トの距離位置に対応する周波数の実数と虚数の解から、 振幅値 C i 、 C 2 と、 位相値 0 、 Θ 2 とが算出される。
そこで、 振幅値 C 1 C 2 及び位相値 0 、 0 2 が算出されたな らば、 上述した = k C 2 、 θ 1 = Θ 2 + δの関係から、 チャン ネル c h 1 1 とチヤンネル c h 1 2に係る補正値 k及び δ を求める ことができる。
以上では、 チャンネル c h 1から得られたチャンネル c h 1 1 と チヤンネル c h 1 2に係る補正値 k及び δ を求める場合について説 明したが、 図 1に示したレーダ装置のように、 受信側がアンテナ A R 1 と AR 2で構成されている場合に、 アンテナ AR 2を切り換え 固定して、 チャンネル c h 2からチャンネル c h 2 1 とチャンネル c h 2 2の受信信号を得ても、 上述した補正処理と同様に、 チャン ネル c h 2 1 とチャンネル c h 2 2に係る補正値 k及び δ を求める ことができる。 また、 求められた 2組の補正値を比較すると、 受信 5 011402 アンテナ A R 1 と A R 2間の特性差を求めることができる。
また、 さらに受信アンテナ数が増加され、 これに対応して受信回 路系も増加された多チヤンネルのレーダ装置の場合には、 一の受信 アンテナを切り換え固定し、 当該受信アンテナで受信した受信信号 を各受信回路系に入力して、 複数のチャンネル c h 1乃至 c h mを 生成する。 そして、 基準とするチャンネル、 例えば、 チャンネル。 h i と、 複数のチヤンネルから選択された他のチャンネルを組み合 わせて、 2チャンネルの組みを順次選択し、 夫々の組みについて、 補正値 k及び δを求めることもできる。
図 5のフローチャート図では、 信号特性判断部 9 3による各受信 回路系の特性変化に係る判断の仕方と、 特性変化した場合の補正処 理の手順とについて、 説明した。 ここでは、 タイマにより、 デイジ タル信号処理部 9における通常の認識処理中に、 例えば、 1 0秒間 隔で、 各受信回路系に係る特性変化を判断処理した。 次に、 この受 信回路系の特性変化に係る判断処理を、 他に、 どの様なときに実施 できるかについて説明する。
受信回路系の特性変化の判断処理は、 レーダ装置の外部から信号 特性判断部 9 3に処理指令を送って、 任意のときに実施されるよ う にしてもよい。 例えば、 工場出荷時の製品検査の段階で、 検查係が 指令し、 出荷される製品の品質を均一化する場合に採用することが できる。 また、 レーダ装置のユーザが、 任意のタイ ミ ングで処理指 令を行って、 レーダ装置の認識処理の精度を向上することもできる 一方、 レーダ装置が車両に搭載されている場合のように、 車両の 走行中の装置動作中において、 レーダ装置における通常の認識処理 の間に、 間欠的に、 且つ自動的に、 信号特性判断部 9 3に起動され 、 その都度、 補正処理が行われるよ うに、 設定することもできる。 図 5の例では、 タイマで所定時間毎に補正処理が行われたが、 通常 認識処理の所定回数毎に 1回の補正処理が実行されるようにしても よい。
また、 車両の速度計などから車速を検出し、 車両が停止中である ときに、 受信回路系の補正処理を実行するようにしても良い。 ここ で、 車速が 0でなく、 走行しているときには通常の認識処理を続行 させ、 車両が停止中であり、 車速が 0であるときに、 上述した補正 処理の手順に従って、 補正値を演算し、 当該補正値を維持するか、 又は、 補正値を更新するかの補正処理が実行される。 さ らに、 演算 された補正値が、 想定範囲外の場合には、 ダイァグ情報を出力する 車両が停止している場合にのみ、 補正処理が実行されるが、 車両 が停止中であると、 車両の前方にあるターゲッ ト との距離が固定化 されるため、 受信信号の入力が安定し、 捕正処理の精度向上を期待 できる。 勿論、 車両が停止中のみに補正処理を実行する条件とせず に、 単純に、 所定回数毎に、 定期的に補正処理を実行させることで も、 本発明の目的を達成することができる。
車両が停止中であるときは、 つまり、 受信信号の入力が安定して いるときであり、 受信回路系の特性変化に関する判断処理が的確に 実行されるものであることから、 車両が停止中である場合に限られ ず、 受信回路系に入力されるチャネル信号が安定していれば良く、 例えば、 走行中であっても、 車両の前方にあるターゲッ トとの相対 距離が安定している ときでも、 もしく は、 受信レベルが高い場合に のみ実行してもよい。
これまでの説明では、 受信回路系の特性変化に関する判断処理は 、 主に、 時間的条件に従って実行されるものであつたが、 レーダ装 置の使用環境に係る温度の変化時に、 受信回路系の特性変化に関す 2 る判断処理を実行するようにしてもよい。 例えば、 レーダ装置に直 接に、 或いは、 その近傍に、 温度センサを設けておき、 このセンサ で、 受信回路系に関わる温度を検出する。 受信回路系は、 温度変化 に影響されて、 その性能、 処理特性も変化し、 受信回路系毎に、 そ の変化度合いもばらついている。
そのため、 信号特性判断部 9 3は、 この温度センサからの温度情 報に基づいて、 例えば、 検出された温度が所定範囲を超えている場 合に、 受信回路系の特性変化に関する判断処理を実行するよ うにす る。 この様に、 温度情報を検出することにより、 レーダ装置の環境 変化に追随して、 補正処理が正確に行われる。 この環境変化に追随 した補正処理と、 上述した間欠的な補正処理と組み合わせることに より、 更に精度のよい補正を行える。
以上に説明した本発明によるレーダ装置の実施形態では、 図 1 に 示されたレーダ装置の構成を基本とし、 このレーダ装置には、 複数 のアンテナによるアレーアンテナが備えられている。 そのアレーァ ンテナには、 例えば、 送信アンテナ A T、 受信アンテナ A R 1 、 A R 2が含まれている。
しかし、 上述した本発明によるレーダ装置の実施形態は、 アレー アンテナを、 送信専用アンテナと、 複数の受信専用アンテナとで構 成する場合にのみの適用に限られず、 ァレーアンテナを構成する複 数のアンテナを送受信兼用にした場合にも適用される。 以下に、 送 受信兼用の複数のアンテナでアレーアンテナを構成した場合の適用 例について、 図 6に示された本発明によるレーダ装置の別の実施形 態を参照して説明する。
図 6に示された D B F型 F M— C W方式レーダ装置の別の実施形 態は、 図 4に示された本実施形態のレーダ装置の構成を基本と して いるが、 この別の実施形態では、 送信専用アンテナと、 複数の受信 専用アンテナの組み合わせによるァンテナ構成の代わりに、 複数の 送受信兼用アンテナ A 1乃至 A mによるアンテナアレイ Aが採用さ れている。
このレーダ装置には、 アンテナアレイ A、 増幅器 1、 V C Oと表 記された電圧制御発振器 2、 そして、 M O Dと表記された変調信号 発生器 3が備えられ、 送信部が形成されている。
さらに、 そのレーダ装置には、 アンテナアレイ Aにおけるアンテ ナ A 1乃至 A mを送信時に増幅器 1 に択一的に切換え接続し、 さ ら に、 各アンテナを受信時に増幅器 5に択一的に切換え接続する S W 3 と表記された第 3スィ ッチ 4 1が備えられる。 また、 送信信号の 一部を受信信号と ミキシングするミキサ 6、 ミキシングされた信号 を B P 1乃至 B P nと表記されたパン ドパスフィルタ回路 8 — 1乃 至 8— nに択一的に入力する S W 4 と表記された第 4スィ ッチ 7 1 が備えられる。 パン ドパスフィルタ 8 — 1乃至 8— nの各々の出力 が入力され、 D S P と表記されたディジタル信号処理部 9に組み込 まれ、 A D 1乃至 A D n と表記された A D変換器 9 一 1乃至 9 一 n が備えられる。
増幅器 5 とミキサ 6によ りダウンコンパー ト部が形成され、 パン ドパスフィルタ 8— 1乃至 8 — n と、 A D変換器 9— 1乃至 9 一 n とで、 受信回路部が形成されている。 受信回路部の構成としては、 受信アンテナの個数に対応して、 パン ドパスフィルタ回路と A D変 換器の組による受信回路系が複数備えられ、 第 4スィ ッチ 7 1によ つて択一的に切換え接続されるようになつている。
ここで、 図 6に示された別の実施形態のレーダ装置においても、 図 4に示されたレーダ装置の場合と同様に、 レーダ装置のディジタ ル信号処理部 9に、 信号特性判断部 9 3が設けられている。 そして 、 この信号特性判断部 9 3は、 受信回路系の信号特性判断時のみ、 第 3スィ ッチ 4 1 と第 4スィ ッチ 7 1 の切換え動作を制御し、 特定 アンテナで受信した受信信号から得られた A D変換器 9 _ 1乃至 9 一 nのチャネル信号出力に基づいて、 複数の受信回路系における特 性差を判断する。 その判断結果により、 チャネル信号の信号レベル 及び.ノ又は位相を補正する。
さ らに、 図 6に示した別の実施形態のレーダ装置では、 上述した 実施形態のレーダ装置の場合と同様に、 チャネル信号の信号レベル 及び/又は位相を補正するため、 各信号回路系の途中に、 可変利得 増幅器、 位相器を含む調整器を、 各信号回路系の途中であるパン ド パスフィルタ回路と A D変換器との間に挿入してもよく、 また、 デ ィジタル信号処理部 9内において、 チャネル信号を A D変換した後 の処理信号をソフ ト的に調整するようにして、 通常認識処理時にお いて、 受信回路系における特性差が補正されるよ うにしてもよい。
次に、 図 6に示された別の実施形態のレーダ装置において、 受信 回路系間の特性変化を判断し、 その変化を補正処理する手順につい て説明する。 受信回路系の特性差を解消する仕方と、 補正処理にお ける補正値の算出の仕方は、 上述した実施形態で採用されたものと 同様である。
先ず、 最初に、 ディジタル信号処理部 9において、 処理部のメイ ン処理である通常の認識処理が開始されると、 信号特性判断部 9 3 が起動される。 信号特性判断部 9 3に備えられたタイマが動作を開 始し、 所定時間が経過するまで、 ディジタル信号処理部 9は、 通常 の認識処理を実行する。 第 3スィ ッチ 4 1 と第 4スィ ッチ 7 1 とを 制御する。
次に、 所定時間が経過したとき、 図 6に示されるように、 信号特 性判断部 9 3が、 第 3スィ ッチ 4 1 を制御して、 例えば、 アンテナ A 1 を、 送信アンテナとするため、 増幅器 1に接続する。 図 6では 、 特定アンテナと して、 アンテナ A 1が選択され、 アンテナ A 1で 受信したチャネル信号 c h 1 を比較判断の基準と している。
次いで、 信号特性判断部 9 3は、 第 3スィ ッチ 4 1 を制御して、 アンテナ A 1 を増幅器 5に接続し、 さらに、 第 4スィ ッチを制御し て、 チャネル信号 c h 1からチャネル信号 c h l l と c h l 2 を生 成し、 ノ ンドパスフィルタ回路 8— 1 と 8— 2の各々に入力させ、 パン ドパスフィルタ回路 8— 1 と 8— 2の出力を、 それぞれ A D変 換器 9 一 1 と 9— 2で A D変換処理を行わせる。
ここで、 信号特性判断部 9 3は、 チャネル信号 c h l l に係る A D変換信号と、 チャネル信号 c h 1 2に係る A D変換信号とを比較 する。 ここでは、 各 A D変換信号に基づいて、 チャネル信号 c h i 1 とチャネル信号 c h 1 2 とに含まれる信号レベル及び/又は位相 に係るずれが判断され、 そのずれ量が演算される。 このずれ量は、 受信回路系間の特性差を解消するための補正値となる。
次いで、 演算されたずれ量に基づいて、 チャネル信号 c h 1 1 と チャネル信号 c h 1 2 との双方に係る信号レベル及び Z又は位相が 同等であるかどうかが判断され、 各信号レベル及び Z又は位相が同 等であると判断された場合には、 補正済みであるか、 或いは、 受信 回路系の性能劣化が進んでいないことを示している。 そこで、 受信 回路系に特性変化がないと して、 既に設定された補正値を維持し、 ディジタル信号処理部 9は、 通常の認識処理を続行する。
また、 各信号レベル及び/又は位相が同等でないと判断された場 合には、 受信回路系の故障状態を判断するため、 信号レベル値及び Z又は位相値が所定の範囲外のものであるかどうかを判断し、 信号 レベル値及び/又は位相値が所定の範囲内のものである場合には、 受信回路系の性能劣化が進んでいる、 或いは、 動作環境の温度変動 の影響で特性に変化が発生したことを示すものであるので、 演算さ れたずれ量に基づいて補正値を生成し、 今回の求めた補正値によつ て、 既設定の補正値を更新する。
そして、 ディジタル信号処理部 9は、 通常の認識処理を行う。 な お、 この更新時に、 当該受信回路系について、 特性変化があったこ とを外部に報知するようにしてもよい。
また、 信号レベル値及び 又は位相値が所定の範囲外である場合 には、 当該受信回路系が異常処理状態になっていることを示す。 デ ィジタル信号処理部 9における通常の認識処理に、 重大な影響を与 える危険性があるため、 ダイァグ情報を出力し、 外部に受信回路系 の異常を報知する。
ここで、 図 6に示されるよ うに、 ダイァグ情報の出力先と して、 例えば、 ディジタル信号処理部 9力 車両内 L A N、 C A Nなどの ネッ トワークに接続されている場合には、 ネッ トワークに接続され たナビゲーショ ン処理用 E C U 1 1、 A C C用 E C U 1 2などが挙 げられ、 ディジタル信号処理部 9が、 これらの出力先にダイァグ情 報を伝送する。
以上のよ うに、 信号特性判断部 9 3は、 第 3スィ ッチ 4 1 と第 4 スィ ッチ 7 1における切換えを制御して、 特定のアンテナで受信さ れたチャンネル c h 1 に基づいて、 チヤネノレ信号 c h 1 1 とチヤネ ル信号 c h 1 2を生成するよ うにし、 各受信回路系に同じチャネル 信号を入力する。 この同じ特性を有するチャネル信号によって、 各 受信回路系の処理結果を比較できる。 そのため、 各受信回路系自体 に特性の変化が発生し、 或いは、 各受信回路系の特性にパラツキが あっても、 通常の認識処理に影響しないように、 当該受信回路系に 対して求めた捕正値で補正することができる。

Claims

1 . 送信信号を放射する送信部と、
前記送信信号による物体からの反射波を受信する複数のアンテナ と、
前記複数のアンテナの各出力端子を入力端子に択一的に順次切換 青
え接続する第 1 スィ ッチ部と、
前記第 1 スィ ツチ部の前記入力端子に入力された各アンテナから の
の受信信号を前記送信信号の一部を用いてダウンコンバー トするダ ゥンコンバー ト部と、
前記ダウンコンバート部の出力を、 第 1囲乃至第 nのフィルタ回路 に択一的に切換え接続する第 2スィ ツチ部と、
前記第 1乃至第 nのフィルタ回路の各出力を、 第 1乃至第 nの A D変換器に入力し、 該第 1乃至第 nの A D変換器から出力される第 1乃至第 nの出力信号に所定の処理を施して、 前記物体までの距離 又は前記物体との相対速度を検出するディジタル信号処理部と、 前記複数のアンテナから選択された特定アンテナで受信された前 記受信信号に基づいて出力された第 1乃至第 nの出力信号のうちか ら選択された 2出力信号を比較して、 該第 1乃至第 nの出力信号の 特性変化を判断し、 該特性の差を補正する信号特性判断部と、 を有するレーダ装置。
2 . 前記信号特性判断部は、 前記第 1処理信号と前記第 2処理信 号の夫々に含まれる信号レベル及びノ又は位相を比較することによ り前記第 1乃至第 nの出力信号における特性変化の判断を行う こと を特徴とする請求項 1 にレーダ装置。
3 . 前記信号特性判断部は、 前記第 1スィ ッチを制御して、 前記 複数のアンテナの特定アンテナを選択し、 前記第 2スィ ツチを制御 して、 該特定アンテナの受信信号から前記第 1乃至第 nの出力信号 を生成することを特徴とする請求項 1又は 2に記載のレーダ装置。
4 . 前記信号特性判断部は、 前記特性差があると判断した場合、 前記第 1乃至第 nの A D変換器の入力側に夫々接続された第 1乃至 第 nの調整器を制御し、 該特性差を補正することを特徴とする請求 項 1乃至 3のいずれか一項に記載のレーダ装置。
5 . 前記第 1乃至第 nの調整器の各々は、 前記信号特性判断部に よつて制御される可変利得増幅器及び/又は可変位相器を含むこと を特徴とする請求項 4に記載のレーダ装置。
6 . 前記信号特性判断部は、 前記特性差があると判断した場合、 該特性差に応じた前記第 1乃至第 nの出力信号に対する補正値を演 算し、
前記ディジタル信号処理部は、 前記補正値に基づいて、 前記第 1 乃至第 nの出力信号を補正することを特徴とする請求項 3に記載の レーグ装置。
7 . 前記信号特性判断部は、 演算した前記補正値を前記第 1乃至 第 nの出力信号に関連付けて記憶し、 前記補正値によ り補正された 前記第 1乃至第 nの出力信号に基づいて前記認識処理が実行される ことを特徴とする請求項 6に記載のレーダ装置。
8 . 前記信号特性判断部は、 当該装置の初期調整と して、 前記特 性変化に係る判断処理を行い、 該特性変化がある場合に、 演算した 前記補正値を前記第 1乃至第 nの出力信号に関連付けて記憶するこ とを特徴とする請求項 7に記載のレーダ装置。
9 . 前記信号特性判断部は、 前記ディジタル信号処理部による前 記物体までの距離又は前記物体との相対速度を検出する認識処理中 において、 間欠的に、 前記特性変化に係る判断処理を行うことを特 徴とする請求項 1又は 2に記載のレーダ装置。
1 0 . 前記信号特性判断部は、 前記物体との相対的な前記距離が 変化しないと認識されたとき、 前記特性変化に係る判断処理を行う ことを特徴とする請求項 7に記載のレーダ装置。
1 1 . 前記信号特性判断部は、 当該装置が搭載された車両が走行 停止中であることが認識されたとき、 前記特性変化に係る判断処理 を行うことを特徴とする請求項 8に記載のレーダ装置。
1 2 . 前記信号特性判断部は、 前記第 1乃至第 nの出力信号の信 号レベル及び又は位相が所定値以上又は所定範囲内にあるとき、 前 記特性変化に係る判断処理を行う ことを特徴とする請求項 1又は 2 に記載のレーダ装置。
1 3 . 前記信号特性判断部は、 演算した前記補正値を前記第 1乃 至第 nの出力信号に関連付けて記憶し、 前記補正値により補正され た前記第 1乃至第 nの出力信号に基づいて前記認識処理が実行され ることを特徴とする請求項 1 2に記載のレーダ装置。
1 4 . 前記信号特性判断部は、 外部指示に従って、 前記第 1乃至 第 nの出力信号の特性変化に係る判断処理を行う ことを特徴とする 請求項 1又は 2に記載のレーダ装置。
1 5 . 前記信号特性判断部は、 当該装置の初期調整として、 前記 特性変化に係る判断処理を行い、 該特性変化がある場合に、 演算し た前記補正値を前記第 1乃至第 nの出力信号に関連付けて記憶する ことを特徴とする請求項 1 3に記載のレーダ装置。
1 6 . 前記信号特性判断部は、 前記特性変化があると判断したと き、 外部に報知することを特徴とする請求項 1又は 2に記載のレー ダ装置。
1 7 . 前記信号特性判断部は、 前記特性変化があると判断したと き、 該特性変化が所定範囲内にない場合に、 ダイァグ情報を外部に 出力することを特徴とする請求項 1 6に記載のレーダ装置。
PCT/JP2005/011402 2004-06-21 2005-06-15 レーダ装置 WO2005124388A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/596,096 US7429947B2 (en) 2004-06-21 2005-06-15 Radar apparatus for detecting distance or velocity with respect to an object
JP2006514847A JPWO2005124388A1 (ja) 2004-06-21 2005-06-15 レーダ装置
CN2005800013547A CN1898578B (zh) 2004-06-21 2005-06-15 雷达装置
EP05753290A EP1760488B1 (en) 2004-06-21 2005-06-15 Radar apparatus
DE602005016404T DE602005016404D1 (de) 2004-06-21 2005-06-15 Radar-vorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004182352 2004-06-21
JP2004-182352 2004-06-21

Publications (1)

Publication Number Publication Date
WO2005124388A1 true WO2005124388A1 (ja) 2005-12-29

Family

ID=35509823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011402 WO2005124388A1 (ja) 2004-06-21 2005-06-15 レーダ装置

Country Status (7)

Country Link
US (1) US7429947B2 (ja)
EP (1) EP1760488B1 (ja)
JP (1) JPWO2005124388A1 (ja)
KR (1) KR100783476B1 (ja)
CN (1) CN1898578B (ja)
DE (1) DE602005016404D1 (ja)
WO (1) WO2005124388A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078388A (ja) * 2004-09-10 2006-03-23 Fujitsu Ten Ltd レーダ装置
JP2008292244A (ja) * 2007-05-23 2008-12-04 Mitsubishi Electric Corp レーダ装置
JP2009294071A (ja) * 2008-06-05 2009-12-17 Mitsubishi Electric Corp レーダ装置
JP2012198070A (ja) * 2011-03-18 2012-10-18 Fujitsu Ten Ltd 受信機
JP2015146568A (ja) * 2014-01-15 2015-08-13 ザ・ボーイング・カンパニーTheBoeing Company 自己回復アレイシステム及び方法
CN104884971A (zh) * 2012-12-21 2015-09-02 奥托立夫开发公司 交通工具雷达诊断配置
WO2016103934A1 (ja) * 2014-12-26 2016-06-30 古野電気株式会社 測位信号受信装置
US9618616B2 (en) 2014-02-28 2017-04-11 Panasonic Corporation Radar apparatus
US11054501B2 (en) 2016-03-11 2021-07-06 Robert Bosch Gmbh Device for operating a radar device
CN113162647A (zh) * 2021-03-16 2021-07-23 复旦大学 一种相控阵系统中的宽带多功能收发组件

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7429947B2 (en) * 2004-06-21 2008-09-30 Fujitsu Ten Limited Radar apparatus for detecting distance or velocity with respect to an object
JP2006047114A (ja) * 2004-08-04 2006-02-16 Fujitsu Ten Ltd レーダ装置
US7557747B1 (en) * 2005-04-13 2009-07-07 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus using fast electronic switching for multi-channelizing a single-channel radar system
CN101601088B (zh) * 2007-09-11 2012-05-30 松下电器产业株式会社 声音判断装置、声音检测装置以及声音判断方法
US7639171B2 (en) * 2007-09-27 2009-12-29 Delphi Technologies, Inc. Radar system and method of digital beamforming
JP2010008273A (ja) * 2008-06-27 2010-01-14 Maspro Denkoh Corp ミリ波撮像装置
KR100979284B1 (ko) * 2009-06-30 2010-08-31 엘아이지넥스원 주식회사 레이더 송수신 시스템
US8203479B2 (en) 2010-04-08 2012-06-19 Elbit Systems EW and Sigint—Elisra Ltd. Electronic counter measure system
CN102279395A (zh) * 2010-06-10 2011-12-14 英华达(南京)科技有限公司 手持式电子装置测距系统及方法
JP5620757B2 (ja) * 2010-09-01 2014-11-05 株式会社豊田中央研究所 レーダ装置
JP5653726B2 (ja) * 2010-11-12 2015-01-14 株式会社デンソー レーダ装置
JP5312503B2 (ja) * 2011-03-16 2013-10-09 三菱電機株式会社 レーダ装置
DE102011115309A1 (de) * 2011-09-29 2013-04-04 Infineon Technologies Ag Radarschaltung, Radarsystem und Verfahren zum Testen einer Verbindung zwischen einer Radarschaltung und einer Radarantenne in einem Fahrzeug
US8791854B2 (en) * 2011-10-10 2014-07-29 Infineon Technologies Ag Automotive radar transmitter architecture
JP5811931B2 (ja) * 2012-04-04 2015-11-11 トヨタ自動車株式会社 位相モノパルスレーダ装置
EP2660568A1 (de) * 2012-05-03 2013-11-06 VEGA Grieshaber KG Fehlerkompensation durch Vermessen der STC-Filterfunktion
CN103731411B (zh) * 2012-10-16 2019-05-31 马维尔国际贸易有限公司 高带宽可配置的串行链路
US9838069B2 (en) * 2013-10-30 2017-12-05 Netgear, Inc. Radio frequency front end module with high band selectivity
US9470782B2 (en) * 2014-11-26 2016-10-18 Valeo Radar Systems, Inc. Method and apparatus for increasing angular resolution in an automotive radar system
US10247820B2 (en) * 2015-01-07 2019-04-02 GM Global Technology Operations LLC Spatial cognitive radar
EP3059559A1 (en) 2015-02-23 2016-08-24 Siemens Aktiengesellschaft FMCW radar system
AU2016392920B2 (en) * 2016-02-16 2018-11-15 Mitsubishi Electric Corporation Object detecting device and sensor device
EP3546982B1 (en) * 2016-12-21 2020-10-21 Mitsubishi Electric Corporation Laser radar device
CN106712864B (zh) * 2017-01-20 2020-04-14 京信通信系统(中国)有限公司 一种智能天线性能测试及优化的方法及装置
US10416680B2 (en) * 2017-03-14 2019-09-17 Aptiv Technologies Limited Angle finding for a detector having a paired staggered array
EP3671258B1 (en) * 2017-08-18 2024-02-28 Furuno Electric Company Limited Radar device and method for changing reception gain of radar device
IL255437A (en) * 2017-11-05 2018-03-29 Israel Aerospace Ind Ltd An adjustable multifunctional information acquisition system
WO2019198192A1 (ja) * 2018-04-12 2019-10-17 富士通株式会社 アンテナ装置、及びキャリブレーション方法
US11105891B2 (en) 2018-12-13 2021-08-31 Semiconductor Components Industries, Llc Multi-input downconversion mixer
EP4325249A1 (en) * 2021-04-30 2024-02-21 Huawei Technologies Co., Ltd. Radar system and terminal device
CN113917470B (zh) * 2021-12-14 2022-06-17 成都锐芯盛通电子科技有限公司 一种高效率dbf雷达及标校方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843080A (ja) * 1994-05-24 1996-02-16 Seikosha Co Ltd カメラ用測距装置
JPH1164485A (ja) * 1997-08-18 1999-03-05 Fujitsu Ltd レーダ装置
JPH11311668A (ja) * 1998-04-28 1999-11-09 Toyota Motor Corp Fm−cwレーダ装置
JP2000227474A (ja) * 1999-02-04 2000-08-15 Honda Motor Co Ltd レーダ装置
JP2001166029A (ja) * 1999-12-10 2001-06-22 Toyota Motor Corp Dbfレーダ装置
JP2002162460A (ja) * 2000-11-24 2002-06-07 Toyota Motor Corp Dbfレーダ装置
JP2004153606A (ja) * 2002-10-31 2004-05-27 Mitsubishi Electric Corp Dbfアンテナシステム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04309878A (ja) * 1991-04-05 1992-11-02 Mitsubishi Electric Corp 受信装置
GB2256948B (en) * 1991-05-31 1995-01-25 Thomas William Russell East Self-focussing antenna array
JPH09221372A (ja) * 1996-02-16 1997-08-26 Hitachi Zosen Corp 耐摩耗部材
JPH09328644A (ja) * 1996-04-09 1997-12-22 Sakata Corp インクジェット記録用インク組成物
JPH10118584A (ja) * 1996-10-18 1998-05-12 Fuji Photo Optical Co Ltd テレビカメラ撮影窓の洗浄制御装置
JP2935419B2 (ja) * 1996-11-15 1999-08-16 本田技研工業株式会社 Fmレーダ装置
JP3525426B2 (ja) * 1997-11-28 2004-05-10 トヨタ自動車株式会社 レーダ装置
JP3438768B2 (ja) * 1998-05-19 2003-08-18 トヨタ自動車株式会社 レーダ装置の位相補正値決定方法
JP4190335B2 (ja) * 2003-04-03 2008-12-03 富士通テン株式会社 レーダ装置及びその信号処理方法
US7429947B2 (en) * 2004-06-21 2008-09-30 Fujitsu Ten Limited Radar apparatus for detecting distance or velocity with respect to an object

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843080A (ja) * 1994-05-24 1996-02-16 Seikosha Co Ltd カメラ用測距装置
JPH1164485A (ja) * 1997-08-18 1999-03-05 Fujitsu Ltd レーダ装置
JPH11311668A (ja) * 1998-04-28 1999-11-09 Toyota Motor Corp Fm−cwレーダ装置
JP2000227474A (ja) * 1999-02-04 2000-08-15 Honda Motor Co Ltd レーダ装置
JP2001166029A (ja) * 1999-12-10 2001-06-22 Toyota Motor Corp Dbfレーダ装置
JP2002162460A (ja) * 2000-11-24 2002-06-07 Toyota Motor Corp Dbfレーダ装置
JP2004153606A (ja) * 2002-10-31 2004-05-27 Mitsubishi Electric Corp Dbfアンテナシステム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078388A (ja) * 2004-09-10 2006-03-23 Fujitsu Ten Ltd レーダ装置
JP2008292244A (ja) * 2007-05-23 2008-12-04 Mitsubishi Electric Corp レーダ装置
JP2009294071A (ja) * 2008-06-05 2009-12-17 Mitsubishi Electric Corp レーダ装置
JP2012198070A (ja) * 2011-03-18 2012-10-18 Fujitsu Ten Ltd 受信機
CN104884971A (zh) * 2012-12-21 2015-09-02 奥托立夫开发公司 交通工具雷达诊断配置
JP2016507733A (ja) * 2012-12-21 2016-03-10 オートリブ ディベロップメント エービー 車両レーダー診断構成
CN104884971B (zh) * 2012-12-21 2017-04-05 奥托立夫开发公司 交通工具雷达诊断配置
JP2015146568A (ja) * 2014-01-15 2015-08-13 ザ・ボーイング・カンパニーTheBoeing Company 自己回復アレイシステム及び方法
US9618616B2 (en) 2014-02-28 2017-04-11 Panasonic Corporation Radar apparatus
WO2016103934A1 (ja) * 2014-12-26 2016-06-30 古野電気株式会社 測位信号受信装置
US11054501B2 (en) 2016-03-11 2021-07-06 Robert Bosch Gmbh Device for operating a radar device
CN113162647A (zh) * 2021-03-16 2021-07-23 复旦大学 一种相控阵系统中的宽带多功能收发组件

Also Published As

Publication number Publication date
EP1760488B1 (en) 2009-09-02
EP1760488A1 (en) 2007-03-07
KR100783476B1 (ko) 2007-12-07
JPWO2005124388A1 (ja) 2008-04-10
US20070052581A1 (en) 2007-03-08
US7429947B2 (en) 2008-09-30
DE602005016404D1 (de) 2009-10-15
CN1898578A (zh) 2007-01-17
KR20060087606A (ko) 2006-08-02
CN1898578B (zh) 2010-06-09
EP1760488A4 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
WO2005124388A1 (ja) レーダ装置
CN1712985B (zh) 雷达装置
JP4190335B2 (ja) レーダ装置及びその信号処理方法
US7504990B2 (en) Radar apparatus
JP4232570B2 (ja) 車両用レーダ装置
US9097796B2 (en) Radar apparatus
JP2000284047A (ja) レーダ装置
US9176228B2 (en) Driver assistance device for a vehicle and method for operating a radar device
KR20140036155A (ko) 차량용 운전자 보조 장치 및 레이더 유닛 작동 방법
US7295152B2 (en) Timing adjustment method for radar, and radar apparatus having automatic timing adjusting function
JPH11160423A (ja) レーダ装置
JPH11231040A (ja) レーダ装置
US11035932B2 (en) Radar device and transmission processing method of radar device
US6972711B2 (en) Transmit-receive FM-CW radar apparatus
US20120119940A1 (en) Radar apparatus with multi-receiver channel
JP4249057B2 (ja) Fm−cwレーダ
JP2002162460A (ja) Dbfレーダ装置
US9797992B2 (en) FMCW radar apparatus
JP4225804B2 (ja) レーダ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001354.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005753290

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067009400

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007052581

Country of ref document: US

Ref document number: 10596096

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067009400

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006514847

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005753290

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10596096

Country of ref document: US