WO2005122652A1 - 放電灯点灯装置及びプロジェクタ - Google Patents

放電灯点灯装置及びプロジェクタ Download PDF

Info

Publication number
WO2005122652A1
WO2005122652A1 PCT/JP2005/005141 JP2005005141W WO2005122652A1 WO 2005122652 A1 WO2005122652 A1 WO 2005122652A1 JP 2005005141 W JP2005005141 W JP 2005005141W WO 2005122652 A1 WO2005122652 A1 WO 2005122652A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge lamp
voltage
power supply
lighting device
circuit
Prior art date
Application number
PCT/JP2005/005141
Other languages
English (en)
French (fr)
Inventor
Junichi Hasegawa
Hirofumi Konishi
Akihiro Kishimoto
Koji Watanabe
Katsuyoshi Nakada
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Priority to US11/570,054 priority Critical patent/US7504782B2/en
Priority to CN2005800185030A priority patent/CN1989788B/zh
Priority to EP05727042.3A priority patent/EP1755364B1/en
Publication of WO2005122652A1 publication Critical patent/WO2005122652A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2881Load circuits; Control thereof
    • H05B41/2882Load circuits; Control thereof the control resulting from an action on the static converter
    • H05B41/2883Load circuits; Control thereof the control resulting from an action on the static converter the controlled element being a DC/AC converter in the final stage, e.g. by harmonic mode starting

Definitions

  • the present invention relates to a discharge lamp lighting device using a power supply unit for rectifying and smoothing a commercial AC power supply as a power supply for lighting, and more particularly to a technique for controlling a discharge lamp current to be constant.
  • FIG. 13 shows a circuit diagram of a conventional discharge lamp lighting device.
  • the discharge lamp lighting device shown in Fig. 13 has a DC power supply unit 3 that outputs a DC voltage Vdc obtained by rectifying and smoothing the voltage from the commercial AC power supply E, and a discharge lamp La connected to the output terminal of the power supply unit.
  • a step-down chopper circuit 4 that controls power, an inverter circuit 6 that turns on the rectangular wave by inverting the voltage polarity of the discharge lamp La at a low frequency, and a discharge lamp current detection circuit composed of a discharge lamp current detection resistor R1 5, a discharge lamp voltage detection circuit 7 composed of discharge lamp voltage detection resistors R4 and R5, and a control circuit block 8 for performing power control.
  • the discharge lamp detection voltage detected by the discharge lamp voltage detection circuit 7 is input to the A / D conversion input port of the microcomputer 80 in the control circuit block 8, and the digital value is output by the built-in A / D converter 81.
  • the control unit 83 refers to the data table 82, and refers to the power control data Px (Px) corresponding to the lamp voltage data (0, 1,. XO, XI, ⁇ , X1023) are read and output as PWM signals.
  • This PWM signal is averaged by a CR integration circuit including a resistor R6 and a capacitor C2, and transmitted to the PWM control circuit 84 as a reference voltage (command value).
  • the step-down chopper circuit 4 supplies electric power corresponding to the output from the PWM control circuit 84 to the discharge lamp La.
  • FIG. 14 shows the waveform of the DC voltage Vdc output from the DC power supply unit 3.
  • Figure 15 shows the discharge lamp current detection voltage and the reference voltage at points A, B, and C on the DC voltage Vdc.
  • FIG. 16 shows the current IQ1 flowing through the switching element Q1 at each point A, B, and C on the DC voltage Vdc.
  • the PWM control circuit 84 detects a current IQ1 flowing through the switching element Q1 as a voltage across the resistor R1, and turns off the switching element Q1 when the detected voltage exceeds a reference voltage.
  • a regenerative current of the inductor L1 for the chopper flows through the diode D1.
  • the PWM control circuit 84 detects the zero-cross point of the regenerative current based on the detection current of the diode D1 or the secondary winding output of the inductor L1, or according to the timing of the built-in oscillation circuit of the PWM control circuit 84. Turn on switching element Q1 again. As a result, the discharge lamp current is controlled to be a current corresponding to the reference voltage.
  • the DC voltage Vdc output from the DC power supply unit 3 is smoothed by the capacitor C1, it fluctuates in the range of several volts to several tens of volts (hereinafter referred to as “ Ripple ").
  • Ripple the frequency of a commercial AC power supply
  • the lip-notch frequency of the power supply is about 120 Hz.
  • the detection voltage slightly exceeds the reference voltage due to the delay time tl (several ns to several hundred ns) of the response speed of the PWM control circuit 84 in the control circuit block 8. As shown in FIG.
  • Patent Literature 1 and Patent Literature 2 disclose means for reducing a lamp flit force against electrode deterioration of a lamp in a rectangular wave lighting method. However, such a means alone cannot solve the problem of the lamp flicking force caused by the control generated in the discharge lamp lighting circuit itself.
  • Patent Document 1 Japanese Patent Publication No. 2002-532866
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-134287
  • the present invention has been made to solve the above problems, and an object of the present invention is to reduce flicker in a discharge lamp lighting device in which a power supply unit for rectifying and smoothing a commercial AC power supply is used as a lighting power supply. It is to provide a discharge lamp lighting device that can be suppressed. Another object of the present invention is to provide a projector using such a discharge lamp lighting device. Means for solving the problem
  • a discharge lamp lighting device includes: a DC power supply unit that rectifies and smoothes an AC voltage and outputs a DC voltage; a current detection circuit that detects a current flowing through the discharge lamp; A power supply ripple detection circuit that detects voltage fluctuations of the power supply supplied from the DC power supply and outputs a voltage obtained by superimposing the detected voltage on a detection voltage from the current detection circuit, and outputs the voltage based on the output voltage from the power supply ripple detection circuit.
  • a control circuit for controlling an output voltage to the discharge lamp so that a current flowing through the discharge lamp becomes a constant current.
  • a discharge lamp lighting device includes: a DC power supply unit that rectifies and smoothes an AC voltage and outputs a DC voltage; a voltage detection circuit that detects a voltage applied to the discharge lamp; A power supply ripple detection circuit that detects voltage fluctuations in the power supply supplied from the DC power supply unit, and a power supply ripple detection circuit that detects the power supply ripple based on the reference voltage generated based on the detection voltage from the voltage detection circuit A control circuit that superimposes an output voltage from the circuit and controls an output voltage to the discharge lamp based on the superimposed voltage so that a current flowing through the discharge lamp becomes a constant current.
  • a voltage lip current of a power supply supplied from the power supply unit is detected, and a discharge lamp current is detected.
  • the current By controlling the current to be a constant current, it is possible to reduce the lip of the discharge lamp current and suppress flickering.
  • FIG. 1 is a circuit diagram of Embodiment 1 of the present invention.
  • FIG. 2 is a waveform diagram showing a discharge lamp current detection voltage waveform and a reference voltage waveform according to Embodiment 1 of the present invention.
  • FIG. 3 is a waveform diagram showing a current waveform of a switching element according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing a configuration of a discharge lamp provided with a reflecting mirror.
  • FIG. 5 is a circuit diagram of Embodiment 2 of the present invention.
  • FIG. 6 is a waveform diagram showing a power supply ripple detection voltage waveform, an initial reference voltage waveform, and a reference voltage waveform according to Embodiment 2 of the present invention.
  • FIG. 7 is a waveform chart showing a discharge lamp current detection voltage waveform and a reference voltage waveform according to Embodiment 2 of the present invention.
  • FIG. 8 is a waveform diagram showing a current waveform of a switching element according to Embodiment 2 of the present invention.
  • FIG. 9 is a circuit diagram of Embodiment 3 of the present invention.
  • FIG. 10 is a circuit diagram of Embodiment 4 of the present invention.
  • FIG. 11 is a plan view showing a main part configuration of Embodiment 5 of the present invention.
  • FIG. 12A is a perspective view of a projector according to the present invention.
  • FIG. 12B is a diagram showing an internal configuration of the projector according to the present invention.
  • FIG. 13 is a circuit diagram of a conventional example.
  • FIG. 14 is a waveform diagram showing a power supply voltage waveform of a conventional example.
  • FIG. 15 is a waveform diagram showing a discharge lamp current detection voltage waveform and a reference voltage waveform of a conventional example.
  • FIG. 16 is a waveform diagram showing a current waveform of a conventional switching element. Explanation of reference numerals
  • FIG. 1 shows a circuit diagram of the first embodiment of the present invention.
  • the discharge lamp lighting device shown in Fig. 1 has a DC power supply unit 3 that outputs a DC voltage Vdc obtained by rectifying and smoothing the voltage from the commercial AC power supply E, and a discharge lamp La connected to the output terminal of the DC power supply unit 3.
  • a step-down chopper circuit 4 for controlling the power of the discharge lamp, a discharge lamp current detection circuit 5 for detecting a current flowing through the discharge lamp La, and an inverter for lighting the rectangular wave by inverting the voltage polarity of the discharge lamp La at a low frequency.
  • DC power supply section 3 includes a diode bridge circuit 1 connected to commercial AC power supply E, a step-up chopper circuit 2, and a smoothing capacitor C1.
  • the step-down chopper circuit 4 includes a switching element Ql, an inductor Ll, and a diode D1.
  • the discharge lamp current detection circuit 5 includes a discharge lamp current detection resistor R1.
  • the discharge lamp voltage detection circuit 7 is composed of voltage detection resistors R4 and R5.
  • the control circuit block 8 outputs a PWM signal to the PWM control circuit 84 that controls the switching element Q1 of the step-down chopper circuit 4 and the PWM control circuit 84 that is the output of the discharge lamp voltage detection circuit 7. And a microcomputer 80 to be executed.
  • the microcomputer 80 includes an A / D converter 81, a data table 82, and a control unit 83.
  • the microcomputer 80 can be constituted by, for example, an 8-bit microcomputer M37540 manufactured by Mitsubishi Electric Corporation (same as the following embodiment).
  • the power supply ripple detection circuit 9 detects a power supply ripple component of the output voltage Vdc of the DC power supply unit 3 and superimposes the power supply ripple component on the discharge lamp current detection voltage detected by the discharge lamp current detection circuit 5.
  • the discharge lamp detection voltage detected by the discharge lamp voltage detection circuit 7 is input to the A / D conversion input port of the microcomputer 80 in the control circuit block 8, and is converted to a digital value by the AZD converter 81.
  • the control unit 83 reads the power control data Px (X0, XI,..., X1023) corresponding to the lamp voltage data (0, 1,..., 1023) converted into digital values with reference to the data table 82. It is output as a PWM signal (a rectangular wave signal with a constant period and a variable ON period). This PWM signal is averaged by a CR integration circuit including a resistor R6 and a capacitor C2, and transmitted to the PWM control circuit 84 as a reference voltage (command value).
  • the PWM control circuit 84 outputs a control signal to the step-down chopper circuit based on the detection voltage and the reference voltage. That is, the PWM control circuit 84 inputs the detection voltage from the power supply ripple detection circuit 9 and the reference voltage from the microcomputer 80, and turns off the switching element Q1 when the detection voltage exceeds the reference voltage. When the switching element Q1 is turned off, the regenerative current of the inductor L1 for the chopper flows through the diode D1. The PWM control circuit 84 detects the zero-cross point of the regenerative current based on the detection voltage from the power supply ripple detection circuit 9 or the secondary winding output of the inductor L1, or detects the timing by the internal oscillation circuit of the PWM control circuit 84. , The switching element Q1 is turned on again.
  • the step-down discharge circuit 4 supplies power to the discharge lamp La according to a control signal from the PWM control circuit 84.
  • the microcomputer 80 including the data table 82 is used as a means for generating the reference voltage of the PWM control circuit 84 in accordance with the detected value of the lamp voltage Via, but is not limited thereto. It's not something. In short, the run depends on the detected value of the lamp voltage. If the target value of the lamp power can be set and the target value of the lamp current for realizing the lamp power can be output as the reference voltage, other means can be used. Note that the discharge lamp lighting device requires an igniter circuit for applying a high voltage noise when the discharge lamp La is started, but is not shown here.
  • FIG. 2 shows the detected voltage and reference voltage of the discharge lamp current at points A, B, and C on the DC voltage Vdc in the discharge lamp lighting device of the present embodiment.
  • points A, B, and C in FIG. 2 correspond to points A, B, and C in FIG.
  • FIG. 3 shows the current IQ1 flowing through the switching element Q1 at each point A, B, C on the DC voltage Vdc in the discharge lamp lighting device of the present embodiment.
  • the detection voltage shown in FIG. 2 is a voltage in which a power supply ripple component divided by resistors R2 and R3 is superimposed on a detection value of current IQ1 of switching element Q1 detected by resistor R1.
  • VA1 is superimposed on the detected value of current IQ1 at point A
  • VB1 is superimposed on point B
  • VC1 is superimposed on point C.
  • VA1> VB1> VC1 reflecting the DC voltage Vdc in FIG.
  • the switching element Q1 of the step-down chopper circuit 4 is ON / OFF controlled by the PWM control circuit 84 at a frequency sufficiently higher than the frequency (50 Hz or 60 Hz) of the commercial AC power supply E.
  • the switching element Q1 is ON, the current IQ1 flowing through the resistor R1 increases gradually.
  • the voltage detected by the resistor R1 exceeds this reference voltage, the switching element Q1 is turned off.
  • the control involves a predetermined delay time tl.
  • the slope of the gradually increasing current I Q1 is greater at point B than at point C, and at point A than at point B. Therefore, conventionally, at the point A, the current IQ1 gradually increasing as shown in FIG. 16 is excessive.
  • the voltage VA1 superimposed on the detection voltage becomes large and the switching element Q1 Is turned off, so that proper control is performed.
  • the power supply ripple component divided by the resistors R2 and R3 is superimposed on the voltage detected by the resistor R1, and thus the above operation is performed with a simple circuit configuration.
  • the resistor R1 has a relatively low resistance value for current detection
  • the resistors R2 and R3 for dividing the DC voltage Vdc have a relatively high resistance value for voltage detection.
  • the specification of the discharge lamp La to be turned on may be an AC lamp or a DC lamp.
  • the discharge lamp La is an AC lamp
  • a rectangular wave is lit by inverting the polarity of the lamp voltage at a low frequency by the inverter circuit 6.
  • the inverter circuit 6 may be a full-bridge circuit or a half-bridge circuit.
  • the inverter circuit 6 may have a function of inverting the polarity of the input DC voltage at a predetermined cycle and outputting it as an AC voltage. Good.
  • the discharge lamp voltage detection circuit 7 is connected to detect the output voltage of the inverter circuit 6, but the discharge lamp voltage detection circuit 7 is configured to detect the input voltage of the inverter circuit 6. May be connected.
  • the discharge lamp La is a DC lamp
  • the inverter circuit 6 is omitted, and the discharge lamp La is DC-lit by the output of the step-down chopper circuit 4.
  • a smoothing capacitor may be connected in parallel to the output of the step-down chopper circuit 4.
  • the discharge lamp La to be turned on may have a reflector 51 as shown in FIG. The same applies to the following embodiments.
  • FIG. 5 shows a circuit diagram of the second embodiment of the present invention.
  • the discharge lamp lighting device of the present embodiment is different from the discharge lamp lighting device of the first embodiment shown in FIG. 1 in the configuration of the power supply ripple detection circuit 9 and the control circuit block 8.
  • the control circuit block 8 in the discharge lamp lighting device of the present embodiment includes a microcomputer 80 and a PW An M control circuit 84, a voltage adding circuit 85, and a phase control circuit 86 are included.
  • the power supply ripple detection circuit 9 is composed of a series circuit of a resistor R2 and a resistor R3 connected between the high-voltage output terminal and the low-voltage output terminal of the DC power supply unit 3, and connects the power supply voltage Vdc with the resistance R2.
  • the voltage divided by the anti-R3 is directly input to the control circuit block 8.
  • the discharge lamp detection voltage detected by the discharge lamp voltage detection circuit 7 is input to the A / D conversion input port of the microcomputer 80 in the control circuit block 8, and the digital value is output by the built-in A / D converter 81.
  • the control unit 83 refers to the data table 82, reads out the power control data Px (XO, XI, ⁇ , X1023) corresponding to the lamp voltage data (0, 1, ..., 1023) converted into the digital value, Output as PWM signal.
  • This PWM signal is averaged by a CR integrator comprising a resistor R6 and a capacitor C2, and is input to a voltage adder 85.
  • the phase control circuit 86 inverts the phase of the output of the power supply lip detection circuit 9.
  • the voltage adding circuit 85 adds the averaged PWM signal to the output of the phase control circuit 86 and outputs the result to the PWM control circuit 84 as a reference voltage (command value).
  • the PWM control circuit 84 controls the switching element Q1 of the step-down chopper circuit 4 by outputting a control signal based on the detected current and the reference voltage, and supplies power to the discharge lamp La as needed.
  • FIG. 6A shows a power supply ripple detection voltage detected by the power supply ripple detection circuit 9 and input to the phase control circuit 86.
  • FIG. 6B shows the initial reference voltage output from the microcomputer 80, averaged by the CR integrator and input to the voltage adder 85.
  • FIG. 6 (c) shows a reference voltage input to the PWM control circuit 84 on which the opposite phase of the power supply ripple detection voltage is superimposed.
  • FIG. 7 shows the discharge lamp current detection voltage and the reference voltage at points A, B, and C on the DC voltage Vdc in the discharge lamp lighting device of the present embodiment. Note that points A, B, and C in FIG. 7 correspond to points A, B, and C in FIG.
  • FIG. 8 shows a current IQ1 flowing through the switching element Q1 at each point A, B, C on the DC voltage Vdc in the discharge lamp lighting device of the present embodiment.
  • the power supply ripple detection voltage (see FIG. 6 (a)) detected by the power supply ripple detection circuit 9 is converted into a reverse phase voltage by the phase control circuit 86, and this reverse phase voltage is output from the microcomputer 80.
  • the reference voltage (see Fig. 6 (c)) is set by superimposing it on the initial reference voltage (see Fig. 6 (b)).
  • FIG. 7 the influence of the inclination of the current IQ1 flowing through the switching element Q1 due to the delay time tl of the PWM control circuit 84 and the ripple voltage of the DC voltage Vdc can be eliminated, and as shown in FIG.
  • the peak value of the current I Q1 flowing through the switching element Q1 is constant.
  • the current ILa flowing through the discharge lamp La becomes constant, and the desired characteristics can be obtained.
  • FIG. 9 shows a circuit diagram of a third embodiment of the present invention.
  • control is performed to switch the superposition ratio of the detection voltage of the power supply according to the discharge lamp voltage.
  • the discharge lamp lighting device of the present embodiment is different from the discharge lamp lighting device of the second embodiment in the configuration of the control circuit block 8.
  • the control circuit block 8 of the present embodiment includes a microcomputer 80, a PWM control circuit 84, and a voltage adding circuit 85.
  • the data table 82 in the microcomputer 80 stores the discharge lamp voltage, the lamp power Px, and the voltage ripple superimposition data Vxx in association with each other.
  • the power control data Px is the command value (XO, XI,..., X1023) of the power control data for the detected value of the lamp voltage (0, 1,..., 1023).
  • the ripple superimposition data Vxx is a command value (XX0, XXI,..., XX1023) of the ripple superimposition data with respect to the detected value (0, 1,..., 1023) of the ramp voltage.
  • the data table 82 for example, if the detected value of the lamp voltage is n, the command value of the power control data is Xn and the command value of the ripple superimposition data is X Xn.
  • the discharge lamp detection voltage detected by the discharge lamp voltage detection circuit 7 is input to the A / D conversion input port of the microcomputer 80 in the control circuit block 8, and the digital value is output by the built-in A / D converter 81. Is converted to The control unit 83 refers to the data table 82, reads out the power control data Px (XO, XI, ⁇ , X1023) corresponding to the lamp voltage data (0, 1, ..., 1023) converted into the digital value, Output as PWM signal.
  • This PWM signal is The result is averaged by a CR integration circuit composed of a resistor R6 and a capacitor C2, and transmitted to the PWM control circuit 84 as a reference voltage (command value).
  • the step-down chopper circuit 4 supplies the power as a control signal from the PWM control circuit 84 and electric power as needed to the discharge lamp La.
  • control unit 83 refers to the data table 82 and reads out the lamp voltage data (0, 1,..., 1023) (the corresponding lip current weight data Vxx (XX0, XXI, ⁇ , XX1023)).
  • the PWM signal is averaged by a CR integrator comprising a resistor R7 and a capacitor C3, and is input to a voltage adder 85 as superimposition ratio data.
  • the voltage addition circuit 85 superimposes the power supply ripple component of the output voltage Vdc of the DC power supply unit 3 detected by the power supply ripple detection circuit 9 on the discharge lamp current detection voltage detected by the discharge lamp current detection circuit 5 .
  • the voltage adding circuit 85 switches the superposition rate based on the potential of the capacitor C3.
  • the detected value of the lamp voltage and the power control data Px correspond according to the data table 82, and as a result, the superposition rate of the detected voltage of the power supply according to the power supplied to the discharge lamp That is, the control for switching is performed.
  • FIG. 10 shows a circuit diagram of the fourth embodiment of the present invention.
  • the discharge lamp lighting device of the present embodiment is different from the discharge lamp lighting device of the third embodiment in the contents of the data table 82. That is, as shown in FIG. 10, the discharge lamp lighting device of the present embodiment has a table of discharge lamp voltage / discharge lamp power / voltage ripple superimposition data in the data table 82 corresponding to different lamp types. Prepare each. This makes it possible to handle a plurality of different types of lamps.
  • the power control data Px is a command value (XO, XI,..., X1023) of the power control data with respect to the lamp voltage detection value (0, 1,..., 1023) for the first lamp type. ).
  • the ripple superimposition data Vxx is the detected lamp voltage (0 , 1, ⁇ ⁇ ⁇ , 1023) t It is the command value (XXO, XXI, ⁇ ⁇ ⁇ , XX1023) of the lip-knolling weight data.
  • the power control data Py and the ripple superimposition data Vyy are respectively the command values (Y0, Y1) of the power control data for the detected lamp voltage values (0, 1,..., 1023) for the second lamp type. , ⁇ ⁇ ⁇ , Y1023) and the instruction ( ⁇ , YY1,..., YY1023) of the superimposition data of the lip pattern.
  • the signal for specifying the lamp type can be set by the input port status (High level power or Low level power) of the microcomputer 80 or the input port. Or by detecting the temporal variation of the lamp voltage Via after the power is turned on, the type of the lamp La is determined, and the table data of the difference and the deviation is selected.
  • the power supply ripple component may be superimposed on the reference voltage instead of the detection voltage.
  • FIG. 11 is a plan view showing a configuration of a main part of Embodiment 5 of the present invention, and shows a circuit pattern of a printed wiring board around a smoothing capacitor C1 and an inductor L1.
  • the detection circuit pattern for detecting the power supply is not arranged below the winding (coinole) that operates at a high frequency in a normal state.
  • components Rl, R2, R3 in the circuit pattern surrounded by broken lines correspond to the above-described resistors Rl, R2, R3, respectively.
  • the components Rl, R2, and R3 are arranged on the side of the inductor (coil) L1 for the fever that operates at a high frequency in a normal state, and are not arranged below the inductor.
  • FIG. 12A is a perspective view of a projector provided with the discharge lamp lighting device of each embodiment.
  • FIG. 12B is a diagram showing the internal configuration of the projector.
  • the projector 100 includes a power supply unit 101, a discharge lamp lighting device 103, an optical system 105, a main control board 107, an external signal input unit 109, a cooling fan 111, and a discharge lamp La.
  • the discharge lamp lighting device 103 is the lighting device (excluding the DC power supply unit 3) described in each of the above embodiments.
  • On the main control board 107 circuit components and the like for performing image signal processing are mounted.
  • An external video signal and image signal are input via the external signal input unit 109.
  • DC power is supplied from the power supply unit 101 to the discharge lamp lighting device 103.
  • the discharge lamp lighting device 103 turns on the discharge lamp La.
  • the light from the discharge lamp La is output to the outside via the optical system 105 according to the video signal and the image signal from the outside.
  • discharge lamp lighting device of each of the above embodiments can be applied to an inspection light source or the like as a flicker-free lighting device other than the projector.

Abstract

 放電灯点灯装置は、交流電圧を整流、平滑する直流電源部(3)と、放電灯(La)に流れる電流を検出する電流検出回路(5)と、直流電源部から供給される電圧の変動を検出し、その検出電圧を電流検出回路の出力電圧に重畳した電圧を出力する電源リップル検出回路(9)と、電源リップル検出回路からの出力電圧に基づいて、放電灯を流れる電流が一定電流となるように放電灯への出力電圧を制御する制御回路(8)とを備えた。電源リップル検出回路(9)の出力電圧の重畳率は、放電灯電圧又は放電灯電力に応じて切り替えても良い。

Description

明 細 書
放電灯点灯装置及びプロジェクタ
技術分野
[0001] 本発明は、商用交流電源を整流、平滑する電源部を点灯用の電源とする放電灯点 灯装置に関し、特に、放電灯電流を一定に制御する技術に関する。
背景技術
[0002] 近年、プロジェクタ巿場は急速に拡大しており、今後も更なる市場拡大が期待され ている。し力、しその市場拡大に対応していく為にはランプ光のちらつき対策が重要な 要因の一つとなってきている。これまでのプロジェクタ用光源の性能の優位さを決め る一つの評価基準は明るさであり、その為に開発された高圧水銀灯はアーク長を極 限にまで縮めて点光源に近づけ、輝度上昇に努めてきた。一方、副作用として高圧 放電灯の電極温度及びアーク近傍にある電極表面の状態に依存して、電極上にお ける放電アークの発生位置が不安定になり、電極上の放電アークの起点がある点か ら別の点に移動する現象が発生するという問題がある。この現象はランプ光のちらつ き(ランプフリツ力)として現れ、プロジェクタから照射されるスクリーン上の照度が落ち てしまい、照度維持の点でも大きな問題である。
[0003] 図 13は従来の放電灯点灯装置の回路図を示す。図 13の放電灯点灯装置は、商 用交流電源 Eからの電圧を整流、平滑して得られる直流電圧 Vdcを出力する直流電 源部 3と、その電源部の出力端に接続され放電灯 Laの電力制御を行なう降圧チヨッ パ回路 4と、放電灯 Laの電圧極性を低周波で反転させることで矩形波点灯させるィ ンバータ回路 6と、放電灯電流検出抵抗 R1で構成された放電灯電流検出回路 5と、 放電灯電圧検出抵抗 R4, R5で構成された放電灯電圧検出回路 7と、電力制御を行 なう制御回路ブロック 8を備える。
[0004] 放電灯電圧検出回路 7により検出された放電灯検出電圧は、制御回路ブロック 8内 にあるマイコン 80の A/D変換入力ポートに入力され、内蔵の A/D変換器 81により デジタル値に変換される。コントロール部 83はデータテーブル 82を参照し、デジタル 値に変換されたランプ電圧データ(0, 1, · · ·, 1023)に対応する電力制御データ Px ( XO, XI , · · ·, X1023)を読み出して、 PWM信号として出力する。この PWM信号は 、抵抗 R6とコンデンサ C2よりなる CR積分回路により平均化されて、基準電圧 (指令 値)として PWM制御回路 84へ伝達される。降圧チヨッパ回路 4は、 PWM制御回路 8 4からの出力に応じた電力を放電灯 Laへ供給する。
[0005] 図 13の放電灯点灯装置の動作説明を以下に示す。図 14に、直流電源部 3から出 力される直流電圧 Vdcの波形を示す。図 15に、直流電圧 Vdc上の各点 A, B, Cで の放電灯電流検出電圧及び基準電圧を示す。図 16に、直流電圧 Vdc上の各点 A, B, Cでのスイッチング素子 Q1に流れる電流 IQ1を示す。
[0006] PWM制御回路 84はスイッチング素子 Q1に流れる電流 IQ1を抵抗 R1の両端電圧 として検出し、この検出電圧が基準電圧を越えるとスイッチング素子 Q1を OFFさせる 。スイッチング素子 Q1が OFFすると、チヨッパ用のインダクタ L1の回生電流がダイォ ード D1を介して流れる。 PWM制御回路 84は、ダイオード D1の検出電流もしくはィ ンダクタ L1の 2次卷線出力により、回生電流のゼロクロス点を検出したとき、または、 PWM制御回路 84の内蔵の発振回路によるタイミングに応じて、スイッチング素子 Q 1を再び ONさせる。これにより、放電灯電流は基準電圧に応じた電流となるように制 御される。
[0007] ところが、図 14に示す通り、直流電源部 3から出力される直流電圧 Vdcはコンデン サ C1により平滑されているとはいうものの、数ボルトから数十ボルトの範囲で変動(以 下「リップル」と称する。)を生じている。例えば、商用交流電源の周波数が 60Hzの場 合、電源のリップノレ周波数は約 120Hzとなる。また、図 15に示す通り、制御回路プロ ック 8内の PWM制御回路 84の応答速度の遅延時間 tl (数 nsから数百 ns)により、検 出電圧が基準電圧より若干超えてしまう。図 15に示すように、検出電圧は、 A点にお いて B点より AVA1分超えてしまレ、、逆に C点においては B点より AVC1分下回って しまう。よって、降圧チヨッパ回路 4内のスイッチング素子 Q1に流れる電流 IQ1は、各 点 A, B, Cにおいて、図 16のようになる。これは、 IQ1 (ピーク値) = (Vdc-Vla) X ( Q1オン時間) ZLの式より説明ができる。 Viaはその時の放電灯電圧であり、 Lは降 圧チヨッパ回路 4内のインダクタ L1のインダクタンス値である。
[0008] 放電灯 Laが一定 (安定点灯)である時、インダクタンス値 Lは一定である為、直流電 圧 Vdcが変動するとスイッチング素子 Qlに流れる電流 IQ1の傾きが変動する。このた め、図 16に示す通り、 A点での電流 IQ1は B点より ΔΙΑ高くなり、逆に C点での電流 I Q1は B点より AIC低くなつてしまう。結果として放電灯 Laに流れる電流 ILaは、 Vdc と同位相のリップノレを持つ電流が流れてしまレ、、制御に起因するランプフリツ力が生じ てしまう。
[0009] 特許文献 1や特許文献 2では、矩形波点灯方式において、ランプの電極劣化に対 するランプフリツ力を軽減する手段を開示している。しかし、このような手段だけでは放 電灯点灯回路自体で生ずる制御に起因するランプフリツ力という問題点が解決でき ない。
特許文献 1:特表 2002 - 532866号公報
特許文献 2:特開 2002 - 134287号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明は上記課題を解決すべくなされたものであり、その目的とするところは、商用 交流電源を整流、平滑する電源部を点灯用の電源とする放電灯点灯装置において 、ちらつきを抑制することのできる放電灯点灯装置を提供することにある。本発明はさ らに、そのような放電灯点灯装置を用いたプロジェクタを提供することを目的とする。 課題を解決するための手段
[0011] 本発明の第 1の態様において、放電灯点灯装置は、交流電圧を整流、平滑し、直 流電圧を出力する直流電源部と、放電灯に流れる電流を検出する電流検出回路と、 直流電源部から供給される電源の電圧変動を検出し、その検出電圧を電流検出回 路からの検出電圧に重畳した電圧を出力する電源リップノレ検出回路と、電源リップル 検出回路からの出力電圧に基づいて、放電灯を流れる電流が一定電流となるように 、放電灯への出力電圧を制御する制御回路とを備える。
[0012] 本発明の第 2の態様において、放電灯点灯装置は、交流電圧を整流、平滑し、直 流電圧を出力する直流電源部と、放電灯にかかる電圧を検出する電圧検出回路と、 直流電源部から供給される電源の電圧変動を検出する電源リップル検出回路と、電 圧検出回路からの検出電圧に基づいて生成された基準電圧に、電源リップノレ検出 回路からの出力電圧を重畳し、その重畳された電圧に基づいて、放電灯を流れる電 流が一定電流となるように、放電灯への出力電圧を制御する制御回路とを備える。 発明の効果
[0013] 本発明によれば、商用交流電源を整流、平滑する電源部を点灯用の電源とする放 電灯点灯装置において、この電源部から供給される電源の電圧リップノレを検出し、放 電灯電流が一定電流となるように制御することにより、放電灯電流のリップノレを低減し てちらつきを抑制することができる。
図面の簡単な説明
[0014] [図 1]本発明の実施形態 1の回路図である。
[図 2]本発明の実施形態 1の放電灯電流検出電圧波形と基準電圧波形を示す波形 図である。
[図 3]本発明の実施形態 1のスイッチング素子の電流波形を示す波形図である。
[図 4]反射鏡を備えた放電灯の構成を示した図である。
[図 5]本発明の実施形態 2の回路図である。
[図 6]本発明の実施形態 2の電源リップル検出電圧波形と初期基準電圧波形と基準 電圧波形を示す波形図である。
[図 7]本発明の実施形態 2の放電灯電流検出電圧波形と基準電圧波形を示す波形 図である。
[図 8]本発明の実施形態 2のスイッチング素子の電流波形を示す波形図である。
[図 9]本発明の実施形態 3の回路図である。
[図 10]本発明の実施形態 4の回路図である。
[図 11]本発明の実施形態 5の要部構成を示す平面図である。
[図 12A]本発明に係るプロジェクタの斜視図である。
[図 12B]本発明に係るプロジェクタの内部構成を示す図である。
[図 13]従来例の回路図である。
[図 14]従来例の電源電圧波形を示す波形図である。
[図 15]従来例の放電灯電流検出電圧波形と基準電圧波形を示す波形図である。
[図 16]従来例のスイッチング素子の電流波形を示す波形図である。 符号の説明
[0015] 1 ダイオードブリッジ回路
2 昇圧チヨツバ回路
3 直流電源部
4 降圧チヨッパ回路
5 放電灯電流検出回路
6 インバータ回路
7 放電灯電圧検出回路
8 制御回路ブロック
9 電源リップル検出回路
100 プロジェクタ
103 放電灯点灯装置
La 放電灯
発明を実施するための最良の形態
[0016] (実施の形態 1)
図 1に、本発明の第 1の実施形態の回路図を示す。図 1の放電灯点灯装置は、商 用交流電源 Eからの電圧を整流、平滑して得られる直流電圧 Vdcを出力する直流電 源部 3と、直流電源部 3の出力端に接続され放電灯 Laの電力制御を行なう降圧チヨ ッパ回路 4と、放電灯 Laに流れる電流を検出する放電灯電流検出回路 5と、放電灯 L aの電圧極性を低周波で反転させることで矩形波点灯させるインバータ回路 6と、放 電灯 Laに力かる電圧を検出する放電灯電圧検出回路 7と、電力制御を行なう制御回 路ブロック 8と、電源リップノレ検出抵抗 R2, R3で構成される電源リップノレ検出回路 9 を備える。
[0017] 直流電源部 3は、商用交流電源 Eに接続されたダイオードブリッジ回路 1と、昇圧チ ョッパ回路 2と、平滑コンデンサ C1とを含む。降圧チヨッパ回路 4は、スイッチング素子 Ql、インダクタ Ll、ダイオード D1を含む。放電灯電流検出回路 5は放電灯電流検 出抵抗 R1で構成される。放電灯電圧検出回路 7は電圧検出抵抗 R4, R5で構成さ れる。 [0018] 制御回路ブロック 8は、降圧チヨッパ回路 4のスイッチング素子 Q1を制御する PWM 制御回路 84と、放電灯電圧検出回路 7の出力にした力 Sい PWM制御回路 84に対し て PWM信号を出力するマイコン 80とを含む。マイコン 80は、 A/D変換器 81、デー タテーブル 82及びコントロール部 83を含む。マイコン 80は、例えば、三菱電機社製 の 8ビットマイコン M37540で構成され得る(以下の実施形態に同じ)。電源リップノレ 検出回路 9は直流電源部 3の出力電圧 Vdcの電源リップル成分を検出し、その電源 リップル成分を、放電灯電流検出回路 5で検出された放電灯電流検出電圧に重畳す る。
[0019] 放電灯電圧検出回路 7により検出された放電灯検出電圧は、制御回路ブロック 8内 にあるマイコン 80の A/D変換入力ポートに入力され、 AZD変換器 81によりデジタ ル値に変換される。コントロール部 83はデータテーブル 82を参照し、デジタル値に 変換されたランプ電圧データ(0, 1 ,…, 1023)に対応した電力制御データ Px (X0, XI, · · ·, X1023)を読み出し、 PWM信号 (周期は一定でオン期間が可変の矩形波 信号)として出力する。この PWM信号は抵抗 R6とコンデンサ C2よりなる CR積分回 路により平均化されて、基準電圧(指令値)として PWM制御回路 84へ伝達される。
[0020] PWM制御回路 84は、検出電圧及び基準電圧に基づき降圧チヨッパ回路に制御 信号を出力する。すなわち、 PWM制御回路 84は、電源リップル検出回路 9から検出 電圧を、マイコン 80から基準電圧をそれぞれ入力し、検出電圧が基準電圧を越える とスイッチング素子 Q1を OFFさせる。スイッチング素子 Q1が OFFすると、チヨッパ用 のインダクタ L1の回生電流がダイオード D1を介して流れる。 PWM制御回路 84は、 電源リップル検出回路 9からの検出電圧またはインダクタ L1の 2次卷線出力により、 回生電流のゼロクロス点を検出したとき、または、 PWM制御回路 84の内蔵の発振回 路によるタイミングに応じて、スイッチング素子 Q1を再び ONさせる。
[0021] 降圧チヨツバ回路 4は、 PWM制御回路 84からの制御信号に応じた電力を放電灯 L aへ供給する。
[0022] なお、以上では、ランプ電圧 Viaの検出値に応じて PWM制御回路 84の基準電圧 を作成する手段としてデータテーブル 82を備えるマイコン 80を用いる場合を例示し たが、これに限定されるものではなレ、。要するに、ランプ電圧の検出値に応じてラン プ電力の目標値を設定し、そのランプ電力を実現するためのランプ電流の目標値を 基準電圧として出力できれば、他の手段も利用できる。なお、放電灯点灯装置にお いては、放電灯 Laの始動時に高電圧ノ^レスを印加するためのィグナイタ回路が必 要であるが、ここでは、図示を省略した。
[0023] 図 1の放電灯点灯装置の定常点灯時の動作説明を以下に示す。図 2に、本実施形 態の放電灯点灯装置における、直流電圧 Vdc上の各点 A, B, Cでの放電灯電流の 検出電圧及び基準電圧を示す。なお、図 2の各点 A, B, Cは図 14の各点 A, B, C に対応する。図 3に、本実施形態の放電灯点灯装置における、直流電圧 Vdc上の各 点 A, B, Cでのスイッチング素子 Q1に流れる電流 IQ1を示す。
[0024] 図 2に示す検出電圧は、抵抗 R1により検出されたスイッチング素子 Q1の電流 IQ1 の検出値に、抵抗 R2, R3で分圧された電源リップル成分が重畳した電圧である。図 2に示すように、電流 IQ1の検出値に対し、 A点では VA1が重畳され、 B点では VB1 が重畳され、 C点では VC1が重畳される。図 14の直流電圧 Vdcを反映して、 VA1 > VB1 >VC1という関係にある。
[0025] 降圧チヨッパ回路 4のスイッチング素子 Q1は、商用交流電源 Eの周波数(50Hz又 は 60Hz)よりも十分に高い周波数で、 PWM制御回路 84により ON/OFF制御され る。スイッチング素子 Q1が ONのとき、抵抗 R1に流れる電流 IQ1は漸増する電流とな る。この電流を抵抗 R1により検出した電圧が基準電圧を越えたときに、スイッチング 素子 Q1は OFFされる力 その制御には所定の遅延時間 tlを伴なう。漸増する電流 I Q1の傾きは、 C点よりは B点、 B点よりは A点の方が大きい。したがって、従来は、 A点 では、図 16のように漸増する電流 IQ1が過剰になっていた力 本実施形態では、検 出電圧に重畳される電圧 VA1が大きぐ早レ、タイミングでスイッチング素子 Q1が OFF するために、適正な制御となる。
[0026] 反対に、 C点では、従来、図 16のように漸増する電流 IQ1が過小になるところではあ るが、本実施形態では、検出電圧に重畳される電圧 VC1が小さぐ遅レ、タイミングで スイッチング素子 Q1が OFFすることで、適正な制御となる。
[0027] このように、図 1の回路では、抵抗 R2, R3で分圧された電源リップル成分が抵抗 R 1により検出した電圧に重畳されることで、簡単な回路構成でありながら上記の動作 が実現されている。なお、抵抗 R1は電流検出用であるので、比較的低い抵抗値であ り、直流電圧 Vdcを分圧する抵抗 R2, R3は電圧検出用であるので、比較的高い抵 抗値である。
[0028] 図 2に示すように、放電灯電流検出回路 5で検出された放電灯電流検出電圧に、 電源リップル検出回路 9で検出された電圧を重畳させることで、 PWM制御回路 84の 遅延時間 tl及び直流電圧 Vdcのリップル電圧によるスイッチング素子 Q1に流れる電 流 IQ1の傾きの影響を無くすことができる。これにより、図 3に示すように、スイッチング 素子 Q1に流れる電流 IQ1のピーク値は一定となり、その結果、放電灯 Laに流れる電 流 ILaは一定となり、所望の特性を得られる。
[0029] なお、点灯させる放電灯 Laの仕様は交流ランプであっても良いし直流ランプであつ ても良い。放電灯 Laが交流ランプである場合には、インバータ回路 6によりランプ電 圧の極性を低周波で反転させることにより矩形波点灯させる。ここで、インバータ回路 6はフルブリッジ回路であっても良いし、ハーフブリッジ回路であっても良ぐ要するに 入力直流電圧を所定の周期で極性反転させて交流電圧として出力する機能を有し ていれば良い。
[0030] 図 1の例では、放電灯電圧検出回路 7はインバータ回路 6の出力電圧を検出するよ うに接続されているが、放電灯電圧検出回路 7をインバータ回路 6の入力電圧を検出 するように接続しても良い。放電灯 Laが直流ランプである場合には、インバータ回路 6を省略し、降圧チヨッパ回路 4の出力により放電灯 Laを直流点灯させる。直流ラン プ及び交流ランプのいずれの場合にも、降圧チヨッパ回路 4の出力には平滑用のコ ンデンサが並列接続されても良レ、。また、点灯させる放電灯 Laは図 4に示すように反 射鏡 51を有していてもよい。上記の事項は、以下の各実施形態についても同様であ る。
[0031] (実施の形態 2)
図 5に、本発明の第 2の実施形態の回路図を示す。本実施形態の放電灯点灯装置 は、図 1に示す実施の形態 1の放電灯点灯装置と、電源リップル検出回路 9及び制 御回路ブロック 8の構成が異なる。
[0032] 本実施形態の放電灯点灯装置における制御回路ブロック 8は、マイコン 80と、 PW M制御回路 84と、電圧加算回路 85と、位相制御回路 86とを含む。
[0033] 電源リップル検出回路 9は、直流電源部 3の高圧側出力端と低圧側出力端の間に 接続された抵抗 R2と抵抗 R3の直列回路で構成され、電源電圧 Vdcを抵抗 R2と抵 抗 R3により分圧した電圧が、直接、制御回路ブロック 8に入力される。
[0034] 放電灯電圧検出回路 7により検出された放電灯検出電圧は、制御回路ブロック 8内 にあるマイコン 80の A/D変換入力ポートに入力され、内蔵の A/D変換器 81により デジタル値に変換される。コントロール部 83はデータテーブル 82を参照し、デジタル 値に変換されたランプ電圧データ(0, 1,…, 1023)に対応した電力制御データ Px ( XO, XI , ·■·, X1023)を読み出し、 PWM信号として出力する。この PWM信号は、 抵抗 R6とコンデンサ C2よりなる CR積分回路により平均化されて、電圧加算回路 85 に入力される。位相制御回路 86は、電源リップノレ検出回路 9の出力の位相を反転さ せる。電圧加算回路 85は、平均化された PWM信号を位相制御回路 86の出力に加 算し、基準電圧(指令値)として PWM制御回路 84へ出力する。 PWM制御回路 84 は、検出電流と、基準電圧に基づいて制御信号を出力して降圧チヨッパ回路 4のスィ ツチング素子 Q1を制御し、必要に応じた電力を放電灯 Laへ供給させる。
[0035] 図 5の点灯装置の動作説明を以下に示す。図 6 (a)に、電源リップノレ検出回路 9に より検出され位相制御回路 86に入力される電源リップル検出電圧を示す。図 6 (b)に 、マイコン 80から出力され CR積分回路により平均化されて電圧加算回路 85に入力 される初期基準電圧を示す。図 6 (c)に、 PWM制御回路 84に入力される、電源リツ プル検出電圧の逆位相が重畳された基準電圧を示す。図 7に、本実施形態の放電 灯点灯装置における、直流電圧 Vdc上の各点 A, B, Cでの放電灯電流検出電圧及 び基準電圧を示す。なお、図 7の各点 A, B, Cは図 14の各点 A, B, Cに対応する。 図 8に、本実施形態の放電灯点灯装置における、直流電圧 Vdc上の各点 A, B, Cで のスイッチング素子 Q 1に流れる電流 IQ 1を示す。
[0036] 前述の背景技術で説明したように、従来は、図 15に示すように A点では検出電圧 力 ¾点より AVA1分超えてしまレ、、逆に C点では検出電圧が B点より AVC1分下回つ てしまうことが問題となっていた。これに対し、本実施形態では、図 7に示すように、 A 点では、基準電圧(実線)を B点より AVA1だけ低く設定し、逆に、 C点では、基準電 圧(実線)を B点より AVC1だけ高く設定してレ、る。
[0037] このように、電源リップル検出回路 9により検出された電源リップル検出電圧(図 6 (a )参照)を位相制御回路 86により逆位相電圧にし、この逆位相電圧をマイコン 80から 出力される初期基準電圧(図 6 (b)参照)に重畳させることにより、基準電圧(図 6 (c) 参照)を設定する。これにより、図 7に示すように、 PWM制御回路 84の遅延時間 tl 及び直流電圧 Vdcのリップル電圧によるスイッチング素子 Q1に流れる電流 IQ1の傾 きの影響をなくすことができ、図 8に示すように、スイッチング素子 Q1に流れる電流 I Q1のピーク値は一定となる。その結果、放電灯 Laに流れる電流 ILaは一定となり、所 望の特性を得られる。
[0038] (実施の形態 3)
図 9に、本発明の第 3の実施形態の回路図を示す。本実施形態では、放電灯電圧 に応じて電源の検出電圧の重畳率を切り替える制御を行う。本実施形態の放電灯点 灯装置は、実施の形態 2の放電灯点灯装置と、制御回路ブロック 8の構成が異なる。 本実施形態の制御回路ブロック 8は、マイコン 80と、 PWM制御回路 84と、電圧加算 回路 85とを含む。
[0039] マイコン 80内のデータテーブル 82は、放電灯電圧と、電灯電力 Pxと、電圧リップル 重畳データ Vxxとがそれぞれ対応づけられて格納している。データテーブル 82にお いて、電力制御データ Pxは、ランプ電圧の検出値(0, 1, · · · , 1023)に対する電力 制御データの指令値 (XO, XI , · · · , X1023)である。リップル重畳データ Vxxは、ラ ンプ電圧の検出値(0, 1 , · · · , 1023)に対するリップノレ重畳データの指令値 (XX0, XXI , · · · , XX1023)である。データテーブル 82により、例えば、ランプ電圧の検出 値が nであれば、電力制御データの指令値は Xn、リップル重畳データの指令値は X Xnとなる。
[0040] 放電灯電圧検出回路 7により検出された放電灯検出電圧は、制御回路ブロック 8内 にあるマイコン 80の A/D変換入力ポートに入力され、内蔵の A/D変換器 81により デジタル値に変換される。コントロール部 83はデータテーブル 82を参照し、デジタル 値に変換されたランプ電圧データ(0, 1,…, 1023)に対応した電力制御データ Px ( XO, XI , ·■·, X1023)を読み出し、 PWM信号として出力する。この PWM信号は抵 抗 R6とコンデンサ C2よりなる CR積分回路により平均化されて、基準電圧(指令値)と して PWM制御回路 84へ伝達される。降圧チヨッパ回路 4は、 PWM制御回路 84から の制御信号にした力^、、必要に応じた電力を放電灯 Laへ供給する。
[0041] また、コントロール部 83はデータテーブル 82を参照し、ランプ電圧データ(0, 1,… , 1023) (こ対応したリップノレ重叠データ Vxx (XX0, XXI,■·■, XX1023)を読み出 して、 PWM信号として出力する。この PWM信号は抵抗 R7とコンデンサ C3よりなる C R積分回路により平均化されて、重畳率のデータとして電圧加算回路 85に入力され る。
[0042] 電圧加算回路 85は、放電灯電流検出回路 5で検出された放電灯電流検出電圧に 、電源リップル検出回路 9で検出された直流電源部 3の出力電圧 Vdcの電源リップル 成分を重畳させる。電圧加算回路 85は、その重畳率をコンデンサ C3の電位に基づ いて切り替える。これにより、 PWM制御回路 84の遅延時間 tl及び直流電圧 Vdcのリ ップノレ電圧による、スイッチング素子 Q1に流れる電流 IQ1の傾きの影響をなくすこと ができ、スイッチング素子 Q1に流れる電流 IQ1のピーク値は一定となる。これにより、 放電灯 Laに流れる電流 ILaは一定となり、所望の特性を得られる。なお、本実施形態 では、データテーブル 82によりランプ電圧の検出値と電力制御データ Pxとが対応し ているので、結果的に、放電灯に供給される電力に応じて電源の検出電圧の重畳率 を切り替える制御をしていることにもなる。
[0043] (実施の形態 4)
図 10は本発明の第 4の実施の形態の回路図を示す。本実施形態の放電灯点灯装 置は、実施の形態 3の放電灯点灯装置と、データテーブル 82の内容が異なる。すな わち、本実施形態の放電灯点灯装置は、図 10に示すように、異なるランプ種に対応 して、データテーブル 82内に、放電灯電圧一放電灯電力一電圧リップル重畳データ のテーブルをそれぞれ用意する。これにより、複数の異なる種類のランプに対応でき るようにしている。
[0044] 図 10において、電力制御データ Pxは、第 1のランプ種について、ランプ電圧の検 出値(0, 1 ,…, 1023)に対する電力制御データの指令値 (XO, XI ,…, X1023) である。リップル重畳データ Vxxは、第 1のランプ種についてランプ電圧の検出値(0 , 1 , · · · , 1023) tこ対するリップノレ重叠データの it令値(XXO, XXI , · · · , XX1023) である。
[0045] 同様に、電力制御データ Pyとリップル重畳データ Vyyはそれぞれ、第 2のランプ種 について、ランプ電圧の検出値(0, 1,…, 1023)に対する電力制御データの指令 値(Y0, Y1 , ■·■, Y1023)とリップノレ重畳データの旨令ィ直(ΥΥΟ, YY1 ,…, YY10 23)である。
[0046] ランプ種を指定するための信号は、マイコン 80のレ、ずれかの入力ポートの状態(Hi ghレベル力、 Lowレベル力 で設定することができる。マイコン 80は、入力ポートの設 定によって、または、電源投入後のランプ電圧 Viaの時間的変動を検出することで、 ランプ Laの種別を判定し、レ、ずれかのテーブルデータを選択する。
[0047] これにより、ランプ種が異なっていても、 PWM制御回路 84の遅延時間 tl及び直流 電圧 Vdcのリップル電圧によるスイッチング素子 Q 1に流れる電流 IQ1の傾きの影響 を排除でき、スイッチング素子 Q1に流れる電流 IQ1のピーク値は一定となる。よって、 放電灯 Laに流れる電流 ILaが一定となり、所望の特性を得られる。なお、実施の形態 3又は 4においても、実施の形態 2で説明したように、検出電圧に代えて基準電圧に 対し、電源リップル成分を重畳するように構成しても良レ、。
[0048] (実施の形態 5)
図 11は、本発明の実施形態 5の要部の構成を示す平面図であり、平滑コンデンサ C1とインダクタ L1の周辺のプリント配線基板の回路パターンを示している。本実施形 態では、電源を検出する検出回路パターンを、定常時に高周波動作する卷線 (コィ ノレ)の下に配置しないようにしている。図中、破線で囲まれた回路パターン中の部品 Rl , R2, R3はそれぞれ、前述の抵抗 Rl , R2, R3に対応する。部品 Rl , R2, R3は 、定常時に高周波動作するチヨツバ用のインダクタ(コイル) L1の横側に配置しており 、その下には配置しないようにしている。これにより、電圧リップノレの検出に高周波ノィ ズが重畳することを防止できるので、より一層のちらつき防止効果が達成できる。
[0049] (実施の形態 6)
図 12A、 12Bを用いて、上記実施形態の放電灯点灯装置のプロジェクタへの適用 を説明する。図 12Aは、各実施形態の放電灯点灯装置を備えたプロジェクタの斜視 図であり、図 12Bはそのプロジェクタの内部構成を示した図である。図 12Bに示すよ うに、プロジェクタ 100は、電源部 101、放電灯点灯装置 103、光学系 105、メイン制 御基板 107、外部信号入力部 109、冷却用のファン 111、及び放電灯 Laを含む。放 電灯点灯装置 103は、上記の各実施形態で説明した点灯装置 (直流電源部 3を除く )である。メイン制御基板 107には、画像信号処理を行うための回路部品等が実装さ れる。
[0050] 外部からの映像信号、画像信号が、外部信号入力部 109を介して入力される。電 源部 101から放電灯点灯装置 103に直流電源が供給される。放電灯点灯装置 103 は放電灯 Laを点灯させる。放電灯 Laからの光は、外部からの映像信号、画像信号 に応じて、光学系 105を介して外部に出力される。
[0051] なお、上記の各実施形態の放電灯点灯装置は、プロジェクタ以外に、ちらつきの少 ない照明装置として検査用光源などにも適用できる。
[0052] 本発明は、特定の実施形態について説明されてきたが、当業者にとっては他の多 くの変形例、修正、他の利用が明らかである。それゆえ、本発明は、ここでの特定の 開示に限定されず、添付の請求の範囲によってのみ限定され得る。なお、本出願は 日本国特許出願、特願 2004-173154号(2004年 6月 10日提出)に関連し、それら の内容は参照することにより本文中に組み入れられる。

Claims

請求の範囲
[1] 放電灯を点灯させる放電灯点灯装置であって、
交流電圧を整流、平滑し、直流電圧を出力する直流電源部と、
前記放電灯に流れる電流を検出する電流検出回路と、
該直流電源部から供給される電源の電圧変動を検出し、その検出電圧を前記電流 検出回路からの検出電圧に重畳した電圧を出力する電源リップノレ検出回路と、 該電源リップル検出回路からの出力電圧に基づいて、前記放電灯を流れる電流が 一定電流となるように、前記放電灯への出力電圧を制御する制御回路と
を備えたことを特徴とする放電灯点灯装置。
[2] 放電灯を点灯させる放電灯点灯装置であって、
交流電圧を整流、平滑し、直流電圧を出力する直流電源部と、
前記放電灯にかかる電圧を検出する電圧検出回路と、
該直流電源部から供給される電源の電圧変動を検出する電源リップノレ検出回路と 前記電圧検出回路からの検出電圧に基づいて生成された基準電圧に、前記電源 リップル検出回路からの出力電圧を重畳し、その重畳された電圧に基づいて、前記 放電灯を流れる電流が一定電流となるように、前記放電灯への出力電圧を制御する 制御回路と
を備えたことを特徴とする放電灯点灯装置。
[3] 前記電源リップル検出回路の出力電圧の重畳率を、放電灯電圧に応じて切り替え ることを特徴とする請求項 1または 2記載の放電灯点灯装置。
[4] 前記電源リップル検出回路の出力電圧の重畳率を、放電灯に供給される電力に応 じて切り替えることを特徴とする請求項 1または 2記載の放電灯点灯装置。
[5] 前記電源リップル検出回路の出力電圧の重畳率を、放電灯の種類に応じて切り替 えることを特徴とする請求項 1または 2記載の放電灯点灯装置。
[6] 前記直流電源部の出力の電圧変動を検出するために使用される回路部品を、定 常時に高周波動作する卷線の下に配置しないことを特徴とする請求項 1または 2記 載の放電灯点灯装置。
[7] 前記放電灯は交流ランプであることを特徴とする請求項 1または 2記載の放電灯点 灯装置。
[8] 前記放電灯は直流ランプであることを特徴とする請求項 1または 2記載の放電灯点 灯装置。
[9] 前記放電灯は反射鏡を有していることを特徴とする請求項 1または 2記載の放電灯 点灯装置。
[10] 光源としての放電灯と、該放電灯を点灯させるための請求項 1または 2記載の放電 灯点灯装置と備えたことを特徴とするプロジェクタ。
PCT/JP2005/005141 2004-06-10 2005-03-22 放電灯点灯装置及びプロジェクタ WO2005122652A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/570,054 US7504782B2 (en) 2004-06-10 2005-03-22 Discharge lamp lighting apparatus and projector
CN2005800185030A CN1989788B (zh) 2004-06-10 2005-03-22 放电灯点亮装置及投影仪
EP05727042.3A EP1755364B1 (en) 2004-06-10 2005-03-22 Discharge lamp lighting device and projector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004173154A JP4241515B2 (ja) 2004-06-10 2004-06-10 放電灯点灯装置及びプロジェクタ
JP2004-173154 2004-06-10

Publications (1)

Publication Number Publication Date
WO2005122652A1 true WO2005122652A1 (ja) 2005-12-22

Family

ID=35503551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005141 WO2005122652A1 (ja) 2004-06-10 2005-03-22 放電灯点灯装置及びプロジェクタ

Country Status (5)

Country Link
US (1) US7504782B2 (ja)
EP (1) EP1755364B1 (ja)
JP (1) JP4241515B2 (ja)
CN (1) CN1989788B (ja)
WO (1) WO2005122652A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090079348A1 (en) * 2005-04-25 2009-03-26 Harison Toshiba Lighting Corp. Discharge lamp lighting apparatus and discharge lamp lighting control method
DE102005031835A1 (de) * 2005-07-06 2007-01-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Vorrichtung zum Betreiben einer Hochdruckentladungslampe
JP4915638B2 (ja) * 2005-08-26 2012-04-11 パナソニック株式会社 無電極放電灯装置及びこの無電極放電灯装置を備えた照明器具
JP2007059358A (ja) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd 無電極放電ランプ
JP4735239B2 (ja) * 2005-12-22 2011-07-27 パナソニック電工株式会社 放電灯点灯装置及び画像表示装置
JP5038690B2 (ja) * 2006-01-17 2012-10-03 パナソニック株式会社 照明器具
JP4697050B2 (ja) * 2006-05-26 2011-06-08 パナソニック電工株式会社 放電灯点灯装置及び照明器具
JP4793122B2 (ja) * 2006-06-21 2011-10-12 パナソニック電工株式会社 放電灯点灯装置及び画像表示装置
JP4631817B2 (ja) * 2006-06-27 2011-02-16 パナソニック電工株式会社 放電灯点灯装置及び照明器具
JP2008010153A (ja) * 2006-06-27 2008-01-17 Matsushita Electric Works Ltd 放電灯点灯装置及び照明器具
JP4802906B2 (ja) * 2006-07-24 2011-10-26 パナソニック電工株式会社 放電灯点灯装置及びプロジェクタ
JP4687612B2 (ja) * 2006-08-25 2011-05-25 パナソニック電工株式会社 高圧放電灯点灯装置及び照明器具
JP4826388B2 (ja) 2006-08-25 2011-11-30 パナソニック電工株式会社 高圧放電灯点灯装置及び照明器具
JP4608470B2 (ja) * 2006-08-31 2011-01-12 パナソニック電工株式会社 放電灯点灯装置、及び照明装置
KR20090079982A (ko) * 2006-11-09 2009-07-22 오스람 게젤샤프트 미트 베쉬랭크터 하프퉁 방전 램프를 시동시키기 위한 회로 어레인지먼트
JP5027498B2 (ja) * 2006-12-25 2012-09-19 パナソニック株式会社 放電灯点灯装置および画像表示装置
KR101361517B1 (ko) 2007-02-26 2014-02-24 삼성전자 주식회사 백라이트 유닛, 이를 포함하는 액정표시장치 및 그제어방법
JP4506781B2 (ja) * 2007-05-18 2010-07-21 船井電機株式会社 プロジェクタ用ランプの駆動回路
JP4379532B2 (ja) * 2007-07-26 2009-12-09 パナソニック電工株式会社 照明装置
JP5601294B2 (ja) * 2011-08-29 2014-10-08 株式会社島津製作所 光源装置
US9160240B2 (en) * 2012-09-05 2015-10-13 Kyosan Electric Mfg. Co., Ltd. DC power supply device, and control method for DC power supply device
US9386665B2 (en) 2013-03-14 2016-07-05 Honeywell International Inc. System for integrated lighting control, configuration, and metric tracking from multiple locations
JP5729732B2 (ja) * 2013-09-27 2015-06-03 株式会社京三製作所 直流電源装置、直流電源装置の制御方法
WO2019064695A1 (ja) 2017-09-28 2019-04-04 株式会社三社電機製作所 放電ランプ点灯制御装置およびランプ電流供給方法
TWI703897B (zh) * 2019-05-07 2020-09-01 益力半導體股份有限公司 自適應調光驅動系統

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521175A (ja) * 1991-07-15 1993-01-29 Matsushita Electric Works Ltd 放電灯用安定器のプリント基板構造
JP2003031394A (ja) * 2001-07-16 2003-01-31 Matsushita Electric Works Ltd 放電灯点灯装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777409A (en) * 1984-03-23 1988-10-11 Tracy Stanley J Fluorescent lamp energizing circuit
EP0456247B1 (en) * 1990-05-10 1995-10-04 Matsushita Electric Industrial Co., Ltd. Apparatus for operating a discharge lamp
KR100208803B1 (ko) * 1995-11-10 1999-07-15 윤종용 전자 안정기 회로
US6005356A (en) * 1996-10-21 1999-12-21 Matsushita Electric Industrial Co., Ltd. Operating method and operating apparatus for a high pressure discharge lamp
US6225754B1 (en) * 1996-10-21 2001-05-01 Matsushita Electric Industrial Co., Ltd. Operating method and operating apparatus for a high pressure discharge lamp
US5914572A (en) * 1997-06-19 1999-06-22 Matsushita Electric Works, Ltd. Discharge lamp driving circuit having resonant circuit defining two resonance modes
US5982113A (en) * 1997-06-20 1999-11-09 Energy Savings, Inc. Electronic ballast producing voltage having trapezoidal envelope for instant start lamps
EP1057376B1 (en) 1998-12-17 2003-10-15 Koninklijke Philips Electronics N.V. Circuit arrangement
JP2002134287A (ja) 2000-10-24 2002-05-10 Tdk Corp 放電灯点灯方法及び装置
JP4239818B2 (ja) * 2001-06-08 2009-03-18 ソニー株式会社 放電灯点灯装置及びプロジェクタ装置
US6914395B2 (en) * 2001-11-27 2005-07-05 Matsushita Electric Works, Ltd. Electronic ballast for a high-pressure discharge lamp
JP4460202B2 (ja) * 2001-12-28 2010-05-12 パナソニック電工株式会社 放電灯点灯装置
US7511432B2 (en) * 2003-01-17 2009-03-31 Panasonic Electric Works Co., Ltd. Discharge lamp lighting device, illumination device, and projector
JP4321135B2 (ja) 2003-06-25 2009-08-26 パナソニック電工株式会社 放電灯点灯装置及び照明器具

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521175A (ja) * 1991-07-15 1993-01-29 Matsushita Electric Works Ltd 放電灯用安定器のプリント基板構造
JP2003031394A (ja) * 2001-07-16 2003-01-31 Matsushita Electric Works Ltd 放電灯点灯装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1755364A4 *

Also Published As

Publication number Publication date
CN1989788A (zh) 2007-06-27
EP1755364A1 (en) 2007-02-21
US20080048586A1 (en) 2008-02-28
US7504782B2 (en) 2009-03-17
EP1755364B1 (en) 2016-05-11
JP4241515B2 (ja) 2009-03-18
CN1989788B (zh) 2011-11-30
EP1755364A4 (en) 2014-04-30
JP2005353423A (ja) 2005-12-22

Similar Documents

Publication Publication Date Title
WO2005122652A1 (ja) 放電灯点灯装置及びプロジェクタ
EP2282618B1 (en) Discharge lamp lighting apparatus
CA2656151C (en) Discharge lamp lighting device and light fixture
US20120038276A1 (en) Discharge lamp ballast, lighting unit, and vehicle
JP5310560B2 (ja) 高圧放電ランプ点灯装置
JP2008103091A (ja) 高圧放電灯点灯装置
JP2005101016A (ja) 放電灯点灯装置及び車載用照明器具
JP2013026208A (ja) 放電ランプシステム及びその制御方法
JP3760476B2 (ja) 放電灯点灯装置
JPH10144488A (ja) 放電灯点灯装置
JP5069573B2 (ja) 高圧放電灯点灯装置、照明器具
JP2008123910A (ja) 放電灯点灯装置及びプロジェクタとプロジェクションテレビ
JP6065194B2 (ja) 放電灯点灯装置及びそれを備えた車載用照明装置並びに車両
JP4775003B2 (ja) 放電灯点灯装置及び画像表示装置
JP5170095B2 (ja) 高圧放電ランプ点灯装置
JPH06111987A (ja) 放電灯点灯装置
KR20120022641A (ko) 적어도 하나의 방전 램프의 동작을 위한 전자 안정기 및 방법
JP2004303515A (ja) 放電灯点灯装置
JP5081001B2 (ja) 高圧放電灯点灯装置、照明器具
JPH08102385A (ja) 放電灯点灯装置及びこれを用いた照明装置
JP2009266562A (ja) インバーター装置
JP2007207462A (ja) 放電ランプ点灯装置およびこれを用いた映像表示装置
JP2004303501A (ja) 放電灯点灯装置と同放電灯点灯装置による放電灯点灯方法
JP4008373B2 (ja) 放電灯点灯装置
JPH07122375A (ja) 蛍光灯駆動装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580018503.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005727042

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 11570054

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005727042

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11570054

Country of ref document: US