WO2005118272A1 - Verdichtungs-vorrichtung - Google Patents

Verdichtungs-vorrichtung Download PDF

Info

Publication number
WO2005118272A1
WO2005118272A1 PCT/EP2005/005019 EP2005005019W WO2005118272A1 WO 2005118272 A1 WO2005118272 A1 WO 2005118272A1 EP 2005005019 W EP2005005019 W EP 2005005019W WO 2005118272 A1 WO2005118272 A1 WO 2005118272A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
compaction
silicon
powder
compacting
Prior art date
Application number
PCT/EP2005/005019
Other languages
English (en)
French (fr)
Inventor
Peter Adler
Andreas Gölz
Holger Kirchner
Armin Müller
Torsten Sill
Raymund Sonnenschein
Original Assignee
Joint Solar Silicon Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joint Solar Silicon Gmbh & Co. Kg filed Critical Joint Solar Silicon Gmbh & Co. Kg
Priority to JP2007513735A priority Critical patent/JP2008501528A/ja
Priority to EP05750911A priority patent/EP1750931B8/de
Priority to CN2005800179025A priority patent/CN1960852B/zh
Priority to US11/569,783 priority patent/US7584919B2/en
Priority to DE502005006878T priority patent/DE502005006878D1/de
Publication of WO2005118272A1 publication Critical patent/WO2005118272A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/16Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using pocketed rollers, e.g. two co-operating pocketed rollers
    • B30B11/165Roll constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/18Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using profiled rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B3/00Presses characterised by the use of rotary pressing members, e.g. rollers, rings, discs
    • B30B3/005Roll constructions

Definitions

  • roller compaction A well-known method for compacting powders is roller compaction.
  • powder is compressed between two counter-rotating rollers.
  • the specific contact pressures that occur are 5 N / cm to 50 kN / cm.
  • Metal rollers are generally used for this application. Due to the high specific contact forces, which in some cases reach the flow limit of the metal roller, the rollers wear. The abrasion gets into the product. For applications in the photovoltaic, semiconductor, pharmaceutical and chemical industries, this metal abrasion is unfavorable to harmful, since metallic impurities in the ppm or ppb range sometimes lead to defective products.
  • the invention is based on the object of creating a compaction device for the low-metal or metal-free compaction of a powder.
  • the object is achieved by the features of claim 1.
  • the essence of the invention is to provide compaction rollers in a compaction device which consists of ceramic at least on its jacket. This prevents metallic abrasion from occurring during compaction.
  • FIG. 1 shows a section of a plant for producing silicon with a compression device according to a first exemplary embodiment
  • Fig. 2 is an enlargement of a compaction roller of the compaction device according to Fig. 1 and
  • Fig. 3 is an enlargement of a compaction roller according to a second embodiment.
  • the structure of a system 1 for producing silicon powder according to a first exemplary embodiment is described below with reference to FIGS. 1 and 2.
  • the plant 1 has, starting from above, a tubular, vertically running reactor 2 which encloses a cylindrical reaction chamber 3.
  • a gas supply line 4 is arranged, which opens into the reaction chamber 3.
  • the line 4 is designed such that a useful gas flow, for example made of monosilane, can be introduced in the middle.
  • the useful gas flow is surrounded by a ring flow of an auxiliary gas.
  • Approximately the upper half of the reactor 2 is surrounded by a ring-cylindrical heater 5 which surrounds the reactor 2 in such a way that the wall of the chamber 3 can be heated to temperatures of over 800 ° C.
  • the lower half of the reactor 2 is surrounded by an annular cylindrical cooling device 6 which is directly adjacent to the reactor 2.
  • the degassing device 31 consists of a housing 32, which runs obliquely upwards and is connected to the chamber 3, at the lower end of the reactor 2 is scheduled.
  • an annular cylindrical sintered material filter 33 which is closed at the bottom and through which excess hydrogen can escape through an opening 34 located in the upper end of the housing 32.
  • a roller breather 35 of known type and then a compression device 10, the construction of which is described in more detail below.
  • the compression device 10 is connected to the reaction chamber 3 via the lock 7.
  • a storage container 11 connected to it.
  • the roller breather 35 has a cuboid housing 36, in which two breather rollers 38, 39 driven by a motor 37 are arranged.
  • the rollers 38, 39 are rotatably mounted about associated axes of rotation 40, 41 running parallel to one another.
  • the rollers 38, 39 are driven in opposite directions, so that both move downwards in the area of the gap 42 delimited by the rollers 38, 39.
  • the roller 38 is hollow and has a porous jacket.
  • a gas-permeable plastic film is applied to its outer surface. There is negative pressure within the roller 38. In this way, the gas remaining in the silicon powder 43 is drawn off.
  • the surface of the roller 39 is smooth. Both rollers 38, 39 preferably have a non-metallic surface.
  • the compression device 10 has a housing 12 which encloses an essentially cubic working space 13.
  • the housing 12 has a feed opening 14 facing the lock 7 and connected to it, and a discharge opening 15 provided on the lower edge of the housing 12 and connected to the container 11.
  • In the housing 12 there are two compacting rollers 18, 19, which can be driven in rotation about respective axes of rotation 16, 17, in the middle between the openings 14 and 15 are arranged adjacent to each other that a compression gap 20 is formed between them.
  • the axes of rotation 16 and 17 run parallel to one another.
  • the compression gap 20 has a width Bs.
  • the compaction rollers 18, 19 can be driven in rotation by a motor 21, which is connected to the control device 9 via a connecting line 22.
  • the tubular reactor 2 has a vertical central longitudinal axis 23, which runs centrally through the gap 20.
  • the rollers 18, 19 are driven in opposite directions, ie the roller 18 rotates clockwise, the roller 19 counterclockwise. As a result, the surfaces of the rollers 18, 19 move downward together in the region of the gap 20.
  • the rollers 18, 19 have a roller core 24 made of steel, which is circular cylindrical in shape.
  • a roller jacket 25 with an annular cross section, which completely surrounds the roller core 24 on the circumferential side.
  • the roller shell 25 is formed in one piece and consists of a non-metal material, that is, a non-metallic material. In particular, these are glass, graphite or ceramic materials. Ceramic is particularly preferred. The ceramics used consist mainly of silicon nitride.
  • the roll shell 25 is fixed on the roll core 24 in the axial and tangential direction, for example by gluing or tongue and groove connections.
  • the roller jacket 25 has the shape of a circular cylinder. It is possible to form the entire roller 18 or 19 from a ceramic material.
  • FIG. 2 shows a second exemplary embodiment. Identical parts are given the same reference numerals as in the exemplary embodiment according to FIG. 2. Structurally different, but functionally similar parts are given the same reference numerals with a suffix a.
  • the main difference compared to the exemplary embodiment according to FIG. 2 is that the roller jacket 25a is not formed in one piece, but consists of two half-shells 27, 28 which completely and completely enclose the roller core 24.
  • the gaps 29 between the half-shells 27 and 28 are completely and completely closed, so that material which reaches the surface 26 does not come into contact with the roller core 24.
  • the half-shells 27, 28 were subjected to an exact mechanical processing after the ceramic production. As part of the mechanical processing, the surface of the half-shells 27, 28 was profiled.
  • the surface of the half-shells 27, 28 can also be designed in such a way that the compressed silicon has the shape of rods, pillows, almonds etc.
  • the combination of ceramic and metal materials withstood the machining It is also possible to use partial shells with a center angle of ⁇ 180 ° on the circumference. In particular, three partial shells with a center angle of 120 ° or four partial shells with a center angle of 90 ° can be provided on the circumference. Other divisions are also possible.
  • a gas mixture of monosilane and hydrogen in a volume or molar ratio of 1: 3 was converted into silicon powder and hydrogen in the reactor 2 with a wall temperature of the wall 30 of> 800 ° C. and a production rate of 200 g silicon per hour implemented.
  • the addition took place in such a way that the monosilane was introduced centrally into the reaction chamber 3 from above.
  • the hydrogen surrounded the monosilane in the form of a ring flow in order to prevent the silicon from being deposited directly on the walls of the reaction chamber 3.
  • the silicon powder 43 was partially degassed after the decomposition by means of the degassing device 31 arranged on the lock 7.
  • the powder obtained had a bulk density of about 50 g / l.
  • the degassing in the degassing device 31 was carried out automatically in relation to the ambient pressure.
  • the deaerated and pre-compressed product with a bulk density of approx. 200 g / dm 3 was compressed to a bulk weight of 450 g / dm 3 by means of the compression device 10. 6 kg of this compressed silicon powder were placed in an induction melting plant IS30 from Leybold. The system was then evacuated. An argon atmosphere with a pressure between 1 and 100 mbar was generated.
  • the silicon powder was heated to a melting temperature of 1415 ° C.
  • the silicon powder was then melted without residues at 1450 ° C. in 30 minutes with a melting capacity of 70 kW.
  • the silicon melt was then poured off and the silicon solidified in a directed manner.
  • the solidified polycrystalline silicon block showed a homogeneous polycrystalline structure of the silicon, and no residues of silicon powder or silicon-containing slag.
  • a gas containing silicon can be decomposed in the reactor. Examples of these are trichlorosilane or monosilane. Other gases containing silicon can also be used.
  • the gas containing silicon is introduced into the center of the tubular reactor 2 and is surrounded by a ring flow of an auxiliary gas so that the gas containing silicon is not deposited directly on the reactor walls.
  • the auxiliary gas can generally be an inert gas. Hydrogen is particularly advantageous because it also forms during the decomposition of monosilane, for example. However, noble gases such as argon and other gases such as e.g. B. nitrogen or carbon dioxide can be used.
  • the mixture ratio, ie volume or molar ratio, of monosilane to hydrogen can be between 1: 0 and 1: 100.
  • the specific energy requirement per 1 kg of solid silicon for the process steps of thermal decomposition and mechanical compression was less than 20 kWh.
  • the space-time yield per tubular reactor 2 was more than 1 kg of silicon powder per hour.
  • the wall temperature of the reactor 2 is more than 400 ° C., in particular more than 800 ° C.
  • the silicon powder can be compressed in one or two stages, advantageously in two stages.
  • the contact forces in the compression device 10 were between 5 N / cm and 50 kN / cm.
  • the silicon powder comes into contact only with the roller jacket 25 made of ceramic, so that this is ensured.
  • the high-purity powdered silicon produced by the process according to the invention has good handling properties despite its powdery ground state and is suitable for the production of pure silicon melts from which silicon blocks or silicon crystals can be produced. It was found that with the defined composition of the pyrolysis gas consisting of hydrogen and monosilane, it is possible to produce silicon in powder form with high yields and very low energy consumption.
  • the process is particularly characterized in that the silicon powder can be handled, packaged and shipped separately after the process has been carried out and can thus be used with a time delay for the production of silicon blocks or silicon crystals.
  • the silicon is characterized by a good melting behavior and a high purity despite the large surface and an unfavorable, small volume / surface ratio in comparison to Prime Poly silicon.
  • the silicon powder produced by the thermal decomposition had a bulk density of 10 to 100 g / dm 3 .
  • the silicon powder finally compacted by the device 10 had a bulk density of 100 to 1500 g / dm 3 , in particular from 200 to 1200 g / dm 3 , in particular from 250 to
  • the total silicon powder contained no more than 10 19 atoms of foreign elements per 1 cm 3 silicon.
  • the silicon powder consisted of crystalline particles with a primary particle size of 10 nm to 10000 nm, preferably 50 nm to 500 nm, typically about 200 nm.
  • the compacted silicon powder consisted of aggregates with an aggregate size of 500 nm to 100000 nm, in particular 1000 nm to 10000 nm, typically about 4000 nm.
  • the compressed silicon pieces from silicon aggregates had a largest dimension of 1 to 200 mm. They were irregular in shape, which could also be chopsticks.
  • the silicon powder had a surface area of 1 to 50 m 2 / g.
  • the compacted silicon powder had a total of no more than 10 17 atoms of transition metals per 1 cm 3 silicon.
  • the silicon powder according to the invention has a brown color, whereas silicon granules produced by conventional processes are gray.
  • the compressed silicon powder can be used for the production of polycrystalline silicon blocks for photovoltaics or for the production of silicon single crystals. Silicon wafers can be produced from the silicon according to the invention.
  • the metal content of the compacted silicon powder corresponded to that of the starting product. No contamination was found. Due to the manufacturing process, the silicon did not contain any silicon oxide compounds on the surface of the silicon particles, which would have significantly increased the melting temperature of the silicon powder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Silicon Compounds (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Road Paving Machines (AREA)
  • Road Repair (AREA)
  • Disintegrating Or Milling (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Verdichtungs-Vorrichtung zum metallarmen Verdichten eines Pulvers mit einem, einen Arbeitsraum (13) zumindest teilweise umschließenden Gehäuse (12), mit einer am Gehäuse (12) angeordneten Zufuhr-Einrichtung (14) zum Zuführen eines zu verdichtenden Pulvers in den Arbeitsraum (13), mit mindestens einer, in dem Arbeitsraum (13) drehantreibbar ange­ordneten, einen Walzenmantel (25) aufweisenden Verdichtungs-Walze (18, 19), die zusammen mit einer Gegenwand einen Verdichtungs-Spalt (20) zur Verdichtung des Pulvers in diesem bildet, dadurch gekennzeichnet, dass die mindestens eine Verdichtungs-Walze (18, 19) zumindest auf dem Walzenmantel (25; 25a) aus Keramik besteht.

Description

Verdichtungs- Vorrichtung
Die metallarme bzw. metallfreie Verdichtung von Pulvern stellt seit langem eine technische Herausforderung dar. Eine bekannte Methode zur Verdichtung von Pulvern ist die Walzenkompaktierung. Hierbei werden zwischen zwei gegenläufig rotierenden Walzen Pulver verdichtet. Die auftretenden spezifischen Anpressdrücke betragen hierbei 5 N/cm bis 50 kN/cm. Für diese Anwendung werden in der Regel Metallwalzen eingesetzt. Auf Grund der hohen spezifischen Anpresskräfte, die stellenweise bis an die Fließgrenze der Metallwalze gehen, kommt es zum Verschleiß der Walzen. Der Abrieb gelangt hierbei in das Produkt. Für Anwendungen in der Photovoltaik, Halbleiterindustrie, Pharmazie und chemischen Industrie ist dieser Metallabrieb ungünstig bis schädlich, da mitunter schon metallische Verunreinigungen im ppm- bzw. ppb-Bereich zu fehlerhaften Produk- ten führen.
Der Erfindung liegt die Aufgabe zu Grunde, eine Verdichtungs-Vorrich- tung zum metallarmen bzw. metallfreien Verdichten eines Pulvers zu schaffen.
Die Aufgabe wird gelöst durch die Merkmale des Anspruches 1. Der Kern der Erfindung besteht darin, in einer Verdichtungs-Vorrichtung Verdichtungs-Walzen vorzusehen, die zumindest auf ihrem Mantel aus Keramik besteht. Dadurch wird verhindert, dass ein metallischer Abrieb beim Ver- dichten entsteht.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unter ansprüchen . Fig. 1 einen Schnitt einer Anlage zur Herstellung von Silizium mit einer Verdichtungs-Vorrichtung gemäß einem ersten Ausführungsbeispiel,
Fig. 2 eine Vergrößerung einer Verdichtungs- Walze der Verdichtungs- Vorrichtung gemäß Fig. 1 und
Fig. 3 eine Vergrößerung einer Verdichtungs-Walze gemäß einem zweiten Ausführungsbeispiel.
Im Folgenden wird zunächst unter Bezugnahme auf die Fig. 1 und 2 der Aufbau einer Anlage 1 zur Herstellung von Siliziumpulver gemäß einem ersten Ausführungsbeispiel beschrieben. Die Anlage 1 weist beginnend von oben einen rohrförmigen, vertikal verlaufenden Reaktor 2 auf, der eine zylindrische Reaktionskammer 3 umschließt. Am oberen Ende des Reaktors 2 ist eine Gas-Zuführ-Leitung 4 angeordnet, die in die Reaktionskammer 3 mündet. Die Leitung 4 ist so gestaltet, dass in der Mitte ein Nutzgasstrom, beispielsweise aus Monosilan, eingebracht werden kann. Der Nutzgasstrom ist von einem Ringstrom eines Hilfsgases umgeben. Ungefähr die obere Hälfte des Reaktors 2 ist von einer ringzylindrischen Heizung 5 umgeben, die den Reaktor 2 derart umgibt, dass die Wand der Kammer 3 auf Temperaturen von über 800° C erwärmt werden kann. Die untere Hälfte des Reaktors 2 ist von einer ringzylindrischen Kühl-Einrichtung 6 umgeben, die unmittelbar an den Reaktor 2 angrenzt. Unterhalb des Reaktors 2 und mit diesem verbunden befindet sich eine Entgasungs-Einrichtung 31 und eine elektrisch betätigbare Schleuse 7, die über eine Verbindungsleitung 8 mit einer Steuer-Einrichtung 9 verbunden ist. Die Entgasungs- Einrichtung 31 besteht aus einem schräg nach oben verlaufenden, mit der Kammer 3 verbundenen Gehäuse 32, das am unteren Ende des Reaktors 2 angesetzt ist. Am oberen Ende des Gehäuses 32 ist ein ringzylindrischer und unten verschlossener Sinterwerkstofffilter 33 angebracht, durch den überschüssiger Wasserstoff durch eine im oberen Ende des Gehäuses 32 angesetzte Öffnung 34 entweichen kann. Unterhalb der Schleuse 7 befindet sich ein Walzenentlüfter 35 bekannter Bauart und anschließend eine Verdichtungs-Vorrichtung 10, deren Aufbau nachfolgend näher beschrieben wird. Die Verdichtungs- orrichtung 10 ist über die Schleuse 7 mit der Reaktionskammer 3 verbunden. Unterhalb der Vorrichtung 10 befindet sich ein mit dieser verbundener Aufbewahrungs-Behälter 11.
Der Walzenentlüfter 35 weist ein quaderförmiges Gehäuse 36 auf, in dem zwei über einen Motor 37 angetriebene Entlüftungswalzen 38, 39 angeordnet sind. Die Walzen 38, 39 sind um zugeordnete, parallel zueinander verlaufende Drehachsen 40, 41 drehbar gelagert. Die Walzen 38, 39 sind ge- genläufig angetrieben, sodass sich im Bereich des von den Walzen 38, 39 begrenzten Spaltes 42 beide nach unten bewegen. Die Walze 38 ist hohl und besitzt einen porösen Mantel. Auf ihrer Mantelfläche ist eine gasdurchlässige Kunststofffolie aufgebracht. Innerhalb der Walze 38 befindet sich Unterdruck. Auf diese Weise wird das im Siliziumpulver 43 verbleibende Gas abgezogen. Die Oberfläche der Walze 39 ist glatt. Beide Walzen 38, 39 weisen vorzugsweise eine nicht-metallische Oberfläche auf.
Die Verdichtungs- Vorrichtung 10 weist ein Gehäuse 12 auf, das einen im Wesentlichen kubischen Arbeitsraum 13 umschließt. Das Gehäuse 12 weist eine der Schleuse 7 zugewandte und mit dieser verbundene Zufuhr- Öffnung 14 sowie eine am unteren Rand des Gehäuses 12 vorgesehene, mit dem Behälter 11 verbundene Abfuhr-Öffnung 15 auf. In dem Gehäuse 12 befinden sich mittig zwischen den Öffnungen 14 und 15 zwei um jeweilige Drehachsen 16, 17 drehantreibbare Verdichtungs-Walzen 18, 19, die derart benachbart zueinander angeordnet sind, dass zwischen ihnen ein Verdichtungs-Spalt 20 gebildet ist. Die Drehachsen 16 und 17 verlaufen parallel zueinander. Der Verdichtungs-Spalt 20 weist eine Breite Bs auf. Die Verdichtungs-Walzen 18, 19 sind über einen Motor 21 drehantreibbar, der über eine Verbindungsleitung 22 mit der Steuer-Einrichtung 9 verbunden ist. Der rohrförmige Reaktor 2 weist eine vertikal verlaufende Mittel-Längs- Achse 23 auf, die mittig durch den Spalt 20 verläuft. Die Walzen 18, 19 sind gegenläufig angetrieben, d. h. die Walze 18 dreht sich im Uhrzeigersinn, die Walze 19 entgegen dem Uhrzeigersinn. Hierdurch bewegen sich die Oberflächen der Walzen 18, 19 im Bereich des Spaltes 20 gemeinsam nach unten.
Die Walzen 18, 19 weisen einen aus Stahl bestehenden Walzenkern 24 auf, der kreiszylindrisch geformt ist. Auf dem Walzenkern 24 befindet sich ein im Querschnitt ringförmiger Walzenmantel 25, der den Walzenkern 24 um- fangsseitig vollständig umgibt. Der Walzenmantel 25 ist einteilig ausgebildet und besteht aus einem Nicht-Metall-Material, das heißt einem nichtmetallischen Material. Insbesondere handelt es sich hierbei um Glas-, Graphit- oder Keramik-Materialien. Besonders bevorzugt ist Keramik. Die verwendete Keramik besteht insbesondere in wesentlichen Teilen aus Siliziumnitrid. Der Walzenmantel 25 ist auf dem Walzenkern 24 in axialer und tangentialer Richtung festgelegt, beispielsweise durch Kleben oder Nut- Feder- Verbindungen. Der Walzenmantel 25 hat die Form eines Kreisringzylinders. Es ist möglich, die gesamte Walze 18 bzw. 19 aus einem kerami- sehen Werkstoff auszubilden. In diesem Fall fällt die Trennung zwischen einem Walzenkern 24 aus Stahl und einem Walzenmantel 25 aus Keramik weg. Die Ausführungsform gemäß Fig. 2 ist vor allem hinsichtlich der Aufbringung von Drehmomenten auf die Oberfläche 26 des Mantels 25 stabiler und vorteilhafter. In Fig. 3 ist ein zweites Ausführungsbeispiel dargestellt. Identische Teile erhalten dieselben Bezugszeichen wie bei dem Ausführungsbeispiel gemäß Fig. 2. Konstruktiv unterschiedliche, jedoch funktioneil gleichartige Teile erhalten dieselben Bezugszeichen mit einem nachgestellten a. Der wesentliche Unterschied gegenüber dem Ausführungsbeispiel gemäß Fig. 2 besteht darin, dass der Walzenmantel 25a nicht einteilig ausgebildet ist, sondern aus zwei Halbschalen 27, 28 besteht, die den Walzenkern 24 vollständig und lückenlos umschließen. Insbesondere sind die Spalte 29 zwischen den Halbschalen 27 und 28 vollständig und lückenlos geschlossen, sodass Material, das auf die Oberfläche 26 gelangt, nicht mit dem Walzenkern 24 in Verbindung kommt. Die Halbschalen 27, 28 wurden nach der keramischen Fertigung einer exakten mechanischen Bearbeitung unterzogen. Als Teil der mechanischen Bearbeitung wurde die Oberfläche der Halbschalen 27, 28 profiliert. Die Oberfläche der Halbschalen 27, 28 kann auch so gestaltet sein, dass das verdichtete Silizium die Form von Stäbchen, Kissen, Mandeln etc. besitzt. Trotz der hohen auftretenden spezifischen Anpresskräfte hielt die Werkstoffkombination aus Keramik und Metall der Bearbeitung stand. Es ist auch möglich, auf dem Umfang Teilschalen mit einem Zentrums inkel von < 180° zu verwenden. Insbesondere können auf dem Umfang drei Teilschalen mit einem Zentrums winkel von 120° oder vier Teiischalen mit einem Zentrumswinkel von 90° vorgesehen sein. Es sind auch andere Aufteilungen möglich.
Im Folgenden wird das Verfahren zur Herstellung von Silizium zunächst an Hand eines Beispiels beschrieben. Ein Gasgemisch aus Monosilan und Wasserstoff im Volumen- bzw. Mol- Verhältnis 1 : 3 wurde in dem Reaktor 2 mit einer Wandtemperatur der Wand 30 von > 800° C und einer Produktionsrate von 200 g Silizium pro Stunde zu Siliziumpulver und Wasserstoff umgesetzt. Die Zugabe erfolgte derart, dass das Monosilan mittig von oben in die Reaktionskammer 3 eingebracht wurde. Der Wasserstoff umgab das Monosilan in Form eines Ringstromes, um zu verhindern, dass sich das Silizium direkt an den Wänden der Reaktionskammer 3 abscheidet. Das Siliziumpulver 43 wurde im Anschluss an die Zersetzung mittels der an der Schleuse 7 angeordneten Entgasungs-Einrichtung 31 teilweise entgast. Das erhaltene Pulver besaß eine Schüttdichte von ca. 50 g/l. In der Reaktionskammer 3 wurde mit einem Überdruck von 200 bar gegenüber der Umgebung gearbeitet. Auf diese Weise erfolgte die Entgasung in der Entga- sungs-Einrichtung 31 gegenüber dem Umgebungsdruck automatisch. Bei dem Siliziumpulver wurde in zwei Schritten mittels des Walzenentlüfters 35 und der Verdichtungs- Vorrichtung 10 die Wasserstoff atmosphäre im Pulver gegen ein Inertgas, z. B. Argon oder Stickstoff, ausgetauscht. Das entlüftete und vorverdichtete Produkt mit einer Schüttdichte von ca. 200 g/dm3 wurde mittels der Verdichtungs- Vorrichtung 10 auf ein Schüttgewicht von 450 g/dm3 verdichtet. 6 kg dieses verdichteten Siliziumpulvers wurden in eine Induktionsschmelzanlage IS30 der Firma Leybold gegeben. Anschließend wurde die Anlage evakuiert. Es wurde eine Argon- Atmosphäre mit einem Druck zwischen 1 und 100 mbar erzeugt. Das Sili- ziumpulver wurde auf eine Schmelztemperatur von 1415° C aufgeheizt. Anschließend fand ein rückstandsfreies Aufschmelzen des Siliziumpulvers bei 1450° C in 30 Minuten bei einer Schmelzleistung von 70 kW statt. Danach wurde die Siliziumschmelze abgegossen und eine gerichtete Erstarrung des Siliziums bewirkt. Der erstarrte polykristalline Siliziumblock zeigte eine homogene polykristalline Struktur des Siliziums, und keine Rückstände an Siliziumpulver oder siliziumhaltiger Schlacke. AHgemein gilt für das erfindungsgemäße Verfahren Folgendes: In dem Reaktor kann allgemein ein Silizium enthaltendes Gas zersetzt werden. Beispiele hierfür sind Trichlorsilan oder Monosilan. Es können auch andere Silizium enthaltende Gase verwendet werden. Das Silizium enthaltende Gas wird in den rohrf örmigen Reaktor 2 mittig eingebracht und ist hierbei von einem Ringstrom eines Hilfsgases umgeben, damit sich das Silizium enthaltende Gas nicht an den Reaktorwänden direkt abscheidet. Bei dem Hilfsgas kann es sich allgemein um ein inertes Gas handeln. Besonders vorteilhaft ist Wasserstoff, da dieser auch bei der Zersetzung beispielswei- se von Monosilan entsteht. Es können jedoch auch Edelgase wie Argon sowie andere Gase, wie z. B. Stickstoff oder Kohlendioxid verwendet werden. Das Gemischverhältnis, d. h. Volumen- bzw. Molverhältnis, von Monosilan zu Wasserstoff kann zwischen 1 : 0 und 1 : 100 liegen. Der spezifische Energiebedarf je 1 kg festem Silizium für die Verfahrensschritte der thermischen Zersetzung und mechanischen Verdichtung lag bei weniger als 20 kWh. Die Raum-Zeit- Ausbeute je rohrförmigem Reaktor 2 lag bei mehr als 1 kg Siliziumpulver pro Stunde. Die Wandtemperatur des Reaktors 2 liegt bei mehr als 400° C, insbesondere mehr als 800° C. Die Verdichtung des Siliziumpulvers kann ein- oder zweistufig, vorteilhafterweise zweistu- fig, erfolgen. Die Anpresskräfte in der Verdichtungs- Vorrichtung 10 lagen zwischen 5 N/cm und 50 kN/cm.
Von zentraler Bedeutung ist, dass die Verdichtung des Siliziumpulvers in der Vorrichtung 10 metallfrei erfolgt und es somit zu keiner Metall- Verunreinigung des Siliziumpulvers kommt. Das Siliziumpulver kommt ausschließlich mit dem Walzenmantel 25 aus Keramik in Berührung, sodass dies sichergestellt ist. Das nach dem erfindungsgemäßen Verfahren hergestellte hochreine pulver- förmige Silizium besitzt trotz seines pulverförmigen Grundzustandes gute Handhabungseigenschaften und eignet sich zur Herstellung von reinen Siliziumschmelzen, aus welchen Siliziumblöcke oder Siliziumkristalle her- gestellt werden können. Es wurde gefunden, dass es bei der definierten Zusammensetzung des aus Wasserstoff und Monosilan bestehenden Pyrolysegases möglich ist, Silizium in Pulverform mit hohen Ausbeuten und sehr niedrigem Energieverbrauch herzustellen. Das Verfahren zeichnet sich besonders dadurch aus, dass das Siliziumpulver nach der Durchführung des Verfahrens separat gehandhabt, verpackt sowie versendet und somit mit zeitlicher Verzögerung für die Herstellung von Siliziumblσcken oder Siliziumkristallen eingesetzt werden kann. Das Silizium zeichnet sich durch ein gutes Einschmelzverhalten und eine hohe Reinheit trotz großer Oberfläche und einem ungünstigen, kleinen Volumen/Oberflächen- Verhältnis im Vergleich zu Prime Poly Silizium aus.
Das durch die thermische Zersetzung erzeugte Siliziumpulver besaß eine Schüttdichte von 10 bis 100 g/dm3. Das durch die Vorrichtung 10 end verdichtete Siliziumpulver besaß eine Schüttdichte von 100 bis 1500 g/dm3, insbesondere von 200 bis 1200 g/dm3, insbesondere von 250 bis
950 g/dm3, insbesondere ca. 450 g/dm3. Das Siliziumpulver enthielt in der Summe nicht mehr als 1019 Atome an Fremdelementen je 1 cm3 Silizium. Das Siliziumpulver bestand aus kristallinen Teilchen mit einer Primärteilchenkorngröße von 10 nm bis 10000 nm, vorzugsweise 50 nm bis 500 nm, typischerweise ca. 200 nm. Das verdichtete Siliziumpulver bestand aus Aggregaten mit einer Aggregatgröße von 500 nm bis 100000 nm, insbesondere 1000 nm bis 10000 nm, typischerweise ungefähr 4000 nm. Die verdichteten Siliziumstücke aus Siliziumaggregaten besaßen eine größte Ausdehnung von 1 bis 200 mm. Sie besaßen eine unregelmäßige Form, wobei es sich hierbei auch um Stäbchen handeln konnte. Das Siliziumpulver besaß eine Oberfläche von 1 bis 50 m2/g. Das verdichtete Siliziumpulver besaß in der Summe nicht mehr als 1017 Atome an Übergangsmetallen je 1 cm3 Silizium. Das erfindungsgemäße Siliziumpulver hat eine braune Farbe, wohingegen nach herkömmlichen Verfahren hergestellte Silizium- Granalien grau sind. Das verdichtete Siliziumpulver kann zur Herstellung von polykristallinen Siliziumblöcken für die Photovoltaik oder zur Herstellung von Siliziumeinkristallen verwendet werden. Aus dem erfindungsgemäßen Silizium können Siliziumwafer hergestellt werden. Der Metallge- halt des kompaktierten Siliziumpulvers entsprach dem des Ausgangspro- dukts. Es konnten keine Verunreinigungen festgestellt werden. Das Silizium enthielt auf Grund des Herstellungsverfahrens keine Siliziumoxidverbindungen auf der Oberfläche der Siliziumteilchen, die die Schmelztemperatur des Siliziumpulvers wesentlich erhöht hätten.

Claims

Patentansprüche
1. Verdichtungs-Vorrichtung zum metallarmen Verdichten eines Pulvers a. mit einem, einen Arbeitsraum (13) zumindest teilweise umschlie- ßenden Gehäuse (12), b. mit einer am Gehäuse (12) angeordneten Zufuhr-Einrichtung (14) zum Zuführen eines zu verdichtenden Pulvers in den Arbeitsraum (13), c. mit mindestens einer, in dem Arbeitsraum (13) drehantreibbar an- geordneten, einen Walzenmantel (25) aufweisenden Verdichtungs- Walze (18, 19), die zusammen mit einer Gegenwand einen Verdichtungs-Spalt (20) zur Verdichtung des Pulvers in diesem bildet, dadurch gekennzeichnet, dass d. die mindestens eine Verdichtungs-Walze (18, 19) zumindest auf dem Walzenmantel (25; 25a) aus einem Nicht-Metall-Material besteht.
2. Verdichtungs-Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass die Gegenwand durch eine zweite Verdichtungs-Walze ge- bildet ist.
3. Verdichtungs- Vorrichtung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine um eine erste Drehachse (16) drehbar gelagerte Verdichtungs-Walze (18) sowie eine um eine zweite Drehachse (17) drehbar gelagerte zweite Verdichtungs-Walze (19) vorgesehen ist, wobei die beiden Drehachsen (16, 17) parallel zueinander verlaufen.
4. Verdichtungs- Vorrichtung gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens eine Verdichtungs-Walze (18, 19) einen Walzenkern (24) aufweist, der von einem Walzenmantel (25; 25a) umschlossen ist.
5. Verdichtungs- Vorrichtung gemäß Anspruch 4, dadurch gekennzeichnet, dass der Walzenmantel (25) im Wesentlichen kreisringzylinder- förmig ausgebildet ist.
6. Verdichtungs-Vorrichtung gemäß Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Walzenmantel (25) einteilig ausgebildet ist.
7. Verdichtungs- Vorrichtung gemäß einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass der Walzenmantel (25a) aus zwei Halb- schalen (27, 28) gebildet ist.
8. Verdichtungs-Vorrichtung gemäß einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass der Walzenmantel (25; 25a) mit dem Walzenkern (24) verklebt ist.
9. Verdichtungs- Vorrichtung gemäß einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, dass der Walzenkern (24) aus Metall, insbesondere aus Stahl, besteht.
10. Verdichtungs- Vorrichtung gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Nicht-Metall- Material um eine Keramik handelt.
1. Verwendung der Verdichtungs- Vorrichtung gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem zu verdichtenden Pulver um Siliziumpulver handelt.
PCT/EP2005/005019 2004-06-04 2005-05-10 Verdichtungs-vorrichtung WO2005118272A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007513735A JP2008501528A (ja) 2004-06-04 2005-05-10 圧縮装置
EP05750911A EP1750931B8 (de) 2004-06-04 2005-05-10 Verdichtungs-vorrichtung und verwendung einer solchen vorrichtung
CN2005800179025A CN1960852B (zh) 2004-06-04 2005-05-10 压实装置及其用途
US11/569,783 US7584919B2 (en) 2004-06-04 2005-05-10 Compacting device
DE502005006878T DE502005006878D1 (de) 2004-06-04 2005-05-10 Verdichtungs-vorrichtung und verwendung einer solchen vorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004027564.5 2004-06-04
DE102004027564A DE102004027564A1 (de) 2004-06-04 2004-06-04 Verdichtungs-Vorrichtung

Publications (1)

Publication Number Publication Date
WO2005118272A1 true WO2005118272A1 (de) 2005-12-15

Family

ID=34970196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/005019 WO2005118272A1 (de) 2004-06-04 2005-05-10 Verdichtungs-vorrichtung

Country Status (8)

Country Link
US (1) US7584919B2 (de)
EP (1) EP1750931B8 (de)
JP (1) JP2008501528A (de)
CN (1) CN1960852B (de)
AT (1) ATE425868T1 (de)
DE (2) DE102004027564A1 (de)
ES (1) ES2321016T3 (de)
WO (1) WO2005118272A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2014617A2 (de) 2007-06-15 2009-01-14 General Electric Company Verfahren zur Schmelzung von Siliziumpulvern
EP2052848A1 (de) 2007-10-27 2009-04-29 Joint Solar Silicon GmbH & Co. KG Aufbereitung von Formlingen aus Reinstsilizium
DE102008044689A1 (de) * 2008-07-01 2010-01-21 Sunicon Ag Silizium-Kompaktat
CN105142892A (zh) * 2013-04-17 2015-12-09 魁伯恩机械制造有限责任两合公司 压辊
CN117753309A (zh) * 2024-02-21 2024-03-26 洛阳可利威化工有限公司 一种辊压式造粒机

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004027563A1 (de) * 2004-06-04 2005-12-22 Joint Solar Silicon Gmbh & Co. Kg Silizium sowie Verfahren zu dessen Herstellung
ATE489333T1 (de) 2005-03-05 2010-12-15 Jssi Gmbh Reaktor und verfahren zur herstellung von silizium
DE102005046105B3 (de) * 2005-09-27 2007-04-26 Degussa Gmbh Verfahren zur Herstellung von Monosilan
ES2346269T3 (es) * 2008-02-05 2010-10-13 Texmag Gmbh Vertriebsgesellschaft Cilindro para ejercer una presion de contacto sobre bandas de material.
US20100243963A1 (en) * 2009-03-31 2010-09-30 Integrated Photovoltaics, Incorporated Doping and milling of granular silicon
US8739962B2 (en) * 2009-12-15 2014-06-03 Exxonmobil Research And Engineering Company Active solids supply system and method for supplying solids
CN102049876A (zh) * 2011-02-01 2011-05-11 季陵 一种松散物料压块机
US10105669B2 (en) 2012-08-29 2018-10-23 Hemlock Semiconductor Operations Llc Tapered fluidized bed reactor and process for its use
CN103625703B (zh) * 2013-11-28 2015-07-15 泗阳瑞泰光伏材料有限公司 一种缩小粉末硅原料体积的方法
CN104385656B (zh) * 2014-11-10 2016-01-20 浙江中技桩业有限公司 一种新型物料挤压装置
JP6886734B1 (ja) * 2020-02-20 2021-06-16 株式会社不二製作所 弾性研磨材の製造方法,弾性研磨材の製造装置,ブラスト加工方法,及びブラスト加工装置
CN113368942A (zh) * 2021-07-21 2021-09-10 南京凯盛国际工程有限公司 一种带预压功能的辊压机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE539923C (de) * 1931-12-03 Fried Krupp Grusonwerk Akt Ges Walzenpresse zum Herstellen von Formlingen
US3867490A (en) * 1972-04-18 1975-02-18 Boliden Ab Method of agglomerating particulate material
JPS5767019A (en) * 1980-10-13 1982-04-23 Shin Etsu Handotai Co Ltd Manufacture of pure silicon granule for manufacturing polycrystalline silicon by fluidized bed method
JPS58145611A (ja) * 1982-02-23 1983-08-30 Shin Etsu Chem Co Ltd シリコン粒子の粉砕、篩別方法
US4807819A (en) * 1984-08-30 1989-02-28 Degussa Aktiengesellschaft Process and apparatus for granulating powdery materials
US4941251A (en) * 1983-04-22 1990-07-17 Hitachi, Ltd. Rollers for rolling mills
DE4344206A1 (de) * 1993-12-23 1995-06-29 Kloeckner Humboldt Deutz Ag Zweiwalzenmaschine für die Druckbehandlung von Schüttgütern
EP1074362A2 (de) * 1999-08-04 2001-02-07 L.B. Officine Meccaniche S.p.A. Walzwerk zur Herstellung von Granulaten

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622091A (en) * 1969-06-18 1971-11-23 Howard Bidwell Dry fluffing pulp sheet stock
JPS592425A (ja) * 1982-06-28 1984-01-09 Fujitsu Ltd パルス成形ライン
DD233798B1 (de) * 1984-12-04 1988-04-13 Piesteritz Agrochemie Verfahren zur kontinuierlichen strukturschonenden verdichtung von acetylenruss oder sich aehnlich verhaltenden stoffen
DE8435987U1 (de) * 1984-12-08 1987-05-07 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Vorrichtung zum Vergleichmäßigen der Teilchengröße feinteiligen Pulvers
DE3915508A1 (de) * 1989-05-12 1990-11-15 Feldmuehle Ag Walze zur druckbehandlung von warenbahnen
DE4121797A1 (de) * 1991-07-02 1993-01-07 Zementanlagen Und Maschinenbau Verfahren und vorrichtung zum zerkleinern von heissen, koernigen schuettguetern
CA2089230A1 (en) * 1992-03-09 1993-09-10 Ralph Herman Pelto Process and apparatus for compacting silver nitrate
KR940006017B1 (ko) * 1992-03-19 1994-07-02 재단법인 한국화학연구소 실리콘 입자의 제트분쇄방법
JP3246951B2 (ja) * 1992-07-28 2002-01-15 電気化学工業株式会社 窒化珪素粉末の製造方法
JP3425950B2 (ja) * 1992-11-09 2003-07-14 アメリカン ローラ カンパニー,エルエルシー 混合セラミック層を有する電荷ドナーローラ
CN2231144Y (zh) * 1995-08-31 1996-07-17 于超 复合陶瓷辊环
JP2989812B1 (ja) * 1998-08-25 1999-12-13 東芝エンジニアリング株式会社 粉末圧延装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE539923C (de) * 1931-12-03 Fried Krupp Grusonwerk Akt Ges Walzenpresse zum Herstellen von Formlingen
US3867490A (en) * 1972-04-18 1975-02-18 Boliden Ab Method of agglomerating particulate material
JPS5767019A (en) * 1980-10-13 1982-04-23 Shin Etsu Handotai Co Ltd Manufacture of pure silicon granule for manufacturing polycrystalline silicon by fluidized bed method
JPS58145611A (ja) * 1982-02-23 1983-08-30 Shin Etsu Chem Co Ltd シリコン粒子の粉砕、篩別方法
US4941251A (en) * 1983-04-22 1990-07-17 Hitachi, Ltd. Rollers for rolling mills
US4807819A (en) * 1984-08-30 1989-02-28 Degussa Aktiengesellschaft Process and apparatus for granulating powdery materials
DE4344206A1 (de) * 1993-12-23 1995-06-29 Kloeckner Humboldt Deutz Ag Zweiwalzenmaschine für die Druckbehandlung von Schüttgütern
EP1074362A2 (de) * 1999-08-04 2001-02-07 L.B. Officine Meccaniche S.p.A. Walzwerk zur Herstellung von Granulaten

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 006, no. 143 (C - 117) 3 August 1982 (1982-08-03) *
PATENT ABSTRACTS OF JAPAN vol. 007, no. 263 (C - 196) 24 November 1983 (1983-11-24) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2014617A2 (de) 2007-06-15 2009-01-14 General Electric Company Verfahren zur Schmelzung von Siliziumpulvern
EP2052848A1 (de) 2007-10-27 2009-04-29 Joint Solar Silicon GmbH & Co. KG Aufbereitung von Formlingen aus Reinstsilizium
WO2009053084A1 (de) * 2007-10-27 2009-04-30 Jssi Gmbh Aufbereitung von formlingen aus reinstsilizium
DE102008044689A1 (de) * 2008-07-01 2010-01-21 Sunicon Ag Silizium-Kompaktat
DE202008017603U1 (de) 2008-07-01 2010-03-11 Sunicon Ag Silizium-Kompaktat
DE102008064660B4 (de) * 2008-07-01 2011-01-13 Sunicon Ag Silizium-Kompaktat
CN105142892A (zh) * 2013-04-17 2015-12-09 魁伯恩机械制造有限责任两合公司 压辊
CN117753309A (zh) * 2024-02-21 2024-03-26 洛阳可利威化工有限公司 一种辊压式造粒机
CN117753309B (zh) * 2024-02-21 2024-04-26 洛阳可利威化工有限公司 一种辊压式造粒机

Also Published As

Publication number Publication date
ES2321016T3 (es) 2009-06-01
EP1750931A1 (de) 2007-02-14
CN1960852A (zh) 2007-05-09
EP1750931B8 (de) 2009-07-08
ATE425868T1 (de) 2009-04-15
US20070248438A1 (en) 2007-10-25
EP1750931B1 (de) 2009-03-18
US7584919B2 (en) 2009-09-08
CN1960852B (zh) 2010-06-23
DE502005006878D1 (de) 2009-04-30
DE102004027564A1 (de) 2005-12-22
JP2008501528A (ja) 2008-01-24

Similar Documents

Publication Publication Date Title
EP1750931B1 (de) Verdichtungs-vorrichtung und verwendung einer solchen vorrichtung
EP1758819B1 (de) Silizium sowie verfahren zu dessen herstellung
DE102010008162B4 (de) Verfahren für die Herstellung von Quarzglas für einen Quarzglastiegel
EP0084369B1 (de) Dichte Formkörper aus polykristallinem, hexagonalem Bornitrid und Verfahren zu ihrer Herstellung durch isostatisches Heisspressen
DE2027016A1 (de) Verfahren zum Verdichten von Metall oder Keramikgegenstanden
DE4019441A1 (de) Verfahren zum herstellen von presskoerpern
DE3241979C2 (de) Verfahren zur Herstellung von kubischem Bornitrid unter Verwendung einer Verbindung vom Bornitridtyp als Katalysator
EP0956173A1 (de) Metallpulver-granulat, verfahren zu seiner herstellung sowie dessen verwendung
DE3205877A1 (de) Sinterkoerper aus hochdichtem borcarbid und verfahren zu deren herstellung
DE2548740C2 (de) Verfahren zur Herstellung von Körpern aus Siliziumnitrid
DE2147708C2 (de) Verfahren zur Herstellung keramischer Strukturen von Urandioxid aus gasförmigen Uranhexefluorid
DE2802425B2 (de) Verfahren zur Herstellung von Titankarbid
DE2700208A1 (de) Polykristalliner siliziumnitrid- koerper und verfahren zu dessen herstellung
EP2072467A2 (de) Verfahren und Vorrichtung zur Herstellung von Quecksilbersulfid zur anschließenden Entsorgung
EP0482808B1 (de) Verfahren zum Herstellen von Chrom hoher Reinheit
DE10291914B3 (de) Vorrichtung, um eine Seltenerdmetall-Legierung einem Hydrierungsverfahren zu unterziehen
EP0756911A2 (de) Verfahren und Vorrichtung zum Herstellen von Partikeln aus gerichtet erstarrten Gusskörpern
EP1409408B1 (de) Methode zur herstellung von magnesiumdiborid sowie von magnesiumdiborid-formkörpern aus magnesiumhydrid und elementarem bor mittels puls-plasma-synthese
DE1296954B (de) Verfahren zur Herstellung eines sproeden, anorganischen, kristallinen Pulvers
EP0693456B1 (de) Verfahren zur Herstellung von spärischen Nitrid- und/oder Carbonidpulvern des Titans
DE2818418A1 (de) Verfahren zur herstellung von gegenstaenden aus feuerfesten pulverfoermigen diboriden
DE102007061791A1 (de) Verfahren und Vorrichtung zur Herstellung von Quecksilbersulfid zur anschließenden Entsorgung
DE1533319B1 (de) Verfahren zur pulvermetallurgischen Herstellung poroeser Zinkkoerper aus oberflaechlich oxydierten Zinkteilchen
DE2228714C2 (de)
EP0425668A1 (de) Verfahren zur Herstellung eines hochschmelzenden pulverförmigen Werkstoffes und Reaktor für dessen Durchführung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005750911

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11569783

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580017902.5

Country of ref document: CN

Ref document number: 2007513735

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005750911

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11569783

Country of ref document: US