WO2005115936A2 - NANOGLASPULVER UND DEREN VERWENGUNG, INSBESONDERE MULTIKOMPONENTEN-GLASPULVER MIT EINER MITTLEREN PARTIKELGRÖSSE KLEINER 1 µm - Google Patents

NANOGLASPULVER UND DEREN VERWENGUNG, INSBESONDERE MULTIKOMPONENTEN-GLASPULVER MIT EINER MITTLEREN PARTIKELGRÖSSE KLEINER 1 µm Download PDF

Info

Publication number
WO2005115936A2
WO2005115936A2 PCT/EP2005/005633 EP2005005633W WO2005115936A2 WO 2005115936 A2 WO2005115936 A2 WO 2005115936A2 EP 2005005633 W EP2005005633 W EP 2005005633W WO 2005115936 A2 WO2005115936 A2 WO 2005115936A2
Authority
WO
WIPO (PCT)
Prior art keywords
glass
ceramic powder
glass ceramic
powder according
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2005/005633
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2005115936A3 (de
Inventor
José ZIMMER
Johann Daimer
Matthias Rindt
Susanne Kessler
Jörn BESINGER
Karine Seneschal-Merz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Priority to US11/597,959 priority Critical patent/US7816292B2/en
Priority to JP2007513794A priority patent/JP2008500935A/ja
Priority to EP05744811A priority patent/EP1751071A2/de
Publication of WO2005115936A2 publication Critical patent/WO2005115936A2/de
Publication of WO2005115936A3 publication Critical patent/WO2005115936A3/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/102Forming solid beads by blowing a gas onto a stream of molten glass or onto particulate materials, e.g. pulverising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing

Definitions

  • the invention relates to multi-component glasses with at least three (3) elements with an average particle size of less than 1 ⁇ m, preferably less than 0.1 ⁇ m, particularly preferably less than 10 nm. Glasses with such an average particle size are also referred to as nanopowders.
  • the application also includes processes for producing such glasses and their use.
  • Inorganic nanopowders are for non-crystalline compositions for Si0 2 and for crystalline compositions such as. B. Ti0 2 or ZnO known. Regarding SiO 2 nanopowder, reference is made to Degussa's Aerosil® product.
  • CeO nanoparticles for polishing suspensions are e.g. B. from Nanophase (USA) and Zr0 2 nanoparticles or Al 2 0 3 nanoparticles from Nanogate (Germany).
  • Metallic nanoparticles are e.g. B. known for silver and silver alloy. Such nanoparticles are used, for example, as antimicrobial agents, for. B. for polymers.
  • Powders made of metallic nanoparticles can also be used for bonding in the field of electronics. According to HD Junge, A. Möschwitz, "Elektronik”, VCH-Verlag 1993, p. 89, bonding is a welding process for contacting electronic elements, for example on an integrated circuit. The use of metallic nanopowders greatly reduces the bonding temperatures.
  • hydroxyapatite nanoparticles have also become known, for example from BASF (Germany), which are used in the field of oral care, dental hygiene, ie in the field of oral care applications.
  • Glasses with antimicrobial activity have become known from the following patent applications WO03 / 018495, WO03 / 18498, WO03 / 18499, WO03 / 050052, WO03 / 062163, WO03 / 018496.
  • the glass powders described in these documents were obtained in the form of grinding, for example in aqueous media. By grinding as described in the above documents, glass powders with an average particle size corresponding to that of nanoparticles cannot be obtained.
  • Glasses which are used in the dental field, so-called dental glasses have become known from DE 4323143, US 5,641,347, DE 4443173 and EP 0997132.
  • nanoparticles known from the prior art are used in a large number of fields.
  • the use of nanoparticles in cosmetic sun protection formulations is described in US20040067208
  • US20040042953 describes the use of nanoparticles in toilet powders, the mean particle size fluctuating between 10 and 20 nm. These nanoparticles are manufactured using gas phase reactions.
  • nanoparticles for the detection of nucleic acid is known from US20030148282.
  • US20030064532 describes the use of semiconductor nanoparticles in the field of luminance and optical data storage.
  • silver or silver alloy nanopowder is produced using PVD processes.
  • US Pat. No. 4,642,207 has disclosed a PVD plasma arc process for producing nanoparticles via evaporation and condensation.
  • a method for producing nanocrystalline material has also become known from US 5874684. Binary oxides are used as raw materials for this. Different atmospheres can be used to produce different substances.
  • the object of the invention is to provide a multi-component glass powder which is distinguished by the fact that it can be used in a large number of fields and has an improved activity compared to conventional glass powders.
  • the object is achieved by a glass powder which has multi-component glasses with at least 3 elements, the mean particle size of the
  • the glass contains more than 4, more preferably more than 5, most preferably from 'more than 6 elements.
  • the component of an oxidic glass is understood to be the oxidic component, for example SiO 2 or B 2 O 3 .
  • the element in a glass composition is understood to mean the individual element, that is to say Si or B or O.
  • a multi-component glass is therefore a glass which, for example, comprises SiO 2 and B 2 0 3 as components.
  • a glass, which comprises Si0 2 and B 2 O 3 as components, has a total of three elements. So it would be in Language usage of this application is a 2-component glass with 3 elements.
  • the glass powders with a particle size of less than 1 ⁇ m, which are also referred to as nanoglasses comprise SiO 2 and / or B 2 O 3 and / or P 2 O 5 as network formers.
  • the proportion of the network former or the sum of the network former, if the multicomponent glass comprises more than one network former, is preferably between 30-95% by weight, preferably between 30 and 80% by weight, in particular between 40 and 75% by weight, most preferably between 50 and 70% by weight.
  • the glasses can be divided into the group of silicate, borate or phosphate glasses.
  • Alkali ions e.g. B. Na, K, Li, Cs, can be used in the glass composition
  • the total concentration of the alkalis is between 0 and 50% by weight, preferably between 0 and 30% by weight.
  • the alkalis can also be used to adjust the reactivity of the glass, since the alkali can deliberately interrupt the glass network.
  • biocides such as e.g. B. Zn or Ag are more easily released.
  • the alkaline earth metal ions such as. B. Mg, Ca, Sr, Ba, in total between 0 and 50 wt .-%.
  • the alkaline earth ions also act as network converters and serve to adjust the reactivity of the glass.
  • the Ca plays a special role. In the case of special bioactive glasses, the presence of Ca allows a mineral layer to be formed on the particle surface in aqueous media, the so-called hydroxyapatite layer.
  • the multi-component glasses can further comprise aluminum oxide. Aluminum oxide significantly influences the chemical stability and the crystallization stability of the glasses.
  • the Al 2 0 3 concentration is preferably between 0% by weight and 25% by weight.
  • the glass can include zinc oxide as an essential glass component.
  • the Zn ions of the glass can be released and lead to an antimicrobial effect, which is further supported by alkali or alkaline earth ions.
  • the ZnO concentration is usually in the
  • the multi-component glasses can also comprise titanium oxide and / or zirconium oxide. With the help of these additives, the refractive index of the glass powder can be adjusted. In particular, the addition of TiO 2 can also be used for UV blocking.
  • nanopowders are glass ceramic nanopowders
  • additions of Ti0 2 or Zr0 2 can serve as nucleating agents.
  • the chemical resistance of the nanopowders can be adjusted using Ti0 2 or Zr0 2 .
  • the hydrolytic resistance can be improved in particular by the addition of Zr0 2 , which is particularly important in the case of hygroscopic nanopowders.
  • TiO 2 and ZrO 2 can also be used to adjust the modulus of elasticity.
  • the concentration of TiO 2 is preferably between 0 and 25% by weight and the concentration of ZrO 2 is between 0% and 30% by weight.
  • the nanoglass powder can include tantalum and / or tungsten oxide.
  • the concentration is from Ag2Ü, CuO, ZnO, I less than 15% by weight, preferably less than 10; more preferably less than 5% by weight.
  • Precious metals such as Au, Pt can also be present in metallic or oxidic form up to less than 10% by weight, preferably less than 5% by weight, most preferably less than 2% by weight.
  • Coloring ions such as B. Cr, Mn, Ni, V, Ce, Fe, V, Co can be present in total (oxide) up to 10% by weight.
  • Rare earth ions such as B. Eu, Ce, Sm, Nd, Er, Sm, Yb, can be introduced as doping in conventional concentrations.
  • Fluorine can be contained in the glasses as a melting aid.
  • Oxides of the elements Nb, La, Pb and Bi serve primarily to adjust the refractive index or dispersion.
  • Refining agents such as. B. SnO, As 2 0 3 , Sb 2 0 3 , can be contained in the usual concentrations in the nanoglass powders, with the exception of the nanoglass, which are used in dental, medical and cosmetic applications.
  • the aforementioned metals Au, Ag, Pt, Cu can be present in the glass matrix not only in oxidic but also in metallic form.
  • Radioactive elements can also be added.
  • nitrides or oxide nitrides can also be used as starting materials and corresponding nitride or oxynitride nanoglasses can be obtained in this way.
  • the advantage of nitride or oxynitride nanoglass is the better mechanical properties than with oxide glasses.
  • the nanopowders according to the invention have average grain sizes of less than 1 ⁇ m, preferably less than 200 nm, particularly preferably less than 100 nm, more preferably less than 50 nm, most preferably less than 20 nm. In a particular embodiment, grain sizes less than 5 nm are used. In special embodiments, the nanoparticles can be smaller than 2 nm.
  • the BET surface area of conventional inorganic fillers in dental materials is e.g. B. between 4 and 65 m 2 / g.
  • the BET Oberfumbleen the nanoparticles are larger than 50 m 2 / g, preferably greater than 100m 2 / g, more preferably greater than 500 m 2 / g, Trustzugtesten greater than 900 m 2 / g.
  • the surface properties play an increasingly important role compared to the bulk properties. Due to the high free surface area, surprisingly high reactivities, in particular a high ion release, for example in the case of glasses which are inert per se, such as antimicrobial silicate glasses, are particularly high. B. achieved in aqueous media or in organic compounds, high antimicrobial effect of the powder.
  • the particles can be used as powder and suspension.
  • Amorphous, phase-separated, crystallized glass or glass ceramic nanoparticles can be used. Different phases can be achieved in the primary manufacturing process or in post-processing.
  • organosilanes For use as a filler in the dental field, a modification of the surface with organosilanes is possible and advantageous, such as. B. methacryloxypropyl-tri-methoxy-silane.
  • the organosilanes used are particularly characterized by the fact that they can both bind to the glass surface and also bind to an organic resin via an organic functional side group. This facilitates the formulation in the organic resin matrix on the one hand and increases the mechanical stability on the other.
  • the most widespread for dental applications is 3-methacryloxypropyltrimethoxysilane, better known under the trade name MEMO from Degussa.
  • MEMO 3-methacryloxypropyltrimethoxysilane
  • Ions of the elements La, Ba, Sr, Y, Yb, Nb, Zr, Zn serve to adjust the x-ray visibility of dental glasses.
  • the nanopowders according to the invention comprising multicomponent glasses and glass ceramics can be used in the fields of cosmetics e.g. B. as a UV blocker for UV-A and / or UV-B, dental filler, oral care, optical polymers, sintered materials, antimicrobial applications, in the medical field as an active ingredient or active ingredient carrier, for water filtering, cleaning, treatment, as solder glasses; as pigments, for rapid prototyping, which describes the very rapid production of three-dimensional structures, in fuel cells, as abrasive materials, for catalysis, as UV protection, in polishing processes, in textile fibers, in thermoplastics, in paints and varnishes; in surface technology, as non-stick, anti-scratch, anti-reflective, anti-fog, easy to clean layer, for corrosion protection; in the field of ceramic technologies, as raw materials e.g.
  • polymers e.g. Duromers, plastomers, monomers
  • Electronics for example as glass solders for joining or as passivation glass for semiconductor components.
  • the nanoparticles are produced, for example, in a PVD process (Physical Vapor Deposition).
  • PVD process Physical Vapor Deposition
  • the evaporated substances are deposited on a cold surface, for example a substrate surface, and reorganize in the glassy state
  • the multicomponent glass or glass ceramic nanoparticles according to the invention are produced.As described above, in addition to nanoglasses, a nanoglass ceramic or a nanoglass, which comprises a segregated system, can also be produced in this way. The production of nanoparticles using the sol-gel method is also possible.
  • CVD processes can also be used.
  • CVD (Chemical Vapor Deposition) processes describe this chemical deposition from the gas phase.
  • VDI lexicon “Material Technology” VDI-Verlag 1993, pp.139 and pp.5-6, the disclosure content of which is included in full in the disclosure content of the present application.
  • Another method for producing nanoparticles is flame pyrolysis.
  • flame pyrolysis reactive gases are led into a flame.
  • the nanoparticles are synthesized in the flame and deposited in cold regions.
  • liquid raw materials can also be used in flame pyrolysis.
  • non-oxidic carrier gas is used in the processes described, in particular in the PVD process, nitride or oxynitride nanoglasses can be produced.
  • PVD processes are particularly suitable for producing the described nanoglasses or nano-glass ceramics.
  • the plasma processes in particular plasma processes combined with high-frequency evaporation or electron evaporation, are particularly suitable.
  • the plasma process is characterized by the fact that the raw material is evaporated in a plasma.
  • Metals or metal oxides are used as starting materials in the PVD processes known in the prior art.
  • multicomponent glasses as starting materials for the production of the multicomponent glasses according to the invention with particle sizes smaller than 1 ⁇ m.
  • different multi-component glasses can be mixed in different weight fractions and particle size distributions.
  • suitable element combinations can already be put together in one raw material.
  • the PVD process local heating of the multicomponent glass as the raw material selectively evaporates this raw material and the raw materials are then deposited again as glass powder or glass ceramic powder according to the invention with particle sizes smaller than 1 ⁇ m.
  • the starting materials are introduced, for example in rod or powder form, into a recipient and evaporated there in a plasma arc and the corresponding nanoparticles are then deposited in a gas stream.
  • the advantage of the PVD process is that the rapid cooling rates mean that glasses prone to crystallization can also be deposited in amorphous form. This also applies to glasses that cannot be produced stably under standard melting conditions and from which no amorphous glass powder can be obtained by conventional melting and grinding.
  • oxidic glasses can be deposited with the aid of oxidic carrier gases, for example oxi-nitride glasses with the help of non-oxidic carrier gases.
  • the glasses according to the invention can be used to bridge gaps in bonding processes or as adhesive bonds in optical applications, for UV or IR absorption, for thermal insulation, for light reflection, as fire-resistant material, as sealant, as glossy material, as color brilliance.
  • Use fabric as well as in electrostatics.
  • porous electrodes for fuel cells hard solders for ceramic-metal connections or low-temperature solders.
  • solders in the field of glass-glass, glass-metal, glass-ceramic or glass-crystal compounds solders in the field of glass-glass, glass-metal, glass-ceramic or glass-crystal compounds.
  • glasses, ceramics, glass ceramics, crystals, metals can generally be connected to one another with such solders.
  • nanoparticles according to the invention can also be deposited electrophoretically on surfaces or in porous bodies.
  • inorganic non-metallic biocides described in the prior art can only be produced and used in relatively large particle sizes greater than 1 ⁇ m. They are therefore less effective than organic biocides.
  • the reactivity, but in particular the antimicrobial activity can be increased extraordinarily strongly by the nanoparticles according to the invention.
  • the increased surface generates a synergistic additional antimicrobial effect.
  • the metallic antimicrobial nanopowders for example silver nanopowders
  • the oxidic compounds have little tendency to discolour and the silver is already in its antimicrobial, effective, oxidized form.
  • the composition of the glass or glass ceramic nanoparticles can be adjusted so that they completely dissolve in aqueous systems.
  • nanopowders are obtained from zero expansion material according to the invention, they are particularly suitable for sintering and as a filler.
  • the nanoparticles according to the invention it is possible to lower the sintering temperature and to achieve very high final densities with very low porosity, which are characterized by low scatter and high transparency.
  • Optical glasses can also be obtained from the nanoparticles according to the invention by viscous sintering. Put together, the nano glasses form a sintered green compact.
  • the composition of the sintered green compact Due to the composition of the sintered green compact from a large number of individual nanoparticles, an extremely high surface area is introduced into the sintered green compact. Due to this extremely high surface, special structures with the smallest crystallite sizes can be created. Depending on the type of glass, the crystallization of the sintered green compact can take place either surface-controlled or volume-controlled. Another advantage of the extremely high surface area of the green compacts is that nanocrystals (both in terms of volume and surface-controlled crystallization) are generated in the sintered solid materials. This is one way of producing sintered glass ceramics with nanocrystals.
  • nano-glass powder can also be used as a sintering aid for high-melting materials.
  • Another application is the use in the melting of temperature-sensitive materials or semi-finished products.
  • soldering temperature can be reduced here.
  • Solder glasses made of nanoparticles are used to achieve the lowest possible temperature and voltage loads.
  • nanoglasses according to the invention can be adjusted in a wide range in their optical positions. This possibility of adjustment affects, for example, the transmission, refractive index, dispersion and also partial dispersion of the glass.
  • polymers By mixing polymers with nano glasses, it is possible to obtain polymer-glass composites in which the optical parameters can be set very precisely. Due to the variability of the glass chemistry and the corresponding surface modification that are carried out during and after production, properties such as dispersibility can also be adjusted. This is e.g. B. necessary if nanoparticles are dispersed in monomers.
  • nanoglass powders according to the invention is so-called rapid prototyping, i.e. the production of three-dimensional prototypes, for example in the field of tissue engineering, i.e. the production of three-dimensional implant frameworks, which serve as carrier materials for the growth of tissue cells.
  • the nano glass powder or nano glass ceramic powder can also be used as an implant material, coating material for implants or a carrier system for medication. Because of the anti-inflammatory or antimicrobial properties, the nanoglass or nanoglass powder according to the invention can also be used directly as an active ingredient. Alternatively, it is possible to introduce the active ingredients into the glass or to apply the active ingredients to the glass surface. Such systems then represent so-called “release systems”.
  • Composite materials such. B. from LGA and / or PGA or their copolymers for biomaterial in particular for tissue engineering are possible.
  • LGA and PGA are bioresorbable polymers.
  • glass and / or glass ceramic nanoparticles according to the invention with an antioxidative, anti-inflammatory, antimicrobial, remineralizing effect is also possible. If certain substances are added, it is possible to produce magnetic nanoparticles, for example, for treatments that promote blood circulation.
  • the chemical composition of the glasses can be varied, it is possible to change the mechanical properties of the nanoparticles made of glass or glass ceramic, such as. B. hardness, modulus of elasticity, density, chemical resistance (e.g. against water, lye and acids) or the electrical properties, adjust and adjust.
  • the zeta potential can also be adjusted by composition and / or surface modifications.
  • Table 1 shows compositions of glasses or starting glasses for glass ceramics in% by weight, from which nanoglass or nanoglass ceramic particles can be produced using the methods according to the invention.
  • the glass compositions given in Table 1 relate to the glass compositions of the starting glasses, which can be evaporated using, for example, an electron beam.
  • the glass composition of the nanoglass or nanoglass ceramic particles deposited in the PVD process essentially match the compositions of the starting glasses if the process is carried out appropriately.
  • customary refining agents are understood, for example, as refining agents Sn 2 0 3 , NaCl, As 2 O 3, Sb 2 0 3 , As 2 S 3 , Sb 2 S 3 , and the usual amounts of a conventional refining agent are 0 - 4% by weight of the total composition
  • Exemplary embodiments of nanoglass powder and their use are to be given below.
  • Exemplary embodiment 1 relates to a nanoglass powder which is introduced into a polymer matrix and leads to an antimicrobial effect of the polymer-nanoglass composite material.
  • nanoglass powder with a particle size of less than 1 ⁇ m according to Example 2 in Table 1 0.1% by weight of nanoglass powder with a particle size of less than 1 ⁇ m according to Example 2 in Table 1 is incorporated into a polystyrene matrix and extruded into sheets.
  • the antimicrobial effectiveness of the surface is tested according to the ASTM standard. A reduction in the test germs (E. Coli, Candida Albicans) by more than 2 log levels is determined.
  • bioactive nanoglass powder with particle sizes smaller than 1 nm according to Example 1 in Table 1 0.1% by weight of bioactive nanoglass powder with particle sizes smaller than 1 nm according to Example 1 in Table 1 is incorporated into a formulation for a deodorant. A significant sweat reduction is observed.
  • Nanoglass powder formulated in a dental resin Typical dental resins are described in EP 0475239 and the documents cited therein.
  • the nanoglass of the glass powder has a glass composition according to Example 4 in Table 1.
  • the average particle size is less than 1 ⁇ m.
  • a high-melting glass for example the Schott glass with number 8330
  • nanopowder is mixed with nanopowder as an admixture in order to lower the sintering temperature.
  • Embodiment 5 relates to a solder glass consisting of 70% by volume of nano glass powder with a composition according to Example 9 in Table 1 and a particle size of ⁇ 1 ⁇ m and 30% by volume of an inert filler (eg cordierite) for adjusting the elongation.
  • the nano-composite glass solder obtained in this way has a melting temperature which is 50 ° C. lower than that of the same mixture of the original material.
  • 5% by weight of a nanoglass powder with particle sizes smaller than 1 ⁇ m with a glass composition which comprises 2% by weight of TiO 2 is added to a sun milk formulation in order to achieve UV blocking.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Glass Compositions (AREA)
  • Cosmetics (AREA)
PCT/EP2005/005633 2004-05-29 2005-05-25 NANOGLASPULVER UND DEREN VERWENGUNG, INSBESONDERE MULTIKOMPONENTEN-GLASPULVER MIT EINER MITTLEREN PARTIKELGRÖSSE KLEINER 1 µm Ceased WO2005115936A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/597,959 US7816292B2 (en) 2004-05-29 2005-05-25 Nano glass powder and use thereof, in particular multicomponent glass powder with a mean particle size of less than 1 μm
JP2007513794A JP2008500935A (ja) 2004-05-29 2005-05-25 ナノガラス粉末、特に平均の粒子径が1μm以下の多成分ガラス粉末、並びにその使用
EP05744811A EP1751071A2 (de) 2004-05-29 2005-05-25 NANOGLASPULVER UND DEREN VERWENGUNG, INSBESONDERE MULTIKOMPONENTEN-GLASPULVER MIT EINER MITTLEREN PARTIKELGRÖSSE KLEINER 1 µm.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004026433.3 2004-05-29
DE102004026433A DE102004026433A1 (de) 2004-05-29 2004-05-29 Nanoglaspulver und deren Verwendung

Publications (2)

Publication Number Publication Date
WO2005115936A2 true WO2005115936A2 (de) 2005-12-08
WO2005115936A3 WO2005115936A3 (de) 2006-02-16

Family

ID=35079314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/005633 Ceased WO2005115936A2 (de) 2004-05-29 2005-05-25 NANOGLASPULVER UND DEREN VERWENGUNG, INSBESONDERE MULTIKOMPONENTEN-GLASPULVER MIT EINER MITTLEREN PARTIKELGRÖSSE KLEINER 1 µm

Country Status (6)

Country Link
US (1) US7816292B2 (enExample)
EP (2) EP2189426A1 (enExample)
JP (1) JP2008500935A (enExample)
CN (1) CN101094818A (enExample)
DE (1) DE102004026433A1 (enExample)
WO (1) WO2005115936A2 (enExample)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111066A1 (ja) * 2006-03-28 2007-10-04 Catalysts & Chemicals Industries Co., Ltd. 歯科用充填材、その製造方法および歯科用複合材料
JP2008120655A (ja) * 2006-11-15 2008-05-29 Tohoku Univ ガラス、結晶化ガラス、結晶化ガラスの製造方法及び光触媒部材
RU2326072C1 (ru) * 2006-11-30 2008-06-10 Юлия Алексеевна Щепочкина Легкоплавкое стекло
EP1972320A1 (de) * 2007-03-22 2008-09-24 Vita Zahnfabrik H. Rauter GmbH & Co. KG Niobhaltiges Infiltrationsglas
WO2008157719A1 (en) * 2007-06-19 2008-12-24 Cabot Corporation Nanoglass and flame spray processes for producing nanoglass
US7687417B2 (en) * 2005-11-16 2010-03-30 E.I. Du Pont De Nemours And Company Lead free glass(es), thick film paste(s), tape composition(s) and low temperature cofired ceramic devices made therefrom
US8058195B2 (en) 2007-06-19 2011-11-15 Cabot Corporation Nanoglass and flame spray processes for producing nanoglass
CN104108882A (zh) * 2014-04-11 2014-10-22 海南大学 一种浮法微晶玻璃及其制备方法
US11724956B2 (en) 2019-07-29 2023-08-15 Schot T Ag Glass composition and glass powder, in particular for the use in the dental field
EP4129941A4 (en) * 2020-03-31 2024-04-24 Hoya Corporation GLASS AND ARTICLE CONTAINING GLASS

Families Citing this family (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8780957B2 (en) 2005-01-14 2014-07-15 Qualcomm Incorporated Optimal weights for MMSE space-time equalizer of multicode CDMA system
KR20070117660A (ko) 2005-03-10 2007-12-12 콸콤 인코포레이티드 컨텐트 적응적 멀티미디어 처리
US8879857B2 (en) 2005-09-27 2014-11-04 Qualcomm Incorporated Redundant data encoding methods and device
US8654848B2 (en) 2005-10-17 2014-02-18 Qualcomm Incorporated Method and apparatus for shot detection in video streaming
US8948260B2 (en) 2005-10-17 2015-02-03 Qualcomm Incorporated Adaptive GOP structure in video streaming
US9131164B2 (en) 2006-04-04 2015-09-08 Qualcomm Incorporated Preprocessor method and apparatus
US20070293388A1 (en) 2006-06-20 2007-12-20 General Electric Company Glass articles and method for making thereof
DE102006037497A1 (de) * 2006-08-10 2008-02-14 Friedrich-Baur Gmbh Poröser Festkörper mit bimodaler Porengrößenverteilung sowie Verfahren zu dessen Herstellung
JP4863975B2 (ja) * 2007-02-06 2012-01-25 三菱電機株式会社 グリーンシート用セラミック粉末及び多層セラミック基板
US8674462B2 (en) 2007-07-25 2014-03-18 Infineon Technologies Ag Sensor package
JP4772071B2 (ja) * 2008-03-07 2011-09-14 三菱電機株式会社 グリーンシート用セラミック粉末及び低温焼成多層セラミック基板
EP2109173B1 (en) * 2008-04-07 2013-05-08 Topsøe Fuel Cell A/S Solid oxide fuel cell stack, process for the preparation thereof and use of an E-glass therein
US8445394B2 (en) * 2008-10-06 2013-05-21 Corning Incorporated Intermediate thermal expansion coefficient glass
JP2012505135A (ja) * 2008-10-08 2012-03-01 アドヴァンスト プラント ニュートリション ピーティーワイ エルティーディー 植物の成長を改善するためのケイ素含有ガラス粉末粒子
CN102177102B (zh) * 2008-10-10 2014-11-05 株式会社小原 微晶玻璃及其制造方法、微晶玻璃烧结体的制造方法、复合体的制造方法、光催化功能性成型体、以及亲水性成型体
US20100189663A1 (en) * 2009-01-24 2010-07-29 Gallis Karl W Mouth rinse compositions including chemically modified silica or silicate materials for sustained delivery to tooth surfaces
DE102009008954B4 (de) 2009-02-13 2010-12-23 Schott Ag Röntgenopakes bariumfreies Glas und dessen Verwendung
DE102009008953B4 (de) 2009-02-13 2010-12-30 Schott Ag Röntgenopakes bariumfreies Glas und dessen Verwendung
DE102009008951B4 (de) 2009-02-13 2011-01-20 Schott Ag Röntgenopakes bariumfreies Glas und dessen Verwendung
KR101117801B1 (ko) * 2009-05-12 2012-03-09 (주)석경에이티 치관재 조성물
US8481066B2 (en) 2009-07-16 2013-07-09 The Curators Of The University Of Missouri Scaffold for tissue regeneration in mammals
US8287896B2 (en) * 2010-01-06 2012-10-16 The Curators Of The University Of Missouri Scaffolds with trace element for tissue regeneration in mammals
CN101759369B (zh) * 2009-12-16 2011-12-07 贵阳华利美化工有限责任公司 一种低膨胀硼铝锌硅系无铅玻璃粉及其制备方法和应用
US8173154B2 (en) * 2010-01-06 2012-05-08 The Curators Of The University Of Missouri Boron trioxide glass-based fibers and particles in dressings, sutures, surgical glue, and other wound care compositions
DE102010007796B3 (de) * 2010-02-12 2011-04-14 Schott Ag Röntgenopakes bariumfreies Glas und dessen Verwendung
US20110206749A1 (en) * 2010-02-19 2011-08-25 J.M. Huber Corporation Silica materials for reducing oral malador
US20110236444A1 (en) * 2010-03-25 2011-09-29 Darsillo Michael S Antimicrobial Silica Composites
DE102010021492B4 (de) * 2010-05-26 2013-01-03 Nanopartica Gmbh Verfahren zur Herstellung von farbigem Glas
CN103200968B (zh) * 2010-10-29 2016-09-14 三菱电机株式会社 植入材料、植入部件、植入部件制造方法、激光加工方法及激光加工装置
CN102561039B (zh) * 2011-01-04 2015-06-10 江西昌硕户外休闲用品有限公司 一种用于户外纺织品的隔热涂料及其制备方法和应用
CN106449934B (zh) * 2011-03-07 2020-03-27 肖特公开股份有限公司 用于密封地接合Cu部件的玻璃系统以及用于电子部件的壳体
CN102157221A (zh) * 2011-03-28 2011-08-17 彩虹集团公司 一种环保型半导体电容器用电极银浆的浆制备方法
DE102012203875A1 (de) * 2011-04-21 2012-10-25 Schott Ag Glaspulver mit verbesserter Korngrößenverteilung und Verfahren zu dessen Herstellung
CN102815870B (zh) * 2011-06-10 2016-08-03 深圳市纳宇材料技术有限公司 一种纳米玻璃粉及其制备方法和用途
CN108996911A (zh) 2011-10-14 2018-12-14 义获嘉伟瓦登特公司 包含四价金属氧化物的硅酸锂玻璃陶瓷和硅酸锂玻璃
DK2765975T3 (en) 2011-10-14 2016-05-17 Ivoclar Vivadent Ag Lithium silicate glass ceramics and glass with trivalent metal oxide
KR101372469B1 (ko) * 2011-10-20 2014-03-12 인하대학교 산학협력단 저융점 나노 유리 분말의 제조방법 및 제조장치
CN103359944B (zh) * 2012-03-26 2015-07-22 重庆市锦艺硅材料开发有限公司 软性玻璃微粉及其制备方法
US9140481B2 (en) 2012-04-02 2015-09-22 Whirlpool Corporation Folded vacuum insulated structure
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
CN102826752B (zh) * 2012-08-23 2015-07-15 北京大清生物技术有限公司 一种含有准纳米级颗粒的生物活性矿物质粉体、制备方法及其在牙科治疗中的应用
CN102831952B (zh) * 2012-08-24 2014-10-22 合肥中南光电有限公司 无铅太阳能电池正面电极用导电银浆及其制备方法
CN102831955B (zh) * 2012-08-24 2014-08-20 合肥中南光电有限公司 含纳米级混合银粉的太阳能电池正面银浆及其制备方法
CN102976618B (zh) * 2012-12-11 2015-09-23 安泰科技股份有限公司 水基玻璃离子水门汀的玻璃粉体及其制备方法
EP2941405B1 (en) * 2013-01-04 2018-03-14 Robert Bosch GmbH High temperature substrate attachment glass
EP2961705B1 (en) 2013-02-26 2018-05-23 Corning Incorporated Porous inorganic layer compatible with ion exchange processes
BR102013020961A2 (pt) * 2013-08-12 2016-03-08 Univ Fed De São Carlos composição vítrea, fibras e tecidos vítreos bioativos e artigos
US11039620B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US9622483B2 (en) 2014-02-19 2017-04-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039621B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
CN104944788B (zh) * 2014-03-30 2017-09-12 佛山市百瑞新材料技术有限公司 一种全瓷牙烤瓷用玻璃粉及其制备方法
CN103951191B (zh) * 2014-04-29 2015-12-09 山东科技大学 两种熔块复合的黄/白间颜色梯度变化的牙齿微晶玻璃
EP2952486A1 (en) * 2014-06-03 2015-12-09 Heraeus Precious Metals North America Conshohocken LLC Dielectric glass composition
JP2015229628A (ja) * 2014-06-06 2015-12-21 旭硝子株式会社 ガラス粉末、ガラススラリー、および積層型電子部品
JP5784848B1 (ja) * 2014-07-10 2015-09-24 石塚硝子株式会社 消臭剤
US9814240B2 (en) * 2014-11-25 2017-11-14 Microban Products Company Strengthened glass with biocidal property
US9476633B2 (en) 2015-03-02 2016-10-25 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US9897370B2 (en) 2015-03-11 2018-02-20 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
JP6656574B2 (ja) * 2015-03-31 2020-03-04 日本電気硝子株式会社 立体造形用樹脂組成物
US9441779B1 (en) 2015-07-01 2016-09-13 Whirlpool Corporation Split hybrid insulation structure for an appliance
CN104966788B (zh) * 2015-07-27 2017-02-22 京东方科技集团股份有限公司 封装材料、有机发光二极管器件及其封装方法
KR101799558B1 (ko) * 2015-08-12 2017-11-20 인하대학교 산학협력단 파쇄된 불규칙 형상의 비정질 유리를 기반으로 한 3d 프린팅용 성형소재와 3d 프린팅용 성형방법 및 성형체
CN105084764A (zh) * 2015-09-01 2015-11-25 广西南宁智翠科技咨询有限公司 一种用于制作牙科修复体的玻璃陶瓷及其制备方法
CN105060722B (zh) * 2015-09-15 2023-07-07 中国建材国际工程集团有限公司 纳米玻璃粉及其制备方法
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10105928B2 (en) 2015-12-08 2018-10-23 Whirlpool Corporation Super insulating nano-spheres for appliance insulation and method for creating a super insulating nano-sphere material
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11994336B2 (en) 2015-12-09 2024-05-28 Whirlpool Corporation Vacuum insulated structure with thermal bridge breaker with heat loop
WO2017100037A1 (en) 2015-12-09 2017-06-15 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
CN105776855A (zh) * 2016-03-01 2016-07-20 苏州云舒新材料科技有限公司 一种耐磨玻璃及其制备方法
CN105776857A (zh) * 2016-03-01 2016-07-20 苏州云舒新材料科技有限公司 一种高透光率玻璃材料及其制备方法
CN105776856A (zh) * 2016-03-01 2016-07-20 苏州云舒新材料科技有限公司 一种纳米透明耐刮玻璃及其制备方法
CN105776853A (zh) * 2016-03-01 2016-07-20 苏州云舒新材料科技有限公司 一种透明无铅玻璃及其制备方法
CN105731787A (zh) * 2016-03-04 2016-07-06 苏州圣谱拉新材料科技有限公司 一种耐刮擦透明纳米玻璃材料及其制备方法
CN105753320A (zh) * 2016-03-04 2016-07-13 苏州圣谱拉新材料科技有限公司 一种纳米透明隔热玻璃材料及其制备方法
CN105753318A (zh) * 2016-03-04 2016-07-13 苏州圣谱拉新材料科技有限公司 一种耐热防爆纳米玻璃材料及其制备方法
CN105819686A (zh) * 2016-03-04 2016-08-03 苏州圣谱拉新材料科技有限公司 一种耐寒玻璃材料及其制备方法
EP3443285B1 (en) 2016-04-15 2021-03-10 Whirlpool Corporation Vacuum insulated refrigerator cabinet
EP3443284B1 (en) 2016-04-15 2020-11-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
CN105967517A (zh) * 2016-05-06 2016-09-28 东莞市银特丰光学玻璃科技有限公司 一种高强度平板玻璃的配方及制备工艺
EP3491308B1 (en) 2016-07-26 2021-03-10 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
CN106494438A (zh) * 2016-10-21 2017-03-15 苏州大成电子科技有限公司 一种观赏性好的全景观列车车厢
US10352613B2 (en) 2016-12-05 2019-07-16 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
CN106531283A (zh) * 2017-01-12 2017-03-22 东莞珂洛赫慕电子材料科技有限公司 一种氮化铝基材用大功率厚膜电路银钌电阻浆料及其制备方法
RU2661959C1 (ru) * 2017-04-07 2018-07-23 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Стекло
DE102017207253B3 (de) 2017-04-28 2018-06-14 Schott Ag Filterglas
CN106986546B (zh) * 2017-05-11 2019-05-07 长春理工大学 一种含Na3.6Y1.8(PO4)3晶相透明磷酸盐玻璃陶瓷及其制备方法
CN107089797A (zh) * 2017-06-22 2017-08-25 合肥钢骨玻璃制品有限公司 一种微晶玻璃及其制备方法
CN110051691A (zh) * 2018-01-15 2019-07-26 张家港蓝智生物科技有限公司 一种具备美白功效的冷凝胶及冷敷贴
RU2714035C2 (ru) * 2018-05-30 2020-02-11 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Рентгеноконтрастное биоактивное стекло и способ его получения
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
CN108793740A (zh) * 2018-07-05 2018-11-13 徐涌涛 一种磷酸盐抗菌玻璃的制备方法
CN108503217A (zh) * 2018-07-05 2018-09-07 徐涌涛 一种抗菌玻璃材料及其制备方法
NZ774059A (en) * 2018-09-05 2025-11-28 Ir Scient Inc Glass composition
KR102234552B1 (ko) 2018-10-31 2021-04-01 엘지전자 주식회사 법랑 조성물 및 이의 제조방법
KR102234551B1 (ko) 2018-11-09 2021-04-01 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
KR102172417B1 (ko) 2019-02-22 2020-10-30 엘지전자 주식회사 법랑 조성물 및 이의 제조방법
KR102172416B1 (ko) 2019-02-22 2020-10-30 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기
KR102172460B1 (ko) * 2019-02-22 2020-10-30 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기
KR102172418B1 (ko) 2019-02-22 2020-10-30 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기
KR102310341B1 (ko) 2019-02-22 2021-10-07 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기
KR102172459B1 (ko) 2019-02-22 2020-10-30 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기
KR20200102758A (ko) 2019-02-22 2020-09-01 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기
CN109867449A (zh) * 2019-04-23 2019-06-11 郑州知淘信息科技有限责任公司 一种汽车玻璃油墨用无铅低熔点玻璃粉及其制备方法
US12070924B2 (en) 2020-07-27 2024-08-27 Whirlpool Corporation Appliance liner having natural fibers
WO2022204168A1 (en) * 2021-03-22 2022-09-29 University Of Maryland, College Park Metallic glass materials and methods of making the same
CN113698105B (zh) * 2021-07-09 2022-12-06 山东玻纤集团股份有限公司 一种高强度玻璃纤维组合物及其制备方法
CN114404303B (zh) * 2021-12-30 2023-10-20 辽宁爱尔创生物材料有限公司 荧光玻璃无机填料及其制备方法与应用
CN114507071A (zh) * 2022-03-05 2022-05-17 太原理工大学 一种高强度陶瓷介质材料及其制备方法
CN116239300B (zh) * 2022-12-14 2025-03-18 南京华生皓光电科技有限公司 一种用于液晶配向工艺的uva紫外荧光灯用玻管及应用
CN116043165B (zh) * 2022-12-27 2023-09-29 巨玻固能(苏州)薄膜材料有限公司 一种用于将零件表面镀膜层无损剥离的镀膜材料
DE102023126243A1 (de) * 2023-09-27 2025-03-27 Schott Ag Verwendung eines Glases zur Passivierung eines elektronischen Bauelements und passiviertes elektronisches Bauelement
WO2025151229A1 (en) * 2024-01-11 2025-07-17 Corning Incorporated High p 2o 5 copper-containing near-infrared absorbing glass composition and products comprising the same for filter applications
JP2025177363A (ja) * 2024-05-23 2025-12-05 ハドラスホールディングス株式会社 水溶性ガラス組成物、コーティング膜、塗膜、合成樹脂フィルム、合成樹脂シート、合成樹脂繊維、成形体、焼結体
CN118930268B (zh) * 2024-09-02 2025-04-18 武汉理工大学 一种llzo固态电解质的制备方法及其应用

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1022009B (de) 1954-12-02 1958-01-02 Kali Chemie Ag Verfahren zur Polykondensation von Kieselsaeureestern unter gleichzeitiger Gewinnung von Alkylhalogeniden
JPS59227765A (ja) * 1983-06-04 1984-12-21 科学技術庁金属材料技術研究所長 セラミツクスの超微粒子の製造法
JPS61186248A (ja) * 1985-02-13 1986-08-19 Nippon Electric Glass Co Ltd ガラスセラミツク
FR2657079B1 (fr) 1990-01-12 1993-04-09 Corning France Verres precurseurs de vitroceramiques, procede de conversion de ces verres en vitroceramiques a dilation tres faible ou nulle et vitroceramiques obtenues.
JPH0467868A (ja) * 1990-07-07 1992-03-03 Ishizuka Glass Co Ltd 消臭剤
DE4029230C2 (de) 1990-09-14 1995-03-23 Ivoclar Ag Polymerisierbarer Dentalwerkstoff
JPH04160023A (ja) * 1990-10-23 1992-06-03 Sumitomo Metal Mining Co Ltd 球状ガラス粉末の製造方法
DE4323143C1 (de) 1993-07-10 1994-12-01 Schott Glaswerke Verwendung eines Glases als bariumfreies Dentalglas mit guter Röntgenabsorption
US5460701A (en) * 1993-07-27 1995-10-24 Nanophase Technologies Corporation Method of making nanostructured materials
DE4443173C2 (de) * 1994-12-05 1997-04-10 Schott Glaswerke Bariumfreies Dentalglas mit guter Röntgenabsorption
DE19520448C2 (de) * 1995-06-03 1997-09-04 Schott Glaswerke Verfahren zur Herstellung von feinteiligen Multikomponenten-Glaspulvern zur Verwendung als Glasfluß für die Erzeugung von Schichten und Dekoren auf Glas, Glaskeramik oder Keramik
ATE157529T1 (de) 1995-06-21 1997-09-15 Oreal Kosmetisches mittel enthaltend eine dispersion von polymerenteilchen
US6506564B1 (en) * 1996-07-29 2003-01-14 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6360562B1 (en) * 1998-02-24 2002-03-26 Superior Micropowders Llc Methods for producing glass powders
SE511168C2 (sv) * 1998-08-28 1999-08-16 Scania Cv Ab Reglageanordning för en stol hos ett fordon
DE19849388C2 (de) 1998-10-27 2001-05-17 Schott Glas Bariumfreies röntgenopakes Dentalglas sowie dessen Verwendung
US6358531B1 (en) * 1999-02-01 2002-03-19 The Curators Of The University Of Missouri Method for preparing porous shells or gels from glass particles
DE19907038C2 (de) 1999-02-19 2003-04-10 Schott Glas Transluzente oder opake Glaskeramik mit Hochquarz-Mischkristallen als vorherrschender Kristallphase und deren Verwendung
HK1046706A1 (zh) 1999-07-09 2003-01-24 肖特玻璃制造厂 无毒的杀菌洗涤剂
IL147305A0 (en) 1999-07-09 2002-08-14 Zeiss Stiftung Preservatives containing bioactive glass
AU2246201A (en) * 1999-08-18 2001-03-26 Rutgers, The State University Composite ceramic having nano-scale grain dimensions and method for manufacturing same
JP2001247333A (ja) * 1999-12-28 2001-09-11 Ishizuka Glass Co Ltd 抗菌性付与用ガラス組成物、抗菌性繊維、抗菌性撚糸及び抗菌性布状物
EP1142830A1 (de) * 2000-04-03 2001-10-10 Degussa AG Nanoskalige pyrogene Oxide, Verfahren zur deren Herstellung und die Verwendung dieser Oxide
JP3625415B2 (ja) * 2000-04-20 2005-03-02 株式会社日清製粉グループ本社 酸化物封入ガラス微粒子の製造方法並びにこの方法により製造された酸化物封入ガラス微粒子
FR2819406B1 (fr) * 2001-01-15 2003-02-21 Oreal Composition cosmetique contenant des filtres mineraux
AR032424A1 (es) * 2001-01-30 2003-11-05 Procter & Gamble Composiciones de recubrimiento para modificar superficies.
US7067072B2 (en) 2001-08-17 2006-06-27 Nomadics, Inc. Nanophase luminescence particulate material
WO2003018498A1 (de) 2001-08-22 2003-03-06 Schott Glas Antimikrobielles, entzündungshemmendes, wundheilendes und desinfizierendes glas und dessen verwendung
ATE332879T1 (de) 2001-08-22 2006-08-15 Schott Ag Antimikrobielles, entzündungshemmendes, wundheilendes glaspulver und dessen verwendung
DE10293768B4 (de) 2001-08-22 2011-05-12 Schott Ag Antimikrobielles Glaspulver, dessen Verwendung und Verfahren zu dessen Herstellung
DE10141117A1 (de) 2001-08-22 2003-03-13 Schott Glas Antimikrobielles Silicatglas und dessen Verwendung
AU2002363868A1 (en) * 2001-12-12 2003-06-23 Schott Glas Antimicrobial alkali-silicate glass ceramic and the use thereof
DE10161075C1 (de) 2001-12-12 2003-08-21 Schott Glas UV-Strahlung absorbierende, antimikrobielle, entzündungshemmende Glaskeramik, Verfahren zu ihrer Herstellung und ihre Verwendungen
US20030234978A1 (en) * 2002-01-08 2003-12-25 Garito Anthony F. Optical waveguide amplifiers
JP4052836B2 (ja) * 2002-01-15 2008-02-27 日本電気硝子株式会社 抗菌性ガラス微小球及びその製造方法
DE10201747C1 (de) 2002-01-18 2003-08-14 Schott Glas Glas-Keramik-Komposit, Verfahren zu seiner Herstellung und Verwendungen
CN1151086C (zh) * 2002-01-18 2004-05-26 中国科学院上海硅酸盐研究所 纳米级生物活性玻璃粉体材料及制备方法
DE50302060D1 (de) 2002-01-24 2006-02-02 Schott Ag Antimikrobielles, wasserunlösliches silicatglaspulver und mischung von glaspulvern
DE10322444A1 (de) * 2002-05-23 2003-10-16 Schott Glas Formulierung kosmetischer Produkte mit Glaspulver
KR100494976B1 (ko) 2002-08-29 2005-06-13 한국기계연구원 상압 기상반응법에 의한 나노 wc계 분말의 제조방법
AU2003259019A1 (en) * 2002-09-10 2004-04-30 Nanyang Technological University Glass ionomer cements, glass powder therefor, and methods of manufacture
US6669757B1 (en) * 2002-12-05 2003-12-30 Tri E Holding, Llc Method for extracting metal from glass waste
US7175786B2 (en) * 2003-02-05 2007-02-13 3M Innovative Properties Co. Methods of making Al2O3-SiO2 ceramics
DE10345625A1 (de) 2003-09-29 2005-04-28 Schott Ag Herstellungsverfahren eines Glaspulvers oder Glasproduktes mit antimikrobieller Wirkung

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687417B2 (en) * 2005-11-16 2010-03-30 E.I. Du Pont De Nemours And Company Lead free glass(es), thick film paste(s), tape composition(s) and low temperature cofired ceramic devices made therefrom
US8182860B2 (en) 2006-03-28 2012-05-22 Jgc Catalysts And Chemicals Ltd. Dental filler
WO2007111066A1 (ja) * 2006-03-28 2007-10-04 Catalysts & Chemicals Industries Co., Ltd. 歯科用充填材、その製造方法および歯科用複合材料
JP2008120655A (ja) * 2006-11-15 2008-05-29 Tohoku Univ ガラス、結晶化ガラス、結晶化ガラスの製造方法及び光触媒部材
RU2326072C1 (ru) * 2006-11-30 2008-06-10 Юлия Алексеевна Щепочкина Легкоплавкое стекло
EP1972320A1 (de) * 2007-03-22 2008-09-24 Vita Zahnfabrik H. Rauter GmbH & Co. KG Niobhaltiges Infiltrationsglas
WO2008113810A1 (de) * 2007-03-22 2008-09-25 Vita Zahnfabrik H. Rauter Gmbh & Co.Kg Niobhaltiges infiltrationsglas
US20100112331A1 (en) * 2007-03-22 2010-05-06 Marc Stephan Infiltration glass containing niobium
US8349459B2 (en) 2007-03-22 2013-01-08 Vita Zahnfabrik H. Rauter Gmbh & Co. Kg Infiltration glass containing niobium
WO2008157719A1 (en) * 2007-06-19 2008-12-24 Cabot Corporation Nanoglass and flame spray processes for producing nanoglass
US8058195B2 (en) 2007-06-19 2011-11-15 Cabot Corporation Nanoglass and flame spray processes for producing nanoglass
CN104108882A (zh) * 2014-04-11 2014-10-22 海南大学 一种浮法微晶玻璃及其制备方法
US11724956B2 (en) 2019-07-29 2023-08-15 Schot T Ag Glass composition and glass powder, in particular for the use in the dental field
EP4129941A4 (en) * 2020-03-31 2024-04-24 Hoya Corporation GLASS AND ARTICLE CONTAINING GLASS

Also Published As

Publication number Publication date
DE102004026433A1 (de) 2005-12-22
EP2189426A1 (de) 2010-05-26
JP2008500935A (ja) 2008-01-17
CN101094818A (zh) 2007-12-26
US7816292B2 (en) 2010-10-19
WO2005115936A3 (de) 2006-02-16
US20080044488A1 (en) 2008-02-21
EP1751071A2 (de) 2007-02-14

Similar Documents

Publication Publication Date Title
EP1751071A2 (de) NANOGLASPULVER UND DEREN VERWENGUNG, INSBESONDERE MULTIKOMPONENTEN-GLASPULVER MIT EINER MITTLEREN PARTIKELGRÖSSE KLEINER 1 µm.
DE10262106B4 (de) Leucit-Glaskeramik-Pulver
EP2377830B1 (de) Lithiumsilikat-Glaskeramik und -Glas mit Übergangsmetalloxid
EP1584607B1 (de) Apatitglaskeramik auf der Basis von silicatischen Oxyapatiten
EP1435346B1 (de) Fräskeramiken aus Metalloxid-Pulvern mit bimodaler Korngrössenverteilung
EP1720806B1 (de) Röntgenopakes glas, verfahren zu seiner herstellung und seiner verwendung
EP2847138A1 (de) Vorgesinterter rohling für dentale zwecke
WO2013167722A1 (de) Vorgesinterter rohling für dentale zwecke
WO2003050051A1 (de) Antimikrobielle alkali-silicat-glaskeramik und ihre verwendung
CH700385A2 (de) Röntgenopakes bariumfreies Glas und dessen Verwendung.
EP2765979A2 (de) Lithiumsilikat-glaskeramik und -glas mit fünfwertigem metalloxid
CH702657A2 (de) Röntgenopakes bariumfreies Glas und dessen Verwendung.
CH700386A2 (de) Röntgenopakes bariumfreies Glas und dessen Verwendung.
EP1167311B1 (de) Tiefsinternde Apatit-Glaskeramik
DE10201747C1 (de) Glas-Keramik-Komposit, Verfahren zu seiner Herstellung und Verwendungen
EP1940341A2 (de) Dentalglas
EP1452500B1 (de) Glaskeramik sowie deren Herstellung und Verwendung
DE3825027A1 (de) Pulverfoermiger dentalwerkstoff, verfahren zu seiner herstellung und seine verwendung
DE10351885B4 (de) Opale Glaskeramik sowie deren Herstellung und Verwendung
DE10241495B4 (de) Antimikrobielle Alkalisilicat-Glaskeramik, Glaskeramikpulver, Verfahren zu dessen Herstellung und Verwendung
DE102005003755C5 (de) Beschichtete Dentalpulver
DE102019120434A1 (de) Glaszusammensetzung und Glaspulver, insbesondere zur Verwendung im Dentalbereich
EP1986969A1 (de) Verfahren zur herstellung eines porösen glases und glaspulvers und glaswerkstoff zum ausführen des verfahrens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005744811

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007513794

Country of ref document: JP

Ref document number: 200580017359.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005744811

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11597959

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11597959

Country of ref document: US