EP1751071A2 - NANOGLASPULVER UND DEREN VERWENGUNG, INSBESONDERE MULTIKOMPONENTEN-GLASPULVER MIT EINER MITTLEREN PARTIKELGRÖSSE KLEINER 1 µm. - Google Patents

NANOGLASPULVER UND DEREN VERWENGUNG, INSBESONDERE MULTIKOMPONENTEN-GLASPULVER MIT EINER MITTLEREN PARTIKELGRÖSSE KLEINER 1 µm.

Info

Publication number
EP1751071A2
EP1751071A2 EP05744811A EP05744811A EP1751071A2 EP 1751071 A2 EP1751071 A2 EP 1751071A2 EP 05744811 A EP05744811 A EP 05744811A EP 05744811 A EP05744811 A EP 05744811A EP 1751071 A2 EP1751071 A2 EP 1751071A2
Authority
EP
European Patent Office
Prior art keywords
glass
ceramic powder
glass ceramic
powder according
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05744811A
Other languages
English (en)
French (fr)
Inventor
José ZIMMER
Johann Daimer
Matthias Rindt
Susanne Kessler
Jörn BESINGER
Karine Seneschal-Merz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Priority to EP10000497A priority Critical patent/EP2189426A1/de
Publication of EP1751071A2 publication Critical patent/EP1751071A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/102Forming solid beads by blowing a gas onto a stream of molten glass or onto particulate materials, e.g. pulverising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing

Definitions

  • the invention relates to multi-component glasses with at least three (3) elements with an average particle size of less than 1 ⁇ m, preferably less than 0.1 ⁇ m, particularly preferably less than 10 nm. Glasses with such an average particle size are also referred to as nanopowders.
  • the application also includes processes for producing such glasses and their use.
  • Inorganic nanopowders are for non-crystalline compositions for Si0 2 and for crystalline compositions such as. B. Ti0 2 or ZnO known. Regarding SiO 2 nanopowder, reference is made to Degussa's Aerosil® product.
  • CeO nanoparticles for polishing suspensions are e.g. B. from Nanophase (USA) and Zr0 2 nanoparticles or Al 2 0 3 nanoparticles from Nanogate (Germany).
  • Metallic nanoparticles are e.g. B. known for silver and silver alloy. Such nanoparticles are used, for example, as antimicrobial agents, for. B. for polymers.
  • Powders made of metallic nanoparticles can also be used for bonding in the field of electronics. According to HD Junge, A. Möschwitz, "Elektronik”, VCH-Verlag 1993, p. 89, bonding is a welding process for contacting electronic elements, for example on an integrated circuit. The use of metallic nanopowders greatly reduces the bonding temperatures.
  • hydroxyapatite nanoparticles have also become known, for example from BASF (Germany), which are used in the field of oral care, dental hygiene, ie in the field of oral care applications.
  • Glasses with antimicrobial activity have become known from the following patent applications WO03 / 018495, WO03 / 18498, WO03 / 18499, WO03 / 050052, WO03 / 062163, WO03 / 018496.
  • the glass powders described in these documents were obtained in the form of grinding, for example in aqueous media. By grinding as described in the above documents, glass powders with an average particle size corresponding to that of nanoparticles cannot be obtained.
  • Glasses which are used in the dental field, so-called dental glasses have become known from DE 4323143, US 5,641,347, DE 4443173 and EP 0997132.
  • nanoparticles known from the prior art are used in a large number of fields.
  • the use of nanoparticles in cosmetic sun protection formulations is described in US20040067208
  • US20040042953 describes the use of nanoparticles in toilet powders, the mean particle size fluctuating between 10 and 20 nm. These nanoparticles are manufactured using gas phase reactions.
  • nanoparticles for the detection of nucleic acid is known from US20030148282.
  • US20030064532 describes the use of semiconductor nanoparticles in the field of luminance and optical data storage.
  • silver or silver alloy nanopowder is produced using PVD processes.
  • US Pat. No. 4,642,207 has disclosed a PVD plasma arc process for producing nanoparticles via evaporation and condensation.
  • a method for producing nanocrystalline material has also become known from US 5874684. Binary oxides are used as raw materials for this. Different atmospheres can be used to produce different substances.
  • the object of the invention is to provide a multi-component glass powder which is distinguished by the fact that it can be used in a large number of fields and has an improved activity compared to conventional glass powders.
  • the object is achieved by a glass powder which has multi-component glasses with at least 3 elements, the mean particle size of the
  • the glass contains more than 4, more preferably more than 5, most preferably from 'more than 6 elements.
  • the component of an oxidic glass is understood to be the oxidic component, for example SiO 2 or B 2 O 3 .
  • the element in a glass composition is understood to mean the individual element, that is to say Si or B or O.
  • a multi-component glass is therefore a glass which, for example, comprises SiO 2 and B 2 0 3 as components.
  • a glass, which comprises Si0 2 and B 2 O 3 as components, has a total of three elements. So it would be in Language usage of this application is a 2-component glass with 3 elements.
  • the glass powders with a particle size of less than 1 ⁇ m, which are also referred to as nanoglasses comprise SiO 2 and / or B 2 O 3 and / or P 2 O 5 as network formers.
  • the proportion of the network former or the sum of the network former, if the multicomponent glass comprises more than one network former, is preferably between 30-95% by weight, preferably between 30 and 80% by weight, in particular between 40 and 75% by weight, most preferably between 50 and 70% by weight.
  • the glasses can be divided into the group of silicate, borate or phosphate glasses.
  • Alkali ions e.g. B. Na, K, Li, Cs, can be used in the glass composition
  • the total concentration of the alkalis is between 0 and 50% by weight, preferably between 0 and 30% by weight.
  • the alkalis can also be used to adjust the reactivity of the glass, since the alkali can deliberately interrupt the glass network.
  • biocides such as e.g. B. Zn or Ag are more easily released.
  • the alkaline earth metal ions such as. B. Mg, Ca, Sr, Ba, in total between 0 and 50 wt .-%.
  • the alkaline earth ions also act as network converters and serve to adjust the reactivity of the glass.
  • the Ca plays a special role. In the case of special bioactive glasses, the presence of Ca allows a mineral layer to be formed on the particle surface in aqueous media, the so-called hydroxyapatite layer.
  • the multi-component glasses can further comprise aluminum oxide. Aluminum oxide significantly influences the chemical stability and the crystallization stability of the glasses.
  • the Al 2 0 3 concentration is preferably between 0% by weight and 25% by weight.
  • the glass can include zinc oxide as an essential glass component.
  • the Zn ions of the glass can be released and lead to an antimicrobial effect, which is further supported by alkali or alkaline earth ions.
  • the ZnO concentration is usually in the
  • the multi-component glasses can also comprise titanium oxide and / or zirconium oxide. With the help of these additives, the refractive index of the glass powder can be adjusted. In particular, the addition of TiO 2 can also be used for UV blocking.
  • nanopowders are glass ceramic nanopowders
  • additions of Ti0 2 or Zr0 2 can serve as nucleating agents.
  • the chemical resistance of the nanopowders can be adjusted using Ti0 2 or Zr0 2 .
  • the hydrolytic resistance can be improved in particular by the addition of Zr0 2 , which is particularly important in the case of hygroscopic nanopowders.
  • TiO 2 and ZrO 2 can also be used to adjust the modulus of elasticity.
  • the concentration of TiO 2 is preferably between 0 and 25% by weight and the concentration of ZrO 2 is between 0% and 30% by weight.
  • the nanoglass powder can include tantalum and / or tungsten oxide.
  • the concentration is from Ag2Ü, CuO, ZnO, I less than 15% by weight, preferably less than 10; more preferably less than 5% by weight.
  • Precious metals such as Au, Pt can also be present in metallic or oxidic form up to less than 10% by weight, preferably less than 5% by weight, most preferably less than 2% by weight.
  • Coloring ions such as B. Cr, Mn, Ni, V, Ce, Fe, V, Co can be present in total (oxide) up to 10% by weight.
  • Rare earth ions such as B. Eu, Ce, Sm, Nd, Er, Sm, Yb, can be introduced as doping in conventional concentrations.
  • Fluorine can be contained in the glasses as a melting aid.
  • Oxides of the elements Nb, La, Pb and Bi serve primarily to adjust the refractive index or dispersion.
  • Refining agents such as. B. SnO, As 2 0 3 , Sb 2 0 3 , can be contained in the usual concentrations in the nanoglass powders, with the exception of the nanoglass, which are used in dental, medical and cosmetic applications.
  • the aforementioned metals Au, Ag, Pt, Cu can be present in the glass matrix not only in oxidic but also in metallic form.
  • Radioactive elements can also be added.
  • nitrides or oxide nitrides can also be used as starting materials and corresponding nitride or oxynitride nanoglasses can be obtained in this way.
  • the advantage of nitride or oxynitride nanoglass is the better mechanical properties than with oxide glasses.
  • the nanopowders according to the invention have average grain sizes of less than 1 ⁇ m, preferably less than 200 nm, particularly preferably less than 100 nm, more preferably less than 50 nm, most preferably less than 20 nm. In a particular embodiment, grain sizes less than 5 nm are used. In special embodiments, the nanoparticles can be smaller than 2 nm.
  • the BET surface area of conventional inorganic fillers in dental materials is e.g. B. between 4 and 65 m 2 / g.
  • the BET Oberfumbleen the nanoparticles are larger than 50 m 2 / g, preferably greater than 100m 2 / g, more preferably greater than 500 m 2 / g, Trustzugtesten greater than 900 m 2 / g.
  • the surface properties play an increasingly important role compared to the bulk properties. Due to the high free surface area, surprisingly high reactivities, in particular a high ion release, for example in the case of glasses which are inert per se, such as antimicrobial silicate glasses, are particularly high. B. achieved in aqueous media or in organic compounds, high antimicrobial effect of the powder.
  • the particles can be used as powder and suspension.
  • Amorphous, phase-separated, crystallized glass or glass ceramic nanoparticles can be used. Different phases can be achieved in the primary manufacturing process or in post-processing.
  • organosilanes For use as a filler in the dental field, a modification of the surface with organosilanes is possible and advantageous, such as. B. methacryloxypropyl-tri-methoxy-silane.
  • the organosilanes used are particularly characterized by the fact that they can both bind to the glass surface and also bind to an organic resin via an organic functional side group. This facilitates the formulation in the organic resin matrix on the one hand and increases the mechanical stability on the other.
  • the most widespread for dental applications is 3-methacryloxypropyltrimethoxysilane, better known under the trade name MEMO from Degussa.
  • MEMO 3-methacryloxypropyltrimethoxysilane
  • Ions of the elements La, Ba, Sr, Y, Yb, Nb, Zr, Zn serve to adjust the x-ray visibility of dental glasses.
  • the nanopowders according to the invention comprising multicomponent glasses and glass ceramics can be used in the fields of cosmetics e.g. B. as a UV blocker for UV-A and / or UV-B, dental filler, oral care, optical polymers, sintered materials, antimicrobial applications, in the medical field as an active ingredient or active ingredient carrier, for water filtering, cleaning, treatment, as solder glasses; as pigments, for rapid prototyping, which describes the very rapid production of three-dimensional structures, in fuel cells, as abrasive materials, for catalysis, as UV protection, in polishing processes, in textile fibers, in thermoplastics, in paints and varnishes; in surface technology, as non-stick, anti-scratch, anti-reflective, anti-fog, easy to clean layer, for corrosion protection; in the field of ceramic technologies, as raw materials e.g.
  • polymers e.g. Duromers, plastomers, monomers
  • Electronics for example as glass solders for joining or as passivation glass for semiconductor components.
  • the nanoparticles are produced, for example, in a PVD process (Physical Vapor Deposition).
  • PVD process Physical Vapor Deposition
  • the evaporated substances are deposited on a cold surface, for example a substrate surface, and reorganize in the glassy state
  • the multicomponent glass or glass ceramic nanoparticles according to the invention are produced.As described above, in addition to nanoglasses, a nanoglass ceramic or a nanoglass, which comprises a segregated system, can also be produced in this way. The production of nanoparticles using the sol-gel method is also possible.
  • CVD processes can also be used.
  • CVD (Chemical Vapor Deposition) processes describe this chemical deposition from the gas phase.
  • VDI lexicon “Material Technology” VDI-Verlag 1993, pp.139 and pp.5-6, the disclosure content of which is included in full in the disclosure content of the present application.
  • Another method for producing nanoparticles is flame pyrolysis.
  • flame pyrolysis reactive gases are led into a flame.
  • the nanoparticles are synthesized in the flame and deposited in cold regions.
  • liquid raw materials can also be used in flame pyrolysis.
  • non-oxidic carrier gas is used in the processes described, in particular in the PVD process, nitride or oxynitride nanoglasses can be produced.
  • PVD processes are particularly suitable for producing the described nanoglasses or nano-glass ceramics.
  • the plasma processes in particular plasma processes combined with high-frequency evaporation or electron evaporation, are particularly suitable.
  • the plasma process is characterized by the fact that the raw material is evaporated in a plasma.
  • Metals or metal oxides are used as starting materials in the PVD processes known in the prior art.
  • multicomponent glasses as starting materials for the production of the multicomponent glasses according to the invention with particle sizes smaller than 1 ⁇ m.
  • different multi-component glasses can be mixed in different weight fractions and particle size distributions.
  • suitable element combinations can already be put together in one raw material.
  • the PVD process local heating of the multicomponent glass as the raw material selectively evaporates this raw material and the raw materials are then deposited again as glass powder or glass ceramic powder according to the invention with particle sizes smaller than 1 ⁇ m.
  • the starting materials are introduced, for example in rod or powder form, into a recipient and evaporated there in a plasma arc and the corresponding nanoparticles are then deposited in a gas stream.
  • the advantage of the PVD process is that the rapid cooling rates mean that glasses prone to crystallization can also be deposited in amorphous form. This also applies to glasses that cannot be produced stably under standard melting conditions and from which no amorphous glass powder can be obtained by conventional melting and grinding.
  • oxidic glasses can be deposited with the aid of oxidic carrier gases, for example oxi-nitride glasses with the help of non-oxidic carrier gases.
  • the glasses according to the invention can be used to bridge gaps in bonding processes or as adhesive bonds in optical applications, for UV or IR absorption, for thermal insulation, for light reflection, as fire-resistant material, as sealant, as glossy material, as color brilliance.
  • Use fabric as well as in electrostatics.
  • porous electrodes for fuel cells hard solders for ceramic-metal connections or low-temperature solders.
  • solders in the field of glass-glass, glass-metal, glass-ceramic or glass-crystal compounds solders in the field of glass-glass, glass-metal, glass-ceramic or glass-crystal compounds.
  • glasses, ceramics, glass ceramics, crystals, metals can generally be connected to one another with such solders.
  • nanoparticles according to the invention can also be deposited electrophoretically on surfaces or in porous bodies.
  • inorganic non-metallic biocides described in the prior art can only be produced and used in relatively large particle sizes greater than 1 ⁇ m. They are therefore less effective than organic biocides.
  • the reactivity, but in particular the antimicrobial activity can be increased extraordinarily strongly by the nanoparticles according to the invention.
  • the increased surface generates a synergistic additional antimicrobial effect.
  • the metallic antimicrobial nanopowders for example silver nanopowders
  • the oxidic compounds have little tendency to discolour and the silver is already in its antimicrobial, effective, oxidized form.
  • the composition of the glass or glass ceramic nanoparticles can be adjusted so that they completely dissolve in aqueous systems.
  • nanopowders are obtained from zero expansion material according to the invention, they are particularly suitable for sintering and as a filler.
  • the nanoparticles according to the invention it is possible to lower the sintering temperature and to achieve very high final densities with very low porosity, which are characterized by low scatter and high transparency.
  • Optical glasses can also be obtained from the nanoparticles according to the invention by viscous sintering. Put together, the nano glasses form a sintered green compact.
  • the composition of the sintered green compact Due to the composition of the sintered green compact from a large number of individual nanoparticles, an extremely high surface area is introduced into the sintered green compact. Due to this extremely high surface, special structures with the smallest crystallite sizes can be created. Depending on the type of glass, the crystallization of the sintered green compact can take place either surface-controlled or volume-controlled. Another advantage of the extremely high surface area of the green compacts is that nanocrystals (both in terms of volume and surface-controlled crystallization) are generated in the sintered solid materials. This is one way of producing sintered glass ceramics with nanocrystals.
  • nano-glass powder can also be used as a sintering aid for high-melting materials.
  • Another application is the use in the melting of temperature-sensitive materials or semi-finished products.
  • soldering temperature can be reduced here.
  • Solder glasses made of nanoparticles are used to achieve the lowest possible temperature and voltage loads.
  • nanoglasses according to the invention can be adjusted in a wide range in their optical positions. This possibility of adjustment affects, for example, the transmission, refractive index, dispersion and also partial dispersion of the glass.
  • polymers By mixing polymers with nano glasses, it is possible to obtain polymer-glass composites in which the optical parameters can be set very precisely. Due to the variability of the glass chemistry and the corresponding surface modification that are carried out during and after production, properties such as dispersibility can also be adjusted. This is e.g. B. necessary if nanoparticles are dispersed in monomers.
  • nanoglass powders according to the invention is so-called rapid prototyping, i.e. the production of three-dimensional prototypes, for example in the field of tissue engineering, i.e. the production of three-dimensional implant frameworks, which serve as carrier materials for the growth of tissue cells.
  • the nano glass powder or nano glass ceramic powder can also be used as an implant material, coating material for implants or a carrier system for medication. Because of the anti-inflammatory or antimicrobial properties, the nanoglass or nanoglass powder according to the invention can also be used directly as an active ingredient. Alternatively, it is possible to introduce the active ingredients into the glass or to apply the active ingredients to the glass surface. Such systems then represent so-called “release systems”.
  • Composite materials such. B. from LGA and / or PGA or their copolymers for biomaterial in particular for tissue engineering are possible.
  • LGA and PGA are bioresorbable polymers.
  • glass and / or glass ceramic nanoparticles according to the invention with an antioxidative, anti-inflammatory, antimicrobial, remineralizing effect is also possible. If certain substances are added, it is possible to produce magnetic nanoparticles, for example, for treatments that promote blood circulation.
  • the chemical composition of the glasses can be varied, it is possible to change the mechanical properties of the nanoparticles made of glass or glass ceramic, such as. B. hardness, modulus of elasticity, density, chemical resistance (e.g. against water, lye and acids) or the electrical properties, adjust and adjust.
  • the zeta potential can also be adjusted by composition and / or surface modifications.
  • Table 1 shows compositions of glasses or starting glasses for glass ceramics in% by weight, from which nanoglass or nanoglass ceramic particles can be produced using the methods according to the invention.
  • the glass compositions given in Table 1 relate to the glass compositions of the starting glasses, which can be evaporated using, for example, an electron beam.
  • the glass composition of the nanoglass or nanoglass ceramic particles deposited in the PVD process essentially match the compositions of the starting glasses if the process is carried out appropriately.
  • customary refining agents are understood, for example, as refining agents Sn 2 0 3 , NaCl, As 2 O 3, Sb 2 0 3 , As 2 S 3 , Sb 2 S 3 , and the usual amounts of a conventional refining agent are 0 - 4% by weight of the total composition
  • Exemplary embodiments of nanoglass powder and their use are to be given below.
  • Exemplary embodiment 1 relates to a nanoglass powder which is introduced into a polymer matrix and leads to an antimicrobial effect of the polymer-nanoglass composite material.
  • nanoglass powder with a particle size of less than 1 ⁇ m according to Example 2 in Table 1 0.1% by weight of nanoglass powder with a particle size of less than 1 ⁇ m according to Example 2 in Table 1 is incorporated into a polystyrene matrix and extruded into sheets.
  • the antimicrobial effectiveness of the surface is tested according to the ASTM standard. A reduction in the test germs (E. Coli, Candida Albicans) by more than 2 log levels is determined.
  • bioactive nanoglass powder with particle sizes smaller than 1 nm according to Example 1 in Table 1 0.1% by weight of bioactive nanoglass powder with particle sizes smaller than 1 nm according to Example 1 in Table 1 is incorporated into a formulation for a deodorant. A significant sweat reduction is observed.
  • Nanoglass powder formulated in a dental resin Typical dental resins are described in EP 0475239 and the documents cited therein.
  • the nanoglass of the glass powder has a glass composition according to Example 4 in Table 1.
  • the average particle size is less than 1 ⁇ m.
  • a high-melting glass for example the Schott glass with number 8330
  • nanopowder is mixed with nanopowder as an admixture in order to lower the sintering temperature.
  • Embodiment 5 relates to a solder glass consisting of 70% by volume of nano glass powder with a composition according to Example 9 in Table 1 and a particle size of ⁇ 1 ⁇ m and 30% by volume of an inert filler (eg cordierite) for adjusting the elongation.
  • the nano-composite glass solder obtained in this way has a melting temperature which is 50 ° C. lower than that of the same mixture of the original material.
  • 5% by weight of a nanoglass powder with particle sizes smaller than 1 ⁇ m with a glass composition which comprises 2% by weight of TiO 2 is added to a sun milk formulation in order to achieve UV blocking.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Glass Compositions (AREA)
  • Cosmetics (AREA)

Abstract

Die Erfindung betrifft ein Glas- oder Glaskeramikpulver, umfassend Multikomponentengläser mit mindestens drei Elementen, dadurch gekennzeichnet, dass das Glas- oder Glaskeramikpulver eine mittlere Partikelgrösse kleiner 1 µm, vorzugsweise kleiner 0,1 µm, besonders bevorzugt kleiner 10 nm aufweist.

Description

Nanoglaspulver und deren Verwendung, insbesondere Multikomponenten- Glaspulver mit einer mittleren Partikelgrösse kleiner 1 μm.
Gegenstand der Erfindung sind Multikomponentengläser mit mindestens drei (3) Elementen mit einer mittleren Partikelgrösse kleiner 1 μm, vorzugsweise kleiner 0,1 μm, besonders bevorzugt kleiner 10 nm. Gläser mit einer derartigen mittleren Partikelgrösse werden auch als Nanopulver bezeichnet. Neben den Multikomponentengläsern umfasst die Anmeldung auch Verfahren zur Herstellung solcher Gläser sowie deren Verwendung.
Anorganische Nanopulver sind für nicht kristalline Zusammensetzungen für Si02 und für kristalline Zusammensetzungen wie z. B. Ti02 oder ZnO bekannt. Betreffend SiO2-Nanopulver wird auf das Produkt Aerosil® der Degussa verwiesen.
Des weiteren sind CeO-Nanopartikel für Poliersuspensionen z. B. von Fa. Nanophase (USA) sowie Zr02 -Nanopartikel oder Al203 Nanopartikel von der Fa. Nanogate (Deutschland) bekannt.
Metallische Nanopartikel sind z. B. für Silber und Silberlegierung bekannt. Eingesetzt werden derartige Nanopartikel beispielsweise als antimikrobielle Wirkstoffe z. B. für Polymere.
Pulver aus metallischen Nanopartikeln können auch zum Bonden im Bereich der Elektronik eingesetzt werden. Das Bonden ist gemäß H. D. Junge, A. Möschwitz, „Elektronik", VCH-Verlag 1993, S. 89 ein Schweißverfahren zum Kontaktieren von elektronischen Elementen beispielsweise auf einer integrierten Schaltung. Durch die Verwendung von metallischen Nanopulvern werden die Bondingtemperaturen stark herabgesetzt. Neben den oben genannten Nanopartikeln sind auch Hydroxylapatit-Nanopartikel beispielsweise von der Firma BASF (Deutschland) bekannt geworden, die im Bereich der Mundpflege, Zahnhygiene, d.h. im Bereich der Oral Care- Anwendungen verwendet werden.
Wie aus dem zuvor beschriebenen Stand der Technik hervorgeht sind vor allem keramische Nanopartikel mit 2 Elementen, bestehend in der Regel aus einem Metall und einem Sauerstoff, bekannt geworden.
Als Nanopartikel in der glasigen Phase sind ausschließlich Zwei-Element-Systeme bestehend aus einer einzigen Komponente, nämlich reinen SiO2-Partikeln bekannt. Nachteilig an derartigen reinen Si02-Systemen ist, dass sie auf Grund ihrer geringen chemischen Variabilität auch keine besonders breite Variation in den Materialeigenschaften aufweisen. Dies betrifft insbesondere optische, chemische, physikalische und mechanische Eigenschaften.
Gläser mit bioaktiver und teilweise auch antimikröbieller Wirkung werden bei LL. Hensch, J. Wilson, An Introduction to Bioceramics, World Scientific Publ., 1993, als Bioglas beschrieben. Derartiges Bioglas zeichnet sich durch die Bildung von Hydroxylappatitschichten in wässrigen Medien aus. Schwermetallfreie Alkali- Erdalkali-Silicat-Gläser mit antimikrobiellen Eigenschaften werden in den Anmeldungen WO 01/04252 und WO 01/03650 beschrieben.
Gläser mit antimikröbieller Wirksamkeit sind aus den nachfolgenden Patentanmeldungen WO03/018495, WO03/18498, WO03/18499, WO03/050052, WO03/062163, WO03/018496 bekannt geworden. Die in diesen Schriften beschriebenen Glaspulver wurden in Form von Mahlung beispielsweise in wässrigen Medien erhalten. Durch eine Mahlung wie in obigen Schriften beschrieben, können keine Glaspulver mit einer mittleren Partikelgrösse, die der von Nanopartikeln entspricht, erhalten werden. Gläser, die im Dentalbereich Verwendung finden, sogenannte Dentalgläser, sind aus der DE 4323143, US 5,641,347, DE 4443173 sowie der EP 0997132 bekannt geworden.
Gläser und insbesondere Glaskeramiken, die sich durch eine geringe oder sogar durch eine Nullausdehnung auszeichnen, sind in der DE 19907038 und der US 5070045 gezeigt.
Die aus dem Stand der Technik bekannten Nanopartikel werden in einer Vielzahl von Gebieten eingesetzt. So ist die Anwendung von Nanopartikeln in kosmetischen Sonnenschutzformulierungen in der US20040067208 beschrieben
Die Oberflächenbehandlungen von Nanopartikeln sowie deren Drucken werden in der US20040052957 beschrieben.
Die Herstellung von Nanopartikeln sowie kratzfeste Beschichtungen mit Nanopartikeln werden in der DE0001022009A1 beschrieben.
Die DE000069600059 beschreibt die Verwendung von TiO2-Nanopartikeln in Sonnenschutzmitteln.
Die US20040042953 beschreibt die Verwendung von Nanopartikeln in WC- Pulvern, wobei die mittlere Partikelgrösse zwischen 10 und 20nm schwankt. Hergestellt werden diese Nanopartikel über Gasphasenreaktionen.
Aus der US20030148282 ist die Verwendung von Nanopartikeln zur Detektion von Nukleinsäure bekannt.
Die US20030064532 beschreibt die Verwendung von Halbleiter-Nanopartikeln im Bereich Luminiszenz und der optischen Datenspeicherung. Die Herstellung beispielsweise von Silber- oder Silberlegierungsnanopulver geschieht über PVD-Verfahren. Beispielsweise ist aus der US 4642207 ein PVD Plasmabogen-Verfahren zur Herstellung von Nanopartikeln über Verdampfung und Kondensation bekannt geworden.
Auch aus der US 5874684 ist ein Verfahren zur Herstellung von nanokristallinem Material bekannt geworden. Hierfür werden binäre Oxide als Rohmaterialien eingesetzt. Zur Herstellung unterschiedlicher Stoffe können verschiedene Atmosphären eingesetzt werden.
Aufgabe der Erfindung ist es ein Mehrkomponenten-Glaspulver zur Verfügung zu stellen, das sich dadurch auszeichnet, dass es in einer Vielzahl von Gebieten verwandt werden kann und gegenüber herkömmlichen Glaspulvern eine verbesserte Aktivität aufweist.
Gelöst wird die Aufgabe durch ein Glaspulver, welches Multikomponentengläser mit mindestens 3 Elementen aufweist, wobei die mittlere Partikelgrösse des
Glaspulvers kleiner als 1 μm, bevorzugt kleiner 0,1 μm, noch bevorzugter kleiner 50 nm, besonders bevorzugt kleiner 10 nm aufweist.
In einer bevorzugten Ausführungsform weist das Glas mehr als 4, besonders bevorzugt mehr als 5, ganz besonders bevorzugt' mehr als 6 Elemente auf.
In dieser Anmeldung wird als Komponente eines oxidischen Glases die oxidische Komponente verstanden, also beispielsweise SiO2 oder B2O3. Unter dem Element in einer Glaszusammensetzung wird das einzelne Element, also Si oder B oder O verstanden. Ein Mehrkomponentenglas ist also ein Glas, welches beispielsweise als Komponenten SiO2 und B203 umfasst. Ein Glas, das als Komponenten Si02 und B2O3 umfasst, weist insgesamt drei Elemente auf. Es würde sich also im Sprachgebrauch dieser Anmeldung um ein 2-Komponenten-Glas mit 3 Elementen handeln. Gemäß der Erfindung umfassen die Glaspulver mit einer Partikelgrösse kleiner 1 μm, die auch als Nanogläser bezeichnet werden, als Netzwerkbildner SiO2 und/oder B2O3 und/oder P2O5. Der Anteil des Netzwerkbildners bzw. der Summe der Netzwerkbildner, falls das Multikomponentenglas mehr als einen Netzwerkbildner umfasst, liegt bevorzugt zwischen 30-95 Gew%, vorzugsweise zwischen 30 und 80 Gew%, insbesondere zwischen 40 und 75 Gew%, am bevorzugtesten zwischen 50 und 70 Gew%. Gemäss der Hauptnetzwerkbildner können die Gläser in die Gruppe der Silikat-, Borat- oder Phosphat-Gläser eingeteilt werden.
Alkaliionen, wie z. B. Na, K, Li, Cs, können in die Glaszusammensetzung als
Netzwerkwandler eingebracht werden. Die Konzentration der Alkalien liegen in der Summe zwischen 0 und 50 Gew%, bevorzugt zwischen 0 und 30 Gew%. Die Alkalien können auch der Einstellung der Reaktivität des Glases dienen, da durch die Alkalien das Glasnetzwerk gezielt unterbrochen werden kann. Beispielsweise können in die Glasmatrix eingebrachte Biozide Ionen wie z. B. Zn oder Ag leichter abgegeben werden.
Neben oder statt den Alkalien können die Erdalkaliionen, wie z. B. Mg, Ca, Sr, Ba, in Summe zwischen 0 und 50 Gew.-% vorliegen. Auch die Erdalkaliionen wirken als Netzwerkwandler und dienen der Einstellung der Reaktivität des Glases. Das Ca nimmt eine besondere Rolle ein. Bei speziellen bioaktiven Gläsern kann durch Vorhandensein von Ca eine Mineralschicht auf der Partikeloberfläche in wässrigen Medien ausbildet werden, die sogenannte Hydroxylapatit-Schicht. Die Multikomponentengläser können des weiteren Aluminiumoxid umfassen. Aluminiumoxid beeinflusst massgeblich die chemische Stabilität sowie die Kristallisationsstabilität der Gläser. Die Al203 Konzentration liegt bevorzugt zwischen 0 Gew% und 25 Gew%. Neben den Netzwerkkomponenten kann das Glas Zinkoxid als eine wesentliche Glaskomponente umfassen. Die Zn-Ionen des Glases können freigesetzt werden und zu einer antimikrobiellen Wirkung führen, die durch Alkali- oder Erdalkaliionen noch unterstützt wird. Die ZnO-Konzentration liegt üblicherweise in der
Ausgangszusammensetzung der Rohstoffe zwischen 0-25 Gew%. Ausserdem kann Zink die chemische Beständigkeit der Gläser verbessern.
Die Multikomponentenmgläser können auch Titanoxid und/oder Zirkonoxid umfassen. Mit Hilfe dieser Zusätze kann gezielt die Brechzahl des Glaspulvers eingestellt werden. Insbesondere der Zusatz von TiO2 kann auch zur UV-Blockung eingesetzt werden.
Falls die Nanopulver Glaskeramiknanopulver sind, können Zusätze von Ti02oder Zr02 als Keimbildner dienen.
Des Weiteren ist mit Ti02 oder Zr02 eine Einstellung der chemischen Beständigkeit der Nanopulver möglich.
Die hydrolytische Beständigkeit kann insbesondere durch die Zugabe von Zr02 verbessert werden, was insbesondere bei hygroskopischen Nanopulvern von Bedeutung ist. Neben der Brechzahlanpassung können TiO2 und ZrO2 auch zur Einstellung des E-Moduls genutzt werden.
Bevorzugt liegt die Konzentration von TiO2 zwischen 0 und 25 Gew% und die Konzentration von ZrO2 liegt zwischen 0 Gew% und 30 Gew%.
Zur Feinanpassung der Brechzahl kann das Nanoglaspulver Tantal- und/oder Wolframoxid umfassen.
Neben oder statt Zn können zur Erzielung von antimikröbieller Wirksamkeit Ag, Cu, I im Glas enthalten sein. In Summe ist die Konzentration von Ag2Ü, CuO, ZnO, I kleiner 15 Gew%, bevorzugt kleiner 10; noch bevorzugter kleiner 5 Gew %.
Auch Edelmetalle wie Au, Pt können in metallischer oder oxidischer Form bis kleiner 10 Gew% vorzugsweise kleiner 5 Gew% am bevorzugtesten kleiner 2 Gew % enthalten sein.
Farbgebende Ionen wie z. B. Cr, Mn, Ni, V, Ce, Fe, V, Co können in Summe (Oxid) bis zu 10 Gew% vorliegen.
Selten Erd Ionen wie z. B. Eu, Ce, Sm, Nd, Er, Sm, Yb, können als Dotierung in üblichen Konzentrationen eingebracht werden.
Fluor kann in den Gläsern als Schmelzhilfsmittel enthalten sein.
Oxide der Elemente Nb, La, Pb und Bi dienen in erster Linie der Brechzahl bzw. Dispersionseinstellung.
Die Zugabe von Elemente wie z. B. Ba, Cs, La ermöglicht es eine hohe Radioopazität einzustellen.
Auch Läutermittel, wie z. B. SnO, As203, Sb203, können in der üblichen Konzentrationen in den Nanoglaspulvern enthalten sein, mit Ausnahme der Nanogläser, die in dentalen, medizinischen und kosmetischen Anwendungen Verwendung finden.
Die zuvor erwähnten Metalle Au, Ag, Pt, Cu können nicht nur in oxidischer, sondern auch in metallischer Form in der Glasmatrix vorliegen.
Radioaktive Elemente können ebenfalls zugesetzt werden. In speziellen Ausführungsformen können auch Nitride oder Oxidnitride als Ausgangsmaterialien eingesetzt werden und darüber entsprechende Nitrid oder Oxinitrid-Nanogläser erhalten werden. Der Vorteil von Nitrid- oder Oxinitridnanogläser sind die besseren mechanischen Eigenschaften als bei oxidischen Gläsern.
Wie oben angegeben haben die erfindungsgemäßen Nanopulver mittlere Komgrössen kleiner 1 μm, bevorzugt kleiner 200 nm, insbesondere bevorzugt kleiner 100 nm, noch bevorzugter kleiner 50 nm, am bevorzugtesten kleiner 20 nm. In einer besonderen Ausführungsform werden Komgrössen kleiner 5 nm verwendet. In speziellen Ausführungsformen können die Nanopartikel kleiner 2 nm sein.
Die BET-Oberfläche herkömmlicher anorganischer Füllstoffe bei Dentalmaterialien liegt z. B. zw. 4 und 65 m2/g.
Im Gegensatz hierzu sind die BET-Oberfächen der Nanopartikel grösser als 50 m2/g , bevorzugt grösser als 100m2/g, noch bevorzugt grösser als 500 m2/g, am bevorzugtesten grösser als 900 m2/g.
Durch das hohe Oberflächen- zu Volumenverhältnis bei den erfindungsgemäßen Nanogläsern spielen die Oberflächeneigenschaften gegen über den Bulkeigenschaften eine zunehmend starke Rolle. Durch die hohe freie Oberfläche werden für den Fachmann auch bei an sich inerten Gläsern, wie es antimikrobielle Silikatgläser sind, überraschend hohe Reaktivitäten, insbesondere eine hohe lonenabgaben z. B. in wässrigen Medien oder in organischen Verbindungen, hohe antimikrobielle Wirkung der Pulver erzielt.
Die Partikel können als Pulver und als Suspension zum Einsatz kommen. Es können sowohl amorphe, phasenentmischte, kristallisierte Glas bzw. Glaskeramik-Nanopartikel eingesetzt werden. Unterschiedliche Phasen können bereits im primären Herstellungsprozess oder in einer Nachprozessierung erreicht werden.
Für die Verwendung als Füllstoff im Dentalbereich ist eine Modifikation der Oberfläche mit Organo-Silanen möglich und vorteilhaft, wie z. B. Methacryloxypropyl-tri-methoxy-Silan. Die verwendeten Organo-Silane zeichnen sich besonders dadurch aus, dass sie sowohl an die Glasoberfläche anbinden können als auch über eine organische funktioneile Seitengruppe an ein organisches Harz binden können. Dadurch wird einerseits das Einformulieren in die organische Harzmatrix erleichtert und andererseits die mechanische Stabilität erhöht. Am weitesten verbreitet für Dentalanwendungen ist das 3-Methacryloxypropyltrimethoxysilan, besser bekannt unter dem Handelsnamen MEMO von der Degussa. Daneben gibt es eine Vielzahl weiterer funktioneller Seitengruppen, wie zum Beispiel Amino-, Glycidoxyl-, Mercapto-, Vinyl-, Alyl-Gruppen mit den entsprechenden Spacern.
Ionen der Elemente La, Ba, Sr, Y, Yb, Nb, Zr, Zn, dienen der Einstellung der Röntgensichtbarkeit von Dentalgläsern.
Die erfindungsgemäßen Nanopulvern, umfassend Multikomponentengläsern und -glaskeramiken können in den Bereichen Kosmetik z. B. als UV-Blocker für UV-A unό/oder UV-B, Dentalfüller, Oral Care, optische Polymere, Sinterwerkstoffe, antimikrobielle Anwendungen, im medizinischen Bereich als Wirkstoff oder Wirkstoffträger, zur Wasserfilterung, -reinigung, aufbereitung, als Lotgläser; als Pigmente, zum Rapid Prototyping, was die sehr schnelle Herstellung von dreidimensionalen Strukturen beschreibt, in Brennstoffzellen, als Abrasivmaterialien, zur Katalyse, als UV-Schutz, in Polierprozessen, in Textilfasern, in Thermoplasten, in Farben und Lacken; in der Oberflächentechnologie, als Antihaft-, Antikratz-, Antireflex-, Antibeschlag-, einfach zu reinigende Schicht, zum Korrosionsschutz; im Bereich der keramischen Technologien, als Rohstoffe z. B. für Gläser oder als Glaskeramik, zur Kristallherstellung, zur Herstellung von optischen Glaskeramiken und optischen Keramiken sowie optischen Polymeren, in der Lasertechnologie, in der Drucktechnologie, in der Biotechnologie, als Fluoreszenzmarker, als Luminiszenzstoff, als Klebstoff, in Polymeren (z. B. Duromere, Plastomere, Monomere), als Kontaktlinsen in Folien, Druckpapier; Leuchtmittel, Kopiertechnik, Membranen verwendet werden.
Eine weitere Applikation stellt die Verwendung der Nanogläser im Bereich der
Elektronik dar, beispielsweise als Glaslote zum Fügen oder als Passivierungsglas für Halbleiterbauelemente.
Die Herstellung der Nanopartikel erfolgt beispielsweise in einem PVD-Verfahren (Physical Vapor Deposition). Die PVD-Verfahren beschreiben eine
Aufdampftechnik. Betreffend derartige PVD-Verfahren wird auf H. D. Junge und G. Müller, VDI-Lexikon Elektrotechnik, 1994, S.26 bis 27 oder VDI-Lexikon „Werkstofftechnik" VDI-Verlag, 1993, S. 810 - 811 sowie S. 5 - 6 verwiesen. Der Offenbarungsgehalt dieser Schriften wird vollumfänglich in die vorliegende Anmeldung mitaufgenommen. Bei PVD-Verfahren werden alle Stoffe des Glases in einem Plasma verdampft. Die verdampften Stoffe werden an einer kalten Fläche, beispielsweise einer Substratoberfläche abgeschieden und organisieren sich im glasigen Zustand neu. Es entstehen die erfindungsgemäßen Mehrkomponenten-Glas- oder Glaskeramik-Nanopartikel. Wie zuvor beschrieben kann neben Nanogläsern auch eine Nanoglaskermik oder ein Nanoglas, welches ein entmischtes System umfasst, auf diesem Weg hergestellt werden. Auch ist es möglich so hergestellte Nanogläser nachträglich einer Keramisierung zu unterwerfen. Auch die Herstellung von Nanopartikel mit Hilfe von Sol Gel- Verfahren ist möglich.
Neben den beschriebenen PVD-Verfahren können auch CVD-Verfahren verwendet werden. CVD-Verfahren (Chemical Vapor Deposition) beschreiben die chemische Abscheidung aus der Gasphase. Betreffend CVD-Verfahren wird auf das VDI-Lexikon „Werkstofftechnik" VDI-Verlag 1993, S.139 sowie S.5 - 6 verwiesen, dessen Offenbarungsgehalt vollumfänglich in den Offenbarungsgehalt der vorliegenden Anmeldung mitaufgenommen wird.
Ein weiteres Verfahren zur Herstellung von Nanopartikeln ist die Flammpyrolyse. Bei der Flammpyrolyse werden reaktive Gase in eine Flamme geleitet. In der Flamme werden die Nanopartikel synthetisiert und in kalten Regionen abgeschieden. Neben gasförmigen Rohstoffen können auch flüssige Rohmaterialien bei der Flammenpyrolyse eingesetzt werden.
Werden in den beschriebenen Verfahren, insbesondere im PVD-Verfahren nichtoxidisches Trägergas eingesetzt, so können Nitrid- oder Oxinitrid-Nanogläser hergestellt werden.
Zur Herstellung der beschriebenen Nanogläser oder Nano-Glaskeramiken eignen sich ganz besonders die oben beschriebenen PVD-Verfahren. Bei den PVD- Verfahren sind besonders die Plasmaverfahren, insbesondere Plasmaverfahren kombiniert mit Hochfrequenzverdampfung oder Elektronenverdampfung, geeignet. Die Plasmaverfahren zeichnen sich dadurch aus, dass die Verdampfung des Rohmaterials in einem Plasma erfolgt.
Als Ausgangsmaterialien werden in den im Stand der Technik bekannten PVD- Verfahren Metalle oder Metalloxide werden.
Besonders bevorzugt ist es aber zur Herstellung der erfindungsgemäßen Multikomponentengläser mit Partikelgrössen kleiner 1 μm als Ausgangsmaterialien aber bereits Multikomponentengläser zu verwenden. Werden Multikomponentengläser als Ausgangsmaterialien eingesetzt, so können unterschiedliche Multikomponentengläser in unterschiedlichen Gewichtsanteilen und Korngrössenverteilungen gemischt werden. Durch die Verwendung von Multikomponentengläsern als Rohstoffe können bereits in einem Rohstoff geeignete Elementkombinationen zusammengestellt sein. Im PVD-Verfahren wird durch lokale Erwärmung des Multikomponentenglases als Rohstoff, dieser Rohstoff selektiv verdampft und die Rohstoffe dann als erfindungsgemäßes Glaspulver oder Glaskeramikpulver mit Partikelgrössen kleiner 1 μm wieder abgeschieden. Wie beschrieben werden die Ausgangsmaterialien beispielsweise in Stab- oder Pulverform in einen Rezipienten eingebracht und dort in einem Plasmabogen verdampft und in einem Gasstrom anschliessend die entsprechenden Nanopartikel abgeschieden.
Der Vorteil des PVD-Verfahrens ist, dass durch die schnellen Abkühlraten auch kristallisationsanfällige Gläser in amorpher Form abgeschieden werden können. Dies betrifft auch Gläser die unter Standardschmelzbedingungen nicht stabil produziert werden können und von denen somit über konventionelles Schmelzen und Mahlen kein amorphes Glaspulver erhalten werden kann.
Durch Einführung unterschiedlicher Reaktionsgase können Oberflächenmodifkationen sowie Gesamtzusammensetzungsmodifkationen erzielt werden. Beispielsweise können mit Hilfe oxidischer Trägergase oxidische Gläser abgeschieden werden, mit Hilfe nicht-oxidische Trägergase beispielsweise Oxi- Nitrid-Gläser.
Aufgrund der sehr kleinen Partikelgrösse lassen sich die erfindungsgemäßen Gläser zur Spaltüberbrückung bei Bonding-Verfahren oder als Klebeverbindungen in optischen Applikationen, zur UV- oder IR-Absorption, zur Wärmedämmung, zur Lichtreflexion, als feuerresistenter Stoff, als Dichtstoff, als Glanzstoff, als Farbbrillianz-Stoff, sowie in der Elektrostatik verwenden.
Weitere Einsatzgebiete sind poröse Elektroden für Brennstoffzellen, Hartlote für Keramik-Metall-Verbindungen oder Tieftemperturlote. Hierbei insbesondere Lote im Bereich von Glas-Glas, Glas-Metall, Glass-Keramik oder Glas-Kristall Verbindungen. Weiterhin können allgemein jeweils Gläser, Keramiken, Glaskeramiken, Kristalle, Metalle mit solchen Loten untereinander verbunden werden.
Auch können die erfindungsgemäßen Nanopartikel elektrophoretisch auf Oberflächen bzw. in porösen Körpern abgeschieden werden.
Die im Stand der Technik beschrieben anorganischen nicht metallischen Biozide können nur in relativ grossen Partikelgrössen größer 1 μm hergestellt und eingesetzt werden. Sie haben daher eine geringere Wirksamkeit als organische Biozide.
Überraschenderweise kann durch die erfindungsgemäßen Nanopartikel die Reaktivität, insbesondere aber die antimikrobielle Wirksamkeit aussergewöhnlich stark gesteigert werden. Hierbei kommt nicht nur die höhere Verfügbarkeit der eingelagerten Wirkstoffe, wie z. B. Ag, Zn, Cu, zum Tragen, sondern die Glasoberfläche an sich mit einem entsprechenden Zetapotential bzw. lokal hohen pH-Werten. Die erhöhte Oberfläche generiert einen synergistischen zusätzlichen antimikrobiellen Effekt. Gegenüber den metallischen antimikrobiellen Nanopulvern beispielsweise Silber-Nanopulver ergibt sich der Vorteil dass die oxidischen Verbindungen wenig zur Verfärbung neigen und das Silber bereits in seine antimikrobielle wirksamen oxidierten Form vorliegt. Die Glas- oder Glaskeramik- Nanopartikel können von der Zusammensetzung so eingestellt werden, dass sie sich in wässrigen Systemen komplett auflösen.
Werden Nanopulver aus Nullausdehnungsmaterial erfindungsgemäß erhalten, so eignen sich diese besonders für die Sinterung und als Füllstoff. Insbesondere ist es möglich durch Sinterung derartiger Nanopulver Nullausdehnungsformkörper über die Sinterroute herzustellen. Mit Hilfe der erfindungsgemäßen Nanopartikel ist es möglich die Sintertemperatur zu erniedrigen und sehr hohe Enddichten mit sehr geringer Porosität zu erreichen, die sich durch eine geringe Streuung und hohe Transparenz auszeichnen. Auch optische Gläser lassen sich aus den erfindungsgemäßen Nanopartikeln durch viskoses Sintern erhalten. Die Nanogläser ergeben zusammengesetzt einen Sintergrünling. Aufgrund e Zusammensetzung des Sintergrünlinges aus einer Vielzahl von einzelnen Nanopartikeln wird eine extrem hohe Oberfläche in den Sintergrünling eingebracht. Aufgrund dieser extrem hohen Oberfläche können besondere Gefüge mit kleinsten Kristallitgrössen erzeugt werden. Die Kristallisation des Sintergrünlinges kann hierbei je nach Glastyp sowohl oberflächengesteuert oder volumengesteuert ablaufen. Ein weiterer Vorteil der extrem hohen Oberfläche der Grünlinge ist, dass Nanokristalle (sowohl bei Volumen als auch bei oberflächengesteuerter Kristallisation) in den gesinteren Vollmaterialien erzeugt werden. Dies ist ein Weg, um Sinterglaskeramiken mit Nanokristallen zu erzeugen.
Durch die hohe Oberflächenreaktivität können Nano-Glaspulver auch als Sinterhilfsmittel für hochschmelzende Materialien eingesetzt werden. Eine andere Anwendung ist der Einsatz beim Verschmelzen temperaturempfindlicher Materialien oder Halbfertigprodukte. Mit Hilfe der früh einsetzenden
Oberflächenreaktion kann hier die Löttemperatur herabgesetzt werden.
Lotgläser aus Nanopartikeln insbesondere in Verbindung mit Lasersintern bzw. Laserlöten werden eingesetzt um möglichst niedrige Temperatur- und Spannungsbelastungen zu erzielen.
Ein weiterer Vorteile der erfindungsgemäßen Nanogläser liegt darin, dass im Gegensatz zu kristallinen keramischen Nanopartikeln Gläser in einem grossen Bereich in ihren optischen Lagen eingestellt werden können. Diese Möglichkeit der Einstellung betrifft beispielsweise die Transmission, Brechzahl, Dispersion und auch Teildispersion des Glases. Durch Mischungen von Polymeren mit Nanogläsern ist es möglich, Polymer-Glas-Komposite zu erhalten, bei denen die optischen Parameter sehr präzise eingestellt werden können. Durch die Variabilität der Glaschemie und entsprechender Oberflächenmodifikation die während und nach der Herstellung durchgeführt werden, können auch Eigenschaften wie die Dispergierfähigkeit eingestellt werden. Dies ist z. B. notwendig, wenn Nanopatikel in Monomeren dispergiert werden.
Da aufgrund der geringen Partikelgrösse der Nanopartikel ein sehr hoher Füllgrad bis über 50 Gew% in die Monomere eingebracht werden kann, ohne die Viskosität des Monomers zu beeinflussen, kann durch den Einsatz von Nanopulvern aus Glas, welches beispielsweise im Brechungsindex an die Anwendung angepasst wird, ein hochgefülltes Polymeres mit geringem Polymerisationsschrumpf erzeugt werden. In den hochgefüllten Polymeren können dann optische Effekte, beispielsweise ein Tyndall-Effekt gezielt erzeugt oder auch vermieden werden.
Beim Einsatz farbiger Gläser ist es möglich, Polymere auch dann einzufärben, wenn handelsübliche keramische Pigmente nicht verwendet werden können und organische Farbstoffe aus Gründen der Toxikologie oder der chemischen, thermischen oder UV-Beständigkeit nicht eingesetzt werden sollen.
Ein weiteres Einsatzgebiet der erfindungsgemäßen Nanoglaspulver ist das sogenannte Rapid Prototyping, d.h. die Herstellung dreidimensionaler Prototypen beispielsweise auf dem Gebiet des Tissue Engineering also der Herstellung dreidimensionaler Implantatgerüste, die als Trägermaterialien für das Wachstum von Gewebezellen dienen.
Die Nanoglaspulver bzw. Nanoglaskeramikpulver sind wegen der hohen Biokompatibilität auch als Implantatmaterial, Beschichtungsmaterial für Implantate oder Trägersystem für Medikamente einsetzbar. Wegen der entzündungshemmenden bzw. antimikrobiellen Eigenschaften sind die erfindungsgemäßen Nanogläser oder Nanoglaspulver auch direkt als Wirkstoff einsetzbar. Alternativ ist es möglich, die Wirkstoffe in das Glas einzubringen oder die Wirkstoffe auf die Glasoberfläche aufzubringen. Derartige Systeme stellen dann sogenannte „Releasesysteme" dar.
Auch Komposit-Materialien z. B. aus LGA und/oder PGA bzw. deren Copolymere für Biomaterial insbesondere für Tissue engineering sind möglich. LGA und PGA sind bioresorbierbare Polymere.
Eine Verwendung im kosmetischen Bereich der erfindungsgemäßen Nanopartikel ist möglich. Insbesondere kann bei Anwendung im kosmetischen Bereich eine UV- blockende und/oder lichtstreuende Wirkung hervorgerufen werden.
Auch die Herstellung von erfindungsgemäßen Glas- und/oder Glaskeramiknanopartikel mit antioxidativer, entzündungshemmender, antimikröbieller, remineralisierender Wirkung ist möglich. Werden bestimmte Stoffe zugegeben, so ist es möglich magnetische Nanopartikel beispielsweise für durchblutungsfördernde Behandlungen herzustellen.
Da die chemische Zusammensetzung der Gläser variiert werden kann, ist es möglich die mechanischen Eigenschaften der Nanopartikel aus Glas- oder Glaskeramik, wie z. B. Härte, E-Modul, Dichte, chemische Beständigkeit (z. B. gegen Wasser, Lauge u. Säuren) oder die elektrischen Eigenschaften, einzustellen und anzupassen. Neben der Partikelgrösse kann auch das Zetapotential durch Zusammensetzungs- und/oder Oberflächenmodifikationen angepasst werden.
Nachfolgend soll die Erfindung anhand von Ausführungsbeispielen näher beschrieben werden.
In Tabelle 1 sind Zusammensetzungen von Gläsern oder Ausgangsgläsern für Glaskeramiken in Gew.-% angegeben, aus denen mit den erfindungsgemäßen Verfahren Nanoglas- oder Nanoglaskeramikpartikel hergestellt werden können. Beispielsweise beziehen sich bei PVD-Verfahren die angegebenen Glaszusammensetzungen gemäß Tabelle 1 auf die Glaszusammensetzungen der Ausgangsgläser, die mit Hilfe beispielsweise eines Elektronenstrahles verdampft werden können. Die Glaszusammensetzung der im PVD-Verfahren abgeschiedenen Nanoglas- oder der Nanoglaskeramikpartikel, stimmen bei entsprechender Verfahrensführung im wesentlichen mit den Zusammensetzungen der Ausgangsgläser überein.
Tabelle 1 : Glaszusammensetzungen
Unter üblichen Läutermittel werden in dieser Anmeldung beispielsweise als Läutermittel Sn203,NaCI,As2θ3, Sb203 , As2S3 , Sb2S3 verstanden, als übliche Mengen eines üblichen Läutermittels werden 0 - 4 Gew% der Gesamtzusammensetzung verstanden. Im nachfolgenden sollen Ausführungsbeispiele für Nanoglaspulver und deren Verwendung gegeben werden. Ausführungsbeispiel 1 bezieht sich auf ein Nanoglaspulver, das in eine Polymermatrix eingebracht und zu einer antimikrobiellen Wirkung des Polymer- Nanoglas-Komposit-Werkstoffes führt. Gemäß Ausführungsbeispiel 1 werden 0,1 Gew% Nanoglaspulver mit einer Partikelgrösse kleiner 1 μm gemäß Beispiel 2 in Tabelle 1 in eine Polystyrolmatrix eingearbeitet und zu Platten extrudiert. Die antimikrobielle Wirksamkeit der Oberfläche wird nach ASTM-Standard getestet. Es wird eine Reduktion der Testkeime (E. Coli, Candida Albicans) um mehr als 2 log- Stufen bestimmt.
Gemäß Ausführungsbeispiel 2 werden 0,1 Gew.-% bioaktives Nanoglaspulver mit Partikelgrößen kleiner 1nm gemäß Beispiel 1 in Tabelle 1, um eine Formulierung für ein Deodorant eingearbeitet. Eine signifikante Schweißreduktion wird beobachtet.
In Ausführungsbeispiel 3 werden 50 Gew.-% des erfindungsgemäßen
Nanoglaspulver in ein Dentalharz einformuliert. Typische Dentalharze sind in der EP 0475239 und darin zitierten Schriften beschrieben. Das Nanoglas des Glaspulvers hat eine Glaszusammensetzung gemäß Beispiel 4 in Tabelle 1. Die mittlere Partikelgröße ist kleiner als 1 μm.
In Ausführungsbeispiel 4 wird ein hochschmelzendes Glas (z. B. das Schott Glas mit Nummer 8330) mit Nanopulver als Beimischung gemischt, um die Sintertemperatur herabzusetzen.
Ausführungsbeispiel 5 betrifft ein Lotglas, bestehend aus 70 Vol% Nanoglaspulver mit einer Zusammensetzung gemäß Beispiel 9 in Tabelle 1 und einer Partikelgröße < 1 μm und 30 Vol% eines inerten Füllstoffes (z. B. Cordierit) zur Dehnungsanpassung. Das so erhaltene Nano-Kompositglaslot weist eine um 50°C geringere Einschmelztemperatur auf verglichen mit der gleichen Mischung des Ursprungsmaterials. Ausführungsbeispiel 6 betrifft ein Polymer - Glaskomposit, bei dem ein Fluorpolymer jeweils mit 5,10,20 Gew% eines Nanopulvers, das die Glaszusammensetzung eines Bleisilikatglases mit einer Brechzahl n = 1 ,9 aufweist, versetzt wird. Je nach Anteil des Nanopulvers im Fluorpolymeren verschiebt sich die Brechzahl des Kompositwerkstoffes zu höheren Werten.
In Ausführungsbeispiel 7 wird 5 Gew.-% eines Nanoglaspulver mit Partikelgrößen kleiner 1 μm mit einer Glaszusammensetzung, die 2 Gew.-% Ti02 umfasst, einer Sonnenmilch-Formulierung zugegeben, um eine UV-Blockung zu erreichen.

Claims

Patentansprüche
1. Glas- oder Glaskeramikpulver umfassend Multikomponentengläser mit mindestens drei Elementen, dadurch gekennzeichnet, dass das Glas- oder Glaskeramikpulver eine mittlere Partikelgrösse kleiner 1 μm, vorzugsweise kleiner 0,1 μm, besonders bevorzugt kleiner 10 nm aufweist.
2. Glas- oder Glaskeramikpulver gemäß Anspruch 1 , dadurch gekennzeichnet, dass das Glas- oder Glaskeramikpulver mehr als drei Elemente umfasst.
3. Glas- oder Glaskeramikpulver gemäß einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass das Glas- oder Glaskeramikpulver mehr als vier Elemente umfasst.
4. Glas- oder Glaskeramikpulver gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Glas- oder Glaskeramikpulver mehr als fünf Elemente umfasst.
5. Glas- oder Glaskeramikpulver gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Ausgangsmaterial zur Herstellung, der Glas- oder Glaskeramikpartikel oder die Glas- oder Glaskeramikpulvernanopartikel selbst die nachfolgende Zusammensetzung (in Gew.-% auf Oxidbasis) umfasst:
Si02 0-90 B2O30-90 P205 0-90 Na20 0-30 Li20 0-30 K20 0-30 CaO 0-30 MgO 0-40 CsO 0-40 BaO 0-40 SrO 0-40 AI203 0-30 Ti02 0-20 ZnO 0-30 Nb203 0 - 40 La2O3 0 - 40 PbO 0 - 70 Bi203 0 - 70 W03 0-30 Zr02 0-40 Yb2O3 0-40 Y2O30-40 F 0-10 Ag20 0-5 Gew% CuO 0-10 Gew% wobei die Summe Si02+ B203+P205 grösser 25 Gew% ist
6. Glas- oder Glaskeramikpulver nach Anspruch 5, dadurch gekennzeichnet, dass die Zusammensetzung (in Gew.-% auf Oxidbasis) umfasst:
Si02 50-80 B2O30-15 P205 0-20 Na20 0-10 Li20 1-15 K2O 0-15 CaO 0-15 MgO 0-15 BaO 0-5 SrO 0-5 Al203 0-30 TiO2 0-10 ZnO 0-10 ZrO2 0-10 F 0-10 sowie übliche Läutermittel in üblichen Mengen.
7. Glas- oder Glaskeramikpulver gemäß Anspruch 5, dadurch gekennzeichnet, dass die Glaszusammensetzung 40 - 80 Gew% P205 enthält.
8. Glas- oder Glaskeramipulver gemäss Anspruch 5, dadurch gekennzeichnet, dass die Glaszusammensetzung 30-80 Gew% B203 enthält.
9. Glas- oder Glaskeramikpulver nach Anspruch 5, dadurch gekennzeichnet, dass die Glaszusammensetzung 20 - 95 Gew% Si02 enthält.
10. Glas- oder Glaskeramikpulver nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass die Glaszusammensetzung 4 - 30 Gew% CaO enthält.
11. Glas- oder Glaskeramikpulver nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass die Glaszusammensetzung 4 - 30 Gew% Na20 enthält.
12. Glas- oder Glaskeramikpulver nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass die Glaszusammensetzung 40 - 80 Gew.-% Si02 und 5 - 50 Gew.-% B203 enthält.
13. Glas- oder Glaskeramikpulver nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Glaszusammensetzung Ag, Cu, Zn, I enthält.
14. Glas- oder Glaskeramikpulver nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das Glas- oder Glaskeramikpulver entzündungshemmende Wirkung aufweist.
15. Glas- oder Glaskeramikpulver nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das Glas- oder Glaskeramikpulver mittels PVD-Verfahren hergestellt wird.
16. Verwendung von Glas- oder Glaskeramikpulvern nach einem der Ansprüche 1 bis 15 in einem oder mehreren der nachfolgenden Gebiete: im Bereich Oral Care im Bereich Dentalfüllstoffe in medizinischen Produkten in der Sintertechnologie als antimikrobielle Wirkstoffe als Füllstoff für Polymere im Bereich Kosmetika im Bereich Lotgläser im Bereich Oberflächen im Bereich Dentalkeramiken im Bereich Medizinprodukte als Passivierungsmittel mit Passivierungseigenschaften mit einer organofunktionalisierten Oberfläche im Bereich Infiltrationsgläser oder im Bereich Photokatalyse.
EP05744811A 2004-05-29 2005-05-25 NANOGLASPULVER UND DEREN VERWENGUNG, INSBESONDERE MULTIKOMPONENTEN-GLASPULVER MIT EINER MITTLEREN PARTIKELGRÖSSE KLEINER 1 µm. Withdrawn EP1751071A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10000497A EP2189426A1 (de) 2004-05-29 2005-05-25 Verfahren zur Herstellung eines Glas- oder Glaskeramikpulvers in Form von Nanopartikeln

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004026433A DE102004026433A1 (de) 2004-05-29 2004-05-29 Nanoglaspulver und deren Verwendung
PCT/EP2005/005633 WO2005115936A2 (de) 2004-05-29 2005-05-25 NANOGLASPULVER UND DEREN VERWENGUNG, INSBESONDERE MULTIKOMPONENTEN-GLASPULVER MIT EINER MITTLEREN PARTIKELGRÖSSE KLEINER 1 µm

Publications (1)

Publication Number Publication Date
EP1751071A2 true EP1751071A2 (de) 2007-02-14

Family

ID=35079314

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05744811A Withdrawn EP1751071A2 (de) 2004-05-29 2005-05-25 NANOGLASPULVER UND DEREN VERWENGUNG, INSBESONDERE MULTIKOMPONENTEN-GLASPULVER MIT EINER MITTLEREN PARTIKELGRÖSSE KLEINER 1 µm.
EP10000497A Withdrawn EP2189426A1 (de) 2004-05-29 2005-05-25 Verfahren zur Herstellung eines Glas- oder Glaskeramikpulvers in Form von Nanopartikeln

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10000497A Withdrawn EP2189426A1 (de) 2004-05-29 2005-05-25 Verfahren zur Herstellung eines Glas- oder Glaskeramikpulvers in Form von Nanopartikeln

Country Status (6)

Country Link
US (1) US7816292B2 (de)
EP (2) EP1751071A2 (de)
JP (1) JP2008500935A (de)
CN (1) CN101094818A (de)
DE (1) DE102004026433A1 (de)
WO (1) WO2005115936A2 (de)

Families Citing this family (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8780957B2 (en) 2005-01-14 2014-07-15 Qualcomm Incorporated Optimal weights for MMSE space-time equalizer of multicode CDMA system
US9197912B2 (en) 2005-03-10 2015-11-24 Qualcomm Incorporated Content classification for multimedia processing
US8879856B2 (en) 2005-09-27 2014-11-04 Qualcomm Incorporated Content driven transcoder that orchestrates multimedia transcoding using content information
US8948260B2 (en) 2005-10-17 2015-02-03 Qualcomm Incorporated Adaptive GOP structure in video streaming
US8654848B2 (en) 2005-10-17 2014-02-18 Qualcomm Incorporated Method and apparatus for shot detection in video streaming
US7687417B2 (en) * 2005-11-16 2010-03-30 E.I. Du Pont De Nemours And Company Lead free glass(es), thick film paste(s), tape composition(s) and low temperature cofired ceramic devices made therefrom
JP5054321B2 (ja) * 2006-03-28 2012-10-24 日揮触媒化成株式会社 歯科用充填材、その製造方法および歯科用複合材料
US9131164B2 (en) 2006-04-04 2015-09-08 Qualcomm Incorporated Preprocessor method and apparatus
US20080145633A1 (en) * 2006-06-19 2008-06-19 Cabot Corporation Photovoltaic conductive features and processes for forming same
US20070293388A1 (en) 2006-06-20 2007-12-20 General Electric Company Glass articles and method for making thereof
DE102006037497A1 (de) * 2006-08-10 2008-02-14 Friedrich-Baur Gmbh Poröser Festkörper mit bimodaler Porengrößenverteilung sowie Verfahren zu dessen Herstellung
JP5039969B2 (ja) * 2006-11-15 2012-10-03 国立大学法人東北大学 ガラス、結晶化ガラス、結晶化ガラスの製造方法及び光触媒部材
JP4863975B2 (ja) * 2007-02-06 2012-01-25 三菱電機株式会社 グリーンシート用セラミック粉末及び多層セラミック基板
EP1972320A1 (de) * 2007-03-22 2008-09-24 Vita Zahnfabrik H. Rauter GmbH & Co. KG Niobhaltiges Infiltrationsglas
US8058195B2 (en) 2007-06-19 2011-11-15 Cabot Corporation Nanoglass and flame spray processes for producing nanoglass
US8674462B2 (en) * 2007-07-25 2014-03-18 Infineon Technologies Ag Sensor package
JP4772071B2 (ja) * 2008-03-07 2011-09-14 三菱電機株式会社 グリーンシート用セラミック粉末及び低温焼成多層セラミック基板
DK2109173T3 (da) * 2008-04-07 2013-05-27 Topsoee Fuel Cell As Fastoxid brændselscellestak, fremgangsmåde til fremstilling heraf og anvendelse af en E-glas deri
US8445394B2 (en) * 2008-10-06 2013-05-21 Corning Incorporated Intermediate thermal expansion coefficient glass
AU2009301632B2 (en) * 2008-10-08 2013-10-24 MaxSil Pty Ltd Silicon-containing glass powder particles to improve plant growth
WO2010041760A1 (ja) * 2008-10-10 2010-04-15 株式会社オハラ ガラスセラミックス及びその製造方法、ガラスセラミックス焼結体の製造方法、複合体の製造方法、光触媒機能性成形体、並びに親水性成形体
US20100189663A1 (en) * 2009-01-24 2010-07-29 Gallis Karl W Mouth rinse compositions including chemically modified silica or silicate materials for sustained delivery to tooth surfaces
DE102009008951B4 (de) 2009-02-13 2011-01-20 Schott Ag Röntgenopakes bariumfreies Glas und dessen Verwendung
DE102009008953B4 (de) 2009-02-13 2010-12-30 Schott Ag Röntgenopakes bariumfreies Glas und dessen Verwendung
DE102009008954B4 (de) 2009-02-13 2010-12-23 Schott Ag Röntgenopakes bariumfreies Glas und dessen Verwendung
KR101117801B1 (ko) * 2009-05-12 2012-03-09 (주)석경에이티 치관재 조성물
US8287896B2 (en) * 2010-01-06 2012-10-16 The Curators Of The University Of Missouri Scaffolds with trace element for tissue regeneration in mammals
US8481066B2 (en) 2009-07-16 2013-07-09 The Curators Of The University Of Missouri Scaffold for tissue regeneration in mammals
CN101759369B (zh) * 2009-12-16 2011-12-07 贵阳华利美化工有限责任公司 一种低膨胀硼铝锌硅系无铅玻璃粉及其制备方法和应用
US8173154B2 (en) * 2010-01-06 2012-05-08 The Curators Of The University Of Missouri Boron trioxide glass-based fibers and particles in dressings, sutures, surgical glue, and other wound care compositions
DE102010007796B3 (de) * 2010-02-12 2011-04-14 Schott Ag Röntgenopakes bariumfreies Glas und dessen Verwendung
US20110206749A1 (en) * 2010-02-19 2011-08-25 J.M. Huber Corporation Silica materials for reducing oral malador
US20110236444A1 (en) * 2010-03-25 2011-09-29 Darsillo Michael S Antimicrobial Silica Composites
DE102010021492B4 (de) * 2010-05-26 2013-01-03 Nanopartica Gmbh Verfahren zur Herstellung von farbigem Glas
US9107977B2 (en) * 2010-10-29 2015-08-18 Mitsubishi Electric Corporation Implant material, implant component, implant component manufacturing method, laser machining method, and laser machining apparatus
CN102561039B (zh) * 2011-01-04 2015-06-10 江西昌硕户外休闲用品有限公司 一种用于户外纺织品的隔热涂料及其制备方法和应用
EP2683667B1 (de) * 2011-03-07 2016-06-29 Schott AG Glassystem zum hermetischen verbund von cu bauteilen sowie gehäuse für elektronische bauteile
CN102157221A (zh) * 2011-03-28 2011-08-17 彩虹集团公司 一种环保型半导体电容器用电极银浆的浆制备方法
DE102012203875A1 (de) * 2011-04-21 2012-10-25 Schott Ag Glaspulver mit verbesserter Korngrößenverteilung und Verfahren zu dessen Herstellung
CN102815870B (zh) * 2011-06-10 2016-08-03 深圳市纳宇材料技术有限公司 一种纳米玻璃粉及其制备方法和用途
CN103945819A (zh) * 2011-10-14 2014-07-23 义获嘉伟瓦登特公司 包含四价金属氧化物的硅酸锂玻璃陶瓷和硅酸锂玻璃
WO2013053865A2 (de) * 2011-10-14 2013-04-18 Ivoclar Vivadent Ag Lithiumsilikat-glaskeramik und -glas mit dreiwertigem metalloxid
KR101372469B1 (ko) * 2011-10-20 2014-03-12 인하대학교 산학협력단 저융점 나노 유리 분말의 제조방법 및 제조장치
CN103359944B (zh) * 2012-03-26 2015-07-22 重庆市锦艺硅材料开发有限公司 软性玻璃微粉及其制备方法
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9140481B2 (en) 2012-04-02 2015-09-22 Whirlpool Corporation Folded vacuum insulated structure
CN102826752B (zh) * 2012-08-23 2015-07-15 北京大清生物技术有限公司 一种含有准纳米级颗粒的生物活性矿物质粉体、制备方法及其在牙科治疗中的应用
CN102831955B (zh) * 2012-08-24 2014-08-20 合肥中南光电有限公司 含纳米级混合银粉的太阳能电池正面银浆及其制备方法
CN102831952B (zh) * 2012-08-24 2014-10-22 合肥中南光电有限公司 无铅太阳能电池正面电极用导电银浆及其制备方法
CN102976618B (zh) * 2012-12-11 2015-09-23 安泰科技股份有限公司 水基玻璃离子水门汀的玻璃粉体及其制备方法
EP2941405B1 (de) * 2013-01-04 2018-03-14 Robert Bosch GmbH Glas zur befestigung eines hochtemperatursubstrats
JP6258976B2 (ja) * 2013-02-26 2018-01-10 コーニング インコーポレイテッド イオン交換プロセスに適合した装飾用多孔性無機層を表面に有する強化ガラス物品
BR102013020961A2 (pt) * 2013-08-12 2016-03-08 Univ Fed De São Carlos composição vítrea, fibras e tecidos vítreos bioativos e artigos
US9622483B2 (en) 2014-02-19 2017-04-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039621B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039620B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
CN104944788B (zh) * 2014-03-30 2017-09-12 佛山市百瑞新材料技术有限公司 一种全瓷牙烤瓷用玻璃粉及其制备方法
CN104108882A (zh) * 2014-04-11 2014-10-22 海南大学 一种浮法微晶玻璃及其制备方法
CN103951191B (zh) * 2014-04-29 2015-12-09 山东科技大学 两种熔块复合的黄/白间颜色梯度变化的牙齿微晶玻璃
EP2952486A1 (de) * 2014-06-03 2015-12-09 Heraeus Precious Metals North America Conshohocken LLC Dielektrische Glaszusammensetzung
JP2015229628A (ja) * 2014-06-06 2015-12-21 旭硝子株式会社 ガラス粉末、ガラススラリー、および積層型電子部品
JP5784848B1 (ja) * 2014-07-10 2015-09-24 石塚硝子株式会社 消臭剤
US9814240B2 (en) 2014-11-25 2017-11-14 Microban Products Company Strengthened glass with biocidal property
US9476633B2 (en) 2015-03-02 2016-10-25 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US9897370B2 (en) 2015-03-11 2018-02-20 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
JP6656574B2 (ja) * 2015-03-31 2020-03-04 日本電気硝子株式会社 立体造形用樹脂組成物
US9441779B1 (en) 2015-07-01 2016-09-13 Whirlpool Corporation Split hybrid insulation structure for an appliance
CN104966788B (zh) * 2015-07-27 2017-02-22 京东方科技集团股份有限公司 封装材料、有机发光二极管器件及其封装方法
KR101799558B1 (ko) * 2015-08-12 2017-11-20 인하대학교 산학협력단 파쇄된 불규칙 형상의 비정질 유리를 기반으로 한 3d 프린팅용 성형소재와 3d 프린팅용 성형방법 및 성형체
CN105084764A (zh) * 2015-09-01 2015-11-25 广西南宁智翠科技咨询有限公司 一种用于制作牙科修复体的玻璃陶瓷及其制备方法
CN105060722B (zh) * 2015-09-15 2023-07-07 中国建材国际工程集团有限公司 纳米玻璃粉及其制备方法
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10105928B2 (en) 2015-12-08 2018-10-23 Whirlpool Corporation Super insulating nano-spheres for appliance insulation and method for creating a super insulating nano-sphere material
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US11994336B2 (en) 2015-12-09 2024-05-28 Whirlpool Corporation Vacuum insulated structure with thermal bridge breaker with heat loop
US10808987B2 (en) 2015-12-09 2020-10-20 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
CN105776857A (zh) * 2016-03-01 2016-07-20 苏州云舒新材料科技有限公司 一种高透光率玻璃材料及其制备方法
CN105776855A (zh) * 2016-03-01 2016-07-20 苏州云舒新材料科技有限公司 一种耐磨玻璃及其制备方法
CN105776853A (zh) * 2016-03-01 2016-07-20 苏州云舒新材料科技有限公司 一种透明无铅玻璃及其制备方法
CN105776856A (zh) * 2016-03-01 2016-07-20 苏州云舒新材料科技有限公司 一种纳米透明耐刮玻璃及其制备方法
CN105753318A (zh) * 2016-03-04 2016-07-13 苏州圣谱拉新材料科技有限公司 一种耐热防爆纳米玻璃材料及其制备方法
CN105819686A (zh) * 2016-03-04 2016-08-03 苏州圣谱拉新材料科技有限公司 一种耐寒玻璃材料及其制备方法
CN105753320A (zh) * 2016-03-04 2016-07-13 苏州圣谱拉新材料科技有限公司 一种纳米透明隔热玻璃材料及其制备方法
CN105731787A (zh) * 2016-03-04 2016-07-06 苏州圣谱拉新材料科技有限公司 一种耐刮擦透明纳米玻璃材料及其制备方法
EP3443284B1 (de) 2016-04-15 2020-11-18 Whirlpool Corporation Vakuumisolierte kühlstruktur mit dreidimensionalen eigenschaften
EP3443285B1 (de) 2016-04-15 2021-03-10 Whirlpool Corporation Vakuumisolierter kühlschrank
CN105967517A (zh) * 2016-05-06 2016-09-28 东莞市银特丰光学玻璃科技有限公司 一种高强度平板玻璃的配方及制备工艺
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
EP3500804B1 (de) 2016-08-18 2022-06-22 Whirlpool Corporation Kühlschrank
CN106494438A (zh) * 2016-10-21 2017-03-15 苏州大成电子科技有限公司 一种观赏性好的全景观列车车厢
US10352613B2 (en) 2016-12-05 2019-07-16 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
CN106531283A (zh) * 2017-01-12 2017-03-22 东莞珂洛赫慕电子材料科技有限公司 一种氮化铝基材用大功率厚膜电路银钌电阻浆料及其制备方法
RU2661959C1 (ru) * 2017-04-07 2018-07-23 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Стекло
DE102017207253B3 (de) 2017-04-28 2018-06-14 Schott Ag Filterglas
CN106986546B (zh) * 2017-05-11 2019-05-07 长春理工大学 一种含Na3.6Y1.8(PO4)3晶相透明磷酸盐玻璃陶瓷及其制备方法
CN107089797A (zh) * 2017-06-22 2017-08-25 合肥钢骨玻璃制品有限公司 一种微晶玻璃及其制备方法
CN110051691A (zh) * 2018-01-15 2019-07-26 张家港蓝智生物科技有限公司 一种具备美白功效的冷凝胶及冷敷贴
RU2714035C2 (ru) * 2018-05-30 2020-02-11 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Рентгеноконтрастное биоактивное стекло и способ его получения
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
CN108793740A (zh) * 2018-07-05 2018-11-13 徐涌涛 一种磷酸盐抗菌玻璃的制备方法
CN108503217A (zh) * 2018-07-05 2018-09-07 徐涌涛 一种抗菌玻璃材料及其制备方法
WO2020047662A1 (en) * 2018-09-05 2020-03-12 Ir Scientific Inc. Glass composition
KR102234552B1 (ko) 2018-10-31 2021-04-01 엘지전자 주식회사 법랑 조성물 및 이의 제조방법
KR102234551B1 (ko) 2018-11-09 2021-04-01 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
KR102172417B1 (ko) 2019-02-22 2020-10-30 엘지전자 주식회사 법랑 조성물 및 이의 제조방법
KR102172418B1 (ko) 2019-02-22 2020-10-30 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기
KR20200102758A (ko) 2019-02-22 2020-09-01 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기
KR102172459B1 (ko) * 2019-02-22 2020-10-30 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기
KR102172460B1 (ko) * 2019-02-22 2020-10-30 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기
KR102310341B1 (ko) 2019-02-22 2021-10-07 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기
KR102172416B1 (ko) 2019-02-22 2020-10-30 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기
CN109867449A (zh) * 2019-04-23 2019-06-11 郑州知淘信息科技有限责任公司 一种汽车玻璃油墨用无铅低熔点玻璃粉及其制备方法
DE102019120434A1 (de) 2019-07-29 2021-02-04 Schott Ag Glaszusammensetzung und Glaspulver, insbesondere zur Verwendung im Dentalbereich
WO2021200531A1 (ja) * 2020-03-31 2021-10-07 Hoya株式会社 ガラスおよびガラスを含む物品
US20240149342A1 (en) * 2021-03-22 2024-05-09 University Of Maryland, College Park Metallic glass materials and methods of making the same
CN113698105B (zh) * 2021-07-09 2022-12-06 山东玻纤集团股份有限公司 一种高强度玻璃纤维组合物及其制备方法
CN114404303B (zh) * 2021-12-30 2023-10-20 辽宁爱尔创生物材料有限公司 荧光玻璃无机填料及其制备方法与应用
CN114507071A (zh) * 2022-03-05 2022-05-17 太原理工大学 一种高强度陶瓷介质材料及其制备方法
CN116043165B (zh) * 2022-12-27 2023-09-29 巨玻固能(苏州)薄膜材料有限公司 一种用于将零件表面镀膜层无损剥离的镀膜材料

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1022009B (de) 1954-12-02 1958-01-02 Kali Chemie Ag Verfahren zur Polykondensation von Kieselsaeureestern unter gleichzeitiger Gewinnung von Alkylhalogeniden
JPS59227765A (ja) 1983-06-04 1984-12-21 科学技術庁金属材料技術研究所長 セラミツクスの超微粒子の製造法
JPS61186248A (ja) * 1985-02-13 1986-08-19 Nippon Electric Glass Co Ltd ガラスセラミツク
FR2657079B1 (fr) 1990-01-12 1993-04-09 Corning France Verres precurseurs de vitroceramiques, procede de conversion de ces verres en vitroceramiques a dilation tres faible ou nulle et vitroceramiques obtenues.
JPH0467868A (ja) * 1990-07-07 1992-03-03 Ishizuka Glass Co Ltd 消臭剤
DE4029230C2 (de) 1990-09-14 1995-03-23 Ivoclar Ag Polymerisierbarer Dentalwerkstoff
JPH04160023A (ja) * 1990-10-23 1992-06-03 Sumitomo Metal Mining Co Ltd 球状ガラス粉末の製造方法
DE4323143C1 (de) 1993-07-10 1994-12-01 Schott Glaswerke Verwendung eines Glases als bariumfreies Dentalglas mit guter Röntgenabsorption
US5460701A (en) 1993-07-27 1995-10-24 Nanophase Technologies Corporation Method of making nanostructured materials
DE4443173C2 (de) 1994-12-05 1997-04-10 Schott Glaswerke Bariumfreies Dentalglas mit guter Röntgenabsorption
DE19520448C2 (de) * 1995-06-03 1997-09-04 Schott Glaswerke Verfahren zur Herstellung von feinteiligen Multikomponenten-Glaspulvern zur Verwendung als Glasfluß für die Erzeugung von Schichten und Dekoren auf Glas, Glaskeramik oder Keramik
DK0749746T3 (da) 1995-06-21 1998-02-23 Oreal Kosmetisk sammensætning omfattende en dispersion af polymerpartikler
US6506564B1 (en) 1996-07-29 2003-01-14 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6360562B1 (en) * 1998-02-24 2002-03-26 Superior Micropowders Llc Methods for producing glass powders
SE9802880L (sv) * 1998-08-28 1999-08-16 Scania Cv Ab Reglageanordning för en stol hos ett fordon
DE19849388C2 (de) 1998-10-27 2001-05-17 Schott Glas Bariumfreies röntgenopakes Dentalglas sowie dessen Verwendung
US6358531B1 (en) 1999-02-01 2002-03-19 The Curators Of The University Of Missouri Method for preparing porous shells or gels from glass particles
DE19907038C2 (de) 1999-02-19 2003-04-10 Schott Glas Transluzente oder opake Glaskeramik mit Hochquarz-Mischkristallen als vorherrschender Kristallphase und deren Verwendung
CN1360491A (zh) 1999-07-09 2002-07-24 肖特玻璃制造厂 用于易腐制剂,特别是化妆和药物制剂的防腐剂
TR200103637T2 (tr) 1999-07-09 2002-04-22 Schott Glas Toksik olmayan mikrobiyosit temizleme maddesi
WO2001016047A2 (en) * 1999-08-18 2001-03-08 Rutgers, The State University Composite ceramic having nano-scale grain dimensions and method for manufacturing same
JP2001247333A (ja) * 1999-12-28 2001-09-11 Ishizuka Glass Co Ltd 抗菌性付与用ガラス組成物、抗菌性繊維、抗菌性撚糸及び抗菌性布状物
EP1142830A1 (de) * 2000-04-03 2001-10-10 Degussa AG Nanoskalige pyrogene Oxide, Verfahren zur deren Herstellung und die Verwendung dieser Oxide
JP3625415B2 (ja) * 2000-04-20 2005-03-02 株式会社日清製粉グループ本社 酸化物封入ガラス微粒子の製造方法並びにこの方法により製造された酸化物封入ガラス微粒子
FR2819406B1 (fr) 2001-01-15 2003-02-21 Oreal Composition cosmetique contenant des filtres mineraux
CA2433059C (en) 2001-01-30 2009-05-12 The Procter & Gamble Company Coating compositions for modifying surfaces
US7067072B2 (en) 2001-08-17 2006-06-27 Nomadics, Inc. Nanophase luminescence particulate material
EP1419118B1 (de) 2001-08-22 2006-07-12 Schott Ag Antimikrobielles, entzündungshemmendes, wundheilendes glaspulver und dessen verwendung
DE10141117A1 (de) 2001-08-22 2003-03-13 Schott Glas Antimikrobielles Silicatglas und dessen Verwendung
WO2003018499A2 (de) 2001-08-22 2003-03-06 Schott Glas Antimikrobielles glaspulver und dessen verwendung
US7166549B2 (en) 2001-08-22 2007-01-23 Schott Ag Antimicrobial, anti-inflammatory, wound-healing and disinfecting glass and use thereof
US7141520B2 (en) * 2001-12-12 2006-11-28 Schott Ag Antimicrobial alkali-silicate glass ceramic and the use thereof
DE10161075C1 (de) 2001-12-12 2003-08-21 Schott Glas UV-Strahlung absorbierende, antimikrobielle, entzündungshemmende Glaskeramik, Verfahren zu ihrer Herstellung und ihre Verwendungen
AU2003202227A1 (en) * 2002-01-08 2003-07-24 Photon-X, Inc. Optical waveguide amplifiers
JP4052836B2 (ja) * 2002-01-15 2008-02-27 日本電気硝子株式会社 抗菌性ガラス微小球及びその製造方法
DE10201747C1 (de) * 2002-01-18 2003-08-14 Schott Glas Glas-Keramik-Komposit, Verfahren zu seiner Herstellung und Verwendungen
CN1151086C (zh) * 2002-01-18 2004-05-26 中国科学院上海硅酸盐研究所 纳米级生物活性玻璃粉体材料及制备方法
WO2003062163A2 (de) 2002-01-24 2003-07-31 Schott Glas Antimikrobielles, wasserunlösliches silicatglaspulver und mischung von glaspulvern
DE10322444A1 (de) * 2002-05-23 2003-10-16 Schott Glas Formulierung kosmetischer Produkte mit Glaspulver
KR100494976B1 (ko) 2002-08-29 2005-06-13 한국기계연구원 상압 기상반응법에 의한 나노 wc계 분말의 제조방법
WO2004024100A1 (en) * 2002-09-10 2004-03-25 National University Of Singapore Glass ionomer cements, glass powder therefor, and methods of manufacture
US6669757B1 (en) * 2002-12-05 2003-12-30 Tri E Holding, Llc Method for extracting metal from glass waste
US7175786B2 (en) * 2003-02-05 2007-02-13 3M Innovative Properties Co. Methods of making Al2O3-SiO2 ceramics
DE10345625A1 (de) 2003-09-29 2005-04-28 Schott Ag Herstellungsverfahren eines Glaspulvers oder Glasproduktes mit antimikrobieller Wirkung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005115936A2 *

Also Published As

Publication number Publication date
DE102004026433A1 (de) 2005-12-22
JP2008500935A (ja) 2008-01-17
CN101094818A (zh) 2007-12-26
US20080044488A1 (en) 2008-02-21
EP2189426A1 (de) 2010-05-26
WO2005115936A2 (de) 2005-12-08
US7816292B2 (en) 2010-10-19
WO2005115936A3 (de) 2006-02-16

Similar Documents

Publication Publication Date Title
EP1751071A2 (de) NANOGLASPULVER UND DEREN VERWENGUNG, INSBESONDERE MULTIKOMPONENTEN-GLASPULVER MIT EINER MITTLEREN PARTIKELGRÖSSE KLEINER 1 µm.
EP2261189B1 (de) Mit nanoskaligem metalloxid-pulver versetzte leucit-glaskeramik
EP2377830B1 (de) Lithiumsilikat-Glaskeramik und -Glas mit Übergangsmetalloxid
DE60010469T2 (de) Transparente mikrokugeln
EP1435346B1 (de) Fräskeramiken aus Metalloxid-Pulvern mit bimodaler Korngrössenverteilung
EP1720806B1 (de) Röntgenopakes glas, verfahren zu seiner herstellung und seiner verwendung
WO2013167723A1 (de) Vorgesinterter rohling für dentale zwecke
WO2015067643A1 (de) Lithiumdisilikat-apatit-glaskeramik mit übergangsmetalloxid
EP2847140A1 (de) Vorgesinterter rohling für dentale zwecke
WO2003050051A1 (de) Antimikrobielle alkali-silicat-glaskeramik und ihre verwendung
CH700385A2 (de) Röntgenopakes bariumfreies Glas und dessen Verwendung.
CH702657A2 (de) Röntgenopakes bariumfreies Glas und dessen Verwendung.
EP2765979A2 (de) Lithiumsilikat-glaskeramik und -glas mit fünfwertigem metalloxid
CH700386A2 (de) Röntgenopakes bariumfreies Glas und dessen Verwendung.
WO2007048670A2 (de) Dentalglas
WO2013053868A2 (de) Lithiumsilikat-glaskeramik und -glas mit sechswertigem metalloxid
EP1167311B1 (de) Tiefsinternde Apatit-Glaskeramik
DE10201747C1 (de) Glas-Keramik-Komposit, Verfahren zu seiner Herstellung und Verwendungen
EP1452500B1 (de) Glaskeramik sowie deren Herstellung und Verwendung
DE3825027A1 (de) Pulverfoermiger dentalwerkstoff, verfahren zu seiner herstellung und seine verwendung
DE10351885B4 (de) Opale Glaskeramik sowie deren Herstellung und Verwendung
DE102005003755C5 (de) Beschichtete Dentalpulver
DE102019120434A1 (de) Glaszusammensetzung und Glaspulver, insbesondere zur Verwendung im Dentalbereich
WO2007098778A1 (de) Verfahren zur herstellung eines porösen glases und glaspulvers und glaswerkstoff zum ausführen des verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061002

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20070329

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20100209