WO2005115744A1 - 樹脂被覆金属板 - Google Patents

樹脂被覆金属板 Download PDF

Info

Publication number
WO2005115744A1
WO2005115744A1 PCT/JP2005/009497 JP2005009497W WO2005115744A1 WO 2005115744 A1 WO2005115744 A1 WO 2005115744A1 JP 2005009497 W JP2005009497 W JP 2005009497W WO 2005115744 A1 WO2005115744 A1 WO 2005115744A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
resin
resin layer
polyester
polyester resin
Prior art date
Application number
PCT/JP2005/009497
Other languages
English (en)
French (fr)
Inventor
Yoichiro Yamanaka
Takeshi Suzuki
Hiroki Iwasa
Junichi Kitagawa
Toyofumi Watanabe
Katsunori Nakai
Mitsunori Ota
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004161855A external-priority patent/JP4341470B2/ja
Priority claimed from JP2004161856A external-priority patent/JP4341471B2/ja
Priority claimed from JP2004161854A external-priority patent/JP4341469B2/ja
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to DK05743572.9T priority Critical patent/DK1757439T3/en
Priority to EP05743572.9A priority patent/EP1757439B1/en
Priority to CA 2565277 priority patent/CA2565277C/en
Priority to US11/579,795 priority patent/US20080261063A1/en
Publication of WO2005115744A1 publication Critical patent/WO2005115744A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/42Applications of coated or impregnated materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/66Cans, tins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31797Next to addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a resin-coated metal plate used for a body, a bottom, a lid, and the like of a food container.
  • Metal cans a form of food packaging, have high mechanical strength and are heat-resistant.
  • the contents can be filled at a high temperature and sealed as they are, or the contents can be stored in a heated state.
  • Sterilization treatment such as retort treatment can be easily performed, so the reliability for safety and health as a packaging container is high. 'Furthermore, it has many advantages such as relatively easy separation and collection of used cans.
  • the retort treatment is to heat the can filled with the contents with high-temperature steam or the like in order to sterilize the contents with heat.
  • an electrochromic plated steel plate (hereinafter also referred to as ECCS) or an aluminum plate has been used.
  • ECCS electrochromic plated steel plate
  • aluminum plate For the purpose of protecting the surface, etc., solvent-based paints containing a thermosetting resin as a main component have been applied.
  • this coating technique requires not only a complicated baking process but also a great deal of processing time. Further, there is a problem that a large amount of solvent is discharged.
  • laminate used in the present application means that at least one surface of a metal plate is covered with a resin film.
  • resin film many of the above proposals focus on improving the adhesiveness and formability of the film and the metal plate as the substrate as a technical point.
  • JP-A-63-236640 describes that a film having a polar group (such as a polyester resin) is used as the film.
  • 5-20961 discloses that a polyethylene resin-coated metal plate is activated by performing a treatment such as corona discharge on the film surface in order to secure adhesion after processing the film surface. It is specified that the free energy ⁇ "is increased to be in the range of (38 to 54) 10 to 3 N / m (38 to 54 dyn / cm).
  • Japanese Patent Application Laid-Open Publication No. 6-155660 proposes a technique of laminating a polyester resin on a metal plate.
  • a technique for controlling the crystallinity of a resin layer in contact with a metal plate and the crystal orientation of a resin layer not in contact with the metal plate is disclosed.
  • This technology was obtained by estimating the bleaching phenomenon as follows. That is, the rate at which the amorphous resin layer in contact with the metal plate is crystallized by the retort treatment is different between the dew-condensed portion and the non-condensed portion of the metal plate surface. As a result, light scattering occurs and the surface appears to be whitened.
  • a first object of the present invention is to solve the above-mentioned problems relating to the inner surface of a can of food cans. That is, it is an object of the present invention to provide a resin-coated metal plate for a container which has an excellent retrieving property even for low fat and high protein contents.
  • a second object of the present invention is to provide a resin coating for a container which satisfies the above requirements for the inner surface of the can, does not cause whitening even after retort sterilization, and can maintain the design of the outer surface of the can. It is to provide a metal plate. Disclosure of the invention
  • the present invention provides a metal plate, a lower polyester resin layer having a plane orientation coefficient of 0:03 or less and a thickness of 5 to 20 jum on at least one surface of the metal plate, and Contains 0.1 to 5% by mass of olefin wax and A resin-coated metal plate having an upper polyester resin layer having an orientation coefficient of more than 0.06 to 0.15 or less and a thickness of 0.5 to 10 m.
  • the wax is preferably polyethylene.
  • the lower polyester resin layer preferably contains a coloring agent. More preferably, the colorant is particles of titanium dioxide.
  • any of the resin-coated metal sheet of the above should also be copolymerized polyethylene terephthalate lower layer polyester resin layer is 1 0-2 2 mole 0/0 containing iso phthaloyl group, and the upper layer polyester resin layer is a single polymer of polyethylene It is preferably one resin selected from the group consisting of terephthalate and copolymerized polyethylene terephthalate containing 6 mol% or less of isophthaloyl groups.
  • any of the above resin-coated metal plates has a polyester composition having a shortest half-crystallization time of 100 seconds or less on the surface on the opposite side of the metal plate having the upper and lower polyester resin layers on one side. It is preferable to have at least one layer having a total thickness of 5 to 20 m.
  • the polyester composition is preferably made of 30 to 50% by mass of a polyester having ethylene terephthalate as a main repeating unit and 50 to 70% of a polyester having butylene terephthalate as a main repeating unit. It is preferred that it be a weight percent formulation.
  • any of the resin-coated metal sheet of the above are also the polyester composition, the cyclic trimer content of the alkylene terephthalate 0. 6 5 mass 0/0 is preferably not less.
  • the polyester composition contains a coloring agent.
  • the polyester composition is composed of a plurality of resin layers, and a quinophthalone or a benzene is formed on a resin layer of the composition in contact with the metal plate.
  • a quinophthalone or a benzene is formed on a resin layer of the composition in contact with the metal plate.
  • the outermost layer of the composition does not include a colorant having a thickness of 0.5 m or more. It preferably has a resin layer.
  • the average birefringence in the thickness direction of the lower polyester resin layer is 0.04 or less, and the average birefringence in the thickness direction of the upper polyester resin layer is 0. .08 to 0.15 is preferred.
  • a resin-coated metal plate for a container comprising: a metal plate; and a polyester resin layer formed on at least an inner surface when the metal plate is formed into a container,
  • the polyester resin layer formed on the inner surface side has an upper polyester resin layer in contact with the inner space of the container and a lower polyester resin layer in contact with the metal plate.
  • the Orefin wax 0.1 to 5 mass 0/0 has free
  • the upper polyester resin has a plane orientation coefficient of more than 0.06 and 0.15 or less, and the lower polyester resin layer has a plane orientation coefficient of 0.03 or less.
  • the upper polyester resin layer has a thickness of 0.5 m or more and 10 jum or less, and the lower polyester resin layer has a thickness of 5 im or more and 20 jum or less.
  • the invention also provides a resin-coated metal plate for a container. Brief Description of Drawings
  • FIG. 1 schematically shows a resin-coated metal plate that achieves the first object of the present invention.
  • Symbol 1 indicates a metal plate
  • symbol 2 indicates a lower polyester resin layer
  • symbol 3 indicates an upper polyester resin layer.
  • FIG. 2 schematically shows a resin-coated metal plate that achieves the second object of the present invention.
  • Symbols 1 to 3 are the same as those in FIG. 1, and symbol 4 means the polyester composition.
  • FIG. 3 is a diagram illustrating an outline of an apparatus for manufacturing a resin-coated metal plate for a container according to the first embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • an aluminum plate / mild steel plate widely used as a material for cans can be used.
  • surface-treated steel so-called ECCS
  • ECCS surface-treated steel
  • the amount of the ECCS metal chromium layer and the chromium hydroxide layer is not particularly limited.
  • the metal chromium layer 7 0 ⁇ 2 0 0 mg Zm 2 the metal chromium layer 7 0 ⁇ 2 0 0 mg Zm 2
  • the chromium hydroxide layer is 1 0 ⁇ 3 0 mg / m 2 Desirably within the range.
  • the first object of the present invention is a resin for containers that can ensure excellent take-out of low-fat and high-protein contents, and also has moldability and adhesion required as processing characteristics.
  • the coated metal plate will be described. Therefore, it is assumed that the resin-coated steel sheet described below is used after production so that the upper polyester resin layer is on the inner surface side of the can.
  • the present inventors have conducted intensive studies in order to solve the above-mentioned problems relating to the inner surface of cans of food cans.
  • the first aspect of the present invention is achieved.
  • a clue for a resin-coated metal plate for a container that satisfies the purpose of (1) was obtained.
  • the kind of the polyester resin constituting the upper polyester resin layer or the lower polyester resin layer of the present invention is a polymer composed of a dicarbonic acid component and a dalicol component.
  • Raw materials for the dicarboxylic acid component include terephthalic acid, Sophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid and the like can be used. Of these, terephthalic acid and isophthalic acid can be preferably used.
  • the raw material for the glycol component include ethylene glycol, propanediol, and butanediol. Among them, ethylene glycol is preferred.
  • These dicarboxylic acid components and glycol components may be used in combination of two or more. If necessary, an antioxidant, a heat stabilizer, an ultraviolet absorber, a plasticizer, a pigment, an antistatic agent, a crystal nucleating agent, and the like can be added.
  • polyester resins are excellent in mechanical properties such as tensile strength, elastic modulus, impact strength, etc. and have polarity.Therefore, by using these as the main component, the adhesion and formability of the luster layer can be improved for container processing. It is possible to improve to a level that can withstand and to impart impact resistance after processing the container.
  • the lower polyester resin layer of the present invention is provided on at least one side of the metal plate.
  • the lower polyester resin has a plane orientation coefficient of not more than 0.03 among the above-mentioned types of polyester.
  • the plane orientation coefficient can be selected using the average birefringence in the thickness direction of the resin layer as an index.
  • a polyester resin having a plane orientation coefficient of not more than 0.03 may be selected from those having an average birefringence of not more than 0.04.
  • the reason for setting the orientation coefficient (the average birefringence) is as follows. In the production of resin-coated metal plates, it is usual to bond the resin with the heated metal plate by contacting and pressing the resin, thereby melting the resin at the metal plate interface and wetting the metal plate. .
  • the resin in order to ensure the adhesion between the resin and the metal plate, it is necessary that the resin is molten, and the plane orientation coefficient (birefringence index) of the resin in contact with the metal plate after fusion is oriented. Since the crystals are melted, the temperature decreases. If the area orientation coefficient of the resin in this portion is 0.03 or less (birefringence is 0.04 or less) as defined in the present invention, the film has sufficient wettability during fusion. It is shown. In other words, it is possible to ensure excellent adhesion.
  • the plane orientation coefficient exceeds 0.03 (the birefringence exceeds 0.04)
  • the adhesion decreases, and the high temperature applied to food cans After the retort sterilization treatment for a long time, the resin layer may peel off at the wrapped part with the can lid.
  • the birefringence in the thickness direction of the polyester resin layer can be determined by the following measuring method.
  • Monochromatic light is converted into linearly polarized light by passing through a polarizing plate, and this light is incident on a sample (film).
  • the incident light causes retardation, the light passes through the film layer and becomes elliptically polarized light.
  • This elliptically polarized light becomes linearly polarized light having an angle of 0 with respect to the vibration direction of the first linearly polarized light by passing through a Senarmont-type compensator.
  • This ⁇ is measured by rotating the polarizing plate.
  • the relationship between the retardation (R) and ⁇ is defined by equation (2).
  • is the wavelength of monochromatic light
  • the birefringence (An) is defined by equation (3) derived from equations (1) and (2).
  • the thickness of the lower polyester resin layer of the present invention needs to be 5 ⁇ m to 20 ⁇ m. If the thickness of the lower layer is less than 5 jum, the adhesion becomes poor and it is inappropriate. vice versa If it exceeds 20 2m, the adhesion is saturated and further improvement in properties cannot be expected, resulting in only cost increase, which is inappropriate. , (Upper polyester resin layer)
  • the resin-coated steel sheet of the present invention has an upper polyester resin layer on the lower polyester resin layer. This upper polyester resin layer contacts the inner space of the container
  • the upper polyester resin layer contains 0.1 to 5% by mass of organic resin. This is the most important requirement in the present invention.
  • the term “contained” as used herein refers to any state in which the resin is integrated with the resin, such as adhesion, lamination, mixing, or modification, but is usually performed by adding these when the resin is melted in the film forming process. Achieved.
  • Orefin wax is generally less polar and less reactive, so it has a characteristic that it is difficult to adhere to food and other contents.
  • the olefin wax can be present on the resin surface. In other words, the surface of the resin layer is inactivated with respect to the food contents by the aging refining wax, the contents are hardly adhered to each other, and it is possible to dramatically improve the content taking-out property.
  • olefin wax to be added examples include homopolymers and copolymers of olefins, and monomers copolymerizable with olefins. Specific examples thereof include copolymers with a Bull monomer and modified polymers thereof.
  • polyethylene high density, low density, high molecular weight, low molecular weight, etc.
  • linear low density polyethylene linear ultra low density polyethylene
  • polypropylene ethylene propylene copolymer
  • poly 4 -Methylenepentene-1 ionomer resin
  • ethylene'butyl acetate copolymer ethylene'ataryl acid copolymer
  • ethylene'methyl methacrylate copolymer modified polyolefin (homopolymer or copolymer of olefins, etc.)
  • unsaturated carboxylic acids such as maleic acid and fumaric acid, acid anhydrides, esters or reactants with metal salts, etc.
  • polyethylene wax is preferably used as the olefin wax from the viewpoint of the compatibility with the polyester resin and the ability to effectively inactivate the resin layer surface. Furthermore, the use of a low molecular weight polyethylene wax having a number average molecular weight (Mn) of from 1,000 to 100,000 is more effective and preferable.
  • the content of the olefin wax is in the range of 0.1 to 5% by mass% based on the polyester resin layer to which the olefin wax is added. If it is less than 0.1%, the amount of olefin wax generated on the resin surface is small, and the content removal property is poor. On the other hand, if it exceeds 5%, the content retrievability will be almost saturated and no particular effect will be obtained. In addition, resin production is also a technically difficult area, resulting in poor productivity and high costs. For the above reasons, the amount of the olefin wax must be 0.1 to 5% in order to sufficiently cover the resin surface with the olefin wax and secure the productivity. It is preferably in the range of 1.0 to 3%.
  • the type of resin forming the upper polyester resin layer is the same as the type of polyester described above.
  • the upper layer polyester resin of the present invention has a plane orientation coefficient of more than 0.06 to 0.15 or less among the above-mentioned polyester types.
  • this plane orientation coefficient is expressed by using the average birefringence index in the thickness direction of the resin layer as an index, one having a value of 0.08 or more and 0.15 may be selected.
  • the plane orientation coefficient is 0.06 or less (the average birefringence is less than 0.08), the property of taking out the content is insufficient.
  • the plane orientation coefficient is more than 0.15 (the average birefringence is more than 0.15)
  • a polyester film formed by a biaxial stretching method has oriented crystals oriented in the stretching direction.
  • the abundance can be determined by using the plane orientation coefficient of the film or the average birefringence in the thickness direction of the film as an index.
  • Upper layer polyester tree The olefin wax in the fat layer exists only in the amorphous region of the upper polyester resin layer, and cannot exist in the region where the crystal structure is formed. Therefore, when the amount of crystals of the upper polyester resin layer increases, the amount of the olefin wax that can be present in the upper polyester resin decreases, and is extruded out of the system, and precipitates on the surface of the upper polyester resin layer, and the surface becomes unsatisfactory. The activity will go on.
  • the plane orientation coefficient which is an index of the amount of oriented crystals
  • the birefringence is less than 0.08
  • the amount of olefin wax remaining in the polyester resin layer increases, and It is considered that the inactivation of the content is insufficient, and the content retrievability is insufficient.
  • the impact resistance after processing the container becomes better as the amount of oriented crystals of the polyester resin layer increases, so that the plane orientation coefficient exceeds 0.06 (the birefringence is 0.08 or more). It is desirable that On the other hand, when the plane orientation coefficient of the upper polyester resin layer is more than 0.15 (the birefringence is more than 0.15), the number of amorphous regions having high flexibility is reduced, resulting in insufficient workability.
  • the plane orientation coefficient of the upper polyester resin layer must be in the range of more than 0.06 to 0.15 or less (the average birefringence in the thickness direction is 0.08 or more to 0.15 or less).
  • the thickness of the upper polyester resin layer of the present invention needs to be 0.5 jtim to 10 jum. If the thickness of the upper layer is less than 0.5 m, the impact resistance is poor because the high orientation region is insufficient. When l O jU in is exceeded, the formability becomes insufficient because the high orientation region becomes excessive. Therefore, it cannot withstand the processing during container molding, and part of the resin layer breaks and cracks occur.
  • the resin-coated steel sheet of the present invention has a suitable combination of resin types for the upper polyester layer and the lower polyester layer. That is, a copolymerized polyethylene terephthalate lower layer polyester resin layer is 1 0-2 2 mole 0/0 containing isophthalic port I group, and the upper layer polyester resin layer is a homopolymer of polyethylene terephthalate and I source Futaruroiru group 6 mole 0/0 or less composed of one resin selected from the group consisting of polyethylene terephthalate copolymer containing a resin-coated metal plate is preferred.
  • the melting point of the resin layer is unlikely to decrease and it is difficult to melt by heat. When it forms, it becomes easy to implement
  • the isophthalic acid copolymerization ratio of the lower polyester resin layer is 10 mol% or more, the melting point of the resin is lowered and the resin is easily melted by heat.
  • the orientation state of the upper layer is controlled within the range specified in the present invention, the lower layer polyester resin is sufficiently melt-wetted on the metal plate and excellent adhesion is exhibited. You.
  • the resin-coated steel sheet of the present invention preferably contains a colorant regardless of the upper layer or the lower polyester resin layer.
  • the colorant may be added to at least one of the upper layer and the lower layer.
  • the underlying metal plate By adding a colorant to the upper layer and / or the lower polyester resin layer, the underlying metal plate can be concealed, and various colors unique to the resin can be imparted. For the purpose of concealing the underlying metal plate, it is more desirable to add a colorant to the lower layer. On the other hand, it is possible to impart a bright color utilizing the metallic luster of the underlying metal plate without completely concealing the underlying metal plate, thereby obtaining excellent design properties. Furthermore, unlike the printing on the resin layer surface, the coloring is performed by directly adding a coloring agent into the resin, so that there is no problem that the color tone drops off even in the container molding process, and a good appearance can be maintained. The amount of the colorant added is not particularly specified.
  • the amount of the colorant added is the ratio of the upper layer or the lower layer to which the colorant has been added to the polyester resin layer.
  • a colorant is added to the lower layer, it is the ratio of the colorant to the lower polyester resin layer.
  • the colorant either a dye or a pigment can be used, but a pigment is preferable.
  • Such a pigment is preferably capable of exhibiting excellent design properties after container molding.
  • an inorganic pigment such as an organic pigment or titanium dioxide can be used. These are suitable because they have strong coloring power and are also rich in spreadability, so that good design can be ensured even after the container is formed.
  • the addition amount of titanium dioxide is 5 to 30% by mass based on the resin layer. If it is 5% by mass or more, sufficient whiteness can be obtained, and good design can be ensured. On the other hand, even if it is added in excess of 30% by mass, the whiteness is saturated, so it is desirable to set the content to 30% by mass or less for economic reasons. More preferably, it is in the range of 10 to 20% by mass.
  • titanium dioxide When titanium dioxide is contained, it is preferable to apply it to the lower layer because there is no risk of the resin being scraped off when the container is rubbed with the mold during molding.
  • the second object of the present invention will be described. That is, a resin-coated metal plate for a container that satisfies the above requirement for the inner surface of the can, does not cause whitening even after the retort sterilization treatment, and can maintain the design of the outer surface of the can can be described. Therefore, in the resin-coated steel sheet of the present invention, the above-mentioned upper and lower polyester resin layers are formed on one surface of the metal plate, and the polyester composition described below is formed on the surface of the metal plate on the opposite side. Is contained. In addition, in the second invention, after the It is assumed that the upper polyester resin layer described above is used on the inner surface side of the can and the surface having the polyester composition described below is used on the outer surface side of the can.
  • the polyester resin composition on the outer surface side after the container is formed has a minimum half-crystallization time of 100 seconds or less and a total thickness of 5 to 20 / m. It is preferable to have at least one layer. If this requirement is satisfied, the whitening phenomenon on the outer surface side of the container which occurs during the retort sterilization treatment can also be suppressed.
  • This polyester composition is usually provided as at least one layer film. It is preferable that the total thickness of the polyester composition, whether a plurality of layers or a single layer, is 5 to 20 1 / m 2.
  • the thickness is 5 ⁇ m or more, there is no flaw due to rubbing or the like during molding or transport of the can, and the appearance of the metal surface is not impaired. In addition, even if it exceeds 20 m, there is no merit in performance, and it only incurs unnecessary cost increase.
  • a metal plate coated with polyester resin is used to manufacture food cans so that the resin is on the outer surface, and when the food can is retorted, the outer resin layer often becomes white. The phenomenon is seen. This is because fine bubbles are formed inside the resin film and light is scattered by these bubbles, resulting in a white and cloudy appearance. Investigations by the inventors have revealed that bubbles formed in this resin layer have the following characteristics.
  • these bubbles are not formed when the can is heated in a dry heat environment. Also, even if the retort sterilization treatment is carried out in an empty can without filling the contents into the can, no bubbles are formed. Bubbles are not observed over the entire area of the outer resin layer in the thickness direction, but near the interface in contact with the steel sheet.
  • the can is exposed to high-temperature steam, and part of the steam penetrates into the outer film and reaches near the interface with the steel sheet.
  • Retort processing open Initially, the vicinity of the interface between the outer resin and the steel sheet is cooled from the inner surface by the contents, so that the water vapor that has entered the interface becomes condensed water.
  • the temperature of the contents also increases, and condensed water at the interface with the steel sheet causes re-evaporation.
  • the vaporized water vapor escapes through the resin layer, and it is estimated that the traces of condensed water at this time become bubbles.
  • the present inventors as a means for preventing bubbles from being formed in the resin layer on the outer surface of the can at the time of retort treatment, rapidly crystallize the amorphous polyester portion in the polyester resin layer on the outer surface side by the heat of the retort treatment, It was considered effective to increase the strength of the amorphous part.
  • the shortest half-crystallization time of the resin in the polyester resin layer is 100 seconds or less.
  • a short half-crystallization time means that the thermal crystallization speed is fast. If the shortest half-crystallization time is 100 seconds or less, it is possible to effectively prevent the formation of bubbles and reduce whitening. Can be suppressed.
  • the whitening phenomenon cannot be suppressed. This is because the crystallization rate of the resin is low, so that the heat during retort sterilization does not sufficiently promote the crystallization of the amorphous polyester portion, and the strength cannot be increased sufficiently to suppress the formation of bubbles.
  • the shortest half-crystallization time is the shortest half-crystallization time among the half-crystallization times determined for each temperature in a temperature range in which crystallization of the resin occurs.
  • Such a half-crystallization time is described in Teruo Iwanami, Ryozo Takai et al., Polymer Chemistry, Vol. 29, No. 323, PR 139-143 (1972); or JH Magi 11, Polymer, 2, 221 (1961). It can be measured according to the description.
  • the half-crystallization time is determined for each predetermined constant temperature, and the shortest half-crystallization time is determined as the shortest half-crystallization time.
  • the crystal temperature is set so that the sample temperature becomes constant within 10 seconds after immersion of the resin.
  • Xc is the crystallinity
  • It is the depolarized transmitted light intensity t seconds after the start of measurement.
  • the maximum melting point of the resin is the value measured by a scanning differential calorimeter (AT Instruments mDSC type) in an inert gas atmosphere at a heating rate of 20 ° C / min.
  • a scanning differential calorimeter AT Instruments mDSC type
  • the depolarization intensity method is an effective method for measuring a high crystallization rate (see New Experimental Course (Maruzen) and Polymer Chemistry Vol. 29, No. 139, 323 and 336 (Polymer Society)) .
  • polyesters having ethylene terephthalate as a main repeating unit (hereinafter, also abbreviated as polyester (I)).
  • polyester (I) ethylene terephthalate as a main repeating unit
  • polyester ([pi) by) blend of 5 0-7 0 weight 0/0 polyester ([pi) by) blend of 5 0-7 0 weight 0/0.
  • the ratio of the polyester (I) is 30% by weight or more and the ratio of the polyester ( ⁇ ) is 70% by weight or less, the whitening phenomenon during retort treatment can be suppressed, and the elastic modulus of the resin layer can be reduced. In order to improve the quality, it is difficult for the resin layer to be damaged at the time of transportation or molding.
  • the “polyester having a main repeating unit” as described above means a copolymerized polyester in which the described repeating unit is 50 mol% or more, or a homopolymerized polyester composed of the described repeating unit.
  • the “polymerized repeating unit described” corresponds to an ethylene terephthalate group, for example, for the polyester (I). More specifically, the poly.ester (I) is obtained by condensation polymerization of terephthalic acid and ethylene glycol as main components. If the polyethylene terephthalate component is 50 mol% or more, Other components may be copolymerized.
  • the copolymer component may be an acid component or an alcohol component.
  • the acid component examples include aromatic dicarboxylic acids such as isophthalic acid, phthalic acid, and naphthalenedicarboxylic acid; aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sepasic acid, and decane dicarboxylic acid; An alicyclic dicarboxylic acid such as an acid can be exemplified.
  • the alcohol component examples include aliphatic diols such as butanediol and hexanediol, and alicyclic diols such as cyclohexanedimethanol. These can be used alone or in combination of two or more.
  • the proportion of the copolymer component depends on the type, but as a result, the melting point of the polymer is 210 to 256 ° C, preferably 215 to 25 ° C. 6 ° C., and more preferably the ratio is in the range of 220 to 256 ° C. If the melting point of the polymer is less than 210 ° C, the heat resistance will be poor, and if the melting point of the polymer exceeds 256 ° C, the crystallinity of the polymer will be too large and the moldability will be impaired.
  • Polyester ( ⁇ ) is a polycondensation of terephthalic acid and 1,4-butanediol as the main components. If the polybutylene terephthalate component is 50 mol% or more, other components are copolymerized. May be.
  • the copolymer component may be an acid component or an alcohol component.
  • the acid component include aliphatic dicarboxylic acids such as isophthalic acid, phthalic acid, and naphthalene dicarboxylic acid; aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, and decane dicarboxylic acid; and fats such as cyclohexanedicarboxylic acid.
  • Examples thereof include group dicarboxylic acids. Of these, isophthalic acid, 2,6-naphthalenedicarboxylic acid or adipic acid is preferred.
  • the alcohol component include aliphatic diols such as ethylene glycol and hexanediol, and alicyclic diols such as heximethanol. These can be used alone or in combination of two or more.
  • the proportion of the copolymer component depends on the type thereof, but is such that the melting point of the polymer is in the range of 180 to 223 ° C, preferably 200 to 223 ° C, more preferably 210 to 223 ° C. is there. When the melting point of the polymer is 180 ° C or higher, the crystallinity of the polyester is higher, and as a result, the heat resistance is improved.
  • the intrinsic viscosity of the raw material polyester used for producing the polyester composition of the present invention is preferably 0.5 to 0.8 dl / g for polyester (I), more preferably 0.54 to 0.8 dl / g. It is 0.7 dl / g, particularly preferably 0.57 to 0.65 dl / g.
  • the intrinsic viscosity of the polyester ( ⁇ ) is preferably 0.6 to 2 dl / g, more preferably 0.8 to 1.7 dl / g, and particularly preferably 0.85 to: L.
  • the upper limit is not particularly limited, but is preferably 2 dl / g or less from the viewpoint of productivity of the raw material polyester and the resin film.
  • Japanese Unexamined 1 0 1 1 0 0 4 6 JP if defining O oligomer amount contained in the film. 3% by weight or less, even Gyotsu the high temperature treatment of retort treatment, etc. It is disclosed that the precipitation of oligomers is suppressed.
  • the retort treatment applied to food cans is usually performed at a high temperature of 120 ° C. or more for 90 minutes at a high temperature for a long time. It is not practically feasible to prevent white powder at levels that include more than weight percent.
  • Japanese Patent Application Laid-Open No. 11-79189 discloses a technique for suppressing ester oligomers contained in a polyester resin from being eluted into water. However, even with the use of this technology, the maintenance of the design has not yet reached a satisfactory level.
  • the polyester resin composition on the outer surface side of the container preferably has an alkylene terephthalate cyclic trimer content of 0.65% by mass or less.
  • the present inventors have found that the oligomer that is the main cause of whitening is a cyclic trimer of alkylene terephthalate (hereinafter, also referred to as a cyclic trimer).
  • a cyclic trimer of alkylene terephthalate contained in polyethylene terephthalate had a significant effect.
  • the alkylene terephthalate mentioned here is ethylene terephthalate, propylene terephthalate, Not only butylene terephthalates but also oligomethylene terephthalates having about 3 to 10 carbon atoms, such as trimethylene terephthalate / tetramethylene terephthalate, are included in the range.
  • the cyclic trimer contained in the polyester composition When the content of the cyclic trimer contained in the polyester composition is 0.65% by mass or less, the cyclic trimer can be used at a high temperature for a long time such as a retort treatment applied to a food can. Precipitation of the monomer can be suppressed, and excellent design properties can be secured.
  • the lower limit of the cyclic trimer is preferably closer to zero. However, it is industrially difficult to reduce the amount to less than 0.3% by weight, so that it is usually 0.3% by weight. / 0 or so. Accordingly, the content of cyclic trimer of the polyester composition of the present invention, 0.3 to 0.6 5 by weight 0/0, more preferably in the range of 0.3 to 0.5% by weight% The range is correct.
  • Means for suppressing the content of the cyclic trimer in the polyester composition to 0.65% by weight or less is not particularly limited.
  • means for extracting and removing the cyclic trimer from the film with water or an organic solvent may be mentioned.
  • This extraction method may be performed at the time of producing the raw polyester. It is also effective to carry out polymerization so that oligomer formation is reduced at the stage of preparing a polyester master batch. That is, examples of the reduction method include a reduced pressure heat treatment method, a solid phase polymerization method, and the above-mentioned extraction method. These means may be used alone or in combination.
  • a metal plate as an underlayer can be concealed, and various colors unique to the resin can be imparted.
  • a metal plate as an underlayer can be concealed, and various colors unique to the resin can be imparted.
  • the coloring is performed by directly adding a coloring agent into the resin, even in the container molding process, there is no problem of the color tone falling off, and a good appearance can be maintained.
  • coating printing is performed after the container is formed.
  • a part of the process can be omitted, and the cost can be reduced, and an organic solvent, Can be suppressed.
  • the coloring agent to be added a dye or a pigment can be used, but a pigment is more preferable.
  • organic pigments such as quinophthalones, benzimidazolones and isoindolinones, and inorganic pigments such as titanium dioxide. it can.
  • At least one organic pigment of quinophthane, benzimidazo, and isoindolinone is preferred. These pigments are excellent in transparency, have strong coloring power, and have good spreadability, so that a bright appearance can be obtained even after can-making.
  • the polyester composition comprises a plurality of layers
  • the organic pigment is desirably added to a layer other than the uppermost layer. These organic pigments are characterized in that they do not easily bleed on the surface of the resin layer even after heat treatment such as retort. However, by providing a non-added layer (clear layer) of 0.5 jum or more on the pigmented resin layer, bleed-out can be suppressed reliably.
  • the addition amount of at least one organic pigment such as quinophthalones, benzimidazolones, and isoindolinones be 0.1 to 5% by mass relative to the resin layer.
  • the amount is 0.1% or more, a sufficient coloring effect can be obtained.
  • the content is 5.0% or less, transparency is easily ensured, and the color tone is rich in glitter.
  • the polyester resin composition on the outer surface side after the container is formed can be produced in the same manner.
  • the method for producing the resin layer itself is not particularly limited, and a conventional method can be applied. For example, after drying each polyester resin as needed, it is fed alone or Z or each to a known melt laminating extruder, extruded in a sheet form from a slit die, and applied to a casting drum by a method such as electrostatic application. And solidified by cooling to obtain an unstretched sheet.
  • the biaxially stretched film is obtained by stretching this unstretched sheet in the longitudinal and width directions of the film.
  • the stretching ratio is the degree of orientation, strength, elastic modulus, etc. of the target film Can be set as desired.
  • a tenter based on one type is preferred. Of these, a sequential biaxial stretching method in which the film is stretched in the longitudinal direction and then in the width direction, or a simultaneous biaxial stretching method in which the film is stretched in substantially the same length and width directions is desirable.
  • the following method is generally used as a method for including a coloring agent in the upper polyester / resin layer, the lower polyester resin layer, or the polyester composition.
  • a colorant is mixed with the melted polyester chips before solid phase polymerization, and the colored polyester chips and the uncolored polyester chips are blended in a specified ratio and melt-extruded.
  • a method of manufacturing a resin-coated metal plate by laminating the film obtained as in the above-described example on a metal plate will be described.
  • a method in which a metal plate is heated at a temperature exceeding the melting point of the film, and a resin film is brought into contact with both surfaces thereof using a pressure roll (hereinafter also referred to as a laminating roll) and heat-sealed is used. it can.
  • the lamination conditions are appropriately set so as to obtain the resin layer defined in the present invention.
  • the temperature at the start of lamination is 220 ° C or higher
  • the temperature history of the film before the end of laminating indicates that the time that the film is in contact with the temperature above its melting point is 1 to 20 msec. It is preferable to set the range. In order to achieve such laminating conditions, it is necessary to cool at the time of bonding in addition to laminating at high speed.
  • the pressurization during lamination is not particularly limited, but the surface pressure is preferably 9.8 to 29.4 N (1 to 30 kgf Zcm 2 ). Within this range of surface pressure, the temperature history received by the film can be set in the above-described appropriate range, and sufficient adhesion can be obtained.
  • the definition of the upper polyester resin layer, the lower polyester resin layer, or the force resin layer which is basically formed by forming the polyester composition into a film and covering the metal plate is within the scope of the present invention. Then, form the resin layer into a film Instead, it is also possible to apply a melt extrusion lamination that melts the resin layer and coats the surface of the metal plate.
  • a cold-rolled steel sheet with a thickness of 0.18 mm and a width of 977 mm was degreased and pickled. Then, the cold-rolled steel sheet Cr0 3, F-, S0 4 2 - plated with a plating bath containing, to produce a chromium-plated steel plate (ECCS).
  • the plated steel sheet after intermediate rinsing, electrolysis was chemical conversion treatment solution containing C r0 3, F scratch.
  • the electrolysis conditions (current density, amount of electricity, etc.) of the dangling process the deposited amount of metal chromium and the deposited amount of chromium hydroxide were converted into Cr conversion values of 12 OmgZm 2 and 1 SrngZni 2, respectively.
  • the chrome-plated steel strip 5 obtained above is heated by the metal strip heating apparatus 6.
  • the laminating roll 7 was applied to one surface of the chrome-plated steel strip 5 as the upper layer and the lower polyester resin layer, which are the inner surface side of the container after the container was formed, as shown in Tables 11 and 12 below.
  • the various films 8a shown in Table 3-1 and Table 2-2 are heat-sealed to the other surface of the various films 8a shown on the other side as the polyester composition which becomes the outer surface of the container after the container is formed.
  • a resin-coated metal plate was manufactured.
  • the laminating port 7 was internally water-cooled, forcibly circulating cooling water, and was cooled while heat-sealing the film. During lamination, the time during which the film temperature at the interface in contact with the metal plate was equal to or higher than the melting point of the film was set within the range of 1-2 Omsec. Evaluation on the first invention
  • the retardation in the cross-sectional direction of the resin film on the inner surface side of the container was measured using a polarizing microscope. The measurement was repeated at a pitch of 1 jwm in the thickness direction of the film, and the distribution of birefringence in the thickness direction was determined. The birefringence in the thickness direction of the upper and lower polyester resin layers was calculated as the average value of the measured values in each resin layer.
  • the resin-coated metal plate obtained above was formed into a cup using a draw forming machine under the following conditions: plank diameter: 100 mm, drawing ratio (diameter before forming Z diameter after forming): 1.88.
  • the cup was filled with a mixture of ground beef with 100% reddish beef and oatmeal mixed uniformly (corresponding to low-fat, high-protein content and high adhesiveness).
  • retort treatment 130 ° C for 90 minutes was performed.
  • the lid was removed, the cup was turned upside down, and the contents were taken out and the extent of the contents remaining inside the wrench was observed. Further, the contents were taken out by shaking the cup a few times by hand, and the extent of the contents remaining inside the cup was observed.
  • the degree of ease of taking out the contents was evaluated as follows.
  • a circular plate with a diameter of 179 mm was punched out to obtain a shallow drawn can with a drawing ratio of 1.80.
  • the drawn cup was redrawn at a drawing ratio of 2.20 and 2.90.
  • trimming was performed, and then neck-in-flange processing was performed to form a deep drawn can. Focusing on the neck-in part of the deep drawn can obtained in this way, the degree of damage to the film was visually observed.
  • Cans that were moldable in the evaluation of moldability in (4) above (score ⁇ or higher) were targeted.
  • a sample (15 mm wide x 12 Omm long) for the peel test was cut out from the body of the can.
  • the film is partially peeled from the long side end of the cut sample.
  • the peeled film was opened in the direction opposite to the peeled direction (at an angle of 180 °), and a peel test was performed at a tensile speed of 3 Omm / min using a tensile tester to evaluate the adhesive force per 15 mm width.
  • the surface to be measured for adhesion was the inner surface of the can.
  • Cans that were moldable ( ⁇ or more) in the evaluation of moldability in (4) above were evaluated. After filling the can with room temperature tap water, the lid was wrapped and sealed. Then, it was placed in a retort sterilization furnace with the bottom of the can facing downward, and retort treatment was performed at 125 ° C for 90 minutes. After the treatment, the external change in the outer surface of the bottom of the can was visually observed.
  • the resin-coated metal plate was placed in a retort sterilizing furnace, and retorted at 125 ° C for 90 minutes.
  • the amount of oligomers precipitated on the surface of the resin-coated metal plate was measured by the following method, and the whitening resistance was evaluated.
  • This absorbent cotton was washed with 1 om 1 of acetonitrile. A part of this washing solution was filtered through a filter, and the filtrate was subjected to reversed-phase high performance liquid chromatography to quantify the cyclic trimer of ethylene terephthalate.
  • Precipitation amount of the cyclic trimer is less than 0.5 g / cm 2 (level at which the cyclic trimer cannot be visually confirmed).
  • the precipitation amount of the cyclic trimer is 0.5 U g / cm 2 or less: L. Less than 0 ⁇ g / cm 2
  • Precipitation amount of the cyclic trimer is 1.0 g / cm 2 or more (precipitation of the cyclic trimer is remarkable, and the surface becomes white powder)
  • the surface containing the polyester composition (corresponding to the outer surface after molding into a container) is wiped off with a white cloth, etc. Observed visually. Further, the surface before wiping was observed under an electron microscope (SEM) at a magnification of 1000 times to examine whether or not the pigment particles were eluted on the surface.
  • SEM electron microscope
  • Examples within the scope of the present invention are excellent in whitening resistance, whitening resistance, and dissolution of facial pigment, and can maintain excellent design after retort sterilization.
  • the design property is significantly deteriorated and the characteristics required for food cans cannot be satisfied.
  • Invention example 1 PET "0 1.5 0.09 0.10 ⁇ / ⁇ 12 13.5 0.01 0.02
  • Invention example 2 PET 0 1.5 0.09 0.10 ⁇ / ⁇ 12 13.5 0.01 0.02
  • Invention example 3 PET 0 1.5 0.09 0.10 ⁇ / ⁇ 12 13.5 0.01 0.02
  • Invention example 4 PET 0 1.5 0.09 0.10 ⁇ / ⁇ 12 13.5 0.02 0.03
  • Inventive example 5 PET 0 1.5 0.09 0.10 ⁇ / ⁇ 12 13.5 0.02 0.03
  • Inventive example 6 PET 0 1.5 0.09 0.10 ⁇ / ⁇ 12 13.5 0.02 0.03
  • Inventive example 7 PET 0 1.5 0.09 0.10 ⁇ / ⁇ 12 13.5 0.02 0.03
  • Invention 8 PET 0 1.5 0.13 0.13 ⁇ / ⁇ 12 13.5 0.03 0.04
  • Invention 9 PET 0 1.0 0.09 0.10 ⁇ / ⁇ 12 14.0 0.01 0.02
  • Invention 10 PET 0 0.5 0.
  • Invention example 1 ⁇ ⁇ ⁇ Invention example 2 o ⁇ ⁇ Invention example 3 ⁇ ⁇ ⁇ Invention example 4 ⁇ ⁇ ⁇ Invention example 5 ⁇ ⁇ ⁇ Invention example 6 ⁇ ⁇ ⁇ Invention example 7 ⁇ ⁇ ⁇ Invention example 8 ⁇ ⁇ ⁇ Invention example 9 ⁇ ⁇ ⁇ Invention Example 10 ⁇ ⁇ ⁇ Invention Example 11 ⁇ ⁇
  • Polyester composition (applies to the outer surface of the container)
  • the resin-coated steel sheet of the present invention has a polyester layer on the inner side and the outer side after forming into a container.
  • Containers obtained from this steel sheet have excellent take-out of contents, and also have excellent moldability and adhesion required for container processing. Further, it is possible to prevent a whitening phenomenon that causes a design defect on the outer surface side after the retort treatment. Therefore, it can be widely used as a material for cans and containers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

樹脂被覆金属板は、金属板、該金属板の少なくとも片面に、面配向係数が0.03以下で厚みが5~20μmの下層ポリエステル樹脂層、および該下層ポリエステル樹脂層の上に、オレフィンワックスを0.1~5質量%含有しかつ面配向係数が0.06超えから0.15以下で厚みが0.5~10μmの上層ポリエステル樹脂層を有する。該金属板は、低脂肪で高蛋白な内容物についても優れた取り出し性を確保するとともに、容器加工に要求される成形性、密着性を兼ね備える。

Description

樹脂被覆金属板
技術分野
本発明は、 食品用の容器の胴体、 底及び蓋等に用いられる樹脂被覆金属板に関 する。
背景技術 明
食品の包装容器の一形態である金属缶は、 機械的強度が高く、 耐熱性おょぴ密 田
閉性に優れる。 したがって、 内容物の長期保存が可能である。 また、 内容物を高 温で充填してそのまま密封したり、 加温状態で内容物を保存したりすることもで きる。 レトルト処理等の殺菌処理も容易に行えるため、 包装容器としての安全衛 生性に対する信頼性も高い。'更に、 使用後の缶の分別 ·回収が比較的容易である など多くの長所を有する。 なお、 レトルト処理とは、 内容物を熱で殺菌するため、 內容物を充填した缶を高温の水蒸気などで加熱処理することである。
従来から、 食品缶詰用の金属素材として、 電気クロムめつき鋼板 (以下 ECCSと も呼ぶ)あるいはアルミニウム板等が用いられている。 これら容器用の金属板は、 腐食を防止するためのみならず、 金属板の缶内面側については内容物の風味を保 つため、 また缶外面側になる金属板表面ついては意匠性の付与や印刷面の保護の ためなどの理由で、 熱硬化性樹脂を主成分とする溶剤型塗料が塗布されてきた。 し力 し、 この塗装技術は、 焼き付け工程が複雑であるばかりでなく、 多大な処理 時間を要する。 さらには多量の溶剤を排出するという問題を抱えていた。.そこで 現在では、 これらの問題を解決するため、 熱可塑性樹脂フィルムを加熱した金属 板に積層して用いる技術が主流となり、 ラミネート法として数多く提案されてい る。 なお、 本願で言うラミネートとは、 金属板の少なくとも一面を樹脂フィルム で被覆することである。 上記提案の多くは、 フィルムと基材である金属板の密着性及ぴ成形性の改善を 技術上の要点とするものである。 例えば、 特開昭 6 3 - 2 3 6 6 4 0号公報には、 フィルムとして、 極性基を有するフィルム (ポリエステル樹脂等) を用いること が記載されている。 特開平 5— 2 0 0 9 6 1号公報には、 ポリエチレン樹脂被覆 金属板の加工後密着性等を確保するために、 フィルム表面へのコロナ放電等の処 理を行い活性化させ、 フィルム表面の自由エネルギ^"を増大させ、 (3 8〜5 4 ) 1 0 ~ 3 N/m ( 3 8〜5 4 d y n / c m) の範囲にすることが規定され ている。
しかしながら、 これらの技術を食品缶詰用途に使用すると、 容器から内容物を 取り出す際に、 内容物が容器内面に強固に付着してしまい、 内容物を取り出しに くいという問題が発生する。 この食品缶詰の内面に関する問題は、 消費者の購買 意欲と密接に関係するため、 消費者の購買意欲を確保する上で極めて重大である。 にもかかわらず、 両技術には、 内容物の取り出し易さについては全く考慮されて なく、 何らの改善もされてない。
本発明者らが、 内容物取り出し性の改善を検討した結果、 特開 2 0 0 1— 3 2 8 2 0 4号公報に示すように、 ポリエステノレ樹脂中に特定のヮックス (カルナウ バワックス) を添加し、 樹脂表面に存在させることで、 脂肪分を多く含んだ内容 物 (例えば、 市販の挽肉 ·卵の混合物などの、 付着 1"生の乏しい内容物) について は、 良好な取り出し性を確保することができた。
し力 しながら、 この技術では、 缶との付着性が強い低脂肪で高蛋白な内容物に ついては、 必ずしも良好な取り出し性を確保することは出来なかった。
今後、 健康ブームの高まりとも相俟って、 脂肪分が少なく、 かつ高蛋白な食材 に対する需要はさらに高まり、 内容物の良好な取り出し性の要求も増大するもの と考えられる。
—方、 食品缶詰の外面に目を転じてみれば、 従来のポリエステル樹脂で被覆さ れた金属板では、 樹脂被覆面が食品缶詰の外面側になるように用いると、 レトル ト処理等の高温殺菌処理の際に、 樹脂層そのものが白く濁ったように変色する現 象 (いわゆる白化現象) が発生する。 そこで、 これら缶外面の意匠上の問題につ いてその解決が強く求められた。
フィルム表面の白化現象について、 いくつかの改善技術が提案されている。 例 えば、'特開平 6 _ 1 5 5 6 6 0号公報には、 金属板にポリエステル樹脂を積層す る技術が提案されている。 特に、 金属板に接する樹脂層の結晶性と、 接していな い樹脂層の結晶配向性をコントロールする技術が開示されている。 この技術は、 白化現象を次のように推定して得られた技術である。 すなわち、 金属板に接する 側の無定形樹脂層がレトルト処理によって結晶化する速度が、 該金属板表面の結 露部分と非結露部分とで異なるため、 互いに光の屈折率や体積の異なる樹脂層と なって光の散乱が生じ、 表面が白化して見えるという推定である。
また、 特開平 5— 3 3 1 3 0 2号公報では、 レトルト処理時にはポリマーの結 晶化速度が遅いため、 結晶がゆっくりと成長して大きくなり、 白化現象の原因に なると考えられている。 そこで、 レトルト処理時のポリマーの結晶化速度を早め ることで、 微結晶を多数生成させる提案をしている。 し力 し、 両技術も、 白化現 象のメカニズム把握が正確でないため、 未だに意匠性の維持は不十分であり、 適 切な改善技術とはなりえない。
本発明の第一の目的は、 食品缶詰の缶内面に関する上記問題を解決することで ある。 すなわち、 低脂肪で高蛋白な内容物についても優れた取り出し性を有する 容器用の樹脂被覆金属板を提供することである。
さらに、 本発明の第二の目的は、 上記の缶の内面に対する要求を満足しつつ、 レトルト殺菌処理後であっても白化現象が起きず、 缶外面に対する意匠性も維持 できる容器用の樹脂被覆金属板を提供することである。 発明の開示
すなわち本発明は、 金属板、 該金属板の少なくとも片面に、 面配向係数が 0: 0 3以下で厚みが 5〜2 0 ju mの下層ポリエステル樹脂層、 および、 該下層ポリ エステル樹脂層の上に、 ォレフィンワックスを 0 . 1〜5質量%含有しかつ面配 向係数が 0 . 0 6超えから 0 . 1 5以下で厚みが 0 . 5〜1 0〃mの上層ポリェ ステル樹脂層を有する樹脂被覆金属板である。
なお、 この樹脂被覆金属板では、 該ォレフインワックスがポリエチレンヮック スであるのが好ましい。
さらに、 これらの樹脂被覆金属板では、 該下層ポリエステル樹脂層が着色剤を 含有するのが好ましい。 また、 該着色剤が二酸ィヒチタンの粒子であるのがより好 ましい。
さらに、 上記のいずれの樹脂被覆金属板も、 該下層ポリエステル樹脂層がイソ フタロイル基を 1 0〜2 2モル0 /0含有する共重合ポリエチレンテレフタレートで あり、 かつ該上層ポリエステル樹脂層が単重合ポリエチレンテレフタレートおよ びイソフタルロイル基を 6モル%以下含有する共重合ポリエチレンテレフタレー トからなる群より選ばれる 1種の樹脂であるのが好ましい。
また、 上記のいずれの樹脂被覆金属板も、 該上層および下層ポリエステル樹脂 層を片面に有する該金属板の反対側の表面に、 最短の半結晶化時間が 1 0 0秒以 下であるポリエステル組成物を合計厚み 5〜 2 0 mで少なくとも 1層有するの が好ましい。
なお、 上記のいずれの樹脂被覆金属板も、 該ポリエステル組成物が、 エチレン テレフタレートを主たる繰返し単位とするポリエステル 3 0〜5 0質量%とブチ レンテレフタレートを主たる繰返し単位とするポリエステル 5 0〜7 0質量%の 配合物であるのが好ましい。
さらに、 上記のいずれの樹脂被覆金属板も、 該ポリエステル組成物が、 アルキ レンテレフタレートの環状三量体の含有率が 0 . 6 5質量0 /0以下のものであるの が好ましい。
また、 上記のいずれの樹脂被覆金属板も、 該ポリエステル組成物が着色剤を含 有するのが好ましい。
さらに、 上記のいずれの樹脂被覆金属板も、 該ポリエステル組成物が複数の樹 脂層からなり、 該組成物のうち該金属板に接する樹脂層にキノフタロン類、 ベン ズィミダゾロン類およびィソインドリノン類からなる群より選ばれる少なくとも
1種の有機着色剤を該金属板に接する樹脂層に対して 0 . 1〜 5質量%含有し、 かつ該組成物のうちの最表層に厚みが 0 . 5 m以上の着色剤を含まない樹脂層 を有するのが好ましい。 (
また、 上記のいずれの樹脂被覆金属板も、 該下層ポリエステル樹脂層の厚み方 向の平均複屈折率が 0 . 0 4以下であり、 該上層ポリエステル樹脂層の厚み方向 の平均複屈折率が 0 . 0 8〜0 . 1 5であるのが好ましい。
さらに、 本願では、 金属板と、 この金属板を容器に成形した際に、 少なくとも 内面となる側に形成されたポリエステル樹脂層とを有する容器用樹脂被覆金属板 であって、
ァ) 内面となる側に形成されたポリエステル樹脂層は、 容器の内部空間に接する 上層のポリエステル樹脂層と金属板に接する下層のポリエステル樹脂層とを有し、 ィ) 上層のポリエステル樹脂層は、 ォレフィン系ワックスを 0 . 1〜5質量0 /0含 有し、
ゥ) 上層のポリエステル樹脂は、 面配向係数が 0. 06超え 0. 15以下で、 かつ、 下 層のポリエステル樹脂層は、 面配向係数が 0. 03以下であり、
ェ) 上層のポリエステル樹脂層は、 厚みが 0. 5 m以上 1 0 ju m以下、 かつ、 下 層のポリエステル樹脂層は、 厚みが 5 i m以上 2 0 ju m以下であることを特 i[と する容器用樹脂被覆金属板の発明も提供する。 図面の簡単な説明
図 1は、 本発明の第一目的を達成する樹脂被覆金属板を模式的に示したもので ある。 記号 1は金属板、 記号 2は下層ポリエステル樹脂層、 記号 3は上層ポリェ ステル樹脂層を意味する。
図 2は、 本発明の第二目的を達成する樹脂被覆金属板を模式的に示したもので ある。 記号 1〜3は図 1のそれらと同じであり、 記号 4はポリエステル組成物を 意味する。 図 3は、 実施例 1に係る容器用樹脂被覆金属板の製造装置の概要を示す図であ る。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
(金属板)
本発明の素材となる金属板は、 缶用材料として広く使用されているアルミユウ ム板ゃ軟鋼板等を用いることができる。 特に下層が金属クロム、 上層がクロム水 酸化物からなる二層皮膜を形成させた表面処理鋼飯 (いわゆる E C C S ) 等が最 適である。 E C C Sの金属クロム層、 クロム水酸ィ匕物層の付着量 ついては、 特 に限定されない。 し力 し、 加工後密着性、 耐食性の観点から、 いずれもクロム換 算で、 金属クロム層は 7 0〜2 0 0 m g Zm2、 クロム水酸化物層は 1 0〜3 0 m g /m2の範囲とすることが望ましレ、。 まず、 本発明の第一の目的である、 低脂肪で高蛋白な内容物について優れた取 り出し性を確保でき、 かつ加工特性として要求される成形性と密着性も兼備した 容器用の樹脂被覆金属板について説明する。 したがって、 以下で説明する樹脂被 覆鋼板は、 製 後は、 該上層ポリエステル樹脂層が缶の内面側になるように利用 されることを想定している。
本発明者らは、 食品缶詰の缶内面に関する上記課題を解決するために鋭意検討 した。 その結果、 容器成形後の容器内面側となる樹脂被覆金属板の樹脂層を、 ポ リエステルを主成分とする樹脂にォレフィンワックスが適量添加された樹脂層と することで、 本発明の第一の目的を満たす容器用の樹脂被覆金属板の手掛かりを 得た。
本発明の上層ポリエステル樹脂層あるいは下層ポリエステル樹脂層を構成する ポリエステル樹脂の種類は、 ジカルンボン酸成分とダリコール成分とからなるポ リマーである。 該ジカルボン酸成分の原料としてはとしては、 テレフタル酸、 ィ ソフタル酸、 ナフタレンジカルボン酸、 ジフエニルジカルボン酸等を用いること ができる。 なかでも好ましくはテレフタル酸、 イソフタル酸を用いることができ る。 また、 該グリコール成分の原料としては、 エチレングリコール、 プロパンジ オール、 ブタンジオール等が挙げられる。 中でもエチレングリコールが好ましレ、。 なお、 これらのジカルボン酸成分、 グリコール成分は 2種以上を併用しても良レ、。 また、 必要に応じて、 酸化防止剤、 熱安定剤、 紫外線吸収剤、 可塑剤、 顔料、 帯 電防止剤、 結晶核剤等を配合できる。
これらのポリエステル樹脂は、 引張強度、 弾性率、 衝撃強度等の機械特性に優 れるとともに極性を有するため、 これを主成分とすることで樹月旨層の密着性、 成 形性を容器加工に耐え得るレベルまで向上させるとともに容器加工後の耐衝擊性 を付与させることが可能となる。
(下層ポリエステル樹脂層)
本発明の下層ポリエステル樹脂層は、 上記金属板の少なくとも片面上に設けら れる。 この下層ポリエステル樹脂は、 上述したポリエステルの種類のうち面配向 係数が、 0 . 0 3以下のものとする。 この面配向係数は、 該樹脂層の厚み方向の 平均複屈折率を指標として選定することも可能である。 例えば、 面配向係数が 0 . 0 3以下のポリエステル樹脂は、 該平均複屈折率で 0 . 0 4以下のものを選定す ればよい。 該配向係数 (該平均複屈折率) とする理由は以下のとおりである。 樹脂被覆金属板の製造は、 樹脂を熱せられた金属板に接触させ圧着することで、 金属板界面の樹脂を溶融し、 金属板に濡れさせることで樹脂との接着を行うのが 通常である。 従って、 樹脂と金属板との密着性を確保するためには樹脂が溶融し ていることが必要であり、 融着後の金属板と接する部分の樹脂の面配向係数 (複 屈折率) は配向結晶が融解するため低下することとなる。 本発明に規定するよう にこの部分の樹脂の面配向係数が 0. 0 3以下 (複屈折率が 0 . 0 4以下) であ れば、 融着時のフィルム溶融濡れが十分であったことを示すものである。 すなわ ち優れた密着性を確保することが可能となる。 該面配向係数が 0. 0 3超え (該 複屈折率が 0 . 0 4超え) となると、 密着性が低下し、 食品缶詰に施される高温 で長時間のレトルト殺菌処理後に、 缶蓋との卷き締め部等で樹脂層が剥離するお それがある。
なお、 該ポリエステノレ樹脂層の厚み方向の複屈折率は、 以下の測定手法にて求 められる。
ラミネート金属板から金属板を除去する。 つぎに、 偏光顕微鏡を用いて樹脂フ イルムの断面方向のレタデーシヨンを測定し、 樹脂フィルムの断库方向の複屈折 率を求める。 フィルムに入射した直線偏光は、 二つの主屈折率方向の直線偏光に 分解される。 この時、 高屈折率方向の光の振動は、 低屈折率方向よりも遅くなる ため、 フィルム層を抜けた時点で位相差を生じる。 この位相差をレタデーシヨン
(R) と呼び、 複屈折率 (厶 n) との関係は、 式 (1) で定義される。
△ n = RZd (1)
伹し、 d : フィルム層の厚み
次に、 レタデーシヨンの測定方法について説明する。 単色光を、 偏光板を通過 させることで直線偏光とし、 この光をサンプル (フィルム) に入射する。 入射さ れた光は上記のように、 レタデーシヨンを生じるため、 フィルム層を透過後、 楕 円偏光となる。 この楕円偏光はセナルモン型コンペンセーターを通過させること により、 最初の直線偏光の振動方向に対して 0 の角度をもった直線偏光となる。 この Θ を、 偏光板を回転させて測定する。 レタデーシヨン (R) と Θ の関係は 式 (2) で定義される。
R = A - 0/1 80 - (2)
但し、 λ :単色光の波長
よって複屈折率 (An) は、 式 (1) 、 (2) から導き出される式 (3) で定 義される。
Δη= (θ · λ/1 80) /d- (3)
本発明の下層ポリエステル樹脂層の厚みは、 5 um〜20〃mである必要があ る。 下層の厚みが 5 jum未満であると、 密着性が乏しくなり不適当である。 逆に 2 0〃m超えとなると、 密着性が飽和して更なる特性向上が望めないため、 コス トアップのみを招く結果となり不適当である。 , (上層ポリエステル樹脂層)
本発明の樹脂被覆鋼板は、 上記の下層ポリエステル樹脂層の上に上層ポリエス テル樹脂層を有する。 この上層ポリエステル樹脂層は、 容器の内部空間に接する
(即ち、 容器内容物と接する) 。 該上層ポリエステル樹脂層は、 ォレフィンヮッ タスを 0 . 1〜5質量%含有する。 これは、 本発明において最も重要な要件であ る。 ここで言う 「含有」 とは、 付着、 貼合、 混入あるいは変性など樹脂と一体ィ匕 したあらゆる状態を言うが、 通常は、 製膜工程で樹脂を溶融した際にこれらを添 加することによって達成される。 ォレフィンワックスは、 一般的に極性が少なく、 反応性に乏しいため、 食品などの内容物と密着し難いという特徴がある。 ポリエ ステル樹脂中にォレフィンワックスを所定量添加することで、 樹脂表面にォレフ ィンワックスを存在させることが可能となる。 すなわち、 才レフィンワックスに より、 樹脂層表面が食品内容物に対して不活性化され、 内容物が密着し難くなり、 内容物取り出し性を飛躍的に向上させることが可能となる。
添加するォレフインワックスとしては、 ォレフィン類の単独重合体や共重合体、 ォレフィン類と他の共重合可能な単量体が例示できる。 具体的には、 ビュル単量 体との共重合体おょぴこれらの変性重合体などが挙げられる。 より具体的には、 ポリエチレン (高密度、 低密度、 高分子量、 低分子量など) 、 直鎖状低密度ポリ エチレン、 直鎖状超低密度ポリエチレン、 ポリプロピレン、 エチレン 'プロピレ ン共重合体、 ポリ 4-メチレンペンテン- 1、 アイオノマー樹脂、 エチレン '酢酸 ビュル共重合体、 エチレン 'アタリル酸共重合体、 エチレン 'メタタリル酸メチ ル共重合体、 変性ポリオレフイン (ォレフィン類の単独重合体または共重合体な どと、 マレイン酸ゃフマル酸などの不飽和カルボン酸、 酸無水物、 エステルもし くは金属塩などとの反応物など) などである。 また、 これらポリオレフインは、 単独あるいは 2種以上混合して用いることができる。 本発明においては、 ォレフィンワックスとして、 上記の中でもポリエチレンヮ ックスを用いることが、 ポリエステル樹脂との相溶性の点及び樹脂層表面を効果 的に不活性ィ匕できる点から好ましい。 更には、 数平均分子量 (Mn ) が 1 , 0 0 0〜1 0 , 0 0 0の低分子量ポリエチレンワックスの使用が更に効果的であり、 好ましい。
該ォレフインワックスの含有量は、 ォレフィンワックスが添加されたポリエス テル樹脂層に対して、 質量%で 0. 1 ~ 5 %の範囲とする。 0 . 1 %未満では樹 脂表面に生成するォレフインワックス量が少なく、 内容物取り出し性が劣る。 一 方、 5 %を超えると内容物取り出し性がほぼ飽和してしまい特段の効果が得られ ない。 その上、 樹脂の製造上も技術的に困難な領域であり、 生産性に乏しくコス トが高くなつてしまう。 以上の理由から、 樹脂表面をォレフインワックスで十分 に被覆し且つ生産性を確保するためには、 ォレフィンワックスの添加量は 0 . 1 〜5 %でなければならない。 好ましくは 1 . 0〜3 %の範囲とする。
(上層ポリエステル樹脂層)
本発明の樹脂被覆鋼板では、 この上層ポリエステル樹脂層を構成する樹脂の種 類は、 上述したポリエステルの種類と同じである。 しかし、 本発明の上層ポリェ ステル樹脂は、 上述したポリエステルの種類のうち面配向係数が 0 . 0 6超えか ら 0 . 1 5以下のものとする。
この面配向係数を、 該樹脂層の厚み方向の平均複屈折率を指標として表すと、 0 . 0 8以上から 0. 1 5のものを選定すればよい。
面配向係数が 0 . 0 6以下 (該平均複屈折率が 0 . 0 8未満) であると、 内容 物の取り出し性が不足する。 一方、 面配向係数が 0 . 1 5超え (該平均複屈折率 が 0. 1 5超え) の場合、 樹脂層の一部が破断し割れを生じてしまうおそれがあ る。 この理由は、 概ね以下のように推測できる。
一般に、 二軸延伸法により製膜されたポリエステルフィルムには延伸方向に配 向した配向結晶が存在する。 その存在量はフィルムの面配向係数、 あるいはフィ ルムの厚み方向の平均複屈折率を指標として定量ィ匕できる。 上層ポリエステル樹 脂層内のォレフィンワックスは、 上層ポリエステル樹脂層の非晶領域にのみに存 在し、 結晶構造を形成した領域内には存在できない。 したがって、 上層ポリエス テル樹脂層の結晶量が増すと、 上層ポリエステル樹脂内に存在できるォレフィン ワックスの量が少なくなり、 系外に押し出される形で、 上層ポリエステル樹脂層 の表面に析出し、 表面の不活性ィ匕が進むことになる。 したがって、 配向結晶量の 指標である面配向係数が 0 . 0 6以下 (あるいは該複屈折率が 0 . 0 8未満) で あると、 ポリエステル樹脂層内にとどまるォレフィンワックス量が増加し、 表面 の不活性化が不十分となり、 内容物取り出し性が不足するものと考えられる。 ま た、 容器加工後の耐衝撃性についても、 ポリエステル樹脂層の配向結晶量が増す とともに良好となるため、 該面配向係数が 0 . 0 6超え (該複屈折率が 0 . 0 8 以上) であることが望ましい。 一方、 上層ポリエステル樹脂層の面配向係数が 0 . 1 5超え (該複屈折率が 0 . 1 5超え) となると、 柔軟性に富む非晶領域が少な くなるため、 加工性が不足する。 容器成形の際の加工に耐えられず、 樹脂層の一 部が破断し割れを生じてしまう。 よって、 上層ポリエステル樹脂層の、 面配向係 数は 0 . 0 6超えから 0 . 1 5以下 (厚み方向の平均複屈折率は 0 . 0 8以上か ら 0 . 1 5以下) の範囲でなければならない。
本発明の上層ポリエステル樹脂層の厚みは、 0 . 5 jti m〜l 0 ju mである必要 がある。 上層の厚みが、 0 . 5 m未満であると、 高配向領域が不足するため耐 衝撃性が劣ィ匕してしまう。 l O jU in超えとなると、 高配向領域が過度となるため 成形性が不足する。 そのため、 容器成形の際の加工に耐えられず、 樹脂層の一部 が破断し割れを生じてしまう。
本発明の樹脂被覆鋼板は、 上層ポリエステル層と下層ポリエステル層の樹脂種 に好適な組み合わせがある。 すなわち、 該下層ポリエステル樹脂層がイソフタ口 ィル基を 1 0〜2 2モル0 /0含有する共重合ポリエチレンテレフタレートであり、 かつ該上層ポリエステル樹脂層が単重合ポリエチレンテレフタレートおよびィソ フタルロイル基を 6モル0 /0以下含有する共重合ポリエチレンテレフタレートから なる群より選ばれる 1種の樹脂で構成される樹脂被覆金属板が好ましい。 上層ポリエステル樹脂層では、 含有されるイソフタル酸の共重合比率が 6モ ル%以下であれば、 樹脂層の融点が低下し難く熱で溶け難いため、 金属板上に樹 脂層を熱融着にて形成する際に本発明で規定する配向状態を実現し易くなる。一 方、 下層ポリエステル樹脂層のイソフタル酸共重合比率が 1 0モル%以上であれ ば、 樹脂の融点が低くなるため熱で溶け易くなる。 金属板上への両樹脂層形成の 際に、 前記上層の配向状態を本発明の規定範囲内にコントロールしょうとすると、 金属板上で下層ポリエステル樹脂の溶融濡れが十分となり優れた密着性が発現す る。 よって、 下層ポリエステル樹脂層中のイソフタル酸の共重合比率を増加させ ることは発明効果上望ましいことである。 し力 し、 樹月旨コストも上昇するため、 下層のィソフタル酸共重合比率は 2 2モル%以下に抑えることが経済上望ましレ、。
(着色剤)
さらに、 本発明の樹脂被覆鋼板では、 該上層あるいは該下層のポリエステル樹 脂層を問わず、 着色剤が含有されるのが好ましい。 この場合、 着色剤は該上層、 該下層のうちの少なくとも 1つの層に添加すればよい。
該上層および/または該下層ポリエステル樹脂層に着色剤を添加することで、 下地の金属板を隠蔽し、 樹脂独自の多様な色調を付与できる。 下地金属板の隠蔽 目的からは、 着色剤は該下層に添加する方がより望ましい。 一方、 下地金属板の 隠蔽を完全とせず下地の金属光沢を利用した光輝色の付与も可能であり、 優れた 意匠性を得ることができる。 更に樹脂層表面への印刷と異なり、 樹脂内に直接着 色剤を添加して着色しているため、 容器成形工程においても色調が脱落する問題 もなく、 良好な外観を保持できる。 着色剤の添加量については特に規定しない。 一般的に、 樹脂層に対して、 3 0質量%超えの含有量となると、 隠蔽効果が飽和 するため、 経済的には ·3 0質量%以下の範囲を目安とすることが望ましい。 なお、 着色剤の添加量とは、 着色剤を添加した該上層あるいは該下層のポリエステル樹 脂層に対する割合である。 例えば、 下層に着色剤を添カ卩した場合は、 該下層ポリ ェステル樹脂層に対する着色剤の割合である。 着色剤としては、 染料でも顔料でも用いることができるが、 顔料である方が好 ましい。
このような顔料としては、 容器成形後に優れた意匠性を発揮できることが好ま しい。 係る観点からは、 有機顔料や二酸ィ匕チタンなどの無機系顔料を使用できる。 これらは着色力が強く、 展延性にも富むため、 容器成形後も良好な意匠性を確保 できるので好適である。
特に、 上述した本発明の樹脂被覆鋼板において上層ポリエステル樹脂層が容器 成形後に容器内面側となる場合は、 二酸化チタンの使用が望ましい。 容器開封後、 内容物の色が映えると共に、 清潔感を付与できるためである。 なお、 これら顔料 は、 着色力と展延性に富み、 F D Aに認可された安全衛生物質であるため、 その 点からも好ましい。
二酸ィ匕チタンの添加量は、 樹脂層に対して、 5〜3 0質量%であることが望ま しい。 5質量%以上であれば、 充分な白色度が得られ、 良好な意匠性が確保でき る。 一方、 3 0質量%を超えて添加しても、 白色度が飽和するため、 経済上の理 由からは 3 0質量%以下とすることが望ましい。 より好ましくは、 1 0〜2 0質 量%の範囲である。
二酸化チタンを含有させる場合、 下層に適用した方が、 容器成形時に金型と擦 れる際に、 樹脂が削られる危惧が無いので好ましい。
(第二目的:ポリエステル組成物)
次に、 本発明の第二の目的について説明する。 すなわち、 上述の缶の内面に対 する要求を満足しつつ、 レトルト殺菌処理後であっても白化現象が起きず、 缶外 面に対する意匠性も維持できる容器用の樹脂被覆金属板について説明する。 した がって、 本発明の樹脂被覆鋼板では、 上述した上層および下層ポリエステル樹脂 層が金属板の片面に形成され、 該金属板のこれとは反対側の表面には以下で説明 するポリエステル組成物が含有される。 なお、 第二の発明では、 製缶後に、 上述 した上層ポリエステル樹脂層が缶の内面側となり、 以下で説明するポリエステル 組成物を有する面が缶の外面側になるように利用されることを想定している。 本発明の樹脂被覆金属板において、 容器成形後に外面側になるポリエステル樹 脂組成物は、 最短の半結晶化時間が 1 0 0秒以下であるポリエステル組成物を合 計厚み 5〜 2 0 / mで少なくとも 1層有するのが好ましい。 この要件を満たせば、 レトルト殺菌処理時に発生する容器外面側の白化現象も抑制することができる。 この、 ポリエステル組成物は、 通常、 少なくとも 1層のフィルムとして設けら れる。 該ポリエステル組成物の厚みは、 複数層でも単層であっても、 合計厚みで 5〜 2 0 ■/ mであることが好ましい。 5 μ m以上であれば、 成形時や缶を搬送す る際に擦れ等で疵がついたり金属面が露出して外観を損ったりすることも無い。 また、 2 0 m超えとしても、 性能上のメリットがなく、 いたずらにコストアツ プを招くだけである。
以下に白化現象が抑制される理由について説明する。
一般に、 ポリエステル榭脂を被覆させた金属板を用い、 該樹脂が外面側になる ように食品缶詰を製造し、 この食品缶詰にレトルト処理を行うと、 多くの場合、 外面側樹脂層が白化する現象が見られる。 これは該樹脂皮膜の内部に微細な気泡 が形成され、 これら気泡によって光が散乱した結果、 白く濁った外観を呈するも のである。 発明者らの調査では、 この樹脂層に形成される気泡は以下のような特 徴を有することが判明した。
まず、 これらの気泡は、 缶を乾熱環境下で加熱した場合には形成されない。 ま た、 缶に内容物を充填せずに空き缶のままレトルト殺菌処理を行っても気泡は形 成されない。 気泡は外面樹脂層の厚み方向全域にわたって観察されるわけではな く、 鋼板に接している界面近傍において観察される。
以上の特徴から、 レトルト殺菌処理に伴う外面樹脂層の気泡の形成は、 以下の メカニズムによって起こると考えられる。
レトルト処理開始当初から、 缶は高温水蒸気にさらされ、 水蒸気の一部は外面 側フィルムの内部へと浸入し、 鋼板との界面近傍まで到達する。 レトルト処理開 始当初、 外面樹脂と鋼板との界面近傍は内容物によって内面から冷却されている ので、 界面に侵入した水蒸気は凝縮水となる。 次いで、 レトルト処理の時間経過 とともに、 内容物の温度も上昇し、 鋼板との界面の凝縮水は再気ィ匕を起こす。 気 化した水蒸気は再ぴ樹脂層を通って外へ脱出するが、 このときの凝縮水の跡が気 泡となると推定される。
気泡が鋼板との界面近傍でのみ観察されるのは、 1つには凝縮水が形成される 場所が界面近傍であるという理由である。 もう 1つの理由は、 熱せられた金属板 との接触により溶けた界面近傍の樹脂が、 冷却、 固化した後も機械的に軟らかく 変形性に富む非晶性樹脂であるため変形しやすく、 気泡を形成しやすいためと考 えられる。
従って、 白化現象の防止のためには、 フィルム内での気泡形成を抑制すること が重要であり、 従来技術に見られるような手法では、 本質的な改善は期待できな レ、。
そこで発明者らは、 レトルト処理時に缶外面の樹脂層に気泡が形成されないよ うにする手段として、 レトルト処理の熱で外面側のポリエステル樹脂層中の非晶 性ポリエステル部を速やかに結晶化させ、 非晶部分の強度を上げることが有効で あると考えた。 具体的にはポリエステル樹脂層の樹脂の最短半結晶化時間が 1 0 0秒以下とする。 半結晶化時間が短いことは、 熱結晶化速度が速いことを意味し、 最短半結晶化時間が 1 0 0秒、以下であれば、 気泡の形成を有効に防ぐことが可能 となり、 白化を抑制できる。
最短半結晶化時間が 1 0 0秒超えの場合、 白化現象を抑制することができない。 なぜならば、 樹脂の結晶化速度が遅いため、 レトルト殺菌処理時の熱で非晶ポリ エステル部の結晶化が十分に進まず、 気泡形成を抑制できるほどの強度上昇が得 られないためである。
なお、 ここで言う最短の半結晶化時間とは、 樹脂の結晶化が起きる温度範囲に おいて、 温度毎に求めた半結晶化時間の中で最も短い半結晶化時間である。 このような半結晶化時間は、 岩波照男、 高井良三ら、 高分子化学、 Vol. 29、 No. 323、 PR 139- 143 (1972).あるいは J. H. Magi 11, Polymer, 2, 221 (1961).の 記載に準じて測定できる。
例えば、 以下のようにして測定できる。 直交した偏光板の間に溶融した樹脂試 料を置き、 一定温度下で樹脂を結晶化させる。 この際、 樹脂の結晶化に伴って経 時的に増加する光学異方性結晶を透過する光の強度を測定する (脱偏光強度法) 。 つぎに、 透過光の強度と時間との関係から結晶化度が 1 Z 2となる半結晶化時間 を求める。 このように、 所定の一定温度毎に半結晶化時間を求め、 その中で最も 短レ、時間を最短の半結晶化時間とする。
具体的には、 ポリマー結晶化速度測定装置 (コタキ製作所 (株) 製、 MK— 8 0 1型) を用いて測定できる。 例えば、 樹脂試料 8 mgを該装置の溶解炉に設置 し、 窒素雰囲気下、 樹脂の最高融点よりも 5 0 °C高い温度で 1分間加熱して溶融 する。 後、 直ちに試料を該装置内の結晶化浴に移して浸漬し、 1 0秒経過した時 点を t = 0秒として脱偏光透過強度の測定を開始する。 なお、 該結晶ィ匕浴は、 試 料が熱平衡に達するまでの時間を考慮し、 樹脂の浸漬後 1 0秒以内に試料温度が 一定値になるように設定しておく。 t = 0秒で測定した脱偏光透過強度を I 0と し、 経時変化 Log ΐに対して脱偏光透過強度 Iをプロットして結晶化温度曲線を 得る。 結晶化が進行し一定値に達した時の脱偏光透過光強度を I gとすると、 結 晶化度と透過光強度との関係は、 次式で表される。
X c = ( I o-I t ) / ( I o- I g)
ここで、 X cは結晶化度、 I tは測定開始から t秒後の脱偏光透過光強度である。 また、 樹脂の最高融点とは、 不活性ガス雰囲気中、 20°C/分の昇温速度条件下 で走査型示差熱計 (AT Instruments mDSC型)により測定した値である。 通常、 走 查型示差熱計では、 一つあるいは二つ以上の吸熱ピークが認められるが、 それら の吸熱ピークが示す温度のなかで最も高い温度をいう。 該脱偏光強度法は、 早い 結晶化速度を測定するときに有効な方法である(新実験講座 (丸善) 及び高分子 化学 Vol. 29, No. 139, 323及び 336 (高分子学会)参照)。 上述の最短半結晶化時間が 1 0 0秒以下のポリエステル組成物のうち好適なも のは、 エチレンテレフタレートを主たる繰り返し単位とするポリエステル (以下、 略してポリエステル (I ) とも呼ぶ) 3 0〜 5 0質量0 /0とプチレンテレフタレー トを主たる繰り返し単位とするポリエステル (以下、 略してポリエステル (Π) とも呼ぶ) 5 0〜 7 0質量0 /0との配合物である。 ポリエステル (I ) の比率が 5 0重量%以下でポリエステル ( Π ) の比率が 5 0 %以上であれば、 レトルト処理 時にフィルム内部の気泡形成の抑制効果が高いので、 フィルムの白化防止効果も 高く意匠性が充分に維持できる。
一方、 ポリエステル (I ) の比率が 3 0重量%以上でポリエステル (Π) の比 率が 7 0重量%以下であれば、 レトルト処理時の白化現象が抑制できるうえに、 樹脂層の弾性率が向上するため、 搬送時や成形加工時に樹脂層に疵も付き難くな る。
なお, 上記の 「主たる繰り返し単位とするポリエステル」 とは、 記載の繰り返 し単位が 5 0モル%以上である共重合ポリエステル、 あるいは記載の繰り返し単 位からなる単独重合ポリエステルを意味する。 この 「記載の重合繰り返し単位」 とは、 ポリエステル (I ) で例示すればエチレンテレフタレート基に相当する。 より具体的に説明すると、 ポリ.エステル (I ) とは、 テレフタル酸とエチレン グリコールを主成分として縮重合させたものであるが、 ポリエチレンテレフタレ ート成分が 5 0モル%以上であれば、 他の成分を共重合してもよい。 この共重合 成分は酸成分でもアルコール成分でもよい。 酸成分としては、 イソフタル酸、 フ タル酸、 ナフタレンジカルボン酸等の如き芳香族ジカルボン酸、 アジピン酸、 ァ ゼライン酸、 セパシン酸、 デカンジカルボン酸等の如き脂肪族ジカルボン酸、 シ ク口へキサンジカルボン酸の如き脂環族ジカルボン酸等が例示できる。 アルコー ル成分としては、 ブタンジオール、 へキサンジオール等の如き脂肪族ジオール、 シク口へキサンジメタノールの如き脂環族ジオール等が例示できる。 これらは単 独または二種以上を使用することができる。 共重合成分の割合は、 その種類にも よるが結果としてポリマーの融点が 2 1 0〜 2 5 6 °C、 好ましくは 2 1 5〜 2 5 6°C、 さらに好ましくは 220〜256°Cの範囲になる割合である。 ポリマーの 融点が 210 °C未満では耐熱性が劣ることになり、 ポリマーの融点が 256 °Cを 超えるとポリマーの結晶性が大きすぎて成形加工性が損なわれる。
ポリエステル (Π) とは、 テレフタル酸と 1、 4一ブタンジオールとを主成分 として重縮合させたものであるが、 ポリブチレンテレフタレート成分が 50モ ル%以上であれば、 他の成分を共重合してもよい。 この共重合成分は酸成分でも アルコール成分でもよい。 酸成分としてはイソフタル酸、 フタル酸、 ナフタレン ジカルボン酸等の如き脂肪族ジカルボン酸、 アジピン酸、 ァゼライン酸、 セバシ ン酸、 デカンジカルボン酸等の如き脂肪族ジカルボン酸、 シクロへキサンジカル ボン酸の如き脂肪族ジカルボン酸等が例示できる。 これらの中では、 イソフタル 酸、 2, 6—ナフタレンジカルボン酸またはアジピン酸が好ましい。 アルコール 成分としてはエチレングリコール、 へキサンジオールの如き脂肪族ジオール、 シ ク口へキサンジメタノールの如き脂環族ジオール等が例示できる。 これらは単独 または二種以上を使用することができる。 共重合成分の割合は、 その種類にもよ るが、 結果としてポリマーの融点が 180〜223°C、 好ましくは 200〜 22 3°C、 さらに好ましくは 210〜223°Cの範囲になる割合である。 ポリマーの 融点が 180°C以上の方がポリエステルとしての結晶性が高く、 結果として耐熱 性が向上する。
本発明のポリエステル組成物を製造するために用いられる原料ポリエステルの 固有粘度は、 ポリエステル (I) では 0. 5〜0. 8dl/gであることが好まし く、 さらに好ましくは、 0. 54〜0. 7dl/g、 特に好ましくは 0. 57〜0. 65dl/gである。 固有粘度が 0. 5 dl/g以上の方が機械的強度を有した樹脂膜 が得られ、 実用的である。 0. 8 dl/g以下の方が成形加工性に優れる。 また、 ポリエステル (Π) の固有粘度は、 0. 6〜2dl/gであることが好ましく、 さ らに好ましくは 0. 8〜1. 7dl/g、 特に好ましくは 0. 85〜: L. 5dl/gで ある。 この固有粘度が 0. 6 dl/g以上の方が機械的強度を有した樹脂膜が得ら れ、 実用的である。 上限については特に限定されないが、 2 dl/g以下である方 が、 原料ポリエステル及び樹脂膜の生産性の面で好ましい。
なお、 従来のポリエステル樹脂で被覆された金属板を食品缶詰の外面に用いた 場合には意匠上のもう 1つの問題があった。 すなわち、 レトルト処理等の高温殺 菌処理の際に、 ポリエステル樹脂中に混在するオリゴマーが樹脂表面に析出する ことがある。 このオリゴマーが白い粉状に見える (以下、 白粉化現象とも呼ぶ) こと力 ら、 意匠性を損なわせるという問題である。
この白紛化を防止する従来技術としては、 ポリエステル樹脂中に含まれるオリ ゴマー量を低減する手法が主流になっている。
例えば、 特開平 1 0— 1 1 0 0 4 6号公報には、 フィルム中に含まれているォ リゴマー量を . 3重量%以下に規定すれば、 レトルト処理等の高温処理を行つ ても、 オリゴマーの析出が抑制される旨が開示されている。 し力 し、 食品缶詰に 施されるレトルト処理は、 通常、 1 2 0 °C以上で 9 0分間という高温長時間の処 理のため、 該公報の実施例のような、 オリゴマーが 1 . 0重量%以上も含まれる レベルでは、 白粉ィヒを防止することは現実的には不可能である。 また、 特開平 1 1 - 7 9 1 8 9号公報には、 ポリエステル樹脂に含有されているエステルオリゴ マー類が水に溶出するのを抑制する技術が開示されている。 し力 し、 当該技術を 用いても、 意匠性の維持は未だに満足できるレベルには達していない。
本発明の樹脂被覆金属板では、 容器の外面側になる上述のポリエステル樹脂組 成物は、 アルキレンテレフタレートの環状三量体の含有率が 0 . 6 5質量%以下 であるものが好ましい。 こうすることにより、 白化現象の防止のみならず上述の 白粉化現象も防止できる。
すなわち、 本発明者らは、 白粉化の主原因になるオリゴマーがアルキレンテレ フタレートの環状三量体 (以下、 環状三量体とも呼ぶ) であることを突き止めた のである。 中でも、 ポリエチレンテレフタレートに含まれるエチレンテレフタレ ートの環状三量体の影響が大きいことが判明した。 なお、 ここで言うアルキレン テレフタレートとは、 エチレンテレフタレート、 プロピレンテレフタレート類、 プチレンテレフタレート類のみならず、 トリメチレンテレフタレートゃテトラメ チレンテレフタレートなどの炭素数 3〜1 0程度のオリゴメチレンテレフタレー ト類もその範囲に含むものとする。
当該ポリエステル組成物中に含まれる該環状三量体の含有率を 0 . 6 5質量% 以下にすると、 食品缶詰に施されるレトルト処理時のような高温かつ長時間処理 においても、 該環状三量体の析出を抑制でき、 優れた意匠性を確保できる。 なお、 該環状三量体の下限値はゼロに近いほうがよい。 しかし、 0 . 3重量%未満とす ることは、 工業的に困難であるため、 通常 0 . 3重量。 /0程度である。 従って、 本 発明のポリエステル組成物中の該環状三量体の含有率は、 0. 3〜0 . 6 5重 量0 /0の範囲、 より好ましくは 0 . 3〜0 . 5 %重量%の範囲が適正である。
該ポリエステル組成物中の該環状三量体の含有率を 0 . 6 5重量%以下に押さ える手段としては、 特に限定されない。 例えば、 ポリエステルフィルムを製膜後、 フィルムから水または有機溶剤で該環状三量体を抽出除去する手段が挙げられる。 この抽出方法は、 原料ポリエステノレ製造時に行ってもよい。 ポリエステルのマス ターバッチを調製する段階で、 オリゴマー生成が少なくなる様に重合を行う方法 も効果的である。 すなわち、 低減法は、 減圧加熱処理法、 固相重合法、 前記抽出 法が例示でき、 これらの手段を単独で用いるかまたは組み合わせて用いてもよい。 さらに、 本発明の樹脂被覆鋼板では、 容器成形後に容器外面側になる該ポリエ ステル組成物に着色剤を添加することで、 下地の金属板を隠蔽し、 樹脂独自の多 様な色調を付与できる。 下地金属板の隠蔽目的からは、 着色剤は該組成物中で下 地金属により近い部分に添加する方がより望ましい。 一方、 下地金属板の隠蔽を 完全とせず下地の金属光沢を利用した光輝色の付与も可能であり、 優れた意匠性 を得ることができる。 更に樹脂表面への印刷と異なり、 樹脂内に直接着色剤を添 加して着色しているため、 容器成形工程にぉレ、ても色調が脱落する問題もなく、 良好な外観を保持できる。 また、 一般的に、 容器成形後には塗装印刷が施される が、 着色樹脂層を形成することで工程の一部を省略することができ、 コストの低 減、 有機溶剤、 二酸ィ匕炭素の発生を抑制することができる。 添加する着色剤としては、 染料でも顔料でも用いることができるが、 顔料であ る方が好ましい。 容器成形後に優れた意匠性を発揮できることが必要であり、 係 る観点からは、 キノフタロン類、 ベンズイミダゾロン類、 イソインドリノン類な どの有機顔料や二酸ィ匕チタンなどの無機系顔料を使用できる。
なかでも、 キノフタ口ン類、 ベンズィミダゾ口ン類、 イソインドリノン類の少 なくとも 1種の有機顔料であることが望ましい。 これらの顔料は、 透明性に優れ ながら着色力が強く、 展延性に富むため、 製缶後も光輝色のある外観が得られる。 ポリエステル組成物が複数層からなる場合、 上記有機顔料は、 最上層でない層に 添加することが望ましい。 これらの有機顔料は、 レトルトなどの熱処理を経ても、 樹脂層表面にブリードしにくいという特徴を有する。 しかし、 顔料を添加した樹 脂層の上に 0 . 5 ju m以上の無添加層 (クリア層) を設けることで、 ブリードア ゥトを確実に抑制することが可能となる。
キノフタ口ン類、 ベンズィミダゾロン類、 イソインドリノン類の少なくとも 1 種の有機顔料の添加量は、 樹脂層に対して、 質量比で 0. 1〜5 %とすることが 望ましい。 添加量が 0. 1 %以上であると充分な発色効果が得られる。 また、 5 . 0 %以下である方が、 透明性が確保し易く光輝性に富んだ色調となる。 次に製造方法について説明する。
まず、 本発明の該上下の樹脂層 (以下、 フィルムとも呼ぶ) の製造方法につい て説明する。 なお、 容器成形後に外面側になる該ポリエステル樹脂組成物もこれ と同様にして製造できる。 該樹脂層の製造方法自体は特に限定されず、 従来の方 法が適用できる。 例えば、 各ポリエステル樹脂を必要に応じて乾燥した後、 単独 及び Zまたは各々を公知の溶融積層押出機に供給し、 スリツト状のダイからシー ト状に押出し、 静電印加等の方式によりキャスティングドラムに密着させ冷却固 化し未延伸シートを得る。
この未延伸シートをフィルムの長手方向及ぴ幅方向に延伸することにより二軸 延伸フィルムを得る。 延伸倍率は目的とするフィルムの配向度、 強度、 弾性率等 に応じて任意に設定することができる。 好ましくはフィルムの品質の点でテンタ 一方式によるものが好ましい。 なかでも、 長手方向に延伸した後幅方向に延伸す る逐次二軸延伸方式、 あるいは長手方向、 幅方向をほぼ同じに延伸していく同時 二軸延伸方式が望ましい。
該上層ポリエステ/レ樹脂層、 該下層ポリエステル樹脂層、 あるいは該ポリエス テル組成物に着色剤を含有させる方法としては、 以下の方法が一般的である。 固 相重合する前のポリエステルチップを溶融したものに、 着色剤を混合し、 着色し たポリエステルチップと未着色ポリエステルチップを規定の割合で配合して溶融 押し出しする。
次に、 上述例のようにして得られたフィルムを、 金属板にラミネートして、 樹 脂被覆金属板を製造する方法について述べる。 本発明では、 例えば、 金属板をフ イルムの融点を超える温度で加熱し、 その両面に樹脂フィルムを圧着ロール (以 後ラミネートロールとも称す) を用いて接触させ熱融着させる方法を用いことが できる。
ラミネート条件については、 本発明に規定する樹脂層が得られるように適宜設 定される。 例えば、 ラミネート開始時の温度を 2 2 0 °C以上とした場合、 ラミネ 一ト終了までにフィルムの受ける温度履歴は、 フィルムがその融点以上の温度に 接している時間を 1〜2 0 m s e cの範囲とすることが好適である。 このような ラミネート条件を達成するためには、 高速下でのラミネート化に加え接着中の冷 却も必要である。 この際、 ラミネ ト化する間の加圧は特に規定するものではな いが、 面圧として 9 . 8〜2 9 4 N ( l〜3 0 k g f Z c m2) が好ましい。 こ の面圧範囲であれば、 フィルムの受ける温度履歴を、 上記適正範囲とすることが でき、 十分な密着性が得られる。
また、 本発明では、 該上層ポリエステル樹脂層、 該下層ポリエステル樹脂層、 あるいは該ポリエステル組成物をフィルムに成形して金属板に被覆するのを原則 とする力 樹脂層の規定が本発明の範囲内であれば、 樹脂層をフィルムに成形せ ずに、 樹脂層を溶融し、 金属板表面に被覆する溶融押出しラミネーシヨンを適用 することも可能である。 実施例
以下、 本発明の実施例について説明する。
厚さ 0. 18 mm X幅 977 mmの冷延鋼板を、 脱脂、 酸洗した。 次に、 該 冷延鋼板を Cr03、 F―、 S04 2—を含むめっき浴でめっきし、 クロムめつき鋼 板 (ECCS) を製造した。 このめつき鋼板を、 中間リンスした後、 C r03、 F一を含む化成処理液で電解した。 なお、 ィ匕成処理の電解条件 (電流密度'電気 量等) を調整して金属クロム付着量とクロム水酸ィヒ物付着量を、 C r換算でそれ ぞれ 12 OmgZm2および 1 SrngZni2に調整した。
次いで、 図 3に示すラミネート装置を用い、 前記で得たクロムめつき鋼帯 5を 金属帯加熱装置 6で加熱する。 次いで、 ラミネートロール 7で前記クロムめつき 鋼帯 5の一方の面に、 容器成形後に容器内面側になる該上層おょぴ該下層ポリェ ステル樹脂層として、 表 1一 1および表 1一 2に示す各種フイルム 8 aを、 他方 の面に、 容器成形後に容器外面側となる該ポリエステル組成物として、 表 3—1 およぴ表 3— 2に示す各種フィルム 8 bを熱融着する。 このようにして樹脂被覆 金属板を製造した。
ラミネート口ール 7は内部水冷式とし、 冷却水を強制循環し、 フィルムを熱融 着する間、 冷却を行った。 ラミネートする際、 金属板に接する界面のフィルム温 度がフィルムの融点以上になる時間を 1〜2 Om s e cの範囲内にした。 第一発明に関する評価
以上の方法で得られた樹脂被覆金属板及び容器内面用の被覆樹脂フィルム (該 上層おょぴ該下層ポリエステル樹脂層) の特性を、 下記の (1) 〜 (5) の方法 によりそれぞれ測定し、 評価した。 得られた結果を表 1— 1、 表 1一 2および表 2に示す。 (1) 面配向係数
ナトリウム D線 (波長 589 nm) を光源として、 アッベ屈折計を用いて、 長 手方向、 幅方向、 厚み方向の屈折率 (それぞれ Nx、 Ny、 Nz) を測定する。 面配向係数 Nsは、 Ns = (Nx+Ny) ノ 2—N zで計算して求めた。 なお、 屈折率の測定は、 被覆後のフィルムの任意の 10箇所について行い、 その平均値 を用いた。
(2) 厚み方向の複屈折率
ラミネート金属板から金属板を除去する。 つぎに、 偏光顕微鏡を用いて容器内 面側の樹脂フィルムについて、 その断面方向のレタデーシヨンを測定した。 フィ ルムの厚み方向に 1 jwmピッチで測定を繰り返し、 厚み方向の複屈折率の分布を 求めた。 上層および下層ポリエステル樹脂層の厚み方向の複屈折率は各々の樹脂 層における測定値の平均値として計算した。
(3) 内容物取り出し性
上記で得られた樹脂被覆金属板を、 プランク径: 100mm、 絞り比 (成形前 径 Z成形後径) : 1. 88の条件下で絞り成形機を用いてカップに成形した。 次 に、 このカップ内に、 赤み 100%の牛ひき肉にオートミールを加え均一混合させ たもの (低脂肪で高蛋白な内容物に相当し、 付着性が高いもの) を充填した。 力 ップの蓋を卷締め後、 レトルト処理 (130°CX 90分間) を行った。 その後、 蓋を取り外し、 カツプを逆さまにして内容物を取り出したときに力ップの内側に 残存する内容物の程度を観察した。 さらに手で 2、 3回カップを振って内容物を 取り出した後、 カップの内側に残存する該内容物の程度を観察した。 内容物の取 り出し易さの程度は、 以下により評価した。
(評点について)
◎:カップをさかさまにしただけで (手で振ることなく) 内容物が取り出せ、 取り出し後の力ップ内面に付着物が無い状態のもの。
〇:カップをさかさまにしただけではカップ内側に内容物が残存するが、 手で
2、 3回振るとカップ内面に付着物が無い状態のもの。 x :手で 2、 3回振っても内容物の取り出しが困難なもの。
(4) 成形性 ,
ラミネート金属板にワックス塗布後、 直径 179 mmの円板を打ち抜き、 絞り 比 1. 80で浅絞り缶を得た。 次いで、 この絞りカップに対し、 絞り比 2. 20 及び 2. 90で再絞り加工を行った。 この後、 常法に従いドーミング成形を行つ た後、 トリミングし、 次いでネックインーフランジ加工を施して深絞り缶を成形 した。 このようにして得た深絞り缶のネックイン部に着目し、 フィルムの損傷程 度を目視で観察した。
(評点について)
◎:成形後フィルムに損傷なく、 フィルム白化も認められない。
〇:成形可能であるが、 フィルム白化が認められる。
Δ:成形可能であるが、 フィルムに削れが見られる。
X :缶が破胴し、 成形不可能。
(5) 密着性
上記 (4) の成形性の評価で成形可能であった缶 (評点△以上) を対象とした。 缶の胴部よりピール試験用のサンプル (幅 15 mm X長さ 12 Omm) を切り出 した。 切り出したサンプルの長辺側端部からフィルムを一部剥離する。 剥離した フィルムを、 剥離された方向とは逆方向 (角度 180° ) に開き、 引張試験機 を用いて、 引張速度 3 Omm/m i nでピール試験を行い、 幅 15 mmあたりの 密着力を評価した。 なお、 密着力測定対象面は、 缶内面側とした。
(評点について)
◎ : 1. ァ^! 丄 !!!!!!以上 。. 151^ § £ // 1 5111111以上) 。
0: 0. 98 NZ 15 mm以上、 1. 47 NZ 15 mm未満 ( 0. 10kg f
/ 15 mm以上、 0. 15 k g f//l 5 mm未満) 。
X: 0. 98 N/ 15 mm未満 (0. 10 k g f/15 mm未満)。 表 2より、 本発明範囲の実施例は、 内容物取り出し性が良好であり、 成形性お よび密着性も良好である。 これに対し、 本発明の範囲を外れる比較例は、 いずれ かの特性が劣っている。 第二発明に関する評価
樹脂被覆金属板及ぴ容器外面用の被覆樹脂フィルム (ポリエステル組成物) の 特性を、 下記の (6) 〜 (10) の方法によりそれぞれ測定し、 評価した。 得ら れた結果を表 3— 1、 表 3— 2および表 4に示す。
(6) 最短の半結晶化時間の測定
コタキ製作所製ポリマー結晶化速度測定装置 MK— 801型を用い、 サンプ ル 8mgにて 40〜150°Cの範囲にて測定した。
(7) 耐白化性
上記 (4) の成形性の評価で成形可能 (△以上) であった缶を評価対象とした。 缶内に常温の水道水を満たした後、 蓋を卷き締めて密閉した。 その後、 缶底部を 下向きにしてレトルト殺菌炉の中に配置し、 125°Cで 90分間、 レトルト処理 を行った。 処理後、 缶底部外面の外観変化を目視で観察した。
(評点について)
©:外観変化なし
o:外観にかすかな曇り発生
X :外観が白濁 (白化発生)
(8) ラミネート前のポリエステルフィルムに含まれるエチレンテレフタレー トの環状三量体の定量方法
フィルム内の該環状三量体の含有量は公知の手法により分析した。 まず、 フィ ルム試料 5 Omgをへキサフルォロイソプロパノールノクロ口ホルム =50/5 0の混合溶液 2 m 1に溶解した。 後、 クロ口ホルムを 8m 1加えて希釈し, これ にァセトニトリルを加えて全容を 10 Omlとした。 この溶液の一部をフィルタ 一でろ過し、 ろ液を逆相の高速液体クロマトグラフィーによりエチレンテレフタ レートの環状三量体を定量した。
(9) 耐白粉化性
樹脂被覆金属板を、 レトルト殺菌炉内に配置し、 125°C、 90分間のレトル ト処理を行った。
処理後、 樹脂被覆金属板の表面に析出したオリゴマー量を、 以下の方法により 測定し、 耐白粉化性を評価した。
4 cmx 4 c mに切断したラミネ一ト鋼板のフィルム表面 (容器外面側表面に 相当) を、 メタノールを所定量含浸させた脱脂綿で拭き取る。 この脱脂綿をァセ トニトリル 1 Om 1で洗浄した。 この洗浄液の一部をフィルターでろ過し、 ろ液 を逆相の高速液体クロマトグラフィーによりエチレンテレフタレートの環状三量 体を定量した。
(評点について)
◎:該環状三量体の析出量が 0. 5〃 g / c m2未満 (肉眼では、 該環状三量 体の析出が確認できないレベル)
〇:該環状三量体の析出量が 0. 5 U g/cm2〜: L. 0〃 g/cm2未満
(肉眼で、 該環状三量体の析出が確認できるレベル)
X :該環状三量体の析出量が 1. 0 g / c m2以上 (該環状三量体の析出が 顕著で、 表面が白粉化)
(10) 顔料の耐溶出性
樹脂被覆金属板をレトルト殺菌処理 (125°Cで 90分間) した後、 ポリエス テル組成物を含む表面 (容器に成形後は外表面に相当) を白い布等で拭き取り、 顔料による着色の有無を目視で観察した。 さらに、 拭取り前の該表面を、 電子顕 微鏡 (SEM) で 1000倍に拡大して観察し、 顔料粒子が表面に溶出している か否か、 精査した。
(評点について) ◎ :拭き取り後、 布が着色せず、 電子顕微鏡 (SEM) による観察でも、 顔料 粒子の溶出が認められない状態
O:拭き取り後、 布は着色しないが、 電子顕微鏡 (SEM) による観察では、 顔料粒子の溶出が認められる状態
X :拭き取り後、 布が着色するとともに、 電子顕微鏡 (SEM) による観察に おいても、 顔料粒子の溶出が明確に認められる状態
表 4に示すように、 本発明範囲の実施例は、 耐白粉化性、 耐白化性およぴ耐顔 料溶出性に優れ、 レトルト殺菌処理後において優れた意匠性を保持できる。 一方、 比較例は、 レトルト処理後、 意匠性が大幅に劣化してしまうとともに食品缶詰に 要求される特性を満足できない。
表 1 -1
容器内面側に適用した樹脂層
上層ポリエステル樹脂層 下層ポリエステル樹脂層
No.
ホ'リエステル PETに対する 面配向係数該複屈折率 ホ 'リエステル PETに対する 面配向係数該複屈折率 共重合率(モル%) 共重合率 (モル%)
発明例 1 PET" 0 1.5 0.09 0.10 ΡΕΤ/Ι 12 13.5 0.01 0.02 発明例 2 PET 0 1.5 0.09 0.10 ΡΕΤ/Ι 12 13.5 0.01 0.02 発明例 3 PET 0 1.5 0.09 0.10 ΡΕΤ/Ι 12 13.5 0.01 0.02 発明例 4 PET 0 1.5 0.09 0.10 ΡΕΤ/Ι 12 13.5 0.02 0.03 発明例 5 PET 0 1.5 0.09 0.10 ΡΕΤ/Ι 12 13.5 0.02 0.03 発明例 6 PET 0 1.5 0.09 0.10 ΡΕΤ/Ι 12 13.5 0.02 0.03 発明例 7 PET 0 1.5 0.09 0.10 ΡΕΤ/Ι 12 13.5 0.02 0.03 発明例 8 PET 0 1.5 0.13 0.13 ΡΕΤ/Ι 12 13.5 0.03 0.04 発明例 9 PET 0 1.0 0.09 0.10 ΡΕΤ/Ι 12 14.0 0.01 0.02 発明例 10 PET 0 0.5 0.09 0.10 ΡΕΤ/Ι 12 14.5 0.01 0.02 発明例 11 PET 0 5.0 0.09 0.10 ΡΕΤ/Ι 12 10.0 0.01 0.02 発明例 12 PET 0 9.0 3 0.09 0.10 ΡΕΤ/Ι 12 6.0 0.01 0.02 発明例 13 PET/I2) 3 1.5 0.09 0.10 ΡΕΤ/Ι 12 13.5 0.01 0.02 発明例 14 PET/I 5 1.5 0.09 0.10 ΡΕΤ/Ι 12 13.5 0.01 0.02 発明例 15 PET/I 6 1.5 0.07 0.08 ΡΕΤ/Ι 12 13.5 0.01 0.02 発明例 16 PET 0 1.5 0.10 0.10 ΡΕΤ/Ι 15 13.5 0.01 0.02 発明例 17 PET 0 1.5 0.10 0.10 ΡΕΤ/Ι 10 13.5 0.02 0.02 発明例 18 PET 0 1.5 0.07 0.08 ΡΕΤ/Ι 12 13.5 0.01 0.02 比較例 1 PET 0 1.5 0.09 0.10 ΡΕΤ/Ι 12 13.5 0.01 0.02 比較例 2 PET 0 1.5 0.09 0.10 ΡΕΤ/Ι 12 13.5 0.01 0.02 比較例 3 PET 0 1.5 0.04 0.05 ΡΕΤ/Ι 12 13.5 0.02 0.03 比較例 4 PET 0 1.5 0.16 0.16 ΡΕΤ/Ι 12 13.5 0.05 0.07 比較例 5 PET 0 12.0 0.10 0.10 ΡΕΤ/Ι 12 3.0 0.02 0.03 比較例 6 PET/I 8 1.5 0.05 0.06 ΡΕΤ/Ι 12 13.5 0.01 0.02 比較例 7 PET 0 1.5 0.09 0.10 ΡΕΤ/Ι 8 13.5 0.04 0.05
1 ): エチレン亍レフタレー卜 "
2) :共重合エチレン テレフタレート/イソフタレート
E
表 1 -2
容器内面側に適用した樹脂層
上層に含有されるォレフインワックス 添加した着色剤
No.
觀 添加量 種類 添加された 添加量
(重量%) 樹脂層 (重量%) 発明例 1 ホ。リエチレン 1.0 一 一 - 発明例 2 エチレン'アクリル酸共重合 1.0 一 一 一 発明例 3 アイオノマー 1.0 一 - 一 発明例 4 変性ホ 'リエチレン 1.0 - 一 - 発明例 5 ホ°リエチレン 0.3 一 一 ' 一 発明例 6 ホ。リエチレン 0.5 一 - 一 発明例 7 ホ'リエチレン 3.0 一 一 一 発明例 8 ホ'リエチレン 1.0 一 一 発明例 9 ホ 'リエチレン 1.0 一 一 一 発明例 10 ホ'リエチレン 1.0 一 - 一 発明例 1 1 ホ'リエチレン 1.0 一 一 一 発明例 12 ホ°リエチレン 1.0 - 一 - 発明例 13 ホ。リエチレン 1.0 一 一 一 発明例 14 ホ。リヱチレン 1.0 - ― 一 発明例 15 ホ°リエチレン 1.0 - 一 一 発明例 16 ポリエチレン 1.0 二酸化チタン 下層 20.0 発明例 17 ホ'リエチレン 1.0 二酸化チタン 下層 20,0 発明例 18 ホ エチレン 1.0 二酸化チタン 下層 20,0 比較例 1 - 一 一 一 比較例 2 ホ'リエチレン 0.03 一 ― 比較例 3 ホ。リ Iチレン 1.0 二酸化チタン 下層 20.0 比較例 4 ホ°リエチレン 0.05 二酸化チタン 下層 20.0 比較例 5 一 - ― 一 一 比較例 6 ホ。リエチレン 1.0 一 一 一 比較例 7 ホ°リエチレン 0.08 - - 一
表 2
No. 内容物
成形性 密着性 取出し性
発明例 1 ◎ ◎ ◎ 発明例 2 o ◎ ◎ 発明例 3 〇 ◎ ◎ 発明例 4 〇 ◎ ◎ 発明例 5 ◎ ◎ ◎ 発明例 6 ◎ ◎ ◎ 発明例 7 ◎ ◎ ◎ 発明例 8 ◎ 〇 ◎ 発明例 9 ◎ ◎ ◎ 発明例 10 ◎ ◎ ◎ 発明例 11 ◎ ◎
発明例 12 ◎ ◎ ◎ 発明例 13 ◎ ◎ ◎ 発明例 14 ◎ ◎ ◎ 発明 1列 15 〇 ◎ ◎ 発明列 16 ◎ ◎ ◎ 発明 1列 17 ◎ ◎ 〇 発明 1列 18 〇 ◎ ◎ 比較例 1 X ◎ ◎ 比較例 2 X ◎
比較例 3 X ◎ ◎ 比較例 4 X X 一 比較例 5 X X - 比較例 6 X ◎ ◎ 比較例 7 X ◎ X
表 3—1
ポリエステル組成物 (容器外面側に適用)
No. 上層 下層 最短の ホ。リエステル (1) ホ。リエステル (11) 口 §十 '乎み ホ。リエステル (I) ホ°リエス亍ル (H) 合計厚み 半結晶化時間
(重量%) (重量%) ( jU m) (重量%) (重量%) (秒) 発明例 1 40 60 13.0 一 一 一 9 発明例 2 50 50 13.0 一 - - 30 発明例 3 30 70 13.0 一 - - 5 発明例 4 40 60 3.0 40 60 10.0 9 発明例 5 40 60 7.0 40 60 10.0 9 発明例 6 40 60 0.6 40 60 12.5 9 発明例 7 40 60 3.0 40 60 9.0 9 発明例 8 40 60 3.0 40 60 9.0 9 発明例 9 40 60 3.0 40 60 9.0 9 発明例 10 40 60 3.0 40 60 9.0 9 発明例 1 1 40 60 3.0 40 60 9.0 9 発明例 12 50 50 3.0 50 50 9.0 30 発明例 13 30 70 3.0 30 70 9.0 5 発明例 14 40 60 3.0 40 60 12.0 9 発明例 15 40 60 5.0 40 60 15.0 9 比較例 1 70 30 3.0 70 30 9.0 1 10 比較例 2 80 20 3.0 80 20 9.0 250 比較例 3 40 60 3.0 40 60 9.0 9 比較例 4 85 15 0.2 40 60 13.0 340
表 3— 2
Figure imgf000035_0001
3):エチレンテレフタレ一卜の環状三量体
表 4
No. 耐白粉化性 耐白化性 耐顏料溶出性 発明例 1 ◎ ◎ ◎ 発明例 2 〇 〇 ◎ 発明例 3 ◎ ◎ ◎ 発明例 4 ◎ ◎ ◎ 発明例 5 ◎ ◎ ◎ 発明例 6 ◎ ◎ O 発明例 7 ◎ ◎ ◎ 発明例 8 ◎ ◎ ◎ 発明例 9 ◎ ◎ ◎ 発明例 10 ◎ ◎ ◎ 発明例 1 1 ◎ ◎ ◎ 発明例 12 ◎ ◎ ◎ 発明例 13 ◎ ◎ ◎ 発明例 14 ◎ ◎ ◎ 発明例 15 ◎ ◎ ◎ 比較例 1 ◎ X ◎ 比較例 2 ◎ X ◎ 比較例 3 X ◎ ◎ 比較例 4 X X X
産業上の利用可能性
本発明の樹脂被覆鋼板は、 容器に成形後の内面側と外面側を想定したポリエス テル層を有する。 この鋼板より得られる容器は、 内容物の取り出し性に優れ、 か つ容器の加工に要求される成形性と密着性にも優れる。 さらに、 レトルト処理後 に外面側の意匠欠陥の原因となる白化現象も防止することができる。 よって食缶 容器用素材として広く用いることができる。

Claims

請 求 の 範 囲
1 . 金属板;
該金属板の少なくとも片面に、 面配向係数が 0 . 0 3以下で厚みが 5〜 2 0 mの下層ポリエステル樹脂層;および
該下層ポリエステル樹脂層の上に、 才レフィンワックスを 0 · 1〜5質量%含 有しかつ面配向係数が 0 . 0 6超えから 0 . 1 5以下で厚みが 0. 5〜: L 0 m の上層ポリエステル樹脂層;
を有する樹脂被覆金属板。
2 . 該ォレフインワックスがポリエチレンワックスである請求項 1に記載の 樹脂被覆金属板。
3 . 該下層ポリエステル樹脂層が着色剤を含有する請求項 1に記載の樹脂被 覆金属板。
4 . 該着色剤が二酸化チタンの粒子である請求項 3に記載の樹脂被覆金属板。
5 . 該下層ポリエステル樹脂層がィソフタロイル基を 1 0〜 2 2モル0 /0含有 する共重合ポリ チレンテレフタレートであり、 かつ該上層ポリエステル樹脂層 が単重合ポリェチレンテレフタレートおょぴイソフタルロイル基を 6モル0 /0以下 含有する共重合ポリエチレンテレフタレートからなる群より選ばれる 1種の樹脂 である請求項 1に記載の樹脂被覆金属板。
6 . 該上層および下層ポリエステル樹脂層を片面に有する該金属板の反対側 の表面に、 最短の半結晶化時間が 1 0 0秒以下であるポリエステル組成物を合計 厚み 5〜 2 0〃 mで少なくとも 1層有する前記請求項 1に記載の樹脂被覆金属板。
7 . 該ポリエステル組成物が、 エチレンテレフタレートを主たる繰返し単位と するポリエステル 3 0〜5 0質量0 /0とブチレンテレフタレートを主たる繰返し単 位とするポリエステル 5 0〜 7 0質量%の配合物である前記請求項 6に記載の樹 脂被覆金属板。
8 . 該ポリエステル組成物が、 アルキレンテレフタレートの環状三量体の含 有率が 0 . 6 5質量%以下である請求項 6に記載の樹脂被覆金属板。
9 . 該ポリエステル組成物が着色剤を含有す ¾請求項 6に記載の樹脂被覆金 属板。
10. 該ポリエステル組成物が複数の樹脂層からなり、 該組成物のうち該金属 板に接する樹脂層にキノフタ口ン類、 ベンズィミダゾロン類おょぴィソインドリ ノン類からなる群より選ばれる少なくとも 1種の有機着色剤を該金属板に接する 樹脂層に対して 0 . 1〜5質量%含有し、 かつ該組成物のうちの最表層に厚みが 0 . 5 m以上の着色剤を含まない樹脂層を有する請求項 6に記載の樹脂被覆金 属板。
11. 該下層ポリエステル樹脂層の厚み方向の平均複屈折率が 0 . 0 4以下で あり、 該上層ポリエステル樹脂層の厚み方向の平均複屈折率が 0 . 0 8〜0 . 1 5である請求項 1〜: 10のいずれかに記載の樹脂被覆金属板。
12. 金属板と、 この金属板を容器に成形した際に、 少なくとも内面となる側 に形成されたポリエステル樹脂層とを有する容器用樹脂被覆金属板であって、 ァ) 内面となる側に形成されたポリエステル樹脂層は、 '容器の内部空間に接する 上層のポリエステル樹脂層と金属板に接する下層のポリエステル樹脂層とを有し、 ィ) 上層のポリエステル樹脂層は、 ォレフィン系ワックスを 0 . 1〜5質量%含 有し、
ゥ) 上層のポリエステル樹脂は、 面配向係数が 0. 06超え 0. 15以下で、 かつ、 下 層のポリエステル樹脂層は、 面配向係数が 0. 03以下であり、
ェ) 上層のポリエステル樹脂層は、 厚み力 S O . 5〃m以上 1 0 m以下、 かつ、 下 層のポリエステル樹脂層は、 厚みが 5〃m以上 2 0〃m以下であることを特徴と する容器用樹脂被覆金属板。
PCT/JP2005/009497 2004-05-31 2005-05-18 樹脂被覆金属板 WO2005115744A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK05743572.9T DK1757439T3 (en) 2004-05-31 2005-05-18 Resinbelagt metal plate
EP05743572.9A EP1757439B1 (en) 2004-05-31 2005-05-18 Resin-coated metal plate
CA 2565277 CA2565277C (en) 2004-05-31 2005-05-18 Resin-coated metal sheet
US11/579,795 US20080261063A1 (en) 2004-05-31 2005-05-18 Resin-Coated Metal Sheet

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-161855 2004-05-31
JP2004-161854 2004-05-31
JP2004161855A JP4341470B2 (ja) 2004-05-31 2004-05-31 容器用樹脂被覆金属板
JP2004161856A JP4341471B2 (ja) 2004-05-31 2004-05-31 容器用樹脂被覆金属板
JP2004161854A JP4341469B2 (ja) 2004-05-31 2004-05-31 容器用樹脂被覆金属板
JP2004-161856 2004-05-31

Publications (1)

Publication Number Publication Date
WO2005115744A1 true WO2005115744A1 (ja) 2005-12-08

Family

ID=35450736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009497 WO2005115744A1 (ja) 2004-05-31 2005-05-18 樹脂被覆金属板

Country Status (5)

Country Link
US (1) US20080261063A1 (ja)
EP (1) EP1757439B1 (ja)
CA (1) CA2565277C (ja)
DK (1) DK1757439T3 (ja)
WO (1) WO2005115744A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125184A1 (ja) * 2014-02-21 2015-08-27 Jfeスチール株式会社 容器用樹脂被覆金属板およびその製造方法
JP2017512685A (ja) * 2014-03-31 2017-05-25 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv 金属基材に積層するための多層構造を有するポリエステルフィルム、そのようなポリエステルフィルムを有する金属基材、およびこの金属基材から製造された構成部材を有する容器

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080075926A1 (en) * 2004-08-06 2008-03-27 Yasuhiro Matsubara Description Multilayer Resin Films, Resin-Coated Metal Plates, a Method of Producing Multilayer Resin Films and a Method of Producing Resin-Coated Metal Plates
JP5609012B2 (ja) 2009-05-28 2014-10-22 東洋製罐株式会社 スチール製絞りしごき缶及びその製造方法
JP5609036B2 (ja) 2009-07-22 2014-10-22 東洋製罐株式会社 アルミニウム製絞りしごき缶及びその製造方法
EP2752291B1 (en) 2011-08-31 2023-09-27 JFE Steel Corporation Resin coated metal sheet
JP5874659B2 (ja) * 2013-02-28 2016-03-02 Jfeスチール株式会社 2ピース缶用ラミネート金属板および2ピースラミネート缶体
MY162001A (en) * 2013-10-30 2017-05-31 Jfe Steel Corp Laminated metal sheet for containers, method for producing metal can, and method for evaluating formability of metal sheet
WO2015125185A1 (ja) * 2014-02-21 2015-08-27 Jfeスチール株式会社 容器用樹脂被覆金属板およびその製造方法
AU2016237966B2 (en) * 2015-03-26 2018-11-22 Jfe Steel Corporation Resin-Coated Metal Sheet for Container
US11027523B2 (en) * 2015-11-30 2021-06-08 Toray Plastics (America), Inc. Polyester film incorporating silicone for release of canned meat products
WO2017155099A1 (ja) * 2016-03-10 2017-09-14 新日鐵住金株式会社 容器用金属板およびその製造方法
DE102016205913A1 (de) * 2016-04-08 2017-10-12 Mitsubishi Polyester Film Gmbh Biaxial orientierte Polyesterfolie für die Metalllaminierung
US11518144B2 (en) * 2016-06-17 2022-12-06 Jfe Steel Corporation Laminated metal sheet for metal container lid and method for manufacturing the same
CN109910402B (zh) * 2017-12-13 2021-08-13 宝山钢铁股份有限公司 一种界面气泡率极低的覆膜铁及其制造方法
JP7037108B2 (ja) * 2017-12-15 2022-03-16 東洋紡株式会社 金属板貼合せ成形加工用着色二軸延伸ポリエステルフィルム
KR102441780B1 (ko) * 2017-12-15 2022-09-07 제이에프이 스틸 가부시키가이샤 용기용 수지 피막 금속판

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155660A (ja) * 1992-06-03 1994-06-03 Toyo Kohan Co Ltd 耐熱水性に優れたポリエステル樹脂被覆金属板
JPH07316317A (ja) * 1994-05-24 1995-12-05 Toyobo Co Ltd 金属ラミネート用ポリエステル系フィルム、ラミネート金属板及び金属容器
EP1174457A1 (en) 1999-12-03 2002-01-23 Toray Industries, Inc. Biaxially stretched polyester film for forming
JP2002264258A (ja) * 2001-03-14 2002-09-18 Nkk Corp 容器用フィルムラミネート金属板
JP2002347169A (ja) * 2001-03-23 2002-12-04 Toyo Seikan Kaisha Ltd ラミネート板及びそれを用いた被覆シームレス缶
JP2003225969A (ja) * 2002-02-05 2003-08-12 Jfe Steel Kk 容器用フィルムラミネート金属板
JP2003236985A (ja) * 2002-02-18 2003-08-26 Jfe Steel Kk 容器用フィルムラミネート金属板
JP2004122577A (ja) * 2002-10-02 2004-04-22 Mitsubishi Alum Co Ltd ポリエステル樹脂被覆アルミニウム合金板

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115175A (en) * 1977-09-13 1978-09-19 Matsushita Electric Industrial Co., Ltd. Method for manufacturing synthetic resin packed product assembly
US4507339A (en) * 1982-01-15 1985-03-26 American Can Company Coated metal container and method of making the same
JP2677172B2 (ja) * 1993-10-14 1997-11-17 東洋製罐株式会社 保香性及び耐衝撃性に優れたラミネート絞り容器
JP2611738B2 (ja) * 1994-02-04 1997-05-21 東洋製罐株式会社 ポリエステル−金属ラミネート板及びそれを用いたシームレス缶
TW362067B (en) * 1996-04-10 1999-06-21 Toyo Kohan Co Ltd Metal sheet with highly workable polyterephthalic acid ethyl hydroxide ester resin coating
JP3146973B2 (ja) * 1996-05-01 2001-03-19 東洋製罐株式会社 ラミネート板及びこれを用いた製缶方法
US6420010B1 (en) * 1996-10-18 2002-07-16 Teijin Limited White laminated polyester film for metallic plate lamination work
US6723441B1 (en) * 1999-09-22 2004-04-20 Nkk Corporation Resin film laminated metal sheet for can and method for fabricating the same
DE60124636T2 (de) * 2000-09-12 2007-09-13 Toyo Boseki K.K. Weiße Polyesterfolie für ein laminiertes Metallblech, folienlaminiertes Metallblech und Metallbehälter
EP1380413B1 (en) * 2001-03-14 2017-04-26 JFE Steel Corporation Film-laminated metal sheet for container
JP4091266B2 (ja) * 2001-04-09 2008-05-28 関西ペイント株式会社 絞りしごき加工性にすぐれた潤滑鋼板
JP2004268290A (ja) * 2003-03-05 2004-09-30 Fuji Photo Film Co Ltd 熱転写シート、画像形成材料及び画像形成方法
JP2005161621A (ja) * 2003-12-01 2005-06-23 Jfe Steel Kk レトルト後の外観に優れた缶蓋用ラミネート金属板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155660A (ja) * 1992-06-03 1994-06-03 Toyo Kohan Co Ltd 耐熱水性に優れたポリエステル樹脂被覆金属板
JPH07316317A (ja) * 1994-05-24 1995-12-05 Toyobo Co Ltd 金属ラミネート用ポリエステル系フィルム、ラミネート金属板及び金属容器
EP1174457A1 (en) 1999-12-03 2002-01-23 Toray Industries, Inc. Biaxially stretched polyester film for forming
JP2002264258A (ja) * 2001-03-14 2002-09-18 Nkk Corp 容器用フィルムラミネート金属板
JP2002347169A (ja) * 2001-03-23 2002-12-04 Toyo Seikan Kaisha Ltd ラミネート板及びそれを用いた被覆シームレス缶
JP2003225969A (ja) * 2002-02-05 2003-08-12 Jfe Steel Kk 容器用フィルムラミネート金属板
JP2003236985A (ja) * 2002-02-18 2003-08-26 Jfe Steel Kk 容器用フィルムラミネート金属板
JP2004122577A (ja) * 2002-10-02 2004-04-22 Mitsubishi Alum Co Ltd ポリエステル樹脂被覆アルミニウム合金板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125184A1 (ja) * 2014-02-21 2015-08-27 Jfeスチール株式会社 容器用樹脂被覆金属板およびその製造方法
CN106029511A (zh) * 2014-02-21 2016-10-12 杰富意钢铁株式会社 容器用树脂被覆金属板和其制造方法
US9993998B2 (en) 2014-02-21 2018-06-12 Jfe Steel Corporation Resin-coated metal sheet for containers and method for manufacturing the same
JP2017512685A (ja) * 2014-03-31 2017-05-25 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv 金属基材に積層するための多層構造を有するポリエステルフィルム、そのようなポリエステルフィルムを有する金属基材、およびこの金属基材から製造された構成部材を有する容器

Also Published As

Publication number Publication date
EP1757439B1 (en) 2016-07-06
CA2565277A1 (en) 2005-12-08
EP1757439A4 (en) 2007-06-06
US20080261063A1 (en) 2008-10-23
EP1757439A1 (en) 2007-02-28
CA2565277C (en) 2010-04-13
DK1757439T3 (en) 2016-10-17

Similar Documents

Publication Publication Date Title
WO2005115744A1 (ja) 樹脂被覆金属板
JP5673860B2 (ja) ラミネート金属板および食品用缶詰容器
KR101999462B1 (ko) 용기용 수지 피복 금속판
KR101951291B1 (ko) 용기용 수지 피복 금속판 및 그 제조 방법
WO1995015993A1 (fr) Film transparent permettant de former une couche de revetement sur une boite metallique
WO2014132541A1 (ja) 2ピース缶用ラミネート金属板および2ピースラミネート缶体
JP4341470B2 (ja) 容器用樹脂被覆金属板
JP4977875B2 (ja) 容器用樹脂被覆金属板
JP4806933B2 (ja) ポリエステル樹脂ラミネート金属容器
JP4735105B2 (ja) 容器用樹脂被覆金属板
JP2007276204A (ja) 金属板貼合せ成形加工用フィルム
JP4826419B2 (ja) 容器用樹脂被覆金属板
JP5076385B2 (ja) 容器用樹脂被覆金属板および樹脂被覆金属缶
JP2007253454A (ja) 容器用樹脂被覆金属板
JP4341469B2 (ja) 容器用樹脂被覆金属板
JP4759250B2 (ja) 金属板貼合せ成形加工用フィルム
JP4341471B2 (ja) 容器用樹脂被覆金属板
JP4341451B2 (ja) 容器用樹脂被覆金属板
JP4779295B2 (ja) 容器用樹脂被覆金属板及びその製造方法
JPH0784532B2 (ja) 金属ラミネート用フィルム
WO2005095104A1 (ja) 樹脂被覆金属板
WO2021020555A1 (ja) 樹脂被覆金属板、容器、及びレトルト白化性改善方法
JP4341450B2 (ja) 容器用樹脂被覆金属板
WO2021020556A1 (ja) 樹脂被覆金属板及び容器
JP2003127277A (ja) 容器用フィルムラミネート金属板

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2565277

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11579795

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2005743572

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005743572

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005743572

Country of ref document: EP