WO2014132541A1 - 2ピース缶用ラミネート金属板および2ピースラミネート缶体 - Google Patents

2ピース缶用ラミネート金属板および2ピースラミネート缶体 Download PDF

Info

Publication number
WO2014132541A1
WO2014132541A1 PCT/JP2013/084794 JP2013084794W WO2014132541A1 WO 2014132541 A1 WO2014132541 A1 WO 2014132541A1 JP 2013084794 W JP2013084794 W JP 2013084794W WO 2014132541 A1 WO2014132541 A1 WO 2014132541A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
polyester resin
resin layer
less
film
Prior art date
Application number
PCT/JP2013/084794
Other languages
English (en)
French (fr)
Inventor
祐介 中川
北川 淳一
洋一郎 山中
飛山 洋一
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US14/770,640 priority Critical patent/US10227156B2/en
Priority to BR112015020675-1A priority patent/BR112015020675B1/pt
Priority to CN201380073942.6A priority patent/CN105008232B/zh
Priority to ES13876472T priority patent/ES2744906T3/es
Priority to EP13876472.5A priority patent/EP2962951B1/en
Priority to CA2901209A priority patent/CA2901209C/en
Priority to KR1020157022518A priority patent/KR20150108905A/ko
Publication of WO2014132541A1 publication Critical patent/WO2014132541A1/ja
Priority to PH12015501883A priority patent/PH12015501883B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D7/00Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal
    • B65D7/02Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by shape
    • B65D7/04Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by shape of curved cross-section, e.g. cans of circular or elliptical cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/14Linings or internal coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/66Cans, tins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging

Definitions

  • the present invention relates to a laminated metal plate for a two-piece can and a two-piece laminated can body.
  • Metal cans a form of food packaging containers, are excellent in mechanical strength and long-term storage, can be filled with high-temperature contents as they are, and can be easily sterilized by retort sterilization after sealing. Therefore, it is highly safe and hygienic as a packaging container.
  • metal cans have the advantage that they can be easily separated and recovered from waste.
  • metal cans have been manufactured from painted metal plates. However, the painting process performed by can manufacturers is complicated and low in productivity.
  • a solvent-based paint is used, a large amount of solvent volatilizes during the drying / baking process performed after painting, which causes environmental problems such as solvent discharge.
  • BPA bisphenol A
  • a laminated metal plate obtained by thermally fusing a thermoplastic resin film not containing BPA to the surface of the metal plate has been used as a metal can material.
  • a laminated metal plate obtained by heat-sealing a polyester resin film to the surface of a metal plate is widely used because of its excellent food hygiene performance.
  • a laminated metal plate in which a polyester resin film is heat-sealed to the surface of a metal plate can be used as a lid, a drawing / redrawing (DRD: Drawn and ReDrawn) can, a drawing and ironing (DI: Drawn and Ironed) can, etc. in use.
  • Patent Documents 1 and 2 propose a technique in which a biaxially oriented polyethylene terephthalate film is laminated on a metal plate via a low-melting polyester adhesive layer and used as a metal can material.
  • Patent Documents 3 and 4 propose a method of manufacturing a laminated metal plate and a metal can body having a high drawing ratio using a polyester resin film that can be thermally fused.
  • JP-A-56-10451 Japanese Patent Laid-Open No. 01-192546 JP 05-156040
  • Japanese Patent Application Laid-Open No. 07-195617 JP 05-331302 A JP 2002-88233 A JP 2001-335682 A JP 2004-58402 A JP 2004-249705 A
  • the polyester resin is subjected to the retort sterilization treatment.
  • a retort whitening phenomenon in which the film is discolored occurs and the design is impaired.
  • the laminated metal plate which heat-fused the polyester resin film is required to have retort whitening resistance.
  • the laminated metal plate when a laminated metal plate on which a polyester resin film is heat-sealed is applied to the inner surface side of a food can container, the laminated metal plate is required to have corrosion resistance.
  • the mechanical properties of the laminated metal plates that can be formed with a high degree of processing such as squeezing and squeezing and ironing cans. It is required to have
  • Patent Document 5 describes that the retort whitening phenomenon can be suppressed by increasing the crystallization speed of the polymer, but the mechanism of the retort whitening phenomenon is not completely understood, and the problem of the retort whitening phenomenon is fundamental. Has not been resolved.
  • Patent Documents 6 to 9 describe a metal plate coating film that is used for squeezing and ironing by laminating a film made of butylene terephthalate and ethylene terephthalate on a metal plate.
  • a smooth laminated metal plate has insufficient processability when used in containers such as canned food containers, and may cause defects such as film tearing.
  • a steel plate having a strength higher than that of an aluminum plate is used as a base, the film is damaged during molding and cannot be used as a can.
  • the present invention has been made in view of the above-mentioned problems, and its purpose is a laminate for two-piece cans having retort whitening resistance and corrosion resistance, and having mechanical properties capable of forming with a high degree of processing.
  • An object of the present invention is to provide a metal plate and a two-piece laminated can body manufactured using the two-piece can laminated metal plate.
  • the laminated metal plate for a two-piece can includes a metal plate, a first polyester resin layer formed on the surface of the metal plate that becomes the outer surface side of the container after container molding, and the inner surface side of the container after container molding
  • a second polyester resin layer formed on the surface of the metal plate, and the first polyester resin layer is a polyethylene terephthalate or copolymerized polyethylene terephthalate having a copolymer component content of less than 6 mol% 30% by weight to 60% by weight, polybutylene terephthalate or copolymerized polybutylene terephthalate having a copolymer component content of less than 5% by mole of 40% by weight to 70% by weight, and polyolefin wax at 0%.
  • Rate is polyethylene terephthalate copolymer is less than 22 mol%, the residual degree of orientation of the first and second polyester resin layer is equal to or less than 30%.
  • the laminated metal plate for a two-piece can according to the present invention is characterized in that, in the above invention, the center line surface roughness Ra of the surface of the first polyester resin layer is in the range of 0.4 ⁇ m to 2.0 ⁇ m.
  • the two-piece laminated can body according to the present invention is manufactured using the laminated metal plate for a two-piece can according to the present invention.
  • a manufactured two-piece laminated can body can be provided.
  • a laminated metal plate for a two-piece can includes a metal plate, an outer polyester resin layer formed on the surface of the metal plate that becomes the outer surface side of the container after container molding, and a container after molding the container. And an inner surface side polyester resin layer formed on the surface of the metal plate on the inner surface side.
  • the metal plate a steel plate or an aluminum plate widely used as a material for cans can be used.
  • Tin-free steel (TFS) or the like is preferable.
  • the amount of metal chromium and chromium hydroxide deposited on TFS is not particularly limited, but from the viewpoint of workability and corrosion resistance, the amount of metal chromium deposited is 70 to 200 mg / m 2 , and the amount of chromium hydroxide deposited is 10 to 30 mg. / M 2 is desirable.
  • the can filled with the contents is exposed to high-temperature and high-pressure steam immediately after the start of the retort sterilization treatment. At that time, part of the water vapor permeates through the polyester resin film and enters the vicinity of the surface of the metal plate. Since the can filled with the contents is cooled by the contents filled before the retort sterilization treatment, the polyester resin film near the surface of the metal plate has a lower temperature than the surrounding atmosphere. For this reason, the water vapor is cooled in the amorphous polyester resin film near the metal plate and condensed into water, and the polyester resin film is spread by the condensed water to form water bubbles. When the retort sterilization process elapses, the water bubbles are vaporized due to the temperature rise of the contents, and after the water bubbles are vaporized, voids are formed.
  • the polyester resin film in the vicinity of the metal plate is cooled by the contents and is heat-sealed, so that it becomes an amorphous layer whose crystal orientation is broken. For this reason, since the mechanical strength of the polyester resin film in the vicinity of the metal plate is smaller than that of the crystalline layer and easily deforms, it is considered that the above phenomenon occurs. Therefore, the retort whitening phenomenon can be suppressed if the strength of the amorphous layer near the metal plate can be increased.
  • the metal plate is heated to a temperature higher than the glass transition point and the polyester resin film is fused to the surface, so that it is unavoidable that the resin layer near the surface of the metal plate melts and the oriented crystals break. Absent. Therefore, in the present invention, the retort whitening phenomenon is suppressed by forming a fragile amorphous layer having a low mechanical strength immediately after laminating into a hard and strong layer after forming a can body.
  • a method for crystallizing the amorphous layer polyester resin film before the retort sterilization treatment there is a method of performing a heat treatment before the retort sterilization treatment.
  • a polyester resin film having a high crystal orientation is inferior in moldability, so that the form of a container that can be applied is limited and is not realistic.
  • heat treatment is performed after the container is formed, there is a demerit that the number of processes after forming increases and the manufacturing cost increases.
  • the inventors of the present invention have found a resin composition having a high thermal crystallization rate with the aim of enhancing crystal orientation by utilizing heat during retort sterilization treatment, and this resin composition is used as an outer surface side polyester resin layer. Applied to. That is, in the present invention, the polyester resin of the amorphous layer is crystallized to improve the strength before the voids are formed in the resin layer on the outer surface of the can by the retort sterilization treatment.
  • polyester ( A) a polyester mainly composed of polyethylene terephthalate
  • polyester (B) a polyester mainly composed of polybutylene terephthalate
  • the ratio of the polyester (A) is larger than 60% by mass and the ratio of the polyester (B) is less than 40% by mass, the formation of bubbles in the vicinity of the metal plate surface cannot be suppressed during the retort sterilization treatment, and the resin layer Will whiten and the design will be greatly impaired.
  • the ratio of the polyester (A) is less than 30% by mass and the ratio of the polyester (B) is greater than 70% by mass, the retort whitening phenomenon can be suppressed, but the elastic modulus of the resin layer is excessively decreased. Since the mechanical properties are inferior, the resin layer is easily wrinkled at the time of transportation and molding, making it difficult to be suitable for food cans. Moreover, since it becomes too expensive also from a viewpoint of resin cost, it is not suitable for practical use.
  • polyester (A) and polyester ( The mass% ratio (A / B) with B) is preferably in the range of 30 to 60/70 to 40, more preferably in the range of 40 to 50/60 to 50.
  • Polyester (A) is a product obtained by condensation reaction during melting with a terephthalic acid component and an ethylene glycol component as main components.
  • other components may be copolymerized with polyethylene terephthalate at less than 6 mol%, and the copolymer component may be an acid component or an alcohol component.
  • copolymer components include aromatic dicarboxylic acids such as isophthalic acid, phthalic acid and naphthalenedicarboxylic acid, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decanedicarboxylic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid.
  • aromatic dicarboxylic acids such as isophthalic acid, phthalic acid and naphthalenedicarboxylic acid
  • aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decanedicarboxylic acid
  • alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid.
  • An acid etc. can be illustrated. Of these, isophthalic acid is particularly preferred.
  • the copolymer alcohol component examples include aliphatic diols such as butanediol and hexanediol, and alicyclic diols such as cyclohexanedimethanol. These can be used alone or in combination of two or more.
  • the proportion of the copolymerization component is a proportion that results in a polymer melting point of 210 to 256 ° C., preferably 215 to 256 ° C., more preferably 220 to 256 ° C., depending on the type. When the polymer melting point is less than 210 ° C., the heat resistance is inferior, and when the polymer melting point exceeds 256 ° C., the crystallinity of the polymer is too large and the moldability is impaired.
  • the polyester (B) is a product obtained by subjecting a terephthalic acid component and a 1,4-butanediol component as main components to a melt polycondensation reaction.
  • the copolymer component may be an acid component or an alcohol component.
  • copolymer acid components include aliphatic dicarboxylic acids such as isophthalic acid, phthalic acid, and naphthalenedicarboxylic acid, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, and decanedicarboxylic acid, and aliphatic dicarboxylic acids such as cyclohexanedicarboxylic acid.
  • An acid etc. can be illustrated. Of these, isophthalic acid, 2,6-naphthalenedicarboxylic acid or adipic acid is preferred.
  • the copolymer alcohol component examples include aliphatic diols such as ethylene glycol and hexanediol, and alicyclic diols such as cyclohexanedimethanol. These can be used alone or in combination of two or more.
  • the proportion of the copolymerization component is a proportion that results in a polymer melting point of 180 to 223 ° C., preferably 200 to 223 ° C., more preferably 210 to 223 ° C., depending on the type. When the polymer melting point is less than 180 ° C., the crystallinity as polyester is low, and as a result, the heat resistance is lowered.
  • the mixing ratio of the polyester (A) and the polyester (B) is adjusted so that the polymer melting point is 200 to 256 ° C., preferably 210 to 256 ° C., more preferably 220 to 256 ° C.
  • the olefin wax to be added is a homopolymer or copolymer of an olefin, a monomer that can be copolymerized with an olefin, for example, a copolymer with a vinyl monomer, or a modified polymer thereof.
  • a homopolymer or copolymer of an olefin a monomer that can be copolymerized with an olefin, for example, a copolymer with a vinyl monomer, or a modified polymer thereof.
  • polyethylene high density, low density low molecular weight, high molecular weight, etc.
  • linear low density polyethylene linear ultra low density polyethylene
  • polypropylene ethylene / propylene copolymer
  • Ionomer resin ethylene / vinyl acetate copolymer, ethylene / acrylic acid copolymer, ethylene / methyl methacrylate copolymer, modified polyolefin (olefin homopolymer or copolymer and maleic acid or fumaric acid) And the like, and the like, and the like, and the like, and the like, and the like, and the like (reactants with unsaturated carboxylic acids, acid anhydrides, esters, metal salts, etc.). These polyolefins can be used alone or in combination of two or more.
  • a low molecular weight wax having a number average molecular weight (Mn) of 1,000 to 10,000.
  • Mn number average molecular weight
  • the content of the olefin wax is in the range of 0.01% to 3.0% by mass ratio of the outer surface side polyester resin layer. When the content is less than 0.01%, the amount of olefinic wax produced on the resin surface is small, and the processability is inferior. On the other hand, when the content exceeds 3.0%, the effect of improving the workability is almost saturated, and an excessive cost increase is caused with a technical barrier in production and a decrease in productivity. .
  • the added amount of the olefin wax is 0.01% or more and 3.0% or less, preferably outside. However, the range is 0.01% or more and 1.0% or less.
  • the inventors of the present invention aim to greatly reduce the surface friction resistance by adding olefinic wax to the outer surface side polyester resin layer and imparting irregularities to the surface, resulting in reduced processing stress and workability. Has been found to improve dramatically.
  • the center line surface roughness Ra of the surface of the outer side polyester resin layer is preferably 0.4 ⁇ m or more and 2.0 ⁇ m or less.
  • a film used for such a high-gloss laminated metal plate usually has a surface roughness Ra of 0.1 ⁇ m or less, and the film surface remains smooth after lamination and the surface roughness is about 0.1 ⁇ m.
  • Such a smooth laminated metal sheet cannot be used for food cans that are severely used because the film is defective due to squeezing and ironing, and the adhesion to the substrate tends to be lowered.
  • a surface roughness of 0.4 ⁇ m or more is applied to the resin layer surface, the contact area between the mold and the film is lowered during processing, and the surface friction resistance is reduced.
  • the adhesion between the film and the base is improved, so that it can be used for food cans where the usage environment is severe. Moreover, it turned out that workability increases as surface roughness increases, and as a result, durability tends to increase. More preferably, the lower limit of the surface roughness is 0.4 ⁇ m or more. On the other hand, if the surface roughness exceeds 2.0 ⁇ m, the film thickness is uneven, and thus film defects are likely to occur. For this reason, the upper limit of the surface roughness is 2.0 ⁇ m or less, more preferably 1.5 ⁇ m or less.
  • polyester (C) containing polyethylene terephthalate as a main component is formed.
  • polyester (C) A polymer composed of a dicarboxylic acid component containing terephthalic acid as the main component and a glycol component containing ethylene glycol as the main component.
  • dicarboxylic acid component terephthalic acid, isophthalic acid, naphthalenic acid dicarboxylic acid, diphenyldicarboxylic acid, etc. are used.
  • terephthalic acid and isophthalic acid can be preferably used, and the glycol component may be ethylene glycol as a main component and propanediol, butanediol, or the like may be used in combination.
  • the main component may be polyethylene terephthalate and may be copolymerized, but the content of the copolymer component is less than 22 mol%. Preferably, it is less than 18 mol%, more preferably less than 15 mol%. When the content of the copolymer component is 22 mol% or more, the melting point is too low, and the residual orientation of the outer surface side and inner surface side polyester resin layers cannot be adjusted within a predetermined range when laminated. Absent.
  • the proportion of the copolymerization component is preferably a proportion that results in a polymer melting point of 210 to 256 ° C., preferably 215 to 256 ° C., more preferably 220 to 256 ° C., depending on the type.
  • the heat resistance is inferior, and when the polymer melting point exceeds 256 ° C., the crystallinity of the polymer is too large and the moldability is impaired.
  • an antioxidant, a heat stabilizer, an ultraviolet absorber, a plasticizer, a pigment, an antistatic agent, a crystal nucleating agent, and the like can be blended.
  • the above inner side polyester resin layer is excellent in mechanical properties such as tensile strength, elastic modulus, and impact strength and has polarity. By using this as a main component, the adhesion and moldability of the inner side polyester resin layer can be improved. It is possible to improve to a level that can withstand container processing and to impart impact resistance after processing the container.
  • the residual orientation degree of the biaxially oriented polyester resin layer is controlled within a range of less than 30% according to the degree of processing required for the two-piece can application.
  • the residual orientation degree is a value obtained by an X-ray diffraction method and is defined as follows.
  • P2 / P1 ⁇ 100 is the residual orientation degree (%).
  • the residual orientation degree of the outer side polyester resin layer and the inner side polyester resin layer is less than 30%. If the residual orientation is 30% or more, the film formability is inferior, and therefore a broken body may occur during can making, or problems such as film peeling may occur after processing.
  • the biaxially stretched polyester film is heat-sealed, the oriented crystal is broken by the heat from the metal plate, and the resin layer becomes an amorphous polyester resin.
  • the heat input during heat fusion is small, the resin layer is insufficiently melted at the interface with the metal plate, and the adhesion between the metal plate and the resin layer is weakened.
  • the residual orientation degree of the outer surface side polyester resin layer and the inner surface side polyester resin layer needs to be less than 30%, and is preferably a region of 20% or less. From the viewpoint of film moldability, it is desirable to reduce the degree of residual orientation as much as possible as the degree of processing increases. There is no particular lower limit for the degree of remaining orientation, but if the degree of remaining orientation is less than 2%, the impact resistance tends to be inferior, so the degree of remaining orientation is preferably 2% or more.
  • the outer surface side polyester resin layer is made of polyethylene terephthalate or, if necessary, as an acid component, Preferably, a copolymerized polyethylene terephthalate copolymerized with isophthalic acid at a ratio of less than 6 mol% is applied, and the inner polyester resin layer is copolymerized as an acid component, preferably isophthalic acid at a ratio of less than 22 mol%. It is desirable to apply the copolymerized polyethylene terephthalate. Since the inner surface side polyester resin layer is applied to the inner surface side of the can after forming the container, it is copolymerized in order to ensure adhesion.
  • the outer surface side polyester resin layer and the inner surface side polyester resin layer are the outer surface side and the inner surface side after container molding, respectively, and must satisfy the above-mentioned necessary characteristics.
  • the degree of residual orientation is determined so as to exhibit the required characteristics. If the ratio of amorphous polyester differs greatly between the inner and outer surfaces when laminated, the required properties cannot be satisfied on one or both sides. In such a case, it becomes difficult to manufacture with the desired residual orientation degree that satisfies the required characteristics on both sides simultaneously. That is, it is preferable to adjust the composition of the outer surface side polyester resin layer and the inner surface side polyester resin layer so that the degree of residual orientation is not greatly different from each other.
  • the temperature of the metal plate during lamination and the melting point of the resin are closely related, and the temperature of the metal plate during lamination is determined by the melting point of the resin.
  • the resin melting point depends on the resin composition, and polybutylene terephthalate has a lower melting point than polyethylene terephthalate, and the melting point varies greatly depending on the blending ratio. Moreover, isophthalic acid copolymer polyethylene terephthalate has a lower melting point than polyethylene terephthalate. Therefore, depending on the mixing ratio of polyester (A) and polyester (B), the resin melting point of the outer polyester resin layer is sufficiently lower than the resin melting point of the inner polyester resin layer. Polyethylene terephthalate which is not allowed to be applied can also be applied.
  • the polyester (A) is isophthalic acid in order to control the remaining orientation after lamination on both the inner and outer sides. It is also possible to adjust the melting point of the resin by copolymerization.
  • the thickness of the outer side polyester resin layer and the inner side polyester resin layer is not particularly specified. However, if there is a flaw due to rubbing during molding or when transporting a food can, the surface of the metal plate is exposed and the appearance is impaired. Or corrosion may occur starting from the exposed metal plate during long-term storage.
  • the thickness of the outer surface side polyester resin layer and the inner surface side polyester resin layer be in the range of 10 ⁇ m or more and 40 ⁇ m or less in view of the above container characteristics and economy.
  • the thickness is less than 10 ⁇ m, the corrosion resistance may not be ensured.
  • the thickness exceeds 40 ⁇ m, an excessive increase in manufacturing costs is caused.
  • the manufacturing method of the outer surface side polyester resin layer and the inner surface side polyester resin layer is not particularly limited. For example, after drying each polyester resin as necessary, each and / or each is supplied to a known melt lamination extruder, and slitted. A sheet-like die is extruded into a sheet shape, and is brought into close contact with a casting drum by a method such as electrostatic application, and is cooled and solidified to obtain an unstretched sheet. And a biaxially stretched film can be obtained by extending
  • the draw ratio can be arbitrarily set according to the degree of orientation, strength, elastic modulus, etc. of the target film, but is preferably a tenter method in terms of film quality, and after stretching in the longitudinal direction A sequential biaxial stretching method of stretching in the width direction, and a simultaneous biaxial stretching method of stretching the longitudinal direction and the width direction substantially the same are desirable.
  • the method for producing the laminated metal plate is not particularly limited.
  • the metal plate is heated at a temperature exceeding the melting point of the film, and the resin film is brought into contact with both surfaces using a pressure-bonding roll (hereinafter referred to as a laminating roll) and heat-sealed. Can be used.
  • Lamination conditions are appropriately set so that a resin layer defined in the present invention is obtained.
  • the temperature of the metal plate at the time of lamination is at least 160 ° C. or more, and the temperature history received by the film at the time of lamination is the time of contact at or above the melting point of the film in the range of 1 to 20 msec.
  • the pressurization at the time of laminating is not particularly specified, but the surface pressure is preferably 0.098 to 2.94 MPa (1 to 30 kgf / cm 2 ). If the surface pressure is too low, even if the temperature reached by the resin interface is equal to or higher than the melting point, the time is short and sufficient adhesion cannot be obtained. When the surface pressure is large, there is no inconvenience in the performance of the laminated metal plate, but the force applied to the laminate roll is large, the equipment strength is required, and the apparatus is increased in size, which is uneconomical.
  • chromium plating treatment was performed in a chromium plating bath containing CrO 3 , F ⁇ , and SO 4 2 ⁇ , and after the intermediate rinse, electrolysis was performed using a chemical conversion treatment solution containing CrO 3 and F 2 ⁇ .
  • the electrolysis conditions current density, amount of electricity, etc.
  • the adhesion amounts of metal chromium and chromium hydroxide were adjusted to 120 mg / m 2 and 15 mg / m 2 in terms of Cr, respectively.
  • the chrome-plated steel sheet is heated, and the outer roll side polyester resin layer (outer face side resin layer) and the inner face side polyester resin layer ( A laminated steel sheet was manufactured by coating the resin films of Invention Examples 1 to 25 and Comparative Examples 1 to 11 shown in Table 1 below by heat-sealing so that an inner surface side resin layer) was formed.
  • the laminating roll was an internal water-cooling type, and cooling water was forcibly circulated during coating to cool the film during bonding.
  • the characteristic of the film on a laminated steel plate and a laminated steel plate was evaluated with the following method.
  • PET and PET / I indicate polyethylene terephthalate and isophthalic acid copolymerized polyethylene terephthalate, respectively.
  • drawing and ironing is performed by applying 50 mg / m 2 of paraffin wax having a melting point of 45 ° C. on both surfaces of a laminated steel sheet, punching out a 123 mm ⁇ blank, and using a commercially available cupping press, the blank is put into a cup having an inner diameter of 71 mm ⁇ and a height of 36 mm. It was drawn. Next, this cup was placed in a commercially available DI molding apparatus, with a punch speed of 200 mm / s, a stroke of 560 mm, a redrawing process and a three-stage ironing process, and a total reduction rate of 50% (each stage reduction rate was 30%. 19%, 23%), and finally a can having a can inner diameter of 52 mm and a can height of 90 mm was formed.
  • tap water was circulated at a temperature of 50 ° C.
  • the residual crystal orientation is a value obtained by an X-ray diffraction method and is defined as follows.
  • P2 / P1 ⁇ 100 is the residual orientation degree (%).
  • the centerline surface roughness (Ra value) was measured using a surface roughness measuring device SE-30D manufactured by Kosaka Laboratory Co., Ltd. according to JIS-B0601, with a cutoff value of 0.8 mm and a measurement length of 2.4 mm. Measured under conditions. Further, three points were measured in each of the film length direction and the width direction, and the average value of the Ra values was taken as the Ra value of the film.
  • Retort whitening resistance on outer surface A can was produced from a resin-coated metal plate by squeezing and ironing, and the contents were filled with water and tightened. Then, it placed in a retort sterilization furnace with the bottom of the can facing downward, and a retort sterilization treatment was performed at 125 ° C. for 90 minutes. After the treatment, the change in the appearance of the bottom of the can was visually observed according to the following criteria.
  • Over 1 mA ⁇ : Over 0.1 mA, 1 mA or less ⁇ : Over 0.01 mA, 0.1 mA or less ⁇ : 0.01 mA or less
  • More than 1 mA ⁇ : More than 0.1 mA, 1 mA or less ⁇ : 0.01 mA or more, less than 0.1 mA ⁇ : Less than 0.01 mA
  • the laminated steel sheets of Invention Examples 1 to 25 have both draw ironing formability, outer surface covering property, outer surface retort whitening resistance, inner surface corrosion resistance, and inner surface impact resistance.
  • the laminated steel sheets of Comparative Examples 1 to 11 are inferior in any of drawing ironing formability, outer surface covering property, outer surface retort whitening resistance, inner surface corrosion resistance, and inner surface impact resistance. From the above, according to the laminated steel sheets of Invention Examples 1 to 25, laminates having retort whitening resistance and corrosion resistance, and mechanical properties capable of forming with a high degree of processing such as drawing and drawing ironing. It was confirmed that a steel plate could be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)
  • Wrappers (AREA)

Abstract

 本発明に係るラミネート金属板は、金属板と、容器の外面側になる金属板の表面に形成された第1のポリエステル樹脂層と、容器の内面側になる金属板の表面に形成された第2のポリエステル樹脂層と、を備え、第1のポリエステル樹脂層は、ポリエチレンテレフタレートまたは共重合成分の含有率が6mol%未満である共重合ポリエチレンテレフタレートを30質量%以上60質量%以下、ポリブチレンテレフタレートまたは共重合成分の含有率が5mol%未満である共重合ポリブチレンテレフタレートを40質量%以上70質量%以下、およびポリオレフィン系ワックスを外割で0.01%以上3.0%以下の割合で含有し、第2のポリエステル樹脂層は、共重合成分の含有率が22mol%未満である共重合ポリエチレンテレフタレートであり、第1および第2のポリエステル樹脂層の残存配向度が30%未満である。

Description

2ピース缶用ラミネート金属板および2ピースラミネート缶体
 本発明は、2ピース缶用ラミネート金属板および2ピースラミネート缶体に関する。
 食品の包装容器の一形態である金属缶は、機械的強度と長期保存性とに優れており、高温の内容物をそのまま充填して密封でき、また密封後にレトルト殺菌処理などの殺菌処理を容易に行えるために、包装容器としての安全衛生性が高い。また、金属缶は、廃棄物からの分離、回収が容易であるという長所を有している。従来、金属缶は塗装金属板から製造されていた。ところが、製缶メーカーで行われる塗装工程は複雑で生産性が低い。また、溶剤系の塗料を使用する場合、塗装後に行われる乾燥・焼き付け処理の際に多量の溶剤が揮発するために、溶剤の排出などの環境問題が発生する。さらに、人体に対する溶剤の悪影響を回避するために、塗料に含まれている環境ホルモンの一種であるビスフェノールA(BPA)を規制する動きが高まっている。
 このような背景から、近年、BPAを含まない熱可塑性樹脂フィルムを金属板表面に熱融着させたラミネート金属板が金属缶材料として利用されるようになっている。特に、ポリエステル樹脂フィルムを金属板表面に熱融着させたラミネート金属板は、食品衛生面の性能が優れていることから広く利用されている。具体的には、ポリエステル樹脂フィルムを金属板表面に熱融着させたラミネート金属板は、蓋、絞り/再絞り(DRD : Drawn and ReDrawn)缶、絞りしごき(DI : Drawn and Ironed)缶などに使用されている。ところが、DRD缶やDI缶は高い加工度を有するため、ラミネート金属板をDRD缶やDI缶に適用する場合、ポリエステル樹脂フィルムには優れた成形性が要求される。このような背景から、例えば特許文献1,2には、2軸配向ポリエチレンテレフタレートフィルムを低融点ポリエステルの接着層を介して金属板にラミネートし、金属缶材料として用いる技術が提案されている。また、特許文献3,4には、熱融着可能なポリエステル樹脂フィルムを用いてラミネート金属板および高絞り比の金属缶体を製造する方法が提案されている。
特開昭56-10451号公報 特開平01-192546号公報 特開平05-156040号公報 特開平07-195617号公報 特開平05-331302号公報 特開2002-88233号公報 特開2001-335682号公報 特開2004-58402号公報 特開2004-249705号公報
 ところで、ポリエステル樹脂フィルムを熱融着させたラミネート金属板を食品用缶詰容器の外面側、つまりレトルト殺菌処理時に高温蒸気と接触する側に適用する場合、レトルト殺菌処理が施された際、ポリエステル樹脂フィルムが変色するレトルト白化現象が発生し、意匠性が損なわれる。このため、ポリエステル樹脂フィルムを熱融着させたラミネート金属板を食品用缶詰容器の外面側に適用する場合には、ラミネート金属板には耐レトルト白化性が要求される。一方、ポリエステル樹脂フィルムを熱融着させたラミネート金属板を食品用缶詰容器の内面側に適用する場合には、ラミネート金属板には耐食性が要求される。また、絞り缶や絞りしごき缶といった加工度が高い食品用缶詰容器にラミネート金属板を適用する場合には、ラミネート金属板は絞り加工や絞りしごき加工といった加工度が高い成形が可能な機械的特性を有していることが要求される。
 しかしながら、本発明の発明者らの検討によれば、耐レトルト白化性および耐食性を兼ね備え、且つ、加工度が高い成形が可能な機械的特性を有するラミネート金属板は提供されていない。このため、耐レトルト白化性および耐食性を有し、且つ、加工度が高い成形が可能な機械的特性を有するラミネート金属板の提供が期待されていた。
 特許文献5には、ポリマーの結晶化速度を速めることによってレトルト白化現象を抑制できる旨の記載があるが、レトルト白化現象のメカニズムは完全には把握されてなく、レトルト白化現象の問題は根本的に解決されていない。また、特許文献6乃至9には、ブチレンテレフタレートとエチレンテレフタレートとからなるフィルムを金属板にラミネートして絞りしごき加工用に用いた金属板被覆用フィルムが記載されている。しかしながら、このような平滑なラミネート金属板では、食品用缶詰容器などの容器に使用する場合には加工性が不十分であり、フィルムの破れなどの欠陥が生じる可能性がある。特に、アルミニウム板に比べ強度の高い鋼板を下地とした場合には、成形時にフィルムにダメージが発生して缶体として使用できなくなる。
 本発明は、上記課題に鑑みてなされたものであって、その目的は、耐レトルト白化性および耐食性を有し、且つ、加工度が高い成形が可能な機械的特性を有する2ピース缶用ラミネート金属板およびこの2ピース缶用ラミネート金属板を用いて製造された2ピースラミネート缶体を提供することにある。
 本発明に係る2ピース缶用ラミネート金属板は、金属板と、容器成形後に容器の外面側になる前記金属板の表面に形成された第1のポリエステル樹脂層と、容器成形後に容器の内面側になる前記金属板の表面に形成された第2のポリエステル樹脂層と、を備え、前記第1のポリエステル樹脂層は、ポリエチレンテレフタレートまたは共重合成分の含有率が6mol%未満である共重合ポリエチレンテレフタレートを30質量%以上60質量%以下、ポリブチレンテレフタレートまたは共重合成分の含有率が5mol%未満である共重合ポリブチレンテレフタレートを40質量%以上70質量%以下、およびポリオレフィン系ワックスを外割で0.01%以上3.0%以下の割合で含有し、前記第2のポリエステル樹脂層は、共重合成分の含有率が22mol%未満である共重合ポリエチレンテレフタレートであり、前記第1および第2のポリエステル樹脂層の残存配向度が30%未満であることを特徴とする。
 本発明に係る2ピース缶用ラミネート金属板は、上記発明において、前記第1のポリエステル樹脂層の表面の中心線表面粗さRaが0.4μm以上2.0μm以下の範囲内にあることを特徴とする。
 本発明に係る2ピースラミネート缶体は、本発明に係る2ピース缶用ラミネート金属板を用いて製造されたことを特徴とする。
 本発明によれば、耐レトルト白化性および耐食性を有し、且つ、加工度が高い成形が可能な機械的特性を有する2ピース缶用ラミネート金属板およびこの2ピース缶用ラミネート金属板を用いて製造された2ピースラミネート缶体を提供することができる。
 以下、本発明の一実施形態である2ピース缶用ラミネート金属板について説明する。
〔2ピース缶用ラミネート金属板の全体構成〕
 本発明の一実施形態である2ピース缶用ラミネート金属板は、金属板と、容器成形後に容器の外面側になる金属板の表面に形成された外面側ポリエステル樹脂層と、容器成形後に容器の内面側になる金属板の表面に形成された内面側ポリエステル樹脂層と、を備えている。
〔金属板の構成〕
 金属板としては、缶用材料として広く使用されている鋼板やアルミニウム板を用いることができ、特に、下層および上層がそれぞれ金属クロムおよびクロム水酸化物によって形成された二層皮膜を有する表面処理鋼板であるティンフリースチール(TFS)などが好適である。TFSの金属クロムおよびクロム水酸化物の付着量は特に限定されないが、加工性や耐食性の観点から、金属クロムの付着量は70乃至200mg/m、クロム水酸化物の付着量は10乃至30mg/mの範囲内とすることが望ましい。
〔レトルト白化現象〕
 一般的なポリエステル樹脂フィルムを被覆させた金属板を用いて製造された缶体に対してレトルト殺菌処理を行うと、多くの場合、ポリエステル樹脂フィルムが白化する現象が見られる。これは、ポリエステル樹脂フィルムの内部に形成された微小な空隙が外光を乱反射するためである。この空隙は、乾燥条件下での熱処理時や内容物を充填しない空缶状態でのレトルト殺菌処理時には形成されない。また、白化が発生しているポリエステル樹脂フィルムと金属板との界面を観察すると、空隙はポリエステル樹脂フィルムの厚み方向全体に形成されるのではなく、主に金属板表面近傍に形成されている。このことから空隙は以下のメカニズムで形成されると考えられる。
 すなわち、内容物が充填された缶体はレトルト殺菌処理開始直後に高温高圧の水蒸気にさらされる。その際、一部の水蒸気がポリエステル樹脂フィルムを透過して金属板表面近傍まで侵入する。内容物が充填されている缶体はレトルト殺菌処理前に充填した内容物によって冷やされているために、金属板表面近傍のポリエステル樹脂フィルムは周囲の雰囲気よりも低温になっている。このため、水蒸気は金属板近傍の非晶質のポリエステル樹脂フィルム中で冷やされて水へ凝縮し、この凝縮水によってポリエステル樹脂フィルムが押し広げられて水泡が形成される。この水泡はレトルト殺菌処理が経過すると内容物の温度上昇によって気化し、水泡が気化した後が空隙となる。
 金属板近傍のポリエステル樹脂フィルムは、内容物によって冷却され、且つ、熱融着されるために、結晶配向が崩れている非晶質層となる。このため、金属板近傍のポリエステル樹脂フィルムの機械的強度は結晶質層と比べて小さく、変形しやすいために、以上のような現象が発生すると考えられる。従って、レトルト白化現象は金属板近傍の非晶質層の強度を上昇させることができれば抑制可能である。しかしながら、熱融着法では金属板をガラス転移点以上の高温にしてポリエステル樹脂フィルムを表面に融着させて製造するため、金属板表面近傍の樹脂層は溶融し配向結晶が崩れることは避けられない。このため、本発明では、ラミネート直後は機械的強度が小さく脆弱な非晶質層を缶体となった後で硬く強固な層にすることによって、レトルト白化現象を抑制するようにした。
 非晶質層のポリエステル樹脂フィルムをレトルト殺菌処理前に結晶化させる方法としては、レトルト殺菌処理前に熱処理を施す方法がある。容器成形前に熱処理を施す場合については、結晶配向が高いポリエステル樹脂フィルムは成形性に劣るため適用できる容器の形態が限られ現実的でない。また、容器成形後に熱処理を施す場合も、成形後の工程が増えて製造コストが増大するデメリットがある。このため、本発明の発明者らは、レトルト殺菌処理時の熱を利用して結晶配向性を高めることを狙って熱結晶化速度の速い樹脂組成を見出し、この樹脂組成を外面側ポリエステル樹脂層に適用した。すなわち、本発明では、レトルト殺菌処理で缶外面の樹脂層に空隙が形成される前に非晶質層のポリエステル樹脂を結晶化させ、強度を向上させた。
〔第1のポリエステル樹脂層〕
 容器成形後に容器の外面側になる金属板の表面に形成された第1のポリエステル樹脂層の熱結晶化速度を速める具体的な組成としては、ポリエチレンテレフタレートを主成分とするポリエステル(以下、ポリエステル(A)と記載する場合もある)と、ポリブチレンテレフタレートを主成分とするポリエステル(以下、ポリエステル(B)と記載する場合もある)とを混合したポリエステル組成物であり、且つ、ポリエステル(A)の比率が60質量%以下、ポリエステル(B)の比率が40質量%以上であることが有効である。ポリエステル(A)の比率が60質量%より大きく、ポリエステル(B)の比率が40質量%未満である場合、レトルト殺菌処理時に金属板表面近傍での気泡形成を抑制することができず、樹脂層が白化して意匠性が大きく損なわれてしまう。
 一方、ポリエステル(A)の比率が30質量%未満で、ポリエステル(B)の比率が70質量%より大きい場合には、レトルト白化現象は抑制できるものの、樹脂層の弾性率が過度に低下して機械的特性が劣るため、搬送時や成形加工時に樹脂層に疵が付き易くなり、食品用缶詰容器への適性が困難になる。また、樹脂コストの観点からも高価になりすぎるため実用に適さない。このため、容器成形後の外面となる側の樹脂層において、レトルト白化現象を抑制しつつ、絞り加工および絞りしごき加工性と耐疵付性を確保するためには、ポリエステル(A)とポリエステル(B)との質量%比率(A/B)は、30乃至60/70乃至40の範囲内であることが好適であり、より好ましくは40乃至50/60乃至50の範囲内である。
 ポリエステル(A)とは、テレフタル酸成分とエチレングリコール成分とを主成分として溶融中縮合反応されたものである。本発明の効果が損なわれない範囲として6mol%未満でポリエチレンテレフタレートに他の成分を共重合してもよく、共重合成分は酸成分でもアルコール成分でもよい。共重合成分としては、イソフタル酸、フタル酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸などの脂肪族ジカルボン酸、シクロヘキサンジカルボン酸などの脂環族ジカルボン酸などを例示できる。これらの中では、イソフタル酸が特に好ましい。
 共重合アルコール成分としては、ブタンジオール、ヘキサンジオールなどの脂肪族ジオール、シクロヘキサンジメタノールなどの脂環族ジオールなどを例示できる。これらは単独または二種以上を使用することができる。共重合成分の割合は、その種類にもよるが、結果としてポリマー融点が210乃至256℃、好ましくは215乃至256℃、さらに好ましくは220乃至256℃の範囲になる割合である。ポリマー融点が210℃未満では耐熱性が劣ることになり、ポリマー融点が256℃を超えるとポリマーの結晶性が大きすぎて成形加工性が損なわれる。
 ポリエステル(B)とは、テレフタル酸成分と1,4-ブタンジオール成分とを主成分として溶融重縮合反応されたものであるが、本発明の効果が損なわれない範囲として5mol%未満で他成分を共重合してもよく、またこの共重合成分は酸成分でもアルコール成分でもよい。共重合酸成分としては、イソフタル酸、フタル酸、ナフタレンジカルボン酸などの脂肪族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸などの脂肪族ジカルボン酸、シクロヘキサンジカルボン酸などの脂肪族ジカルボン酸などを例示できる。これらの中では、イソフタル酸、2,6-ナフタレンジカルボン酸またはアジピン酸が好ましい。
 共重合アルコール成分としては、エチレングリコール、ヘキサンジオールなどの脂肪族ジオール、シクロヘキサンジメタノールなどの脂環族ジオールなどを例示できる。これらは単独または二種以上を使用することができる。共重合成分の割合は、その種類にもよるが、結果としてポリマー融点が180乃至223℃、好ましくは200乃至223℃、さらに好ましくは210乃至223℃の範囲になる割合である。ポリマー融点が180℃未満ではポリエステルとしての結晶性が低く、結果として耐熱性が低下する。ポリエステル(A)とポリエステル(B)との混合比率は、ポリマー融点が200乃至256℃、好ましくは210乃至256℃、さらに好ましくは220乃至256℃の範囲内になるように調整する。
 添加するオレフィン系ワックスは、オレフィン類の単独重合体や共重合体、オレフィン類と他の共重合可能な単量体、例えば、ビニル系単量体との共重合体およびこれらの変性重合体などを例示できる。具体的には、ポリエチレン(高密度、低密度低分子量、高分子量など)、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、ポリ4-メチレンペンテン-1、アイオノマー樹脂、エチレン・酢酸ビニル共重合体、エチレン・アクリル酸共重合体、エチレン・メタクリル酸メチル共重合体、変性ポリオレフィン(オレフィン類の単独重合体または共重合体などとマレイン酸やフマル酸などの不飽和カルボン酸や酸無水物やエステルまたは金属塩などとの反応物など)などである。また、これらポリオレフィンは、単独または2種以上混合して用いることができる。
 オレフィン系ワックスを含有するにあたって、数平均分子量(Mn)は1,000乃至10,000の低分子量ワックスの使用が効果的であり、好ましい。上記ワックスを添加することによってフィルムの表面が適度に荒れることにより、加工性を向上させることができる。オレフィン系ワックスの含有量は、外面側ポリエステル樹脂層の質量比で0.01%以上3.0%以下の範囲内とする。含有量が0.01%未満である場合、樹脂表面に生成するオレフィン系ワックス量が少なく、加工性が劣る。一方、含有量が3.0%を超える場合には、加工性が向上する効果がほぼ飽和する上に、製造上の技術的な障壁や生産性の低下を伴い過剰なコストアップを招いてしまう。以上の理由から、樹脂表面をオレフィン系ワックスで十分に被覆し且つ生産性を確保するためには、オレフィン系ワックスの添加量は外割で0.01%以上3.0%以下、好ましくは外割で0.01%以上1.0%以下の範囲内とする。
 加工度が高い2ピース缶体の成形加工においては、加工時の表面摩擦抵抗の影響が大きい。一般に、表面摩擦抵抗が小さいほど加工性が高い傾向がある。特にしごき加工はフィルム表面を摩擦しながらフィルムを引き伸ばすため、表面摩擦抵抗が低いほど加工発熱も小さく加工しやすい。本発明の発明者らは、外面側ポリエステル樹脂層にオレフィン系ワックスを添加して表面に凹凸を付与させることにより、表面摩擦抵抗が大きく低減することを狙い、その結果加工応力が低減し加工性が飛躍的に向上することを知見した。外面側ポリエステル樹脂層の表面の中心線表面粗さRaを0.4μm以上2.0μm以下とすることが好ましい。
 通常飲料缶などの容器には高い光沢が求められるため、そのような容器に使用されるラミネート金属板の表面も平滑に保たれる。そのような高光沢のラミネート金属板に使用されるフィルムは通常表面粗さRaが0.1μm以下であり、ラミネート後もフィルム表面の平滑さは保たれ表面粗さは0.1μm程度である。そのような平滑なラミネート金属板では絞りしごき成形でフィルムに欠陥が発生したり、下地との密着性が低下しやすくなったりし、使用環境の厳しい食品缶詰の用途には使用できない。一方、表面粗さが0.4μmを超える粗さを樹脂層表面に付与すると加工時に金型とフィルムとの接触面積が低下し、表面摩擦抵抗が減少するため成形抵抗が低減されることによって加工性が向上し、フィルムと下地との密着性も向上するため使用環境の厳しい食品缶詰の用途にも使用できる。また、表面粗さが高まるほど加工性は高まり、その結果耐久性も高まる傾向にあることがわかった。より好ましくは表面粗さの下限は0.4μm以上である。一方、表面粗さが2.0μmを超えるとフィルムの厚さにムラが生じるため、フィルム欠陥などが発生しやすくなる。このため、表面粗さの上限は2.0μm以下、より好ましくは1.5μm以下とする。
〔第2のポリエステル樹脂層〕
 容器成形後に容器の内面側になる金属板の表面に形成された第2のポリエステル樹脂層には、ポリエチレンテレフタレートを主成分とするポリエステル(ポリエステル(C)を形成する。ポリエステル(C)とは、テレフタル酸を主成分とするジカルボン酸成分とエチレングリコールを主成分とするグリコール成分とからなるポリマーであり、ジカルボン酸成分としては、テレフタル酸、イソフタル酸、ナフタレン酸ジカルボン酸、ジフェニルジカルボン酸などを用いることができ、中でも好ましくはテレフタル酸、イソフタル酸を用いることができる。また、グリコール成分としては、エチレングリコールを主成分とし、プロパンジオール、ブタンジオールなどを併用してもよい。
 主成分をポリエチレンテレフタレートとし、共重合してもよいが、共重合成分の含有率は22mol%未満とする。好ましくは、18mol%未満、さらに好ましくは、15mol%未満である。共重合成分の含有率が22mol%以上であると、融点が下がりすぎるために、ラミネートした際に外面側および内面側ポリエステル樹脂層の残存配向度を所定範囲内に調整できず、効果が得られない。共重合成分の割合は、その種類にもよるが結果としてポリマー融点が210乃至256℃、好ましくは215乃至256℃、さらに好ましくは220乃至256℃の範囲になる割合が好ましい。ポリマー融点が210℃未満では耐熱性が劣ることになり、ポリマー融点が256℃を超えるとポリマーの結晶性が大きすぎて成形加工性が損なわれる。また、必要に応じて、酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、顔料、帯電防止剤、および結晶核剤などを配合できる。
 以上の内面側ポリエステル樹脂層は、引張強度、弾性率、および衝撃強度などの機械特性に優れるとともに極性を有するため、これを主成分とすることで内面側ポリエステル樹脂層の密着性、成形性を容器加工に耐え得るレベルまで向上させるとともに容器加工後の耐衝撃性を付与させることが可能となる。
〔残存配向度〕
 ポリエチレンテレフタレート系のラミネートフィルムの大きな特徴は、配向結晶量が特性に大きく影響することである。この特徴を活かし、要求性能に応じて配向結晶量を適切な量に制御することで所望の基本性能を有するラミネート金属板を作り分けることができる。具体的な方法としては、2軸配向結晶フィルムを用い、熱融着法でのラミネート条件を精密に制御し、配向結晶の残存量をコントロールする。
 この方法は工業的に非常に都合がよく、同じ原料を用いて要求性能に合った様々な品種を作り分けることが可能である。一般的に残存配向度は低減させることで成形性が向上し、残存配向度を増加させることで耐衝撃性を高めることができる。本発明では2ピース缶用途に対して必要とされる加工度に応じて、二軸配向ポリエステル樹脂層の残存配向度を30%未満の範囲に制御する。残存配向度は、X線回折法により求められた値であって、以下により定義されるものとする。
(1)ラミネート前の配向ポリエステル樹脂(または配向ポリエステルフィルム)およびラミネート後の樹脂(またはフィルム)について、X線回折強度を2θ=20乃至30°の範囲で測定する。
(2)2θ=20°、2θ=30°におけるX線回折強度を直線で結びベースラインとする。
(3)2θ=22乃至28°近辺にあらわれる最も高いピークの高さをベースラインより測定する。
(4)ラミネート前のフィルムの最も高いピークの高さをP1、ラミネート後のフィルムの最も高いピークをP2とした時、P2/P1×100を残存配向度(%)とする。
 外面側ポリエステル樹脂層および内面側ポリエステル樹脂層の残存配向度は30%未満とする。残存配向度が30%以上であると、フィルムの成形性が劣るために、製缶時に破胴が発生したり、加工後にフィルム剥離などの問題が発生したりする。二軸延伸ポリエステルフィルムは熱融着される際に、金属板からの熱によって配向結晶が崩れ、樹脂層は非晶性ポリエステル樹脂となる。一方、熱融着時の入熱が少ないと、金属板との界面において樹脂層の溶融が不十分になり、金属板と樹脂層との密着力が弱くなる。このため、食品用缶詰容器に適用する場合に要求される樹脂層の密着力を確保し、さらに残存配向度を一定以下に低減させて金属板にラミネートされた変形性に優れた非晶質性ポリエステル樹脂層の割合を多くして加工性を確保する必要がある。従って、外面側ポリエステル樹脂層および内面側ポリエステル樹脂層の残存配向度は30%未満が必要であり、好ましくは20%以下の領域である。フィルム成形性の観点から、加工度が高くなるのに応じて残存配向度をできるだけ低くすることが望ましい。残存配向度の下限は特に設けないが、残存配向度が2%未満になると耐衝撃性が劣る傾向にあるため、残存配向度は2%以上とすることが好ましい。
 外面側ポリエステル樹脂層および内面側ポリエステル樹脂層の組成に加えて必要特性に応じて残存配向度のバランスをとるために、外面側ポリエステル樹脂層は、ポリエチレンテレフタレート、もしくは必要に応じて酸成分として、好ましくはイソフタル酸を6mol%未満の比率で共重合化した共重合ポリエチレンテレフタレートを適用すること、且つ、内面側ポリエステル樹脂層は酸成分として、好ましくはイソフタル酸を22mol%未満の比率で共重合化した共重合ポリエチレンテレフタレートを適用することが望ましい。内面側ポリエステル樹脂層は、容器成形後の缶内面側に適用されるため、密着性を確保するために共重合化する。
 外面側ポリエステル樹脂層および内面側ポリエステル樹脂層はそれぞれ容器成形後の外面側と内面側となり、前述した必要特性を満たさなければならない。残存配向度は求められる特性を発揮するように決定される。ラミネートされた際に内外面で非晶質性ポリエステルの割合が大きく異なる場合は、片面または両面で必要特性が満たせない。このような場合に両面同時に必要特性を満たす目的とする残存配向度での製造が困難となる。つまり、外面側ポリエステル樹脂層および内面側ポリエステル樹脂層はお互いに残存配向度が大きくかけ離れることがないように組成を調整することが好ましい。
 ラミネートされる際の金属板の温度と樹脂の融点とは密接な関係にあり、ラミネート時の金属板の温度は樹脂融点によって決まる。樹脂融点は樹脂組成に依存し、ポリブチレンテレフタレートはポリエチレンテレフタレートよりも融点が低く、配合比率で大きく融点が変化する。また、イソフタル酸共重合ポリエチレンテレフタレートは、ポリエチレンテレフタレートよりも融点が低い。従って、ポリエステル(A)とポリエスエル(B)との混合比率によっては外面側ポリエステル樹脂層の樹脂融点が内面側ポリエステル樹脂層の樹脂融点よりも十分低下するため外面側ポリエステル樹脂層としては共重合化させないポリエチレンテレフタレートを適用することもできる。
 内容物や成形方法によって外面側ポリエステル樹脂層と内面側ポリエステル樹脂層とのフィルム厚みを大きく変える必要がある時は、ラミネート後の残存配向度を内外両面でコントロールするためポリエステル(A)をイソフタル酸で共重合化させて樹脂融点を調整することも可能である。外面側ポリエステル樹脂層および内面側ポリエステル樹脂層の厚みは特に規定しないが、成形時や食品用缶詰容器を搬送する際に擦れなどで疵がついた場合、金属板表面が露出して外観が損われたり、長期保管中に金属板露出部を起点に腐食が発生したりする可能性がある。このため、上記の容器特性と経済性とを鑑みて、外面側ポリエステル樹脂層および内面側ポリエステル樹脂層の厚みは10μm以上、40μm以下の範囲内であることが望ましい。厚みが10μm未満である場合、耐食性を確保できない場合があり、厚みが40μmを超える場合には、製造上の過剰なコストアップを招く。
 外面側ポリエステル樹脂層および内面側ポリエステル樹脂層の製造方法は特に限定されないが、例えば各ポリエステル樹脂を必要に応じて乾燥した後、単独および/または各々を公知の溶融積層押出機に供給し、スリット状のダイからシート状に押出し、静電印加などの方式によってキャスティングドラムに密着させ冷却固化し無延伸シートを得ることができる。そして、この無延伸シートをフィルムの長手方向および幅方向に延伸することにより二軸延伸フィルムを得ることができる。延伸倍率は目的とするフィルムの配向度、強度、および弾性率などに応じて任意に設定することができるが、好ましくはフィルムの品質の点でテンター方式によるものが好ましく、長手方向に延伸した後、幅方向に延伸する逐次二軸延伸方式、長手方向、および幅方向をほぼ同じに延伸していく同時二軸延伸方式が望ましい。
 ラミネート金属板の製造方法は特に限定されないが、例えば、金属板をフィルムの融点を超える温度で加熱し、その両面に樹脂フィルムを圧着ロール(以後ラミネートロールと称す)を用いて接触させ熱融着させる方法を用いることができる。ラミネート条件は、本発明に規定する樹脂層が得られるように適宜設定される。例えば、ラミネート時の金属板の温度を少なくとも160℃以上とし、ラミネート時にフィルムの受ける温度履歴として、フィルムの融点以上で接している時間を1乃至20msecの範囲とすることが好適である。
 このようなラミネート条件を達成するためには、高速でのラミネートに加え、接着中の冷却も必要である。ラミネート時の加圧は特に規定するものではないが、面圧として0.098乃至2.94MPa(1乃至30kgf/cm)が好ましい。面圧が低すぎると、樹脂界面の到達する温度が融点以上であっても時間が短時間であるため十分な密着性が得られない。面圧が大きいとラミネート金属板の性能上は不都合がないものの、ラミネートロールにかかる力が大きく、設備的な強度が必要となり、装置の大型化を招くため不経済である。
〔実施例〕
 実施例では、冷間圧延、焼鈍、および調質圧延を施した厚さ0.20mmの鋼板に対し脱脂、酸洗、およびクロムめっき処理を行い、クロムめっき鋼板(TFS)を製造した。クロムめっき処理では、CrO、F、およびSO 2-を含むクロムめっき浴でクロムめっき処理を施し、中間リンス後、CrOおよびFを含む化成処理液で電解した。その際、電解条件(電流密度・電気量など)を調整して金属クロムおよびクロム水酸化物の付着量をCr換算でそれぞれ120mg/mおよび15mg/mに調整した。
 次に、金属板の被覆装置を用い、クロムめっき鋼板を加熱し、ラミネートロールでクロムめっき鋼板の一方および他方の面にそれぞれ外面側ポリエステル樹脂層(外面側樹脂層)および内面側ポリエステル樹脂層(内面側樹脂層)が形成されるように以下の表1に示す発明例1乃至25および比較例1乃至11の樹脂フィルムを熱融着で被覆してラミネート鋼板を製造した。ラミネートロールは内部水冷式とし、被覆中に冷却水を強制循環し、フィルム接着中の冷却を行った。そして、以下の方法でラミネート鋼板およびラミネート鋼板上のフィルムの特性を評価した。表1におけるPETおよびPET/Iはそれぞれポリエチレンテレフタレートおよびイソフタル酸共重合ポリエチレンテレフタレートを示している。
 また、絞りしごき成形は、ラミネート鋼板の両面に融点45℃のパラフィンワックスを50mg/m塗布した後に、123mmφのブランクを打ち抜き、そのブランクを市販のカッピングプレスで内径71mmφ、高さ36mmのカップに絞り成形した。次いでこのカップを市販のDI成形装置に装入して、ポンチスピード200mm/s、ストローク560mmで、再絞り加工および3段階のアイアニング加工で総リダクション率50%(各段階のリダクション率はそれぞれ30%、19%、23%)を行い、最終的に缶内径52mm、缶高さ90mmの缶を成形した。DI成形中には、水道水を50℃の温度で循環させた。
 また、残存結晶配向度は、X線回折法により求められた値であって、以下により定義されるものとした。
(1)ラミネート前の配向ポリエステル樹脂(または配向ポリエステルフィルム)およびラミネート後の樹脂(またはフィルム)について、X線回折強度を2θ=20乃至30°の範囲で測定する。
(2)2θ=20°、2θ=30°におけるX線回折強度を直線で結びベースラインとする。
(3)2θ=22乃至28°近辺にあらわれる最も高いピークの高さをベースラインより測定する。
(4)ラミネート前のフィルムの最も高いピークの高さをP1、ラミネート後のフィルムの最も高いピークをP2とした時、P2/P1×100を残存配向度(%)とする。
 また、中心線表面粗さ(Ra値)は、JIS-B0601に従い株式会社小坂研究所社製表面粗さ測定器SE-30Dを用いて、カットオフ値0.8mm、測定長さ2.4mmの条件で測定した。また、フィルム長さ方向および幅方向にそれぞれ3点ずつ測定し、そのRa値の平均値をフィルムのRa値とした。
Figure JPOXMLDOC01-appb-T000001
(1)絞りしごき成形性
 絞りしごき成形後に破胴発生したものを×、製缶可能なものを○として、成形後の破胴発生の有無により評価した。そして、製缶可能なサンプルについてのみ、以下の(2)乃至(5)の評価を実施した。
(2)外面被覆性(成形後の缶外面フィルム健全性)
 成形後の缶外面フィルムの健全性(フィルム欠陥の少ないものが良好)により評価した。具体的には、洗浄、乾燥後の絞りしごき缶について、絞りしごき缶の鋼板に通電できるように缶口にやすりで傷をつけた後に、電解液(NaCl1%溶液、温度25℃)を入れた容器(絞りしごき缶よりやや大きい)に絞りしごき缶を底を下にして入れて缶の外面だけが電解液に接するようにした。その後、以下の基準に従って缶体と電解液との間に6Vの電圧を付与した時に測定される電流値に基づいて外面被覆性を評価した。
×:5mA超
△:0.5mA超、5mA以下
○:0.05mA超、0.5mA以下
◎:0.05mA以下
(3)外面耐レトルト白化性
 樹脂被覆金属板から絞りしごき成形で缶を作製し、内容物に水を充填して巻き締めた。その後、缶底部を下向きにしてレトルト殺菌炉の中に配置し、125℃で90分間、レトルト殺菌処理を行った。処理後、以下の基準に従って缶底部の外観変化を目視観察した。
○:外観変化なし
△:外観にかすかな曇り発生
×:外観が白濁(白化発生)
(4)内面耐食性(成形後の缶内面フィルム健全性)
 缶内面フィルムの健全性(フィルム欠陥の少ないものが良好)については、洗浄、乾燥後の絞りしごき缶について、絞りしごき缶の鋼板に通電できるようにやすりで缶口に傷をつけた後に、缶内に電解液(NaCl1%溶液、温度25℃)を注ぎ缶口まで満たし、その後缶体と電解液との間に6Vの電圧を付与した。そして、以下の基準に従って電流値に基づいて耐食性を評価した。
×:1mA超
△:0.1mA超、1mA以下
○:0.01mA超、0.1mA以下
◎:0.01mA以下
 (5)内面耐衝撃性
 缶内に常温の水道水を満たした後、蓋を巻き閉めて密閉した。各試験について10缶ずつを高さ1.25mから塩ビタイル床面へ落とした後、蓋および缶内の水道水を除去し、缶上端部のフィルムを1箇所削って鋼板表面を露出させた。その後、缶内に5%の食塩水を満たし、これに白金電極を浸漬させ(浸漬させた位置は缶の中心部)陰極とし、缶の上端部(鋼板露出部分)を陽極とした。続いて、白金電極と缶とに6Vの電圧をかけて3秒後の電流値を読み取り、10缶測定後の平均値を求め、以下の基準に従って平均値に基づいて耐衝撃性を評価した。
×:1mA超
△:0.1mA超、1mA以下
〇:0.01mA以上、0.1mA未満
◎:0.01mA未満
 評価結果を以下の表2に示す。表2に示すように、発明例1乃至25のラミネート鋼板は、絞りしごき成形性、外面被覆性、外面耐レトルト白化性、内面耐食性、および内面耐衝撃性を兼ね備えている。これに対して、比較例1乃至11のラミネート鋼板は、絞りしごき成形性、外面被覆性、外面耐レトルト白化性、内面耐食性、および内面耐衝撃性のうちのいずれかが劣っている。以上のことから、発明例1乃至25のラミネート鋼板によれば、耐レトルト白化性および耐食性を有し、且つ、絞り加工や絞りしごき加工といった加工度が高い成形が可能な機械的特性を有するラミネート鋼板を提供できることが確認された。
Figure JPOXMLDOC01-appb-T000002
 以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述および図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者などによりなされる他の実施の形態、発明例、および運用技術などは全て本発明の範疇に含まれる。
 本発明によれば、耐レトルト白化性および耐食性を有し、且つ、加工度が高い成形が可能な機械的特性を有する2ピース缶用ラミネート金属板およびこの2ピース缶用ラミネート金属板を用いて製造された2ピースラミネート缶体を提供することができる。

Claims (3)

  1.  金属板と、
     容器成形後に容器の外面側になる前記金属板の表面に形成された第1のポリエステル樹脂層と、
     容器成形後に容器の内面側になる前記金属板の表面に形成された第2のポリエステル樹脂層と、を備え、
     前記第1のポリエステル樹脂層は、ポリエチレンテレフタレートまたは共重合成分の含有率が6mol%未満である共重合ポリエチレンテレフタレートを30質量%以上60質量%以下、ポリブチレンテレフタレートまたは共重合成分の含有率が5mol%未満である共重合ポリブチレンテレフタレートを40質量%以上70質量%以下、およびポリオレフィン系ワックスを外割で0.01%以上3.0%以下の割合で含有し、
     前記第2のポリエステル樹脂層は、共重合成分の含有率が22mol%未満である共重合ポリエチレンテレフタレートであり、
     前記第1および第2のポリエステル樹脂層の残存配向度が30%未満である
     ことを特徴とする2ピース缶用ラミネート金属板。
  2.  前記第1のポリエステル樹脂層の表面の中心線表面粗さRaが0.4μm以上2.0μm以下の範囲内にあることを特徴とする請求項1に記載の2ピース缶用ラミネート金属板。
  3.  請求項1または2に記載の2ピース缶用ラミネート金属板を用いて製造されたことを特徴とする2ピースラミネート缶体。
PCT/JP2013/084794 2013-02-28 2013-12-26 2ピース缶用ラミネート金属板および2ピースラミネート缶体 WO2014132541A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US14/770,640 US10227156B2 (en) 2013-02-28 2013-12-26 Laminated metal sheet for two-piece can and two-piece laminated can body
BR112015020675-1A BR112015020675B1 (pt) 2013-02-28 2013-12-26 folha de metal laminada para lata de duas peças e corpo de lata laminado de duas peças
CN201380073942.6A CN105008232B (zh) 2013-02-28 2013-12-26 二片罐用层合金属板及二片层合罐体
ES13876472T ES2744906T3 (es) 2013-02-28 2013-12-26 Placa metálica laminada para latas de dos piezas y cuerpo de lata laminado de dos piezas
EP13876472.5A EP2962951B1 (en) 2013-02-28 2013-12-26 Laminated metal plate for two-piece cans and two-piece laminated can body
CA2901209A CA2901209C (en) 2013-02-28 2013-12-26 Laminated metal sheet for two-piece can and two-piece laminated can body
KR1020157022518A KR20150108905A (ko) 2013-02-28 2013-12-26 2 피스 캔용 라미네이트 금속판 및 2 피스 라미네이트 캔체
PH12015501883A PH12015501883B1 (en) 2013-02-28 2015-08-26 Laminated metal sheet for two-piece can and two-piece laminated can body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013038704A JP5874659B2 (ja) 2013-02-28 2013-02-28 2ピース缶用ラミネート金属板および2ピースラミネート缶体
JP2013-038704 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014132541A1 true WO2014132541A1 (ja) 2014-09-04

Family

ID=51427826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084794 WO2014132541A1 (ja) 2013-02-28 2013-12-26 2ピース缶用ラミネート金属板および2ピースラミネート缶体

Country Status (12)

Country Link
US (1) US10227156B2 (ja)
EP (1) EP2962951B1 (ja)
JP (1) JP5874659B2 (ja)
KR (1) KR20150108905A (ja)
CN (1) CN105008232B (ja)
BR (1) BR112015020675B1 (ja)
CA (1) CA2901209C (ja)
ES (1) ES2744906T3 (ja)
MY (1) MY175366A (ja)
PH (1) PH12015501883B1 (ja)
TW (1) TWI549810B (ja)
WO (1) WO2014132541A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068720A1 (ja) * 2013-11-06 2015-05-14 東洋製罐株式会社 樹脂被覆金属板及びシームレス缶
EP3427944A4 (en) * 2016-03-10 2019-11-06 Nippon Steel Corporation FILMLAMINATMETALLPLATTE WITH EXCEPTIONAL RETORTENFTFTUNG AND METHOD FOR THE PRODUCTION THEREOF
US10576712B2 (en) * 2015-03-26 2020-03-03 Jfe Steel Corporation Resin-coated metal sheet for container
US11299607B2 (en) * 2016-04-22 2022-04-12 Exxon Mobil Chemical Patents Inc. Polyethylene sheets

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201205243D0 (en) 2012-03-26 2012-05-09 Kraft Foods R & D Inc Packaging and method of opening
GB2511560B (en) 2013-03-07 2018-11-14 Mondelez Uk R&D Ltd Improved Packaging and Method of Forming Packaging
GB2511559B (en) 2013-03-07 2018-11-14 Mondelez Uk R&D Ltd Improved Packaging and Method of Forming Packaging
AU2015362532B2 (en) 2014-12-12 2018-08-02 Jfe Steel Corporation Resin-Coated Metal Sheet for Can Lids
NZ742868A (en) 2015-12-09 2018-12-21 Jfe Steel Corp Laminated steel sheet for both-sided resin-coated container
US10815347B2 (en) * 2016-08-11 2020-10-27 Toray Plastics (America), Inc. Blush-resistant film including pigments
US20180104930A1 (en) * 2016-10-17 2018-04-19 Eastman Chemical Company Metal articles with heat laminated clear semi-crystalline polyesters
US11401092B2 (en) * 2017-05-31 2022-08-02 Jfe Steel Corporation Resin-coated metal sheet for container
CN109910402B (zh) * 2017-12-13 2021-08-13 宝山钢铁股份有限公司 一种界面气泡率极低的覆膜铁及其制造方法
JP7037108B2 (ja) * 2017-12-15 2022-03-16 東洋紡株式会社 金属板貼合せ成形加工用着色二軸延伸ポリエステルフィルム
JP7195052B2 (ja) * 2018-03-01 2022-12-23 東洋鋼鈑株式会社 容器用樹脂被覆金属板、その樹脂被覆金属板からなる容器、及びその樹脂被覆金属板の製造方法
CN110920167A (zh) * 2018-09-19 2020-03-27 宝山钢铁股份有限公司 一种耐蒸煮变色覆铁膜及其覆膜金属板
JP6753557B1 (ja) * 2019-02-07 2020-09-09 日本製鉄株式会社 樹脂金属複合容器用樹脂ラミネート鋼板製缶蓋、樹脂金属複合容器用樹脂ラミネート鋼板製缶底、及び樹脂金属複合容器
JP7160186B2 (ja) * 2019-12-23 2022-10-25 Jfeスチール株式会社 樹脂被覆金属板並びに樹脂被覆絞りしごき缶およびその製造方法
KR20230142770A (ko) 2021-03-26 2023-10-11 제이에프이 스틸 가부시키가이샤 용기용 수지 피복 금속판

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610451A (en) 1979-07-05 1981-02-02 Toray Industries Resin coated metallic plate for vessel
JPH01192546A (ja) 1988-01-28 1989-08-02 Nippon Steel Corp 2層被膜構造を有するラミネート鋼板及びその製造方法
JPH05156040A (ja) 1991-12-03 1993-06-22 Teijin Ltd 金属板貼合せ成形加工用ポリエステルフィルム
JPH05331302A (ja) 1992-06-03 1993-12-14 Teijin Ltd 金属缶蓋貼合せ被覆透明フィルム
JPH07195617A (ja) 1993-12-28 1995-08-01 Toyo Seikan Kaisha Ltd 絞りしごき缶用樹脂被覆金属板およびこれからなる絞りしごき缶
JP2001335682A (ja) 2000-05-30 2001-12-04 Unitika Ltd 金属板ラミネート用ポリエステルフィルム
JP2002088233A (ja) 2000-09-12 2002-03-27 Unitika Ltd 金属板ラミネート用ポリエステルフィルム、ラミネート金属板およびそれを用いた金属容器
JP2004058402A (ja) 2002-07-26 2004-02-26 Mitsubishi Polyester Film Copp 金属板被覆用フィルム
JP2004168365A (ja) * 2002-11-20 2004-06-17 Nippon Steel Corp 容器用金属板およびその製造方法
JP2004249705A (ja) 2002-12-24 2004-09-09 Toyobo Co Ltd 金属板被覆用ポリエステルフィルム、その製造方法およびポリエステルフィルム被覆金属板の製造方法
JP2007083709A (ja) * 2005-08-08 2007-04-05 Toyobo Co Ltd 金属板ラミネート用フィルム
JP2009298010A (ja) * 2008-06-13 2009-12-24 Jfe Steel Corp 容器用ポリエステル樹脂被覆金属板
WO2013157379A1 (ja) * 2012-04-19 2013-10-24 Jfeスチール株式会社 ラミネート金属板および食品用缶詰容器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900325A (en) * 1993-08-04 1999-05-04 Toyo Kohan Co., Ltd. Polyester laminated metal sheet
JP2004345232A (ja) * 2003-05-22 2004-12-09 Jfe Steel Kk 熱処理後の加工性に優れた缶用ラミネート金属板
JP2005161621A (ja) * 2003-12-01 2005-06-23 Jfe Steel Kk レトルト後の外観に優れた缶蓋用ラミネート金属板
WO2005115744A1 (ja) * 2004-05-31 2005-12-08 Jfe Steel Corporation 樹脂被覆金属板
EP1925639B1 (en) 2005-08-08 2014-10-08 Toyobo Co., Ltd. Film for lamination of metal plate
JP4692144B2 (ja) * 2005-08-12 2011-06-01 Jfeスチール株式会社 2ピース缶及びその製造方法、並びに2ピース缶用鋼板
US7737246B2 (en) * 2005-12-15 2010-06-15 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol, cyclohexanedimethanol, and ethylene glycol and manufacturing processes therefor
US8168276B2 (en) * 2006-09-19 2012-05-01 Valspar Sourcing, Inc. Food and beverage containers and methods of coating
JP5167846B2 (ja) * 2008-02-07 2013-03-21 Jfeスチール株式会社 2ピース缶体用ラミネート金属板および2ピースラミネート缶体
US8800030B2 (en) 2009-09-15 2014-08-05 Symantec Corporation Individualized time-to-live for reputation scores of computer files
MX339459B (es) * 2010-10-15 2016-05-27 Valspar Sourcing Inc Composicion de recubrimiento a base de poliester para sustratos de metal.
MY165001A (en) * 2011-08-31 2018-02-28 Jfe Steel Corp Resin coated metal sheet
WO2013099563A1 (ja) * 2011-12-26 2013-07-04 Jfeスチール株式会社 ラミネート金属板および食品用缶詰容器

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610451A (en) 1979-07-05 1981-02-02 Toray Industries Resin coated metallic plate for vessel
JPH01192546A (ja) 1988-01-28 1989-08-02 Nippon Steel Corp 2層被膜構造を有するラミネート鋼板及びその製造方法
JPH05156040A (ja) 1991-12-03 1993-06-22 Teijin Ltd 金属板貼合せ成形加工用ポリエステルフィルム
JPH05331302A (ja) 1992-06-03 1993-12-14 Teijin Ltd 金属缶蓋貼合せ被覆透明フィルム
JPH07195617A (ja) 1993-12-28 1995-08-01 Toyo Seikan Kaisha Ltd 絞りしごき缶用樹脂被覆金属板およびこれからなる絞りしごき缶
JP2001335682A (ja) 2000-05-30 2001-12-04 Unitika Ltd 金属板ラミネート用ポリエステルフィルム
JP2002088233A (ja) 2000-09-12 2002-03-27 Unitika Ltd 金属板ラミネート用ポリエステルフィルム、ラミネート金属板およびそれを用いた金属容器
JP2004058402A (ja) 2002-07-26 2004-02-26 Mitsubishi Polyester Film Copp 金属板被覆用フィルム
JP2004168365A (ja) * 2002-11-20 2004-06-17 Nippon Steel Corp 容器用金属板およびその製造方法
JP2004249705A (ja) 2002-12-24 2004-09-09 Toyobo Co Ltd 金属板被覆用ポリエステルフィルム、その製造方法およびポリエステルフィルム被覆金属板の製造方法
JP2007083709A (ja) * 2005-08-08 2007-04-05 Toyobo Co Ltd 金属板ラミネート用フィルム
JP2009298010A (ja) * 2008-06-13 2009-12-24 Jfe Steel Corp 容器用ポリエステル樹脂被覆金属板
WO2013157379A1 (ja) * 2012-04-19 2013-10-24 Jfeスチール株式会社 ラミネート金属板および食品用缶詰容器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068720A1 (ja) * 2013-11-06 2015-05-14 東洋製罐株式会社 樹脂被覆金属板及びシームレス缶
US10576712B2 (en) * 2015-03-26 2020-03-03 Jfe Steel Corporation Resin-coated metal sheet for container
EP3427944A4 (en) * 2016-03-10 2019-11-06 Nippon Steel Corporation FILMLAMINATMETALLPLATTE WITH EXCEPTIONAL RETORTENFTFTUNG AND METHOD FOR THE PRODUCTION THEREOF
US11220094B2 (en) 2016-03-10 2022-01-11 Nippon Steel Corporation Film-laminated metal plate having excellent retort adhesiveness, and method for manufacturing same
US11299607B2 (en) * 2016-04-22 2022-04-12 Exxon Mobil Chemical Patents Inc. Polyethylene sheets

Also Published As

Publication number Publication date
CA2901209A1 (en) 2014-09-04
CN105008232A (zh) 2015-10-28
TWI549810B (zh) 2016-09-21
CN105008232B (zh) 2019-08-13
US10227156B2 (en) 2019-03-12
PH12015501883A1 (en) 2015-12-14
KR20150108905A (ko) 2015-09-30
BR112015020675B1 (pt) 2020-12-08
JP2014166856A (ja) 2014-09-11
US20160009444A1 (en) 2016-01-14
EP2962951A4 (en) 2016-01-06
CA2901209C (en) 2017-10-24
MY175366A (en) 2020-06-23
PH12015501883B1 (en) 2015-12-14
BR112015020675A2 (pt) 2017-07-18
ES2744906T3 (es) 2020-02-26
TW201446486A (zh) 2014-12-16
JP5874659B2 (ja) 2016-03-02
EP2962951A1 (en) 2016-01-06
EP2962951B1 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
JP5874659B2 (ja) 2ピース缶用ラミネート金属板および2ピースラミネート缶体
JP5673860B2 (ja) ラミネート金属板および食品用缶詰容器
JP5403195B1 (ja) ラミネート金属板および食品用缶詰容器
JP5167846B2 (ja) 2ピース缶体用ラミネート金属板および2ピースラミネート缶体
US9993998B2 (en) Resin-coated metal sheet for containers and method for manufacturing the same
WO2021131765A1 (ja) 樹脂被覆金属板並びに樹脂被覆絞りしごき缶およびその製造方法
JP5920279B2 (ja) ラミネート金属板、ラミネート金属板の製造方法および食品用缶詰容器
JP6070903B2 (ja) 食品容器用フィルムラミネート金属板、および、これを用いたツイストキャップおよび缶蓋
JP4341469B2 (ja) 容器用樹脂被覆金属板
JP4341471B2 (ja) 容器用樹脂被覆金属板
JP7037108B2 (ja) 金属板貼合せ成形加工用着色二軸延伸ポリエステルフィルム
JP4839594B2 (ja) 金属板被覆用ポリエステルフィルム、ポリエステルフィルム被覆金属板及びポリエステルフィルム被覆金属容器
JP2006007744A (ja) 金属板被覆用ポリエステルフィルム、ポリエステルフィルム被覆金属板及びポリエステルフィルム被覆金属容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2901209

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20157022518

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14770640

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201505947

Country of ref document: ID

Ref document number: 2013876472

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015020675

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015020675

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150827