WO2005108459A1 - 液状エポキシ樹脂組成物 - Google Patents

液状エポキシ樹脂組成物 Download PDF

Info

Publication number
WO2005108459A1
WO2005108459A1 PCT/JP2005/008525 JP2005008525W WO2005108459A1 WO 2005108459 A1 WO2005108459 A1 WO 2005108459A1 JP 2005008525 W JP2005008525 W JP 2005008525W WO 2005108459 A1 WO2005108459 A1 WO 2005108459A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
liquid epoxy
component
aromatic diamine
Prior art date
Application number
PCT/JP2005/008525
Other languages
English (en)
French (fr)
Inventor
Kazumasa Igarashi
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to US11/596,414 priority Critical patent/US20070196612A1/en
Publication of WO2005108459A1 publication Critical patent/WO2005108459A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26152Auxiliary members for layer connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/26175Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/14Layer or component removable to expose adhesive
    • Y10T428/1452Polymer derived only from ethylenically unsaturated monomer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/14Layer or component removable to expose adhesive
    • Y10T428/1462Polymer derived from material having at least one acrylic or alkacrylic group or the nitrile or amide derivative thereof [e.g., acrylamide, acrylate ester, etc.]

Definitions

  • the present invention relates to a connection electrode section for a semiconductor package such as a BGA (ball-grid 'array) or CSP (chip-scale' package or chip-size 'package) or a semiconductor component such as a semiconductor element.
  • a liquid epoxy used to fill the gap between the semiconductor component and the circuit board and seal it with resin in the flip-chip connection method that electrically connects the opposing electrodes of the semiconductor component and the circuit board via bumps).
  • the liquid resin composition used for the underfill is generally Since a thermosetting resin composition mainly composed of epoxy resin or the like is used, it does not melt, has high adhesive strength, does not decompose, or is insoluble in solvents after being cured by heating. There was a problem that repairs could not be easily performed. Therefore, once underfill is performed, for example, a problem arises in that an electronic component device having a defective electrical connection is scrapped and must be discarded. This means that, in recent years, as resilience has been required for global environmental protection, it is necessary to avoid waste as much as possible, and it is possible to repair even underfill. Is required.
  • an epoxy resin is used as a main component, a capsule-type curing agent coated with a thermoplastic resin as a curing agent, and an acrylic resin as a repair-imparting agent.
  • An electronic component bonding adhesive using a resin has been disclosed (see Patent Document 1).
  • thermosetting resin a thermosetting resin
  • thermoplastic resin such as polymethyl methacrylate
  • inorganic filler an inorganic filler
  • coupling agent a coupling agent
  • Patent Document 1 JP-A-7-102225
  • Patent Document 2 JP 2001-81439A
  • Patent Document 3 JP-A-10-204259
  • the adhesive for bonding electronic components described in Patent Document 1 has thixotropic properties and thus is suitable for fluidity as an underfill. It is desirable that the fill has such flow characteristics that the shear rate dependence is not observed.
  • the adhesive described in Patent Document 2 obtained by uniformly stirring and mixing generally has a high viscosity in accordance with the molecular weight of the thermoplastic resin. After mixing the prepared inorganic filler, the viscosity increased, and it was difficult to say that the low viscosity required for the underfill could be achieved.
  • the thermoplastic resin is used for electronic parts.
  • thermosetting resin composition described in Patent Document 3 does not describe the effect on the physical properties such as the glass transition point of the cured product which is important for the reliability of the connected mounting structure. It is insufficient as an adhesive material for underfill.
  • the present invention has been made in view of such circumstances, and it is possible to remove a residue near room temperature even in an electronic component device having an electrical connection failure once underfilled. It is an object of the present invention to provide a low-viscosity liquid epoxy resin composition which is highly easy to repair and has a highly reliable electronic component device having a connected mounting structure.
  • the liquid epoxy resin composition of the present invention has a state in which a connection electrode portion provided on a semiconductor component and a connection electrode portion provided on a circuit board are opposed to each other.
  • the present inventor has set forth an epoxy resin composition which is an underfill material for sealing a gap between a circuit board and a semiconductor component (such as a semiconductor device or a semiconductor element).
  • a semiconductor component such as a semiconductor device or a semiconductor element.
  • the inventor of the present invention has found that a cured product of a specific epoxy resin composition is solvated with a specific solvent and subsequently swells. It has been found that a reduction in force occurs, the cured body can be mechanically peeled, and the semiconductor element (flip chip) can be repaired (Japanese Patent Application Laid-Open No. 2003-119251).
  • the present inventor has repeatedly studied an epoxy resin composition which is an underfill material for resin sealing a gap between a circuit board and a semiconductor component.
  • an organic additive [component (D)] is blended together with the above components (A) to (C)
  • the cured product of the epoxy resin composition is solvated with a specific solvent, and swelling occurs continuously.
  • the coating strength of the cured resin, which is the sealing resin, and the adhesive strength are reduced, and the cured product can be mechanically peeled off, and the resin residue remaining on the circuit board can be easily removed at room temperature or the like.
  • the present inventors have found that repair of semiconductor components such as the above becomes easier, and arrived at the present invention.
  • the present invention includes the following aspects.
  • An epoxy resin composition for sealing a gap with a semiconductor component with a resin which comprises the following component (D) in addition to the following components (A) to (C): ⁇ Fat composition.
  • Aromatic diamine curing agent power as component (B) The liquid epoxy resin according to the above 1, which is at least one of an aromatic diamine represented by the following general formula (1) and a derivative thereof: Composition. [0016] [Formula 1]
  • X is hydrogen and / or CnH 2n ⁇ (n is 1 to 10
  • rn is a positive number from 1 to 4.
  • R 1 to R 4 are hydrogen
  • m is a positive number from 1 to 4.
  • R s ⁇ ! s is hydrogen
  • Hffi's S which may be the same or different
  • the aromatic diamine curing agent as the component (B) is a monoepoxy compound having one epoxy group in one molecule, and 2,2'-ditrifluoromethyl-4, 4.
  • the inorganic filler as the component (C) is a spherical silica powder having an average particle diameter of 10 m or less, the surface of which is coated with an organic silane compound represented by the following general formula (3).
  • ⁇ 1 is a valence other than hydrogen, and ⁇ 1 is at least
  • liquid epoxy resin composition according to the above item 9 which is an organosilane compound represented by the following general formula (4), which is represented by the following general formula (4).
  • ⁇ 1 is a monovalent organic group other than hydrogen, and ⁇ is a divalent organic group.
  • a 1 ft * element is a monovalent, and at least
  • the organic additive as the component (D) is at least one of spherical thermoplastic resin particles having an average particle diameter of 10 m or less and spherical crosslinked resin particles having an average particle diameter of 10 ⁇ m or less.
  • the liquid epoxy resin composition according to any one of (1) to (1) above.
  • the spherical polymethyl methacrylate particles have a weight average molecular weight of from 100,000 to 5,000.
  • liquid epoxy resin composition according to the above 13 which is a spherical crosslinked polymethyl metharylate particle having a glass transition temperature of 100 ° C. or higher.
  • liquid epoxy resin composition according to any one of the above items 1 to 15, wherein the semiconductor component is a semiconductor element.
  • liquid epoxy resin composition according to any one of 1 to 15 above, wherein the semiconductor component is a semiconductor device.
  • the present invention provides an organic additive [(D) component] together with the components (A) to (C), which is used for sealing the gap between the circuit board and the semiconductor component.
  • It is a liquid epoxy resin composition containing: Therefore, even after the liquid epoxy resin composition has a low viscosity and hardens without generating voids due to filling, the liquid epoxy resin composition easily swells with a specific organic solvent at room temperature. As a result, the strength of the cured body is significantly reduced, and the cured body can be easily peeled off from the adherend (such as an electrode). Therefore, the electronic component device obtained by resin sealing using the liquid epoxy resin composition of the present invention has excellent connection reliability, and a connection failure has occurred due to a displacement between electrodes and the like. Even if the electronic component device itself An electronic component device having excellent repairability can be obtained without discarding the components.
  • aromatic diamine curing agent (B) an aromatic diamine represented by the following general formula (1) and its derivative, or a general formula (2) described below:
  • a fluorinated aromatic diamine or a derivative thereof is preferred because the effect of rapid swelling and ease of repair can be exhibited.
  • aromatic diamine curing agent [component (B)] a monoepoxy compound containing one epoxy group in one molecule and 2,2′-ditrifluoromethyl-4,4 Use of the reaction product with '-diaminobiphenyl enhances solvation and swelling, and enables good repair.
  • aromatic diamine curing agent [component (B)] at least one of an aromatic diamine represented by the following general formula (1) and a derivative thereof, or a general formula (2)
  • component (A) a prepolymer obtained by reacting this with a liquid epoxy resin
  • the curing rate can be further increased. Improvement can be achieved.
  • it since it can be formed in a state from liquefaction to viscous paste in advance, it is possible to easily obtain a liquid epoxy resin composition without the need for complicated steps in the measurement at the time of mixing and the subsequent dispersion step. .
  • the above-mentioned inorganic filler [component (C)] is a spherical silica powder having a specific average particle diameter, the surface of which is coated with a specific organosilane compound or a specific organic titanium compound,
  • the effect is that the viscosity of the composition can be reduced or the thixotropy can be reduced.
  • FIG. 1 is a cross-sectional view schematically showing one example of an electronic component device of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing another example of the electronic component device of the present invention.
  • the liquid epoxy resin composition of the present invention comprises a liquid epoxy resin (A component), an aromatic diamine curing agent (B component), an inorganic filler (C component), and an organic additive. It is obtained by blending (D component).
  • the liquid state refers to a liquid state showing fluidity at 25 ° C. That is, it refers to those having a viscosity in the range of 0.1 OlmPa-s to 10,000 Pa's at 25 ° C.
  • the measurement of the viscosity can be performed using, for example, an EMD-type rotational viscometer.
  • the liquid epoxy resin (A component) is not particularly limited as long as it is a liquid epoxy resin containing two or more epoxy groups in one molecule.
  • a liquid epoxy resin containing two or more epoxy groups in one molecule for example, bisphenol A type, Various liquid epoxy resins such as bisphenol F type, hydrogenated bisphenol A type, bisphenol AF type and phenol novolak type, and derivatives thereof, polyhydric alcohol and epichlorohydrinka Induced liquid epoxy resins and derivatives thereof Glycidylamine type, hydantoin type, aminophenol type, arin type, toluidine type, etc.
  • the aromatic diamine curing agent (component B) has a function of curing the liquid epoxy resin (component A), and it is preferable to use at least one of aromatic diamine and a derivative thereof. At least one of a fluorine-containing aromatic diamine and a derivative thereof; It is preferable to use it from the viewpoint of solvation with a specific solvent and subsequent swelling.
  • the aromatic diamine in at least one of the above aromatic diamines and derivatives thereof is p-phenylenediamine, m-phenylenediamine, 2,5 toluenediamine, 2,4 toluenediamine, 4,6 dimethyl m-diamine.
  • Aromatic mononuclear diamines such as phenylenediamine, 2,4 diaminomesitylene, 4, 4 'diamino diphenyl ether, 3, 3'- diamino diphenyl ether, 3, 4' diamino diphenyl ether, 4, 4 'diaminodiphenylmethane, 3, 3'-diaminodiphenylmethane, 4, 4 'diaminodiphenylsulfone, 3, 3'-diaminodiphenylsulfone, 4, 4 '-diaminodiphenyl-sulfide, 3, 3'-diaminodiphenyl -Risulfide, 4, 4'-Diaminobenzophenone, 3,3'-Aromatic dinuclear diamine such as diaminobenzophenone, 1,4-bis Aromatic trinuclear diamines such as 4 aminophenoxy) benzene, 1,4 bis (3 aminophen
  • an aromatic diamine represented by the following general formula (1) and a derivative thereof as the aromatic diamine curing agent (component B) is advantageous in pot life at room temperature. Is also preferably used.
  • X is hydrogen and / or C n H E " ⁇ 1 ( n is a 1 to 1 0
  • m is a positive number from 1 to 4.
  • R 1 is hydrogen
  • R 1 to R 4 are hydrogen or a monovalent organic group.
  • the monovalent organic group include a saturated alkyl group and aryl group represented by -Cn H2n + 1 (n is a positive number from 1 to 10), -CH2CH (OH) CH2-OCn. 3 alkoxy substituted represented by H2n + 1 - 2 hydroxypropyl group, CH2 CH (OH) CH2- O- R 9 (.
  • R 9 is Ari Le group) 3 Ariru substituted represented by - 2-hydroxypropyl group and the like Is raised. Then, the Ri ⁇ R 4 may be different be the same as each other.
  • the fluorinated aromatic diamine in at least one of the above fluorinated aromatic diamines and derivatives thereof is not particularly limited as long as it is a fluorinated aromatic diamine having a primary amino group.
  • aromatic diamine curing agent component B
  • at least one of a fluorine-containing aromatic diamine represented by the following general formula (2) and a derivative thereof can be used at room temperature. Is preferably used because the pot life is longer.
  • R s to R S are hydrogen
  • R 5 to R 8 are hydrogen or a monovalent organic group.
  • the monovalent organic group include a saturated alkyl group and aryl group represented by -Cn H2n + 1 (n is a positive number from 1 to 10), -CH2CH (OH) CH2-OCn. 3-alkoxy-substituted 1-hydroxypropyl group represented by H2n + 1, 3-aryl-substituted 2-hydroxypropyl represented by CH2 CH (OH) CH2—O—R 10 (R 10 is an aryl group) And the like.
  • R 5 to R 8 may be the same or different from each other.
  • 2,2′-ditrifluoromethyl-4,4′-diaminobihue having the smallest active hydrogen equivalent as the aromatic diamine curing agent (component B).
  • the use of p-phenylene or m-phenylenediamine, which also has the lowest active hydrogen equivalent, can reduce the amount of compounding and is a one-part solvent-free epoxy resin composition. It is preferable from the viewpoint that the viscosity of the material can be reduced.
  • the aromatic diamine curing agent (component B) the above-mentioned fluorinated aromatic diamine, particularly 2,2′-ditrifluoromethyl-1,4,4′-diaminobiphenyl, in one molecule
  • a compound obtained by reacting a monoepoxy compound having one epoxy group with a solvate is preferably used from the viewpoint that the solvation and swelling property are enhanced and good repair is possible.
  • the reaction between the above-mentioned fluorinated aromatic diamine and a monoepoxy compound having one epoxy group in one molecule is generally carried out by charging a predetermined amount of each component into a reaction vessel without a catalyst and adding nitrogen to the reaction vessel. The reaction is carried out by heating to about 60 to 120 ° C. in an air stream until the epoxy groups are consumed. And, in this way, for example, N, N, N ′, N′—4-substituted fluorine-containing aromatic diamine compound is can get.
  • the monoepoxy conjugate is not particularly limited as long as it is an epoxy compound containing one epoxy group in one molecule.
  • the mixing ratio of the liquid epoxy resin (component A) and the aromatic diamine curing agent (component B) is based on one epoxy group of the liquid epoxy resin (component A).
  • the number of active hydrogens in the aromatic diamine curing agent (component B) is preferably set in the range of 0.4 to 1.6. More preferably, it is in the range of 0.6 to 1.2. That is, when the number of active hydrogens per epoxy group exceeds 1.6, the viscosity of the liquid epoxy resin composition tends to increase, and when it is less than 0.4, the liquid epoxy resin composition tends to increase. This is because the glass transition temperature of the cured product tends to decrease.
  • the aromatic diamine represented by the above general formula (1) and its aromatic diamine
  • the polyfunctional aliphatic liquid epoxy resin By pre-reacting at least one of the derivatives or at least one of the fluorine-containing aromatic diamine represented by the above general formula (2) and the derivative thereof with the polyfunctional aliphatic liquid epoxy resin to form a prepolymer, the polyfunctional is obtained. It is possible to reduce the possibility of generation of voids due to evaporation and volatilization of low boiling point compounds contained in aliphatic liquid epoxy resin and the like.
  • the prepolymer is, for example, at least one of an aromatic diamine represented by the general formula (1) and a derivative thereof, or a fluorine-containing aromatic diamine represented by the general formula (2) and a derivative thereof. And a polyfunctional aliphatic liquid epoxy compound having two or more epoxy groups in one molecule.
  • a predetermined amount of each component is charged into a reaction vessel without a catalyst, and the mixture is heated to about 60 to 120 ° C under a nitrogen stream. And a reaction is carried out until a predetermined molecular weight is reached, thereby preparing a prepolymer.
  • the prepolymer preferably has a molecular weight of about 400 to 5,000 in terms of polystyrene equivalent weight average molecular weight.
  • a prepolymer is used to form a volatile low-boiling low molecular weight compound. It is possible to prevent voids in the underfill sealing resin layer due to evaporation and volatilization of the resin.
  • polyfunctional aliphatic liquid epoxy resin examples include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, diglycidyl diphosphorus, and triglycidyl diglycidyl ether.
  • Examples include aliphatic diols and triols such as methylolpropane diglycidyl ether, trimethylolpropane triglycidyl ether, glycerin diglycidyl ether, and glycerin triglycidyl ether, and polyfunctional glycidyl ethers of aliphatic polyfunctional alcohols.
  • various known curing accelerators can be used to shorten the curing time.
  • an acidic catalyst such as salicylic acid
  • a Lewis acid such as copper acetyl acetate and zinc acetyl acetate. These may be used alone or in combination of two or more.
  • the blending amount of the curing accelerator is not particularly limited, but a desired curing can be performed with respect to the mixture of the liquid epoxy resin (A component) and the aromatic diamine curing agent (B component). It is preferable to appropriately set the ratio so that the speed can be obtained. For example, as an index of the curing speed, the amount of gelling can be easily determined while measuring the gelling time with a hot plate. As an example, it is preferable to set the content in the range of 0.01 to 3% by weight in the whole liquid epoxy resin composition.
  • the inorganic filler (C component) used together with the liquid epoxy resin (A component) and the aromatic diamine curing agent (B component) includes silica powder such as synthetic silica and fused silica, alumina, and silicon nitride. , Aluminum nitride, boron nitride, magnesia, calcium silicate, magnesium hydroxide, aluminum hydroxide, titanium oxide and the like.
  • silica powder such as synthetic silica and fused silica, alumina, and silicon nitride.
  • spherical silica powder because the effect of reducing the viscosity of the liquid epoxy resin composition is large.
  • the inorganic filler It is preferable to use those having a maximum particle size of 24 / zm or less. Further, those having an average particle diameter of 10 m or
  • 5 / zm is preferably used. Further, it is preferable to use one having a specific surface area of 1 to 4 m 2 / g by the BET method.
  • the maximum particle size and the average particle size can be measured using, for example, a laser diffraction / scattering type particle size distribution analyzer.
  • the surface is coated with an organosilane conjugate represented by the following general formula (3) and has an average particle diameter of 10 ⁇ m or less.
  • an organosilane conjugate represented by the following general formula (3)
  • Spherical silica particles are used, and the above-mentioned surface-coated spherical silica particles having an average particle diameter of 1 to 5 m are particularly preferable.
  • is a monovalent ⁇ including a raido group.
  • the aminosilane cup represented by the following general formula (4) is included.
  • Spherical silica particles having an average particle diameter of 10 ⁇ m or less, the surface of which is coated with a ring agent are preferably used, and particularly preferably spherical silica particles having an average particle diameter of 1 to 5 / ⁇ .
  • the dispersibility can be improved and the viscosity can be reduced by the interaction such as wettability with the liquid epoxy resin (component (1)). It is planned.
  • ct 1 is a monovalent organic group other than hydrogen
  • is a divalent organic group.
  • organosilane conjugate represented by the general formula (3) examples include, for example, N-2 (aminoethyl) -3aminopropyl-methyldimethoxysilane and N-2 (aminoethyl) 3aminopro. Pill-triethoxysilane, N-2 (aminoethyl) 3-aminopropyl-trimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane and the like. These may be used alone or in combination of two or more.
  • spherical silica particles having an average particle diameter of 10 ⁇ m or less, the surface of which is coated with an organic titanium compound represented by the following general formula (5) are preferably used. Particularly preferred are spherical silica particles having an average particle diameter of 1 to 5 m coated on the surface.
  • ⁇ 1 is -valent of hydrogen and 0 1 is at least
  • the base is a monovalent, including the Uleid Tomb.
  • organotitanium conjugate represented by the general formula (5) examples include, for example, isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, and isopropyl tris (dioctyl pyrophosphate) titanate , Isopropyl tri (N-aminoethyl monoaminoethyl) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, Bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene titanate and the like can be mentioned. These may be used alone or in combination of two or more.
  • Spherical silica particles whose surface is coated with such an organosilane compound or an organotitanium conjugate are produced, for example, as follows. That is, using the above-mentioned organosilane compound or organotitanium compound, and using a conventionally known technique such as a treatment for an inorganic filler such as a vapor spray method or a wet method, spherical silica particles whose surface is coated with the compound are used. It is made.
  • the surface can also be obtained by dissolving in an aqueous alcohol solution or solvent and subjecting it to a surface treatment.
  • the amount of the inorganic filler (component C) to be blended is 10 to 8 with respect to the entire liquid epoxy resin composition. It is preferable to set it in the range of 0% by weight, particularly preferably 30 to 70% by weight. In other words, if the amount is less than 10% by weight, the effect of reducing the linear expansion coefficient of the liquid epoxy resin composition cured product may be small, and if it exceeds 80% by weight, the liquid epoxy resin composition may not be effective. This is because the viscosity of the product tends to increase.
  • the organic additive (D component) used together with the liquid epoxy resin (A component), the aromatic diamine curing agent (B component) and the inorganic filler (C component) includes the liquid epoxy resin (A Component) is a component which is melted by hardening or heat treatment so as to be incompatible with each other to form a domain structure.
  • a Component is a component which is melted by hardening or heat treatment so as to be incompatible with each other to form a domain structure.
  • spherical thermoplastic resin particles, spherical crosslinked resin particles and the like are used. These may be used alone or in combination of two or more.
  • the spherical thermoplastic resin particles include particles which also have strength such as polyacrylic resin, polyethersulfone resin, ethylene-butyl acetate copolymer, polyamide resin, and butadiene-styrene copolymer. These may be used alone or in combination of two or more.
  • the spherical thermoplastic resin particles those having an average particle diameter of 10 m or less are preferably used, and those having an average particle diameter of 1 to 5 / ⁇ are particularly preferably used.
  • the average particle diameter can be measured using, for example, a laser diffraction / scattering type particle size distribution analyzer as described above.
  • spherical polymethyl methacrylate particles are particularly preferably used, and more preferably spherical polymethyl methacrylate particles having a weight average molecular weight of 100,000 or more are used. Among them, spherical polymethyl methacrylate particles having a weight average molecular weight of 100,000 to 5,000, 000 are particularly preferably used. The upper limit of the weight average molecular weight is usually 10,000,000.
  • the spherical polymethyl methacrylate particles also include epoxy group-containing polymethyl methacrylate particles, carboxy group-containing polymethyl methacrylate particles, polymethyl methacrylate-poly acrylate copolymer particles, and the like. It is the purpose.
  • spherical crosslinked resin particles particularly, spherical crosslinked polymethylmetharylate particles are preferably used. More preferably, spherical cross-linked polymethyl methacrylate particles having a glass transition temperature of 100 ° C. or higher are used. As described above, the filling temperature is set high by using the spherical cross-linked polymethyl methacrylate particles having a glass transition temperature of 100 ° C or higher. Therefore, the effect that the sealing time can be shortened at a low viscosity can be obtained.
  • the above glass transition temperature is a value measured by a thermomechanical analysis (TMA) device.
  • the amount of such an organic additive (D component) is not particularly limited as long as the effects of the present invention can be obtained, but is set in the range of 2 to 20% by weight of the whole liquid epoxy resin composition. Particularly preferred is 3 to 15% by weight. That is, if the amount of the organic additive is less than 2% by weight, the effect of improving the repairability of the cured liquid epoxy resin composition may not be obtained. ⁇ This is the force that tends to increase the viscosity of the resin composition.
  • a reactive diluent may be appropriately blended for the purpose of decreasing viscosity, etc., as described in the description of prepolymer, this reactive diluent is volatile. Since it may contain a low boiling point compound, it must be used at the prescribed curing temperature of the liquid epoxy resin composition which is an underfill resin. It is preferable to use the volatile low-boiling compound after removing it in advance. Further, when the reactive diluent itself is volatile, voids are easily generated in the sealing resin layer at a predetermined curing temperature of the liquid epoxy resin thread and the underfill resin, As such, the use of such reactive diluents is limited.
  • Examples of the reactive diluent include n-butyldaricidyl ether, arylglycidyl ether, 2-ethylhexylglycidylether, styrene oxide, phenylglycidylether, cresylglycidylether, laurylglycidylether, p sec Butylphenol glycidyl ether, norphenylglycidyl ether, glycidyl ether of rubinol, glycidyl methacrylate, bulcyclohexene monoepoxide, pinene oxide, glycidyl ether of tertiary carboxylic acid, diglycidyl ether, (poly) Glycidyl ether of ethylene glycol, glycidyl ether of (poly) propylene glycol, phenolic product of bisphenol A with propylene oxide, bisphenol A type epoxy resin and polymerized fat Partial
  • the liquid epoxy resin composition of the present invention contains a flame retardant such as antimony trioxide, antimony pentoxide, and brominated epoxy resin, a flame retardant auxiliary, silicone resin, and the like.
  • a flame retardant such as antimony trioxide, antimony pentoxide, and brominated epoxy resin
  • a flame retardant auxiliary, silicone resin and the like.
  • a low-stressing agent such as a resin, a coloring agent, and the like can be appropriately compounded without departing from the gist of the present invention.
  • the liquid epoxy resin composition of the present invention can be produced, for example, as follows. That is, each component such as the liquid epoxy resin (A component), the aromatic diamine curing agent (B component), the inorganic filler (C component), the organic additive (D component) and, if necessary, the curing accelerator.
  • the desired one-part solvent-free liquid epoxy resin is obtained by mixing and dispersing under a high shearing force such as a three-roll or homomixer, and optionally defoaming under reduced pressure.
  • a composition can be manufactured.
  • a liquid epoxy resin in particular, a polyfunctional aliphatic liquid epoxy resin, and at least one of the aromatic diamine represented by the general formula (1) and a derivative thereof or the general formula (1)
  • these components are preliminarily reacted as described above.
  • the desired one-part solvent-free liquid epoxy resin composition can be produced in the same manner as described above.
  • the semiconductor component is a semiconductor element (flip chip)
  • the connection electrode portion (solder bump) 3 provided on the semiconductor element 1 and the wiring circuit A semiconductor element (flip chip) 1 is mounted on a wiring circuit board 2 with the connection electrode portion (solder pad) 5 provided on the substrate 2 facing the same, and the wiring circuit board 2 and the semiconductor
  • An electronic component device in which a gap with the element (flip chip) 1 is resin-sealed by the sealing resin layer 4 that also has the above-mentioned liquid epoxy resin composition power is manufactured.
  • the semiconductor component is a semiconductor device (semiconductor package), as shown in FIG. 2, the connection electrode portion (solder bump) 13 provided on the semiconductor package 11 and the wiring circuit board 12
  • the semiconductor package 11 is mounted on the printed circuit board 12 with the provided connection electrode portions (solder pads) 15 facing each other, and the gap between the printed circuit board 12 and the semiconductor package 11 is formed by the liquid epoxy.
  • An electronic component device that is resin-sealed by the sealing resin layer 14 that also has a resin composition power is manufactured.
  • liquid epoxy resin composition When filling the gap between the semiconductor element (flip chip) 1 and the wiring circuit board 2 or the gap between the semiconductor package 11 and the wiring circuit board 12 with the liquid epoxy resin composition, After the epoxy resin composition is filled in a syringe, the liquid epoxy resin composition is extruded and applied to one end of the semiconductor element (flip chip) 1 or one end of the semiconductor package 11 with a force of one dollar. Fill.
  • liquid viscosity decreases when filling and sealing on a hot plate heated to about 60 to 120 ° C, making it easier to fill and seal. Become. Further, if the printed circuit board 2 is inclined, the filling and sealing are further facilitated.
  • the gap distance between the semiconductor element (flip chip) 1 and the printed circuit board 2 is generally 30 It is about -300 ⁇ m.
  • the gap distance between the semiconductor package 11 and the wiring circuit board 12 is generally about 200 to 300;
  • the cured epoxy resin composition of the resin sealing portion of the electronic component device thus obtained swells with a specific organic solvent even after being cured, and the adhesive strength is reduced.
  • the component device can be repaired.
  • ketone solvents As the specific organic solvent, ketone solvents, glycol diether solvents, nitrogen-containing solvents, and the like are preferable. These may be used alone or in combination of two or more.
  • ketone solvents include acetophenone, isophorone, ethyl n-butyl ketone, diisobutyl ketone, getyl ketone, cyclohexyl ketone, di-propyl ketone, methyl oxide, methyl n amyl ketone, methyl isobutyl ketone, methyl ethyl ketone, and methyl cyclohexane.
  • Xanone, methyl n-heptyl ketone, and holone These may be used alone or in combination of two or more.
  • glycol ether-based solvents examples include ethylene glycol getyl ether, ethylene glycol dibutyl ether, ethylene glycolone resin methine oleate, ethylene glycol diole cholesterol methine oleate, and diethylene glycol olecolate. Athenole, ethylene glycolone dibutylbutyrene, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether and the like. These may be used alone or in combination of two or more.
  • nitrogen-containing solvent examples include N, N'-dimethylformamide, N, N'-dimethylacetoamide, N-methyl-2-pyrrolidone, N, N'-dimethylsulfoxide, hexamethylphosphortriamide and the like. Is raised. These may be used alone or in combination of two or more.
  • a hot plate or the like is used to heat a semiconductor component (a semiconductor element such as a flip chip or a semiconductor package) or a repaired portion of a printed circuit board, and the semiconductor component is heated. Is removed.
  • heating temperature at this time heating is performed at a temperature of about + 50 ° C. or more from the glass transition temperature of the cured product of the epoxy resin composition of the present invention, and the melting point of the joining metal such as solder or more is obtained.
  • the cured product can be easily cohesively broken or separated from one another (semiconductor component or wiring circuit board) in a state where both are adhered.
  • the organic solvent is applied directly or the absorbent obtained by impregnating the organic solvent into absorbent cotton is brought into contact with the residual portion of the cured epoxy resin composition of the printed circuit board at room temperature, more preferably, glass transition.
  • the printed circuit board and the mounting part can be reused.
  • the semiconductor component to which the residue of the cured product of the liquid epoxy resin composition has adhered is immersed in the above-mentioned organic solvent taken in a predetermined container at room temperature to swell the cured product and remove the semiconductor component to thereby re-use the semiconductor component. Can be used.
  • the above organic solvent may be directly applied to the entire repaired portion of the printed circuit board or coated with absorbent cotton impregnated with the organic solvent, which requires a long-term treatment.
  • the semiconductor component can be removed from the wiring circuit board after the cured product is swelled by gradually penetrating the organic solvent from the end of the semiconductor component to reduce the strength and adhesion of the cured product.
  • n is 0 or more positive ⁇ MS 99%, viscosity 22dPa ⁇ s
  • 2,2′-Ditrifluoromethyl-1,4,4′-diaminobiphenyl represented by the above structural formula (c) is charged into a reaction vessel at a ratio of 1 mol and butyldaricidyl ether at a ratio of 0.5 mol,
  • the average active hydrogen equivalent is 49.4 g / eq . ]
  • Spherical silica particles whose surface has been treated by vapor spraying with 3-aminopropyltriethoxysilane (maximum particle diameter 6 ⁇ m, average particle diameter 2 ⁇ m, specific surface area 2.lm 2 / g) .
  • Spherical silica particles whose surface has been surface-treated by vapor spraying using isopropyl triisostearoyl titanate (organic titanium compound) (maximum particle diameter 6 ⁇ m, average particle diameter 2 m, specific surface area 2. lm 2 / g).
  • Spherical polymethylmetharylate particles (average particle diameter 4 ⁇ m, maximum particle diameter 10 ⁇ m, weight average molecular weight 3,000,000).
  • Spherical polymethyl metharylate particles (average particle size 3.3 m, maximum particle size 20 ⁇ m, weight Average molecular weight 1,750,000).
  • Spherical polymethylmetharylate particles (average particle diameter 4 ⁇ m, maximum particle diameter 10 ⁇ m, weight average molecular weight 400,000).
  • Spherical polymethyl methacrylate particles (average particle diameter 3.4 m, maximum particle diameter 20 ⁇ m, weight average molecular weight 400,000).
  • Spherical crosslinked polymethyl methacrylate particles (average particle diameter 2.6 m, maximum particle diameter 5 ⁇ m, glass transition temperature 120 ° C).
  • liquid epoxy resin compositions of Examples and Comparative Examples thus obtained, the viscosity at 25 ° C. was measured using an EMD type rotational viscometer, and the needle inner diameter was 0.56 mm. was filled into a polypropylene syringe having a needle.
  • a silicon chip (thickness: 370 / ⁇ , size: 10 mm XI Omm) having 64 Sn—3Ag—0.5Cu solder bump electrodes with a diameter of 200 / zm was prepared, and copper wiring with a diameter of 300 m was prepared.
  • 1 mm thick FR-4 glass epoxy wiring circuit with 64 pads (board side electrodes) Copper wiring pads (board side electrodes) coated with 63Sn-37Pb solder paste on the board and soldering the silicon chip After mounting the chip on the substrate with the bump electrodes facing each other, the chip was soldered through a heating reflow furnace at 260 ° C for 5 seconds. The gap between the silicon chip and the circuit board was 210 ⁇ m.
  • the temperature was gradually cooled to room temperature, and then the presence or absence of voids in the sealing resin layer that filled and sealed the gap between the printed circuit board and the semiconductor element was observed with an ultrasonic flaw detector. Then, a force when no void was observed was evaluated as ⁇ , a case where one or two voids were observed was evaluated as ⁇ , and a case where more voids were observed was evaluated as X.
  • the conduction failure rate of the electronic component device immediately after resin sealing was measured. After that, the above electronic component device was subjected to a temperature cycle test at 40 ° C for 10 minutes and 125 ° C for 10 minutes using a thermal test device, and the electrical continuity after 1000 cycles was examined. The conduction failure rate (%) was calculated for all 64 copper wiring pads (board-side electrodes) on the board.
  • the silicon chip was peeled off from the electronic component device on a hot plate heated to 200 ° C, and after returning to room temperature, the epoxy resin composition remaining at the connection was cured.
  • Absorbent cotton containing an equivalent solvent mixture of N, N'-dimethylformamide and diethylene glycol dimethyl ether was allowed to stand in the residue of the body, and allowed to stand at room temperature (22 ° C) for 1 hour.
  • the cotton wool is removed, the well is thoroughly wiped with methanol, the cured epoxy resin composition is peeled off, and the peelable electronic component device is again supplied with the solder paste to the pad portion of the wiring circuit board, and after melting the solder,
  • a silicon chip was mounted on a wiring circuit board, and electrical conductivity was examined. Thereafter, the resin was sealed and the repairability (rework) was evaluated in the same manner as described above.
  • liquid epoxy resin compositions of all Examples have a long pot life and are excellent as a one-part solventless liquid epoxy resin composition of Voidless in combination with low viscosity. .
  • the formed sealing resin layer is excellent in the rigidity without voids and poor conduction.
  • the liquid epoxy resin composition of the comparative example was inferior in repairability as compared with the power example product which had no conduction failure and was a void dress.
  • liquid epoxy resin compositions of Examples and Comparative Examples Using the thus obtained liquid epoxy resin compositions of Examples and Comparative Examples, the viscosity at 25 ° C. was measured using an EMD type rotational viscometer, and the needle inner diameter was 0.56 mm. was filled into a polypropylene syringe having a needle.
  • a CSP package (package height lmm, size 10mm XI Omm) having 64 Sn—3Ag—0.5Cu solder bump electrodes with a diameter of 200 / zm was prepared, and copper wiring with a diameter of 300m was prepared.
  • the CSP package was soldered through a heating reflow furnace at 260 ° C for 5 seconds.
  • the gap between the CSP package and the circuit board is 250 ⁇ m.
  • the temperature was gradually cooled to room temperature, and then the presence or absence of voids in the sealing resin layer that was filled and sealed with the gap between the printed circuit board and the CSP knockage was observed with an ultrasonic flaw detector. Then, a force when no voids were observed was evaluated as ⁇ , a case where one or two voids were observed was evaluated as ⁇ , and a case where more voids were observed was evaluated as X.
  • the conduction failure rate of the electronic component device immediately after resin sealing was measured. After that, the above electronic component device was subjected to a temperature cycle test at 40 ° C for 10 minutes and 125 ° C for 10 minutes using a thermal test device, and the electrical continuity after 1000 cycles was examined. The conduction failure rate (%) was calculated for all 64 copper wiring pads (board-side electrodes) on the board.
  • the CSP package was also peeled off on a hot plate heated to 200 ° C, and the CSP package was peeled off and returned to room temperature, but a cured product of the epoxy resin composition remaining at the connection portion Absorbent cotton containing a mixed solvent of equal amounts of N, N'-dimethylformamide and diethylene glycol dimethyl ether was allowed to stand in the residue portion of, and allowed to stand at room temperature (22 ° C) for 1 hour.
  • the cotton wool is removed, the well is thoroughly wiped with methanol, the cured epoxy resin composition is peeled off, and the peelable electronic component device is again supplied with the solder paste to the pad portion of the wiring circuit board, and after melting the solder,
  • the CSP package was mounted on a printed circuit board and the electrical conductivity was examined. After that, in the same manner as above, After sealing, the repairability (rework) property was evaluated.
  • the cured epoxy resin composition can be completely peeled off and the electrical connection is complete, the cured body can be peeled off with a small amount of the cured resin, but the electrical connection is complete.
  • the cured product remains slightly and can be peeled off, but the electrical connection is incomplete.
  • the cured epoxy resin composition can hardly be peeled off and the electrical connection is incomplete. Is X.
  • Viscosity (at 25, C) 250 370 ⁇ 80
  • the liquid epoxy resin compositions of all Examples have a long pot life and, in combination with low viscosity, are excellent as a one-part solventless liquid epoxy resin composition of Voidless. .
  • the formed sealing resin layer is free from voids and poor conduction, has a good drop impact resistance test result, and has excellent repairability. it is obvious.
  • the liquid epoxy resin composition of the comparative example was inferior in repairability as compared with the power example product in which there was no conduction failure and was voidless.
  • the present invention relates to a semiconductor package such as a BGA (ball-grid 'array) or CSP (chip-scale' package or chip-size 'package) or a connection electrode portion of a semiconductor component such as a semiconductor element.
  • a semiconductor package such as a BGA (ball-grid 'array) or CSP (chip-scale' package or chip-size 'package) or a connection electrode portion of a semiconductor component such as a semiconductor element.
  • the gap between the semiconductor component and the circuit board provides a liquid epoxy resin composition used for filling and resin sealing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 一度、アンダーフィルした後の電気的接続に不具合のある電子部品装置であっても、室温近傍で残渣除去が可能でありリペアー容易性に優れ、しかも接続された実装構造である電子部品装置が高信頼性である低粘度な液状エポキシ樹脂組成物を提供する。半導体部品に設けられた接続用電極部と回路基板に設けられた接続用電極部を対向させた状態で上記回路基板上に半導体部品が搭載されている電子部品装置の上記回路基板と半導体部品との空隙を樹脂封止するための液状エポキシ樹脂組成物である。そして、上記液状エポキシ樹脂組成物が、下記の(A)~(C)成分とともに下記の(D)成分を含有するものである。 (A)液状エポキシ樹脂。 (B)芳香族ジアミン類硬化剤。 (C)無機質充填剤。 (D)有機質添加剤。

Description

明 細 書
液状エポキシ樹脂組成物
技術分野
[0001] 本発明は、 BGA (ボール ·グリッド 'アレイ)や CSP (チップ ·スケール 'パッケージま たはチップ ·サイズ'パッケージ)等の半導体パッケージや半導体素子等の半導体部 品の接続用電極部 (バンプ)を介して半導体部品と回路基板の対向する電極間を電 気的に接続するフリップチップの接続工法において、半導体部品と回路基板の空隙 に充填し榭脂封止する際に用いられる液状エポキシ榭脂組成物に関するものである 背景技術
[0002] 近年、 BGAや CSP等の半導体パッケージがプリント配線基板に高密度実装されて いる。従来、このようなアレイ型バンプ電極を有する半導体パッケージの基板実装に おいては、バンプ間接続ピッチが広ぐし力も接続用金属バンプが大きいためアンダ 一フィル等による応力分散や機械的補強のための榭脂封止は行われなくとも充分な 信頼性が保たれていた。しかし、近年、このバンプ電極が狭ピッチでし力も小さくなつ てきたことから、アンダーフィル等の榭脂による補強がなされるようになつてきた。
[0003] 一方、半導体素子フリップチップ等のベアチップによるダイレクトチップアタッチ方 式が注目されている。このフリップチップ方式の接続工法では、チップ側に高融点半 田バンプを形成して、セラミック回路基板側の半田との金属間接合を行う、いわゆる「 C4技術」と呼ばれる工法が著名である。
[0004] ところが、セラミックス回路基板に代えてガラス'エポキシ榭脂製プリント回路基板等 の榭脂系基板を用いた場合には、チップと榭脂系基板との熱膨張係数の違いに起 因した半田バンプ接合部が破壊され、接続信頼性が充分ではなくなる等の問題を有 している。このような問題の対策として、半導体素子と榭脂系回路基板との空隙を、 例えば、液状榭脂組成物を用い封止することにより熱応力を分散させて信頼性を向 上させる技術、いわゆるアンダーフィルを行うことが一般的になっている。
[0005] し力しながら、上記アンダーフィルに用いる液状榭脂組成物としては、一般的にェ ポキシ榭脂等を主成分とした熱硬化性榭脂組成物を用いるため、加熱して硬化させ た後は、溶融しない、接着力が高い、分解しない、溶剤に不溶である等の点カゝら容易 にリペア一ができないという問題があった。したがって、一度アンダーフィルを行えば 、例えば、電気的接続に不具合のある電子部品装置はスクラップにされてしまい、廃 棄せざるを得ないという問題が生じる。このことは、近年、地球環境保全に向けてリサ イタル性が要求される中、廃棄物を出すことは極力さける必要があり、アンダーフィル 後であってもリペア一を可能にすることのできることが要求されている。
[0006] このようなリペア一可能な液状エポキシ榭脂組成物として、主剤にエポキシ榭脂を 用い、硬化剤に熱可塑性榭脂でコーティングされたカプセル型硬化剤、そしてリペア 一性付与剤にアクリル樹脂を用いた電子部品接合用接着剤が開示されている (特許 文献 1参照)。
[0007] また、熱硬化性榭脂とポリメチルメタタリレート等の熱可塑性榭脂と無機質充填剤と カップリング剤とを含有する接着剤が開示されている (特許文献 2参照)。
[0008] そして、エポキシ榭脂と硬化剤、可塑剤を含むリペア一可能な熱硬化性榭脂組成 物が開示されている (特許文献 3参照)。しかし、接続した実装構造の信頼性にとって 重要な硬化体のガラス転移点等の物性への影響は述べられて 、な 、。
特許文献 1 :特開平 7— 102225号公報
特許文献 2:特開 2001—81439号公報
特許文献 3:特開平 10— 204259号公報
発明の開示
発明が解決しょうとする課題
[0009] しカゝしながら、上記特許文献 1に記載された電子部品接合用接着剤は、チクソトロ ピー性を有するためアンダーフィルとしての流動性に適して 、るとは言 、難く、アンダ 一フィルとしては、ずり速度依存性がみられな ヽような流動特性を有することが望まし い。また、上記特許文献 2に記載された均一に攪拌混合してなる接着剤は、一般的 に熱可塑性榭脂の分子量に応じて高粘度になるため、硬化体の線膨張係数の低減 を目的にした無機質充填剤を混合した後は高粘度になり、アンダーフィルに要求さ れる低粘度を達成できるとは言い難力 た。また、上記熱可塑性榭脂は電子部品の 加熱取り外し容易性向上のために、硬化体のガラス転移点な 、し軟化点の低下を目 的とされており、接続信頼性確保のためのガラス転移点保持の観点力ゝらは言及され ていない。さら〖こ、上記特許文献 3に記載された熱硬化性榭脂組成物は、接続した 実装構造の信頼性にとって重要な硬化体のガラス転移点等の物性への影響は述べ られておらず、アンダーフィル用接着材料としては不充分である。
[0010] 本発明は、このような事情に鑑みなされたもので、一度、アンダーフィルした後の電 気的接続に不具合のある電子部品装置であっても、室温近傍で残渣除去が可能で ありリペア一容易性に優れ、しかも接続された実装構造である電子部品装置が高信 頼性である低粘度な液状エポキシ榭脂組成物の提供をその目的とする。
課題を解決するための手段
[0011] 上記の目的を達成するために、本発明の液状エポキシ榭脂組成物は、半導体部 品に設けられた接続用電極部と回路基板に設けられた接続用電極部を対向させた 状態で上記回路基板上に半導体部品が搭載されている、電子部品装置の上記回路 基板と半導体部品との空隙を榭脂封止するためのエポキシ榭脂組成物であって、下 記の (A)〜 (C)成分とともに下記の (D)成分を含有すると!/、う構成をとる。
(A)液状エポキシ榭脂。
(B)芳香族ジァミン類硬化剤。
(C)無機質充填剤。
(D)有機質添加剤。
[0012] この発明者は、上記目的を達成するために、回路基板と半導体部品(半導体装置 や半導体素子等)との空隙を榭脂封止するためのアンダーフィル材料であるェポキ シ榭脂組成物について研究を重ねた。先にこの発明者は、特定のエポキシ榭脂組 成物の硬化体が特定の溶剤により溶媒和、そして引き続き膨潤が生起し、結果、封 止榭脂である硬化体の被膜強度の低下や接着力の低下が起こり、硬化体の機械的 剥離が可能となり、半導体素子 (フリップチップ)のリペア一が可能となることを見出し 提案している(特開 2003— 119251号公報)。すなわち、硬化剤である特定の含フッ 素芳香族ジァミン類は、トリフルォロメチル置換基またはフッ素置換基により硬化体の 溶解性パラメーター [Solubility Parameter (SP)〕値を低下させるため、特定の溶剤に より溶媒和、そして引き続き膨潤が生起しやすいことを奏功してリペア一性を発現し ている。
[0013] さらに、本発明では、有機質添加剤を併用することにより、一層のリペア一性の改善 効果が得られることを突き止めたのである。すなわち、この発明者は、上記目的を達 成するために、回路基板と半導体部品との空隙を榭脂封止するためのアンダーフィ ル材料であるエポキシ榭脂組成物について研究を重ねた。その結果、上記 (A)〜( C)成分とともに、有機質添加剤〔(D)成分〕を配合すると、このエポキシ榭脂組成物 の硬化体が特定の溶剤により溶媒和、そして引き続き膨潤が生起し、結果、封止榭 脂である硬化体の被膜強度の低下や接着力の低下が起こり、硬化体の機械的剥離 が可能となり、回路基板に残った榭脂残渣が室温等で容易に除去できる等の半導体 部品のリペア一が一層容易となることを見出し本発明に到達した。
[0014] すなわち、本発明は、以下の態様を含む。
1. 半導体部品に設けられた接続用電極部と回路基板に設けられた接続用電極 部を対向させた状態で上記回路基板上に半導体部品が搭載されている、電子部品 装置の上記回路基板と半導体部品との空隙を榭脂封止するためのエポキシ榭脂組 成物であって、下記の (A)〜(C)成分とともに下記の(D)成分を含有することを特徴 とする液状エポキシ榭脂組成物。
(A)液状エポキシ榭脂。
(B)芳香族ジァミン類硬化剤。
(C)無機質充填剤。
(D)有機質添加剤。
[0015] 2. 上記 (B)成分である芳香族ジァミン類硬化剤力 下記の一般式(1)で表される 芳香族ジァミンおよびその誘導体の少なくとも一つである上記 1記載の液状エポキシ 榭脂組成物。 [0016] [化 1]
( 1 )
Figure imgf000006_0001
〔式 (1 ) 中、 Xは水素および/または Cn H2n^ (nは 1〜1 0の
正数である) である。 rnは 1 ~ 4の正数である。 R1 〜R4 は水素
または一価の有機基であり、 互レ、に同じであっても異なつてレ、ても
よい。 }
[0017] 3. 上記 (B)成分である芳香族ジァミン類硬化剤が、下記の一般式(2)で表される 含フッ素芳香族ジァミンおよびその誘導体の少なくとも一つである上記 1記載の液状 エポキシ榭脂組成物。
[0018] [化 2]
Figure imgf000006_0002
〔式 (2 ) 中、 Yはフッ素おょひンまたは Cn F2^! ( nは 1 ~ 1 0の
正数である。 ) である。 mは 1〜4の正数である。 Rs〜! s は水素
または Hffiの ¾«Sであり、 互レヽに同じであっても異なっていてもよ
い。 〕
[0019] 4. 上記 (B)成分である芳香族ジァミン類硬化剤が、 1分子中に 1個のエポキシ基 を含有するモノエポキシ化合物と、 2, 2' —ジトリフルォロメチル— 4, 4' —ジァミノ ビフエ-ルとの反応生成物である上記 1記載の液状エポキシ榭脂組成物。
[0020] 5. 上記 1分子中に 1個のエポキシ基を含有するモノエポキシィ匕合物力 n—ブチ ルグリシジルエーテル、ァリルグリシジルエーテル、 2—ェチルへキシルグリシジルェ 一テル、スチレンオキサイド、フエニルダリシジルエーテル、クレジルグリシジルエーテ ル、ラウリルグリシジルエーテル、 p— sec—ブチルフエ-ルグリシジルエーテル、ノ- ルフエ-ルグリシジルエーテル、カルビノールのグリシジルエーテル、グリシジルメタク リレート、ビュルシクロへキセンモノェポキサイドおよび α—ピネンオキサイドからなる 群力も選ばれた少なくとも一つである上記 4記載の液状エポキシ榭脂組成物。
[0021] 6. 上記一般式(1)で表される芳香族ジァミンおよびその誘導体の少なくとも一つ と、(A)成分である液状エポキシ榭脂とを反応させてなるプレボリマーを含有する上 記 2記載の液状エポキシ榭脂組成物。
[0022] 7. 上記一般式(2)で表される含フッ素芳香族ジァミンおよびその誘導体の少なく とも一つと、 (A)成分である液状エポキシ榭脂とを反応させてなるプレボリマーを含有 する上記 3記載の液状エポキシ榭脂組成物。
[0023] 8. 上記 (C)成分である無機質充填剤が、平均粒子径 10 m以下の球状シリカ 粉末である上記 1〜7のいずれか一項に記載の液状エポキシ榭脂組成物。
[0024] 9. 上記 (C)成分である無機質充填剤が、下記の一般式 (3)で表される有機シラ ン化合物によって表面が被覆された、平均粒子径 10 m以下の球状シリカ粉末であ る上記 1〜7のいずれか一項に記載の液状エポキシ榭脂組成物。
[0025] [化 3]
(な1 - o ^— s ί ~ {β γ ( 3 )
〔式 (3 ) 中、 α 1 は水素以外の 価の であり、 β 1 は少なくとも
1個のアミノ基、 エポキシ基、 ビュル基、 スチリル基、 メタクリロキシ
基、 ウレイド基を含む一価の^! ¾である。 また、 a , bは a + b = 4
であり、 それぞれ 1〜 3の正の正数である。 3
[0026] 10. 上記一般式(3)で表される有機シランィ匕合物力 下記の一般式 (4)で表され る有機シラン化合物である上記 9記載の液状エポキシ榭脂組成物。
[0027] [化 4]
(a 1 -O ~ S i—— γ -ΝΗ2 --- (4)
〔式 (4) 中、 α 1 は水素以外の一価の有機基であり、 ·γは二価の有
である。 〕
[0028] 11. 上記 (C)成分である無機質充填剤が、下記の一般式 (5)で表される有機チ タンィ匕合物によって表面が被覆された、平均粒子径 10 m以下の球状シリカ粉末で ある上記 1〜7のいずれか一項に記載の液状エポキシ榭脂組成物。 [0029] [化 5]
( a 1 - O ^ T i ~ $ l ) b ·■■ ( 5 )
〔式 ( 5 ) 中、 a 1 ft*素 の一価の であり、 は少なくとも
1個のアミノ基、 エポキシ基、 ピ-ル基、 スチリル基、 メタクリロキシ
基、 ゥレイド基を含む一価の有 «Sである。 また、 a , bは a + b = 4
であり、 それぞれ 1〜 3の正の正数である。 〕
[0030] 12. 上記 (D)成分である有機質添加剤が、平均粒子径 10 m以下の球状熱可 塑性榭脂粒子および平均粒子径 10 μ m以下の球状架橋榭脂粒子の少なくとも一つ である上記 1〜: L 1の 、ずれか一項に記載の液状エポキシ榭脂組成物。
[0031] 13. 上記球状熱可塑性榭脂粒子および球状架橋榭脂粒子の少なくとも一つが、 球状ポリメチルメタタリレート粒子である上記 12記載の液状エポキシ榭脂組成物。
[0032] 14. 上記球状ポリメチルメタタリレート粒子の重量平均分子量が、 100, 000〜5,
000, 000の範囲である上記 13記載の液状エポキシ榭脂組成物。
[0033] 15. 上記球状ポリメチルメタタリレート粒子力 ガラス転移温度 100°C以上の球状 架橋ポリメチルメタタリレート粒子である上記 13記載の液状エポキシ榭脂組成物。
[0034] 16. 上記半導体部品が、半導体素子である上記 1〜15のいずれか一項に記載 の液状エポキシ榭脂組成物。
[0035] 17. 上記半導体部品が、半導体装置である上記 1〜15のいずれか一項に記載 の液状エポキシ榭脂組成物。
発明の効果
[0036] このように、本発明は、回路基板と半導体部品との空隙を榭脂封止するために用い られる、前記 (A)〜(C)成分とともに、有機質添加剤〔(D)成分〕を含有する液状ェポ キシ榭脂組成物である。このため、上記液状エポキシ榭脂組成物は、低粘度で充填 によるボイドの発生も無ぐ硬化した後においても特定の有機溶剤によって室温で容 易に溶媒和して膨潤する。その結果、硬化体の強度が著しく減少し、被着体 (電極等 )から容易に剥離することが可能となる。したがって、本発明の液状エポキシ榭脂組 成物を用い榭脂封止して得られた電子部品装置は優れた接続信頼性を備えるととも に、電極間の位置ずれ等により接続不良が発生した場合でも、電子部品装置そのも のを廃棄することなく優れたリペア一性を備えた電子部品装置を得ることができる。
[0037] そして、上記芳香族ジァミン類硬化剤〔(B)成分〕として、後述の一般式 (1)で表さ れる芳香族ジァミンおよびその誘導体、または後述の一般式(2)で表される含フッ素 芳香族ジァミンおよびその誘導体を用いると、迅速な膨潤性によるリペア一の容易性 が発現できると 、う効果を奏し好ま 、。
[0038] また、上記芳香族ジァミン類硬化剤〔(B)成分〕として、 1分子中に 1個のエポキシ基 を含有するモノエポキシ化合物と 2, 2' —ジトリフルォロメチル— 4, 4' —ジアミノビ フエニルとの反応生成物を用いると、溶媒和と膨潤性を高め、良好なリペア一が可能 となる。
[0039] また、上記芳香族ジァミン類硬化剤〔(B)成分〕として、後述の一般式 (1)で表され る芳香族ジァミンおよびその誘導体の少なくとも一つ、あるいは後述の一般式(2)で 表される含フッ素芳香族ジァミンおよびその誘導体の少なくとも一つを用い、これと液 状エポキシ榭脂〔 (A)成分〕とを反応させてなるプレボリマーを用いると、より一層の硬 化速度の向上を図ることができるようになる。しかも、予め液状化から粘稠ペースト状 化までの状態に形成できるため、配合時の計量とその後の分散工程において煩雑な 工程を必要とせず、容易に液状エポキシ榭脂組成物を得ることができる。
[0040] さらに、上記無機質充填剤〔(C)成分〕として、特定の有機シランィ匕合物あるいは特 定の有機チタン化合物によって表面が被覆された、特定の平均粒子径の球状シリカ 粉末を用いると、配合物の粘度が低減できたり、またはチクソトロピー性が低減できる という効果を奏する。
[0041] そして、上記有機質添加剤〔 (D)成分〕として、特定の平均粒子径の球状熱可塑性 榭脂粒子および特定の平均粒子径の球状架橋榭脂粒子の少なくとも一つを用いると 、半導体部品と榭脂系回路基板との狭ギャップ空隙を充分に注入充填できる封止材 料が得られるという効果を奏する。
図面の簡単な説明
[0042] [図 1]本発明の電子部品装置の一例を模式的に示す断面図である。
[図 2]本発明の電子部品装置の他の例を模式的に示す断面図である。
符号の説明 [0043] 1 半導体素子 (フリップチップ)
2, 12 配線回路基板
3 半導体素子の接続用電極部(半田バンプ)
4, 14 封止榭脂層
5, 15 配線回路基板の接続用電極部(半田パッド)
11 半導体装置 (半導体パッケージ)
13 半導体装置の接続用電極部(半田バンプ)
発明を実施するための最良の形態
[0044] 本発明の液状エポキシ榭脂組成物は、液状エポキシ榭脂 (A成分)と、芳香族ジァ ミン類硬化剤 (B成分)と、無機質充填剤 (C成分)とともに、有機質添加剤 (D成分)を 配合して得られるものである。なお、本発明の液状エポキシ榭脂組成物において、液 状とは 25°Cで流動性を示す液状のことをいう。すなわち、 25°Cで粘度が 0. OlmPa- s〜10000Pa' sの範囲のものをいう。上記粘度の測定は、例えば、 EMD型回転粘 度計を用いて行うことができる。
[0045] 上記液状エポキシ榭脂 (A成分)としては、 1分子中に 2個以上のエポキシ基を含有 する液状エポキシ榭脂であれば特に限定されるものではなぐ例えば、ビスフ ノー ル A型、ビスフエノール F型、水添ビスフエノール A型、ビスフエノール AF型、フエノー ルノボラック型等の各種液状エポキシ榭脂およびその誘導体、多価アルコールとェピ クロルヒドリンカ 誘導される液状エポキシ榭脂およびその誘導体、グリシジルァミン 型、ヒダントイン型、ァミノフエノール型、ァ-リン型、トルイジン型等の各種グリシジル 型液状エポキシ榭脂およびその誘導体 (実用プラスチック辞典編集委員会編、「実用 プラスチック辞典材料編」、初版第 3刷、 1996年 4月 20日発行、第 211ページ〜第 2 25ページにかけて記載)およびこれら上記液状エポキシ榭脂と各種グリシジル型固 形エポキシ榭脂の液状混合物等があげられる。これらは単独でもしくは 2種以上併せ て用いられる。
[0046] 上記芳香族ジァミン類硬化剤 (B成分)は、上記液状エポキシ榭脂 (A成分)の硬化 作用を奏するものであり、芳香族ジァミンおよびその誘導体の少なくとも一つを用いる ことが好ましぐさらに含フッ素芳香族ジァミンおよびその誘導体の少なくとも一つを 用いることが特定の溶剤により溶媒和、そして引き続き膨潤し易くなる観点力 より好 ましい。
[0047] 上記芳香族ジァミンおよびその誘導体の少なくとも一つにおける芳香族ジァミンとし ては、 p—フエ二レンジァミン、 m—フエ二レンジァミン、 2, 5 トルエンジァミン、 2, 4 トルエンジァミン、 4, 6 ジメチルー m—フエ二レンジァミン、 2, 4 ジァミノメシチ レン等の芳香族 1核体ジァミン、 4, 4' ージアミノジフエ-ルエーテル、 3, 3' —ジァ ミノジフエニルエーテル、 3, 4' —ジアミノジフエニルエーテル、 4, 4' ージアミノジフ ェニルメタン、 3, 3' —ジアミノジフエニルメタン、 4, 4' ージアミノジフエニルスルホ ン、 3, 3' —ジアミノジフエ-ルスルホン、 4, 4' —ジアミノジフエ-ルスルフイド、 3, 3' —ジアミノジフエ-ルスルフイド、 4, 4' —ジァミノべンゾフエノン、 3, 3' —ジアミ ノベンゾフエノン等の芳香族 2核体ジァミン、 1, 4 ビス(4 アミノフエノキシ)ベンゼ ン、 1, 4 ビス(3 アミノフエノキシ)ベンゼン、 1, 3 ビス(4 アミノフエノキシ)ベン ゼン、 1, 3 ビス(3 アミノフエノキシ)ベンゼン等の芳香族 3核体ジァミン、 4, 4' —ジ一(4—アミノフエノキシ)ジフエ-ルスルホン、 4, 4' —ジ一(3—ァミノフエノキシ )ジフエ-ルスルホン、 4, 4' —ジ一(4—アミノフエノキシ)ジフエ-ルプロパン、 4, 4 ' —ジ一(3—アミノフエノキシ)ジフエ-ルプロパン、 4, 4' —ジ一(4—ァミノフエノキ シ)ジフエ-ルエーテル、 4, 4' ージー(3—アミノフエノキシ)ジフエ-ルエーテル等 の芳香族 4核体ジァミン等があげられ、これらは単独でもしくは 2種以上併せて用いら れる。
[0048] 特に、上記芳香族ジァミン類硬化剤 (B成分)として、下記の一般式(1)で表される 芳香族ジァミンおよびその誘導体の少なくとも一つを用いることが、室温でのポットラ ィフが長くなるとの観点力も好適に用いられる。 [0049] [化 1]
Figure imgf000012_0001
〔式 (1 ) 中、 Xは水素および/または Cn HE÷1 ( nは 1〜1 0の
正数である) であろ。 mは 1〜4の正数である。 R 1 は水素
または一価の有機基であり、 互いに同じであっても異なっていても
よい。 〕
[0050] 上記式(1)において、 R1〜R4は水素または一価の有機基である。上記一価の有 機基としては、例えば、 -Cn H2n+l (nは 1〜10の正数である。)で示される飽和ァ ルキル基、ァリール基、 -CH2 CH (OH) CH2— OCn H2n+1で示される 3 アルコ キシ置換— 2 ヒドロキシプロピル基、 CH2 CH (OH) CH2— O— R9 (R9はァリー ル基である。)で示される 3 ァリール置換— 2 ヒドロキシプロピル基等があげられる 。そして、上記 Ri〜R4は互いに同じであっても異なっていてもよい。
[0051] また、上記含フッ素芳香族ジァミンおよびその誘導体の少なくとも一つにおける含 フッ素芳香族ジァミンとしては、 1級のアミノ基を有するフッ素置換芳香族ジァミンであ れば特に限定されるものではなぐ例えば、 2, 2' ージトリフルォロメチルー 4, 4' ジアミノビフエ-ル、 2, 2 ビス(4 ァミノフエ-ル)へキサフルォロプロパン、 2, 2— ビス(3 アミノー 4—メチルフエ-ル)へキサフルォロプロパン、 2, 2 ビス(3 ァミノ —4 ヒドロキシフエ-ル)へキサフルォロプロパン、 2, 2 ビス〔4— (4 アミノフエノ キシ)フエ-ル〕へキサフルォロプロパン、 2, 2 ビス(3 アミノー 4, 5 ジメチルフエ -ル)へキサフルォロプロパン、 2, 2 ビス(4 ヒドロキシ一 3 ァミノフエ-ル)へキ サフルォロプロパン、 4, 4' ビス〔2—(4 カルボキシフエ-ル)へキサフルォロイ ソプロピル〕ジフエ-ルエーテル、 4, 4' —ビス〔2— (4 ァミノフエノキシフエ-ル)へ キサフルォロイソプロピル〕ジフエ-ルエーテル等があげられ、これらは単独でもしく は 2種以上併せて用いられる。
[0052] 特に、上記芳香族ジァミン類硬化剤 (B成分)としては、下記の一般式 (2)で表され る含フッ素芳香族ジァミンおよびその誘導体の少なくとも一つを用いることが、室温で のポットライフが長くなるということから好適に用いられる。
[0053] [化 2]
(Y) m
R\ Jb, ,ス、 /R7
> 〇 ~ <◦〉一 Nく ( 2 ) (Y) m
〔式 (2 ) 中、 Yはフッ素および/または C„ F2+1 ( 11は1 ~ 1 0の
正数である。 ) である。 mは 1〜4の正数である。 Rs〜RS は水素
または一価の 基であり、 互 、に同じであっても異なって ヽてもよ
い。 〕
[0054] 上記式(2)にお 、て、 R5〜R8は水素または一価の有機基である。上記一価の有 機基としては、例えば、 -Cn H2n+l (nは 1〜10の正数である。)で示される飽和ァ ルキル基、ァリール基、 -CH2 CH (OH) CH2— OCn H2n+1で示される 3 アルコ キシ置換一 2 ヒドロキシプロピル基、 CH2 CH (OH) CH2— O— R10 (R10はァリ ール基である。)で示される 3 ァリール置換— 2 ヒドロキシプロピル基等があげら れる。そして、 R5〜R8は互いに同じであっても異なっていてもよい。
[0055] なかでも、本発明にお ヽては、上記芳香族ジァミン類硬化剤(B成分)として、最も 活性水素当量が小さい、 2, 2' —ジトリフルォロメチルー 4, 4' —ジアミノビフエ-ル を用いること、または同様に最も活性水素当量が小さい、 p フエ-レンジァミン、 m —フエ-レンジアミンを用いることが、配合量を少なくすることができ、一液無溶剤ェ ポキシ榭脂組成物の粘度を低減できると ヽぅ観点から好まし ヽ。
[0056] さらに、上記芳香族ジァミン類硬化剤 (B成分)として、上記含フッ素芳香族ジァミン 、特に 2, 2' —ジトリフルォロメチル一 4, 4' —ジアミノビフエ-ルと、 1分子中に 1個 のエポキシ基を含有するモノエポキシ化合物とを反応させたものが、溶媒和と膨潤性 を高め、良好なリペア一が可能となるという点から好適に用いられる。上記含フッ素芳 香族ジァミンと 1分子中に 1個のエポキシ基を含有するモノエポキシ化合物との反応 は、一般的には、無触媒下に、所定量の各成分を反応容器に仕込み、窒素気流下、 60〜120°C程度に加温してエポキシ基が消費されるまで反応が行われる。そして、 このようにして、例えば、 N, N, N' , N' —4置換含フッ素芳香族ジァミン化合物が 得られる。
[0057] 上記モノエポキシィ匕合物としては、 1分子中に 1個のエポキシ基を含有するェポキ シ化合物であれば特に限定されるものではなぐ例えば、 n—ブチルダリシジルエー テル、ァリルグリシジルエーテル、 2—ェチルへキシルグリシジルエーテル、スチレン オキサイド、フエ-ルグリシジルエーテル、クレジルグリシジルエーテル、ラウリルグリ シジルエーテル、 p— sec—ブチルフエ-ルグリシジルエーテル、ノ-ルフエ-ルグリ シジルエーテル、カルビノールのグリシジルエーテル、グリシジルメタタリレート、ビ- ルシクロへキセンモノェポキサイド、 a—ビネンオキサイド等があげられる。これらは単 独でもしくは 2種以上併せて用いられる。
[0058] 本発明にお ヽて、液状エポキシ榭脂 (A成分)と芳香族ジァミン類硬化剤 (B成分) との配合割合は、上記液状エポキシ榭脂 (A成分)のエポキシ基 1個に対して、上記 芳香族ジァミン類硬化剤(B成分)の活性水素の個数を 0. 4〜1. 6個の範囲に設定 することが好ましい。より好ましくは 0. 6〜1. 2個の範囲である。すなわち、エポキシ 基 1個に対して活性水素の個数が 1. 6を超えると、液状エポキシ榭脂組成物の粘度 が増加する傾向がみられ、また、 0. 4未満では、液状エポキシ榭脂組成物硬化体の ガラス転移温度が低下する傾向がみられるからである。
[0059] 一方、本発明では、上記液状エポキシ榭脂 (A成分)、特にその中でも多官能脂肪 族液状エポキシ榭脂を用いる場合、上記一般式(1)で表される芳香族ジァミンおよ びその誘導体の少なくとも一つあるいは上記一般式(2)で表される含フッ素芳香族 ジァミンおよびその誘導体の少なくとも一つと、多官能脂肪族液状エポキシ榭脂とを 予備反応させプレボリマーとすることにより、多官能脂肪族液状エポキシ榭脂等に含 有する低沸点化合物の蒸発'揮発に起因したボイドの発生の可能性を低減すること ができる。
[0060] 上記プレボリマーは、例えば、上記一般式(1)で表される芳香族ジァミンおよびそ の誘導体の少なくとも一つあるいは上記一般式(2)で表される含フッ素芳香族ジアミ ンおよびその誘導体の少なくとも一つと、 1分子中に 2個以上のエポキシ基を有する 多官能脂肪族液状エポキシ化合物とを反応させることにより得られる。一般的には、 無触媒下に、所定量の各成分を反応容器に仕込み、窒素気流下、 60〜120°C程度 に加温して所定の分子量になるまで反応を行い、プレボリマーを作製する。このプレ ポリマーの分子量としては、ポリスチレン換算の重量平均分子量で 400〜5000程度 となるまで反応させたプレボリマーとすることが好ましぐこのようなプレボリマーとする ことにより揮発性の低沸点の低分子量化合物の蒸発'揮発に起因するアンダーフィ ル封止榭脂層のボイド発生を防止することができる。
[0061] 上記多官能脂肪族液状エポキシ榭脂としては、具体的には、エチレングリコールジ グリシジルエーテル、プロピレングリコールジグリシジルエーテル、ブタンジオールジ グリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ジグリシジルァ 二リン、トリメチロールプロパンジグリシジルエーテル、トリメチロールプロパントリグリシ ジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル等 の脂肪族ジオールやトリオール、または脂肪族多官能アルコールの多官能グリシジ ルエーテル等があげられる。
[0062] また、本発明では、硬化時間の短縮のために公知の各種硬化促進剤を用いること ができる。具体的には、サリチル酸等の酸性触媒、銅ァセチルァセトナート、亜鉛ァ セチルァセトナート等のルイス酸等があげられる。これらは単独でもしくは 2種以上併 せて用いられる。
[0063] 上記硬化促進剤の配合量は、特に限定するものではな 、が、上記液状エポキシ榭 脂 (A成分)および芳香族ジァミン類硬化剤 (B成分)の混合物に対して、所望の硬化 速度が得られる割合となるように適宜設定することが好ましい。例えば、硬化速度の 指標として、熱盤でゲルィ匕時間を計測しながら容易にその使用量を決定することがで きる。その一例として、液状エポキシ榭脂組成物全体中の 0. 01〜3重量%の範囲に 設定することが好ましい。
[0064] 上記液状エポキシ榭脂 (A成分)および芳香族ジァミン類硬化剤 (B成分)とともに 用いられる無機質充填剤 (C成分)としては、合成シリカや溶融シリカ等のシリカ粉末 、アルミナ、窒化珪素、窒化アルミニウム、窒化硼素、マグネシア、珪酸カルシウム、 水酸化マグネシウム、水酸ィ匕アルミニウム、酸ィ匕チタン等の各種粉末があげられる。 上記無機質充填剤のなかでも、特に球状シリカ粉末を用いることが液状エポキシ榭 脂組成物の粘度低減の効果が大きく好ましい。そして、上記無機質充填剤としては、 最大粒子径が 24 /zm以下のものを用いることが好ましい。さらに、上記最大粒子径と ともに、平均粒子径が 10 m以下のものが好ましく用いられ、特に平均粒子径が 1〜
5 /zmのものが好適に用いられる。また、 BET法による比表面積が l〜4m2/gのも のを用いることが好適である。なお、上記最大粒子径および平均粒子径は、例えば、 レーザー回折散乱式粒度分布測定装置を用いて測定することができる。
[0065] さらに、上記無機質充填剤(C成分)としては、好適には、下記の一般式(3)で表さ れる有機シランィ匕合物によって表面が被覆された平均粒子径 10 μ m以下の球状シ リカ粒子が用いられ、特に好ましくは上記表面が被覆された平均粒子径 1〜5 mの 球状シリカ粒子である。
[0066] [化 3]
( 1 -O ^r- S ί (: β1 ) b ■·■ (3)
〔式 (3) 中、 α1 ¾ 素以外の一価の であり、 お は少なくとも
1個のァミノ墓、 エポキシ基、 ビニル基、 スチリノレ基、 メタクリロキシ
基、 ゥレイド基を含む一価の ^である。 また、 a, bは a + b = 4
であり、 それぞれ 1〜 3の正の正数である。 〕
[0067] 上記一般式 (3)で表される有機シラン化合物によって表面が被覆された平均粒子 径 10 m以下の球状シリカ粒子のなかでも、下記の一般式 (4)で表されるアミノシラ ンカップリング剤で表面が被覆された平均粒子径 10 μ m以下の球状シリカ粒子が用 いられ、特に好ましくは平均粒子径 1〜5/ζπιの球状シリカ粒子である。このように、 上記アミノシランカップリング剤を用いて球状シリカ粒子の表面を被覆することにより、 液状エポキシ榭脂 (Α成分)等との濡れ性等の相互作用により分散性の向上や粘度 の低減が図られる。
[0068] [化 4]
1 -0)-3— S i τ -NH2 ··· (4)
〔式 (4) 中、 ct1 は水素以外の一価の有機基であり、 γは二価の有 «S
である。 〕
[0069] 上記一般式(3)で表される有機シランィ匕合物としては、例えば、 N— 2 (アミノエチル )—3 ァミノプロピル一メチルジメトキシシラン、 N— 2(アミノエチル) 3 ァミノプロ ピル一トリエトキシシラン、 N— 2 (アミノエチル) 3 ァミノプロピル一トリメトキシシラ ン、 3—ァミノプロピルトリメトキシシラン、 3—ァミノプロピルトリエトキシシラン等があげ られる。これらは単独でもしくは 2種以上併せて用いられる。
[0070] 一方、上記無機質充填剤 (C成分)として、下記の一般式 (5)で表される有機チタン 化合物によって表面が被覆された平均粒子径 10 μ m以下の球状シリカ粒子が好適 に用いられ、特に好ましくは上記表面が被覆された平均粒子径 1〜5 mの球状シリ 力粒子である。
[0071] [化 5]
( α 1 - O -^— T i ^ W l ) b … )
〔式 ( 5 ) 中、 α 1 は水素 の -価の有 であり、 0 1 は少なくとも
1値のアミノ基、 エポキシ基、 ビニル基、 スチリル基、 メタクリロキシ
基、 ウレイド墓を含む一価の である。 また、 a , bは a + b = 4
であり、 それぞれ 1〜 3の正の正数である。 〕
[0072] 上記一般式(5)で表される有機チタンィ匕合物としては、例えば、イソプロピルトリイソ ステアロイルチタネート、イソプロピルトリス(ジォクチルパイロホスフェート)チタネート 、イソプロピルトリス(ジォクチルパイロホスフェート)チタネート、イソプロピルトリ(N— アミノエチル一アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスフアイト) チタネート、テトラ(2, 2—ジァリルォキシメチル— 1—ブチル)ビス(ジトリデシル)ホス ファイトチタネート、ビス(ジォクチルパイロホスフェート)ォキシアセテートチタネート、 ビス(ジォクチルパイロホスフェート)エチレンチタネート等があげられる。これらは単 独でもしくは 2種以上併せて用いられる。
[0073] このような有機シラン化合物あるいは有機チタンィ匕合物によって表面が被覆された 球状シリカ粒子は、例えば、つぎのようにして作製される。すなわち、上記有機シラン 化合物あるいは有機チタン化合物を用い、蒸気噴霧法や湿式法等の無機質充填剤 への処理等の従来公知の技術を用いることにより上記化合物によって表面が被覆さ れた球状シリカ粒子が作製される。さら〖こは、アルコール水溶液や溶剤に溶解して表 面処理する方法によっても得ることができる。
[0074] 上記無機質充填剤(C成分)の配合量は、液状エポキシ榭脂組成物全体の 10〜8 0重量%の範囲に設定することが好ましぐ特に好ましくは 30〜70重量%である。す なわち、配合量が 10重量%未満では、液状エポキシ榭脂組成物硬化体の線膨張係 数の低減への効果が少ない場合があり、また 80重量%を超えると、液状エポキシ榭 脂組成物の粘度が増加する傾向がみられるからである。
[0075] 上記液状エポキシ榭脂 (A成分)、芳香族ジァミン類硬化剤 (B成分)および無機質 充填剤 (C成分)とともに用いられる有機質添加剤 (D成分)は、上記液状エポキシ榭 脂 (A成分)とは相溶性がなぐ硬化や熱処理により溶融してドメイン構造をとるもので あり、例えば、球状熱可塑性榭脂粒子,球状架橋榭脂粒子等が用いられる。これら は単独でもしくは 2種以上併せて用いられる。
[0076] 上記球状熱可塑性榭脂粒子としては、ポリアクリル榭脂、ポリエーテルスルホン榭 脂、エチレン 酢酸ビュル共重合体、ポリアミド榭脂、ブタジエン スチレン共重合 体等力もなる粒子があげられる。これらは単独でもしくは 2種以上併せて用いられる。 そして、上記球状熱可塑性榭脂粒子としては、平均粒子径が 10 m以下のものが好 ましく用いられ、特に平均粒子径が 1〜5 /ζ πιのものが好適に用いられる。なお、上記 平均粒子径は、先に述べたと同様、例えば、レーザー回折散乱式粒度分布測定装 置を用いて測定することができる。
[0077] 上記球状熱可塑性榭脂粒子のなかでも、特に球状ポリメチルメタタリレート粒子が 好ましく用いられ、さらに好適には重量平均分子量が 100, 000以上の球状ポリメチ ルメタタリレート粒子が用いられ、なかでも重量平均分子量が 100, 000〜5, 000, 0 00の球状ポリメチルメタタリレート粒子が特に好適に用いられる。なお、上記重量平 均分子量の上限は、通常、 10, 000, 000である。
[0078] 上記球状ポリメチルメタタリレート粒子としては、エポキシ基含有ポリメチルメタクリレ ート粒子、カルボキシ基含有ポリメチルメタタリレート粒子、ポリメチルメタクリレートー ポリアタリレート共重合体粒子等も包含する趣旨である。
[0079] また、上記球状架橋榭脂粒子としては、特に球状架橋ポリメチルメタタリレート粒子 が好ましく用いられる。さらに好適には、ガラス転移温度が 100°C以上の球状架橋ポ リメチルメタタリレート粒子が用いられる。このように上記ガラス転移温度が 100°C以上 の球状架橋ポリメチルメタタリレート粒子を用いることにより、充填する温度を高く設定 することが可能となるため、低粘度で封止時間を短縮することができるという効果がえ られる。なお、上記ガラス転移温度は、熱機械分析 (TMA)装置によって測定される 値である。
[0080] このような有機質添加剤 (D成分)の配合量は、本発明の効果が得られる限り特に 限定されな 、が、液状エポキシ榭脂組成物全体の 2〜20重量%の範囲に設定する ことが好ましぐ特に好ましくは 3〜 15重量%である。すなわち、有機質添加剤の配 合量が 2重量%未満では、液状エポキシ榭脂組成物硬化体のリペア一性の向上効 果が得られない場合があり、また 20重量%を超えると、液状エポキシ榭脂組成物の 粘度が増加する傾向がみられる力 である。
[0081] さらに、上記各成分以外に、粘度低下等を目的として、反応性希釈剤を適宜配合 することもできるが、先のプレボリマーの説明にて述べたように、この反応性希釈剤は 揮発性の低沸点化合物を含むことがあるので、使用に際しては、アンダーフィル榭脂 である液状エポキシ榭脂組成物の所定の硬化温度で封止榭脂層にボイド発生を弓 I き起こす揮発性の蒸発性低沸点化合物を予め除去して使用することが好ましい。ま た、反応性希釈剤自体が揮発性である場合には、アンダーフィル榭脂である液状ェ ポキシ榭脂糸且成物の所定の硬化温度で封止榭脂層にボイドが発生し易 、ので、この ような反応性希釈剤は使用が制限される。
[0082] 上記反応性希釈剤としては、例えば、 n—ブチルダリシジルエーテル、ァリルグリシ ジルエーテル、 2—ェチルへキシルグリシジルエーテル、スチレンオキサイド、フエ- ルグリシジルエーテル、クレジルグリシジルエーテル、ラウリルグリシジルエーテル、 p sec ブチルフエ-ルグリシジルエーテル、ノ-ルフエ-ルグリシジルエーテル、力 ルビノールのグリシジルエーテル、グリシジルメタタリレート、ビュルシクロへキセンモノ ェポキサイド、 ピネンオキサイド、 3級カルボン酸のグリシジルエーテル、ジグリシ ジルエーテル、 (ポリ)エチレングリコールのグリシジルエーテル、 (ポリ)プロピレングリ コールのグリシジルエーテル、ビスフエノール Aのプロピレンオキサイド付カ卩物、ビスフ ェノール A型エポキシ榭脂と重合脂肪酸との部分付加物、重合脂肪酸のポリグリシジ ルエーテル、ブタンジオールのジグリシジルエーテル、ビニルシクロへキセンジォキ サイド、ネオペンチルグリコールジグリシジルエーテル、ジグリシジルァ二リン、トリメチ 口 ~~ノレプロノ ンジグリシジノレエ ~~テノレ、卜リメチロ ~~ノレプロノ ン卜リグリシジノレエ ~~テノレ 、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル等があげられる。 これらは単独でもしくは 2種以上併せて用いられる。
[0083] そして、本発明の液状エポキシ榭脂組成物には、上記各成分以外に、三酸化アン チモン、五酸ィ匕アンチモン、臭素化エポキシ榭脂等の難燃剤や難燃助剤、シリコー ン等の低応力化剤、着色剤等を、本発明の趣旨を逸脱しない範囲内で適宜配合す ることがでさる。
[0084] 本発明の液状エポキシ榭脂組成物は、例えば、つぎのようにして製造することがで きる。すなわち、前記液状エポキシ榭脂 (A成分)、芳香族ジァミン類硬化剤 (B成分) 、無機質充填剤 (C成分)、有機質添加剤 (D成分)および必要に応じて硬化促進剤 等の各成分を所定量配合し、これを 3本ロールやホモミキサー等の高剪断力下で混 合,分散し、場合により減圧下で脱泡することにより目的とする一液無溶剤の液状ェ ポキシ榭脂組成物を製造することができる。もしくは、液状エポキシ榭脂 (A成分)、特 にその中でも多官能脂肪族液状エポキシ榭脂と、前記一般式 (1)で表される芳香族 ジァミンおよびその誘導体の少なくとも一つあるいは前記一般式(2)で表される含フ ッ素芳香族ジァミンおよびその誘導体の少なくとも一つとのプレボリマーを用いる場 合は、これら成分を先に述べたように予備反応させる。ついで、このプレボリマーと他 の成分を所定量配合した後、上記と同様にして目的とする一液無溶剤の液状ェポキ シ榭脂組成物を製造することができる。
[0085] このようにして得られた本発明の液状エポキシ榭脂組成物を用いた半導体部品(例 えば、フリップチップ等の半導体素子,半導体パッケージ)と配線回路基板との空隙 の榭脂封止は、例えば、つぎのようにして行われる。すなわち、予め接続用電極部( 半田バンプ)を有する半導体部品と、上記半田バンプに対向する接続用電極部(半 田パッド)を備えた配線回路基板を、半田金属接続する。ついで、上記半導体部品と 配線回路基板との空隙に毛細管現象を利用して、一液無溶剤の液状エポキシ榭脂 組成物を充填し熱硬化して封止榭脂層を形成することにより榭脂封止する。
[0086] このようにして、例えば、半導体部品が半導体素子 (フリップチップ)の場合は、図 1 に示すように、半導体素子 1に設けられた接続用電極部(半田バンプ) 3と配線回路 基板 2に設けられた接続用電極部(半田パッド) 5を対向させた状態で、配線回路基 板 2上に半導体素子 (フリップチップ) 1が搭載され、かつ上記配線回路基板 2と半導 体素子 (フリップチップ) 1との空隙が上記液状エポキシ榭脂組成物力もなる封止榭 脂層 4によって榭脂封止された電子部品装置が製造される。
[0087] 一方、例えば、半導体部品が半導体装置 (半導体パッケージ)の場合は、図 2に示 すように、半導体パッケージ 11に設けられた接続用電極部(半田バンプ) 13と配線 回路基板 12に設けられた接続用電極部(半田パッド) 15を対向させた状態で、配線 回路基板 12上に半導体パッケージ 11が搭載され、かつ上記配線回路基板 12と半 導体パッケージ 11との空隙が上記液状エポキシ榭脂組成物力もなる封止榭脂層 14 によって榭脂封止された電子部品装置が製造される。
[0088] 上記半導体素子 (フリップチップ) 1と配線回路基板 2との空隙、あるいは半導体パ ッケージ 11と配線回路基板 12との空隙に液状エポキシ榭脂組成物を充填する場合 には、まず、液状エポキシ榭脂組成物をシリンジにつめた後、上記半導体素子 (フリ ップチップ) 1あるいは上記半導体パッケージ 11の一端に-一ドル力も液状エポキシ 榭脂組成物を押し出して塗布し、毛細管現象を利用して充填する。この毛細管現象 を利用して充填する際には、 60〜120°C程度に加熱した熱盤上で充填し封止すると 液粘度が低下するため、一層容易に充填 ·封止することが可能となる。さらに、上記 配線回路基板 2に傾斜をつければ、より一層充填 '封止が容易となる。
[0089] このようにして得られる電子部品装置において、半導体部品が半導体素子 (フリツ プチップ) 1の場合は、半導体素子 (フリップチップ) 1と配線回路基板 2との空隙間距 離は、一般に、 30-300 μ m程度である。
[0090] また、半導体部品が半導体パッケージ 11の場合は、半導体パッケージ 11と配線回 路基板 12との空隙間距離は、一般に、 200〜300 ;ζ ΐη程度である。
[0091] このようにして得られた電子部品装置の榭脂封止部分のエポキシ榭脂組成物硬化 体は、硬化した後においても、特定の有機溶剤によって膨潤して接着力が低下し、 電子部品装置をリペア一することができる。
[0092] 上記特定の有機溶剤としては、ケトン系溶剤、グリコールジエーテル系溶剤、含窒 素系溶剤等が好まし ヽ。これらは単独でもしくは 2種以上併せて用いられる。 [0093] 上記ケトン系溶剤としては、ァセトフエノン、イソホロン、ェチルー n—ブチルケトン、 ジイソプチルケトン、ジェチルケトン、シクロへキシルケトン、ジー n プロピルケトン、 メチルォキシド、メチルー n アミルケトン、メチルイソブチルケトン、メチルェチルケト ン、メチルシクロへキサノン、メチル n—へプチルケトン、ホロン等があげられる。こ れらは単独でもしくは 2種以上併せて用いられる。
[0094] 上記グリコールジェ一テル系溶剤としては、エチレングリコールジェチルエーテル、 エチレングリコールジブチルエーテル、エチレングリコーノレジメチノレエーテノレ、ジェチ レングリコーノレェチノレメチノレエーテノレ、ジエチレングリコーノレジェチノレエーテノレ、ジェ チレングリコーノレジブチノレエーテノレ、ジエチレングリコールジメチルエーテル、トリエ チレングリコールジメチルエーテル等があげられる。これらは単独でもしくは 2種以上 併せて用いられる。
[0095] 上記含窒素系溶剤としては、 N, N' —ジメチルホルムアミド、 N, N' —ジメチルァ セトアミド、 N—メチル—2—ピロリドン、 N, N' —ジメチルスルホキシド、へキサメチ ルホスホルトリアミド等があげられる。これらは単独でもしくは 2種以上併せて用いられ る。
[0096] 上記電子部品装置のリペア一方法としては、熱盤等を用いて例えば半導体部品( フリップチップ等の半導体素子や半導体パッケージ)または配線回路基板のリペア一 該当部分を加熱して上記半導体部品を除去する。このときの加熱温度としては、本 発明のエポキシ榭脂組成物の硬化体のガラス転移温度からさらに +約 50°C以上の 温度で加熱することで、かつ半田等の接合金属の溶融点以上の温度で加熱すること で硬化体が凝集破壊または一方 (半導体部品または配線回路基板)に接着した状態 で、両者が容易に剥離できるようになる。その後、上記有機溶剤を直接塗布するかあ るいは脱脂綿に上記有機溶剤をしみ込ませたものを配線回路基板のエポキシ榭脂 組成物の硬化体の残渣部分に室温で接触、より好適にはガラス転移温度以上で接 触させた後、硬化体の膨潤を確認して残渣物を除去すれば配線回路基板ならびに 実装部分を再利用することができる。一方、液状エポキシ榭脂組成物の硬化体の残 渣が接着した半導体部品は、所定の容器にとった上記有機溶剤中に室温で浸漬し 硬化体を膨潤させて除去することにより半導体部品を再利用することができる。 [0097] または、長時間にわたる処理を必要とするものの、上記配線回路基板のリペアー該 当部分全体に、上記有機溶剤を直接塗布するかまたは脱脂綿に有機溶剤をしみ込 ませたものを被覆して、半導体部品の端部から徐々に有機溶剤を浸透させることによ り硬化体を膨潤させて硬化体の強度と接着力を低下させた後、半導体部品を配線回 路基板から取り外すこともできる。
[0098] つぎに、実施例について比較例と併せて説明する。
[0099] まず、下記に示す各成分を準備した。
[0100] 〔液状エポキシ榭脂 a〕
下記の構造式 (a)で表されるエポキシ榭脂。
[化 6] - -o-ajVcHE-*
Figure imgf000023_0001
〔式 (a> 中、 nは 0以上の正 ^ MS 99%, 粘度 22dPa ■ s
(25°C) 、 エポキシ当量 165 g/e q]
[0101] 〔液状エポキシ榭脂 b〕
下記の構造式 (b)で表される脂肪族多官能エポキシ化合物。
[化 7]
CH2 -0-CH2 一 CH— CH2
I O CH3 -CH2 -C-CH2 -OH ··· (b)
CH2 -0-CH2 — CH— CH2
〔式 (b) 中、 粘度 0. 6 dP a · s (25°C) 、
エポキシ当量 125gZe q]
[0102] 〔硬化剤 a〕
下記の構造式 (c)で表される含フッ素芳香族ジァミン。 [化 8]
Figure imgf000024_0001
〔式 (c) 中、 融点 182で、 活 水素当量 SO gZe q] 〔硬化剤 b〕
上記構造式 (c)で表される 2, 2' —ジトリフルォロメチル一 4, 4' —ジアミノビフエ -ルを 1モル、ブチルダリシジルエーテルを 0. 5モルの割合で反応容器に仕込み、 2 00°Cにて反応させることにより得られた下記の構造式 (d)で表される含フッ素芳香族 ジァミン誘導体。
[化 9]
Figure imgf000024_0002
〔式 (d) 中、 4個の Rは平均で 3. 5個が水素、 平均で
0. 5個が— CH2 — CH (OH) CH£ — O— C4 Ha
である。 また平均 Sifc素当量 110 gZe qである。 〕
〔硬化剤 c〕
下記の構造式 (e)で表される非含フッ素芳香族ジァミン。
[化 10]
H2 N- NH2
(e)
(式 (e) 中、 14点 64 ;、 活 tt*素当量 27 g/e q〕
〔硬化剤 d〕
上記構造式(e)で表される m—フエ-レンジァミン 1モルと、ブチルダリシジルエーテ ル 0. 5モルとを反応容器に仕込み、 200°Cにて反応させることにより得られた下記の 構造式 (f )で表される非含フッ素芳香族ジァミン誘導体。 [化 11]
Figure imgf000025_0001
… (f )
〔式 (ί ) 中、 4個の は平均で 3. 5個が水素、 平均で
0 . 5個が- - C H2 — CH (OH) C H2 — O— C4 H9
である。 また平均活性水素当量 4 9 . 4 g / e qである。 ]
[0106] 〔プレボリマー a (含フッ素)〕
上記構造式 (c)で表される含フッ素芳香族ジァミンの活性水素 1当量 (80g)に対し て、上記構造式 (a)で表されるエポキシ榭脂 0. 5当量(82. 5g)を 150°Cにて 15分 間反応させて冷却したことにより得られた、水飴状の粘稠液体であるプレボリマー a ( 活性水素当量 325)。
[0107] 〔プレボリマー b (含フッ素)〕
上記構造式 (d)で表される含フッ素芳香族ジァミン誘導体 1モルと、上記構造式 (b )で表される脂肪族多官能エポキシィ匕合物 1. 75モルとを反応容器に仕込み、 100 °Cにて 2分間反応させることにより得られた、プレボリマー b (粘度 190dPa' s)。
[0108] 〔無機質充填剤 a〕
球状シリカ粒子の表面を、 3—ァミノプロピルトリエトキシシランを用いて蒸気噴霧法 により表面処理したもの(最大粒子径 6 μ m、平均粒子径 2 μ m、比表面積 2. lm2 / g)。
[0109] 〔無機質充填剤 b〕
球状シリカ粒子の表面を、イソプロピルトリイソステアロイルチタネート (有機チタン化 合物)を用いて蒸気噴霧法により表面処理したもの (最大粒子径 6 μ m、平均粒子径 2 m、比表面積 2. lm2 /g)。
[0110] 〔有機質添加剤 al〕
球状ポリメチルメタタリレート粒子(平均粒子径 4 μ m、最大粒子径 10 μ m、重量平 均分子量 3, 000, 000)。
[0111] 〔有機質添加剤 a2〕
球状ポリメチルメタタリレート粒子(平均粒子径 3. 3 m、最大粒子径 20 μ m、重量 平均分子量 1, 750, 000)。
[0112] 〔有機質添加剤 bl〕
球状ポリメチルメタタリレート粒子(平均粒子径 4 μ m、最大粒子径 10 μ m、重量 平均分子量 400, 000)。
[0113] 〔有機質添加剤 b2〕
球状ポリメチルメタタリレート粒子(平均粒子径 3. 4 m、最大粒子径 20 μ m、重量 平均分子量 400, 000)。
[0114] 〔有機質添加剤 c〕
球状架橋ポリメチルメタタリレート粒子(平均粒子径 2. 6 m、最大粒子径 5 μ m、 ガラス転移温度 120°C)。
実施例
[0115] (1)半導体部品として半導体素子 (フリップチップ)を用いた例
〔実施例 1〜18、比較例 1〜3〕
上記準備した各成分を下記の表 1〜表 4に示す割合で配合し、 3本ロールを用いて 室温 (25°C)で均質混合分散することにより一液無溶剤の液状エポキシ榭脂組成物 を作製した。
[0116] [表 1]
mm)
Figure imgf000027_0001
2]
(重量部) 実 施 例
8 9 10 1 1 1 2 13 14 a 0.825 0.825 0.825 0.825 0.825 0.825 0.825 状エポキ^脂
b 0.625 0.625 0, 625 0.625 0.625 0.625 0.625 a ― - ― ― - - ― b ― ― ― - - - 硬化剤
c 0.27 - d 0.49 0.49 0. 9 0.49 ― 0.49 a - ― 一 ― プレポリマー 1 ;
b - ― a 1,03 1,90 1.54 2, 86 1.22 1.03 - 鰣質充填剤
b ― ― - a 1 0.09 0, 16 0.09 0.09 0.11 0.09 娜質添細 b 1 0' 09 ―
c - - - - - - [0118] [表 3]
(重量部)
Figure imgf000028_0001
[0119] [表 4]
(重量部)
Figure imgf000029_0001
[0120] このようにして得られた実施例および比較例の液状エポキシ榭脂組成物を用い、 E MD型回転粘度計を用いて 25°Cでの粘度を測定した後、針内径 0. 56mmのニード ルがついたポリプロピレン製シリンジに充填した。
[0121] その後、上記シリンジ詰めの状態で 25°Cで放置して粘度が 2倍になるまでの時間 を測定してそれをポットライフとした。
[0122] 一方、直径 200 /z mの Sn— 3Ag— 0. 5Cu半田バンプ電極を 64個有するシリコン チップ(厚み 370 /ζ πι、大きさ 10mm X I Omm)を準備し、直径が 300 mの銅配線 パッドが 64個開口(基板側電極)した厚み lmmの FR— 4ガラスエポキシ製配線回路 基板の 63Sn— 37Pb半田ペーストが塗布されて ヽる銅配線パッド (基板側電極)と、 上記シリコンチップの半田バンプ電極とが対向するように位置合わせして基板にチッ プを搭載した後、これを 260°Cで 5秒間の条件で加熱リフロー炉を通して半田接合し た。上記シリコンチップと回路基板の空隙(隙間)は 210 μ mであった。
[0123] ついで、上記液状エポキシ榭脂組成物が充填されたシリンジに空気圧力をかけて 、上記シリコンチップ (フリップチップ)と回路基板の空隙の一辺に-一ドル力も液状 エポキシ榭脂組成物を吐出して塗布し、 60°Cホットプレート上で毛細管現象により液 状エポキシ榭脂組成物を加温充填し、充填時間を計測するとともに、充填終了後 15 0°Cで 4時間硬化させて榭脂封止することにより電子部品装置を作製した。
[0124] 硬化終了後、室温まで徐冷した後、超音波探傷装置により、配線回路基板と半導 体素子の空隙を充填 ·封止した封止榭脂層のボイドの有無を観察した。そして、ボイ ドが観察されな力つた場合を〇、 1〜2個のボイドが観察された場合を△、それ以上 のボイドの数が観察された場合を Xとして評価した。
[0125] このようにして得られた各電子部品装置を用いて、導通不良率およびリペア一性を 下記に示す方法に従って測定'評価した。その結果を上記液状エポキシ榭脂組成物 の特性測定とともに後記の表 5〜表 8に示す。
[0126] 〔導通不良率〕
上記電子部品装置の榭脂封止直後の導通不良率を測定した。その後、冷熱試験 装置を用いて、上記電子部品装置を 40°CZ 10分 125°C/10分の温度サイク ル試験を実施し、 1000サイクル後の電気的導通を調べ、上記ガラスエポキシ製配線 回路基板の銅配線パッド (基板側電極)の 64個全部に対する導通不良率 (%)を算 出した。
[0127] 〔リペア一性〕
上記導通不良率を測定した後、 200°Cに加熱した熱盤上にて、上記電子部品装置 力 シリコンチップを剥離し、室温に戻したものの接続部に残存するエポキシ榭脂組 成物の硬化体の残渣部分に、 N, N' —ジメチルホルムアミドとジエチレングリコール ジメチルエーテルの等量混合溶剤を含ませた脱脂綿を静置し、室温(22°C)で 1時 間放置した。その後、この脱脂綿を取り除きメタノールでよく拭き、エポキシ榭脂組成 物硬化体の剥離を行い、剥離可能な電子部品装置は再度、配線回路基板のパッド 部に半田ペーストの供給、そして、半田溶融後、上記と同様にしてシリコンチップを配 線回路基板上に搭載して電気的導通性を調べた。その後、上記と同様にして榭脂封 止してリペア一(リワーク)性の評価を行った。
[0128] そして、エポキシ榭脂組成物硬化体が完全に剥離可能で、し力も電気的接続が完 全な場合を◎、硬化体がわずかに残存して剥離できるが、電気的接続が完全な場合 を〇、硬化体がわずかに残存して剥離できるが、電気的接続が不完全な場合を△、 エポキシ榭脂組成物硬化体がほとんど剥離できず、しかも電気的接続が不完全な場 合を Xとした。
[0129] [表 5]
Figure imgf000031_0001
[0130] [表 6]
Figure imgf000031_0002
[0131] [表 7] 実 施 例
1 5 16 17 18
粘度 (a t 25¾) 720 440 305 610
(dPa · s)
ポットライフ (at25t) 7 24 35 34
(時間)
充填時間 (分) 4 1.5 2 2.5
導通不良率 (%) 0 0 0 0
ボイド o 〇 O O
リペア一 (22°C) o ◎ @ O
比 铰 例
3
¾S (a t 25V) 250 370 90
(d P a · s)
ポットライフ (at25t) 37 24 4
翻)
充填時間 汾) 1.5 2.5 1.5
導通不良率 (%) 0 0 0
ボイド 〇 o 〇
リペア一性 (22°C) X Δ X
[0133] 上記の結果、全ての実施例の液状エポキシ榭脂組成物はポットライフが長く、低粘 度と相まってボイドレスの一液無溶剤型の液状エポキシ榭脂組成物として優れている ことがわかる。しかも、形成された封止榭脂層にボイドの発生や導通不良も無ぐリぺ ァー性にも優れていることは明らかである。これに対して、比較例の液状エポキシ榭 脂組成物は、導通不良が無くボイドレスであった力 実施例品と比べてリペア一性に 劣っていた。
[0134] (2)半導体部品として半導体装置 (半導体パッケージ)を用いた例
〔実施例 19〜29、比較例 4〜6〕
上記準備した各成分を下記の表 9〜表 11に示す割合で配合し、 3本ロールを用い て室温 (25°C)で均質混合分散することにより一液無溶剤の液状エポキシ榭脂組成 物を作製した。
[0135] [表 9]
(重量部)
Figure imgf000033_0001
[0136] [表 10]
:重量部)
Figure imgf000033_0002
[0137] [表 11] (重量部)
Figure imgf000034_0001
[0138] このようにして得られた実施例および比較例の液状エポキシ榭脂組成物を用い、 E MD型回転粘度計を用いて 25°Cでの粘度を測定した後、針内径 0. 56mmのニード ルがついたポリプロピレン製シリンジに充填した。
[0139] その後、上記シリンジ詰めの状態で 25°Cで放置して粘度が 2倍になるまでの時間 を測定してそれをポットライフとした。
[0140] 一方、直径 200 /z mの Sn— 3Ag— 0. 5Cu半田バンプ電極を 64個有する CSPパ ッケージ(パッケージ高さ lmm、大きさ 10mm X I Omm)を準備し、直径が 300 m の銅配線パッドが 64個開口(基板側電極)した厚み lmmの FR— 4ガラスエポキシ製 配線回路基板の 63Sn— 37Pb半田ペーストが塗布されて 、る銅配線パッド (基板側 電極)と、上記 CSPパッケージの半田バンプ電極とが対向するように位置合わせして 基板に CSPパッケージを搭載した後、これを 260°Cで 5秒間の条件で加熱リフロー炉 を通して半田接合した。上記 CSPパッケージと回路基板の空隙(隙間)は 250 μ mで めつに。
[0141] ついで、上記液状エポキシ榭脂組成物が充填されたシリンジに空気圧力をかけて 、上記 CSPパッケージと回路基板の空隙の一辺に-一ドル力も液状エポキシ榭脂組 成物を吐出して塗布し、 60°Cホットプレート上で毛細管現象により液状エポキシ榭脂 組成物を加温充填し、充填時間を計測するとともに、充填終了後 150°Cで 4時間硬 ィ匕させて榭脂封止することにより電子部品装置を作製した。
[0142] 硬化終了後、室温まで徐冷した後、超音波探傷装置により、配線回路基板と CSP ノ ッケージの空隙を充填.封止した封止樹脂層のボイドの有無を観察した。そして、 ボイドが観察されな力つた場合を〇、 1〜2個のボイドが観察された場合を△、それ以 上のボイドの数が観察された場合を Xとして評価した。
[0143] このようにして得られた各電子部品装置を用いて、導通不良率およびリペア一性を 下記に示す方法に従って測定'評価した。その結果を上記液状エポキシ榭脂組成物 の特性測定とともに後記の表 12〜表 14に示す。
[0144] 〔耐落下衝撃試験〕
上記電子部品装置の榭脂封止後の基板両端に lOOg錘を取り付け、 1. 2mの高さ から木製床に落下させ、上記電子部品装置が取り付けられた基板について導通不 良が発生する回数を求めた。
[0145] 〔導通不良率〕
上記電子部品装置の榭脂封止直後の導通不良率を測定した。その後、冷熱試験 装置を用いて、上記電子部品装置を 40°CZ 10分 125°C/10分の温度サイク ル試験を実施し、 1000サイクル後の電気的導通を調べ、上記ガラスエポキシ製配線 回路基板の銅配線パッド (基板側電極)の 64個全部に対する導通不良率 (%)を算 出した。
[0146] 〔リペア一性〕
上記導通不良率を測定した後、 200°Cに加熱した熱盤上にて、上記電子部品装置 力も CSPパッケージを剥離し、室温に戻したものの接続部に残存するエポキシ榭脂 組成物の硬化体の残渣部分に、 N, N' —ジメチルホルムアミドとジエチレングリコー ルジメチルエーテルの等量混合溶剤を含ませた脱脂綿を静置し、室温(22°C)で 1時 間放置した。その後、この脱脂綿を取り除きメタノールでよく拭き、エポキシ榭脂組成 物硬化体の剥離を行い、剥離可能な電子部品装置は再度、配線回路基板のパッド 部に半田ペーストの供給、そして、半田溶融後、上記と同様にして CSPパッケージを 配線回路基板上に搭載して電気的導通性を調べた。その後、上記と同様にして榭脂 封止してリペア一(リワーク)性の評価を行った。
[0147] そして、エポキシ榭脂組成物硬化体が完全に剥離可能で、し力も電気的接続が完 全な場合を◎、硬化体がわずかに残存して剥離できるが、電気的接続が完全な場合 を〇、硬化体がわずかに残存して剥離できるが、電気的接続が不完全な場合を△、 エポキシ榭脂組成物硬化体がほとんど剥離できず、しかも電気的接続が不完全な場 合を Xとした。
[0148] [表 12]
Figure imgf000036_0001
[0149] [表 13]
Figure imgf000036_0002
[0150] [表 14] 比 較 例
4 5 6
粘度 ( a t 2 5。C) 250 370 】80
( d P a ■ s )
ポットライフ (31;25て) 37 24 125
(時間)
充填時間 (分) 0. 8 1. 3 0. 7
贿下 ¾1¾¾¾^ (回) 5000回 5000回 5000回
以上 以上 以上
導通不良率 (%) 0 0 0
ボイド 〇 o O
リペアー性 ( 2 2V) X 厶 X
[0151] 上記の結果、全ての実施例の液状エポキシ榭脂組成物はポットライフが長く、低粘 度と相まってボイドレスの一液無溶剤型の液状エポキシ榭脂組成物として優れている ことがわかる。しかも、作製した電子部品装置において、形成された封止榭脂層にボ イドの発生や導通不良も無ぐ耐落下衝撃試験の結果も良好であり、しかもリペア一 性にも優れていることは明らかである。これに対して、比較例の液状エポキシ榭脂組 成物は、導通不良が無くボイドレスであった力 実施例品と比べてリペア一性に劣つ ていた。
[0152] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2004年 5月 11日出願の日本特許出願 (特願 2004— 141586)、および、 2004年 12月 9日出願の日本特許出願 (特願 2004— 357099)、に基づくものであり、そ の内容はここに参照として取り込まれる。
産業上の利用可能性
[0153] 本発明は、 BGA (ボール ·グリッド 'アレイ)や CSP (チップ ·スケール 'パッケージま たはチップ ·サイズ'パッケージ)等の半導体パッケージや半導体素子等の半導体部 品の接続用電極部 (バンプ)を介して半導体部品と回路基板の対向する電極間を電 気的に接続するフリップチップの接続工法において、半導体部品と回路基板の空隙 に充填し榭脂封止する際に用いられる液状エポキシ榭脂組成物を提供する。

Claims

請求の範囲
[1] 半導体部品に設けられた接続用電極部と回路基板に設けられた接続用電極部を 対向させた状態で上記回路基板上に半導体部品が搭載されている、電子部品装置 の上記回路基板と半導体部品との空隙を榭脂封止するためのエポキシ榭脂組成物 であって、下記の (A)〜(C)成分とともに下記の(D)成分を含有することを特徴とす る液状エポキシ榭脂組成物。
(A)液状エポキシ榭脂。
(B)芳香族ジァミン類硬化剤。
(C)無機質充填剤。
(D)有機質添加剤。
[2] 上記 (B)成分である芳香族ジァミン類硬化剤が、下記の一般式(1)で表される芳香 族ジァミンおよびその誘導体の少なくとも一つである請求項 1記載の液状エポキシ榭 脂組成物。
[化 1]
Figure imgf000039_0001
〔式 (1 ) 中、 Xは水素および/または C„ HSn^ (iiは 1〜1 0の
正数である〉 である。 mは 1〜4の正数である。 R1 〜R4 は水素
または一価の有機基であり、 互レ、に同じであっても異なつてレ、ても
よい。 } 上記 (B)成分である芳香族ジァミン類硬化剤が、下記の一般式 (2)で表される含フ ッ素芳香族ジァミンおよびその誘導体の少なくとも一つである請求項 1記載の液状ェ ポキシ榭脂組成物。
[化 2] … (2 )
Figure imgf000040_0001
〔式 (2 ) 中、 Υはフッ素および Ζまたは C„ F2n+1 (nは 1 ~ 1 0の
正数である。 ) である。 mは 1〜4の正数である。 Rs 〜RS は水素
または Hffiの ¾«ϊであり、 互 、に同じであっても異なっていてもよ
い。 〕
[4] 上記 (B)成分である芳香族ジァミン類硬化剤が、 1分子中に 1個のエポキシ基を含 有するモノエポキシ化合物と、 2, 2' —ジトリフルォロメチル— 4, 4' —ジアミノビフ ニルとの反応生成物である請求項 1記載の液状エポキシ榭脂組成物。
[5] 上記 1分子中に 1個のエポキシ基を含有するモノエポキシィ匕合物力 n—ブチルダ リシジルエーテル、ァリルグリシジルエーテル、 2—ェチルへキシルグリシジルエーテ ル、スチレンオキサイド、フエ-ルグリシジルエーテル、クレジルグリシジルエーテル、 ラウリルグリシジルエーテル、 ρ— sec—ブチルフエ-ルグリシジルエーテル、ノ -ルフ ェニルダリシジルエーテル、カルビノールのグリシジルエーテル、グリシジルメタクリレ ート、ビュルシクロへキセンモノェポキサイドおよび α—ピネンオキサイドからなる群か ら選ばれた少なくとも一つである請求項 4記載の液状エポキシ榭脂組成物。
[6] 上記一般式(1)で表される芳香族ジァミンおよびその誘導体の少なくとも一つと、 ( Α)成分である液状エポキシ榭脂とを反応させてなるプレボリマーを含有する請求項 2記載の液状エポキシ榭脂組成物。
[7] 上記一般式 (2)で表される含フッ素芳香族ジァミンおよびその誘導体の少なくとも 一つと、 (Α)成分である液状エポキシ榭脂とを反応させてなるプレボリマーを含有す る請求項 3記載の液状エポキシ榭脂組成物。
[8] 上記 (C)成分である無機質充填剤が、平均粒子径 10 μ m以下の球状シリカ粉末 である請求項 1〜7のいずれか一項に記載の液状エポキシ榭脂組成物。
[9] 上記 (C)成分である無機質充填剤が、下記の一般式 (3)で表される有機シランィ匕 合物によって表面が被覆された、平均粒子径 10 m以下の球状シリカ粉末である請 求項 1〜7のいずれか一項に記載の液状エポキシ榭脂組成物。 [化 3]
(a1 -O ^— S i ~ ' (3)
〔式 (3) 中、 α1 は水素以外の--価の ¾«Sであり、 は少なくとも
1個のアミノ基、 エポキシ基、 ビュル基、 スチリル基、 メタクリロキシ
基、 ウレイド基を含む一価の^ である。 また、 a> bは a + b = 4
であり、 それぞれ 1〜 3の正の正数である。 :!
[10] 上記一般式 (3)で表される有機シランィ匕合物が、下記の一般式 (4)で表される有機 シランィ匕合物である請求項 9記載の液状エポキシ榭脂組成物。
[化 4]
1 一 OHi ~" S i—— γ— NH2 ··. (4)
〔式 (4) 中、 は水素以外の一価の有機基であり、 γは二価の有 MS
である。 〕
[11] 上記 (C)成分である無機質充填剤が、下記の一般式 (5)で表される有機チタンィ匕 合物によって表面が被覆された、平均粒子径 10 m以下の球状シリカ粉末である請 求項 1〜7のいずれか一項に記載の液状エポキシ榭脂組成物。
[化 5]
(a1 -O ^T i ~ {βι ) b … (5)
〔式 (5) 中、 な' は水素: の一価の^ であり、 は少なくとも
1個のァミノ基、 エポキシ基、 ピニル基、 スチリル基、 メタクリロキシ
基、 ゥレイド基を含む一価の有 である。 また、 a , bは a + b = 4
であり、 それぞれ 1〜 3の正の正数である。 〕
[12] 上記 (D)成分である有機質添加剤が、平均粒子径 10 μ m以下の球状熱可塑性榭 脂粒子および平均粒子径 10 μ m以下の球状架橋榭脂粒子の少なくとも一つである 請求項 1〜11の 、ずれか一項に記載の液状エポキシ榭脂組成物。
[13] 上記球状熱可塑性榭脂粒子および球状架橋榭脂粒子の少なくとも一つが、球状ポ リメチルメタタリレート粒子である請求項 12記載の液状エポキシ榭脂組成物。
[14] 上記球状ポリメチルメタタリレート粒子の重量平均分子量が、 100, 000〜5, 000, 000の範囲である請求項 13記載の液状エポキシ榭脂組成物。 [15] 上記球状ポリメチルメタタリレート粒子力 ガラス転移温度 100°C以上の球状架橋ポ リメチルメタタリレート粒子である請求項 13記載の液状エポキシ榭脂組成物。
[16] 上記半導体部品が、半導体素子である請求項 1〜15のいずれか一項に記載の液 状エポキシ榭脂組成物。
[17] 上記半導体部品が、半導体装置である請求項 1〜15のいずれか一項に記載の液 状エポキシ榭脂組成物。
PCT/JP2005/008525 2004-05-11 2005-05-10 液状エポキシ樹脂組成物 WO2005108459A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/596,414 US20070196612A1 (en) 2004-05-11 2005-05-10 Liquid epoxy resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-141586 2004-05-11
JP2004141586 2004-05-11
JP2004357099A JP2005350647A (ja) 2004-05-11 2004-12-09 液状エポキシ樹脂組成物
JP2004-357099 2004-12-09

Publications (1)

Publication Number Publication Date
WO2005108459A1 true WO2005108459A1 (ja) 2005-11-17

Family

ID=35320195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008525 WO2005108459A1 (ja) 2004-05-11 2005-05-10 液状エポキシ樹脂組成物

Country Status (3)

Country Link
US (1) US20070196612A1 (ja)
JP (1) JP2005350647A (ja)
WO (1) WO2005108459A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046636A1 (ja) * 2010-10-05 2012-04-12 住友ベークライト株式会社 液状封止樹脂組成物および半導体パッケージ
WO2019187588A1 (ja) * 2018-03-30 2019-10-03 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3971995B2 (ja) * 2002-12-25 2007-09-05 日本電気株式会社 電子部品装置
EP1954737B1 (en) * 2005-11-25 2009-10-07 Huntsman Advanced Materials (Switzerland) GmbH Curing agent for epoxy resins
US20080036097A1 (en) * 2006-08-10 2008-02-14 Teppei Ito Semiconductor package, method of production thereof and encapsulation resin
JP4905668B2 (ja) * 2006-09-15 2012-03-28 信越化学工業株式会社 半導体封止用液状エポキシ樹脂組成物及び半導体装置
JP2008211125A (ja) 2007-02-28 2008-09-11 Spansion Llc 半導体装置およびその製造方法
JP4706709B2 (ja) * 2008-03-07 2011-06-22 オムロン株式会社 一液性エポキシ樹脂組成物およびその利用
JP2010040599A (ja) * 2008-07-31 2010-02-18 Sanyo Electric Co Ltd 半導体モジュールおよび半導体装置
JP2010132793A (ja) * 2008-12-05 2010-06-17 Toray Ind Inc 熱硬化性樹脂組成物、それを用いたアンダーフィル剤および半導体装置
US9567426B2 (en) * 2009-05-29 2017-02-14 Cytec Technology Corp. Engineered crosslinked thermoplastic particles for interlaminar toughening
US8828806B2 (en) * 2009-06-01 2014-09-09 Shin-Etsu Chemical Co., Ltd. Dam composition for use with multilayer semiconductor package underfill material, and fabrication of multilayer semiconductor package using the same
JP5088353B2 (ja) * 2009-09-25 2012-12-05 横浜ゴム株式会社 熱硬化性樹脂組成物
JP5580109B2 (ja) * 2010-05-13 2014-08-27 富士通株式会社 エポキシ硬化剤及びエポキシ樹脂組成物、並びに半導体装置及びそのリペア方法
WO2012096256A1 (ja) * 2011-01-11 2012-07-19 三菱レイヨン株式会社 エポキシ樹脂用架橋重合体粒子、エポキシ樹脂組成物、及びエポキシ硬化物
JP5958799B2 (ja) * 2012-03-08 2016-08-02 パナソニックIpマネジメント株式会社 半導体封止用液状エポキシ樹脂組成物とそれを用いた半導体装置
CN104755555B (zh) * 2012-10-11 2017-05-10 积水化学工业株式会社 热膨胀性树脂组合物
JP2014177584A (ja) * 2013-03-15 2014-09-25 Denso Corp 硬化性樹脂組成物、封止材、及びこれを用いた電子デバイス製品
JP5983590B2 (ja) * 2013-12-13 2016-08-31 株式会社デンソー 硬化性樹脂組成物、封止材、及びこれを用いた電子デバイス製品
JP6519128B2 (ja) * 2014-09-19 2019-05-29 日立化成株式会社 熱硬化性樹脂組成物及びその製造方法、並びにこれを用いたプリプレグ、積層板及びプリント配線板
US9637586B2 (en) * 2015-02-12 2017-05-02 Uop Llc High temperature resistant epoxy resins for producing hollow fiber membrane modules for high temperature gas separation applications
JP5972489B1 (ja) 2016-02-10 2016-08-17 古河電気工業株式会社 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム
JP5989928B1 (ja) 2016-02-10 2016-09-07 古河電気工業株式会社 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム
JP6005312B1 (ja) 2016-02-10 2016-10-12 古河電気工業株式会社 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム
JP5972490B1 (ja) 2016-02-10 2016-08-17 古河電気工業株式会社 導電性接着剤組成物ならびにこれを用いた導電性接着フィルムおよびダイシング・ダイボンディングフィルム
JP6005313B1 (ja) * 2016-02-10 2016-10-12 古河電気工業株式会社 導電性接着フィルムおよびこれを用いたダイシング・ダイボンディングフィルム
JP7047243B2 (ja) * 2016-02-12 2022-04-05 富士電機株式会社 樹脂組成物および電子部品
KR102049024B1 (ko) * 2017-03-22 2019-11-26 주식회사 엘지화학 반도체 패키지용 수지 조성물과 이를 이용한 프리프레그 및 금속박 적층판
WO2019087463A1 (ja) * 2017-10-30 2019-05-09 京セラ株式会社 エポキシ樹脂組成物、回路基板及び回路基板の製造方法
JP7067083B2 (ja) * 2018-01-26 2022-05-16 昭和電工マテリアルズ株式会社 アンダーフィル材、半導体パッケージ及び半導体パッケージの製造方法
DE102022120396A1 (de) 2022-08-12 2024-02-15 Delo Industrie Klebstoffe Gmbh & Co. Kgaa Verwendung einer härtbaren und wiederlösbaren Masse zur Herstellung eines Bauteils, und Masse dafür

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129218A (ja) * 1998-10-26 2000-05-09 Nitto Denko Corp シート状接着剤組成物およびそれを用いた電子部品装置ならびにそのリペアー方法
JP2000323193A (ja) * 1999-05-06 2000-11-24 Sony Corp 電子部品装置
JP2002060594A (ja) * 2000-06-08 2002-02-26 Nitto Denko Corp 液状エポキシ樹脂組成物
JP2002060464A (ja) * 2000-06-08 2002-02-26 Nec Corp 電子部品装置
JP2003041226A (ja) * 2001-08-01 2003-02-13 Mitsui Chemicals Inc 回路接続ペースト材料
JP2003119251A (ja) * 2001-10-16 2003-04-23 Nitto Denko Corp 液状エポキシ樹脂組成物
JP2003119454A (ja) * 2001-10-16 2003-04-23 Nec Corp 電子部品装置
JP2004204047A (ja) * 2002-12-25 2004-07-22 Nitto Denko Corp 液状エポキシ樹脂組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4518723A (en) * 1982-08-05 1985-05-21 Cl Industries, Inc. Curable epoxy resin compositions and use in preparing formed, shaped, filled bodies
US6291556B1 (en) * 1999-03-26 2001-09-18 Shin-Etsu Chemical Co., Ltd. Semiconductor encapsulating epoxy resin composition and semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129218A (ja) * 1998-10-26 2000-05-09 Nitto Denko Corp シート状接着剤組成物およびそれを用いた電子部品装置ならびにそのリペアー方法
JP2000323193A (ja) * 1999-05-06 2000-11-24 Sony Corp 電子部品装置
JP2002060594A (ja) * 2000-06-08 2002-02-26 Nitto Denko Corp 液状エポキシ樹脂組成物
JP2002060464A (ja) * 2000-06-08 2002-02-26 Nec Corp 電子部品装置
JP2003041226A (ja) * 2001-08-01 2003-02-13 Mitsui Chemicals Inc 回路接続ペースト材料
JP2003119251A (ja) * 2001-10-16 2003-04-23 Nitto Denko Corp 液状エポキシ樹脂組成物
JP2003119454A (ja) * 2001-10-16 2003-04-23 Nec Corp 電子部品装置
JP2004204047A (ja) * 2002-12-25 2004-07-22 Nitto Denko Corp 液状エポキシ樹脂組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046636A1 (ja) * 2010-10-05 2012-04-12 住友ベークライト株式会社 液状封止樹脂組成物および半導体パッケージ
WO2019187588A1 (ja) * 2018-03-30 2019-10-03 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品
CN111936575A (zh) * 2018-03-30 2020-11-13 太阳油墨制造株式会社 固化性树脂组合物、干膜、固化物和电子部件

Also Published As

Publication number Publication date
US20070196612A1 (en) 2007-08-23
JP2005350647A (ja) 2005-12-22

Similar Documents

Publication Publication Date Title
WO2005108459A1 (ja) 液状エポキシ樹脂組成物
JP3723483B2 (ja) 電子部品装置
JP3971995B2 (ja) 電子部品装置
TWI552237B (zh) A semiconductor wafer bonding method, a semiconductor wafer bonding method, a semiconductor device manufacturing method, and a semiconductor device
JP3723461B2 (ja) 電子部品装置
JP5534682B2 (ja) 電子部品用熱硬化性接着剤及びこの接着剤を用いた電子部品内蔵基板の製造方法
JP4994743B2 (ja) フィルム状接着剤及びそれを使用する半導体パッケージの製造方法
JP2009007467A (ja) 実装用難燃性サイドフィル材及び半導体装置
WO2005108483A1 (ja) 電子部品装置
US20080285247A1 (en) Low Exothermic Thermosetting Resin Compositions Useful As Underfill Sealants and Having Reworkability
WO2006019055A1 (ja) 電子部品装置
JP2004204047A (ja) 液状エポキシ樹脂組成物
JP2009256466A (ja) 電子部品用接着剤
JP6106389B2 (ja) 先設置型半導体封止用フィルム
JP2010062297A (ja) ペースト状接着剤及びこの接着剤を用いた電子部品内蔵基板の製造方法
JP2002060594A (ja) 液状エポキシ樹脂組成物
WO2006019054A1 (ja) 液状エポキシ樹脂組成物
JP2009167385A (ja) 封止充てん用樹脂組成物、並びに半導体装置及びその製造方法
JPH04275325A (ja) 半導体封止用樹脂組成物
JP2003119251A (ja) 液状エポキシ樹脂組成物
JP6785841B2 (ja) フラクシングアンダーフィル組成物
JP4534980B2 (ja) アンダーフィル用液状エポキシ樹脂組成物及び半導体装置
WO2005080502A1 (ja) アンダーフィル用液状エポキシ樹脂組成物および同組成物を用いて封止した半導体装置
JP2014005347A (ja) 接着剤組成物及び半導体チップ実装体の製造方法
JP2008177521A (ja) 実装用封止材及び半導体装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11596414

Country of ref document: US

Ref document number: 2007196612

Country of ref document: US

Ref document number: 200580015309.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11596414

Country of ref document: US