WO2006019055A1 - 電子部品装置 - Google Patents

電子部品装置 Download PDF

Info

Publication number
WO2006019055A1
WO2006019055A1 PCT/JP2005/014843 JP2005014843W WO2006019055A1 WO 2006019055 A1 WO2006019055 A1 WO 2006019055A1 JP 2005014843 W JP2005014843 W JP 2005014843W WO 2006019055 A1 WO2006019055 A1 WO 2006019055A1
Authority
WO
WIPO (PCT)
Prior art keywords
amine
epoxy resin
component
electronic component
liquid
Prior art date
Application number
PCT/JP2005/014843
Other languages
English (en)
French (fr)
Inventor
Ichiro Hazeyama
Masahiro Kubo
Kazumasa Igarashi
Original Assignee
Nec Corporation
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation, Nitto Denko Corporation filed Critical Nec Corporation
Publication of WO2006019055A1 publication Critical patent/WO2006019055A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/182Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents
    • C08G59/184Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26122Auxiliary members for layer connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/26145Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the layer connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface

Definitions

  • the present invention relates to a semiconductor package and a circuit board via bump electrode portions for connection of a semiconductor package such as a BGA (ball grid 'array) or a CSP (chip scale' package or chip 'size' package).
  • a semiconductor package such as a BGA (ball grid 'array) or a CSP (chip scale' package or chip 'size' package).
  • a good surface-mounting plate that electrically connects two opposing electrodes, and a liquid epoxy resin composition is filled in the gap between the semiconductor package and the circuit board and sealed.
  • liquid resin composition used for the underfill a one-component thermosetting resin composition mainly composed of epoxy resin or the like is generally used. After being hardened, there is a problem that it cannot be easily repaired from the viewpoint of not melting, having high adhesive strength, not decomposing, or being insoluble in a solvent. Therefore, once underfill is performed, for example, a mounting board on which a semiconductor package having a defective electrical connection is scrapped and must be discarded. This means that in recent years, it is necessary to avoid as much as possible the generation of waste that does not require recyclability for the preservation of the global environment, and it is possible to enable repair even after underfill. It is requested.
  • the applicant of the present invention first reduced the solubility parameter (SP value) of a cured product of a specific fluorine-containing aromatic diamine by a trifluoromethyl substituent or a fluorine substituent.
  • SP value solubility parameter
  • it is effective to solvate with a specific solvent and to continue to cause swelling, thereby exhibiting repair properties and to propose an excellent repairable underfill resin composition (Patent Document 2). , 3).
  • Patent Document 1 JP-A-7-102225
  • Patent Document 2 JP 2002-60594 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-60464
  • the adhesive for joining electronic components described in Patent Document 1 is suitable for fluidity as an underfill because it has thixotropy. It is desirable for the fill to have flow characteristics that do not depend on the slip rate.
  • the underfill resin composition described in Patent Documents 2 and 3 has a high curing temperature of about 150 ° C, and heat resistance of electronic parts such as crystal units and plastic parts as well as BGA and CSP. It was not enough to satisfy the low-temperature curability of 120 ° C or less, particularly preferably 100 ° C or less, which is necessary when components with poor performance are mounted together. In general, when trying to develop low-temperature curability, it is customary to add a large amount of curing agent or curing accelerator, but this impairs the pot life during underfill injection. I never liked it.
  • the present invention has been made in view of such circumstances, has flow characteristics that are less dependent on shear rate (small titasotropy), can be cured at low temperature, and is once underfilled. Even if it is an electronic component device that has a faulty electrical connection after it has been removed, it is possible to remove residues, and it is easy to repair and has a low-viscosity, one-component, solvent-free composition that also has excellent long-life time
  • An object of the present invention is to provide an electronic component device that is sealed with grease.
  • an electronic component device of the present invention includes a circuit board having a connection electrode portion; a connection electrode portion having a connection electrode portion and a connection provided on the circuit board A semiconductor device mounted on the circuit board with the electrode portions facing each other; including a sealing resin layer that seals a gap between the circuit board and the semiconductor device.
  • the inventors of the present invention provide a liquid epoxy resin composition that is an underfill material for sealing a gap between a circuit board and a semiconductor device (semiconductor package).
  • a specific epoxy resin composition cured body is solvated by a specific solvent, and subsequently swelling occurs, resulting in a decrease in film strength or a decrease in adhesive strength of the cured resin as a sealing resin.
  • the above liquid phenolic resin acts as a curing agent for the liquid epoxy resin and lowers the solubility parameter (SP value) of the cured product. Therefore, solvation with a specific solvent and subsequent swelling are likely to occur. , It has been successful and has developed a repair ambiguity.
  • the solid dispersion type amine adduct curing accelerator powder particles [component (C)] and the inorganic filler [component (E)] coexist, the amine silane coupling agent [(D)
  • the solid dispersion type amine adduct type curing accelerator powder particles (component (C)) are usually provided with flow characteristics that are less dependent on the shear rate (small titasotropy! /). The present inventors have found that it has excellent curing potential and long pot life, unlike the above-mentioned dissolution type curing accelerator.
  • the present invention includes the above-described components (A) and (B), solid dispersion type aminedate curing accelerator powder particles [component (C)], and amine-based silane coupling agent [(D ) Ingredients] and An electronic component device sealed with a sealing resin layer made of a liquid epoxy resin composition containing an inorganic filler [component (E)].
  • the liquid epoxy resin composition has low flow rate dependency and excellent flow characteristics (low thixotropy), and is a low-viscosity liquid epoxy resin composition. It has excellent void filling properties, and even after it is cured, it can easily solvate and swell with a specific organic solvent at room temperature.
  • an electronic component device obtained by resin sealing using the above liquid epoxy resin composition has excellent connection reliability, and even when a connection failure occurs due to misalignment between electrodes, the electronic component device An electronic component device having excellent repair characteristics can be obtained without discarding the device itself.
  • the surface-coated with an amine-based silane coupling agent in particular, a spherical particle with an average particle diameter of 10 m or less, surface-coated with an amine-based silane coupling agent. If silica particles are used, the liquid epoxy resin composition cured product will be more excellent in reducing thermal stress and improving mechanical strength due to a decrease in the coefficient of linear expansion.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an electronic component device of the present invention.
  • the electronic component device of the present invention includes a connection electrode portion (solder bump) 3 provided on a semiconductor device (semiconductor package) 1 and a connection electrode provided on a printed circuit board 2.
  • the semiconductor package 1 is mounted on the printed circuit board 2 with the parts (solder pads) 5 facing each other.
  • the gap between the printed circuit board 2 and the semiconductor package 1 is liquid.
  • the resin is sealed with a sealing resin layer 4 formed using a poxy resin composition.
  • the semiconductor package 1 is not particularly limited as long as it has a connection electrode portion (solder bump) 3 and can be mounted on the wiring circuit board 2.
  • connection electrode portion solder bump
  • BGA Bit grid array
  • CSP chip scale package or chip 'size' package
  • connection electrode portion 3 provided in the semiconductor package 1 is formed in a bump shape, but the connection electrode portion provided in the printed circuit board 2 is not particularly limited thereto.
  • the electrode part 5 may be provided in a bump shape.
  • the liquid epoxy resin composition which is a material for forming the sealing resin layer 4 is a liquid epoxy resin.
  • the liquid means a liquid that exhibits fluidity at 25 ° C. That is, the viscosity is in the range of 0.01 mPa's to 10000 Pa's at 25 ° C. The viscosity can be measured, for example, using an EMD type rotational viscometer.
  • the liquid epoxy resin (component A) is not particularly limited as long as it is a liquid epoxy resin containing two or more epoxy groups in one molecule.
  • a liquid epoxy resin containing two or more epoxy groups in one molecule for example, bisphenol A type, Various liquid epoxy resins such as bisphenol F type, hydrogenated bisphenol A type, bisphenol AF type, phenol novolac type, and derivatives thereof, polyhydric alcohols and epichlorohydrin derivatives, and liquid epoxy resins derived therefrom and derivatives thereof.
  • Glycidylamine type, hydantoin type, aminophenol type, arlin type, toluidine type and other glycidyl type liquid epoxy resins and their derivatives (practical plastic dictionary editorial committee edition, "practical plastic dictionary material edition”, (First edition, 3rd edition, published on April 20, 1996, pages 211-225) and these liquid epoxy resins Liquid mixture of various glycidyl type solid-type epoxy ⁇ the like. These may be used alone or in combination of two or more.
  • the liquid phenol resin (component B) includes a curing agent for the liquid epoxy resin (component A) and
  • a liquid phenol novolak having two or more hydroxyl groups in one molecule is not particularly limited.
  • a liquid phenol salt represented by the following general formula (1) Fat is preferably used.
  • N is a positive integer from 0 to 5.
  • a low molecular weight compound of a copolymer of allylphenol ⁇ formaldehyde rosin and phenol ⁇ formaldehyde rosin represented by the formula (1) that exhibits a liquid state at 25 ° C. is preferably used.
  • the use of a liquid phenolic resin having a viscosity at 25 ° C. of 500 dPa's or less, particularly lOOdPa ⁇ s or less, is also preferably used from the viewpoint of reducing the viscosity of the one-component solventless epoxy resin composition.
  • a mixture of liquid phenol resin represented by the following structural formulas ( ⁇ ) and ( ⁇ ) is preferably used.
  • the blending ratio of the liquid epoxy resin (component A) and the liquid phenol resin (component B) is such that the liquid epoxy resin (component A) has one liquid group as described above. It is preferable to set the number of active hydrogens in phenol resin (component B) in the range of 0.4 to 1.6. More preferably, it is in the range of 0.6 to 1.4. That is, if the number of active hydrogens per epoxy group is less than 0.4 or exceeds 1.6, the glass transition temperature of the cured liquid epoxy resin composition tends to decrease, which is not preferable. Because.
  • the solid dispersion type amine adduct type curing accelerator powder particles (C component) used together with the A component and the B component are produced according to a known method described in, for example, JP-A-7-196776. Things can be given.
  • the solid dispersion-type amine adduct curing accelerator powder particles (component C) are curing accelerators that are insoluble in the liquid epoxy resin (component A) at room temperature and are solubilized by heating. It functions as a curing accelerator.
  • a reaction product of an amine compound and an epoxy compound (amin epoxy adduct), a reaction product of an amine compound with an isocyanate compound or a urea compound (urea adduct), and the like. Examples thereof include those obtained by treating the surface of solid dispersion type amine adduct type curing accelerator powder particles with isocyanate compound or acidic compound.
  • room temperature usually refers to a range of about 10 to 40 ° C.
  • the epoxy compound used to obtain the reaction product of the amine compound and the epoxy compound (amine epoxy adduct) is a liquid epoxy containing two or more epoxy groups in one molecule.
  • amine epoxy adduct a liquid epoxy containing two or more epoxy groups in one molecule.
  • bisphenol A type, bisphenol F type, hydrogenated bisphenol A type, bisphenol AF type as described in the previous liquid epoxy resin (component A).
  • liquid epoxy resins such as phenol novolac type and derivatives thereof, polyhydric alcohol and epichlorohydrin derived liquid epoxy resin and derivatives thereof, glycidylamine type, hydantoin type, aminophenol type, -Various glycidyl type liquid epoxy resins such as phosphorus type and toluidine type and their derivatives (Edited by Practical Plastic Dictionary Editor, "Lustic Dictionary Material”, first edition, 3rd edition, published on April 20, 1996, page 211 to page 225), and liquid mixtures of these liquid epoxy resins and various glycidyl-type solid epoxy resins. I can get lost. These may be used alone or in combination of two or more.
  • the amine compound used in the production of the solid dispersion type amine adduct curing accelerator powder particles includes an active hydrogen capable of addition reaction with an epoxy group or an isocyanate group in one molecule.
  • an active hydrogen capable of addition reaction with an epoxy group or an isocyanate group in one molecule.
  • diethylenetriamine triethylenetetramine
  • n-propylamine 2-hydroxyethylaminopropylamine
  • cyclohexylamine dimethylaminopropylamine
  • dibutylaminopropylamine dimethylaminoethylamine
  • jetyla A primary or secondary amine having a tertiary amino group in the molecule such as minoetilamine, N-methylamine, N, N dimethylbenzylamine, amine compounds such as N-methylpiperazine, imidazole compounds, etc.
  • an isocyanate compound used for the production of the solid dispersion type amine adduct type curing accelerator powder particles for example, n-butyl isocyanate, isopropylin isocyanate, phenol -Monofunctional isocyanate compounds such as noreisocyanate and pendinoleisocyanate, hexamethylene diisocyanate, toluylene diisocyanate, 1,5 naphthalene diisocyanate, diphenylenomethane 4, 4 ' And polyfunctional isocyanate compounds such as diisocyanate, isophorone diisocyanate, and xylylene diisocyanate. These may be used alone or in combination of two or more.
  • the solid-dispersed amine adduct curing accelerator powder particles (component C) of the present invention are, for example, a mixture of the above epoxy compound or isocyanate compound and each component of the above amine compound, It can be produced by reacting at room temperature to 200 ° C and then pulverizing the cooled and solidified material. Alternatively, it can be produced by reacting each of the above components in a solvent such as methyl ethyl ketone, dioxane, tetrahydrofuran, etc., removing the solvent, and then similarly pulverizing the solid.
  • the particle size of the pulverized particles is not particularly limited, but for example, the average particle size is preferably in the range of 10-20 / ⁇ ⁇ .
  • the content of the solid dispersion-type amine adduct curing accelerator powder particles (component C) is not particularly limited, but a ratio at which a desired curing rate can be obtained with respect to liquid phenol resin (component B). It is preferable to set as appropriate. For example, the usage amount can be easily determined while measuring the gel time with a hot platen as an index of the curing rate. As an example, it is preferable to set it in the range of 10 to 50 parts, more preferably 15 to 30 parts, especially 100 parts by weight (hereinafter referred to as “parts”) of liquid phenol resin (component B). It is preferable to set it to 20 to 25 parts in that a fast curing reactivity at about 80 to 100 ° C. can be obtained.
  • the amine-based silane coupling agent (D component) used together with the components A to C is not particularly limited as long as it is a silane coupling agent having a primary amino group or a secondary amino group.
  • N-2 (aminoethyl) 3 aminopropyltriethoxysilane N-2 (aminoethyl) 3 aminopropylmethyldimethoxysilane, and N-2 (aminoethyl) 3 aminopropyltrimethoxysilane were used. It is preferable to use it because the effect of low shear rate dependency (low thixotropy) is large.
  • the content of the amine-based silane coupling agent (component D) is preferably set in the range of 0.05 to 3.0 parts with respect to 100 parts of the inorganic filler (component E). More preferably, setting to 0.1 to 1.0 parts is also suitable for maintaining the pot life for a long time.
  • Examples of the inorganic filler (E component) used together with the components A to D include silica powder such as synthetic silica and fused silica, alumina, silicon nitride, aluminum nitride, boron nitride, magnesium, calcium silicate, magnesium hydroxide, water Such as aluminum oxide, titanium oxide, etc.
  • silica powder such as synthetic silica and fused silica
  • alumina silicon nitride
  • aluminum nitride aluminum nitride
  • boron nitride silicon silica powder
  • magnesium aluminum silicate
  • magnesium hydroxide water
  • water aluminum oxide, titanium oxide, etc.
  • Various powders can be mentioned.
  • the inorganic fillers it is particularly preferable to use spherical silica powder because the effect of reducing the viscosity of the liquid epoxy resin composition is large.
  • said inorganic filler it is preferable to use a thing with a maximum particle diameter of 24 m or less.
  • those having an average particle size of 10 m or less are preferably used together with the maximum particle size, and those having an average particle size of 1 to 5 m are particularly preferably used.
  • the maximum particle diameter and the average particle diameter can be measured using, for example, a laser diffraction / scattering particle size distribution analyzer.
  • the inorganic filler (E component) it is preferable to use a material whose surface is coated with an amine-based silane coupling agent represented by the following general formula (2). More preferably, spherical silica particles with an average particle diameter of 10 m or less are coated, and particularly preferably, spherical silica particles with an average particle diameter of 1 to 5 m coated with the above surface are used.
  • an amine-based silane coupling agent represented by the following general formula (2). More preferably, spherical silica particles with an average particle diameter of 10 m or less are coated, and particularly preferably, spherical silica particles with an average particle diameter of 1 to 5 m coated with the above surface are used.
  • the dispersibility is improved by the interaction such as wettability with the liquid epoxy resin (component A). And the viscosity can be reduced.
  • amine-based silane coupling agents represented by the above general formula (2) include N-2 (aminoethyl) 3 aminopropyl monomethyldimethoxysilane, N-2 (aminoethyl) 3 aminopropyl monotriethoxysilane. N-2 (aminoethyl) 3 aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane and the like. These may be used alone or in combination of two or more.
  • the content of the inorganic filler (component E) is preferably set in the range of 10 to 70% by weight of the total liquid epoxy resin composition, particularly preferably 30 to 60% by weight. . That is, if the blending amount is less than 10% by weight, the effect of reducing the linear expansion coefficient of the cured liquid epoxy resin composition is small, and if it exceeds 70% by weight, the liquid epoxy resin composition is not effective. This is because the viscosity tends to increase, which is not preferable.
  • a reactive diluent can be appropriately blended for the purpose of reducing the viscosity, etc., but this reactive diluent may contain a volatile low-boiling compound.
  • the liquid epoxy resin composition which is an underfill resin, should be used after removing in advance the volatile evaporative low-boiling compounds that cause voids in the sealed resin layer at a predetermined curing temperature. is there.
  • the reactive diluent itself is volatile, voids are likely to occur in the sealing resin layer at a predetermined curing temperature of the liquid epoxy resin composition that is an underfill resin. Reactive diluents are limited in use.
  • Examples of the reactive diluent include n-butyl daricidyl ether, allyl glycidyl ether, 2-ethyl hexyl glycidyl ether, styrene oxide, phenol glycidyl ether, cresyl glycidyl ether, lauryl glycidyl ether, p sec butylphenol glycidyl ether, norphenylglycidyl ether, glycolyl ether of rubinol, glycidyl metatalylate, burcyclohexene monoepoxide, pinene oxide, glycidyl ether of tertiary carboxylic acid, diglycidyl ether, (poly) Glycidyl ether of ethylene glycol, glycidyl ether of (poly) propylene glycol, bisphenol A propylene oxide-containing product, bisphenol A type epoxy resin and polymerized
  • the liquid epoxy resin composition includes a flame retardant such as triacid-antimony, pentaacid-antimony, brominated epoxy resin, and the like. Flame retardant aids, low stress agents such as silicone, colorants, and the like can be appropriately blended without departing from the scope of the present invention.
  • Such a liquid epoxy resin composition can be produced, for example, as follows. That is, the liquid epoxy resin (component A), liquid phenol resin (component B), solid Body-dispersed amine adduct curing accelerator powder particles (component C), amine-based silane coupling agent (component D) and inorganic filler (component E), and other additives as required. This is mixed and dispersed under a high shearing force such as a three roll or homomixer, and in some cases, defoamed under reduced pressure to produce the desired one-component solvent-free liquid epoxy resin composition. be able to.
  • a high shearing force such as a three roll or homomixer
  • a semiconductor device (semiconductor package) using the liquid epoxy resin composition thus obtained and an electronic component device in which a printed circuit board is sealed with a resin are manufactured as follows, for example. The That is, a semiconductor device (semiconductor package) having connection electrode portions (solder bumps) in advance and a printed circuit board provided with connection electrode portions (solder pads) facing the solder bumps are connected by solder metal. Next, utilizing the capillary phenomenon in the gap between the semiconductor package and the printed circuit board, a one-component, non-solvent liquid epoxy resin composition is filled and thermally cured to form a sealed resin layer. Seal. In this way, as shown in FIG.
  • connection electrode part (solder bump) 3 provided on the semiconductor package 1 and the connection electrode part (solder pad) 5 provided on the wiring circuit board 2 are opposed to each other.
  • the semiconductor package 1 is mounted on the wiring circuit board 2 and the gap between the wiring circuit board 2 and the semiconductor package 1 is sealed by the sealing resin layer 4 having the liquid epoxy resin composition force.
  • a sealed electronic component device is manufactured.
  • the liquid epoxy resin composition When the liquid epoxy resin composition is filled in the gap between the semiconductor package 1 and the printed circuit board 2, the liquid epoxy resin composition is first filled in a syringe, and then the semiconductor package 1 of the semiconductor package 1 is filled.
  • One end of the liquid epoxy resin composition is extruded and applied at a force of one dollar, and is filled using capillary action.
  • filling and sealing on a hot plate heated to about 40 to 80 ° C reduces the liquid viscosity, making it easier to fill and seal. It becomes. Furthermore, if the wiring circuit board 2 is inclined, it becomes easier to fill and seal.
  • the air gap distance between the semiconductor package 1 and the printed circuit board 2 is generally about 200 to 300 / ⁇ ⁇ .
  • the epoxy resin composition cured body of the resin-sealed portion of the electronic component device obtained in this way is swelled by a specific organic solvent even after being cured, and the adhesive force is reduced.
  • the electronic component device can be repaired.
  • the specific organic solvent is preferably a ketone solvent, a glycol diether solvent, a nitrogen-containing solvent, or the like. These may be used alone or in combination of two or more.
  • ketone solvents examples include acetophenone, isophorone, ethyl n-butyl ketone, diisoptyl ketone, jetyl ketone, cyclohexyl ketone, di-propyl ketone, methyl oxide, methyl-n-amyl ketone, methyl isobutyl ketone, methyl ethyl ketone, and methylcyclohexane.
  • glycol gel solvent examples include ethylene glycol jetyl ether, ethylene glycol dibutyl ether, ethylene glyconoresin methinoleatenore, jetylene glycolo retino retino enotenole, diethylene glycol oleo chinenore.
  • examples include etherol, dimethylenglycolenoresive chinore etherol, diethylene glycol dimethyl ether, and triethylene glycol dimethyl ether. These may be used alone or in combination of two or more.
  • nitrogen-containing solvent examples include N, N'-dimethylformamide, N, N'-dimethylacetamide, N-methyl-2-pyrrolidone, N, N'-dimethylsulfoxide, hexamethyl phosphortriamide, and the like. Is given. These may be used alone or in combination of two or more.
  • a semiconductor package or a portion corresponding to a repair of a printed circuit board is heated using a heating plate or the like to remove the semiconductor package.
  • the heating temperature at this time is a temperature of about + 50 ° C or higher from the glass transition temperature of the cured product of the liquid epoxy resin composition of the present invention, and the melting of the joining metal such as solder.
  • the organic solvent is directly applied or the absorbent cotton is impregnated with the organic solvent, and the cured portion of the liquid epoxy resin composition of the wiring circuit board is contacted at room temperature, more preferably glass.
  • the semiconductor package to which the residue of the cured product of the liquid epoxy resin composition is adhered is reused by swelling and removing the cured product in the above organic solvent in a predetermined container at room temperature. can do.
  • the organic solvent is directly applied to the entire repaired portion of the printed circuit board or the absorbent cotton soaked with the organic solvent is coated.
  • the semiconductor package may be removed from the printed circuit board after the organic package is gradually infiltrated into the edge of the semiconductor package to swell the cured body to reduce the strength and adhesion of the cured body. it can.
  • n is an integer of 0 or more. Purity 99%, viscosity 22dPa? S (25 ° C), epoxy equivalent 165 g, eq]
  • TPP Triphenylphosphine
  • a CSP package (package height lmm, size 10mm XI Omm) with 64 Sn-3Ag-0.5Cu solder bump electrodes with a diameter of 200 / zm was prepared, and copper wiring with a diameter of 300 m was prepared.
  • the gap (gap) between the CSP package and the circuit board is 250 ⁇ m and 7 holes.
  • the conduction failure rate immediately after sealing the resin of the electronic component device was measured. After that, using the thermal test equipment, the electronic component device was cycled at 30 ° CZ for 10 minutes and 125 ° C / 10 minutes. The electrical continuity after 1000 cycles was examined, and the continuity failure rate (%) was calculated for all 64 copper wiring pads (substrate side electrodes) of the above-mentioned glass epoxy wiring circuit board.
  • the above-mentioned electronic component device force also peeled off the CSP package and returned to room temperature, but the cured epoxy resin composition remained in the connection part
  • Absorbent cotton containing a mixed solvent of equal amounts of N, N′-dimethylformamide and diethylene glycol dimethyl ether was allowed to stand in the residue and left at room temperature (22 ° C.) for 1 hour. After that, remove the cotton wool and wipe it with methanol, peel off the cured epoxy resin composition, and re-peel the electronic component device into the pad part of the printed circuit board.
  • the CSP package was mounted on the printed circuit board and the electrical continuity was examined. Thereafter, the resin was sealed in the same manner as described above, and the repair (rework) property was evaluated.
  • the cured epoxy resin composition can be completely peeled off, and when the electrical connection is complete, it can be peeled with the cured body remaining slightly, but the electrical connection is complete. Yes, when the cured product remains slightly and can be peeled off, but when the electrical connection is incomplete, ⁇ , when the cured epoxy resin composition hardly peels off and the electrical connection is incomplete X.
  • the liquid epoxy resin compositions of all the examples have a large effect of low shear rate dependency (low thixotropy), and the force is coupled with the low viscosity having a long pot life. It can be seen that it is excellent as a one-component solvent-free liquid epoxy resin composition. It is clear that the seal is also excellent in repairability because the formed sealing resin layer has no conduction failure.
  • the liquid epoxy resin composition of the comparative example had no problem with respect to the repair property with no conduction failure, but the comparative example:! -6 liquid epoxy resin compositions Has a large dependency on the slipping speed (thickness, etc.), so the filling time of the gap between the CSP package and the circuit board is very long.
  • Comparative Example 7 products, the pot life was too short, which hindered filling. Furthermore, in Comparative Example 8, the viscosity was too low because no curing accelerator was used and no inorganic filler was contained, and the results of the drop impact test were extremely poor and the reliability was poor.
  • the present invention relates to a semiconductor package and a circuit board via a bump electrode portion for connection of a semiconductor package such as a BGA (ball grid 'array) or CSP (chip scale' package or chip 'size' package).
  • a semiconductor package such as a BGA (ball grid 'array) or CSP (chip scale' package or chip 'size' package).
  • This is a surface mount type that electrically connects two opposing electrodes, and a liquid epoxy resin composition is filled in the gap between the semiconductor package and the circuit board and the resin is sealed.
  • an electronic component device having uniqueness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Epoxy Resins (AREA)
  • Wire Bonding (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 ズリ速度依存性の少ない(チクソトロピー性の小さい)流動特性を有し、しかも低温硬化可能で、しかも長時間の可使時間性にも優れた低粘度の一液無溶剤型のエポキシ樹脂組成物によって樹脂封止されてなる電子部品装置であって、さらに、一度、アンダーフィルした後の電気的接続に不具合のある電子部品装置であっても、残渣除去が可能でありリペアー容易性に優れた高信頼性の電子部品装置を提供する。半導体装置(半導体パッケージ)1に設けられた接続用電極部(半田バンプ)3と配線回路基板2に設けられた接続用電極部(半田パッド)5を対向させた状態で上記配線回路基板2上に半導体装置(半導体パッケージ)1が搭載された電子部品装置である。そして、上記配線回路基板2と半導体装置(半導体パッケージ)1との空隙が、下記の(A)および(B)成分とともに下記の(D)~(E)成分を含有する液状エポキシ樹脂組成物からなる封止樹脂層4によって樹脂封止されている。 (A)液状エポキシ樹脂。 (B)液状フェノール樹脂。 (C)固体分散型アミンアダクト系硬化促進剤粉末粒子。 (D)アミン系シランカップリング剤。 (E)無機質充填剤。

Description

明 細 書
電子部品装置
技術分野
[0001] 本発明は、 BGA (ボール ·グリッド 'アレイ)や CSP (チップ ·スケール 'パッケージま たはチップ 'サイズ'パッケージ)等の半導体パッケージの接続用バンプ電極部を介し て半導体パッケージと回路基板の対向する電極間を電気的に接続する表面実装タ イブにお 1、て、半導体パッケージと回路基板の空隙に液状エポキシ榭脂組成物を充 填し榭脂封止してなる、良好なリペア一性を備えた電子部品装置に関するものである 背景技術
[0002] 近年、 BGAや CSP等の半導体パッケージがプリント配線基板に高密度実装されて いる。従来、このようなアレイ型バンプ電極を有する半導体パッケージの基板実装に おいては、バンプ間接続ピッチが広ぐし力も接続用金属バンプが大きいためアンダ 一フィル等による応力分散や機械的補強のための榭脂封止は行われなくとも充分な 信頼性が保たれていた。しかし、近年、このバンプ電極が狭ピッチでし力も小さくなつ てきたことから、アンダーフィル等の榭脂による補強がなされるようになつてきた。
[0003] し力しながら、上記アンダーフィルに用いる液状榭脂組成物としては、一般的にェ ポキシ榭脂等を主成分とした一液型熱硬化性榭脂組成物を用いるため、加熱して硬 ィ匕させた後は、溶融しない、接着力が高い、分解しない、溶剤に不溶である等の点か ら容易にリペア一できないという問題があった。したがって、一度アンダーフィルを行 えば、例えば、電気的接続に不具合のある半導体パッケージが搭載された実装基板 はスクラップにされてしまい、廃棄せざるをえないという問題が生じる。このことは、近 年、地球環境保全に向けてリサイクル性が要求されるな力 廃棄物を出すことは極力 避ける必要があり、アンダーフィル後であってもリペア一を可能とすることのできること が要求されている。
[0004] このようなリペア一可能な液状エポキシ榭脂組成物として、主剤にエポキシ榭脂を 用い、硬化剤に熱可塑性榭脂でコーティングされたカプセル型硬化剤、そしてリペア 一性付与剤にアクリル樹脂を用いた電子部品接合用接着剤が開示されている (特許 文献 1参照)。
[0005] 一方、本出願人は、先に、特定の含フッ素芳香族ジァミン類は、トリフルォロメチル 置換基またはフッ素置換基により硬化体の溶解性パラメーター [Solubility Parameter (SP値)〕を低下させるため、特定の溶剤により溶媒和、そして引き続き膨潤を生起し やすいことが奏功してリペア一性を発現し、優れたリペアブル 'アンダーフィル榭脂組 成物を提案して ヽる (特許文献 2, 3参照)。
特許文献 1 :特開平 7— 102225号公報
特許文献 2 :特開 2002— 60594公報
特許文献 3 :特開 2002— 60464公報
発明の開示
発明が解決しょうとする課題
[0006] しカゝしながら、上記特許文献 1に記載された電子部品接合用接着剤は、チクソトロ ピー性を有するためアンダーフィルとしての流動性に適して 、るとは言 、難く、アンダ 一フィルとしては、ズリ速度依存性がみられな ヽような流動特性を有することが望まし い。また、上記特許文献 2, 3に記載されたアンダーフィル榭脂組成物は、その硬化 温度が約 150°C程度と高ぐ BGAや CSPとともに水晶振動子等の電子部品やプラス チック部品等の耐熱性に劣る部品が混載実装される場合に必要な 120°C以下、特に 好ましくは 100°C以下の低温硬化性を満足するものではな力つた。そして、一般に、 低温硬化性を発現させようとすると、硬化剤または硬化促進剤を多量に配合するとい うのが通例であるが、このことはアンダーフィル注入時の可使時間を損なうことになり 決して好まし 、ことではなかった。
[0007] 本発明は、このような事情に鑑みなされたもので、ズリ速度依存性の少ない(チタソ トロピー性の小さい)流動特性を有し、しかも低温硬化可能で、さらに、一度、アンダ 一フィルした後の電気的接続に不具合のある電子部品装置であっても、残渣除去が 可能でありリペア一容易性に優れ、しかも長時間の可使時間性にも優れた低粘度一 液無溶剤組成により榭脂封止してなる電子部品装置の提供をその目的とする。 課題を解決するための手段 [0008] 上記の目的を達成するために、本発明の電子部品装置は、接続用電極部を有する 回路基板;接続用電極部を有し、該接続用電極部と回路基板に設けられた接続用 電極部を対向させた状態で上記回路基板上に搭載された半導体装置;上記回路基 板と半導体装置との空隙を封止する封止榭脂層を含み、上記封止榭脂層が下記の(
A)〜 (E)成分を含有する電子部品装置、 t 、う構成をとる。
(A)液状エポキシ榭脂。
(B)液状フ ノール榭脂。
(C)固体分散型アミンァダクト系硬化促進剤粉末粒子。
(D)アミン系シランカップリング剤。
(E)無機質充填剤。
[0009] 本発明者らは、上記目的を達成するために、回路基板と半導体装置(半導体パッ ケージ)との空隙を榭脂封止するためのアンダーフィル材料である液状エポキシ榭脂 組成物について研究を重ねた。そして、特定のエポキシ榭脂組成物硬化体が特定 の溶剤により溶媒和、そして引き続き膨潤が生起し、結果、封止榭脂である硬化体の 皮膜強度の低下や接着力の低下が起こり硬化体の機械的剥離が可能となり、半導 体パッケージのリペア一が可能となることを見出したものである。すなわち、上記液状 フエノール榭脂は液状エポキシ榭脂の硬化剤として作用し、その硬化体の溶解性パ ラメーター(SP値)を低下させるため、特定の溶剤により溶媒和、そして引き続き膨潤 を生起しやす 、ことが奏功してリペア一性を発現して 、る。
[0010] そして、上記固体分散型アミンァダクト系硬化促進剤粉末粒子〔 (C)成分〕と無機質 充填剤〔 (E)成分〕とが共存する際に、上記アミン系シランカップリング剤〔 (D)成分〕 を併用することにより、ズリ速度依存性の少な ヽ (チタソトロピー性の小さ!/、)流動特性 を有し、しかも上記固体分散型アミンァダクト系硬化促進剤粉末粒子〔 (C)成分〕は 通常の溶解型硬化促進剤と異なり硬化潜在性に優れ、長時間の可使時間性にも優 れることを見出し本発明に到達した。
発明の効果
[0011] 以上のように、本発明は、前記 (A)および (B)成分とともに、固体分散型アミンァダ タト系硬化促進剤粉末粒子〔 (C)成分〕とアミン系シランカップリング剤〔 (D)成分〕と 無機質充填剤〔 (E)成分〕を含有する液状エポキシ榭脂組成物からなる封止榭脂層 によって封止された電子部品装置である。このため、上記液状エポキシ榭脂組成物 は、ズリ速度依存性の少な 、 (低チクソトロピー性)優れた流動特性を備えることとなり 、低粘度液状エポキシ榭脂組成物であることから半導体装置と回路基板の空隙充填 性に優れ、し力も硬化した後においても特定の有機溶剤によって室温で容易に溶媒 和して膨潤する。その結果、硬化体の強度が著しく減少し、被着体 (電極等)から容 易に剥離することが可能となる。したがって、上記液状エポキシ榭脂組成物を用い榭 脂封止して得られた電子部品装置は優れた接続信頼性を備えるとともに、電極間の 位置ずれ等により接続不良が発生した場合でも、電子部品装置そのものを廃棄する ことなく優れたリペア一性を備えた電子部品装置を得ることができる。
[0012] そして、上記 (E)成分である無機質充填剤として、アミン系シランカップリング剤で 表面被覆されたもの、特にアミン系シランカップリング剤で表面被覆された平均粒子 径 10 m以下の球状シリカ粒子を用いると、液状エポキシ榭脂組成物硬化体の線 膨張係数の低下による熱応力低減効果と機械的強度の向上に一層優れるようになる 図面の簡単な説明
[0013] [図 1]本発明の電子部品装置の構成を模式的に示す断面図である。
符号の説明
[0014] 1 半導体装置 (半導体パッケージ)
2 配線回路基板
3 半導体パッケージの接続用電極部(半田バンプ)
4 封止榭脂層
5 配線回路基板の接続用電極部(半田パッド)
発明を実施するための最良の形態
[0015] 本発明の電子部品装置は、図 1に示すように、半導体装置(半導体パッケージ) 1に 設けられた接続用電極部(半田バンプ) 3と配線回路基板 2に設けられた接続用電極 部(半田パッド) 5を対向させた状態で、配線回路基板 2上に半導体パッケージ 1が搭 載されている。そして、上記配線回路基板 2と半導体パッケージ 1との空隙が液状ェ ポキシ榭脂組成物を用いて形成されてなる封止榭脂層 4によって榭脂封止されて ヽ る。
[0016] 上記半導体パッケージ 1としては、接続用電極部(半田バンプ) 3が設けられ配線回 路基板 2に搭載可能なものであれば特にその形状等限定するものではないが、例え ば、 BGA (ボール ·グリッド ·アレイ)や CSP (チップ ·スケール ·パッケージまたはチッ プ'サイズ'パッケージ)等が有用なものとしてあげられる。
[0017] なお、上記電子部品装置では、半導体パッケージ 1に設けられた接続用電極部 3 がバンプ形状に形成されているが特にこれに限定するものではなぐ配線回路基板 2 に設けられた接続用電極部 5がバンプ形状に設けられていてもよい。
[0018] 上記封止榭脂層 4形成材料である液状エポキシ榭脂組成物は、液状エポキシ榭脂
(A成分)と、液状フ ノール榭脂 (B成分)とともに、固体分散型アミンァダクト系硬化 促進剤粉末粒子 (C成分)と、アミン系シランカップリング剤 (D成分)と、無機質充填 剤 (E成分)を配合して得られるものである。なお、本発明の液状エポキシ榭脂組成物 において、液状とは 25°Cで流動性を示す液状のことをいう。すなわち、 25°Cで粘度 が 0. 01mPa' s〜10000Pa' sの範囲のものをいう。上記粘度の測定は、例えば、 E MD型回転粘度計を用いて行うことができる。
[0019] 上記液状エポキシ榭脂 (A成分)としては、 1分子中に 2個以上のエポキシ基を含有 する液状エポキシ榭脂であれば特に限定されるものではなぐ例えば、ビスフ ノー ル A型、ビスフエノール F型、水添ビスフエノール A型、ビスフエノール AF型、フエノー ルノボラック型等の各種液状エポキシ榭脂およびその誘導体、多価アルコールとェピ クロルヒドリンカ 誘導される液状エポキシ榭脂およびその誘導体、グリシジルァミン 型、ヒダントイン型、ァミノフエノール型、ァ-リン型、トルイジン型等の各種グリシジル 型液状エポキシ榭脂およびその誘導体 (実用プラスチック辞典編集委員会編、「実用 プラスチック辞典材料編」、初版第 3刷、 1996年 4月 20日発行、第 211ページ〜第 2 25ページにかけて記載)およびこれら上記液状エポキシ榭脂と各種グリシジル型固 形エポキシ榭脂の液状混合物等があげられる。これらは単独でもしくは 2種以上併せ て用いられる。
[0020] 上記液状フエノール榭脂(B成分)は、上記液状エポキシ榭脂 (A成分)の硬化剤と しての作用を奏するものであり、 1分子中に水酸基を 2個以上有する液状フ ノール ノボラックであれば特に限定するものはなぐ例えば、下記の一般式(1)で表される液 状フエノール榭脂が好適に用いられる。
[0021] [化 1]
Figure imgf000008_0001
… (1 )
[0022] [式(1)中、 Xは、? CH?を示し、 R〜Rは水素または炭素数 1〜4のアルキル基また
2 1 5
はァリル基を示し、互いに同じであっても異なっていてもよい。また、 nは 0〜5の正の 整数である。 ]
なかでも、本発明においては、 25°Cで液状を呈する式(1)で表されるァリルフエノ ール ·ホルムアルデヒド榭脂とフエノール ·ホルムアルデヒド榭脂との共重合低分子量 化合物が好適に用いられる。そして、 25°Cでの粘度が 500dPa ' s以下、特に lOOdP a · s以下の液状フエノール榭脂を用いることが一液無溶剤エポキシ榭脂組成物の粘 度を低減できる観点力も好ましく用いられる。具体的には、下記の構造式(α )および ( β )で表される液状フエノール榭脂の混合物が好ましく用いられる。
[0023] [化 2]
Figure imgf000008_0002
[0024] [上記式( α ) , ( j8 )にお 、て、 nは 0または正の整数、 mは 0または正の整数である, ] 本発明にお ヽて、液状エポキシ榭脂 (A成分)と液状フエノール榭脂 (B成分)との 配合割合は、上記液状エポキシ榭脂 (A成分)のエポキシ基 1個に対して、上記液状 フエノール榭脂(B成分)の活性水素の個数を 0. 4〜1. 6個の範囲に設定することが 好ましい。より好ましくは 0. 6〜1. 4個の範囲である。すなわち、エポキシ基 1個に対 して活性水素の個数が 0. 4未満でも、また 1. 6を超えても液状エポキシ榭脂組成物 硬化体のガラス転移温度が低下する傾向がみられ好ましくないからである。
[0025] 上記 A成分および B成分とともに用いられる固体分散型アミンァダクト系硬化促進 剤粉末粒子 (C成分)としては、例えば、特開平 7— 196776号公報等に記載された 公知の方法に従って製造されるものがあげられる。そして、上記固体分散型アミンァ ダクト系硬化促進剤粉末粒子 (C成分)は、室温にお 、ては上記液状エポキシ榭脂( A成分)に不溶性の硬化促進剤であり、加熱することにより可溶化し硬化促進剤とし て機能するものである。例えば、アミンィ匕合物とエポキシィ匕合物の反応生成物(ァミン エポキシァダクト)や、アミンィ匕合物とイソシァネートイ匕合物または尿素化合物との 反応生成物 (尿素ァダクト)等、さらにはこれらの固体分散型アミンァダクト系硬化促 進剤粉末粒子の表面をイソシァネートイ匕合物や酸性ィ匕合物を用いて処理したものが あげられる。なお、本発明において、室温とは、通常、 10〜40°C程度の範囲をいう。
[0026] 上記アミンィ匕合物とエポキシ化合物の反応生成物(ァミン エポキシァダクト)を得 る際に用いられるエポキシィ匕合物としては、 1分子中に 2個以上のエポキシ基を含有 する液状エポキシ榭脂であれば特に限定するものではなぐ先の液状エポキシ榭脂( A成分)で述べたと同様、例えば、ビスフエノール A型、ビスフエノール F型、水添ビス フエノール A型、ビスフエノール AF型、フエノールノボラック型等の各種液状エポキシ 榭脂およびその誘導体、多価アルコールとェピクロルヒドリンカ 誘導される液状ェポ キシ榭脂およびその誘導体、グリシジルァミン型、ヒダントイン型、ァミノフエノール型、 ァ-リン型、トルイジン型等の各種グリシジル型液状エポキシ榭脂およびその誘導体 (実用プラスチック辞典編集委員会編、「実用プラスチック辞典材料編」、初版第 3刷 、 1996年 4月 20日発行、第 211ページ〜第 225ページにかけて記載)およびこれら 上記液状エポキシ榭脂と各種グリシジル型固形エポキシ榭脂の液状混合物等があ げられる。これらは単独でもしくは 2種以上併せて用いられる。 [0027] 上記固体分散型アミンァダクト系硬化促進剤粉末粒子 (C成分)の製造に用いられ るアミンィ匕合物としては、エポキシ基またはイソシァネート基と付加反応しうる活性水 素を 1分子中に 1個以上有し、かつ、 1級ァミノ基、 2級ァミノ基、 3級ァミノ基のなかか ら選ばれた置換基を少なくとも 1分子中に 1個以上有するものであれば特に限定する ものではない。例えば、ジエチレントリァミン、トリエチレンテトラミン、 n—プロピルアミ ン、 2—ヒドロキシェチルァミノプロピルァミン、シクロへキシルァミン、ジメチルアミノプ 口ピルァミン、ジブチルァミノプロピルァミン、ジメチルアミノエチルァミン、ジェチルァ ミノェチルァミン、 N—メチルァ-リン、 N, N ジメチルベンジルァミン、 N—メチルピ ペラジン等のアミン化合物、イミダゾールイ匕合物等のような分子内に 3級アミノ基を有 する 1級または 2級ァミン類、 2—ジメチルァミノエタノール、 2— (ジメチルァミノメチル )フエノール、 2—ジメチルアミノエタンチオール、ニコチン酸、ピコリン酸、ヒドラジド類 等の分子内に 3級アミノ基を有するアルコール類、フエノール類、チオール類、カル ボン酸類、ヒドラジド類等があげられる。これらは単独でもしくは 2種以上併せて用い られる。
[0028] さらに、上記固体分散型アミンァダクト系硬化促進剤粉末粒子 (C成分)の製造に用 いられるイソシァネートイ匕合物としては、例えば、 n—ブチルイソシァネート、イソプロ ピノレイソシァネート、フエ-ノレイソシァネート、ペンジノレイソシァネート等の単官能イソ シァネート化合物、へキサメチレンジイソシァネート、トルイレンジイソシァネート、 1, 5 ナフタレンジイソシァネート、ジフエ二ノレメタン 4, 4' ージイソシァネート、イソホロ ンジイソシァネート、キシリレンジイソシァネート等の多官能イソシァネートイ匕合物等が あげられる。これらは単独でもしくは 2種以上併せて用いられる。
[0029] そして、本発明の固体分散型アミンァダクト系硬化促進剤粉末粒子 (C成分)は、例 えば、上記エポキシィ匕合物またはイソシァネートイ匕合物と、上記アミン化合物の各成 分を混合し、室温〜 200°Cで反応させた後、冷却固化したものを粉砕することにより 作製することができる。または、上記各成分を、メチルェチルケトン,ジォキサン、テト ラヒドロフラン等の溶媒中で反応させ、溶媒除去した後、同様に固形物を粉砕するこ とにより作製することができる。なお、粉砕後の粒子の粒径等は特に限定するもので はないが、例えば、平均粒子径が 10〜20 /ζ πιの範囲であることが好ましい。 [0030] 上記固体分散型アミンァダクト系硬化促進剤粉末粒子 (C成分)の含有量は、特に 限定するものではないが、液状フエノール榭脂(B成分)に対して所望の硬化速度が 得られる割合となるように適宜設定することが好ましい。例えば、硬化速度の指標とし て、熱盤でゲルィ匕時間を計測しながら容易に使用量を決定することができる。その一 例として、液状フエノール榭脂(B成分) 100重量部(以下「部」と略す)に対して 10〜 50部の範囲に設定することが好ましぐより好ましくは 15〜30部、特に好ましくは 20 〜25部に設定することが、 80〜100°C程度における速硬化反応性を得られる点で 好適である。
[0031] 上記 A〜C成分とともに用いられるアミン系シランカップリング剤(D成分)としては、 1級ァミノ基または 2級アミノ基を有するシランカップリング剤であれば特に限定するも のではなぐ例えば、 N— 2 (アミノエチル) 3 ァミノプロピルトリエトキシシラン、 N — 2 (アミノエチル) 3 ァミノプロピルメチルジメトキシシラン、 N— 2 (アミノエチル) —3—ァミノプロピルトリメトキシシラン、 3—ァミノプロピルトリメトキシシラン、 3—ァミノ プロピルトリエトキシシラン、 3 トリエトキシシリル— N— (1, 3 ジメチル―ブチリデ ン)プロピルァミン、 N フエ二ルー 3—ァミノプロビルトリメトキシシラン、 N— (ビニル ベンジル) 2 アミノエチル一 3 ァミノプロピルトリメトキシシランの塩酸塩、 3 ゥ レイドプロピルトリエトキシシラン等があげられる。これらは単独でもしくは 2種以上併 せて用いられる。
[0032] なかでも、 N— 2 (アミノエチル) 3 ァミノプロピルトリエトキシシラン、 N— 2 (ァミノ ェチル) 3 ァミノプロピルメチルジメトキシシラン、 N— 2 (アミノエチル) 3 ァミノ プロピルトリメトキシシランを用いることが、低ズリ速度依存性 (低チクソトロピー性)の 効果が大きく好ましい。
[0033] 上記アミン系シランカップリング剤(D成分)の含有量は、無機質充填剤 (E成分) 10 0部に対して、 0. 05〜3. 0部の範囲に設定することが好ましぐより好ましくは 0. 1〜 1. 0部に設定することが、ポットライフを長く保つという点力も好適である。
上記 A〜D成分とともに用いられる無機質充填剤 (E成分)としては、合成シリカや 溶融シリカ等のシリカ粉末、アルミナ、窒化珪素、窒化アルミニウム、窒化硼素、マグ ネシァ、珪酸カルシウム、水酸化マグネシウム、水酸化アルミニウム、酸化チタン等の 各種粉末があげられる。上記無機質充填剤のなかでも、特に球状シリカ粉末を用い ることが液状エポキシ榭脂組成物の粘度低減の効果が大きく好ましい。そして、上記 無機質充填剤としては、最大粒子径が 24 m以下のものを用いることが好ましい。さ らに、上記最大粒子径とともに、平均粒子径が 10 m以下のものが好ましく用いられ 、特に平均粒子径が 1〜5 mのものが好適に用いられる。なお、上記最大粒子径ぉ よび平均粒子径は、例えば、レーザー回折散乱式粒度分布測定装置を用いて測定 することができる。
[0034] さらに、上記無機質充填剤 (E成分)としては、好適には、下記の一般式(2)で表さ れるアミン系シランカップリング剤によって表面が被覆されたものを用いることが好ま しぐより好ましくは平均粒子径 10 m以下の球状シリカ粒子表面を被覆されたもの 、特に好ましくは上記表面が被覆された平均粒子径 1〜5 mの球状シリカ粒子があ げられる。このように、上記アミン系シランカップリング剤を用いて球状シリカ粒子の表 面を被覆することにより、液状エポキシ榭脂 (A成分)等との濡れ性等の相互作用によ り分散性の向上や粘度の低減が図られる。
[0035] [化 3]
( α ι — O) a ( α 2 -)-^- S i ~~ t ) c ·■■ ( 2 ) [0036] [式(2)中、 a および α は水素以外の
1 2 一価の有機基であり、 β は少なくとも 1個の 1
1
級ァミノ基、 2級ァミノ基、ウレイド基を含む一価の有機基である。また、 a, b, cは a + b + c = 4であり、それぞれ 1〜3の正の整数である。 ]
上記一般式(2)で表されるアミン系シランカップリング剤として、具体的には、 N— 2 (アミノエチル) 3 ァミノプロピル一メチルジメトキシシラン、 N— 2 (アミノエチル) 3 ァミノプロピル一トリエトキシシラン、 N— 2 (アミノエチル) 3 ァミノプロピル一ト リメトキシシラン、 3—ァミノプロピルトリメトキシシラン、 3—ァミノプロピルトリエトキシシ ラン等があげられる。これらは単独でもしくは 2種以上併せて用いられる。
[0037] 上記無機質充填剤 (E成分)の含有量は、液状エポキシ榭脂組成物全体の 10〜7 0重量%の範囲に設定することが好ましぐ特に好ましくは 30〜60重量%である。す なわち、配合量が 10重量%未満では、液状エポキシ榭脂組成物硬化体の線膨張係 数の低減への効果が少なぐまた 70重量%を超えると、液状エポキシ榭脂組成物の 粘度が増加する傾向がみられ好ましくないからである。
[0038] さらに、上記各成分以外に、粘度低下等を目的として、反応性希釈剤を適宜配合 することもできるが、この反応性希釈剤は揮発性の低沸点化合物を含むことがあるの で、使用に際しては、アンダーフィル榭脂である液状エポキシ榭脂組成物の所定の 硬化温度で封止榭脂層にボイド発生を引き起こす揮発性の蒸発性低沸点化合物を 予め除去して使用すべきである。また、反応性希釈剤自体が揮発性である場合には 、アンダーフィル榭脂である液状エポキシ榭脂組成物の所定の硬化温度で封止榭脂 層にボイドが発生し易いので、このような反応性希釈剤は使用が制限される。
[0039] 上記反応性希釈剤としては、例えば、 n—ブチルダリシジルエーテル、ァリルグリシ ジルエーテル、 2—ェチルへキシルグリシジルエーテル、スチレンオキサイド、フエ- ルグリシジルエーテル、クレジルグリシジルエーテル、ラウリルグリシジルエーテル、 p sec ブチルフエ-ルグリシジルエーテル、ノ-ルフエ-ルグリシジルエーテル、力 ルビノールのグリシジルエーテル、グリシジルメタタリレート、ビュルシクロへキセンモノ ェポキサイド、 ピネンオキサイド、 3級カルボン酸のグリシジルエーテル、ジグリシ ジルエーテル、 (ポリ)エチレングリコールのグリシジルエーテル、 (ポリ)プロピレングリ コールのグリシジルエーテル、ビスフエノール Aのプロピレンオキサイド付カ卩物、ビスフ ェノール A型エポキシ榭脂と重合脂肪酸との部分付加物、重合脂肪酸のポリグリシジ ルエーテル、ブタンジオールのジグリシジルエーテル、ビニルシクロへキセンジォキ サイド、ネオペンチルグリコールジグリシジルエーテル、ジグリシジルァ二リン、トリメチ 口 ~~ノレプロノ ンジグリシシノレエ ~~テノレ、卜リメチロ ~~ノレプロノ ン卜リグリシジノレエ ~~テノレ 、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル等があげられる。 これらは単独でもしくは 2種以上併せて用いられる。
[0040] そして、本発明にお 、て、上記液状エポキシ榭脂組成物には、上記各成分以外に 、三酸ィ匕アンチモン、五酸ィ匕アンチモン、臭素化エポキシ榭脂等の難燃剤や難燃助 剤、シリコーン等の低応力化剤、着色剤等を、本発明の趣旨を逸脱しない範囲内で 適宜配合することができる。
[0041] このような液状エポキシ榭脂組成物は、例えば、つぎのようにして製造することがで きる。すなわち、前記液状エポキシ榭脂 (A成分)、液状フ ノール榭脂 (B成分)、固 体分散型アミンァダクト系硬化促進剤粉末粒子 (C成分)、アミン系シランカップリング 剤(D成分)および無機質充填剤 (E成分)ならびに必要に応じて他の添加剤等の各 成分を所定量配合し、これを 3本ロールやホモミキサー等の高剪断力下で混合,分 散し、場合により減圧下で脱泡することにより目的とする一液無溶剤の液状エポキシ 榭脂組成物を製造することができる。
[0042] このようにして得られた液状エポキシ榭脂組成物を用いた半導体装置(半導体パッ ケージ)と配線回路基板の榭脂封止による電子部品装置は、例えば、つぎのようにし て製造される。すなわち、予め接続用電極部(半田バンプ)を有する半導体装置 (半 導体パッケージ)と、上記半田バンプに対向する接続用電極部(半田パッド)を備え た配線回路基板を、半田金属接続する。ついで、上記半導体パッケージと配線回路 基板との空隙に毛細管現象を利用して、一液無溶剤の液状エポキシ榭脂組成物を 充填し熱硬化して封止榭脂層を形成することにより榭脂封止する。このようにして、図 1に示すように、半導体パッケージ 1に設けられた接続用電極部(半田バンプ) 3と配 線回路基板 2に設けられた接続用電極部(半田パッド) 5を対向させた状態で、配線 回路基板 2上に半導体パッケージ 1が搭載され、かつ上記配線回路基板 2と半導体 ノ ッケージ 1との空隙が上記液状エポキシ榭脂組成物力もなる封止榭脂層 4によって 榭脂封止された電子部品装置が製造される。
[0043] 上記半導体パッケージ 1と配線回路基板 2との空隙に液状エポキシ榭脂組成物を 充填する場合には、まず、液状エポキシ榭脂組成物をシリンジにつめた後、上記半 導体パッケージ 1の一端に-一ドル力も液状エポキシ榭脂組成物を押し出して塗布 し、毛細管現象を利用して充填する。この毛細管現象を利用して充填する際には、 4 0〜80°C程度に加熱した熱盤上で充填し封止すると液粘度が低下するため、一層 容易に充填 ·封止することが可能となる。さらに、上記配線回路基板 2に傾斜をつけ れば、より一層充填 *封止が容易となる。
[0044] このようにして得られる電子部品装置の、半導体パッケージ 1と配線回路基板 2との 空隙間距離は、一般に、 200〜300 /ζ πι程度である。
[0045] このようにして得られた電子部品装置の榭脂封止部分のエポキシ榭脂組成物硬化 体は、硬化した後においても、特定の有機溶剤によって膨潤して接着力が低下し、 電子部品装置をリペア一することができる。
[0046] 上記特定の有機溶剤としては、ケトン系溶剤、グリコールジエーテル系溶剤、含窒 素系溶剤等が好まし ヽ。これらは単独でもしくは 2種以上併せて用いられる。
[0047] 上記ケトン系溶剤としては、ァセトフエノン、イソホロン、ェチルー n—ブチルケトン、 ジイソプチルケトン、ジェチルケトン、シクロへキシルケトン、ジー n プロピルケトン、 メチルォキシド、メチルー n アミルケトン、メチルイソブチルケトン、メチルェチルケト ン、メチルシクロへキサノン、メチル n—へプチルケトン、ホロン等があげられる。こ れらは単独でもしくは 2種以上併せて用いられる。
[0048] 上記グリコールジェ一テル系溶剤としては、エチレングリコールジェチルエーテル、 エチレングリコールジブチルエーテル、エチレングリコーノレジメチノレエーテノレ、ジェチ レングリコーノレェチノレメチノレエーテノレ、ジエチレングリコーノレジェチノレエーテノレ、ジェ チレングリコーノレジブチノレエーテノレ、ジエチレングリコールジメチルエーテル、トリエ チレングリコールジメチルエーテル等があげられる。これらは単独でもしくは 2種以上 併せて用いられる。
[0049] 上記含窒素系溶剤としては、 N, N' —ジメチルホルムアミド、 N, N' —ジメチルァ セトアミド、 N—メチル—2—ピロリドン、 N, N' —ジメチルスルホキシド、へキサメチ ルホスホルトリアミド等があげられる。これらは単独でもしくは 2種以上併せて用いられ る。
[0050] 上記電子部品装置のリペア一方法としては、熱盤等を用いて例えば半導体パッケ ージまたは配線回路基板のリペア一該当部分を加熱して半導体パッケージを除去す る。このときの加熱温度としては、本発明の液状エポキシ榭脂組成物の硬化体のガラ ス転移温度からさらに +約 50°C以上の温度で加熱することで、かつ半田等の接合金 属の溶融点以上の温度で加熱することで硬化体が凝集破壊または一方(半導体パッ ケージまたは配線回路基板)に接着した状態で、両者が容易に剥離できるようになる 。その後、上記有機溶剤を直接塗布するかあるいは脱脂綿に上記有機溶剤をしみ 込ませたものを配線回路基板の液状エポキシ榭脂組成物の硬化体の残渣部分に室 温で接触、より好適にはガラス転移温度以上で接触させた後、硬化体の膨潤を確認 して残渣物を除去すれば配線回路基板ならびに実装部分を再利用することができる 。一方、液状エポキシ榭脂組成物の硬化体の残渣が接着した半導体パッケージは、 所定の容器にとった上記有機溶剤中に室温で浸潰し硬化体を膨潤させて除去する ことにより半導体パッケージを再利用することができる。
[0051] または、長時間にわたる処理を必要とするものの、上記配線回路基板のリペアー該 当部分全体に、上記有機溶剤を直接塗布するかまたは脱脂綿に有機溶剤をしみ込 ませたものを被覆して、半導体パッケージの端部カゝら徐々に有機溶剤を浸透させるこ とにより硬化体を膨潤させて硬化体の強度と接着力を低下させた後、半導体パッケ ージを配線回路基板から取り外すこともできる。
[0052] つぎに、実施例について比較例と併せて説明する。
[0053] まず、下記に示す各成分を準備した。
〔液状エポキシ榭脂 a
下記の構造式 (a)で表されるエポキシ榭脂。
[0054] [化 4]
0 OH
C¾-CH-CH2†0 -U )Vc¾ :〇 0 CH2-CH CH2 f 0 -(O CH2
Figure imgf000016_0001
[0055] [式(a)中、 nは 0以上の整数。純度 99%、粘度 22dPa?s (25°C)、エポキシ当量 165 g, eq]
〔液状エポキシ榭脂 b〕
下記の構造式 (b)で表される脂肪族多官能エポキシ化合物。
[0056] [化 5]
Figure imgf000017_0001
CH3 -CH2 -C-CH2 -OH (b)
CH2 — O - CH2 -CH-CH2
O
[0057] [式(b)中、粘度 0.6dPa?s(25°C)、エポキシ当量 125gZeq]
〔硬化剤〕
下記の構造式 (c)および構造式 (d)で表される液状フ ノール榭脂の混合物。
[0058] [化 6]
Figure imgf000017_0002
[0059] [式 (c)で表されるフ ノール榭脂が 85重量0 /0、式 (d)で表されるフ ノール榭脂が 1 5重量%の割合となるフエノール榭脂混合物。 n=0〜3の整数、 m=0〜3の整数。 2 5°C粘度: 60dPa?s。混合物の平均水酸基当量 135gZeq。 ]
〔固体分散型アミンァダクト系硬化促進剤粉末粒子 a〕
味の素ファインテクノネ土製、アミキュア PN— 40(軟ィ匕温度 110°C、平均粒子径 10〜 の淡黄色粉体)
〔固体分散型アミンァダクト系硬化促進剤粉末粒子 b〕
味の素ファインテクノネ土製、アミキュア PN— 23(軟ィ匕温度 105°C、平均粒子径 10〜 の淡黄色粉体)
〔硬化促進剤〕
トリフエ-ルホスフィン (TPP) (融点 79〜81°C、分子量 262.29) 〔アミン系シランカップリング剤 a〜c〕
a : N- 2 (アミノエチノレ) 3 ァミノプロピルトリエトキシシラン
b: N— 2 (アミノエチノレ) 3 ァミノプロピルトリメトキシシラン
c: 3—ァミノプロピルトリメトキシシラン
〔エポキシ系シランカップリング剤 a, b〕
a : 2— (3, 4 エポキシシクロへキシノレ)ェチノレトリメトキシシラン
〔メタクリロキシ系シランカップリング剤〕
3—メタクリロキシプロピルトリメトキシシラン
〔アタリロキシ系シランカップリング剤〕
3—アタリロキシプロピルトリエトキシシラン
〔メルカプト系シランカップリング剤〕
3—メルカプトプロピルトリメトキシシラン
〔無機質充填剤〕
球状シリカ粒子の表面を、 3—ァミノプロピルトリエトキシシランを用いて蒸気噴霧法 により表面処理したもの(最大粒子径 6 μ m、平均粒子径 2 μ m、比表面積 2. lm2 / g)
実施例 1
[0060] 〔実施例 1〜8、比較例 1〜8〕
上記準備した各成分を下記の表 1〜表 2に示す割合で配合し、 3本ロールを用 ヽて 室温 (25°C)で均質混合分散することにより一液無溶剤の液状エポキシ榭脂組成物 を作製した。
[0061] [表 1] (部)
Figure imgf000019_0001
2]
(都)
Figure imgf000020_0001
[0063] このようにして得られた実施例および比較例の液状エポキシ榭脂組成物を用い、 E MD型回転粘度計を用いて 25°Cでの粘度を測定した後、針内径 0. 56mmのニード ルがついたポリプロピレン製シリンジに充填した。
[0064] また、得られた実施例および比較例の液状エポキシ榭脂組成物を用い、これ (200 〜500mg)を規定温度(80。C, 100。C)の熱平板上に載せ、撹拌しながら熱平板上 に薄く引き伸ばし、試料が熱平板上に溶融した時点力も硬化するまでの時間を読み 取りゲ /レイ匕時間とした。
[0065] 一方、 EMD型回転粘度計の回転数を 0. 5rpm (ズリ速度 lsec— と 1. Orpm (ズリ 速度 2sec— でそれぞれ 25°C粘度を測定して、 0. 5rpm時の粘度と 1. Orpm時の粘 度の比を求め、これをチクソトロピー指数 (ズリ速度依存性) [ = 0. 5rpm時の粘度 (d Pa- s) /l. Orpm時の粘度(dPa · s)〕とした。
[0066] その後、上記シリンジ詰めの状態で 25°Cで放置して粘度が 2倍になるまでの時間 を測定してそれをポットライフ(可使時間)とした。
[0067] 一方、直径 200 /z mの Sn— 3Ag— 0. 5Cu半田バンプ電極を 64個有する CSPパ ッケージ(パッケージ高さ lmm、大きさ 10mm X I Omm)を準備し、直径が 300 m の銅配線パッドが 64個開口(基板側電極)した厚み lmmの FR— 4ガラスエポキシ製 配線回路基板の Sn—3Ag— 0. 5Cu半田ペーストが塗布されている銅配線パッド( 基板側電極)と、上記 CSPパッケージの半田バンプ電極とが対向するように位置合 わせして基板に CSPパッケージを搭載した後、これを 260°Cで 5秒間の条件で加熱リ フロー炉を通して半田接合した。上記 CSPパッケージと回路基板の空隙(隙間)は 2 50 μ mであつ 7こ。
[0068] ついで、上記液状エポキシ榭脂組成物が充填されたシリンジに空気圧力をかけて 、上記 CSPパッケージと回路基板の空隙の一辺に-一ドル力も液状エポキシ榭脂組 成物を吐出して塗布し、 60°Cホットプレート上で毛細管現象により液状エポキシ榭脂 組成物を加温充填し、充填時間を計測するとともに、充填終了後 100°Cで 1時間硬 ィ匕させて榭脂封止することにより電子部品装置を作製した。
[0069] このようにして得られた各電子部品装置を用いて、耐落下衝撃試験、導通不良率 およびリペア一性を下記に示す方法に従って測定'評価した。その結果を上記液状 エポキシ榭脂組成物の特性測定とともに後記の表 3〜表 6に示す。
〔耐落下衝撃試験〕
上記電子部品装置の榭脂封止後の基板両端に lOOg錘を取り付け、 1. 2mの高さ から木製床に落下させ、上記電子部品装置が取り付けられた基板について導通不 良が発生する回数を求めた。
〔導通不良率〕
上記電子部品装置の榭脂封止直後の導通不良率を測定した。その後、冷熱試験 装置を用いて、上記電子部品装置を 30°CZ 10分 125°C/10分の温度サイク ル試験を実施し、 1000サイクル後の電気的導通を調べ、上記ガラスエポキシ製配線 回路基板の銅配線パッド (基板側電極)の 64個全部に対する導通不良率 (%)を算 出した。
〔リペア一性〕
上記導通不良率を測定した後、 200°Cに加熱した熱盤上にて、上記電子部品装置 力も CSPパッケージを剥離し、室温に戻したものの接続部に残存するエポキシ榭脂 組成物の硬化体の残渣部分に、 N, N' —ジメチルホルムアミドとジエチレングリコー ルジメチルエーテルの等量混合溶剤を含ませた脱脂綿を静置し、室温(22°C)で 1時 間放置した。その後、この脱脂綿を取り除きメタノールでよく拭き、エポキシ榭脂組成 物硬化体の剥離を行い、剥離可能な電子部品装置は再度、配線回路基板のパッド 部に半田ペーストの供給、そして、半田溶融後、上記と同様にして CSPパッケージを 配線回路基板上に搭載して電気的導通性を調べた。その後、上記と同様にして榭脂 封止してリペア一(リワーク)性の評価を行った。
[0070] そして、エポキシ榭脂組成物硬化体が完全に剥離可能で、し力も電気的接続が完 全な場合を◎、硬化体がわずかに残存して剥離できるが、電気的接続が完全な場合 を〇、硬化体がわずかに残存して剥離できるが、電気的接続が不完全な場合を△、 エポキシ榭脂組成物硬化体がほとんど剥離できず、しかも電気的接続が不完全な場 合を Xとした。
[0071] [表 3]
実 施 例
1 2 3 4 粘度 (a t 25。C) 300 295 305 350 〔d P a · s)
ゲル請間 80。C 50 48 52 55
(分)
10 o。c 13 12 12 15 チクソトロピ一指数 1.01 1.00 0.99 1.02 (a t 2 5。C)
ポットライフ (at25t) 30 MO 32 30 42 (時間)
充填時間 (分) 1 1 1 1 wmr . (回) 5000 5000 以 上 。 以 上 導通不良率 (%) 0 0 0 0 リペア一性 (2 2°C) 〇 〇 〇 〇 4]
実 施 例
5 6 7 8 粘度 (a t 25°C) 220 280 820 292 (d P a · s)
ゲル化時間 80で 49 75 49 52 (分)
10 O 13 22 12 13 チクソトロピ一指数 1.00 0.98 1.02 0.99 (a t 2 5。C)
ポットライフ (at25t) 30 " 45 30 31 (時間)
充填時間 (分) 0.75 1 1 1 耐落下衝 (回) 5000 5000 5000
, ···.' 以 上 以 上 導通不良率 (%) 0 0 0 0 リペア一性 (22°C) 〇 〇 〇 〇 5]
比 較 例
1 2 3 4 粘度 t 25°C) 318 312 320 350 (dPa · s)
ゲル化時間 80°C 54 49 55 55
(分)
10 o°c 12 13 14 15 チクソ卜口ピー指数 1.16 1.33 1.40 1.50 (a t 25°C)
ポットライフ (at25t) 30 32 30 42 (時間)
充填時間 (分) 5 15 30以上 30以上 耐落下衝 (回) 5000 5000 5000 5000 以 上 以 上 以 上 以 上 導通不良率 (%) 0 0 0 0 リペア一性 (22。C) 〇 〇 〇 〇 6]
比 較 例
5 6 7 8
粘度 (a t 2 5 °C) 345 500 280 50
( d P a · s )
ゲル化時間 8 0。C 50 50 45 49
(分)
1 0 0°C 13 12 15 11
チクソトロピ一指数 1. 23 1. 21 1. 00 1. 00
( a t 2 5 °C)
ポットライフ (at25t) 30 30 7 32
(時間)
充填時間 (分) 10 10 1 0. 2
耐落下衝^^ (回) 5 0 0 0 5 0 0 0 5 0 0 0 2
以 上 以 上 以 上
導通不良率 (%) 0 0 0 0
リペア一性 ( 2 2 °C) 〇 〇 〇 〇
[0075] 上記の結果、全ての実施例の液状エポキシ樹脂組成物は、低ズリ速度依存性 (低 チクソトロピー性)の効果が大きく好ましいものであり、し力もポットライフが長ぐ低粘 度と相まって一液無溶剤型の液状エポキシ樹脂組成物として優れていることがわか る。しカゝも、形成された封止榭脂層に導通不良も無ぐリペア一性にも優れていること は明らかである。これに対して、比較例の液状エポキシ榭脂組成物は、導通不良も 無ぐリペア一性に関しても問題のないものであつたが、比較例:!〜 6品の液状ェポキ シ榭脂組成物は、ズリ速度依存性 (チタソトロピー性)が大きいため、 CSPパッケージ と回路基板の空隙への充填時間が非常に長く支障をきたした。また、比較例 7品で は、ポットライフが短過ぎるものであり、充填に支障をきたすものであった。さらに、比 較例 8品では、硬化促進剤を用いず、かつ無機質充填剤を含有しないため粘度が低 過ぎ、しかも耐落下衝撃試験の結果が著しく悪く信頼性に乏しレ、ものであった。
[0076] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。 [0077] 本出願は、 2004年 8月 20日出願の日本特許出願 (特願 2004— 241398)に基づくも のであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0078] 本発明は、 BGA (ボール ·グリッド 'アレイ)や CSP (チップ ·スケール 'パッケージま たはチップ 'サイズ'パッケージ)等の半導体パッケージの接続用バンプ電極部を介し て半導体パッケージと回路基板の対向する電極間を電気的に接続する表面実装タ イブにお 1、て、半導体パッケージと回路基板の空隙に液状エポキシ榭脂組成物を充 填し榭脂封止してなる、良好なリペア一性を備えた電子部品装置を提供する。

Claims

請求の範囲
[1] 接続用電極部を有する回路基板;接続用電極部を有し、該接続用電極部と回路基 板に設けられた接続用電極部を対向させた状態で上記回路基板上に搭載された半 導体装置;上記回路基板と半導体装置との空隙を封止する封止榭脂層を含み、上 記封止榭脂層が下記の (A)〜 (E)成分を含有する電子部品装置。
(A)液状エポキシ榭脂。
(B)液状フ ノール榭脂。
(C)固体分散型アミンァダクト系硬化促進剤粉末粒子。
(D)アミン系シランカップリング剤。
(E)無機質充填剤。
[2] 上記 (C)成分である固体分散型アミンァダクト系硬化促進剤粉末粒子が、アミンィ匕 合物とエポキシィ匕合物との反応生成物であるアミンーエポキシァダクト粉末粒子であ る請求項 1記載の電子部品装置。
[3] 上記 (C)成分である固体分散型アミンァダクト系硬化促進剤粉末粒子が、アミンィ匕 合物とイソシァネートイ匕合物との反応生成物であるアミンーイソシァネートァダクト粉 末粒子である請求項 1記載の電子部品装置。
[4] 上記 (D)成分であるアミン系シランカップリング剤力 1級アミノ基を有するものであ る請求項 1〜3のいずれか一項記載の電子部品装置。
[5] 上記 (D)成分であるアミン系シランカップリング剤力 2級アミノ基を有するものであ る請求項 1〜3のいずれか一項記載の電子部品装置。
[6] 上記 (E)成分である無機質充填剤が、アミン系シランカップリング剤で表面被覆さ れたものである請求項 1〜5のいずれか一項記載の電子部品装置。
[7] 上記 (E)成分である無機質充填剤が、アミン系シランカップリング剤で表面被覆さ れた平均粒子径 10 μ m以下の球状シリカ粒子である請求項 1〜6のいずれか一項 記載の電子部品装置。
[8] 上記 (A)成分である液状エポキシ榭脂が、 1分子中にエポキシ基を 2個以上有する 液状エポキシ榭脂である請求項 1〜7のいずれか一項に記載の電子部品装置。
[9] 上記 (B)成分である液状フ ノール榭脂が、 1分子中に水酸基を 2個以上有する液 状フエノールノボラック榭脂である請求項 1〜8のいずれか一項に記載の電子部 t
PCT/JP2005/014843 2004-08-20 2005-08-12 電子部品装置 WO2006019055A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-241398 2004-08-20
JP2004241398A JP2006057021A (ja) 2004-08-20 2004-08-20 電子部品装置

Publications (1)

Publication Number Publication Date
WO2006019055A1 true WO2006019055A1 (ja) 2006-02-23

Family

ID=35907443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014843 WO2006019055A1 (ja) 2004-08-20 2005-08-12 電子部品装置

Country Status (2)

Country Link
JP (1) JP2006057021A (ja)
WO (1) WO2006019055A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910667B1 (en) * 2009-09-11 2011-03-22 Air Products And Chemicals, Inc. Low temperature curable epoxy compositions containing phenolic-blocked urea curatives
JP5619479B2 (ja) * 2010-06-14 2014-11-05 ケイテック株式会社 実装半導体素子のリワーク方法
JP5881179B2 (ja) * 2013-08-28 2016-03-09 信越化学工業株式会社 半導体封止用樹脂組成物及びその硬化物を備えた半導体装置
JP6418762B2 (ja) * 2014-03-17 2018-11-07 旭化成株式会社 熱硬化性樹脂組成物
JP2015203066A (ja) * 2014-04-14 2015-11-16 京セラケミカル株式会社 封止用樹脂組成物およびそれを用いた半導体装置
WO2023210574A1 (ja) * 2022-04-26 2023-11-02 株式会社トクヤマ 剥離剤、半導体用剥離剤、半導体用溶剤、および半導体用処理液、並びに半導体素子の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196776A (ja) * 1994-01-07 1995-08-01 Ajinomoto Co Inc エポキシ樹脂組成物
JPH11263826A (ja) * 1998-01-12 1999-09-28 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2000302841A (ja) * 1999-02-18 2000-10-31 Three Bond Co Ltd エポキシ樹脂組成物
JP2002060594A (ja) * 2000-06-08 2002-02-26 Nitto Denko Corp 液状エポキシ樹脂組成物
JP2002128992A (ja) * 2000-10-30 2002-05-09 Matsushita Electric Works Ltd エポキシ樹脂組成物、その製造方法及び半導体装置
JP2004123847A (ja) * 2002-09-30 2004-04-22 Toray Ind Inc エポキシ樹脂組成物及び半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196776A (ja) * 1994-01-07 1995-08-01 Ajinomoto Co Inc エポキシ樹脂組成物
JPH11263826A (ja) * 1998-01-12 1999-09-28 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2000302841A (ja) * 1999-02-18 2000-10-31 Three Bond Co Ltd エポキシ樹脂組成物
JP2002060594A (ja) * 2000-06-08 2002-02-26 Nitto Denko Corp 液状エポキシ樹脂組成物
JP2002128992A (ja) * 2000-10-30 2002-05-09 Matsushita Electric Works Ltd エポキシ樹脂組成物、その製造方法及び半導体装置
JP2004123847A (ja) * 2002-09-30 2004-04-22 Toray Ind Inc エポキシ樹脂組成物及び半導体装置

Also Published As

Publication number Publication date
JP2006057021A (ja) 2006-03-02

Similar Documents

Publication Publication Date Title
JP3723483B2 (ja) 電子部品装置
WO2005108459A1 (ja) 液状エポキシ樹脂組成物
JP3971995B2 (ja) 電子部品装置
JP2007500455A (ja) 予備適用アンダーフィル封入剤の使用方法
JP5534682B2 (ja) 電子部品用熱硬化性接着剤及びこの接着剤を用いた電子部品内蔵基板の製造方法
JP5176000B1 (ja) 電子部品用接着剤及び半導体チップ実装体の製造方法
JP3723461B2 (ja) 電子部品装置
KR101308307B1 (ko) 언더필 밀봉제로서 유용하고 재작업성을 가지는 저발열성의열경화성 수지 조성물
WO2006019055A1 (ja) 電子部品装置
JP6106389B2 (ja) 先設置型半導体封止用フィルム
JP2004204047A (ja) 液状エポキシ樹脂組成物
JP2010062297A (ja) ペースト状接着剤及びこの接着剤を用いた電子部品内蔵基板の製造方法
JP2002060594A (ja) 液状エポキシ樹脂組成物
WO2006019054A1 (ja) 液状エポキシ樹脂組成物
KR101900602B1 (ko) 열경화성 수지 조성물 및 전자 부품 탑재 기판
JP2005350646A (ja) 電子部品装置
JP2008075054A (ja) 一液型エポキシ樹脂組成物
JP6071612B2 (ja) 液状樹脂組成物、フリップチップ実装体およびその製造方法
JP2003119251A (ja) 液状エポキシ樹脂組成物
JP4239645B2 (ja) 一液型エポキシ樹脂組成物
JP4690714B2 (ja) エポキシ系硬化性組成物及び電子部品の実装構造
JP2004090021A (ja) 硬化性フラックス
JP2008177521A (ja) 実装用封止材及び半導体装置
JP2007246665A (ja) エポキシ樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase