WO2012046636A1 - 液状封止樹脂組成物および半導体パッケージ - Google Patents

液状封止樹脂組成物および半導体パッケージ Download PDF

Info

Publication number
WO2012046636A1
WO2012046636A1 PCT/JP2011/072447 JP2011072447W WO2012046636A1 WO 2012046636 A1 WO2012046636 A1 WO 2012046636A1 JP 2011072447 W JP2011072447 W JP 2011072447W WO 2012046636 A1 WO2012046636 A1 WO 2012046636A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
liquid
liquid sealing
composition according
sealing resin
Prior art date
Application number
PCT/JP2011/072447
Other languages
English (en)
French (fr)
Inventor
昌也 光田
勝志 山下
政実 秋田谷
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2012046636A1 publication Critical patent/WO2012046636A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/8121Applying energy for connecting using a reflow oven
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81909Post-treatment of the bump connector or bonding area
    • H01L2224/8191Cleaning, e.g. oxide removal step, desmearing
    • H01L2224/81911Chemical cleaning, e.g. etching, flux
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking
    • H01L2924/35121Peeling or delaminating

Definitions

  • the present invention relates to a liquid sealing resin composition and a semiconductor package.
  • a semiconductor element and a substrate are electrically connected by solder bumps.
  • a liquid resin composition called an underfill material is filled between the semiconductor element and the substrate to reinforce the periphery of the solder bumps.
  • the under-filling type flip-chip package is used to prevent destruction of the Low-K layer and cracks in the solder bumps due to thermal stress.
  • the fill material is required to have further lower thermal expansion and lower elastic modulus.
  • the Low-K chip is a semiconductor element including a low dielectric constant film (Low-K layer) as an interlayer insulating film.
  • a liquid or solid rubber component When a liquid rubber component is added, the solid rubber component is accompanied by a decrease in Tg (glass transition temperature).
  • Tg glass transition temperature
  • the viscosity increases as the filling amount increases.
  • the linear expansion coefficient tends to increase, which is disadvantageous for low thermal expansion.
  • Patent Documents 1 and 2 a method of adding rubber particles has also been proposed (see Patent Documents 1 and 2), but the range of low elastic modulus has been limited due to the problem of thickening. Therefore, a technique for lowering the elastic modulus further than the current elastic modulus is demanded.
  • An object of the present invention is to provide a liquid resin composition that has low thermal linear expansion, low room temperature elasticity, high reliability, and excellent fillability in a narrow gap in an underfill material of a flip-chip semiconductor device. That is.
  • the present invention is as follows.
  • a liquid sealing resin composition comprising (A) a liquid epoxy resin, (B) an amine curing agent, (C) an acrylic resin, and (D) an inorganic filler.
  • the (C) acrylic resin is a block polymer composed of acrylic polymers of different components, and at least one component has a glass transition temperature of 0 ° C. or lower.
  • the (C) acrylic resin is a triblock polymer having a structure in which a component having a high affinity with an epoxy resin sandwiches a component having a glass transition temperature of 0 ° C. or lower (1) to (6)
  • the (B) amine curing agent is an aromatic polyamine type curing agent.
  • An underfill material comprising the liquid sealing resin composition according to any one of (1) to (11).
  • a liquid resin composition having low thermal linear expansion, low room temperature elasticity, high reliability, and excellent fillability in a narrow gap is provided. be able to.
  • the present invention is a liquid sealing resin composition containing (A) a liquid epoxy resin, (B) an amine curing agent, (C) an acrylic resin, and (D) an inorganic filler.
  • A a liquid epoxy resin
  • B an amine curing agent
  • C an acrylic resin
  • D an inorganic filler
  • the (A) liquid epoxy resin used in the present invention is not particularly limited in molecular weight or structure as long as it has two or more epoxy groups in one molecule.
  • novolak type epoxy resins such as phenol novolac type epoxy resin and cresol novolak type epoxy resin
  • bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin
  • Aromatic glycidylamine type epoxy resins such as diglycidyl toluidine, diaminodiphenylmethane type glycidylamine, aminophenol type glycidylamine, hydroquinone type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, triphenolpropane Type epoxy resin, alkyl modified triphenol methane type epoxy resin, triazine core-containing epoxy resin, dicyclopentadiene modified phenol type epoxy Epoxy resins such
  • an epoxy resin containing a structure in which a glycidyl structure or a glycidylamine structure is bonded to an aromatic ring is more preferable from the viewpoint of high heat resistance, mechanical properties, and moisture resistance. It is more preferable to limit the amount to be used from the viewpoint of lowering reliability, particularly adhesiveness. These may be used alone or in combination of two or more.
  • the liquid resin composition of the present invention is liquid at room temperature
  • the one type of (A) epoxy resin is at room temperature.
  • the mixture of all of the two or more types of (A) epoxy resins is liquid at room temperature. Therefore, when the (A) epoxy resin is a combination of two or more types of (A) epoxy resins, the (A) epoxy resin may be a combination of epoxy resins that are all liquid at room temperature, or partly If the mixture becomes liquid at room temperature by mixing with other epoxy resins that are solid at room temperature, the liquid epoxy resin that is liquid at room temperature and the epoxy resin that is solid at room temperature It may be a combination.
  • (A) 2 or more types of epoxy resins are a combination, it is necessary to manufacture a liquid resin composition by mixing all the epoxy resins used and then mixing with other components. Rather, the epoxy resin to be used may be mixed separately to produce a liquid resin composition.
  • (A) the epoxy resin is liquid at room temperature means that when all the epoxy resins used as the epoxy resin component (A) are mixed, the mixture becomes liquid at room temperature. .
  • room temperature refers to 25 degreeC
  • liquid refers to that the resin composition has fluidity
  • the content of the (A) epoxy resin is not particularly limited, but is preferably 5% by weight or more and 30% by weight or less, and particularly preferably 5% by weight or more and 20% by weight or less of the entire liquid resin composition of the present invention. When the content is within the above range, the reactivity, the heat resistance and mechanical strength of the composition, and the flow characteristics at the time of sealing are excellent.
  • the (B) amine curing agent used in the present invention is not particularly limited in structure as long as it can cure an epoxy resin.
  • examples of the amine curing agent include diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine aliphatic polyamine, isophoronediamine, 1,3-bisamino.
  • Cycloaliphatic polyamines such as methylcyclohexane, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, N-aminoethylpiperazine, 1,4-bis (2-amino-2-methylpropyl) piperazine
  • Piperazine-type polyamines such as diaminodiphenylmethane, m-phenylenediamine, diaminodiphenylsulfone, diethyltoluenediamine, trimethylenebis (4-aminobenzoate), polytetramethyl Ren'okishido - and aromatic polyamines such as di -P- amino benzoate.
  • amine curing agents may be used alone or in combination of two or more.
  • hardening agents such as an aromatic amine, an aliphatic amine, a solid amine, a phenolic hardening
  • aromatic polyamine type curing agents are more preferred from the viewpoints of high heat resistance, electrical characteristics, mechanical characteristics, adhesion, and moisture resistance.
  • the liquid resin composition of this invention is used as an underfill, what exhibits a liquid state at room temperature (25 degreeC) is more preferable.
  • aromatic polyamine type curing agents examples include 3,3′-diethyl-4,4′-diaminodiphenylmethane, 4,4′-methylenebis (N-methylaniline), diethyltoluenediamine, and the like.
  • the epoxy resin and amine curing agent used in the present invention have compatibility with the acrylic resin used in the present invention and microphase separation after curing, but do not take a general sea-island structure and become a unique phase structure. preferable. This microphase separation depends on the ratio of the high-affinity portion of the epoxy resin in the acrylic resin described later and the amount of the acrylic resin itself added, but depending on the type of curing agent, it is greatly affected by the microphase separation.
  • the aromatic polyamine type curing agent is particularly preferable.
  • the content of the (B) amine curing agent is not particularly limited, but is preferably 5% by weight to 30% by weight, particularly preferably 5% by weight to 20% by weight, based on the entire liquid resin composition of the present invention. When the content is within the above range, the reactivity, the mechanical properties of the composition, the heat resistance and the like are excellent.
  • the ratio of the active hydrogen equivalent of the (B) amine curing agent to the epoxy equivalent of the (A) epoxy resin is preferably from 0.6 to 1.4, particularly preferably from 0.7 to 1.3. When the active hydrogen equivalent of the (B) amine curing agent is within the above range, the reactivity and the heat resistance of the resin composition are particularly improved.
  • Acrylic resin used in the present invention is not limited as long as it can lower the elastic modulus of the resin composition and can be dissolved in an epoxy resin.
  • a polymer obtained by polymerizing is preferred.
  • the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, isobutyl methacrylate, tertiary butyl methacrylate, glycidyl methacrylate, lauryl methacrylate,
  • Examples include n-hexyl methacrylate, n-octyl methacrylate, tridecyl methacrylate, isobornyl methacrylate, cyclohexyl methacrylate and the like.
  • acrylic esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, and n-acrylate.
  • examples include octyl, n-hexyl acrylate, lauryl acrylate, tridecyl acrylate, stearyl acrylate, and the like.
  • a homopolymer or copolymer of these monomers can be selected, but a copolymer is preferred.
  • Copolymer is a general term for polymers polymerized from two or more types of monomers. Random copolymers in which two or more types of monomers are randomly polymerized, alternating copolymers in which two types of monomers are alternately polymerized A block copolymer in which two or more kinds of polymers coexist in one molecule and form a main chain together, one polymer component is a main chain, and another different polymer component is a branch A graft copolymer that is a hanging type can be selected. Among these, a block copolymer is more preferable.
  • the block copolymer is a copolymer having a structure in which a polymer A having a single composition and a polymer B having another single composition are connected in the form of AB in the same molecule.
  • a diblock type AB, a triblock type ABA, and a triblock type can be selected from three types such as ABC.
  • the acrylic resin (C) used in the present invention is preferably an ABA type triblock copolymer, and A and B are polymers composed of monomers selected from the monomers listed in the above examples. It is a block.
  • the polymer block A of the ABA type triblock copolymer has a high affinity with the epoxy resin in order to dissolve the triblock copolymer in the epoxy resin, and has a glass transition to improve the handling property.
  • the temperature is preferably room temperature or higher, and is a polymer block composed of monomers selected from methyl methacrylate, ethyl methacrylate, butyl methacrylate, glycidyl methacrylate, and the like, preferably, a methyl methacrylate polymer block. is there.
  • the polymer block B preferably has a glass transition temperature of 0 ° C.
  • the polymer block is preferably an n-butyl acrylate polymer block.
  • the ratio of the polymer block A to the polymer block B can be selected at any ratio, but preferably the polymer block B is 50 to 90 wt. %, More preferably 60 to 80% by weight.
  • the polymer block B is a component that exhibits a low elastic modulus effect, and it is advantageous that the polymer block B is contained in a larger amount because the elastic modulus can be lowered.
  • the polymer block A is preferably contained in an amount of 10% by weight or more, more preferably 20% by weight or more.
  • the weight average molecular weight of an acrylic resin becomes like this. Preferably it is 5000-150,000, More preferably, it is 10,000-100,000.
  • the addition amount of the acrylic resin is not particularly limited, but is preferably 0.2% by weight or more and 30% by weight or less, more preferably 0.4% by weight with respect to the liquid resin composition. % To 20% by weight.
  • (C) When the amount of the acrylic resin added is less than the lower limit, the effect of low elastic modulus may not be obtained. On the other hand, when the addition amount exceeds the above upper limit value, it is difficult to uniformly disperse, and the entire resin composition may be brittle.
  • the inorganic filler (D) used in the present invention improves mechanical strength such as fracture toughness, thermal dimensional stability, and moisture resistance, the reliability of the semiconductor device can be particularly improved.
  • the (D) inorganic filler include silicates such as talc, fired clay, unfired clay, mica, and glass, titanium oxide, alumina, fused silica (fused spherical silica, fused crushed silica), synthetic silica, and crystals.
  • Silica powder oxides such as silica, carbonates such as calcium carbonate, magnesium carbonate, hydrotalcite, hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium sulfate, calcium sulfate, calcium sulfite, etc.
  • Sulfates or sulfites, borates such as zinc borate, barium metaborate, aluminum borate, calcium borate, and sodium borate, and nitrides such as aluminum nitride, boron nitride, and silicon nitride can be used.
  • These (D) inorganic fillers may be used alone or in combination of two or more. Among these, fused silica, crystalline silica, or synthetic silica powder is preferable because the heat resistance, moisture resistance, strength, and the like of the resin composition can be improved.
  • the shape of the (D) inorganic filler is not particularly limited, but the shape is preferably spherical from the viewpoint of viscosity and flow characteristics.
  • the maximum particle size and the average particle size of the (D) inorganic filler are not particularly limited, but it is preferable that the maximum particle size is 25 ⁇ m or less and the average particle size is 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the maximum particle size is 25 ⁇ m or less and the average particle size is 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the amount of the inorganic filler (D) is not particularly limited, but is preferably 30 to 80% by weight, more preferably 50 to 75% by weight with respect to the liquid resin composition. (D) When the blending amount of the inorganic filler is less than the above lower limit value, the linear expansion coefficient may be too large, and when it exceeds the above upper limit value, the elastic modulus may be too large.
  • the linear expansion coefficient at 25 ° C. is preferably 15 to 33 ppm / ° C., more preferably 20 to 26 ppm / ° C.
  • the elastic modulus at 25 ° C. when the liquid sealing resin composition of the present invention is cured is preferably 3 to 10 GPa, more preferably 4 to 7 GPa.
  • liquid sealing resin composition in addition to the above-described components such as the (A) epoxy resin and (B) amine curing agent, a coupling agent, a liquid low stress agent, a diluent, a pigment, Additives such as flame retardants, leveling agents and antifoaming agents can be used.
  • the liquid sealing resin composition of the present invention is prepared by dispersing and kneading the above-described components and additives using an apparatus such as a planetary mixer, three rolls, two hot rolls, and a raikai machine, and then removed under vacuum. It can be produced by foam treatment.
  • the semiconductor device of the present invention is manufactured using the liquid sealing resin composition of the present invention.
  • a flip chip type semiconductor device can be given.
  • a semiconductor element provided with a solder electrode is connected to a substrate, and a gap between the semiconductor element and the substrate is sealed.
  • a solder resist is generally formed so that the solder does not flow in a region other than the portion where the solder electrode on the substrate side is joined.
  • the liquid resin composition of the present invention is filled in the gap between the semiconductor element and the substrate.
  • a filling method a method utilizing a capillary phenomenon is common.
  • the liquid resin composition of the present invention is applied to one side of a semiconductor element and then poured into the gap between the semiconductor element and the substrate by capillary action, and the liquid resin composition is applied to two sides of the semiconductor element. Thereafter, a method of pouring into the gap between the semiconductor element and the substrate by capillary action, a through hole is opened in the central part of the semiconductor element, the liquid resin composition of the present invention is applied around the semiconductor element, and then the semiconductor element and the substrate And a method of pouring into the gap by capillary action. Further, instead of applying the whole amount at once, a method of applying in two steps is also performed. Moreover, methods, such as potting and printing, can also be used. Next, the filled liquid resin composition of this invention is hardened.
  • the curing conditions are not particularly limited, but can be cured by heating for 1 to 12 hours in a temperature range of 100 to 170 ° C., for example. Furthermore, for example, after heating at 100 ° C. for 1 hour, heat curing may be performed while changing the temperature stepwise, such as heating at 150 ° C. for 2 hours.
  • a semiconductor device in which the space between the semiconductor element and the substrate is sealed with the cured product of the liquid resin composition of the present invention can be obtained.
  • a semiconductor device includes a flip-chip type semiconductor device, a cavity down type BGA (Ball Grid Array), a POP (Package on Package) type BGA (Ball Grid Array), and a TAB (Tape Automated Bonding) type BGA (Ball). Grid Array) and CSP (Chip Scale Package).
  • a compounding quantity is a weight part.
  • the liquid sealing resin composition was produced by mixing using a mixer and 3 rolls, and carrying out a vacuum defoaming process. About the obtained liquid sealing resin composition, it evaluated with the following evaluation methods.
  • Viscosity Measurement was performed with a TV-E viscometer at 25 ° C. and 5 rpm. The unit is Pa ⁇ s.
  • Glass transition temperature and linear expansion coefficient Using a thermomechanical analyzer (TMA), a liquid sealing resin composition cured in a square column shape (curing conditions: 150 ° C., 120 minutes) was measured, and the glass transition temperature and the line were measured. The expansion coefficient (average value of linear expansion coefficient from ⁇ 10 ° C. to 10 ° C.) was measured.
  • TMA thermomechanical analyzer
  • Elastic modulus Using a viscoelasticity measuring device (DMA), the liquid sealing resin composition cured in a plate shape (curing conditions: 150 ° C., 120 minutes) is measured, and the elastic modulus at room temperature (25 ° C.) is measured. It was measured.
  • DMA viscoelasticity measuring device
  • the liquid sealing resin composition obtained above was filled and sealed between the substrate and the chip of the semiconductor device, and a filling property test, a reflow resistance test, and a temperature cycle test of the liquid sealing resin composition were performed.
  • the results are shown in Table 1.
  • the components of the semiconductor device used for testing and evaluation are as follows.
  • a chip a PHASE-2TEG wafer (wafer thickness: 0.72 mm) manufactured by Hitachi LSI Co., Ltd. is used as a circuit protection film of the chip, polyimide is formed as a solder bump, and lead-free solder of Sn / Ag / Cu composition is formed as 15 mm. It cut
  • a 0.8 mmt glass epoxy substrate equivalent to FR5 manufactured by Sumitomo Bakelite Co., Ltd. is used as a base, and a solder resist PSR4000 / AUS308 manufactured by Taiyo Ink Mfg Co., Ltd. is formed on both sides, and the solder bumps described above are formed on one side.
  • a gold-plated pad corresponding to the array was cut into a size of 50 mm ⁇ 50 mm and used.
  • TSF-6502 manufactured by Kester, rosin flux
  • a flux is uniformly applied to a sufficiently smooth metal or glass plate to a thickness of about 50 ⁇ m using a doctor blade, and then the circuit surface of the chip is lightly brought into contact with the flux film using a flip chip bonder. Later, the flux was transferred to the solder bumps, and then the chip was pressed onto the substrate. A heat treatment was performed in an IR reflow furnace, and solder bumps were melted and produced. Cleaning was performed using a cleaning liquid after the melt bonding.
  • the liquid sealing resin composition is filled and sealed by heating the substrate on which the manufactured chip is mounted on a hot plate at 110 ° C., and applying the liquid sealing resin composition prepared on one side of the chip to fill the gap. After that, the liquid sealing resin composition was heated and cured in an oven at 150 ° C. for 120 minutes to obtain a semiconductor device having a chip thickness of 0.72 mm for evaluation test.
  • ⁇ Fillability Using the ultrasonic flaw detector, the generation of voids in the portion filled with the liquid sealing resin composition was confirmed for the semiconductor device produced above. The case was determined to be bad.
  • -Reflow resistance After the above semiconductor device was subjected to a JEDEC level 3 moisture absorption treatment (treatment at 30 ° C. and a relative humidity of 60% for 192 hours), IR reflow treatment (peak temperature 260 ° C.) was conducted three times. The presence or absence of peeling of the liquid encapsulating resin composition inside the semiconductor device was confirmed with an acoustic flaw detector, and the presence or absence of cracks on the surface of the liquid encapsulating resin composition on the side surface of the chip was further observed using an optical microscope.
  • Examples 2 to 5 The liquid resin composition was produced by the method similar to Example 1 except having changed the component ratio or compounding quantity of the acrylic resin, and having changed the compounding quantity of (D) inorganic filler.
  • the acrylic resins having different component ratios the following triblock acrylic resins C12 and C13 were used. Evaluation was conducted in the same manner as in Example 1 using the obtained liquid resin composition. Table 1 summarizes the detailed formulation, the liquid resin composition, and the evaluation results of the semiconductor device.
  • -Bisphenol F type epoxy resin manufactured by Dainippon Ink and Chemicals, EXA-830LVP, bisphenol F type liquid epoxy resin, epoxy equivalent 161
  • Aromatic primary amine type curing agent Nippon Kayaku Co., Ltd., Kayahard-AA, 3,3′-diethyl-4,4′-diaminodiphenylmethane, amine equivalent 63.5
  • Acrylic resin Triblock acrylic resin C12, Kuraray Co., Ltd.
  • LA2250 ABA type acrylic triblock copolymer
  • PMMA polymethyl methacrylate, glass transition temperature: 100 to 120 ° C.
  • PnBA n-butyl polyacrylate, glass transition temperature: ⁇ 40 to ⁇ 50 ° C.
  • Acrylic resin Triblock acrylic resin C13, LA4285 manufactured by Kuraray Co., Ltd.
  • Inorganic filler synthetic spherical silica: Admatechs Co., Ltd., Admafine SO-E3, synthetic spherical silica, average particle size 1 ⁇ m ⁇
  • Epoxysilane coupling agent Shin-Etsu Chemical Co., Ltd., KBM403E, ⁇ -glycidoxypropyltrimethoxysilane ⁇
  • Colorant Mitsubishi Chemical Co., Ltd., MA-600 carbon black ⁇
  • Diluent Tokyo Chemical Industry ( Co., Ltd., (Reagent) BCSA, Ethylene glycol mono-normal-butyl ether acetate
  • Examples 1 to 5 contained an acrylic resin, low elastic modulus and low thermal linear expansion were achieved, and peeling and cracking did not occur in the temperature cycle test.
  • the liquid resin composition containing an acrylic resin achieved a low elastic modulus and a low thermal linear expansion, and was able to improve the reliability of the semiconductor device.
  • the acrylic resin is microscopically phase-separated, it has a unique phase structure (black line portions in FIGS. 2 and 3). Due to this phase structure, the cured product of the liquid resin composition of the present invention is presumed to have achieved a low elastic modulus and a low thermal linear expansion.
  • underfill material (A) 12.3% by weight of liquid epoxy resin 1 and 12.3% by weight of liquid epoxy resin 2, (B) 9.1% by weight of amine curing agent 1 and 5 of amine curing agent 2 0.7% by weight, (C) 3.7% by weight of triblock acrylic resin as low-stress material 1, (D) 55% by weight of inorganic filler, and 1.2% of epoxy silane coupling agent as silane coupling agent It is a liquid resin composition by blending 0.5% by weight, 0.5% by weight of diluent and 0.1% by weight of colorant, mixing using a planetary mixer and three rolls, and vacuum defoaming treatment. An underfill material was obtained.
  • a semiconductor device was created using the obtained underfill material.
  • a chip-connected substrate was used.
  • the size of the semiconductor chip was 15 mm ⁇ 15 mm ⁇ 0.75 mmt, and the size of the substrate was 50 mm ⁇ 50 mm ⁇ 0.4 mmt.
  • the height of the solder bump was 0.08 mm.
  • Plasma processing was performed with a plasma apparatus (AP-1000 manufactured by March Plasma Systems) before filling the substrate on which the above-described semiconductor chip was mounted with an underfill material.
  • the plasma treatment was performed under the conditions of gas type: Ar, gas flow rate: 50 sccm, treatment strength: 350 W, treatment time: 420 s, and direct plasma mode. Thereafter, the substrate on which the above-described semiconductor chip is mounted is heated on a hot plate at 110 ° C., the underfill material is dispensed, the gap is filled, and the underfill material 4 is heated and cured in a 150 ° C. oven for 120 minutes. A semiconductor device was obtained.
  • (C) Reflow test As a test method for the reflow test, the above-described semiconductor device was subjected to a JEDEC level 3 moisture absorption treatment (treated at 30 ° C. and 60% relative humidity for 192 hours), and then IR reflow treatment (peak temperature 260 ° C.). Was performed three times, and the presence or absence of peeling / cracking inside the semiconductor device was confirmed with an ultrasonic flaw detector. The case where there was no peeling and cracking was marked as ⁇ .
  • Example 6 Example 6 was repeated except that the composition of the underfill material was changed.
  • Table 2 summarizes the detailed formulation and evaluation results of the underfill material.
  • Example 6 was repeated except that the composition of the underfill material was changed.
  • Table 2 summarizes the detailed formulation and evaluation results of the underfill material.
  • Liquid epoxy resin 1 DIC Corporation, EXA-830LVP, mixture of bisphenol F type liquid epoxy resin and bisphenol A type liquid epoxy resin, epoxy equivalent 165
  • Liquid epoxy resin 2 polyfunctional epoxy resin, manufactured by Mitsubishi Chemical Corporation, jER630, N, N-bis (2,3-epoxypropyl) -4- (2,3-epoxypropoxy) aniline, epoxy equivalent 100
  • Amine curing agent 1 aromatic primary amine type curing agent, manufactured by Nippon Kayaku Co., Ltd., Kayahard-AA, 3,3′-diethyl-4,4′-diaminodiphenylmethane, amine equivalent 63.5
  • Amine curing agent 2 Aromatic secondary amine type curing agent, Sanyo Chemical Industries, T-12, 4,4'-methylenebis (N-methylaniline), amine equivalent 116
  • Low stress agent 1 Triblock acrylic resin, manufactured by Kuraray Co., Ltd., LA2140E (ABA type acrylic triblock
  • a liquid resin composition having low thermal linear expansion, low room temperature elasticity, high reliability, and excellent fillability in a narrow gap is provided. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wire Bonding (AREA)

Abstract

フリップチップ方式の半導体装置のアンダーフィル材において、低熱線膨張かつ室温低弾性率で、高い信頼性を有し、狭ギャップへの充填性に優れる液状樹脂組成物であって、(A)液状エポキシ樹脂、(B)アミン硬化剤、(C)アクリル樹脂、および(D)無機充填剤を含有する液状封止樹脂組成物で、好ましくは液状樹脂組成物のうち、(C)アクリル樹脂の含有量が、0.5重量%以上20重量%以下であり、(C)アクリル樹脂が、複数の異なるモノマー成分のアクリル共重合体から構成される液状封止樹脂組成物を提供する。

Description

液状封止樹脂組成物および半導体パッケージ
 本発明は、液状封止樹脂組成物および半導体パッケージに関するものである。
 本願は、2010年10月5日に、日本に出願された特願2010-225784号に基づき優先権を主張し、その内容をここに援用する。
 フリップチップ方式の半導体装置では、半導体素子と基板とを半田バンプで電気的に接続している。このフリップチップ方式の半導体装置は、接続信頼性を向上するために半導体素子と基板との間にアンダーフィル材と呼ばれる液状樹脂組成物を充填して半田バンプの周辺を補強している。このようなアンダーフィル充填型のフリップチップパッケージにおいては、近年のLow-Kチップの採用や半田バンプの鉛フリー化に伴い、熱応力によるLow-K層の破壊や半田バンプのクラックを防ぐためにアンダーフィル材にはより一層の低熱膨張化および低弾性率化が求められる。ここで、Low-Kチップとは、層間絶縁膜として低誘電率膜(Low-K層)を含む半導体素子である。
 アンダーフィル材を低弾性率化するには、液状又は固形のゴム成分を導入する方法があるが、液状のゴム成分を添加した場合はTg(ガラス転移温度)の低下を伴い、固形のゴム成分を添加した場合は、充填量の上昇に伴って粘度の増加する問題がある。さらに液状のゴム成分を添加した場合は、線膨張係数が増大傾向にあり、低熱膨張化には、不利であった。
 これらの問題に対して、ゴム粒子を添加するという手法も提案されているが(特許文献1、2参照)、増粘の問題から低弾性率化の範囲が限られていた。そこで現在の弾性率よりさらに低弾性率化するための手法が求められている。
特開2006-169395号公報 特開2007-182560号公報
本発明の目的は、フリップチップ方式の半導体装置のアンダーフィル材において、低熱線膨張かつ室温低弾性率で、高い信頼性を有し、狭ギャップへの充填性に優れる液状樹脂組成物を提供することである。
本発明は以下の通りである。
(1)(A)液状エポキシ樹脂、(B)アミン硬化剤、(C)アクリル樹脂、および(D)無機充填剤を含有する液状封止樹脂組成物。
(2)前記液状樹脂組成物のうち、(C)アクリル樹脂の含有量が、0.4重量%以上20重量%以下である(1)記載の液状封止樹脂組成物。
(3)前記(C)アクリル樹脂が、複数の異なるモノマー成分のアクリル共重合体から構成される(1)又は(2)に記載の液状封止樹脂組成物。
(4)前記(C)アクリル樹脂が、複数の異なるモノマー成分から構成されるブロックポリマー又はグラフトポリマーである(1)~(3)いずれかに記載の液状封止樹脂組成物。
(5)前記(C)アクリル樹脂が、トリブロックポリマーである(1)~(4)いずれか記載の液状封止樹脂組成物。
(6)前記(C)アクリル樹脂が、複数の異なる成分のアクリルポリマーから構成され、少なくとも1つの成分のガラス転移温度が0℃以下であるブロックポリマーである(1)~(5)いずれかに記載の液状封止樹脂組成物。
(7)前記(C)アクリル樹脂が、エポキシ樹脂と親和性の高い成分が、ガラス転移温度が0℃以下である成分を挟み込んだ構造を持つトリブロックポリマーである(1)~(6)いずれかに記載の液状封止樹脂組成物。
(8)前記(C)アクリル樹脂が、ポリメタクリル酸メチル(PMMA)及びポリアクリル酸n-ブチル(PnBA)からなるブロックポリマーである(1)~(7)のいずれかに記載の液状封止樹脂組成物。
(9)ポリメタクリル酸メチル(PMMA)成分の割合が10~50重量%である(8)記載の液状封止樹脂組成物。
(10)前記(C)アクリル樹脂の重量平均分子量が5000以上150000以下である(1)~(8)いずれかに記載の液状封止樹脂組成物。
(11)前記(B)アミン硬化剤が芳香族ポリアミン型硬化剤である(1)~(10)のいずれかに記載の液状封止樹脂組成物。
(12)アンダーフィル材用樹脂組成物である(1)~(11)のいずれかに記載の液状封止樹脂組成物。
(13)(1)~(12)のいずれかに記載の液状封止樹脂組成物を用いて、半導体素子と基板を封止して作製された半導体装置。
(14)(1)~(11)のいずれかに記載の液状封止樹脂組成物からなるアンダーフィル材。
(15)半田電極が具備された半導体素子を基板に接続する工程、前記半導体素子と前記基板の間に(1)~(11)のいずれかに記載の液状樹脂組成物を充填する工程、及び充填した前記液状樹脂組成物を硬化させる工程を有する半導体装置の製造方法。
(16)(1)~(11)のいずれかに記載の(A)液状エポキシ樹脂(B)アミン硬化剤、(C)アクリル樹脂、及び(D)無機充填剤を配合する工程、分散混練する工程、及び真空脱泡処理する工程を有するアンダーフィル材の製造方法。
本発明によれば、フリップチップ方式の半導体装置のアンダーフィル材として、低熱線膨張かつ室温低弾性率で、高い信頼性を有し、狭ギャップへの充填性に優れる液状樹脂組成物を提供することができる。
実施例2の液状封止樹脂組成物の無機充填剤を除いた樹脂成分の硬化物の断面を、走査型電子顕微鏡を使用して撮影した写真である。 実施例2の液状封止樹脂組成物の無機充填剤を除いた樹脂成分の硬化物の断面を、透過型電子顕微鏡を使用して撮影した写真である。 実施例2の液状封止樹脂組成物の無機充填剤を除いた樹脂成分の硬化物の断面を、透過型電子顕微鏡を使用して撮影した写真である。
本発明は、(A)液状エポキシ樹脂、(B)アミン硬化剤、(C)アクリル樹脂、および(D)無機充填剤を含有する液状封止樹脂組成物であり、フリップチップ方式の半導体装置のアンダーフィル材に適用した場合において、低熱線膨張かつ室温低弾性率で、高い信頼性を有し、狭ギャップへの充填性に優れる。
以下、本発明を詳細に説明する。
本発明に用いる(A)液状エポキシ樹脂としては、一分子中にエポキシ基を2個以上有するものであれば特に分子量や構造は限定されるものではない。
例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂などのビスフェノール型エポキシ樹脂、N,N-ジグリシジルアニリン、N,N-ジグリシジルトルイジン、ジアミノジフェニルメタン型グリシジルアミン、アミノフェノール型グリシジルアミンなどの芳香族グリシジルアミン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、トリフェノールプロパン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェニレンおよび/またはビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレンおよび/またはビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂などのアラルキル型エポキシ樹脂などのエポキシ樹脂、ビニルシクロヘキセンジオキシド、ジシクロペンタジエンオキシド、アリサイクリックジエポキシ-アジペイドなどの脂環式エポキシなどの脂肪族エポキシ樹脂が挙げられる。
 さらに本発明の場合、芳香族環にグリシジル構造またはグリシジルアミン構造が結合した構造を含むエポキシ樹脂が耐熱性、機械特性、耐湿性が高くなる点からより好ましく、脂肪族または脂環式エポキシ樹脂は信頼性、特に接着性が低くなる点から使用する量を制限するほうがさらに好ましい。これらは単独でも2種以上混合して使用しても良い。
本発明の液状樹脂組成物は、室温で液状であるので、(A)エポキシ樹脂として、1種の(A)エポキシ樹脂のみを含む場合は、その1種の(A)エポキシ樹脂は、室温で液状であり、また、2種以上の(A)エポキシ樹脂を含む場合は、それら2種以上の(A)エポキシ樹脂全部の混合物が、室温で液状である。そのため、(A)エポキシ樹脂が、2種以上の(A)エポキシ樹脂の組合せの場合、(A)エポキシ樹脂は、全てが室温で液状のエポキシ樹脂の組合せであってもよく、あるいは、一部が室温で固形のエポキシ樹脂あっても他の室温で液状のエポキシ樹脂と混合することにより、混合物が室温で液状となるのであれば、室温で液状のエポキシ樹脂と室温で固形のエポキシ樹脂との組合せであってもよい。なお、(A)エポキシ樹脂が、2種以上のエポキシ樹脂が組合せの場合、必ずしも、使用する全てのエポキシ樹脂を混合してから、他の成分と混合して、液状樹脂組成物を製造する必要はなく、使用するエポキシ樹脂を別々に混合して、液状樹脂組成物を製造してもよい。本発明で、(A)エポキシ樹脂が、室温で液状であるとは、エポキシ樹脂成分(A)として使用する全てのエポキシ樹脂を混合した場合に、その混合物が室温で液状になるということである。
本発明において、室温で液状であるが、室温とは25℃を指し、また、液状とは樹脂組成物が流動性を有していることを指す。
前記(A)エポキシ樹脂の含有量は、特に限定されないが、本発明の液状樹脂組成物全体の5重量%以上30重量%以下が好ましく、特に5重量%以上20重量%以下が好ましい。含有量が前記範囲内であると、反応性や組成物の耐熱性や機械的強度、封止時の流動特性に優れる。
本発明に用いる(B)アミン硬化剤としては、エポキシ樹脂を硬化し得るものであれば特に構造は限定されない。
前記アミン硬化剤としては、例えばジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタミン、m-キシレンジアミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン脂肪族ポリアミン、イソフォロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサンなどの脂環式ポリアミン、N-アミノエチルピペラジン、1,4-ビス(2-アミノ-2-メチルプロピル)ピペラジンなどのピペラジン型のポリアミン、ジアミノジフェニルメタン、m-フェニレンジアミン、ジアミノジフェニルスルホン、ジエチルトルエンジアミン、トリメチレンビス(4-アミノベンゾエート)、ポリテトラメチレンオキシド-ジ-P-アミノベンゾエートなどの芳香族ポリアミン類などが挙げられる。
これらのアミン硬化剤は、1種単独で用いても、2種以上の組合せでも良い。
また、本発明の効果が達成される範囲であれば、芳香族アミン、脂肪族アミン、固形アミン、フェノール性硬化剤、酸無水物などの硬化剤を併用することもできる。
さらに半導体装置の封止用途では、耐熱性、電気的特性、機械的特性、密着性、耐湿性が高くなる点から芳香族ポリアミン型硬化剤が一層好ましい。さらに本発明の液状樹脂組成物がアンダーフィルとして用いられる場合には、室温(25℃)で液状を呈するものがより好ましい。
これらの芳香族ポリアミン型硬化剤としては、例えば、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、4,4’-メチレンビス(N-メチルアニリン)、ジエチルトルエンジアミンなどが挙げられる。
本発明に用いるエポキシ樹脂、アミン硬化剤は、本発明に用いられるアクリル樹脂と相溶性を持ち、硬化後にミクロ相分離するものの、一般的な海島構造をとらず、特異な相構造となるものが好ましい。このミクロ相分離については、後述のアクリル樹脂中のエポキシ樹脂の親和性の高い部位の比率、及びアクリル樹脂自体の添加量にも左右されるが、硬化剤の種類によっても、ミクロ相分離に大きく影響を与えものであり、上記芳香族ポリアミン型硬化剤が特に好ましい。
 前記(B)アミン硬化剤の含有量は、特に限定されないが、本発明の液状樹脂組成物全体の5重量%以上30重量%以下が好ましく、特に5重量%以上20重量%以下が好ましい。含有量が前記範囲内であると、反応性や組成物の機械的特性や耐熱性などに優れる。
 前記(A)エポキシ樹脂のエポキシ当量に対する前記(B)アミン硬化剤の活性水素当量の比は0.6以上1.4以下が好ましく、特に0.7以上1.3以下が好ましい。前記(B)アミン硬化剤の活性水素当量が前記範囲内であると、反応性や樹脂組成物の耐熱性が特に向上する。
本発明に用いる(C)アクリル樹脂は、樹脂組成物を低弾性率化させることができ、エポキシ樹脂に溶解できれば、成分は、限定されるものではないが、メタクリル酸エステル又はアクリル酸エステルのモノマーを重合させて得られる重合体であることが好ましい。
メタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸イソブチル、メタクリル酸ターシャルブチル、メタクリル酸グリシジル、メタクリル酸ラウリル、メタクリル酸n-ヘキシル、メタクリル酸n-オクチル、メタクリル酸トリデシル、メタクリル酸イソボルニル、メタクリル酸シクロヘキシル等が挙げられる。
アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸n-ヘキシル、アクリル酸ラウリル、アクリル酸トリデシル、アクリル酸ステアリル等が挙げられる。
これらのモノマーの単独重合体又は共重合体などが選択できるが、共重合体が好ましい。
共重合体とは、2種類以上のモノマーから重合されたポリマーの総称であり、2種類以上のモノマーがランダムに重合されたランダム共重合体、2種のモノマーが交互に重合された交互共重合体、一つの分子中に2種類以上のポリマーが共存していて、共に主鎖を形成しているタイプであるブロック共重合体、一つのポリマー成分が主鎖、別の異なるポリマー成分が枝のようにぶら下がっているタイプであるグラフト共重合体などが選択できる。
これらの中でより好ましいのは、ブロック共重合体である。
ブロック共重合体とは、単一組成の重合物Aと別の単一組成の重合物Bが同一の分子中にA-Bという形でつながれている構造の共重合体である。ブロック共重合体には、ジブロックタイプA-B、トリブロックタイプA-B-A、トリブロックタイプでも3種類の組成からなるA-B-Cなどのタイプが選択できる。
本発明に使用する(C)アクリル樹脂は、A-B-Aタイプのトリブロック共重合体が好ましく、AおよびBについては、上記の例に挙げたモノマーから選択したモノマーから構成される重合体ブロックである。
A-B-Aタイプのトリブロック共重合体の重合体ブロックAは、トリブロック共重合体をエポキシ樹脂に溶解させるためにエポキシ樹脂との親和性が高く、ハンドリング性を向上させるためにガラス転移温度が室温以上であることが好ましく、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸グリシジルなどから選択したモノマーから構成される重合体ブロックであり、好ましくは、メタクリル酸メチル重合体ブロックである。
重合体ブロックBは、低弾性率効果を発揮するためにガラス転移温度が0℃以下であることが好ましく、アクリル酸エチル、アクリル酸メチル、アクリル酸ブチル、アクリル酸2-エチルヘキシルなどから選択したモノマーから構成される重合体ブロックであり、好ましくは、アクリル酸n-ブチル重合体ブロックである。
A-B-Aタイプのトリブロック共重合体において、重合体ブロックAと重合体ブロックBの比率については、どのような割合についても選択できるが、好ましくは、重合体ブロックBが50~90重量%、より好ましくは、60~80重量%である。重合体ブロックBは、低弾性率効果を示す成分であり、より多く含まれる方が、低弾性率化でき有利である。しかし重合体ブロックBのみになるとエポキシ樹脂への親和性が悪くなり、エポキシ樹脂へ溶解できなくなる。そのため、重合体ブロックAが10重量%以上含まれる事が好ましく、20重量%以上含まれることがより好ましい。
(C)アクリル樹脂の重量平均分子量は、好ましくは5000以上150000以下、より好ましくは、10000以上100000以下である。
 (C)アクリル樹脂の添加量は、特に制限されるものではないが、上記液状樹脂組成物に対して、好ましくは0.2重量%以上30重量%以下であり、より好ましくは0.4重量%以上20重量%以下である。(C)アクリル樹脂の添加量が上記下限値未満の場合は低弾性率の効果が得られない恐れがある。一方、添加量が上記上限値を超える場合は均一分散させることが困難となり、樹脂組成物全体が脆くなる恐れがある。
本発明に用いる(D)無機充填剤は、破壊靭性などの機械的強度、熱時寸法安定性、耐湿性を向上することから、半導体装置の信頼性を特に向上することができる。
 前記(D)無機充填剤としては、例えばタルク、焼成クレー、未焼成クレー、マイカ、ガラスなどのケイ酸塩、酸化チタン、アルミナ、溶融シリカ(溶融球状シリカ、溶融破砕シリカ)、合成シリカ、結晶シリカなどのシリカ粉末の酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトなどの炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムなどの硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムなどのホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素などの窒化物などを用いることができる。これらの(D)無機充填剤は、1種単独でも2種以上の組合せでも良い。これらの中でも樹脂組成物の耐熱性、耐湿性、強度などを向上できることから溶融シリカ、結晶シリカ、又は合成シリカ粉末が好ましい。前記(D)無機充填剤の形状は、特に限定されないが、粘度・流動特性の観点から形状は球状であることが好ましい。
 前記(D)無機充填剤の最大粒子径および平均粒子径は特に限定されないが、最大粒子径が25μm以下、かつ平均粒子径が0.1μm以上10μm以下であることが好ましい。前記最大粒子径を前記上限値以下とすることにより液状封止樹脂組成物が半導体装置へ流動する際のフィラー詰まりによる部分的な未充填や充填不良を抑制する効果が高くなる。また前記平均粒子径を前記下限値以上にすることにより、液状封止樹脂組成物の粘度が適度に低下し、充填性が向上する。
(D)無機充填剤の配合量は、特に制限されるものではないが、上記液状樹脂組成物に対して、好ましくは30~80重量%であり、より好ましくは50~75重量%である。(D)無機充填剤の配合量が上記下限値未満の場合は線膨張係数が大きくなりすぎる恐れがあり、上記上限値を超える場合は弾性率が大きくなりすぎる恐れがある。
本発明の液状封止樹脂組成物が硬化した際の25℃での線膨張係数は15~33ppm/℃であることが好ましく、20~26ppm/℃であることがさらに好ましい。また、本発明の液状封止樹脂組成物が硬化した際の25℃での弾性率は3~10GPaであることが好ましく、4~7GPaであることがさらに好ましい。
 前記液状封止樹脂組成物には、前記(A)エポキシ樹脂、(B)アミン硬化剤などの上述した各成分以外に、必要に応じてカップリング剤、液状低応力剤、希釈剤、顔料、難燃剤、レベリング剤、消泡剤などの添加剤を用いることができる。
 本発明の液状封止樹脂組成物は、上述した各成分、添加剤などをプラネタリーミキサー、三本ロール、二本熱ロール、ライカイ機などの装置を用いて分散混練したのち、真空下で脱泡処理して製造することができる。
本発明の半導体装置は、本発明の液状封止樹脂組成物を用いて製造される。
具体的にはフリップチップ型半導体装置が挙げられる。このフリップチップ型半導体装置に関しては、半田電極が具備された半導体素子を基板に接続し、該半導体素子と該基板の間隙を封止する。この場合一般的に基板側の半田電極が接合する部位以外の領域は半田が流れないようにソルダーレジストが形成されている。
次に、半導体素子と基板との間隙に本発明の液状樹脂組成物を充填する。充填する方法としては、毛細管現象を利用する方法が一般的である。具体的には、半導体素子の一辺に本発明の液状樹脂組成物を塗布した後、半導体素子と基板との間隙に毛細管現象で流し込む方法、半導体素子の2辺に前記液状樹脂組成物を塗布した後、半導体素子と基板との間隙に毛細管現象で流し込む方法、半導体素子の中央部にスルーホールを開けておき、半導体素子の周囲に本発明の液状樹脂組成物を塗布した後、半導体素子と基板との間隙に毛細管現象で流し込む方法などが挙げられる。また、一度に全量を塗布するのではなく、2度に分けて塗布する方法なども行われる。また、ポッテッィング、印刷などの方法を用いることもできる
 次に、充填した本発明の液状樹脂組成物を硬化させる。硬化条件は、特に限定されないが、例えば100℃~170℃の温度範囲で1~12時間加熱を行うことにより硬化できる。さらに、例えば100℃で1時間加熱した後、引き続き150℃で2時間加熱するような、段階的に温度を変化させながら加熱硬化を行っても良い。
 このようにして、半導体素子と基板との間が、本発明の液状樹脂組成物の硬化物で封止されている半導体装置を得ることができる。
このような半導体装置には、フリップチップ方式の半導体装置、キャビティーダウン型BGA(Ball Grid Array)、POP(Package on Package)型BGA(Ball Grid Array)、TAB(Tape Automated Bonding)型BGA(Ball Grid Array)、CSP(Chip Scale Package)などが挙げられる。
 以下、実施例について説明する。配合量は重量部である。
[実施例1]
(A)液状エポキシ樹脂として、ビスフェノールF型エポキシ樹脂を100重量部、(B)アミン硬化剤として、芳香族1級アミン型硬化剤を32重量部、(C)アクリル樹脂として、トリブロックアクリル樹脂C11を2重量部、無機充填剤を270重量部、シランカップリング剤としてエポキシシランカップリング剤を4重量部、希釈剤を5重量部、着色剤を0.05重量部、配合し、プラネタリーミキサーと3本ロールを用いて混合し、真空脱泡処理することにより液状封止樹脂組成物を作製した。得られた液状封止樹脂組成物について、以下の評価方法により評価した。
[評価方法]
・粘度:TV-E型粘度計にて、25℃で5rpmの条件で測定を実施した。単位はPa・sである。
・ガラス転移温度、線膨張係数:熱機械分析装置(TMA)を用いて、四角柱状に硬化(硬化条件:150℃、120分)した液状封止樹脂組成物を測定し、ガラス転移温度および線膨張係数(-10℃~10℃までの線膨張係数の平均値)を測定した。
・弾性率:粘弾性測定装置(DMA)を用いて、板状に硬化(硬化条件:150℃、120分)した液状封止樹脂組成物を測定し、室温(25℃)での弾性率を測定した。
上記で得られた液状封止樹脂組成物を半導体装置の基板とチップの間に充填、封止し、液状封止樹脂組成物の充填性試験、耐リフロー試験および温度サイクル試験を実施した。結果を表1に記載した。
試験、評価に使用した半導体装置の構成部材は以下のとおりである。
チップとしては、日立超LSI社製PHASE-2TEGウエハー(ウエハー厚さ0.72mm)にチップの回路保護膜としてポリイミドを用い、半田バンプとしてSn/Ag/Cu組成の無鉛半田を形成したものを15mm×15mmに切断し使用した。
基板には、住友ベークライト(株)製FR5相当の0.8mmtのガラスエポキシ基板をベースとして用い、その両面に太陽インキ製造(株)製ソルダーレジストPSR4000/AUS308を形成し、片面に上記の半田バンプ配列に相当する金メッキパッドを形成したものを50mm×50mmの大きさに切断し使用した。接続用のフラックスにはTSF-6502(Kester製、ロジン系フラックス)を使用した。
半導体装置の組立は、まず充分平滑な金属またはガラス板にドクターブレードを用いてフラックスを50μm厚程度に均一塗布し、次にフリップチップボンダーを用いてフラックス膜にチップの回路面を軽く接触させたのちに離し、半田バンプにフラックスを転写させ、次にチップを基板上に圧着させた。IRリフロー炉で加熱処理し半田バンプを溶融接合して作製した。溶融接合後に洗浄液を用いて洗浄を実施した。液状封止樹脂組成物の充填、封止方法は、作製したチップを搭載した基板を110℃の熱板上で加熱し、チップの一辺に作製した液状封止樹脂組成物を塗布し隙間充填させた後、150℃のオーブンで120分間液状封止樹脂組成物を加熱硬化し、評価試験用のチップ厚さ0.72mmの半導体装置を得た。
・充填性:上記作製した半導体装置について、超音波探傷装置を用いて、液状封止樹脂組成物を充填した部分のボイドの発生を確認し、充填不良ボイドが観察されない場合は良好、観察された場合は不良と判定した。
・耐リフロー性:上記作製した半導体装置をJEDECレベル3の吸湿処理(30℃、相対湿度60%で192時間処理)を行った後、IRリフロー処理(ピーク温度260℃)を3回行い、超音波探傷装置にて半導体装置内部での液状封止樹脂組成物の剥離の有無を確認し、さらに光学顕微鏡を用いてチップ側面部の液状封止樹脂組成物表面にある亀裂の有無を観察した。剥離および亀裂が無い場合は○、剥離又は亀裂が有る場合は×と表示した。
・温度サイクル試験:温度サイクル試験としては、上記のリフロー試験を行った半導体装置に(-55℃/30分)と(125℃/30分)の冷熱サイクル処理を施し、250サイクル毎に超音波探傷装置にて半導体装置内部の半導体チップと液状樹脂組成物界面の剥離の有無を確認し、さらに光学顕微鏡を用いてチップ側面部の液状樹脂組成物表面を観察し、亀裂の有無を観測した。上記温度サイクル試験は最終的に1000サイクルまで実施した。亀裂又は剥離のあるものを「×」で、亀裂及び剥離のないものを「○」で表示した。
以上の結果を表1に詳細にまとめた。
[実施例2~5]
(C)アクリル樹脂の成分割合又は配合量を変え、(D)無機充填剤の配合量を変えた以外は、実施例1と同様の方法によって、液状樹脂組成物を作製した。成分割合の異なるアクリル樹脂は、下記トリブロックアクリル樹脂C12、C13を用いた。得られた液状樹脂組成物を用いて、実施例1と同様に評価した。詳細な配合、液状樹脂組成物および半導体装置の評価結果を表1にまとめた。
[比較例1]
(C)アクリル樹脂を配合しないものであり、実施例1と同様の方法によって液状樹脂組成物を得た。得られた液状樹脂組成物を用いて実施例1と同様に評価した。詳細な配合、液状樹脂組成物および半導体装置の評価結果を表1にまとめた。
[比較例2]
(C)アクリル樹脂の代わりに、液状ポリブタジエンを配合したこと以外は、実施例2と同様の方法によって液状樹脂組成物を得た。得られた液状樹脂組成物を用いて実施例1と同様に評価した。詳細な配合、液状樹脂組成物および半導体装置の評価結果を表1にまとめた。
[比較例3]
(C)アクリル樹脂の代わりに、アクリルゴム粒子を配合し、配合量および(D)無機添加剤の配合量を変えた以外は、実施例と同様の方法によって液状樹脂組成物を得た。得られた液状樹脂組成物を用いて実施例1と同様に評価した。詳細な配合、液状樹脂組成物および半導体装置の評価結果を表1にまとめた。
実施例では、以下の材料を使用した。
・ビスフェノールF型エポキシ樹脂:大日本インキ化学工業(株)製、EXA-830LVP、ビスフェノールF型液状エポキシ樹脂、エポキシ当量161
・芳香族1級アミン型硬化剤:日本化薬(株)製、カヤハード-AA、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、アミン当量63.5
・アクリル樹脂:トリブロックアクリル樹脂C11、クラレ(株)製 LA2140E、A-B-A型アクリルトリブロック共重合体、PMMA(ポリメタクリル酸メチル、ガラス転移温度:100~120 ℃ )-PnBA(ポリアクリル酸n-ブチル、ガラス転移温度:-40~-50 ℃ )-PMMA )、PMMA割合20重量%、Mw=80000
  ・ アクリル樹脂:トリブロックアクリル樹脂C12、クラレ(株)製 LA2250、
A-B-A型アクリルトリブロック共重合体、PMMA(ポリメタクリル酸メチル、ガラス転移温度:100~120 ℃ )-PnBA(ポリアクリル酸n-ブチル、ガラス転移温度:-40~-50 ℃ )-PMMA )、PMMA割合30重量%、Mw=80000
  ・ アクリル樹脂:トリブロックアクリル樹脂C13、クラレ(株)製 LA4285、
A-B-A型アクリルトリブロック共重合体、PMMA(ポリメタクリル酸メチル、ガラス転移温度:100~120 ℃ )-PnBA(ポリアクリル酸n-ブチル、ガラス転移温度:-40~-50 ℃ )-PMMA )、PMMA割合50重量%、Mw=80000
・液状ポリブタジエン:ダイセル化学工業(株)製、PB3600
・アクリルゴム粒子:三菱レイヨン(株)製 KW8815
・無機充填剤(合成球状シリカ):アドマテクス(株)製、アドマファインSO-E3、合成球状シリカ、平均粒径1μm
・エポキシシランカップリング剤: 信越化学工業(株)製、KBM403E、γ-グリシドキシプロピルトリメトキシシラン
・着色剤:三菱化学(株)製、MA-600 カーボンブラック
・希釈剤:東京化成工業(株)製、(試薬)BCSA、エチレングリコールモノ-ノルマル-ブチルエーテルアセテート
本発明において、アクリル樹脂を含まない比較例1では、温度サイクル試験中に剥離が発生した。
比較例2のようにアクリル樹脂の代わりに、液状のゴム成分が含まれる場合は、弾性率は低下するものの、ガラス転移温度も低下してしまい、耐リフロー試験にて剥離が発生した。耐リフロー試験にて剥離が発生したため、その後の温度サイクル試験は実施しなかった。
比較例3のようにアクリル樹脂の代わりに、アクリルゴム粒子が含まれる場合は、アクリル樹脂と同程度の弾性率にするためには、添加量が多くする必要があるため、樹脂粘度が非常に高くなってしまい、ボイドなく充填する事ができなかった。そのため、耐リフロー試験および温度サイクル試験は実施しなかった。
 これに対して、実施例1~5については、アクリル樹脂を含有するため、低弾性率かつ低熱線膨張が達成され、温度サイクル試験において剥離および亀裂が発生しなかった。
 アクリル樹脂を含む液状樹脂組成物は、低弾性率、低熱線膨張を達成し、半導体装置の信頼性を改善することができた。
Figure JPOXMLDOC01-appb-T000001
実施例2の液状封止樹脂組成物の無機充填剤を除いた樹脂成分を、板状に硬化(硬化条件:150℃、120分)した硬化物の破断面を走査型電子顕微鏡を使用して観察した。その結果を図1に示す(倍率:6000倍)。粒子状の相構造が観察された。
さらに、硬化物について切片を作成し、切片をRuO水溶液で電子染色した後、透過型電子顕微鏡を使用して観察した。その結果を図2、3に示す(図2:15000倍、図3:45000倍)。アクリル樹脂は、ミクロ的に相分離しているが、特異な相構造を有している(図2、図3で黒い線条部分)。この相構造により本発明の液状樹脂組成物の硬化物は、低弾性率及び低熱線膨張を達成していると推定される。
(実施例6)
1.アンダーフィル材の製造
(A)液状エポキシ樹脂1を12.3重量%と液状エポキシ樹脂2を12.3重量%、(B)アミン硬化剤1を9.1重量%、アミン硬化剤2を5.7重量%、(C)低応力材1として、トリブロックアクリル樹脂を3.7重量%、(D)無機充填剤を55重量%、シランカップリング剤としてエポキシシランカップリング剤を1.2重量%、希釈剤を0.5重量%、着色剤を0.1重量%、配合し、プラネタリーミキサーと3本ロールを用いて混合し、真空脱泡処理することにより液状樹脂組成物であるアンダーフィル材を得た。
2.半導体装置の製造
得られたアンダーフィル材を用いて半導体装置を作成した。
 基板と低誘電率材料(CVDで形成したポーラス化SiOC膜、比誘電率=2.2)を層間絶縁膜として用いた半導体チップが鉛フリー半田(組成:Sn-3.5Ag)バンプによって予めフリップチップ接続されている基板を用いた。半導体チップのサイズは15mm×15mm×0.75mmtで、基板のサイズは50mm×50mm×0.4mmtであった。半田バンプの高さは0.08mmであった。
 上述の半導体チップが搭載された基板にアンダーフィル材を充填する前にプラズマ装置(March Plasma Systems社製AP-1000)でプラズマ処理を行った。プラズマ処理は、ガス種:Ar、ガス流量:50sccm、処理強さ:350W、処理時間:420s、ダイレクトプラズマモードの条件で処理を行った。
 その後、上述の半導体チップが搭載された基板を110℃の熱板上で加熱し、アンダーフィル材をディスペンスし、ギャップ内を充填させ、150℃のオーブンで120分間アンダーフィル材4を加熱硬化し、半導体装置を得た。
 3.評価項目
 得られたアンダーフィル材および半導体装置について、以下の評価を行った。得られた結果を表1に示す。
(a)線膨張係数の測定
上記アンダーフィル材を150℃のオーブンで120分間硬化後、切削により5mm×5mm×10mmの試験片を得た。この試験片をTMA装置(セイコーインスツルメント社製TMA/SS6100)を用いて圧縮荷重5gで、-100℃から300℃の温度範囲を10℃/分の条件で測定した。この測定により、ガラス転移温度(Tg)及び25℃での線膨張係数を得た。
(b)弾性率の測定
上記アンダーフィル材を150℃オーブンで120分間硬化し、10mm×20mm×1.5mmの試験片を得た。この試験片をDMA装置(セイコーインスツルメント社製DMS6100)を用いて、-30℃から300℃の温度範囲を5℃/分の条件で測定した。この測定より25℃での弾性率を得た。
(c)リフロー試験
 リフロー試験の試験方法としては、上記の半導体装置をJEDECレベル3の吸湿処理(30℃相対湿度60%で192時間処理)を行った後、IRリフロー処理(ピーク温度260℃)を3回行い、超音波探傷装置にて半導体装置内部での剥離・クラックの有無を確認した。剥離及びクラックのない場合を○とした。
(d)温度サイクル試験(TCサイクル)
温度サイクル試験としては、上記のリフロー試験を行った半導体装置に(-55℃/30分)と(125℃/30分)の冷熱サイクル処理を施し、1000サイクル毎に超音波探傷装置にて半導体装置内部での剥離・クラックの有無を確認した。上記温度サイクル試験は最終的に3000サイクルまで実施した(TC1000サイクル~TC3000サイクル)。剥離及びクラックのない場合を○とした。半導体チップの低誘電率材料からなる層間絶縁膜(Low-k層)にクラックを生じた場合は「Low-kクラック」と表記した。
アンダーフィル材の詳細な配合および評価結果を表2にまとめた。
 (実施7~10)
アンダーフィル材の配合を変えた以外は、実施例6と同様にした。アンダーフィル材の詳細な配合および評価結果を表2にまとめた。
 (比較例4~7)
アンダーフィル材の配合を変えた以外は、実施例6と同様にした。アンダーフィル材の詳細な配合および評価結果を表2にまとめた。
実施例および比較例では、以下の材料を使用した。
・液状エポキシ樹脂1:DIC(株)製、EXA-830LVP、ビスフェノールF型液状エポキシ樹脂とビスフェノールA型液状エポキシ樹脂の混合物、エポキシ当量165
・液状エポキシ樹脂2:多官能エポキシ樹脂、三菱化学(株)製、jER630、N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)アニリン、エポキシ当量100
・アミン硬化剤1:芳香族1級アミン型硬化剤、日本化薬(株)製、カヤハード-AA、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、アミン当量63.5
・アミン硬化剤2:芳香族2級アミン型硬化剤、三洋化成工業(株)、T-12、4,4’-メチレンビス(N-メチルアニリン)、アミン当量116
・低応力剤1:トリブロックアクリル樹脂、クラレ(株)製、LA2140E(A-B-A型アクリルトリブロック共重合体、PMMA(ポリメタクリル酸メチル、ガラス転移温度:100~120 ℃ )-PnBA(ポリアクリル酸n-ブチル、ガラス転移温度:-40~-50 ℃ )-PMMA )、PMMA割合20重量%、Mw=80000)
・低応力剤2:ダイセル化学工業(株)製、PB-3600、液状ポリブタジエン
・無機充填剤:(株)アドマテックス製、アドマファインSO-E3、合成球状シリカ、平均粒径1.0μm
・カップリング剤: 信越化学工業(株)製、KBM-403E、γ-グリシドキシプロピルトリメトキシシラン
・希釈剤:東京化成工業(株)製、エチレングリコールモノ-n-ブチルエーテルアセテート
・着色剤:三菱化学(株)製、MA-600、カーボンブラック
表2において、比較例4~7のように、アンダーフィル材の線膨張係数は比較的低いが、弾性率が比較的高い場合、TC2000サイクルでLow-kクラックが発生した。
これに対し、実施例6~10はアンダーフィル材の線膨張係数も弾性率も低いためにTC3000サイクルでもLow-kクラックは発生しなかった。
Figure JPOXMLDOC01-appb-T000002
本発明によれば、フリップチップ方式の半導体装置のアンダーフィル材として、低熱線膨張かつ室温低弾性率で、高い信頼性を有し、狭ギャップへの充填性に優れる液状樹脂組成物を提供することができる。

Claims (16)

  1. (A)液状エポキシ樹脂、(B)アミン硬化剤、(C)アクリル樹脂、および(D)無機充填剤を含有する液状封止樹脂組成物。
  2. 前記液状樹脂組成物のうち、(C)アクリル樹脂の含有量が、0.4重量%以上20重量%以下である請求項1記載の液状封止樹脂組成物。
  3. 前記(C)アクリル樹脂が、複数の異なるモノマー成分のアクリル共重合体から構成される請求項1に記載の液状封止樹脂組成物。
  4. 前記(C)アクリル樹脂が、複数の異なるモノマー成分から構成されるブロックポリマー又はグラフトポリマーである請求項1に記載の液状封止樹脂組成物。
  5. 前記(C)アクリル樹脂が、トリブロックポリマーである請求項4に記載の液状封止樹脂組成物。
  6. 前記(C)アクリル樹脂が、複数の異なる成分のアクリルポリマーから構成され、少なくとも1つの成分のガラス転移温度が0℃以下であるブロックポリマーである請求項4に記載の液状封止樹脂組成物。
  7. 前記(C)アクリル樹脂が、エポキシ樹脂と親和性の高い成分が、ガラス転移温度が0℃以下である成分を挟み込んだ構造を持つトリブロックポリマーである請求項5に記載の液状封止樹脂組成物。
  8. 前記(C)アクリル樹脂が、ポリメタクリル酸メチル(PMMA)及びポリアクリル酸n-ブチル(PnBA)からなるブロックポリマーである請求項4に記載の液状封止樹脂組成物。
  9. ポリメタクリル酸メチル(PMMA)成分の割合が10~50重量%である請求項8に記載の液状封止樹脂組成物。
  10. 前記(C)アクリル樹脂の重量平均分子量が5000以上150000以下である請求項1に記載の液状封止樹脂組成物。
  11. 前記(B)アミン硬化剤が芳香族ポリアミン型硬化剤である請求項1に記載の液状封止樹脂組成物。
  12. アンダーフィル材用樹脂組成物である請求項1~11のいずれか1項に記載の液状封止樹脂組成物。
  13. 請求項1~12のいずれか1項に記載の液状封止樹脂組成物を用いて、半導体素子と基板を封止して作製された半導体装置。
  14. 請求項1~11のいずれか1項に記載の液状封止樹脂組成物からなるアンダーフィル材。
  15. 半田電極が具備された半導体素子を基板に接続する工程、前記半導体素子と前記基板の間に請求項1に記載の液状樹脂組成物を充填する工程、及び充填した前記液状樹脂組成物を硬化させる工程を有する半導体装置の製造方法。
  16. 請求項1に記載の(A)液状エポキシ樹脂(B)アミン硬化剤、(C)アクリル樹脂、及び(D)無機充填剤を配合する工程、分散混練する工程、及び真空脱泡処理する工程を有するアンダーフィル材の製造方法。
PCT/JP2011/072447 2010-10-05 2011-09-29 液状封止樹脂組成物および半導体パッケージ WO2012046636A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010225784A JP2013256547A (ja) 2010-10-05 2010-10-05 液状封止樹脂組成物および半導体パッケージ
JP2010-225784 2010-10-05

Publications (1)

Publication Number Publication Date
WO2012046636A1 true WO2012046636A1 (ja) 2012-04-12

Family

ID=45927631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072447 WO2012046636A1 (ja) 2010-10-05 2011-09-29 液状封止樹脂組成物および半導体パッケージ

Country Status (3)

Country Link
JP (1) JP2013256547A (ja)
TW (1) TW201224049A (ja)
WO (1) WO2012046636A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150035981A (ko) * 2012-07-06 2015-04-07 헨켈 아이피 앤드 홀딩 게엠베하 액체 압축 성형 캡슐화제
KR20160099533A (ko) 2013-12-16 2016-08-22 나믹스 코포레이션 에폭시 수지 경화제, 에폭시 수지 조성물, 에폭시 수지 경화물, 및 에폭시 수지 경화제의 제조 방법
JP2017057331A (ja) * 2015-09-18 2017-03-23 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付き金属箔、金属張積層板及び配線板
WO2017220137A1 (en) 2016-06-22 2017-12-28 Evonik Degussa Gmbh Curable liquid epoxy resin compositions useful as underfill material for semiconductor devices
WO2020170778A1 (ja) * 2019-02-21 2020-08-27 ナミックス株式会社 液状エポキシ樹脂組成物及びそれを硬化させて得られる硬化物

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026095B2 (ja) * 2011-10-31 2016-11-16 太陽インキ製造株式会社 熱硬化性樹脂組成物及びその硬化物、並びにそれを用いたプリント配線板
JP6302843B2 (ja) * 2012-12-03 2018-03-28 リンテック株式会社 保護膜形成用フィルム
US9245815B2 (en) * 2014-04-29 2016-01-26 Intel Corporation Underfill material including block copolymer to tune coefficient of thermal expansion and tensile modulus
JP6593628B2 (ja) * 2015-07-06 2019-10-23 日立化成株式会社 先供給型アンダーフィル材、その硬化物、それを用いた電子部品装置及びその製造方法
JP2017071708A (ja) * 2015-10-08 2017-04-13 信越化学工業株式会社 熱硬化性エポキシ樹脂組成物及び光半導体装置
JP6631238B2 (ja) * 2015-12-22 2020-01-15 日立化成株式会社 先供給型アンダーフィル材、先供給型アンダーフィル材の硬化物、電子部品装置及び電子部品装置の製造方法
CN109071919A (zh) * 2016-05-11 2018-12-21 日立化成株式会社 密封用液状树脂组合物及电子部件装置
JP6910112B2 (ja) * 2016-07-13 2021-07-28 京セラ株式会社 光半導体用樹脂組成物及びその製造方法、並びに光半導体装置
CN111295408B (zh) * 2017-11-08 2023-04-11 Dic株式会社 固化性组合物和纤维增强复合材料
JP7074278B2 (ja) * 2018-04-10 2022-05-24 エルジー・ケム・リミテッド 半導体パッケージ用熱硬化性樹脂組成物、プリプレグおよび金属箔積層板
TW202018008A (zh) * 2018-08-17 2020-05-16 德商漢高智慧財產控股公司 液體壓縮成型或封裝組合物
JP6844680B2 (ja) * 2019-12-12 2021-03-17 昭和電工マテリアルズ株式会社 先供給型アンダーフィル材、先供給型アンダーフィル材の硬化物、電子部品装置及び電子部品装置の製造方法
JP7099490B2 (ja) * 2020-05-07 2022-07-12 昭和電工マテリアルズ株式会社 封止用液状樹脂組成物及び電子部品装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102225A (ja) * 1993-10-04 1995-04-18 Fujitsu Ltd 電子部品接合用接着剤
JP2001081439A (ja) * 1999-09-17 2001-03-27 Fujitsu Ltd 接着剤
JP2002146160A (ja) * 2000-11-17 2002-05-22 Shin Etsu Chem Co Ltd 液状エポキシ樹脂組成物及び半導体装置
WO2005108483A1 (ja) * 2004-05-11 2005-11-17 Nitto Denko Corporation 電子部品装置
WO2005108459A1 (ja) * 2004-05-11 2005-11-17 Nitto Denko Corporation 液状エポキシ樹脂組成物
JP2006169395A (ja) * 2004-12-16 2006-06-29 Nagase Chemtex Corp アンダーフィル樹脂組成物
JP2007182560A (ja) * 2005-12-08 2007-07-19 Hitachi Chem Co Ltd 電子部品用液状樹脂組成物及びこれを用いた電子部品装置
JP2008031193A (ja) * 2006-07-26 2008-02-14 Toray Ind Inc エポキシ樹脂組成物、プリプレグ、繊維強化複合材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102225A (ja) * 1993-10-04 1995-04-18 Fujitsu Ltd 電子部品接合用接着剤
JP2001081439A (ja) * 1999-09-17 2001-03-27 Fujitsu Ltd 接着剤
JP2002146160A (ja) * 2000-11-17 2002-05-22 Shin Etsu Chem Co Ltd 液状エポキシ樹脂組成物及び半導体装置
WO2005108483A1 (ja) * 2004-05-11 2005-11-17 Nitto Denko Corporation 電子部品装置
WO2005108459A1 (ja) * 2004-05-11 2005-11-17 Nitto Denko Corporation 液状エポキシ樹脂組成物
JP2006169395A (ja) * 2004-12-16 2006-06-29 Nagase Chemtex Corp アンダーフィル樹脂組成物
JP2007182560A (ja) * 2005-12-08 2007-07-19 Hitachi Chem Co Ltd 電子部品用液状樹脂組成物及びこれを用いた電子部品装置
JP2008031193A (ja) * 2006-07-26 2008-02-14 Toray Ind Inc エポキシ樹脂組成物、プリプレグ、繊維強化複合材料

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150035981A (ko) * 2012-07-06 2015-04-07 헨켈 아이피 앤드 홀딩 게엠베하 액체 압축 성형 캡슐화제
JP2015522686A (ja) * 2012-07-06 2015-08-06 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング 液体圧縮成型封止材料
KR101979482B1 (ko) * 2012-07-06 2019-05-16 헨켈 아이피 앤드 홀딩 게엠베하 액체 압축 성형 캡슐화제
KR20160099533A (ko) 2013-12-16 2016-08-22 나믹스 코포레이션 에폭시 수지 경화제, 에폭시 수지 조성물, 에폭시 수지 경화물, 및 에폭시 수지 경화제의 제조 방법
US10800873B2 (en) 2013-12-16 2020-10-13 Namics Corporation Epoxy resin curing agents, epoxy resin compositions, epoxy resin cured products, and methods of producing epoxy resin curing agent
JP2017057331A (ja) * 2015-09-18 2017-03-23 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付き金属箔、金属張積層板及び配線板
WO2017220137A1 (en) 2016-06-22 2017-12-28 Evonik Degussa Gmbh Curable liquid epoxy resin compositions useful as underfill material for semiconductor devices
WO2020170778A1 (ja) * 2019-02-21 2020-08-27 ナミックス株式会社 液状エポキシ樹脂組成物及びそれを硬化させて得られる硬化物
JP2020132779A (ja) * 2019-02-21 2020-08-31 ナミックス株式会社 液状エポキシ樹脂組成物及びそれを硬化させて得られる硬化物
JP7241389B2 (ja) 2019-02-21 2023-03-17 ナミックス株式会社 液状エポキシ樹脂組成物及びそれを硬化させて得られる硬化物

Also Published As

Publication number Publication date
TW201224049A (en) 2012-06-16
JP2013256547A (ja) 2013-12-26

Similar Documents

Publication Publication Date Title
WO2012046636A1 (ja) 液状封止樹脂組成物および半導体パッケージ
JP5277537B2 (ja) 電子部品用液状樹脂組成物及びこれを用いた電子部品装置
WO2010029726A1 (ja) 半導体装置および半導体装置に用いる樹脂組成物
JP2013163747A (ja) 半導体封止用液状樹脂組成物及び半導体装置
WO2011013326A1 (ja) 液状樹脂組成物、およびそれを用いた半導体装置
JP2007182561A (ja) 電子部品用液状樹脂組成物、及びこれを用いた電子部品装置
JP2007182562A (ja) 電子部品用液状樹脂組成物及び電子部品装置
JP2013008896A (ja) 半導体装置
JP2009024099A (ja) 液状エポキシ樹脂組成物及び半導体装置
JP2006193595A (ja) アンダーフィル用液状封止樹脂組成物、それを用いた半導体装置、及びその製造方法
JP2012021086A (ja) 液状封止樹脂組成物および半導体装置
WO2011162055A1 (ja) エポキシ樹脂組成物及び半導体装置
JP5692212B2 (ja) 電子部品用液状樹脂組成物及びこれを用いた電子部品装置
JP5070789B2 (ja) アンダーフィル用液状樹脂組成物および半導体装置
JP2006169395A (ja) アンダーフィル樹脂組成物
JP4747586B2 (ja) 半導体用液状封止樹脂組成物の製造方法
JP2010095702A (ja) 樹脂組成物、半導体封止用液状樹脂組成物、アンダーフィル用液状樹脂組成物および半導体装置
WO2010117081A1 (ja) エポキシ樹脂組成物
JP2012012431A (ja) 液状樹脂組成物および半導体装置
JP4810835B2 (ja) アンダーフィル用液状封止樹脂組成物及びそれを用いた半導体装置
JP2012107149A (ja) 液状封止樹脂組成物および半導体装置
JP2009209191A (ja) アンダーフィル用液状樹脂組成物、それを用いた半導体装置、および半導体装置の製造方法
WO2010073559A1 (ja) 液状樹脂組成物および半導体装置
JP2011192818A (ja) 半導体チップ接合用接着フィルム
JP6015912B2 (ja) 液状エポキシ樹脂組成物および半導体電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP