TW201224049A - Liquid encapsulation resin composition and semiconductor package - Google Patents

Liquid encapsulation resin composition and semiconductor package Download PDF

Info

Publication number
TW201224049A
TW201224049A TW100135738A TW100135738A TW201224049A TW 201224049 A TW201224049 A TW 201224049A TW 100135738 A TW100135738 A TW 100135738A TW 100135738 A TW100135738 A TW 100135738A TW 201224049 A TW201224049 A TW 201224049A
Authority
TW
Taiwan
Prior art keywords
resin composition
liquid
sealing resin
acrylic
liquid sealing
Prior art date
Application number
TW100135738A
Other languages
Chinese (zh)
Inventor
Masaya Koda
Katsushi Yamashita
Masami Akitaya
Original Assignee
Sumitomo Bakelite Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co filed Critical Sumitomo Bakelite Co
Publication of TW201224049A publication Critical patent/TW201224049A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/8121Applying energy for connecting using a reflow oven
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81909Post-treatment of the bump connector or bonding area
    • H01L2224/8191Cleaning, e.g. oxide removal step, desmearing
    • H01L2224/81911Chemical cleaning, e.g. etching, flux
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking
    • H01L2924/35121Peeling or delaminating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wire Bonding (AREA)

Abstract

Provided is a liquid encapsulation resin composition including a liquid epoxy resin (A), an amine curing agent (B), an acryl resin (C), and an inorganic filler (D), wherein, preferably, the amount of the acryl resin (C) is 0.5% or more by weight and 20% or less by weight, and the acryl resin (C) includes an acryl copolymer having multiple variants of monomer components. The liquid encapsulation resin composition applied to an underfill material for a flip-chip semiconductor device has high reliability because of low thermal linear expansion and low elastic modulus at room temperature, and an excellent ability to fill a narrow gap.

Description

201224049 六、發明說明: 【發明所屬之技術領域】 本七月係關於—種液狀密封樹脂組成物及半導體封裝。 10月5日在日本提出申請之日本專利特願 憂先權,並將其内容引用至本文中。 【先前技術】 ;’J裝日d方式之半導體裝置巾,湘焊料凸塊將半導體元 件與^板電氣連接。該健⑼方式之半導體裝置為了提高連 接可罪1±而於半導體元件與基板之_充稱為底部填充材料 之液狀樹驗錢來補鱗料⑽之周邊。於此懿部填充材 料填充型之倒裝晶片封I中,隨著近年來^^(低介電常數) B曰片之㈣及焊料凸塊之無純,為了防止由熱應力導致之201224049 VI. Description of the Invention: [Technical Field of the Invention] This July is related to a liquid sealing resin composition and a semiconductor package. The Japanese patent application filed in Japan on October 5th is a priority, and its contents are incorporated herein. [Prior Art]; The semiconductor device of the J-day type, the solder bumps electrically connect the semiconductor element to the board. The semiconductor device of the above-described (9) type is used for the liquid material of the semiconductor element and the substrate, which is called an underfill material, to complement the squama (10) in order to improve the connection sin. In this flip-chip package I of the filling material of the crotch portion, in recent years, (4) and the solder bumps are not pure, in order to prevent thermal stress.

Low-κ層之破壞或焊料凸塊之龜裂’而對底部填充材料要求更 進步之低熱恥脹化及低彈性模數化。此處,所謂L0W_K晶 片,係指含有低介電常數膜(L〇w_K層)作為層間絕緣膜之半導 體元件。 為了使底部填充材料低彈性模數化,雖然有導入液狀或固形 之橡膠成分之方法,但存在如下問題:於添加液狀之橡膠成分 之情形時隨著Tg(玻璃轉移温度)之降低,於添加固形之橡膠成 分之情形時隨著填充量之上升而黏度增加。進而,於添加液狀 之橡膠成分之情形時,有線膨脹係數增大之傾向,不利於低熱 膨脹化。 100135738 4 201224049 針對該等_ ’亦提ttj有添加橡膠粒子之枝(參照專 獻1、2),但因黏度增加之問題使低彈性模數化之範圍受阳 因此謀求一種使彈性模數較目前更低之方法。 " * [先前技術文獻] - [專利文獻] [專利文獻1]日本專利特開2006_169395號公報 [專利文獻2]日本專利特開2〇〇7_18256〇號公報 【發明内容】 (發明所欲解決之問題) 本發明之目的在於提供一種液狀樹脂組成物,其係倒裝晶片 方式之半導體裝置之底部填充材料’其減膨脹低且室溫彈性 模數低,具有高可靠性,對狹窄間隙之填充性優異。 (解決問題之手段) 本發明如下所述。 (1) 一種液狀密封樹脂組成物,其含有(A)液狀環氧樹脂、(B) 胺硬化劑、(C)丙烯酸系樹脂及(D)無機填充劑。 (2) 如(1)之液狀密封樹脂組成物,其中,於上述液狀樹脂組 成物中(C)丙稀酸系樹脂之含量為〇4重量%以上且2〇重量% 以下。 (3) 如(1)或(2)之液狀密封樹脂組成物,其中,上述(〇丙稀酸 系樹脂係由複數種不同單體成分之丙烯酸系共聚物所構成。 (4) 如(1)至(3)中任一項之液狀密封樹脂組成物,其中,上述 100135738 5 201224049 (c)丙稀酸系樹脂係由複數種不同單體成分所構成之嵌段聚合 物或接枝聚合物。 (5) 如⑴至(4)中任一項之液狀密封樹脂組成物,其中,上述 (C)丙烯酸系樹脂為三嵌段聚合物。 (6) 如(1)至(5)中任—項之液狀密封樹脂組成物,其中,上述 (C)丙烯酸系樹脂係由複數種不同成分之丙烯酸系聚合物所構 成,且至少1個成分之玻璃轉移溫度為0°C以下的嵌段聚合物。 (7) 如(1)至(6)中任一項之液狀密封樹脂組成物,其中,上述 (C)丙稀酸系樹脂係具有與環氧樹脂親和性高之成分包夾玻璃 轉移溫度為〇。(:以下之成分之構造的三嵌段聚合物。 (8) 如(1)至(7)中任一項之液狀密封樹脂組成物,其中’上述 (c)丙稀酸系樹脂係包含聚曱基丙烯酸曱酯(pMMA)及聚丙烯 酸正丁酯(ΡηΒΑ)之嵌段聚合物。 (9) 如(8)之液狀密封樹脂組成物,其中,聚曱基丙烯酸甲酯 (ΡΜΜΑ)成分之比例為1〇〜5〇重量%。 (10) 如(1)至(8)中任一項之液狀密封樹脂組成物,其中,上述 (c)丙烤酸系樹脂之重量平均分子量為5〇〇〇以上且15〇〇〇〇以 下。 (11) 如(1)至(10)中任一項之液狀密封樹脂組成物’其中,上 述(B)|ic硬化劑為芳香族多胺型硬化劑。 (12) 如(1)至(11)中任一項之液狀密封樹脂組成物,其係底部 填充材料用樹脂組成物。 100135738 6 201224049 (13) —種半導體裝置,其係使用(1)至(12)中任一項之液狀密 封樹脂組成物將半導體元件及基板密封而製作。 (14) 一種底部填充材料,其包含(1)至(11)中任一項之液狀密 封樹脂組成物。 (15) -種半導體裝置之製造方法,其具有如下步驟:將具備 焊料電極之半導體元件連接至基板上之步驟;於上述半導體元 件與上述基板之間填充⑴至⑼中任—項之液狀樹脂組成物 之步驟;及使所填充之上述液狀樹脂組成物硬化之步驟。 ⑽-種底部填充㈣之製造方法,其具有如下步驟:調配 ⑴至(11)中任-項之⑷液狀環氧樹脂、⑻胺硬化劑、⑹丙稀 酸系樹脂及(D)無機填充劑之步驟;進行分散混練之步驟;及 進行真空消泡處理之步驟。 (發明效果) 根據本發明,可提供—餘狀樹驗成物,其係倒裝晶片方 式之半導體裝置之底部填充材料,且係熱線膨脹低且室溫彈性 模數低,具有高可靠性,對狹窄間隙之填充性優異者。 【實施方式】 /本發明係含有㈧液狀環氧樹脂、⑼胺硬化劑、(c)丙烯酸 系樹脂及(D)無機填_之綠韻樹敝成物,其於應用於 倒裝晶片方式之半導财置之底部填充材料之情形時,熱線膨 脹低且室溫彈性模數低,具有高可靠性,對狹窄間隙之填充性 優異。 !〇〇135738 201224049 作為本發明所使用之(A)液狀環氧樹脂,只要為一分子中具 有2個以上環氧基者,則分子量或構造並無特別限定。 例如可列舉:苯酚酚醛清漆型環氧樹脂、曱酚酚醛清漆型環 氧樹脂等酚醛清漆型環氧樹脂,雙酚A型環氧樹脂、雙酚f 型裱氧樹脂等雙酚型環氧樹脂,N,N_二環氧丙基苯胺、n,n_ -環氧丙基甲苯胺、一胺基二苯甲烧型環氧丙胺、胺基苯紛型 環氧丙胺等芳香族環氧丙胺型環氧賴,對苯 脂:聯苯型環咖旨、瓣她旨、蝴⑽ 有三讲核之環氧樹脂、 三苯盼丙烧型環氧樹脂、絲改質三苯紛甲烧型環氧樹脂、含 二環戊二烯改質苯酚型環氧樹脂、蔡盼 之苯酚芳烷基型環氧樹脂、 、具有伸苯基及/或伸聯苯基骨架夕The destruction of the Low-κ layer or the cracking of the solder bumps requires a more advanced low heat swell and low elastic modulus for the underfill material. Here, the L0W_K wafer refers to a semiconductor element including a low dielectric constant film (L〇w_K layer) as an interlayer insulating film. In order to make the underfill material have a low modulus of elasticity, although there is a method of introducing a liquid component or a solid rubber component, there is a problem that as the Tg (glass transition temperature) is lowered in the case of adding a liquid rubber component, In the case of adding a solid rubber component, the viscosity increases as the filling amount increases. Further, when a liquid rubber component is added, the linear expansion coefficient tends to increase, which is disadvantageous for low thermal expansion. 100135738 4 201224049 For these _ 'also mention ttj has added rubber particles of the branch (refer to the exclusive 1, 2), but due to the problem of increased viscosity, the range of low elastic modulus is subject to yang, so seek to make the elastic modulus The current method is lower. <* [Prior Art Document] - [Patent Document] [Patent Document 1] Japanese Patent Laid-Open No. Hei. No. 2006-169395 (Patent Document 2) Japanese Patent Laid-Open Publication No. Hei No. Hei. SUMMARY OF THE INVENTION An object of the present invention is to provide a liquid resin composition which is a bottom-fill material of a flip-chip type semiconductor device which has low reduction expansion and low room temperature modulus, high reliability, and narrow gap Excellent filling. (Means for Solving the Problem) The present invention is as follows. (1) A liquid sealing resin composition comprising (A) a liquid epoxy resin, (B) an amine curing agent, (C) an acrylic resin, and (D) an inorganic filler. (2) The liquid sealing resin composition according to (1), wherein the content of the (C) acrylic resin in the liquid resin composition is 〇4% by weight or more and 2% by weight or less. (3) The liquid sealing resin composition according to (1) or (2), wherein the acrylic acid resin is composed of an acrylic copolymer of a plurality of different monomer components. (4) The liquid sealing resin composition according to any one of (1), wherein the above-mentioned 100135738 5 201224049 (c) the acrylic resin is a block polymer or graft composed of a plurality of different monomer components. The liquid sealing resin composition according to any one of (1) to (4), wherein the (C) acrylic resin is a triblock polymer. (6) as in (1) to (5) The liquid sealing resin composition of the above-mentioned item (C), wherein the (C) acrylic resin is composed of a plurality of acrylic polymers having different components, and at least one component has a glass transition temperature of 0 ° C or less. The liquid sealing resin composition according to any one of (1) to (6), wherein the (C) acrylic resin has high affinity with an epoxy resin. The component-folding glass transition temperature is 〇. (: The triblock polymer of the following composition is constructed. (8) The liquid-like density of any one of (1) to (7) The sealing resin composition, wherein the above (c) acrylic resin comprises a block polymer of polydecyl acrylate (pMMA) and polybutyl acrylate (ΡηΒΑ). (9) as in (8) The liquid sealing resin composition, wherein the ratio of the polymethyl methacrylate component is from 1 to 5 〇 by weight. (10) The liquid sealing resin according to any one of (1) to (8) In the composition, the weight average molecular weight of the (c) acrylic acid-based resin is 5 Å or more and 15 Å or less. (11) The liquid state according to any one of (1) to (10) The sealing resin composition of the above-mentioned (B)|ic hardening agent is an aromatic polyamine type hardening agent. The liquid sealing resin composition of any one of (1) to (11) is a bottom part. A resin composition for a filler material. 100135738 6 201224049 (13) A semiconductor device which is produced by sealing a semiconductor element and a substrate with the liquid sealing resin composition according to any one of (1) to (12). An underfill material comprising the liquid sealing resin composition according to any one of (1) to (11). (15) Manufacturing of a semiconductor device a method comprising the steps of: connecting a semiconductor element having a solder electrode to a substrate; and filling a liquid resin composition of any one of (1) to (9) between the semiconductor element and the substrate; a step of hardening the above liquid resin composition filled in. (10) A method for producing an underfill (4), which comprises the steps of: (4) a liquid epoxy resin according to any one of (1) to (11), (8) an amine hardener, (6) a step of an acrylic resin and (D) an inorganic filler; a step of performing dispersion and kneading; and a step of performing a vacuum defoaming treatment. (Effect of the Invention) According to the present invention, it is possible to provide a cope-like tree test material which is an underfill material of a semiconductor device of a flip chip type, which has a low heat ray expansion and a low room temperature modulus, and has high reliability. Excellent for filling in narrow gaps. [Embodiment] The present invention contains (8) a liquid epoxy resin, (9) an amine hardener, (c) an acrylic resin, and (D) an inorganic filler, which is applied to a flip chip method. In the case of the underfill material of the semiconductor package, the heat ray expansion is low, the room temperature elastic modulus is low, the reliability is high, and the filling property to the narrow gap is excellent. 〇〇 135738 201224049 The liquid epoxy resin (A) used in the present invention is not particularly limited as long as it has two or more epoxy groups in one molecule. For example, a phenol novolak type epoxy resin such as a phenol novolak type epoxy resin or a nonylphenol novolak type epoxy resin, a bisphenol type epoxy resin such as a bisphenol A type epoxy resin or a bisphenol f type epoxy resin may be mentioned. , N,N-diepoxypropylaniline, n,n_-epoxypropyltoluidine, monoaminobenzophenone-type glycidylamine, aminobenzene-type glycidylamine, etc. Epoxy La, Phenyl Ester: Biphenyl Type Cycling, Vapor Her, Butterfly (10) There are three core epoxy resins, triphenyl propylene oxide type epoxy resin, silk modified triphenyl sulphur type epoxy Resin, dicyclopentadiene-modified phenol type epoxy resin, Cai Pan's phenol aralkyl type epoxy resin, phenyl group and/or phenyl group

3L%氧樹I、奈型環氧樹脂、具有伸苯基及/或伸聯笨基骨架 w艰乳內胺構造之 氧樹脂 fb 切w 1/:4: 土 h 構ie_的%、氧樹脂,脂肪族或脂環式環3L% Oxygen Tree I, Naphthalene Epoxy Resin, Oxygen Resin fb with Stretched Phenyl and/or Stretched Peptide Skeleton Schiffon Acetone Structure cut w 1/:4: % of soil h composition ie, oxygen Resin, aliphatic or alicyclic ring

201224049 氧樹月曰於僅含有i種⑷環氧樹脂之情形時,該 下為液狀::’含有2種以上㈧環氧樹脂之情形 X上之(A)%氧樹月旨全部之混合物於室溫下為液狀。 ^此’於⑷魏概為2伽上⑷絲樹脂之組合之情形 :’(桃氧樹脂可為於室溫下均為絲之環氧樹脂之組合, $雖然-部分環氧樹脂於室溫下為_,但只要藉由與其他於 ^溫下為液狀之環氧樹脂混合,而混合物於室溫下為液狀,則 :、可為於室溫下為液狀之環氧樹脂與於室溫下為固形之環氧 =之組合。再者’於⑷環氧樹脂係2種以上之環氧樹脂之 ^之情形時,並非必須於混合所使用之全部環氧樹脂後,虚 1他成分混合而製造樹驗成物,亦可將所使用之環氧樹 月曰詩為合而製造液狀樹脂組成物。於本發明中,所謂⑷環 樹脂於室溫下為液狀’係指將用作環氧樹脂成分⑷之全部 裱乳樹脂混合之情形時,該混合物於室溫下為液狀。 於本發明中’於室溫下為液狀之表述中,所謂室溫係指乃 ’又’所謂餘係指樹脂組成物具有流動性。 上述⑷環氧樹脂之含量並無__,較佳為本發明之液 狀樹脂組成物總體之5重量%以上且3〇重量%以下,尤佳為5 重量%以上且2〇重量%以下。若含量為上述範圍内,則反應 性、組成物之财熱性、機械強度、密封時之流動特性優異。 作為本發明所使用之⑻胺硬化劑,只要為可使環氧樹脂硬 化者’則其構造並無特別限制。 100135738 201224049 作為上述胺硬化劑’例如可列舉:二乙三胺、三乙四胺、 四 乙五胺、間二甲苯二胺、三甲基己二胺、2_曱基戊二胺等脂肪 族多胺’異佛爾酮二胺、丨,3_雙胺基曱基環己烷、雙(4·胺義产 己基)甲烷、降稻烯二胺、1,2-二胺基環己烷等脂環式多胺, 丄N ** 如基乙基°底°井、1,4-雙(2-胺基-2-曱基丙基)π底n井等n底畊型之夕 胺,二胺基二苯曱烷、間苯二胺、二胺基二笨基砜、二乙義曱 苯二胺、三亞甲基雙(4-胺基苯曱酸酯)、聚氧化四亞曱基-二(對 胺基苯甲酸酯)等芳香族多胺類等。 該等胺硬化劑可單獨使用1種,亦可組合使用2種以上。 又,只要為可實現本發明之效果之範圍,則亦可併用芳香族 胺、脂肪族胺、固形胺、酚性硬化劑、酸酐等硬化劑。 進而,於半導體裝置之密封用途中,就耐熱性、電氣特性、 機械特性、密接性、耐濕性提高之觀點而言,更佳為芳香族夕 胺型硬化劑。進而,於使用本發明之液狀樹脂組成物作為底二 填充材料之情形時,較佳為於室溫(25°c)下呈液狀者。 作為該等芳香族多胺型硬化劑,例如可列舉:3,3,_二乙基 _4,4,,二胺基二苯基甲炫、4,4,_亞曱基雙(N_曱基苯胺)、二乙基 甲苯二胺等。 Α 本發明所使用之環氧樹脂、胺硬化劑較佳為雖然與本發明所 使用之丙雜樹脂具有相雜,於硬化後發生微相分離,但不 形成-般之海島構造,而形成特異性之相構造者。對於該微相 分離’雖然灯述丙稀I轉脂+之與環氧旨之親和性高之 100135738 201224049 部位之比例、及丙烯酸系樹脂自身之添加量左右,但硬化劑之 種類亦對微相分離產生較大影響’尤佳為上述芳香族多胺二硬 化劑。 上述(B)胺硬化劑之含量並無特別限制,較佳為本發明之液 狀樹脂組成物總體之5重量%以上且3〇重量%以下,尤佳為5 重置%以上且20重量%以下。若含量為上述範圍内,則反應 性、組成物之機械特性及耐熱性等優異。 上述(B)胺硬化劑之活性氫當量相對於上述(A)環氧樹脂之 %氧當置之比較佳為〇·6以上且丨4以下,尤佳為〇 7以上且 1.3以下。若上述(B)胺硬化劑之活性氫當量為上述範圍内,則 反應性及樹脂組成物之耐熱性尤為提高。 。本發明所使用之(c)i^酸㈣脂只要為可使刪旨組成物低 彈f模數化,且可溶解於環氧樹脂中,則成分並無限定,較佳 為使曱基丙烯㈣旨或丙烯酸自旨之單體聚合而獲得之聚合物。 2為甲基丙烯酸g旨’例如可列舉:曱基丙烯酸甲醋、甲基丙 =夂乙^、甲基丙騎正丁S旨、曱基丙烯酸正丙_、曱基丙稀 、曱基丙烯酸異丁醋、曱基丙烯酸第三丁醋、甲基丙 稀^^氧丙§旨、甲基丙稀酸月桂§旨、曱基丙烯酸正己醋、曱基 烯-文正辛g曰、甲基丙烯酸十三烷基酯、甲基丙烯酸異稻酯、 甲基丙烯酸環己酯等。 :、、、丙烯馱S曰,可列舉:丙烯酸曱酯、丙烯酸乙酯、丙烯酸 曰@稀^異丙_、丙烯酸正丁酯、丙烯酸異丁i旨、丙烯 100135738 201224049 酸第三丁醋、丙稀酸乙基己醋、丙稀酸正辛醋、丙婦酸正己 醋、丙烯酸月抛旨、⑽酸十三炫基喊丙稀酸硬脂醋等。 可選擇該等單體之均聚物或絲物等,較佳為共聚物。 所謂共聚物’係指由2種以上之單《合而成之聚合物之總 稱,可選擇如下者:使2種以上之單體無規聚合而成之無規共 聚物;使2種單體交替聚合之交替共聚物;-分子中共存2種 以上之聚合物’共_成主鏈之類型之欲段共聚物;-種聚合 物成分為主鏈’其他不同麵之聚合物成分如職般垂下之類 型之接枝共聚物等。 該等中更佳為嵌段共聚物。 所明攸段共聚物,係指單—組成之聚合物A與另一單一每 成之聚合物B於同—分子巾以A_B之形式連接喊之構造名 共聚物。嵌段共聚物中’可選擇二嵌段型A』、三嵌段崔 A — 入丰又型中包含3種組成之A_B_C等類型。 本發明所使用之(C)丙烯酸系樹脂較佳為A各A型之三 共聚物,A及B係包含自上述例中所 知^ 合物嵌段。 <谇有的聋 A-b-A型之 仍“ 4 “ 聚合物嵌段A中,為了使 段共聚物溶解於環氧樹脂中 1使二嵌 一自甲基丙精,、曱基丙 酸係 "基丙稀酸環氧丙醋等中之單體的聚合物嵌段 100135738201224049 Oxygen tree 曰 曰 曰 仅 仅 仅 仅 氧 氧 氧 氧 氧 氧 氧 氧 氧 氧 氧 氧 氧 2012 氧 氧 氧 氧 氧 氧 2012 氧 2012 氧 氧 氧 氧 氧 氧 氧 氧 氧 氧 氧 氧 氧 氧 氧 氧 2012 2012 2012 It is liquid at room temperature. ^This is the case of (4) Wei is a combination of 2 gamma and (4) silk resin: '(Peach oxy-resin can be a combination of epoxy resin at room temperature, $ although - part of epoxy resin at room temperature The lower part is _, but if it is mixed with other epoxy resin which is liquid at a temperature, and the mixture is liquid at room temperature, then: it can be a liquid epoxy resin at room temperature. It is a combination of solid epoxy at room temperature. In addition, when (4) epoxy resin is used in two or more types of epoxy resins, it is not necessary to mix all the epoxy resins used. The composition of the tree is mixed to produce a tree test composition, and the liquid resin composition can be produced by combining the epoxy tree used in the present invention. In the present invention, the (4) ring resin is liquid at room temperature. In the case where all of the enamel resin used as the epoxy resin component (4) is mixed, the mixture is liquid at room temperature. In the present invention, the expression "at room temperature" refers to the term "room temperature". It is a 'also' means that the resin composition has fluidity. The content of the above (4) epoxy resin is not __, preferably the present The liquid resin composition is preferably 5% by weight or more and 3% by weight or less, more preferably 5% by weight or more and 5% by weight or less. When the content is within the above range, the reactivity and the heat of the composition are The mechanical strength and the flow characteristics at the time of the sealing are excellent. The (8) amine curing agent used in the present invention is not particularly limited as long as it can cure the epoxy resin. 100135738 201224049 As the above-mentioned amine curing agent, for example, : aliphatic polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, and 2-nonylpentanediamine, 'isophorone diamine, hydrazine , 3_diaminodecylcyclohexane, bis(4.amine hexyl)methane, decene diamine, 1,2-diaminocyclohexane, etc., 丄N ** Such as base ethyl 底 bottom well, 1,4-bis(2-amino-2-mercaptopropyl) π bottom n well, etc. n-till-type glutamine, diaminodiphenyl decane, m-benzene Diamine, diaminodiphenylsulfone, diethyl phenylene diamine, trimethylene bis(4-aminobenzoate), polyoxytetradecyl-di(p-aminobenzoate) ) The above-mentioned amine hardening agents may be used singly or in combination of two or more kinds thereof. Further, an aromatic amine or an aliphatic amine may be used in combination as long as the effect of the present invention is achieved. A curing agent such as a solid amine, a phenolic curing agent, or an acid anhydride. Further, in the sealing application of a semiconductor device, it is more preferably aromatic in terms of heat resistance, electrical properties, mechanical properties, adhesion, and moisture resistance. Further, when the liquid resin composition of the present invention is used as the bottom two-filler, it is preferably liquid at room temperature (25 ° C). Examples of the polyamine type hardener include 3,3,-diethyl-4,4,diaminodiphenylmethyl, 4,4,-indenylbis(N-decylaniline), Diethyl toluenediamine and the like.环氧树脂 The epoxy resin and the amine curing agent used in the present invention are preferably mixed with the acrylic resin used in the present invention, and microphase separation occurs after hardening, but does not form a general island structure, but forms a specific Sexual phase constructor. The microphase separation is similar to the ratio of the 100135738 201224049 portion of the propylene oxide to the epoxy, and the addition amount of the acrylic resin itself, but the type of the hardener is also microphase. Separation has a large effect, and it is particularly preferred to be the above aromatic polyamine secondary hardener. The content of the above (B) amine hardener is not particularly limited, and is preferably 5% by weight or more and 3% by weight or less, more preferably 5% by weight or more and 20% by weight or less based on the total of the liquid resin composition of the present invention. the following. When the content is within the above range, the reactivity, the mechanical properties of the composition, and heat resistance are excellent. The active hydrogen equivalent of the (B) amine hardener is preferably 〇·6 or more and 丨4 or less, more preferably 〇7 or more and 1.3 or less, based on the oxygen of the (A) epoxy resin. When the active hydrogen equivalent of the above (B) amine hardener is within the above range, the reactivity and the heat resistance of the resin composition are particularly improved. . The (c) i acid (tetra) acid used in the present invention is not limited as long as it can reduce the modulus of the composition and can be dissolved in the epoxy resin, and is preferably a mercapto propylene. (4) A polymer obtained by polymerizing a monomer derived from acrylic acid. 2 is methacrylic acid g, for example, methacrylic acid methyl vinegar, methyl propyl = hydrazine ethane, methyl propyl cycline, methacrylic acid propylene, decyl propylene, methacrylic acid Isobutyl vinegar, methacrylic acid, third butyl vinegar, methyl propylene hydride, methacrylic acid, lauric acid, hexyl acrylate, decyl acrylate, methacrylic acid Tridecyl ester, isoamyl methacrylate, cyclohexyl methacrylate, and the like. :,,, propylene 驮S 曰, can be exemplified by: decyl acrylate, ethyl acrylate, acrylate 稀 @ 稀 ^ isopropyl _, n-butyl acrylate, acrylic acid, propylene 100135738 201224049 acid third vinegar, C Dilute ethyl hexanoacetic acid, acrylic acid octyl vinegar, propyl acrylate vinegar, acrylic acid, and (10) acid thirteen screaming acrylic acid stearic acid vinegar. A homopolymer or a filament or the like of the monomers may be selected, and a copolymer is preferred. The term "copolymer" refers to a general name of a polymer obtained by combining two or more types, and a random copolymer obtained by randomly polymerizing two or more kinds of monomers; Alternating copolymers of alternating polymerization; - copolymers of two or more types of polymers coexisting in the molecule - a copolymer of the type of the main chain; - a polymer component as the main chain - other different surface polymer components A graft copolymer of the type that hangs down. More preferably, these are block copolymers. The term "copolymer" refers to a copolymer of a single-composition polymer A and another single polymer B in the same manner as the molecular towel in the form of A_B. Among the block copolymers, 'selectable diblock type A', and triblock Cui A—into the abundance type, include three types of A_B_C. The (C) acrylic resin used in the present invention is preferably a copolymer of each of the A type A, and the groups A and B contain the block of the compound known from the above examples. <There is still a type of 聋AbA still "4" In the polymer block A, in order to dissolve the segment copolymer in the epoxy resin 1 to make a two-in-one self-methyl propyl hydride, thiopropionic acid system " Polymer block of monomer in acrylic acid propylene glycol vinegar, etc. 100135738

12 201224049 基丙烯酸甲酯聚合物嵌段。 為了發揮低彈性模數效果,聚合物嵌段 溫度為以下,1後^ ^ 权佳為破璃轉移 烯酸I 選自丙烯酸乙輪、丙烯酸甲醋、丙 為丙乙基己醋等中之單體的聚合物嵌段,較佳 為丙烯酸正丁 S旨聚合物嵌段。 段Γ之嵌料㈣卜聚合物錢μ聚合物嵌 任—關,但魏絲合物紐Β為 里/〇更佳為60〜80重量% =模數效果之成分,更多地含有聚合物‘;= 性變差,㈣itr B,㈣之親和 重里从上之聚合物嵌段A,更佳為含有 ⑹丙烯酸系樹脂之重量平均分子量較佳為里:上 15〇_以下,更佳為10_以上且麵00以下。以且 == 酸系樹脂之添加量並無特別限制,相對於上述液狀 树驗成物,較佳為〇.2重量%以上且3G重#%以下,更佳為 〇.4重量%以上且2〇重量%以下。((:)丙_系樹脂之添加量未 達上述下賊之情科,有無法獲得低雜缝之效果之虞。 另H添加量超過上述上限值之情形時’有難以均句分 散’樹脂組成物整體變脆之虞。 本發明所使用之(D)無機填充劑由於會提高破壞勒性等機械 強度、加熱時之尺寸穩定性、耐濕性,故而可尤為提高半導體 100135738 13 201224049 裝置之可靠性。 作為上述(D)無機填錢,例如可使 炮燒黏土、雲母、玻璃等·氧化銳、氧化未 化矽(熔融球狀二氧化矽 、溶融破碎二氧化石夕)入 。 " ==氧化料二一之氧:物‘ 硫動'嫩錤、轉蝴氫氧化物, 石·相 硫關等硫酸鹽或亞硫酸鹽,爾鋅、偏 、魏鈉等爾鹽,氮化銘 乳切等氮化鱗。卿)無機填充射為如種氮= tir上之組合。該等中’就可提高樹脂組成物之耐執性、 入濕性、強度等而言,較佳為炫融二氧切、結晶二氧化 二成:氧切粉末。上述(D)無機填充劑之形狀並無特別限 制,就黏度、流動雜之誠而言,做触為球狀。 域填絲之最大_及平触㈣無制限制, 較佳為最大粒徑為25㈣以下,且平均粒徑為01 _以 上、10⑽以下。藉由使上述最大粒徑為上述上限值以下, 可提南抑制於液狀密封樹脂組成物向半導«置流動時由填 科堵塞引起之部分性未填充或填充不良之效果。又,藉由使上 述平均粒徑為上述下限值以上’液狀密封樹脂組成物之黏度會 適度地降低,填充性提高。 W無機填絲之舰錢祕舰制,姆於上述液狀樹 脂組成物’較佳為30〜80重量%,更佳為5〇〜75重量%。於 100135738 14 201224049 ⑼無機填錢之舰量树上述下限值之情科有線膨服係 數變得過大之虞,於超過上述上限值之情形時有彈性模數變得 過大之虞。 本發明之液狀密騎脂組成物魏時之於2 51下之線膨服 係數較佳為15〜33ppm/t,更料2G〜26鹏/t。又本發 明之液狀密封樹月旨組成物硬化時之於坑下之彈性模數較佳 為3〜1〇 GPa,更佳為4〜7 GPa。 上述液狀密封樹脂組成物中,除上述(A)環氧樹脂、⑻胺硬 化劑等上述之各成分以外’視需要亦可使用偶合劑、液狀低應 力劑、稀釋劑、顏料、阻燃劑、均化劑、消泡劑等添加劑。 本發明之綠__旨喊射藉由❹行星式混合機、三 輕研磨機、二熱輕研磨機、擂潰機等裝置,將上述各成分、添 加劑等分散混練後,於真空下進行消泡處理而製造。 本發明之半導體裝置係使用本發明之液狀密封樹脂組成物 八體而5 ’可列舉规晶片型半導體t置。關於該倒裳晶片 型半導體裝置係將具備焊料電極之半導體元件連接至基板 上,將該半導體元件與該基板之間隙密封。該情形時,通常於 土板側之接σ焊料電極之部位以外之區域形成有阻焊劑,以免 焊料流入。 其將本發明之液崎敝成物填充至半導航件與基板 ]隙中作為填充之方法,通常採用利用毛㈣象之方法。 100135738 15 201224049 具體而δ,可列舉:將本發明之液狀樹脂組成物塗佈於半導體 凡件之-邊後,藉由毛細現象使之流入半導體元件與基板之間 隙令的方法;將上述液狀樹脂組成物塗佈於半導體元件之2邊 後,藉由毛細現象使之流人半導體元件與基板之_中的方 法;預先於半導體元件之中央部開通孔,將本發明之液狀樹脂 組成物塗佈於半導體元件之周圍後,藉由毛細現象使之流入半 導體,件與基板之間隙中的方法等。又,亦可採用不一次塗佈 全部量,而分兩次塗佈之方法等。又,亦可使用灌注、印刷等 方法。 〆、人使所填充之本發明之液狀樹脂組成物硬化。硬化條件 並無特別限制,例如可藉由於刚。c〜17(rc之溫度範圍内加 熱1〜12小時而進行硬化。進而,例如亦可以於削^下加熱 1小時後’繼續於15〇。〇下加熱2小時之方式,一面段階性地 改變溫度一面進行加熱硬化。 如此’可獲得半導體元件與基板之間由本發明之液狀樹脂組 成物之硬化物密封之半導體裝置。 此種半導體裝置可列舉,倒裝晶片方式之半導體裝置、凹槽 向下型 BGA(Ball Grid Array,球狀柵格陣列)、p〇p(package on Package,疊合封裝)型BGA(Ball Grid Array,球狀柵格陣列)、 TAB(Tape Automated Bonding,捲帶式自動接合)型 BGA(Ball12 201224049 Methyl acrylate polymer block. In order to exert the low elastic modulus effect, the polymer block temperature is below, and the weight of the polymer is selected from the group consisting of acrylic acid acetylene, acrylic acid methyl vinegar, and propylene glycol ethyl vinegar. The polymer block is preferably a polymer block of n-butyl acrylate. The fabric of Duan Qiu (4) Bu polymer money μ polymer embedded - off, but the Wei Shi compound New Zealand is more preferably 60~80% by weight of the inner / = = modulus component, more polymer ';= Sexual deterioration, (4) itr B, (4) Affinity and weight of the upper polymer block A, more preferably (6) The weight average molecular weight of the acrylic resin is preferably: upper 15 〇 _ or less, more preferably 10 _ above and below 00. The amount of the acid resin to be added is not particularly limited, and is preferably 0.2% by weight or more and 3% by weight or less, more preferably 〇. 4% by weight or more based on the liquid tree test composition. And 2% by weight or less. ((:) The addition amount of the C-based resin does not reach the above-mentioned thief's affair, and there is no effect of obtaining a low-stitching effect. When the amount of H added exceeds the above upper limit value, 'there is difficulty in dispersing the sentence' The resin composition as a whole is brittle. The (D) inorganic filler used in the present invention can improve the mechanical strength such as the breaking property, the dimensional stability during heating, and the moisture resistance, so that the semiconductor 100135738 13 201224049 device can be particularly improved. For the above-mentioned (D) inorganic filling, for example, it is possible to oxidize the smoldering clay, mica, glass, etc., and to oxidize undeuterated sputum (melting spherical cerium oxide, melting and breaking the sulphur dioxide). == Oxidation material Oxygen oxygen: substance 'sulphur movement' tender 錤, turn butterfly hydroxide, stone · phase sulfur off and other sulfate or sulfite, zinc, partial, Wei sodium, etc., nitriding Ming milk cut and other nitriding scales. Qing) inorganic filling shot is a combination of such as nitrogen = tir. In the above, it is preferable to improve the durability, wettability, strength, and the like of the resin composition, and it is preferably a dioxic cut, a crystalline second oxide: an oxygen cut powder. The shape of the above (D) inorganic filler is not particularly limited, and the contact is spherical in terms of viscosity and flow. The maximum _ and the flat touch (4) of the domain filler are not limited, and the maximum particle diameter is preferably 25 (four) or less, and the average particle diameter is 01 _ or more and 10 (10) or less. By setting the maximum particle diameter to be equal to or less than the above upper limit value, it is possible to suppress the effect of partial filling or filling failure caused by clogging of the liquid sealing resin composition when the liquid sealing resin composition flows to the semiconductor. In addition, the viscosity of the liquid sealing resin composition is appropriately lowered by setting the average particle diameter to be equal to or higher than the lower limit value, and the filling property is improved. The liquid resin composition of the inorganic filler is preferably 30 to 80% by weight, more preferably 5 to 75% by weight.于100135738 14 201224049 (9) In the case of the above-mentioned lower limit value of the above-mentioned lower limit value of the inorganic money-filled ship, the elastic modulus becomes too large when the above-mentioned upper limit value is exceeded. The coefficient of linear expansion of the liquid-like fat-carrying composition of the present invention at a time of 2 51 is preferably 15 to 33 ppm/t, more preferably 2 to 26 p/t. Further, the elastic modulus of the composition of the liquid sealant of the present invention at the time of hardening is preferably 3 to 1 Å GPa, more preferably 4 to 7 GPa. In the liquid sealing resin composition, in addition to the above components (A) epoxy resin, (8) amine curing agent, etc., a coupling agent, a liquid low stress agent, a diluent, a pigment, and a flame retardant may be used as needed. Additives such as agents, leveling agents, and defoamers. The green __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Manufactured by bubble treatment. In the semiconductor device of the present invention, the liquid sealing resin composition of the present invention is used, and the semiconductor device is used. In the flip chip type semiconductor device, a semiconductor element including a solder electrode is connected to a substrate, and the gap between the semiconductor element and the substrate is sealed. In this case, a solder resist is usually formed in a region other than the portion where the σ solder electrode is connected to the earth plate side to prevent the solder from flowing in. The filling method of the present invention fills the gap between the semi-navigation member and the substrate as a filling method, and a method using a hair (four) image is usually employed. 100135738 15 201224049 Specifically, δ, a method in which the liquid resin composition of the present invention is applied to the side of a semiconductor article, and then flows into a gap between the semiconductor element and the substrate by capillary action; a method in which a resin composition is applied to two sides of a semiconductor element, and then flows into a semiconductor element and a substrate by capillary action; a liquid resin is formed by opening a hole in advance at a central portion of the semiconductor element After being applied to the periphery of the semiconductor element, the object is caused to flow into the semiconductor, the gap between the member and the substrate by capillary action, and the like. Further, a method in which the entire amount is not applied once, and the coating is applied twice or more may be employed. Further, methods such as perfusion and printing can also be used. The liquid resin composition of the present invention to be filled is hardened by a person or a person. The hardening conditions are not particularly limited, and for example, they may be due to just. C~17 (The temperature of rc is heated for 1 to 12 hours to harden. Further, for example, it can be heated for 1 hour and then continued to 15 〇. The heating is carried out for 2 hours under the arm, and the surface is changed step by step. The temperature is heat-hardened. Thus, a semiconductor device in which a cured product of the liquid resin composition of the present invention is sealed between a semiconductor element and a substrate can be obtained. Examples of such a semiconductor device include a flip-chip type semiconductor device and a groove orientation. BGA (Ball Grid Array), p〇p (package on Package) type BGA (Ball Grid Array), TAB (Tape Automated Bonding) Automatic joint) type BGA (Ball

Grid Array,球狀柵格陣列)、CSP(Chip Scale Package,晶片級 封裝)等。 100135738 16 201224049 [實施例] 以下’對實施例進行說明。調配量為重量份。 [實施例1] 5周配100 f里份作為⑷液狀環氧樹脂之雙紛F型環氧樹 -脂、32重量份作為(B)胺硬化劑之芳香族i級胺型硬化劑、2 重量份作為(c)丙烯酸系樹脂之三嵌段丙婦酸系樹脂cu、⑽ 重里份之無機填充劑、4重量份作為石夕烧偶合劑之環氧基石夕燒 偶合劑、5重量份之稀釋劑、_重量份之著色劑,使用行星 式混合機與三輥研磨機進行混合,並進行真空消泡處理,藉此 製作液狀密雜餘成物。針對所獲得之餘密封樹脂組成 物’藉由以下之評價方法進行評價。 [評價方法] •黏度:利用TV-E型黏度計,於25t、5rpm之條件下實 施測定。單位為Pa. s。 •玻璃轉移溫度、線膨脹係數:使用熱機械分析裝置(TMa, Theraiomechanical Analysis)測定硬化為四稜柱體(硬化條件: 150°C、120分鐘)之液狀密封樹脂組成物,測出玻璃轉移溫度 及線膨脹係數(-l〇°C〜1(TC之間之線膨脹係數之平均值)。 •彈性模數:使用黏彈性測定裝置(DMA,Dynamic Mechanical Analyzer)測定硬化為板狀(硬化條件:15〇。〇,12〇 分)之液狀密封樹脂組成物,測出室溫(25。〇下之彈性模數。 將上述所獲得之液狀密封樹脂組成物填充、密封於半導體裝 100135738 17 201224049 置之基板與晶片之間,實施液狀密封樹脂組成物之填充性試 驗、耐回焊性試驗及溫度循環試驗。結果記於表1。 使用於試驗、評價之半導體裝置之構成零件如下所述。 作為晶片,係使用將於日立超LSI公司製造之PHASE-2TEG 晶圓(晶圓厚度為0.72 mm)上使用聚醯亞胺作為晶片之電路保 護膜,且形成有Sn/Ag/Cu組成之無鉛焊料作為焊料凸塊者切 割為15 mmx 15 mm而成者。 基板係使用將Sumitomo Bakelite股份有限公司製造之相當 於FR5之0.8 mmt之玻璃環氧樹脂基板作為基底,於其兩面形 成太1%油墨製造股份有限公司製造之阻焊劑 PSR4000/AUS308 ’並於單面形成有適合上述焊料凸塊排列之 鍍金烊墊者切割為50 mmx50 mm之大小而使用。連接用之助 焊劑係使用TSF-6502(Kester製造,松香系助焊劑)。 關於半導體裝置之組裝,首先於充分平滑之金屬或玻璃板上 使用刮刀將助焊劑均勻塗佈為厚度5〇 _左右,其次使用倒 裝晶片接合機使晶片之電路面輕輕接觸助焊細之後離開,使 助焊劑轉印至焊料凸塊上,繼而將晶片壓接於基板上。利用紅 外線(IR)回焊爐進行加熱處理,使焊料凸塊祕接合而製作。 於熔融接合後,使肢淨液實錢淨。密封樹脂組成 物之填充、密封方法,係將搭載有所製作之晶片之基板於⑽ °C之熱板上加熱,將所製作之餘密封翻旨組絲塗佈於晶片 之一邊而填充隙間後’於150t之供箱中將硬化液狀密封樹脂 100135738 201224049 組成物加熱120分鐘,而痛 而獲侍砰知斌驗用之晶片厚度為0.72 mm之半導體裝置。 •填充性:針對上述製作之半導财置,錢超音波探傷裝 置’確認填充有液狀密封樹脂組成物之部分之空隙之發生,未 觀察到填充不良空隙之情形時狀為良好,觀察到之情形時判 定為不良。 •耐回焊性··對上述所製作之半導體I置進行励沉等級 3之吸濕處理(於3(TC、相對濕度6〇%下處理192小時)後,進 行3次IR回焊處理(峰值溫度細。〇,超音波探傷 認半導體裝置㈣之綠㈣旨組成物有無_,進喊用 光學顯微鏡觀察晶片側面部之餘密封樹驗表面有無 龜裂。無獅及龜裂讀_表示為〇,有_絲裂之情形 時表示為X。 •溫度循環試驗:作為溫度循環試驗,對經 半導趙裝跑(机—⑽ 每隔250個循環利用超音波探傷裝置確認半導體裝置内部之 半導體晶片與液狀樹脂組成物界面有無剝離,進而使用光學顯 微鏡觀察晶片側面部讀狀韻組成物表面,觀财無龜干裂。 上述溫度循環試驗最終實施至1000個循環為止。有龜裂或剝 離者表示為「X」,無龜裂及剝離者表示為「Q」。 將以上結果詳細匯總於表1。 [實施例2〜5] 19 100135738 201224049 除改1(c)丙埽酸系樹脂之成分比例或調配量、改變⑼無機 ^充d之調配量以外,藉由與實施例丨同樣之方法製作液狀樹 脂組成物。成分比例不同之㈣_樹脂係使用下述三嵌段丙 婦酸系_ C12、⑶。使用所獲得之液狀樹脂組成物,與實 施例1同樣地崎評價。將詳細之組成、餘繼組成物及半 導體裝置之評價結果匯總於表1。 [比較例lj 比較例1係不調配(Q㈣酸系樹脂者,藉由與實施例】同 狀方法獲龍狀_域物。㈣㈣狀絲樹脂組成物 與實施例1 _地進行膽。將詳細之組成、餘概組成物 及半導體裝置之評價結果匯總於表1。 [比較例2] 除調配液狀聚丁二烯代替(C)丙婦酸系樹脂以外,藉由與實 施例2同樣之方法獲魏狀翻旨纟域物。㈣賴得之液狀樹 脂組成物與實_ 1同樣地進行評價。將詳細之組成、液狀樹 脂組成物及半導體裝置之評價結果匯總於表j。 [比較例3] 除調配丙烯酸系橡膠粒子代替(c)丙烯酸系樹脂,改變其調 配畺及(D)無機添加劑之調配量以外,藉由與實施例同樣之方 法獲得液狀樹脂組成物。使用所獲得之液狀樹脂組成物與實施 例1同樣地進行评價。將詳細之組成、液狀樹脂組成物及半導 體裝置之評價結果匯總於表1。 100135738 20 201224049 於實施例中使用以下之材料。 •雙酚F型環氧樹脂:大日本油墨化學股份有限公司製造, EXA-830LVP,雙酚F型液狀環氧樹脂,環氧當量161 . •芳香族1級胺型硬化劑:曰本化藥股份有限公司製造, - Kayahard-AA,3,3’-二乙基-4,4,-二胺基二苯基曱烷,胺當量63.5 •丙稀酸系樹脂:三嵌·段丙烯酸系樹脂Cll,Kuraray股份 有限公司製造之LA2140E,A-B-A型丙烯酸系三嵌段共聚物, PMMA(聚甲基丙烯酸甲酯,玻璃轉移溫度:100〜120 。(:)-PnBA(聚丙烯酸正丁酯,玻璃轉移溫度:-40〜-50 °C)-PMMA),PMMA 比例 20 重量% ’ Mw=80000 •丙烯酸系樹脂:三嵌段丙烯酸系樹脂C12,Kuraray股份 有限公司製造iLA225〇 ’ A-B-A型丙烯酸系三嵌段共聚物’ PMMA(聚曱基丙稀酸曱 酯,玻璃轉移溫度:丄〇〇〜12〇°C)-PnBA(聚丙烯酸正丁酯,玻 璃轉移溫度:-40〜-50°C)-PMMA),PMMA比例30重量%, Mw= 80000 •丙稀酸系樹脂:三後段丙烤酸系樹脂Cl3 ’ Kuraray股份 有限公司製造之LA4285, A-B-A型丙烯酸系三嵌段共聚物,PMMA(聚曱基丙烯酸曱 酯,玻璃轉移溫度:100〜120°C)-PnBA(聚丙烯酸正丁酯,玻 璃轉移溫度:-40〜-50°〇-ΡΜΜΑ) ’ PMMA比例50重量% ’ Mw= 80000 100135738 21 201224049 •液狀聚丁二烯:Daicel化學工業股份有限公司製造, PB3600 .丙烯酸系橡膠粒子:三菱麗陽股份有限公司製造之 KW8815 •無機填充劑(合成球狀二氧化梦):Admatechs股份有限公 司製造,Admafine SO-E3,合成球狀二氧化矽,平均粒徑i " m •環氧基矽烷偶合劑:信越化學工業股份有限公司製造, KBM403E’ 7-環氧丙氧基丙基三甲氧基矽烷 著色劑·二菱化學股份有限公司製造,MA-600碳黑 •稀釋劑:東京化成工業股份有限公司製造,(試劑)BCSA, 乙二醇單正丁醚乙酸酯 於丰發明中,不含丙烯酸系樹脂之比較例丨於溫度循環試驗 中發生剝離。 如比較例2般含有液狀之橡膠成分代替丙烯酸系樹脂之情 形時’雖然彈性模數降低,但玻璃轉移溫度亦降低,於耐回焊 性試驗中發生剝離。由於在耐回焊性試驗中發生剝離,故而未 實施其後之溫度循環試驗。 如比較例3般含有丙烯酸系橡膠粒子代替丙烯酸系樹脂之 情形時’為了實現與丙烯酸系樹脂同等程度之彈性模數,需增 大添加量’故而樹脂黏度變得非常高,無法不留空隙地進行填 充。因此’未實施耐回焊性試驗及溫度循環試驗。 100135738 22 201224049 由於含有㊉賊系樹脂,故 於溫度循環試驗中未發生剝 相對於此,關於實施例丨〜5, 而實現低彈性模數及__脹, 離及龜裂。 讀_絲職組成物可實現低彈性 熱線膨脹’改善半導體裝置之可靠性。 100135738 23 201224049 【1<】 比較例3 100.00 32.00 4.00 0.05 5.00 I 380.00 60.00 10.3 200 § CN cn 〇 L不良1 1 1 比較例2 100.00 32.00 4.00 0.05 5.00 [ 285.00 I 10.00 CN Os 1良好 X 1 比較例1 100.00 32.00 4.00 0.05 | 5.00 | | 265.00 | 〇 〇 in VO § τ—Η 〇 X 實施例5 100.00 32.00 4.00 0.05 5.00 | 285.00 | 10.00 (N VO § (N ON 良好 〇 〇 實施例4 100.00 32.00 4.00 0.05 5.00 | 285.00 | 10.00 cn (N 8 OO 良好 〇 〇 實施例3 100.00 32.00 4.00 0.05 | 5.00 | | 320.00 | 30.00 … ΓΟ 〇 〇 實施例2 100.00 32.00 4.00 0.05 5.00 285.00 | 10.00 m (N to Ό § OO 良好 〇 〇 實施例1 100.00 32.00 4.00 0.05 5.00 270.00 2.00 〇 〇 § (N CN Ο 良好 〇 〇 原料 雙酚F型環氧樹脂 芳香族1級胺型硬化劑 :環氧基矽烷偶合劑 i著色劑 稀釋劑 無機填充劑(合成球狀) 三嵌段丙烯酸系樹脂C11 三嵌段丙烯酸系樹脂C12 三嵌段丙烯酸系樹脂C13 液狀聚丁二烯 丙烯酸系橡膠粒子 低應力劑調配量(重量%) 無機填充劑調配量(重量%) Oh P PPm/°C j GPa 填充性 耐回焊性 溫度循環試驗 黏度 玻璃轉移溫度 線膨脹係數 溫室彈性模數 組成物組成 組成物特性 硬化物特性 半導體裝置之評價 艺 Sami 201224049 使用掃描式電子顯微鏡觀察將實施例2之液 成物味無機填充劑以外之樹脂成分硬化(硬化條件:ι=,, • 120分)為板狀而成之硬化物之斷裂面。將其結果示於圖丨(倍 率:6000倍)。觀察到粒子狀之相構造。 進而’將硬化物製成切片,利用Ru04水溶液將切片電子染 色後,使用穿透式電子顯微鏡進行觀察。將其結果示於圖2、 3㈤2 : 15_倍,圖3 = 45_倍)。丙烯酸系樹脂雖然於微 觀上相分離,但具有特異性之相構造(圖2、目3之黑線條部 分)—。根據該相構造’可推斷本發明之餘樹脂組成物之硬化 物實現低彈性模數及低熱線膨脹。 [實施例6] 1. 底部填充材料之製造 調配12.3重量%之⑷液狀環氧樹脂卜12 3重量%之液狀環 氧樹脂2、9.1重量%之⑼胺硬化劑卜5 7重量%之胺硬化劑 2、 3.7重量%之作為(c)低應力材料丨之三嵌段丙烯酸系樹脂、 55重量。/。之⑼無機填充劑、12 |量%之作為魏偶合劑之環 氧基魏偶合劑、0.5 ^量%之稀釋劑、及〇1重量%之著色劑, 使用行星式混合機與三輥研磨機進行混合,並進行真空消泡處 王里’藉此獲得作為液狀樹脂組成物之底部填充材料。 2.半導體裝置之製造 使用所獲得之底部填充材料製成半導體裝置。 使用預先利用無料料(組成:Sn_3 5A邮塊將基板與使用 100135738 25 201224049 低介電常數材料(藉由化學氧相沈積法(CVD)形成之多孔化 SiOC膜’介電常數=2 2)作為層間絕緣膜之半導體晶片倒褒晶 月連接而成的基板。半導體晶片之尺寸為mmXl5 mmX〇 75 mmt ’基板之尺寸為50腿x5〇mmx〇.4mmt。焊料凸塊之高度 為 0.08 mm 〇 二於對上述搭載有半導體晶片之基板填充底部填充材料之 刖使用電聚裝置(March Pla讓Systems公司製造之AP-1 〇〇〇) =電聚處理。處理之條件如下:氣體種類:氬氣,氣體 "IL量50 seem,處理強度:35〇 w,處理時間:㈣s,直接電 漿模式。 其後’將上述搭載有半導體晶片之基板於11(TC之熱板上加 …、刀配底口P填充材料,對間隙内進行填充,於^紙之供箱 中將底。卩填充材料4加熱硬化⑽分鐘,而獲得半導體裝置。 3.評價項目 針對所獲付之底部填充材料及半導體裝置進行以下之評 價。將所得結果示於表1。 (a)線膨服係數之測定 於15(TC之烘箱中,使上述底部填充材料硬化⑽分鐘後, 藉由切削獲得5_5軸,麵之試驗片。針對該試驗片, 使用 TMA裝置「# τ & (精工電子股份有限公司製造之 ™a/ss嶋)’以壓縮負重&,於贼/分鐘之條件下對· C至300C之溫度範圍進行測定。藉由該測定,獲得玻璃轉移 100135738 26 8 201224049 溫度(Tg)及於25°C下之線膨脹係數。 (b)彈性模數之測定Grid Array, spherical grid array, CSP (Chip Scale Package), etc. 100135738 16 201224049 [Examples] Hereinafter, examples will be described. The blending amount is parts by weight. [Example 1] A 500-liter portion of a F-type epoxy resin-ester of (4) a liquid epoxy resin and 32 parts by weight of an aromatic i-type amine-type hardener as a (B) amine hardener, 2 parts by weight of (c) triblock-glycolic acid-based resin cu of acrylic resin, (10) heavy-filled inorganic filler, 4 parts by weight of epoxy-based calcining coupler as a sulphur coupling agent, and 5 parts by weight The diluent and _ parts by weight of the coloring agent are mixed with a three-roll mill using a planetary mixer, and vacuum defoaming treatment is performed to prepare a liquid-like dense residue. The obtained sealing resin composition was evaluated by the following evaluation method. [Evaluation method] • Viscosity: Measurement was carried out under the conditions of 25 t and 5 rpm using a TV-E type viscometer. The unit is Pa. s. • Glass transition temperature and coefficient of linear expansion: A liquid sealing resin composition which was hardened into a quadrangular prism (hardening condition: 150 ° C, 120 minutes) was measured using a thermomechanical analysis device (TMa, Theraiomechanical Analysis), and the glass transition temperature was measured. And linear expansion coefficient (-l〇°C~1 (the average value of the linear expansion coefficient between TCs). • Elastic modulus: Hardening is measured using a viscoelasticity measuring device (DMA, Dynamic Mechanical Analyzer) (hardening conditions) : 15 〇, 〇, 12 )) of the liquid sealing resin composition, the room temperature (25. The elastic modulus of the underarm is measured. The liquid sealing resin composition obtained above is filled and sealed in a semiconductor package 100135738 17 201224049 The filling test, the reflow resistance test and the temperature cycle test of the liquid sealing resin composition were carried out between the substrate and the wafer. The results are shown in Table 1. The components of the semiconductor device used for the test and evaluation are as follows: As a wafer, a polyethylenimine is used as a circuit protection film for a wafer on a PHASE-2TEG wafer (wafer thickness of 0.72 mm) manufactured by Hitachi Super-LSI. A lead-free solder having a composition of Sn/Ag/Cu was formed as a solder bump and was cut into 15 mm x 15 mm. The substrate was made of a glass epoxy substrate of 0.8 mmt equivalent to FR5 manufactured by Sumitomo Bakelite Co., Ltd. The substrate is formed on both sides of the solder resist PSR4000/AUS308' manufactured by Toon Ink Co., Ltd. and is formed by forming a gold-plated pad suitable for the above-mentioned solder bump arrangement on one side and cutting it to a size of 50 mm x 50 mm. The flux used is TSF-6502 (manufactured by Kester, rosin-based flux). For the assembly of semiconductor devices, the flux is first uniformly applied to a thickness of about 5 〇 using a doctor blade on a sufficiently smooth metal or glass plate. Next, using a flip chip bonding machine, the circuit surface of the wafer is gently contacted with the soldering fine and then left, the flux is transferred onto the solder bump, and then the wafer is crimped onto the substrate. The infrared (IR) reflow oven is used. The heat treatment is performed to make the solder bumps secretly joined. After the fusion bonding, the limb liquid is cleaned. The sealing and sealing method of the sealing resin composition is carried out. The substrate carrying the fabricated wafer is heated on a hot plate at (10) °C, and the remaining seal is applied to one side of the wafer to fill the gap, and then the hardened liquid seal is sealed in the 150t case. Resin 100135738 201224049 The composition was heated for 120 minutes, and the semiconductor device with a wafer thickness of 0.72 mm was used by Pai Zhibin. • Fillability: For the above-mentioned semi-conductor, the ultrasonic ultrasonic flaw detector 'confirmed the filling The occurrence of voids in a portion of the liquid sealing resin composition was good when no filling gap was observed, and it was judged to be bad when observed. • Reflow resistance • The above-mentioned semiconductor I was subjected to a moisture absorption treatment at a sink level of 3 (after 3 (TC, 192 hours at a relative humidity of 6〇%), and then subjected to three IR reflow processes ( The peak temperature is fine. 〇, ultrasonic detection of the semiconductor device (4) Green (4) The composition of the composition is _, screaming with an optical microscope to observe the side of the wafer after the sealing tree to check the surface for cracks. No lion and crack reading _ expressed as 〇, when there is _ cleavage, it is expressed as X. • Temperature cycle test: As a temperature cycle test, the semi-conductor is loaded (machine-(10) every four 250 cycles using an ultrasonic flaw detector to confirm the semiconductor inside the semiconductor device Whether the interface between the wafer and the liquid resin composition is peeled off, and the surface of the side surface of the wafer is observed by an optical microscope, and the turtle is not cracked. The temperature cycle test is finally carried out until 1000 cycles. It is indicated as "X", and no crack or peeling is indicated as "Q". The above results are summarized in Table 1. [Examples 2 to 5] 19 100135738 201224049 In addition to 1 (c) component of a propionate resin proportion A liquid resin composition was produced in the same manner as in Example 以外 except that the amount of the compound was adjusted and the amount of the inorganic compound was changed. (4) _ Resin was used as the following triblock propylene glycol system _ C12 (3) The liquid resin composition obtained was evaluated in the same manner as in Example 1. The evaluation results of the detailed composition, the remainder composition, and the semiconductor device are summarized in Table 1. [Comparative Example 1j Comparative Example 1 is not For the formulation of the Q(tetra) acid resin, the dragon-like structure is obtained by the same method as in the example. (4) The (four) filament resin composition and the embodiment 1 are used for the gallbladder. The detailed composition, the composition and the semiconductor are detailed. The evaluation results of the apparatus are summarized in Table 1. [Comparative Example 2] The same procedure as in Example 2 was carried out except that the liquid polybutadiene was blended instead of the (C) propylene glycol resin. (4) The liquid resin composition of Lai was evaluated in the same manner as in Real 1. The evaluation results of the detailed composition, the liquid resin composition, and the semiconductor device are summarized in Table J. [Comparative Example 3] In addition to the acrylic rubber Particles replace (c) acrylic resin, A liquid resin composition was obtained by the same method as in the Example except that the amount of the compound was adjusted and the amount of the (D) inorganic additive was changed. The liquid resin composition obtained was evaluated in the same manner as in Example 1. The evaluation results of the detailed composition, the liquid resin composition, and the semiconductor device are summarized in Table 1. 100135738 20 201224049 The following materials were used in the examples: • Bisphenol F type epoxy resin: manufactured by Dainippon Ink Chemical Co., Ltd. EXA-830LVP, bisphenol F liquid epoxy resin, epoxy equivalent 161 . • Aromatic grade 1 amine hardener: manufactured by Sakamoto Chemical Co., Ltd., - Kayahard-AA, 3, 3'- 2 Base-4,4,-diaminodiphenyl decane, amine equivalent 63.5 • Acrylic resin: three-in-one-stage acrylic resin C11, LA2140E manufactured by Kuraray Co., Ltd., ABA-type acrylic triblock Copolymer, PMMA (polymethyl methacrylate, glass transition temperature: 100~120. (:)-PnBA (polybutyl acrylate, glass transition temperature: -40 to -50 °C) - PMMA), PMMA ratio: 20% by weight ' Mw = 80000 • Acrylic resin: triblock acrylic resin C12, Kuraray Co., Ltd. manufactures iLA225〇' ABA-type acrylic triblock copolymer 'PMMA (polydecyl methacrylate, glass transition temperature: 丄〇〇~12〇 °C)-PnBA (polybutyl acrylate) , glass transition temperature: -40~-50 ° C) - PMMA), PMMA ratio 30% by weight, Mw = 80000 • Acrylic resin: three-stage acrylic acid resin Cl3 'LA4285 manufactured by Kuraray Co., Ltd., ABA type acrylic triblock copolymer, PMMA (polydecyl acrylate, glass transition temperature: 100~120 ° C) - PnBA (polybutyl acrylate, glass transition temperature: -40~-50 ° 〇 - ΡΜΜΑ) 'PMMA ratio 50% by weight' Mw= 80000 100135738 21 201224049 • Liquid polybutadiene: manufactured by Daicel Chemical Industry Co., Ltd., PB3600. Acrylic rubber particles: KW8815 manufactured by Mitsubishi Rayon Co., Ltd. • Inorganic filling Agent (synthetic spherical dioxide dioxide dream) Made by Admatechs Co., Ltd., Admafine SO-E3, synthetic spherical cerium oxide, average particle size i " m • Epoxy decane coupling agent: manufactured by Shin-Etsu Chemical Co., Ltd., KBM403E' 7-epoxypropoxy Propyl trimethoxydecane coloring agent, manufactured by Ernst Chemical Co., Ltd., MA-600 carbon black • Thinner: manufactured by Tokyo Chemical Industry Co., Ltd., (reagent) BCSA, ethylene glycol mono-n-butyl ether acetate In the invention, the comparative example containing no acrylic resin peeled off in the temperature cycle test. When the liquid rubber component was replaced by the acrylic resin as in Comparative Example 2, the elastic modulus decreased, but the glass transition temperature also decreased, and peeling occurred in the reflow resistance test. Since peeling occurred in the reflow resistance test, the subsequent temperature cycle test was not performed. When the acrylic rubber particles are contained in the case of the comparative example 3 in place of the acrylic resin, the amount of the resin is required to be increased in order to achieve an elastic modulus equivalent to that of the acrylic resin. Therefore, the resin viscosity is extremely high, and the void cannot be left without leaving a void. Fill it up. Therefore, the reflow resistance test and the temperature cycle test were not carried out. 100135738 22 201224049 Since the thief-based resin was contained, no peeling occurred in the temperature cycle test. With respect to the examples 丨~5, low elastic modulus and __expansion, cracking and cracking were achieved. The reading of the silk composition can achieve low elasticity and thermal expansion to improve the reliability of the semiconductor device. 100135738 23 201224049 [1<] Comparative Example 3 100.00 32.00 4.00 0.05 5.00 I 380.00 60.00 10.3 200 § CN cn L L1 1 1 Comparative Example 2 100.00 32.00 4.00 0.05 5.00 [ 285.00 I 10.00 CN Os 1 Good X 1 Comparative Example 1 100.00 32.00 4.00 0.05 | 5.00 | | 265.00 | 〇〇in VO § τ—Η 〇X Example 5 100.00 32.00 4.00 0.05 5.00 | 285.00 | 10.00 (N VO § (N ON Good Practice Example 4 100.00 32.00 4.00 0.05 5.00 285.00 | 10.00 cn (N 8 OO Good Practice Example 3 100.00 32.00 4.00 0.05 | 5.00 | | 320.00 | 30.00 ... ΓΟ 〇〇 Example 2 100.00 32.00 4.00 0.05 5.00 285.00 | 10.00 m (N to Ό § OO Good 〇 〇Example 1 100.00 32.00 4.00 0.05 5.00 270.00 2.00 〇〇§ (N CN 〇〇 Good bismuth raw material bisphenol F type epoxy resin aromatic grade 1 amine type hardener: epoxy decane coupling agent i colorant diluent inorganic Filler (synthetic spherical) Triblock acrylic resin C11 Triblock acrylic resin C12 Triblock acrylic resin C13 Liquid Butadiene Acrylic Rubber Particles Low Stress Agent Formulation (% by weight) Inorganic Filler Formulation (% by weight) Oh P PPm/°C j GPa Fillability Reflow Resistance Temperature Cycle Test Viscosity Glass Transfer Temperature Linear Expansion Coefficient Greenhouse Elastic Modulus Composition Composition Evaluation of Characteristics of Hardened Properties Semiconductor Device Sami 201224049 The resin component other than the liquid inorganic impurity of Example 2 was cured by a scanning electron microscope (hardening conditions: ι=,, • 120 points) is the fracture surface of the hardened material. The result is shown in Figure 倍 (magnification: 6000 times). The structure of the particle phase is observed. Further, the cured product is sliced and the Ru04 aqueous solution is used. The sections were electronically stained and observed using a transmission electron microscope. The results are shown in Fig. 2, 3 (5) 2: 15_ times, and Fig. 3 = 45_ times). Although the acrylic resin is microscopically phase-separated, it has a specific phase structure (Fig. 2, black line portion of Fig. 3). According to this phase structure, it can be inferred that the hardened resin composition of the present invention achieves a low modulus of elasticity and a low heat line expansion. [Example 6] 1. Preparation of underfill material 12.3 wt% of (4) liquid epoxy resin 123% by weight of liquid epoxy resin 2, 9.1% by weight of (9) amine hardener Bu 5 7 wt% Amine hardener 2, 3.7 wt% of (c) a low-stress material bismuth triblock acrylic resin, 55 wt. /. (9) Inorganic filler, 12% by weight of an epoxy coupling agent as a Wei coupling agent, 0.5% by volume of a diluent, and 1% by weight of a coloring agent, using a planetary mixer and a three-roll mill Mixing is carried out, and vacuum defoaming is performed in the chamber to thereby obtain an underfill material as a liquid resin composition. 2. Fabrication of Semiconductor Device A semiconductor device was fabricated using the obtained underfill material. Using a pre-utilized non-material (composition: Sn_3 5A mail block to use the substrate as a low dielectric constant material (Polymerized SiOC film formed by chemical oxygen phase deposition (CVD) 'dielectric constant = 2 2) using 100135738 25 201224049 The semiconductor wafer of the interlayer insulating film is connected by a twin crystal cell. The size of the semiconductor wafer is mm×l5 mm×〇75 mmt 'the size of the substrate is 50 legs x 5 〇 mm x 〇 .4 mmt. The height of the solder bump is 0.08 mm 〇 After filling the underfill material with the underfill material on the substrate on which the semiconductor wafer is mounted, an electropolymerization device (March Pla makes AP-1 制造 manufactured by Systems) = electropolymerization treatment. The conditions of the treatment are as follows: gas type: argon gas, Gas "IL amount 50 seem, treatment intensity: 35〇w, processing time: (d) s, direct plasma mode. Then 'the above-mentioned semiconductor wafer-mounted substrate is placed on the 11th (TC hot plate with ..., knife bottom The filling material of the mouth P is filled in the gap, and the bottom is filled in the paper supply box. The crucible filling material 4 is heat-hardened (10) minutes to obtain a semiconductor device. 3. The evaluation item is for the underfill material and the half to be paid. The conductor device was evaluated as follows. The results obtained are shown in Table 1. (a) The coefficient of linear expansion was measured in a 15 (TC oven) after the underfill material was hardened (10) minutes, and the 5-5 axis was obtained by cutting. For the test piece, use the TMA device "# τ & (TMa/ss嶋 manufactured by Seiko Instruments Inc.)" to compress the load & in the case of thief/minute, · C to 300C The temperature range was measured. By this measurement, the glass transition 100135738 26 8 201224049 temperature (Tg) and the linear expansion coefficient at 25 ° C were obtained. (b) Determination of elastic modulus

於150 C供;f|中’使上述底部填充材料硬化分鐘,獲得 10mmx20mmxl.5mni之試驗片。針對該試驗片’使用dMA 裝置(精工電子股份有限公司製造之DMS6100),於5t/分之條 件下對3GC至3GGC之溫度範圍進行測定。藉由該測定,獲得 於25°C下之彈性模數。 (c)回焊試驗 々作為回料狀試财法,耻料導體裝置騎腳% 等級3之吸濕處理(於3〇〇c相對濕度6〇%下處自I%小時)後, 、γ亍人IR回焊處理(峰值溫度26〇。〇利用超音波探傷裝置 確〜半導财置㈣有無祕、㈣。錢離及㈣之情形時 設為〇。 (d)溫度循環試驗(TC循環) 。為度猶’對經上述回焊試驗之半導體裝置實施 (s55 C/3G分)與(125°C/3G分)之冷熱循環處理’每隔1_個循 %利,,探傷裝置確認半導體I置内部有無剝離、龜裂。 ^皿度餘糖最終實絲3_健縣止⑽⑻0個循 =〜TC3000個循環)。無剝離及龜裂之情形時設為◦。半導體 匕3低,1電常數材料之層間絕緣膜(Low-k層)產生龜裂 之情形時4「LQw_k|^。 θ)產生龜裂 將底部填充材料之詳細組成及評價結果 匯總於表2。 100135738 27 201224049 [實施例7〜l〇] 除改交底部填充材料之組成以外,與實施例日同樣地進行。 將底部填充材叙詳細組成及評觀果匯總於表2。The above underfill material was hardened for one minute at 150 C; and the test piece of 10 mm x 20 mm x 1.5 mm was obtained. For the test piece, the temperature range of 3GC to 3GGC was measured at 5 t/min using a dMA apparatus (DMS6100 manufactured by Seiko Instruments Inc.). By this measurement, the modulus of elasticity at 25 ° C was obtained. (c) Reflow test 々 as the return-type test method, the shame conductor device rides the foot % level 3 moisture absorption treatment (at 3〇〇c relative humidity 6〇% from I% hours), γ Deaf IR reflow treatment (peak temperature 26 〇. 〇Using ultrasonic flaw detectors = semi-conducting (4) with or without secrets, (4). When the money is away from (4), set to 〇. (d) Temperature cycle test (TC cycle For the semiconductor device that has undergone the above reflow test (s55 C/3G points) and (125 °C/3G points), the heat and cold cycle treatment is performed every 1%, and the flaw detection device confirms There is no peeling or cracking inside the semiconductor I. ^The final amount of the residual sugar is 3_jianxian (10) (8) 0 cycles = ~ TC3000 cycles). Set to ◦ without peeling and cracking. When the semiconductor 匕3 is low and the interlayer insulating film (Low-k layer) of the one-electroless constant material is cracked, 4 "LQw_k|^. θ) cracks are generated. The detailed composition and evaluation results of the underfill material are summarized in Table 2. 100135738 27 201224049 [Examples 7 to 10] The same procedure as in the example was carried out except that the composition of the underfill material was changed. The detailed composition and evaluation of the underfill material are summarized in Table 2.

[比較例4〜7J 除改k:底部填充材料之組成m卜,與實闕6同樣地進行。 將底部填充材料之詳細組成及評價結果匯總於表2。 於實施例及比較例中,使用以下之材料。 •液狀環氧樹脂1 : DIC股份有限公司製造,exa_830LVP, 雙酚F型液狀環氧樹脂與雙酚A型液狀環氧樹脂之混合物, 環氧當量165 •液狀環氧樹脂2 :多官能環氧樹脂,三菱化學股份有限公 司製造’ jER63〇,N,N-雙(2,3-環氧丙基)_4_(2,3_環氧丙氧基) 苯胺,環氧當量100 •胺硬化劑1 :芳香族1級胺型硬化劑,日本化藥股份有限 公司製造,Kayahard-AA ’ 3,3,-二乙基-4,4’-二胺基二苯基甲烷, 胺當量63.5 •胺硬化劑2 :芳香族2級胺型硬化劑,三洋化成工業股份 有限公司,T-12,4,4·-亞曱基雙(N-曱基苯胺),胺當量116 •低應力劑1 :三嵌段丙烯酸系樹脂,Kuraray股份有限公 司製造’LA2140E(A-B-A型丙烯酸系三嵌段共聚物’PMMA(聚 甲基丙烯酸曱酯,玻璃轉移溫度:100〜120°C)-PnBA(聚丙烯 酸正丁酯’玻璃轉移溫度:-40〜·50°C)-PMMA),PMMA比例 100135738 28[Comparative Examples 4 to 7J Except for the change k: the composition of the underfill material m b was carried out in the same manner as the actual crucible 6. The detailed composition and evaluation results of the underfill material are summarized in Table 2. In the examples and comparative examples, the following materials were used. • Liquid epoxy resin 1: DIC Co., Ltd., exa_830LVP, a mixture of bisphenol F liquid epoxy resin and bisphenol A liquid epoxy resin, epoxy equivalent 165 • Liquid epoxy resin 2 : Multifunctional epoxy resin, manufactured by Mitsubishi Chemical Corporation, 'jER63〇, N,N-bis(2,3-epoxypropyl)_4_(2,3_epoxypropoxy) aniline, epoxy equivalent 100 • Amine hardener 1: aromatic grade 1 amine hardener, manufactured by Nippon Kayaku Co., Ltd., Kayahard-AA '3,3,-diethyl-4,4'-diaminodiphenylmethane, amine equivalent 63.5 • Amine hardener 2: Aromatic grade 2 amine hardener, Sanyo Chemical Industry Co., Ltd., T-12, 4,4·-indenyl bis(N-mercaptoaniline), amine equivalent 116 • Low stress Agent 1: Triblock acrylic resin, manufactured by Kuraray Co., Ltd. 'LA2140E (ABA type acrylic triblock copolymer 'PMMA (polymethyl methacrylate, glass transition temperature: 100 to 120 ° C) - PnBA ( Polybutyl acrylate 'glass transition temperature: -40~·50 ° C)-PMMA), PMMA ratio 100135738 28

S 201224049 20 重量%,Mw=80000) •低應力劑2 : Daicel化學工業股份有限公司製造, PB-3600,液狀聚丁二烯 •無機填充劑:Admatechs股份有限公司製造’ Admafine SO-E3 ’合成球狀二氧化石夕,平均粒徑】〇 _ •偶合劑.信越化學工業股份有限公司製造,KBM_4〇3E, r-環氧丙氧基丙基三曱氧基石夕烧 •稀釋劑:東京化成工業股份有限公司製造,乙二醇單正丁 醚乙酸酯 •著色劑:三菱化學股份有限公司製造,MA_6〇〇,碳黑 表2中,如比較例4〜7般,雖然底部填充材料之線膨脹係 數相對較低,但於彈性模數相對較高之情形時,於TC2〇〇〇個 循環中發生Low-k龜裂。 相對於此’實施例6〜10由於底部填充材料之線膨脹係數及 彈性模數均較低,即使於TC3000個循環中亦未發生L〇w_k龜 裂0 100135738 29 201224049 【(Nl 比較例 卜 18.0 〇 10.0 On 〇 ι1 A ο VO VO (N »η On 〇 〇 Low-k 龜裂 1 12.5 12.5 r-H CN »·Η 00 〇 r·^ ο (Ν Ό Ljoo (N ON 〇 〇 Low-k 龜裂 1 vn r—H (N ^0 Ο οό ON 〇 ON c5 寸 〇 r 1 i <ό CN o Γ-Ή (N CN 〇 〇 〇 Low-k 龜裂 1 寸 Liill 〇〇 1 lo.o 1 ON Ο 寸 〇 * > Η Ο ν〇 o <〇 CN o Os 〇 〇 Low-k 龜裂 1 ο on m 00 CN in CO ο 宕 (N CN ^r\ vd 〇 〇 〇 〇 Os 12.0 12.0 ο 1 10.8 1 寸 (N (Ν |_丨_< ο f'H ο U^l o Ό CN o in 〇 〇 〇 〇 實施例 〇〇 12.7 12.7 寸 as 00 vS rvi ΓΟ ο ι Η ο o T—^ 艺 o in 〇 〇 〇 〇 卜 13.4 13.4 13.4 卜 CN rn ΙΟ ο ο yn (N (N uS 〇 〇 〇 〇 1 12-3 | 1 12-3 | r—^ σν 卜 ir! 卜 ΓΟ CN ο ο yn yr\ o VO (Ν 〇 〇 〇 〇 wt% Wt% | wt% Wt% ] Wt% wt% wt% 1 Wt% 1 Wt% 1 wt% | PPm/°C |GPa | 液狀環氧樹脂1 液狀環氧樹脂2 i胺硬化劑1 胺硬化劑2 低應力劑1 (三嵌段丙烯酸系樹脂) 低應力劑2 (液狀聚丁二烯) 偶合劑 稀釋劑 著色劑 無機填充劑 玻璃轉移溫度 線膨脹係數(25°C) 彈性模數(25°C) 回焊試驗 TCI000個循環 1 TC2000個循環 TC3000個循環 底部填充材料之組 成 it w έ ±1 aM 铖W 製 命龚 ‘ 礎$ + OC°°ρς-οοι 201224049 (產業上之可利用性) 晶片方 溫彈性 、根據本翻’可提供—種__域物,其係倒裳 式之半導體t置之麵填紐料,並且齡膨脹低且室 模數低,具有高可靠性,㈣隙之填充性優異。 【圖式簡單說明】 圖1係使崎描式電子酿鏡拍攝實關2之液狀密封樹脂 組成物之除無機填充劑以外之樹脂成分之硬化物之剖面而獲 得的照片。 "" 圖2係使用穿透式電子顯微鏡拍攝實施例2之液狀密封樹脂 組成物之除無機填充劑以外之樹脂成分之硬化物之剖面而獲 得的照片。 圖3係使用穿透式電子顯微鏡拍攝實施例2之液狀密封樹脂 組成物之除無機填充劑以外之樹脂成分之硬化物之剖面而獲 得的照片。 100135738 31S 201224049 20% by weight, Mw=80000) • Low stress agent 2: manufactured by Daicel Chemical Industry Co., Ltd., PB-3600, liquid polybutadiene • Inorganic filler: Admafine SO-E3 manufactured by Admatechs Co., Ltd. Synthetic spheroidal sulphur dioxide, average particle size] 〇_ • coupling agent. Manufactured by Shin-Etsu Chemical Co., Ltd., KBM_4〇3E, r-glycidoxypropyl tributary oxylate; thinner: Tokyo Manufactured by Huacheng Industrial Co., Ltd., ethylene glycol mono-n-butyl ether acetate • Colorant: manufactured by Mitsubishi Chemical Corporation, MA_6〇〇, carbon black in Table 2, as in Comparative Examples 4 to 7, although underfill materials The linear expansion coefficient is relatively low, but in the case where the elastic modulus is relatively high, Low-k cracking occurs in one cycle of TC2. In contrast to the 'Examples 6 to 10, since the linear expansion coefficient and the elastic modulus of the underfill material are both low, L〇w_k cracking does not occur even in TC3000 cycles. 0 100135738 29 201224049 [(Nl Comparative Example 18.0) 〇10.0 On 〇ι1 A ο VO VO (N »η On 〇〇Low-k Crack 1 12.5 12.5 rH CN »·Η 00 〇r·^ ο (Ν Ό Ljoo (N ON 〇〇Low-k Crack 1 Vn r—H (N ^0 Ο οό ON 〇ON c5 inch 〇r 1 i <ό CN o Γ-Ή (N CN 〇〇〇Low-k crack 1 inch Liill 〇〇1 lo.o 1 ON Ο 〇 〇* > Η Ο ν〇o <〇CN o Os 〇〇Low-k Crack 1 ο on m 00 CN in CO ο 宕 (N CN ^r\ vd 〇〇〇〇Os 12.0 12.0 ο 1 10.8 1 inch (N (Ν |_丨_< ο f'H ο U^lo Ό CN o in 〇〇〇〇Example 2.7 12.7 12.7 inch as 00 vS rvi ΓΟ ο ι Η ο o T—^ Art o In 〇〇〇〇卜 13.4 13.4 13.4 卜CN rn ΙΟ ο ο yn (N (N uS 〇〇〇〇1 12-3 | 1 12-3 | r-^ σν 卜! 卜ΓΟ CN ο ο yn yr\ o VO (Ν %wt% Wt% | wt% W t% ] Wt% wt% wt% 1 Wt% 1 Wt% 1 wt% | PPm/°C |GPa | Liquid epoxy resin 1 Liquid epoxy resin 2 Iamine hardener 1 Amine hardener 2 Low stress agent 1 (triblock acrylic resin) low stress agent 2 (liquid polybutadiene) coupler thinner colorant inorganic filler glass transfer temperature linear expansion coefficient (25 ° C) elastic modulus (25 ° C) Welding test TCI000 cycles 1 TC2000 cycles TC3000 cycles of underfill material composition it w έ ±1 aM 铖W 命命 龚' base $ + OC°°ρς-οοι 201224049 (industrial availability) wafer temperature Elasticity, according to the present, can provide the kind of __ domain, which is the surface of the semiconductor t-shaped filling material, and the age expansion is low and the chamber modulus is low, with high reliability, (4) filling of the gap Excellent. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a photograph obtained by observing a cross section of a cured product of a resin component other than an inorganic filler of a liquid sealing resin composition of a solid-state sealing resin. "" Fig. 2 is a photograph obtained by photographing a cross section of a cured product of a resin component other than the inorganic filler of the liquid sealing resin composition of Example 2 using a transmission electron microscope. Fig. 3 is a photograph obtained by photographing a cross section of a cured product of a resin component other than the inorganic filler of the liquid sealing resin composition of Example 2 using a transmission electron microscope. 100135738 31

Claims (1)

201224049 七、申請專利範圍: L種液狀密封樹脂組成物’其含有(A)液狀環氧樹脂、(B) 胺硬化劑、(C)丙烯酸系樹脂及(D)無機填充劑。 2. 如申請專利範圍第1項之液狀密封樹脂組成物,其中, 上述液狀樹脂組成物中,(c)丙烯酸系樹脂之含量為〇4重 量0/〇以上且20重量%以下。 3. 如申請專利範圍第1項之液狀密封樹脂組成物,其中, 上述(C)丙烯酸系樹脂係由複數種不同單體成分之丙烯酸系 共聚物所構成。 4. 如申請專利範圍第1項之液狀密封樹脂組成物,其中, 上述(C)丙烯酸系樹脂係由複數種不同單體成分所構成之嵌 段聚合物或接枝聚合物。 5·如申請專利範圍第4項之液狀密封樹脂組成物,其中, 上述(C)丙烯酸系樹脂為三嵌段聚合物。 6. 如申請專利範圍第4項之液狀密封樹脂組成物,其中, 上述(C)丙烯酸系樹脂係由複數種不同成分之丙烯酸系聚合 物所構成,且至少1個成分之玻璃轉移溫度為0。(:以下的嵌 段聚合物。 7. 如申請專利範圍第5項之液狀密封樹脂組成物,其中, 上述(C)丙稀酸系樹脂係具有與環氧樹脂親和性高之成分包 爽玻璃轉移溫度為〇t以下之成分之構造的三嵌段聚合物。 8-如申請專利範圍第4項之液狀密封樹脂組成物,其中, 100135738 32 S 201224049 上述(C)丙烯酸系樹脂係包含聚曱基丙烯酸曱酯(PMMA)及 聚丙烯酸正丁酯(ΡηΒΑ)之嵌段聚合物。 9.如申請專利範圍第8項之液狀密封樹脂組成物,其中, • 聚甲基丙烯酸曱酯(ΡΜΜΑ)成分之比例為10〜50重量%。 • 10.如申請專利範圍第1項之液狀密封樹脂組成物,其中, 上述(C)丙烯酸系樹脂之重量平均分子量為5000以上且 150000 以下。 11. 如申請專利範圍第1項之液狀密封樹脂組成物,其中, 上述(Β)胺硬化劑為芳香族多胺型硬化劑。 12. 如申請專利範圍第1至11項中任一項之液狀密封樹脂 組成物’其係底部填充材料用樹脂組成物。 13. —種半導體裝置,其係使用申請專利範圍第丨至12項 中任一項之液狀密封樹脂組成物將半導體元件及基板密封 而製作。 14. 一種底部填充材料,其包含申請專利範圍第丨至u項 中任一項之液狀密封樹脂組成物。 15. 種半導體裝置之製造方法,其具有如下步驟:將具 . 備焊料電極之半導體元件連接至基板之步驟;於上述半導體 • 70件及上述基板之間填充中請專利範圍第!項之液狀樹脂 組成物之步驟;及賴填充之±魏⑽驗絲硬化之步 驟。 16. -種底部填充材料之製造方法,其具有如下步驟:調 100135738 33 201224049 配申請專利範圍第1項之(A)液狀環氧樹脂、(B)胺硬化劑、 (C)丙稀酸系樹脂及(D)無機填充劑之步驟;進行分散混練之 步驟;及進行真空消泡處理之步驟。 100135738 34201224049 VII. Patent application scope: L liquid sealing resin composition' contains (A) liquid epoxy resin, (B) amine curing agent, (C) acrylic resin, and (D) inorganic filler. 2. The liquid sealing resin composition according to the first aspect of the invention, wherein the content of the (c) acrylic resin in the liquid resin composition is 〇4 by weight of 0/〇 or more and 20% by weight or less. 3. The liquid sealing resin composition according to the first aspect of the invention, wherein the (C) acrylic resin is composed of an acrylic copolymer of a plurality of different monomer components. 4. The liquid sealing resin composition according to claim 1, wherein the (C) acrylic resin is a block polymer or a graft polymer composed of a plurality of different monomer components. 5. The liquid sealing resin composition according to claim 4, wherein the (C) acrylic resin is a triblock polymer. 6. The liquid sealing resin composition according to claim 4, wherein the (C) acrylic resin is composed of a plurality of acrylic polymers having different components, and the glass transition temperature of at least one component is 0. (B) The liquid sealing resin composition of the fifth aspect of the invention, wherein the (C) acrylic resin has a high affinity for the epoxy resin. A triblock polymer having a structure in which the glass transition temperature is a component of 〇t or less. 8. The liquid sealing resin composition according to item 4 of the patent application, wherein: 100135738 32 S 201224049 (C) the acrylic resin system contains a block polymer of poly(mercapto acrylate) (PMMA) and polybutyl acrylate (ΡηΒΑ). 9. A liquid sealing resin composition according to claim 8 of the invention, wherein: • polymethyl methacrylate The liquid-type sealing resin composition of the above-mentioned (C) acrylic resin has a weight average molecular weight of 5,000 or more and 150,000 or less. 11. The liquid sealing resin composition according to claim 1, wherein the (anthracene) amine curing agent is an aromatic polyamine type curing agent. 12. The application scope of any of claims 1 to 11. Liquid A sealing resin composition which is a resin composition for an underfill material. 13. A semiconductor device which seals a semiconductor element and a substrate using the liquid sealing resin composition of any one of the above claims And an underfill material comprising the liquid sealing resin composition according to any one of claims 1-5 to 15. The method for manufacturing a semiconductor device, comprising the steps of: a step of connecting a semiconductor element of the solder electrode to the substrate; a step of filling the liquid resin composition of the patent range of the above-mentioned semiconductor 70 and the substrate; and a filling of the Wei (10) wire hardening Step 16. A method for producing an underfill material having the following steps: adjusting 100135738 33 201224049 (A) liquid epoxy resin, (B) amine hardener, (C) C a step of dilute acid resin and (D) inorganic filler; a step of performing dispersion and kneading; and a step of performing vacuum defoaming treatment. 100135738 34
TW100135738A 2010-10-05 2011-10-03 Liquid encapsulation resin composition and semiconductor package TW201224049A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010225784A JP2013256547A (en) 2010-10-05 2010-10-05 Liquid sealing resin composition and semiconductor package

Publications (1)

Publication Number Publication Date
TW201224049A true TW201224049A (en) 2012-06-16

Family

ID=45927631

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100135738A TW201224049A (en) 2010-10-05 2011-10-03 Liquid encapsulation resin composition and semiconductor package

Country Status (3)

Country Link
JP (1) JP2013256547A (en)
TW (1) TW201224049A (en)
WO (1) WO2012046636A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI616507B (en) * 2012-12-03 2018-03-01 Lintec Corp Film for forming protective film
TWI644970B (en) * 2016-07-13 2018-12-21 京瓷股份有限公司 Resin composition for optical semiconductor, method for producing the same, and optical semiconductor device
TWI755591B (en) * 2018-04-10 2022-02-21 南韓商Lg化學股份有限公司 Resin composition for semiconductor package, prepreg and metal clad laminate using the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026095B2 (en) * 2011-10-31 2016-11-16 太陽インキ製造株式会社 Thermosetting resin composition, cured product thereof, and printed wiring board using the same
US9263360B2 (en) * 2012-07-06 2016-02-16 Henkel IP & Holding GmbH Liquid compression molding encapsulants
WO2015093417A1 (en) 2013-12-16 2015-06-25 ナミックス株式会社 Epoxy resin curing agent, epoxy resin composition, epoxy resin cured article, and epoxy resin curing agent production method
US9245815B2 (en) * 2014-04-29 2016-01-26 Intel Corporation Underfill material including block copolymer to tune coefficient of thermal expansion and tensile modulus
JP6593628B2 (en) * 2015-07-06 2019-10-23 日立化成株式会社 Pre-supplied underfill material, cured product thereof, electronic component device using the same, and manufacturing method thereof
JP6695074B2 (en) * 2015-09-18 2020-05-20 パナソニックIpマネジメント株式会社 Resin composition, prepreg, metal foil with resin, metal-clad laminate and wiring board
JP2017071708A (en) * 2015-10-08 2017-04-13 信越化学工業株式会社 Thermosetting epoxy resin composition and optical semiconductor device
JP6631238B2 (en) * 2015-12-22 2020-01-15 日立化成株式会社 Pre-supply type underfill material, cured product of pre-supply type underfill material, electronic component device, and method of manufacturing electronic component device
CN109071919A (en) * 2016-05-11 2018-12-21 日立化成株式会社 Sealing liquid resin composition and electronic part apparatus
WO2017220137A1 (en) 2016-06-22 2017-12-28 Evonik Degussa Gmbh Curable liquid epoxy resin compositions useful as underfill material for semiconductor devices
JP6624341B2 (en) * 2017-11-08 2019-12-25 Dic株式会社 Curable composition and fiber reinforced composite material
TW202018008A (en) * 2018-08-17 2020-05-16 德商漢高智慧財產控股公司 Liquid compression molding or encapsulant compositions
JP7241389B2 (en) * 2019-02-21 2023-03-17 ナミックス株式会社 Liquid epoxy resin composition and cured product obtained by curing it
JP6844680B2 (en) * 2019-12-12 2021-03-17 昭和電工マテリアルズ株式会社 Manufacturing method of pre-supplied underfill material, cured product of pre-supplied underfill material, electronic component equipment and electronic component equipment
JP7099490B2 (en) * 2020-05-07 2022-07-12 昭和電工マテリアルズ株式会社 Liquid resin composition for encapsulation and electronic component equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3883214B2 (en) * 1993-10-04 2007-02-21 富士通株式会社 Adhesive for joining electronic components
JP3866459B2 (en) * 1999-09-17 2007-01-10 富士通株式会社 adhesive
JP3876965B2 (en) * 2000-11-17 2007-02-07 信越化学工業株式会社 Liquid epoxy resin composition and semiconductor device
JP2005350647A (en) * 2004-05-11 2005-12-22 Nitto Denko Corp Liquid epoxy resin composition
JP2005350646A (en) * 2004-05-11 2005-12-22 Nec Corp Electronic component device
JP2006169395A (en) * 2004-12-16 2006-06-29 Nagase Chemtex Corp Underfill resin composition
JP5277537B2 (en) * 2005-12-08 2013-08-28 日立化成株式会社 Liquid resin composition for electronic components and electronic component device using the same
JP2008031193A (en) * 2006-07-26 2008-02-14 Toray Ind Inc Epoxy resin composition, prepreg, and fiber-reinforced composite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI616507B (en) * 2012-12-03 2018-03-01 Lintec Corp Film for forming protective film
TWI644970B (en) * 2016-07-13 2018-12-21 京瓷股份有限公司 Resin composition for optical semiconductor, method for producing the same, and optical semiconductor device
TWI755591B (en) * 2018-04-10 2022-02-21 南韓商Lg化學股份有限公司 Resin composition for semiconductor package, prepreg and metal clad laminate using the same

Also Published As

Publication number Publication date
WO2012046636A1 (en) 2012-04-12
JP2013256547A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
TW201224049A (en) Liquid encapsulation resin composition and semiconductor package
JP5163912B2 (en) Epoxy resin composition and semiconductor device
JP5354753B2 (en) Underfill material and semiconductor device
JP5598343B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device
JP6090614B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP5277537B2 (en) Liquid resin composition for electronic components and electronic component device using the same
TW201109385A (en) Liquid resin composition and semiconductor device using the same
JP6657104B2 (en) Thermosetting resin composition and method for producing the same
JPWO2010029726A1 (en) Semiconductor device and resin composition used for semiconductor device
JP5692212B2 (en) Liquid resin composition for electronic components and electronic component device using the same
JP2012116979A (en) Epoxy resin composition, resin composition for seal-filling semiconductor, and semiconductor device
JP3716237B2 (en) Sealant resin composition
JP2009149820A (en) Liquid thermosetting resin composition for underfill and semiconductor device using the same
JP3925803B2 (en) Flip chip mounting side fill material and semiconductor device
JP2010275334A (en) Process for producing surface treated silica particle, surface treated silica particle, epoxy resin composition and semiconductor device
JP2009057575A (en) Liquid epoxy resin composition and electronic component device
JP2012082281A (en) Liquid epoxy resin composition and semiconductor device
JP3867784B2 (en) Liquid epoxy resin composition and semiconductor device
JP2011079905A (en) Epoxy resin composition, resin composition for seal-filling semiconductor, and semiconductor device
JP5924443B2 (en) Liquid epoxy resin composition and electronic component device
JP5275297B2 (en) Liquid epoxy resin composition and semiconductor device sealed with cured product obtained by curing liquid epoxy resin composition
JP6015912B2 (en) Liquid epoxy resin composition and semiconductor electronic component
JP4858431B2 (en) Manufacturing method of semiconductor device
JP5929977B2 (en) Liquid epoxy resin composition and electronic component device
JP7251583B2 (en) Sealing resin composition, cured product, electronic component device, and method for manufacturing electronic component device