WO2005097536A1 - 動力出力装置および自動車 - Google Patents

動力出力装置および自動車 Download PDF

Info

Publication number
WO2005097536A1
WO2005097536A1 PCT/JP2005/003230 JP2005003230W WO2005097536A1 WO 2005097536 A1 WO2005097536 A1 WO 2005097536A1 JP 2005003230 W JP2005003230 W JP 2005003230W WO 2005097536 A1 WO2005097536 A1 WO 2005097536A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
internal combustion
combustion engine
drive shaft
output
Prior art date
Application number
PCT/JP2005/003230
Other languages
English (en)
French (fr)
Inventor
Tomokazu Yamauchi
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US10/594,988 priority Critical patent/US20080015760A1/en
Priority to EP05719573A priority patent/EP1731345A4/en
Publication of WO2005097536A1 publication Critical patent/WO2005097536A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/08Arrangement or mounting of internal-combustion or jet-propulsion units comprising more than one engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a power output device and an automobile. Background art
  • the above-described power output device requires a differential gear, two brakes, and four clutches in order to use two engines and two motors. ON / OFF operation becomes complicated.
  • the above-mentioned power output device switches between the two engines with different output characteristics according to the driving conditions, so that when operating as a so-called series hybrid vehicle, it has low torque characteristics. When power must be generated using the same engine, Efficiency may decrease.
  • An object of the power output device and the vehicle of the present invention is to provide a simple configuration in a device including two internal combustion engines and two electric motors. Another object of the present invention is to improve the energy efficiency of a power output device and an automobile provided with two internal combustion engines and two electric motors. Further, another object of the present invention is to output a required power efficiently.
  • the power output device and the vehicle of the present invention employ the following means in order to achieve at least a part of the above objects.
  • a first power output device of the present invention is a power output device for outputting power to a drive shaft, comprising: a first internal combustion engine; and a first electric motor capable of generating power using the power from the first internal combustion engine.
  • a second internal combustion engine capable of outputting power to the drive shaft, a second motor capable of inputting and outputting power to the drive shaft, and a power storage unit capable of exchanging power with the first motor and the second motor.
  • the gist of the invention is to provide a first disconnection means for connecting and disconnecting the output shaft of the first internal combustion engine and the output shaft of the second internal combustion engine.
  • the first internal combustion engine and the first motor when the connection between the output shaft of the first internal combustion engine and the output shaft of the second internal combustion engine is released by the first disconnection means, the first internal combustion engine and the first motor It is possible to generate power using the power from the above and to charge the power storage means with the generated power, and to output power to the drive shaft using the second internal combustion engine and the second electric motor.
  • the output shaft of the first internal combustion engine and the output shaft of the second internal combustion engine are connected by the first disconnection means, the power from the first internal combustion engine, the second internal combustion engine, the first electric motor, and the second electric motor is The output can be directly output to the drive shaft, and the power storage means can be charged by generating power using one of the first motor and the second motor.
  • the first connection Since it is sufficient to provide the release means, the configuration can be simplified and the control can be simplified.
  • the first power output device of the present invention may further include a second connection release means for connecting and disconnecting the output shaft of the second internal combustion engine and the drive shaft.
  • a second connection release means for connecting and disconnecting the output shaft of the second internal combustion engine and the drive shaft.
  • the first internal combustion engine is an internal combustion engine that can operate efficiently at a predetermined operation point, and the first motor is operated at the predetermined operation point. Further, the motor may be capable of efficiently generating electric power by using the power from the first internal combustion engine. This makes it possible to improve the power generation efficiency in a state where the connection between the output shaft of the first internal combustion engine and the output shaft of the second internal combustion engine is released by the first disconnection means.
  • the second internal combustion engine is an internal combustion engine that can efficiently operate in a predetermined rotation range
  • the second electric motor is configured to rotate when the drive shaft is stopped.
  • the motor may be capable of outputting a torque near the maximum torque assumed as the torque to be output to the drive shaft.
  • the predetermined rotation region is a region from an idle rotation speed or a second predetermined rotation speed larger than the idle rotation speed to a maximum rotation speed assumed for the drive shaft. You can also do it. This makes it possible to output power to the drive shaft more efficiently.
  • the state of the power storage means Power storage state detection means for detecting a state of the vehicle, required power setting means for setting required power to be output to the drive shaft based on an operation of an operator, and a power storage state detected by the power storage state detection means.
  • the first internal combustion engine, the first electric motor, the second internal combustion engine, and the second electric motor such that the power becomes the state range and the power based on the required power set by the required power setting means is output to the drive shaft.
  • control means for controlling the first connection release means.
  • the control means comprises: a drive shaft having a predetermined rotation speed. If the rotation speed of the drive shaft is less than or equal to a predetermined rotation speed, the second disconnection means is controlled so that the connection between the output shaft of the second internal combustion engine and the drive shaft is released.
  • the second connection disconnecting means may be controlled to connect the output shaft of the fuel engine to the drive shaft. This makes it possible to more efficiently output power according to the operator's request to the drive shaft.
  • the control means may be configured such that when the rotation speed of the drive shaft is equal to or higher than the predetermined rotation speed, the required torque at the set required power is less than the predetermined torque.
  • the first connection disconnecting means is controlled so that the connection between the output shaft of the first internal combustion engine and the output shaft of the second internal combustion engine is released, and the rotational speed of the drive shaft is not less than the predetermined rotational speed.
  • the first disconnection unit is controlled so that the output shaft of the first internal combustion engine is connected to the output shaft of the second internal combustion engine. It can be a means of doing so. In this way, the power required by the operator can be more efficiently Can output well.
  • a second power output device of the present invention is a power output device for outputting power to a drive shaft, comprising: a first internal combustion engine capable of efficiently operating at a predetermined operation point; and operating at the predetermined operation point.
  • a first electric motor capable of efficiently generating power using the power from the first internal combustion engine, a second internal combustion engine capable of outputting power to the drive shaft, and a second motor capable of inputting and outputting power to the drive shaft
  • the gist of the present invention includes: a motor; and power storage means capable of exchanging power with the first motor and the second motor.
  • the first internal combustion engine is operated at a predetermined operation point, and the power is generated by the first motor using the power from the first internal combustion engine. Energy efficiency can be improved.
  • the power from the second internal combustion engine and the second electric motor can be output to the drive shaft. Since it is sufficient to provide the first internal combustion engine, the second internal combustion engine, the first electric motor, and the second electric motor, the configuration can be simplified and the control can be simplified.
  • the second internal combustion engine is an internal combustion engine that can operate efficiently in a predetermined rotation range, and the second electric motor is driven when the drive shaft stops rotating.
  • the motor may be capable of outputting a torque in the vicinity of the maximum torque which is assumed as a trellis to be output to the drive shaft. This makes it possible to more efficiently output power to the drive shaft.
  • the power storage state detecting means for detecting a state of the power storage means, and a required power setting for setting a required power to be output to the drive shaft based on an operation of an operator.
  • Means, and a power based on the required power set by the required power setting means is output to the drive shaft while the power storage state detected by the power storage state detection means falls within a predetermined state range.
  • control means for controlling the first internal combustion engine, the first electric motor, the second internal combustion engine, and the second electric motor. With this configuration, it is possible to output the power according to the operator's request to the drive shaft, and to set the power storage unit in a predetermined state range.
  • a third power output device of the present invention is a power output device that outputs power to a drive shaft, comprising: a first internal combustion engine; and a first electric motor capable of generating electric power by using power from the first internal combustion engine.
  • a second internal combustion engine capable of outputting power to the drive shaft; and a torque near a maximum torque assumed as a torque to be output to the drive shaft when the drive shaft is stopped rotating.
  • a gist includes a second electric motor that can output to a drive shaft, and a power storage unit that can exchange power with the first electric motor and the second electric motor.
  • the second power output device can output to the drive shaft a torque near the maximum torque assumed as the torque to be output to the drive shaft when the drive shaft stops rotating.
  • the second motor can output the power efficiently even when the power required for the drive shaft is low-rotation and high-torque power. Since it is sufficient to provide the first internal combustion engine, the second internal combustion engine, the first electric motor, and the second electric motor, the configuration can be simplified and the control can be simplified.
  • the second internal combustion engine is configured to operate at a maximum rotational speed assumed for the drive shaft from an idle rotational speed or a first predetermined rotational speed greater than the idle rotational speed. It can be an internal combustion engine that can operate efficiently in the region up to. In this way, power can be efficiently output to the drive shaft in a wide rotation speed range.
  • a power storage state detecting means for detecting a state of the power storage means, and a required power setting for setting a required power to be output to the drive shaft based on an operation of an operator.
  • Means, and the storage state detecting means The first internal combustion engine and the first internal combustion engine are configured to output the power based on the required power set by the required power setting means to the drive shaft while the state of charge detected by the stage falls within a predetermined state range.
  • Control means for controlling the electric motor, the second internal combustion engine, and the second electric motor may be provided. By doing so, it is possible to output the power according to the operator's request to the drive shaft and to set the power storage means within a predetermined state range.
  • a first automobile according to the present invention includes a first internal combustion engine, a first electric motor capable of generating electric power using power from the first internal combustion engine, and a second electric motor capable of outputting power to a drive shaft connected to an axle.
  • the first internal combustion engine and the first electric motor are disconnected.
  • Power can be generated by using the power from the above and the power storage means can be charged with the generated power, and the power can be output to the drive shaft using the second internal combustion engine and the second electric motor.
  • the connection between the first internal combustion engine, the second internal combustion engine, the first electric motor, and the second electric motor is established.
  • the power can be directly output to the drive shaft, and the power can be charged by generating power using one of the first motor and the second motor.
  • the first internal combustion engine, the second internal combustion engine, the first electric motor, and the second electric motor may be provided with the first disconnection means, so that a simple configuration and simple control can be achieved. It can be.
  • the second connection release means By disconnecting the connection between the output shaft and the drive shaft of the internal combustion engine, only the power from the second electric motor can be output to the drive shaft. As a result, by separating the output shaft of the second internal combustion engine, it is possible to improve the energy efficiency when only the power from the second electric motor is output to the drive shaft.
  • a power storage state detecting means for detecting a state of the power storage means, a required power setting means for setting a required power to be output to the drive shaft based on an operation of an operator
  • the first internal combustion engine and the first internal combustion engine are configured to output the power based on the required power set by the required power setting means to the drive shaft while the power storage state detected by the power storage state detection means falls within a predetermined state range.
  • a control unit for controlling the first electric motor, the second internal combustion engine, the second electric motor, and the first disconnection unit may be provided. By doing so, it is possible to output the power according to the operator's request to the drive shaft, and to set the power storage means in a predetermined state range.
  • control means controls the second connection release means so that the connection between the output shaft of the second internal combustion engine and the drive shaft is released when the rotation speed of the drive shaft is less than a predetermined rotation speed.
  • the control means controls the second disconnection means so that the output shaft of the second internal combustion engine is connected to the drive shaft. You can also. This makes it possible to more efficiently output power according to the operator's request to the drive shaft.
  • the control means is configured to output the first internal combustion engine output when the rotation speed of the drive shaft is equal to or higher than the predetermined rotation speed and the required torque at the set required power is less than the predetermined torque.
  • the output shaft of the first internal combustion engine and the second internal It may be a means for controlling the first disconnection means so as to be connected to the output shaft of the fuel engine. This makes it possible to more efficiently output power according to the operator's request.
  • the second automobile of the present invention can efficiently generate electric power by using a first internal combustion engine that can efficiently operate at a predetermined operation point and power from the first internal combustion engine that is operated at the predetermined operation point.
  • Power storage means capable of exchanging power
  • power storage state detection means for detecting the state of the power storage means, and required power setting for setting required power to be output to the drive shaft based on an operation of an operator Means for outputting the power based on the required power set by the required power setting means to the drive shaft while the power storage state detected by the power storage state detection means falls within a predetermined state range.
  • the first internal combustion engine is operated at a predetermined operation point, and the power from the first internal combustion engine is used to generate electric power by the first electric motor, thereby improving the energy efficiency of the vehicle. be able to.
  • power from the second internal combustion engine and the second electric motor can be output to the drive shaft. Since it is sufficient to provide the first internal combustion engine, the second internal combustion engine, the first electric motor, and the second electric motor, the configuration can be simplified and the control can be simplified. In addition, it is possible to output power to the drive shaft according to the operator's request, and to set the power storage means in a predetermined state range.
  • a third vehicle of the present invention provides a first internal combustion engine, a first electric motor capable of generating electric power by using power from the first internal combustion engine, and a drive shaft connected to the axle.
  • a second internal combustion engine capable of outputting, and a torque near a maximum torque assumed as a torque to be output to the drive shaft when the drive shaft is stopped rotating can be output to the drive shaft.
  • a second motor, power storage means capable of exchanging power with the first motor and the second motor, power storage state detection means for detecting a state of the power storage means, and the drive shaft based on an operation of an operator.
  • Request power setting means for setting the required power to be output to the power supply, and based on the required power set by the required power setting means while the state of charge detected by the state-of-charge detection means falls within a predetermined state range.
  • the gist of the invention is to provide control means for controlling the first internal combustion engine, the first electric motor, the second internal combustion engine, and the second electric motor so that power is output to the drive shaft.
  • the torque near the maximum torque which is assumed to be the torque to be output to the drive shaft when the drive shaft is stopped, can be output to the drive shaft.
  • the provision of the two motors enables efficient output from the second motor even when the power required for the drive shaft is low-rotation and high-torque power. Since it is sufficient to provide the first internal combustion engine, the second internal combustion engine, the first electric motor, and the second electric motor, the configuration can be simplified and the control can be simplified. In addition, it is possible to output power according to an operator's request to the drive shaft, and to set the power storage means within a predetermined state range.
  • FIG. 1 is a configuration diagram schematically showing the configuration of a hybrid vehicle 20 equipped with a power output device as an embodiment
  • FIG. 2 is a flowchart showing an example of a drive control routine executed by the electronic control unit 70 for a hybrid.
  • FIG. 3 is an explanatory diagram showing an example of a required torque setting map.
  • FIG. 4 is a configuration diagram schematically showing a configuration of a hybrid vehicle 120 of a modified example. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a configuration diagram schematically showing a configuration of a hybrid vehicle 20 equipped with a power output device as one embodiment of the present invention.
  • the hybrid vehicle 20 of the embodiment includes two engines EG 1 and EG 2 that output power using gasoline, and two motors MG 1 and MG 2 configured as well-known synchronous generator motors.
  • a hybrid electronic control unit 70 for controlling the entire power output device.
  • the crankshaft 26 of the engine EG1 is connected to the motor MG1, and the motor MG1 generates power using the power from the engine EG1.
  • the crankshaft 26 of the engine EG1 is connected to the crankshaft 27 of the engine EG2 via pulleys 30 and 31 and belts 32 of the same diameter and a clutch C1.
  • the crankshaft 27 of the engine EG 2 is connected via a clutch C2 to a drive shaft 65 connected to drive wheels 63a, 63b connected via a differential gear 62.
  • the motor MG 2 is also attached to the drive shaft 65. Therefore, power can be input / output from the motor MG2 to the drive shaft 65, and power can also be output from the engine EG2 to the drive shaft 65 by turning on the clutch C2. Further, by turning on the clutch C 1 in this state, the engine E G 1 can also output power to the drive shaft 65.
  • the engine EG 1 is particularly effective at certain operating points (speed, torque).
  • the engine EG 2 is configured as an internal combustion engine that can operate efficiently in a wide range of speeds from the idle speed to the maximum speed of the drive shaft 65. I have.
  • Engines EG 1 and EG 2 are controlled by fuel injection control by engine electronic control units (hereinafter referred to as engine ECUs) 24 and 25 that input signals from various sensors that detect the operating state of engines EG 1 and EG 2. And operation control such as ignition control and intake air volume control.
  • the engine ECUs 24 and 25 are in communication with the hybrid electronic control unit 70, and operate the re-engines EG1 and EG2 in response to control signals from the hybrid electronic control unit 70. It controls and outputs data on the operating status of the engines EG 1 and 2 to the hybrid electronic control unit 70 as necessary.
  • the motor MG 1 is configured as a synchronous generator motor that can generate electric power particularly efficiently when the engine EG 1 is operated at the above-mentioned operation point where it can operate particularly efficiently.
  • the motor is configured as a synchronous generator motor capable of outputting the maximum torque assumed as a torque to be output to the drive shaft 65.
  • the motors MG 1 and MG 2 are connected to the battery 50 via inverters 41 and 42, can be driven by using the power from the battery 50, and transfer the generated power to the battery 50. Can be supplied.
  • the motors MG 1 and MG 2 are driven and controlled by a motor electronic control unit (hereinafter referred to as a motor ECU) 40.
  • the motor ECU 40 also manages the battery 50. Based on the charge / discharge current detected by a current sensor (not shown) attached to the output terminal of the battery 50, the remaining capacity (S 0 C) is also calculated.
  • the motor ECU 40 communicates with the electronic control unit 70 for the hybrid, and drives the motors MG 1 and MG 2 according to a control signal from the electronic control unit 70 for the hybrid. And controls the motor MG1 and MG2, and outputs data on the state of the battery 50 to the hybrid electronic control unit 70 as necessary.
  • the electronic control unit 70 for the hybrid is configured as a microphone processor centered on the CPU 72, and stores R0M74, which stores a processing program, in addition to the CPU 72, and transmits data. It includes a RAM 76 for temporarily storing, an input / output port and a communication port (not shown).
  • the hybrid electronic control unit 70 includes an ignition signal from an ignition switch 80, a shift position sensor 82 for detecting the operation position of the shift lever 81, a shift position SP from an accelerator pedal 8, and an accelerator pedal 8. Accelerator pedal position sensor 8 from the accelerator pedal position sensor 8 4 to detect the amount of depression of the brake pedal 8, Brake pedal position sensor 8 to detect the amount of depression of the brake pedal 8 5 8 8 8 The vehicle speed V from the sensor 88 is input via the input port.
  • the hybrid electronic control unit 70 outputs drive signals to the clutch C 1 and the clutch C 2 via an output port. As described above, the hybrid electronic control unit 70 is connected to the engine ECUs 24, 25 and the motor ECU 40 via the communication port, and the engine ECUs 24, 25, It exchanges various control signals and data with the motor ECU 40.
  • the hybrid vehicle 20 of the embodiment configured as described above mainly includes a first traveling pattern in which the clutch C2 is turned off and traveling is performed by the power from the motor MG2, and a clutch C2 is turned on and the engine EG2 is activated.
  • the vehicle travels according to the second traveling pattern in which the vehicle travels with power from the vehicle.
  • the clutch C 1 is also turned off, and the vehicle travels only with the power from the motor MG 2 with the engine EG 2 stopped.
  • This The pattern is used at low speeds such as when starting.
  • the engine EG1 supplies power to the motor MG2.
  • the engine EG1 is started when the remaining capacity (S0C) of the battery 50 falls below the control lower limit, and the engine EG1 supplies power from the engine EG1.
  • Power is generated by motor MG1 to supply power to battery 50.
  • the engine EG 1 and the motor MG 1 are operated at the operating point at which the power generation efficiency is highest.
  • the operation of the engine EG1 is stopped when the remaining capacity (SOC) of the battery 50 exceeds the control upper limit.
  • the battery 50 supplies power to the motor MG2, its remaining capacity (SOC) is controlled substantially within the range of the control lower limit value and the control upper limit value.
  • the clutch C 1 is turned on, and the engine EG 2 can be connected to the crankshaft 26 of the engine EG 1.
  • the motor MG1 generates electric power by using the power obtained by operating the engine EG1 and the engine EG2.
  • the engine EG2 since the engine EG2 is directly connected to the drive shaft 65, the vehicle cannot travel at a speed lower than the vehicle speed corresponding to the lower limit rotation speed of the engine EG2.
  • the engine EG 2 is used at a medium speed (for example, 20 km / h or 30 km / h or more) at which the engine can be operated relatively efficiently.
  • the clutch C 1 when the torque to be output to the drive shaft 65 set from the driver's depression of the accelerator pedal 83 and the vehicle speed V is relatively low, the clutch C 1 is turned off, and the engine EG 2 It runs on the power from.
  • the motor MG 2 is driven within a range permitted by the battery 50 when the power to be output to the drive shaft 65 is excessive or insufficient with the power from the engine EG 2.
  • the engine EG1 and the motor MG1 operate in the same manner as in the above-described first running pattern.
  • the clutch C 1 is turned on to Connect engine EG 1 and motor MG 1 to drive shaft 65.
  • the vehicle runs mainly by the power from the engine EG1 and the engine EG2, and the motor MG1 and the motor MG2 output to the drive shaft 65 by the power from the engine EG1 and the engine EG2.
  • the battery 50 is driven within the range permitted by the battery 50 when excess or deficiency occurs in power to be provided.
  • FIG. 2 is a flowchart showing an example of a drive control routine executed by the hybrid electronic control unit 70 of the hybrid vehicle 20 of the embodiment. This routine is executed every predetermined time (for example, every 8 msC).
  • step 72 data such as the accelerator opening Acc from the accelerator pedal position sensor 84 and the vehicle speed V from the vehicle speed sensor 88 are input (step S100). Based on the accelerator opening Acc and the vehicle speed V, a required torque Td * to be output to the drive shaft 65 as a torque required for the vehicle is set (step SI10).
  • the required torque Td * is determined in advance in the ROM 74 as a relationship between the accelerator opening Acc, the vehicle speed V, and the required torque Td *, and is stored in the ROM 74 as a required torque setting map. Given the opening Acc and the vehicle speed V, the corresponding required torque T d * is derived and set from the stored map.
  • Figure 3 shows an example of a map for setting the required torque.
  • the vehicle speed V is compared with a threshold value Vref (step S120).
  • the threshold value V ref is a threshold value for determining whether or not the vehicle is driven mainly by the power from the engine EG 2 with the clutch C 2 turned on, and is set to 20 km / h, 30 km /, or the like. be able to.
  • the vehicle speed V is lower than the threshold value V ref, the vehicle travels only with the power from the motor MG 2. 1 Select the driving pattern, turn off clutch C 2 and
  • step S1305 When the engine ECU 24 and the motor ECU 40 that have received the instruction receive the instruction, when the remaining capacity (S 0 C) of the battery 50 falls below the lower limit, the engine EG 1 and the motor MG 1 have the highest power generation efficiency.
  • the fuel injection control and ignition control of the engine EG 1 are performed so as to operate at an improved driving point, and the switching control of the switching element of the inverter 41 that drives the motor MG 1 is performed.
  • Exceeds the upper limit value the fuel injection control and ignition control of the engine EG 1 are stopped so that the operation is stopped, and the switching control of the switching element of the inverter 41 that drives the motor MG 1 is performed.
  • the value 0 is set to the target rotation speed Ne2 * and the target torque Te2 * of the engine EG2 (step S140), and the torque command of the motor MG2 is set.
  • the required torque Td * is set to Tm2 * (step S150).
  • the engine ECU 25 that has received the target rotation speed Ne2 * and the target torque Te2 * stops fuel injection control, ignition control, and the like so as to stop the engine EG2.
  • the motor ECU 40 that has received the torque command Tm2 * performs switching control of the switching element of the inverter 42 so that the motor MG2 is driven by the torque command Tm2 *. If the vehicle speed V is equal to or higher than the threshold value Vref, the second traveling pattern is selected, the clutch C2 is turned on (step S165), and the required torque Td * is compared with the threshold value Tdref (step S ⁇ 7). 0).
  • the threshold value T ref is a threshold value used to determine whether the clutch C 1 is turned on and the engine EG 1 and the motor MG 1 are connected to the drive shaft 65, and the rotation of the drive shaft 65 It can be set based on the maximum torque T 2 max that can be output from engine EG 2 and the maximum torque T m 2 max that can be output from motor MG 2 at number N d.
  • the threshold value Tref is set to a value larger than the maximum torque T2max and smaller than the sum of the maximum torque T2max and the maximum torque Tm2max.
  • the clutch C1 is turned off (step S180), and the remaining capacity of the battery 50 (S0C) is determined. )
  • the engine ECU 24 and the motor ECU 40 are instructed to drive the engine EG1 and the motor MG1 in the same manner as in the first running pattern (step S185).
  • the maximum torque T2max that can be output from the motor 2 and the required torque Td * are compared, and the smaller value is set as the target torque Te2 * of the engine EG2 (step S190).
  • the deviation between the torque Td * and the target torque Te2 * is set as a torque command Tm2 * (step S200).
  • the target torque Te2 * of the engine EG2 and the torque command Tm2 * of the motor MG2 are set in this way, the target torque Te2 * is transmitted to the engine ECU 25, and the torque command Tm2 * is transmitted. About *, it is transmitted to the motor ECU 40 (step S210), and this routine ends.
  • the engine ECU 25 that has received the target torque Te 2 * performs fuel injection control and ignition control so that the engine EG 2 outputs the target torque Te 2 *.
  • the motor ECU 40 that has received the torque command T m 2 * The switching control of the switching element of the inverter 42 is performed so that the motor MG2 is driven by the command Tm2 *.
  • the clutch C1 is turned on (step S220), and the required torque T Compare the half torque of d * (T d * / 2) with the maximum torques T 1 max and T 2 max that can be output from the engines EG 1 and EG 2 and determine the smaller value as the value of the engine EG 1 or EG 2 Are set as target torques Te1 * and Te2 * (step S230), and based on the sum of the target torques Tel * and Te2 * and the required torque Td *.
  • Set the torque commands Tm1 * and Tm2 * for MG1 and MG2 (step S240).
  • the torque commands T m 1 * and T m 2 * are, as the deviation of the required torque T d * and the sum of the target torque T e 1 * and the target torque T e 2 *, as the torque T m. Is smaller than the maximum torque Tm2max that can be output from the motor MG2, the torque command Tm2 * is set to the torque Tm, and the torque command Dml * is set to the value 0.
  • the maximum torque Tm2max is set in the torque command Tm2 *, and the torque as a deviation between the torque Tm and the maximum torque T2max is set in the torque command Tm1 *. It was assumed.
  • the target torques Te1 * and Te2 * of the engines EG1 and EG2 and the torque commands Tm1 * and M2 * of the motors MG1 and MG2 are set, the target torque Te1 * And Te 2 * are transmitted to the engine ECUs 24 and 25, respectively, and the torque commands T m 1 * and T m 2 * are transmitted to the motor ECU 40 (step S 250). End the routine.
  • the hybrid vehicle 20 of the embodiment described above in addition to the two engines EG 1 and EG 2 and the two motors MG 1 and MG 2, two other Since it is sufficient to provide the switches C 1 and C 2, a simple configuration can be achieved. Also, according to the hybrid vehicle 20 of the embodiment, the first traveling pattern mainly driven by the power from the motor MG 2 with the clutch C 2 turned off, and the clutch EG 2 with the clutch C 2 turned on. An efficient traveling pattern can be selected according to the second traveling pattern driven by power and the vehicle speed V from the selected traveling pattern. Therefore, energy efficiency can be improved.
  • the clutch C 1 is also turned off, and the engine EG 2 is stopped, and only the power from the motor MG 2 is used. You can run. Therefore, the energy efficiency can be improved by separating the engine EG 2 from the drive shaft 65.
  • the engine EG 1 is operated at a particularly efficient operating point based on the remaining capacity (S 0 C) of the battery 50, and the power output from the engine EG 1 is particularly controlled by the motor MG 1. Since power is generated efficiently, power generation efficiency can be improved, and the remaining capacity (SOC) of the battery 50 can be controlled in the range between the control lower limit value and the control upper limit value.
  • the second traveling pattern is selected, and when the torque to be output to the drive shaft 65 is relatively low, With the clutch C 1 turned off, the vehicle can be driven mainly by the power from the engine EG 2 that has operated efficiently. Therefore, power can be output to the drive shaft 65 more efficiently, and energy efficiency can be improved.
  • the clutch C 1 when the torque to be output to the drive shaft 65 is relatively high, the clutch C 1 is turned on, the engine EG 1 and the motor MG 1 are connected to the drive shaft 65, and the engine that operates mainly efficiently The vehicle can be driven by power from EG 1 and engine EG 2. But Thus, a high torque can be output to the drive shaft 65, and the energy efficiency can be improved.
  • the engine EG 2 uses an internal combustion engine that can operate efficiently in a wide range of rotational speeds from the idle rotational speed to the maximum rotational speed of the drive shaft 65.
  • an internal combustion engine that can operate efficiently in a rotational speed range from a predetermined rotational speed higher than the idle rotational speed (for example, 100 rpm) to the maximum rotational speed of the drive shaft 65 is used.
  • an internal combustion engine that can efficiently operate in a rotation speed region corresponding to a vehicle speed required for a normal vehicle may be used.
  • the motor MG 2 is driven when the drive shaft 65 stops rotating, that is, the maximum torque assumed to be output to the drive shaft 65 when the vehicle starts moving.
  • the synchronous generator motor capable of outputting torque is used, a synchronous generator motor capable of outputting torque near the maximum torque or slightly higher than the maximum torque may be used.
  • the engine EG1 uses an internal combustion engine that can operate particularly efficiently at a predetermined operating point (rotational speed and torque). An internal combustion engine that can operate well may be used. In this way, the engine EG 1 not only outputs power for charging the battery 50 by turning off the clutch C 1, but also outputs power directly to the drive shaft 65 by turning on the clutch C 1. In addition, it can be operated efficiently.
  • the hybrid vehicle 20 of the embodiment is provided with the clutch C2, and can be separated from the crankshaft 27 of the engine EG2 and the drive shaft 65 by connecting and disconnecting the same. But with the clutch C2 Instead, the crankshaft 27 of the engine EG2 may be always connected to the drive shaft 65.
  • the clutch C1 since the clutch C1 may be provided in addition to the engines EG1, EG2 and the motors MG1, MG2, a simpler configuration can be achieved and the control can be simplified. It can be. In this case, when the vehicle travels in the first traveling pattern, such as at the time of starting or at a low speed, the engine EG 2 is rotated at the rotation speed Nd of the drive shaft 65 depending on whether the vehicle is running.
  • the hybrid vehicle 20 of the embodiment has the clutches C1 and C2
  • the hybrid vehicle 20 may not have the clutches C1 and C2. In this case, since it is sufficient to provide the engines EG1, EG2 and the motors MG1, MG2, it is possible to achieve a simpler configuration and control.
  • the motor MG1 turns off the clutch C1 and stops the engine EG2.
  • power is generated using the power obtained by operating the engine EG1, but the power is generated using the power obtained by operating the engine EG1 and the engine EG2 with the clutch C1 turned on. It can also be.
  • the first traveling pattern and the second traveling pattern are selected by comparing the vehicle speed V and the threshold value Vref, but the energy efficiency of the entire vehicle is increased.
  • the first traveling pattern and the second traveling pattern may be selected.
  • the point at which the energy-efficient travel pattern of the first travel pattern and the second travel pattern is switched is determined in advance by experiments or the like, and the first travel pattern and the second travel pattern are determined at those points. And switch between May be. It should be noted that the first traveling pattern and the second traveling pattern may be switched by other methods.
  • the first traveling pattern and the second traveling pattern are switched depending on whether or not the vehicle speed V is equal to or higher than the threshold value Vref.However, the first traveling pattern and the second traveling pattern are provided with hysteresis. It is also possible to switch between two driving patterns. By doing so, it is possible to suppress frequent switching of the running pattern when the vehicle speed V is near the threshold value Vref.
  • the pulleys 30 and 31 have the same diameter, but may have different diameters.
  • a pulley 30 having a larger diameter than the pulley 31 may be used.
  • the clutch C 2 makes the rotation speed N e 2 of the engine EG 2
  • the rotation speed N d of 65 is obtained. If the diameter of the pulley 30 is the same as the diameter of the pulley 31, when the clutch C 1 is turned on, the rotation speed Ne of the engine EG 1 also becomes the rotation speed N d, but the diameter of the pulley 30 becomes smaller.
  • the rotation speed N e1 of the engine EG 1 can be made smaller than the rotation speed N e 2 of the engine EG 2 if it is larger than the diameter of the pulley 31.
  • the rotation speed ratio of the rotation speed N e 1 of the engine EG 1 to the rotation speed N e 2 of the engine EG 2 is obtained. Since adjustment is possible, energy efficiency can be improved.
  • the hybrid vehicle 20 of the embodiment an example of a configuration in which power is output from two engines and two motors to drive the vehicle has been described, but power is output from two engines and two motors.
  • Various configurations are possible as the configuration for running the vehicle.
  • the hybrid vehicle of the modified example in Fig. 4 As shown in 120, the motor MG1, the engine EG1, the engine EG2, and the motor MG2 may be connected in series via a clutch.
  • Two clutches C3 to C8 are mounted between the motor MG1 and the engine EG1, between the engine EG1 and the engine EG2, and between the engine EG2 and the motor MG2.
  • a gear is mounted between each two clutches, and meshes with a gear mounted on the drive shaft 165.
  • the power output device that includes the engines EG 1 and EG 2 and the motors MG 1 and MG 2 and outputs power to the drive shafts 65 and 165 is mounted on the vehicle.
  • a power output device may be mounted on a moving body such as a vehicle other than an automobile, a ship, an aircraft, or the like, or may be used as a power source of immovable equipment such as construction equipment.
  • the best mode for carrying out the present invention has been described with reference to the embodiments.However, the present invention is not limited to such embodiments at all, and does not depart from the gist of the present invention. Of course, it can be implemented in various forms. Industrial potential
  • the present invention is applicable to a power output device, an automobile manufacturing industry, and the like.

Abstract

エンジンEG1をモータMG1に接続すると共にクラッチC1を介してエンジンEG2に接続し、エンジンEG2にクラッチC2を介して駆動軸65を接続し、駆動軸65にモータMG2を取り付ける。発進時などの低速時には、クラッチC2をオフとしてエンジンEG2を駆動軸65から切り離してモータMG2からの動力により走行し、中速時には、クラッチC2をオンとして主として効率よく運転したエンジンEG2からの動力により走行する。これにより、エネルギ効率の向上を図ることができる。また、2つのエンジンと2つのモータの他には2つのクラッチを備えることでよいから、簡易な構成とすることができる。

Description

明細書 動力出力装置および自動車 技術分野
本発明は、 動力出力装置および自動車に関する。 背景技術
従来、 この種の動力出力装置としては、 車両に搭載された二つのェン ジンと二つのモータとを備えるものが提案されている (例えば、 特開平 1 1 - 3 1 1 1 3 7号公報参照) 。 この装置は、 駆動輪にデフアレンシ ャルギヤを介して接続された卜ランスミッションの入力軸にデフアレン シャルギヤを取り付け、 このデファレンシャルギヤの残余の 2軸に各々 のブレーキとクラッチとを介して二つのモータを取リ付け、 更にこの二 つのモータの各回転軸に各々のクラツチを介して二つの異なる出力特性 のエンジンの出力軸を取り付けて構^されておリ、 走行条件に応じて出 力特性の異なる二つのエンジンを切り替えるものとしている。 発明の開示
しかしながら、 上述の動力出力装置では、 二つの: ήンジンと二つのモ —タとを用いるためにデファレンシャルギヤと二つのブレーキと四つの クラッチとを必要とするから、 装置が複雑になると共にクラッチのオン オフ操作が煩雑なものになる。 また、 上述の動力出力装置では、 出力特 性の異なる二つのエンジンを走行条件に応じて切リ替えるものと.してい るため、 いわゆるシリーズハイブリ ッ ド自動車としての動作の際に低卜 ルク特性のエンジンを用いて発電しなければならないときが生じ、 発電 効率が低下する場合が生じる。
本発明の動力出力装置および自動車は、 二つの内燃機関と二つの電動 機とを備えるものにおいて簡易な構成とすることを目的の一つとする。 また、 本発明の動力出力装置および自動車は、 二つの内燃機関と二つの 電動機とを備えるものにおけるエネルギ効率を向上させることを目的の 一つとする。 さらに、 本発明の動力出力装置および自動車は、 要求され る動力を効率よく出力することを目的の一つとする。
本発明の動力出力装置および自動車は、 上述の目的の少なくとも一部 を達成するために以下の手段を採った。
本発明の第 1 の動力出力装置は、 駆動軸に動力を出力する動力出力装 置であって、 第 1 内燃機関と、 該第 1 内燃機関からの動力を用いて発電 可能な第〗 電動機と、 前記駆動軸に動力を出力可能な第 2内燃機関と、 前記駆動軸に動力を入出力可能な第 2電動機と、 前記第 1 電動機および 前記第 2電動機と電力のやりとりが可能な蓄電手段と、 前記第 1 内燃機 関の出力軸と前記第 2内燃機関の出力軸との接続および接続の解除を行 なう第 1 接続解除手段と、 を備えることを要旨とする。
この本発明の第 1 の動力出力装置では、 第 1 接続解除手段により第 1 内燃機関の出力軸と第 2内燃機関の出力軸との接続を解除した状態では、 第 1 内燃機関と第 1 電動機とからの動力を用いて発電することができる と共にこの発電電力により蓄電手段を充電し、 第 2内燃機関と第 2電動 機とを用いて駆動軸に動力を出力することができる。 第 1 接続解除手段 により第 1 内燃機関の出力軸と第 2内燃機関の出力軸とを接続した状態 では、 第 1 内燃機関と第 2内燃機関と第 1 電動機と第 2電動機とからの 動力を直接駆動軸に出力することができると共に第 1 電動機と第 2電動 機の一方により発電して蓄電手段を充電することができる。 しかも、 第 1 内燃機関と第 2内燃機関と第 1 電動機と第 2電動機との他に第 1 接続 解除手段を備えることでよいから、 簡易な構成とすることができると共 に制御を簡易なものとすることができる。
こう した本発明の第 1 の動力出力装置において、 前記第 2内燃機関の 出力軸と前記駆動軸との接続および接続の解除を行なう第 2接続解除手 段を備えるものとすることもできる。 こうすれば、 第 2接続解除手段に より第 2内燃機関の出力軸と駆動軸との接続を解除することにより第 2 電動機からの動力だけを駆動軸に出力することができる。 この場合、 第 2内燃機関の出力軸を切り離すことにより、 第 2電動機からの動力だけ を駆動軸に出力する際のエネルギ効率を向上させることができる。
また、 本発明の第 1 の動力出力装置において、 前記第 1 内燃機関は所 定の運転ポイン卜で効率よく運転可能な内燃機関であり、 前記第 1 電動 機は前記所定の運転ポイントで運転された前記第 1 内燃機関からの動力 を用いて効率よく発電可能な電動機であるものとすることもできる。 こ うすれば、 第 1 接続解除手段により第 1 内燃機関の出力軸と第 2内燃機 関の出力軸との接続を解除した状態における発電効率を向上させること ができる。
さらに、 本発明の第 1 の動力出力装置において、 前記第 2内燃機関は 所定の回転領域で効率よく運転可能な内燃機関であり、 前記第 2電動機 は前記駆動軸が回転停止しているときに該駆動軸に出力すべき トルクと して想定されている最大トルクの近傍の トルクを出力可能な電動機であ るものとすることもできる。 この場合、 前記所定の回転領域は、 アイ ド ル回転数または該アイ ドル回転数より大きな第〗 の所定の回転数から前 記駆動軸に想定されている最大回転数までの領域であるものとすること もできる。 こうすれば、 より効率よく駆動軸に動力を出力することがで きる。
あるいは、 本発明の第 1 の動力出力装置において、 前記蓄電手段の状 態を検出する蓄電状態検出手段と、 操作者の操作に基づいて前記駆動軸 に出力すべき要求動力を設定する要求動力設定手段と、 前記蓄電状態検 出手段により検出された蓄電状態が所定の状態範囲となると共に前記要 求動力設定手段により設定された要求動力に基づく動力が前記駆動軸に 出力されるよう前記第 1 内燃機関と前記第 1 電動機と前記第 2内燃機関 と前記第 2電動機と前記第 1 接続解除手段とを制御する制御手段と、 を 備えるものとすることもできる。 こうすれば、 操作者の要求に応じた動 力を駆動軸に出力することができると共に蓄電手段を所定の状態範囲と なるようにすることができる。
第 2接続解除手段を備えると共に操作者の要求に応じた動力を駆動軸 に出力する態様の本発明の第 1 の動力出力装置において、 前記制御手段 は、 前記駆動軸の回転数が所定回転数未満のときには前記第 2内燃機関 の出力軸と前記駆動軸との接続が解除されるよう前記第 2接続解除手段 を制御し、 前記駆動軸の回転数が所定回転数以上のときには前記第 2内 燃機関の出力軸と前記駆動軸とが接続されるよう前記第 2接続解除手段 を制御する手段であるものとすることもできる。 こうすれば、 操作者の 要求に応じた動力をより効率よく駆動軸に出力することができる。 この 態様の本発明の第 1 の動力出力装置において、 前記制御手段は、 前記駆 動軸の回転数が前記所定回転数以上のときであって前記設定された要求 動力における要求トルクが所定トルク未満のときには前記第 1 内燃機関 の出力軸と前記第 2内燃機関の出力軸との接続が解除されるよう前記第 1 接続解除手段を制御し、 前記駆動軸の回転数が前記所定回転数以上の ときであって前記設定された要求動力における要求トルクが所定トルク 以上のときには前記第 1 内燃機関の出力軸と前記第 2内燃機関の出力軸 とが接続されるよう前記第 1 接続解除手段を制御する手段であるものと することもできる。 こうすれば、 操作者の要求に応じた動力をより効率 よく出力することができる。
本発明の第 2の動力出力装置は、 駆動軸に動力を出力する動力出力装 置であって、 所定の運転ポイン卜で効率よく運転可能な第 1 内燃機関と、 前記所定の運転ポイントで運転された前記第 1 内燃機関からの動力を用 いて効率よく発電可能な第 1 電動機と、 前記駆動軸に動力を出力可能な 第 2内燃機関と、 前記駆動軸に動力を入出力可能な第 2電動機と、 前記 第 1 電動機および前記第 2電動機と電力のやりとりが可能な蓄電手段と、 を備えることを要旨とする。
この本発明の第 2の動力出力装置では、 第 1 内燃機関を所定の運転ポ イン卜で運転し、 この第 1 内燃機関からの動力を用いて第 1 電動機によ り発電することにより、 装置のエネルギ効率を向上させることができる。 もとより、 第 2内燃機関と第 2電動機からの動力を駆動軸に出力するこ とができる。 第 1 内燃機関と第 2内燃機関と第 1 電動機と第 2電動機と を備えることでよいから、 簡易な構成とすることができると共に制御を 簡易なものとすることができる。
こう した本発明の第 2の動力出力装置において、 前記第 2内燃機関は 所定の回転領域で効率よく運転可能な内燃機関であり、 前記第 2電動機 は前記駆動軸が回転停止しているときに該駆動軸に出力すべき 卜リレクと して想定されている最大トルクの近傍のトルクを出力可能な電動機であ るものとすることもできる。 こうすれば、 より効率よく駆動軸に動力を 出力することができる。
また、 本発明の第 2の動力出力装置において、 前記蓄電手段の状態を 検出する蓄電状態検出手段と、 操作者の操作に基づいて前記駆動軸に出 力すべき要求動力を設定する要求動力設定手段と、 前記蓄電状態検出手 段により検出された蓄電状態が所定の状態範囲となると共に前記要求動 力設定手段によリ設定された要求動力に基づく動力が前記駆動軸に出力 されるよう前記第 1 内燃機関と前記第 1 電動機と前記第 2内燃機関と前 記第 2電動機とを制御する制御手段と、 を備えるものとすることもでき る。 こうすれば、 操作者の要求に応じた動力を駆動軸に出力することが できると共に蓄電手段を所定の状態範囲となるようにすることができる。 本発明の第 3の動力出力装置は、 駆動軸に動力を出力する動力出力装 置であって、 第 1 内燃機関と、 該第 1 内燃機関からの動力を用いて発電 可能な第 1 電動機と、 前記駆動軸に動力を出力可能な第 2内燃機関と、 前記駆動軸が回転停止しているときに該駆動軸に出力すべき 卜ルクとし て想定されている最大トルクの近傍の トルクを該駆動軸に出力可能な第 2電動機と、 前記第 1 電動機および前記第 2電動機と電力のやりとりが 可能な蓄電手段と、 を備えることを要旨とする。
この本発明の第 3の動力出力装置では、 駆動軸が回転停止していると きに駆動軸に出力すべき トルクとして想定されている最大トルクの近傍 のトルクを駆動軸に出力可能な第 2電動機を備えることにより、 駆動軸 に要求される動力が低回転高トルクの動力のときでも第 2電動機から効 率よく出力することができる。 第 1 内燃機関と第 2内燃機関と第 1 電動 機と第 2電動機とを備えることでよいから、 簡易な構成とすることがで きると共に制御を簡易なものとすることができる。
こう した第 3の動力出力装置において、 前記第 2内燃機関は、 アイ ド ル回転数または該アイ ドル回転数より大きな第 1 の所定の回転数から前 記駆動軸に想定されている最大回転数までの領域で効率よく運転可能な 内燃機関であるものとすることもできる。 こうすれば、 広い回転数領域 で効率よく駆動軸に動力を出力することができる。
また、 本発明の第 3の動力出力装置において、 前記蓄電手段の状態を 検出する蓄電状態検出手段と、 操作者の操作に基づいて前記駆動軸に出 力すべき要求動力を設定する要求動力設定手段と、 前記蓄電状態検出手 段によリ検出された蓄電状態が所定の状態範囲となると共に前記要求動 力設定手段により設定された要求動力に基づく動力が前記駆動軸に出力 されるよう前記第 1 内燃機関と前記第 1 電動機と前記第 2内燃機関と前 記第 2電動機とを制御する制御手段と、 を備えるものとすることもでき る。 こうすれば、 操作者の要求に応じた動力を駆動軸に出力することが できると共に蓄電手段を所定の状態範囲となるようにすることがでぎる。 本発明の第 1 の自動車は、 第 1 内燃機関と、 該第 1 内燃機関からの動 力を用いて発電可能な第 1 電動機と、 車軸に連結された駆動軸に動力を 出力可能な第 2内燃機関と、 前記駆動軸に動力を入出力可能な第 2電動 機と、 前記第 1 電動機および前記第 2電動機と電力のやりとりが可能な 蓄電手段と、 前記第 1 内燃機関の出力軸と前記第 2内燃機関の出力軸と の接続および接続の解除を行なう第 1 接続解除手段と、 前記第 2内燃機 関の出力軸と前記駆動軸との接続および接続の解除を行なう第 2接続解 除手段と、 を備えることを要旨とする。
この本発明の第 1 の自動車では、 第 1 接続解除手段によリ第 1 内燃機 関の出力軸と第 2内燃機関の出力軸との接続を解除した状態では、 第 1 内燃機関と第 1 電動機とからの動力を用いて発電することができると共 にこの発電電力により蓄電手段を充電し、 第 2内燃機関と第 2電動機と を用いて駆動軸に動力を出力することができる。 第 1 接続解除手段によ り第 1 内燃機関の出力軸と第 2内燃機関の出力軸とを接続した状態では、 第 1 内燃機関と第 2内燃機関と第 1 電動機と第 2電動機とからの動力を 直接駆動軸に出力することができると共に第 1 電動機と第 2電動機の一 方により発電して蓄電手段を充電することができる。 しかも、 第 1 内燃 機関と第 2内燃機関と第 1 電動機と第 2電動機との他に第 1 接続解除手 段を備えることでよいから、 簡易な構成とすることができると共に制御 を簡易なものとすることができる。 また、 第 2接続解除手段により第 2 内燃機関の出力軸と駆動軸との接続を解除することによリ第 2電動機か らの動力だけを駆動軸に出力することができる。 この結果、 第 2内燃機 関の出力軸を切り離すことにより、 第 2電動機からの動力だけを駆動軸 に出力する際のエネルギ効率を向上させることができる。
こう した本発明の第 1 の自動車において、 前記蓄電手段の状態を検出 する蓄電状態検出手段と、 操作者の操作に基づいて前記駆動軸に出力す べき要求動力を設定する要求動力設定手段と、 前記蓄電状態検出手段に より検出された蓄電状態が所定の状態範囲となると共に前記要求動力設 定手段により設定された要求動力に基づく動力が前記駆動軸に出力され るよう前記第 1 内燃機関と前記第〗 電動機と前記第 2内燃機関と前記第 2電動機と前記第 1 接続解除手段とを制御する制御手段と、 を備えるも のとすることもできる。 こうすれば、 操作者の要求に応じた動力を駆動 軸に出力することができると共に蓄電手段を所定の状態範囲となるよう にすることができる。 この場合、 前記制御手段は、 前記駆動軸の回転数 が所定回転数未満のときには前記第 2内燃機関の出力軸と前記駆動軸と の接続が解除されるよう前記第 2接続解除手段を制御し、 前記駆動軸の 回転数が所定回転数以上のときには前記第 2内燃機関の出力軸と前記駆 動軸とが接続されるよう前記第 2接続解除手段を制御する手段であるも のとすることもできる。 こうすれば、 操作者の要求に応じた動力をより 効率よく駆動軸に出力することができる。 さらに、 この場合、 前記制御 手段は、 前記駆動軸の回転数が前記所定回転数以上のときであって前記 設定された要求動力における要求トルクが所定トルク未満のときには前 記第 1 内燃機関の出力軸と前記第 2内燃機関の出力軸との接続が解除さ れるよう前記第 1 接続解除手段を制御し、 前記駆動軸の回転数が前記所 定回転数以上のときであって前記設定された要求動力における要求トル クが所定トルク以上のときには前記第 1 内燃機関の出力軸と前記第 2内 燃機関の出力軸とが接続されるよう前記第 1 接続解除手段を制御する手 段であるものとすることもできる。 こうすれば、 操作者の要求に応じた 動力をより効率よく出力することができる。
本発明の第 2の自動車は、 所定の運転ポイントで効率よく運転可能な 第 1 内燃機関と、 前記所定の運転ポイントで運転された前記第 1 内燃機 関からの動力を用いて効率よく発電可能な第 1 電動機と、 車軸に連結さ れた駆動軸に動力を出力可能な第 2内燃機関と、 前記駆動軸に動力を入 出力可能な第 2電動機と、 前記第 1 電動機および前記第 2電動機と電力 のやりとリが可能な蓄電手段と、 前記蓄電手段の状態を検出する蓄電状 態検出手段と、 操作者の操作に基づいて前記駆動軸に出力すべき要求動 力を設定する要求動力設定手段と、 前記蓄電状態検出手段により検出さ れた蓄電状態が所定の状態範囲となると共に前記要求動力設定手段によ り設定された要求動力に基づく動力が前記駆動軸に出力されるよう前記 第 1 内燃機関と前記第 1 電動機と前記第 2内燃機関と前記第 2電動機と を制御する制御手段と、 を備えることを要旨とする。
この本発明の第 2の自動車では、 第 1 内燃機関を所定の運転ポイント で運転し、 この第 1 内燃機関からの動力を用いて第 1 電動機により発電 することにより、 車両のエネルギ効率を向上させることができる。 もと より、 第 2内燃機関と第 2電動機からの動力を駆動軸に出力することが できる。 第 1 内燃機関と第 2内燃機関と第 1 電動機と第 2電動機とを備 えることでよいから、 簡易な構成とすることができると共に制御を簡易 なものとすることができる。 また、 操作者の要求に応じた動力を駆動軸 に出力することができると共に蓄電手段を所定の状態範囲となるように することができる。
本発明の第 3の自動車は、 第 1 内燃機関と、 該第 1 内燃機関からの動 力を用いて発電可能な第 1 電動機と、 車軸に連結された駆動軸に動力を 出力可能な第 2内燃機関と、 前記駆動軸が回転停止しているときに該駆 動軸に出力すべき 卜ルクとして想定されている最大トルクの近傍の 卜ル クを該駆動軸に出力可能な第 2電動機と、 前記第 1 電動機および前記第 2電動機と電力のやりとりが可能な蓄電手段と、 前記蓄電手段の状態を 検出する蓄電状態検出手段と、 操作者の操作に基づいて前記駆動軸に出 力すべき要求動力を設定する要求動力設定手段と、 前記蓄電状態検出手 段により検出された蓄電状態が所定の状態範囲となると共に前記要求動 力設定手段により設定された要求動力に基づく動力が前記駆動軸に出力 されるよう前記第 1 内燃機関と前記第 1 電動機と前記第 2内燃機関と前 記第 2電動機とを制御する制御手段と、 を備えることを要旨とする。
この本発明の第 3の自動車では、 駆動軸が回転停止しているときに駆 動軸に出力すべき 卜ルクとして想定されている最大トルクの近傍の卜ル クを駆動軸に出力可能な第 2電動機を備えることにより、 駆動軸に要求 される動力が低回転高トルクの動力のときでも第 2電動機から効率よく 出力することができる。 第 1 内燃機関と第 2内燃機関と第 1 電動機と第 2電動機とを備えることでよいから、 簡易な構成とすることができると 共に制御を簡易なものとすることができる。 また、 操作者の要求に応じ た動力を駆動軸に出力することができると共に蓄電手段を所定の状態範 囲となるようにすることができる。 図面の簡単な説明
図 1 は、 実施例としての動力出力装置を搭載するハイブリ ツ ド自動車 2 0の構成の概略を示す構成図、
図 2は、 ハイプリ ッ ド用電子制御ュニッ 卜 7 0により実行される駆動 制御ルーチンの一例を示すフローチヤ一卜、
図 3は、 要求トルク設定用マップの一例である説明図、 図 4は、 変形例のハイプリ ッ ド自動車 1 2 0の構成の概略を示す構成 図である。 発明を実施するための最良の形態
次に、 本発明を実施するための最良の形態を実施例を用いて説明する。 図 1 は、 本発明の一実施形態としての動力出力装置を搭載するハイプリ ッ ド自動車 2 0の構成の概略を示す構成図である。 実施例のハイプリッ ド自動車 2 0は、 図示するように、 ガソリンにより動力を出力する 2つ のエンジン E G 1 , E G 2と、 周知の同期発電電動機として構成された 2つのモータ M G 1 , M G 2と、 動力出力装置全体をコントロールする ハイプリ ッ ド用電子制御ュニッ 卜 7 0とにより構成されている。 ェンジ ン E G 1 のクランクシャフ 卜 2 6はモータ M G 1 に接続されており、 モ 一夕 M G 1 はエンジン E G 1 からの動力を用いて発電する。 また、 ェン ジン E G 1 のクランクシャフ ト 2 6は、 同じ径のプーリ 3 0 , 3 1 とべ ル卜 3 2とクラッチ C 1 とを介してエンジン E G 2のクランクシャフ ト 2 7に接続されており、 クラッチ C 1 をオンとすることによりエンジン E G 1 とエンジン E G 2とを同じ回転数で運転することができる。 ェン ジン E G 2のクランクシャフ ト 2 7は、 デフア レンシャルギヤ 6 2を介 して連結された駆動輪 6 3 a, 6 3 bに接続された駆動軸 6 5にクラッ チ C 2を介して接続されており、 この駆動軸 6 5には、 モータ M G 2も 取り付けられている。 したがって、 モータ M G 2から駆動軸 6 5に動力 を入出力することができると共にクラッチ C 2をオンとすることにより エンジン E G 2からも駆動軸 6 5に動力を出力することができる。 さら に、 この状態からクラッチ C 1 をオンとすることによりエンジン E G 1 からも駆動軸 6 5に動力を出力することができる。
エンジン E G 1 は、 所定の運転ポイント (回転数, トルク) で特に効 率よく運転可能な内燃機関として構成されており、 エンジン E G 2は、 アイ ドル回転数から駆動軸 6 5の最大回転数までの広範囲な回転数領域 で効率よく運転可能な内燃機関として構成されている。 エンジン E G 1 , E G 2は、 エンジン E G 1 , E G 2の運転状態を検出する各種センサか ら信号を入力するエンジン用電子制御ユニッ ト (以下、 エンジン E C U という) 2 4, 2 5 により燃料噴射制御や点火制御, 吸入空気量調節制 御などの運転制御を受けている。 エンジン E C U 2 4, 2 5は、 ハイプ リッ ド用電子制御ュニッ 卜 7 0と通信しており、 ハイプリッ ド用電子制 御ュニッ 卜 7 0からの制御信号によリエンジン E G 1 , E G 2を運転制 御すると共に必要に応じてエンジン E G 1 , 2の運転状態に関する データをハイブリツ ド用電子制御ュニッ 卜 7 0に出力する。
モータ M G 1 は、 エンジン E G 1 が上述の特に効率よく運転可能な所 定の運転ポイントで運転されているときに特に効率よく発電可能な同期 発電電動機として構成されており、 モータ M G 2は、 駆動軸 6 5の回転 が停止しているとき、 即ち、 車両の発進時に駆動軸 6 5に出力すべき 卜 ルクとして想定されている最大トルクを出力可能な同期発電電動機とし て構成されている。 モ一夕 M G 1 , M G 2は、 インバー夕 4 1 , 4 2を 介してバッテリ 5 0に接続され、 バッテリ 5 0からの電力を用いて駆動 することができると共に発電した電力をバッテリ 5 0に供給することが できる。 このモータ M G 1 , M G 2は、 モータ用電子制御ユニッ ト (以 下、 モータ E C Uという) 4 0により駆動制御されている。 モータ E C U 4 0は、 バッテリ 5 0の管理も行なっており、 バッテリ 5 0の出力端 子に取リ付けられた図示しない電流センサによリ検出された充放電電流 に基づいて残容量 ( S 0 C ) なども計算している。 モー夕 E C U 4 0は、 ハイプリ ッ ド用電子制御ュニッ 卜 7 0と通信しており、 ハイプリッ ド用 電子制御ュニッ 卜 7 0からの制御信号によりモータ M G 1 , M G 2を駆 動制御すると共に必要に応じてモータ M G 1 , M G 2の運転状態ゃバッ テリ 5 0の状態に関するデータをハイプリ ッ ド用電子制御ュニッ 卜 7 0 に出力する。
ハイプリッ ド用電子制御ュニッ 卜 7 0は、 C P U 7 2を中心とするマ イク口プロセッサとして構成されておリ、 C P U 7 2の他に処理プログ ラムを記憶する R 0 M 7 4と、 データを一時的に記憶する R A M 7 6と、 図示しない入出力ポー卜および通信ポー卜とを備える。 ハイブリ ッ ド用 電子制御ュニッ 卜 7 0には、 ィグニッシヨンスィッチ 8 0からのィグニ ッシヨン信号, シフトレバー 8 1 の操作位置を検出するシフ トポジショ ンセンサ 8 2からのシフ トポジション S P, アクセルペダル 8 3の踏み 込み量を検出するァクセルペダルポジシヨンセンサ 8 4からのアクセル 開度 A c c, ブレーキペダル 8 5の踏み込み量を検出するブレーキぺダ ルポジションセンサ 8 6からのブレーキペダルポジション B P , 車速セ ンサ 8 8からの車速 Vなどが入力ポ一卜を介して入力されている。 また、 ハイブリ ッ ド用電子制御ユニッ ト 7 0からは、 クラッチ C 1 やクラッチ C 2への駆動信号などが出力ポー卜を介して出力されている。 ハイプリ ッ ド用電子制御ユニッ ト 7 0は、 前述したように、 エンジン E C U 2 4, 2 5やモータ E C U 4 0と通信ポー 卜を介して接続されており、 ェンジ ン E C U 2 4, 2 5やモータ E C U 4 0と各種制御信号やデータのやり とりを行なっている。
こう して構成された実施例のハイプリ ッ ド自動車 2 0は、 主としてク ラッチ C 2をオフとしてモータ M G 2からの動力により走行する第 1 走 行パターンと、 クラッチ C 2をオンとしてエンジン E G 2からの動力に より走行する第 2走行パターンとにより走行する。
第〗 走行パターンでは、 通常はクラッチ C 1 もオフとされ、 エンジン E G 2が停止した状態でモータ M G 2からの動力だけで走行する。 この パターンは、 発進時などの低速時に用いられる。 このパターンでは、 ェ ンジン E G 1 はモータ M G 2に電力供給を行なぅバッテリ 5 0の残容量 ( S 0 C ) が制御下限値を下回ったときに始動され、 このエンジン E G 1 からの動力を用いてモー夕 M G 1 により発電してバッテリ 5 0に電力 供給する。 このとき、 エンジン E G 1 とモータ M G 1 は最も発電効率が よくなる運転ポイントで運転される。 なお、 エンジン E G 1 は、 ノ\ 'ッテ リ 5 0の残容量 ( S O C) が制御上限値を上回ったときにその運転が停 止される。 したがって、 バッテリ 5 0はモータ M G 2に電力供給を行な いながらその残容量 ( S O C) はほぼ制御下限値と制御上限値の範囲で 制御されることになる。 第 1 走行パターンでは、 クラッチ C 1 をオンと してエンジン E G 2をエンジン E G 1 のクランクシャフ ト 2 6に接続す ることもできる。 この場合、 モータ M G 1 は、 エンジン E G 1 とェンジ ン E G 2とを運転することにより得られる動力を用いて発電することに なる。
第 2走行パターンでは、 エンジン E G 2が駆動軸 6 5に直接接続され ているから、 エンジン E G 2の下限回転数に相当する車速未満では走行 することできない。 実施例では、 エンジン E G 2を比較的効率よく運転 できる中速 (例えば 2 0 k m/ hや 3 0 k m/ h以上) で用いるものと した。 このパターンでは、 運転者のアクセルペダル 8 3の踏み込みと車 速 Vとから設定される駆動軸 6 5に出力すべき トルクが比較的低トルク のときには、 クラッチ C 1 をオフとし、 主としてエンジン E G 2からの 動力により走行する。 モー夕 M G 2は、 エンジン E G 2からの動力では 駆動軸 6 5 に出力すべき動力に過不足が生じるときにバッテリ 5 0が許 容する範囲内で駆動される。 このとき、 エンジン E G 1 とモータ M G 1 は上述した第〗 走行パターンと同様に動作する。 駆動軸 6 5 に出力すベ き トルクが比較的高トルクのときには、 クラッチ C 1 をオンとして、 ェ ンジン E G 1 やモータ M G 1 を駆動軸 6 5 に接続する。 この場合、 主と してエンジン E G 1 とエンジン E G 2とからの動力により走行し、 モー タ M G 1 とモータ M G 2はエンジン E G 1 とエンジン E G 2とからの動 力では駆動軸 6 5 に出力すべき動力に過不足が生じるときにバッテリ 5 0が許容する範囲内で駆動される。
次に、 こうして構成されたハイプリ ッ ド自動車 2 0の動作について説 明する。 図 2は、 実施例のハイブリ ッ ド自動車 2 0のハイブリッ ド用電 子制御ュニッ 卜 7 0により実行される駆動制御ルーチンの一例を示すフ ローチャー卜である。 このルーチンは、 所定時間毎 (例えば、 8 m s e C毎) に実行される。
駆動制御ルーチンが実行されると、 ハイプリ ッ ド用電子制御ュニッ 卜
7 0の〇 リ 7 2は、 まず、 アクセルペダルポジションセンサ 8 4から のアクセル開度 A c cや車速センサ 8 8からの車速 Vなどのデータを入 力し (ステップ S 1 0 0 ) 、 入力したアクセル開度 A c cと車速 Vとに 基づいて車両に要求される トルクとして駆動軸 6 5 に出力すべき要求卜 ルク T d *を設定する (ステップ S I 1 0 ) 。 要求トルク T d *は、 実 施例では、 アクセル開度 A c c と車速 Vと要求トルク T d *との関係を 予め定めて要求卜ルク設定用マツプとして R O M 7 4に記憶しておき、 アクセル開度 A c c と車速 Vとが与えられると記憶したマップから対応 する要求トルク T d *を導出して設定するものとした。 図 3に要求卜ル ク設定用マツプの一例を示す。
続いて、 車速 Vと閾値 V r e f とを比較する (ステップ S 1 2 0 ) 。 ここで、 閾値 V r e f は、 クラッチ C 2をオンとして主としてエンジン E G 2からの動力により走行するか否かを判定するための閾値であり、 2 0 k m/ hや 3 0 k m/ などに設定することができる。 車速 Vが閾 値 V r e f 未満のときには、 モータ M G 2からの動力だけで走行する第 1 走行パターンを選択し、 クラッチ C 2をオフとすると共にクラッチ C
1 をオフとし (ステップ S 1 2 5 , S 1 3 0 ) 、 バッテリ 5 0の残容量 ( S O C ) に基づいてエンジン E G 1 とモータ M G 1 とを運転するよう エンジン E C U 2 4とモータ E C U 4 0とに運転指示を行なう (ステツ プ S 1 3 5 ) 。 指示を受信したエンジン E C U 2 4とモータ E C U 4 0 とは、 バッテリ 5 0の残容量 ( S 0 C ) が上述の制限下限値を下回った ときにはエンジン E G 1 とモータ M G 1 とが最も発電効率のよくなる運 転ポイン トで運転されるようエンジン E G 1 の燃料噴射制御や点火制御 を行なうと共にモータ M G 1 を駆動するインバー夕 4 1 のスイッチング 素子のスイッチング制御を行ない、 バッテリ 5 0の残容量 ( S O C ) が 制限上限値を上回ったときにはその運転が停止されるようエンジン E G 1 の燃料噴射制御や点火制御を停止すると共にモータ M G 1 を駆動する ィンバ一夕 4 1 のスィツチング素子のスィツチング制御を行なう。
そして、 エンジン E G 2を停止するためにエンジン E G 2の目標回転 数 N e 2 *と目標トルク T e 2 *とに値 0を設定し (ステップ S 1 4 0 ) 、 モー夕 M G 2のトルク指令 T m 2 *に要求トルク T d *を設定す る (ステップ S 1 5 0 ) 。 こう してエンジン E G 2の目標回転数 N e 2 *や目標トルク T e 2 *, モータ M G 2のトルク指令 T m 2 *を設定す ると、 目標回転数 N e 2 *と目標トルク T e 2 *についてはエンジン E C U 2 5 に送信し、 モー夕 M G 2のトルク指令丁 m 2 *についてはモー 夕 E C U 4 0に送信して (ステップ S 1 6 0 ) 、 駆動制御ルーチンを終 了する。 目標回転数 N e 2 *と目標トルク T e 2 *とを受信したェンジ ン E C U 2 5は、 エンジン E G 2を停止するよう燃料噴射制御や点火制 御などを停止する。 トルク指令 T m 2 *を受信したモータ E C U 4 0は、 トルク指令 T m 2 *でモータ M G 2が駆動されるようインバー夕 4 2の スィツチング素子のスィツチング制御を行なう。 車速 Vが閾値 V r e f 以上のときには、 第 2走行パターンを選択し、 クラッチ C 2をオンとし (ステップ S 1 6 5 ) 、 要求トルク T d *を閾 値 T d r e f と比較する (ステップ S Ί 7 0 ) 。 ここで、 閾値 T r e f は、 クラッチ C 1 をオンとしてエンジン E G 1 とモータ M G 1 とを駆動 軸 6 5 に接続するか否かを判定するために用いられる閾値であり、 駆動 軸 6 5の回転数 N d におけるエンジン E G 2から出力可能な最大トルク T 2 m a xとモータ M G 2から出力可能な最大トルク T m 2 m a xとに 基づいて設定することができる。 実施例では、 閾値 T r e f は、 最大卜 ルク T 2 m a xより大きく、 且つ、 最大トルク T 2 m a xと最大トルク T m 2 m a xとの和よりも小さい値を設定するものとした。 要求トルク T d *が閾値 T d r e f 未満のときには、 主としてエンジン E G 2から の動力により走行すると判断し、 クラッチ C 1 をオフとし (ステップ S 1 8 0 ) 、 バッテリ 5 0の残容量 ( S 0 C ) に基づいてエンジン E G 1 とモータ M G 1 とを運転するよう第 1 走行パターンと同様にエンジン E C U 2 4 とモ一夕 E C U 4 0 とに運転指示を行ない (ステップ S 1 8 5 ) 、 エンジン E G 2から出力可能な最大トルク T 2 m a Xと要求トル ク T d *とを比較して小さい方の値をエンジン E G 2の目標トルク T e 2 *として設定し (ステップ S 1 9 0 ) 、 要求トルク T d *と目標トル ク T e 2 *との偏差を トルク指令 T m 2 *として設定する (ステップ S 2 0 0 ) 。 こう してエンジン E G 2の目標トルク T e 2 *とモータ M G 2のトルク指令 T m 2 *とを設定すると、 目標トルク T e 2 *について はエンジン E C U 2 5 に送信し、 トルク指令 T m 2 *についてはモータ E C U 4 0に送信して (ステップ S 2 1 0 ) 、 本ルーチンを終了する。 目標トルク T e 2 *を受信したエンジン E C U 2 5は、 エンジン E G 2 から目標トルク T e 2 *が出力されるよう燃料噴射制御や点火制御など を行なう。 トルク指令 T m 2 *を受信したモータ E C U 4 0は、 トルク 指令 T m 2 *でモータ M G 2が駆動されるようィンバー夕 4 2のスイツ チング素子のスイッチング制御を行なう。
要求トルク T d *が閾値 T r e f 以上のときには、 エンジン E G 1 と エンジン E G 2 とから動力を出力する必要があると判断し、 クラッチ C 1 をオンとし (ステップ S 2 2 0 ) 、 要求トルク T d *の半分の トルク ( T d * / 2 ) とエンジン E G 1 , E G 2から出力可能な最大トルク T 1 m a x, T 2 m a xとをそれぞれ比較して小さい方の値をエンジン E G 1 , E G 2の目標トルク T e 1 *, T e 2 *として設定し (ステップ S 2 3 0 ) 、 目標トルク T e l *と目標トルク T e 2 *との和と要求卜 ノレク T d *とに基づいてモータ M G 1 , M G 2の トルク指令 T m 1 *, T m 2 *を設定する (ステップ S 2 4 0 ) 。 トルク指令 T m 1 *, T m 2 *は、 実施例では、 要求トルク T d *と、 目標トルク T e 1 *と目標 トルク T e 2 *との和と、 の偏差としての卜ルク T mがモータ M G 2か ら出力可能な最大卜ルク T m 2 m a xより小さいときにはトルク指令 T m 2 *にトルク T mを設定する共にトルク指令丁 m l *に値 0を設定し、 トルク T mが最大トルク T m 2 m a xより大きいときにはトルク指令 T m 2 *に最大トルク T m 2 m a xを設定すると共にトルク指令 T m 1 * にトルク T mと最大トルク T 2 m a xとの偏差としてのトルクを設定す るものとした。
こう してエンジン E G 1 , E G 2の目標トルク T e 1 *, T e 2 *と モー夕 M G 1 , M G 2の トルク指令 T m 1 *, 丁 m 2 *を設定すると、 目標トルク T e 1 *, T e 2 *についてはそれぞれエンジン E C U 2 4, 2 5に送信し、 トルク指令 T m 1 *, T m 2 *についてはモータ E C U 4 0に送信して (ステップ S 2 5 0 ) 、 本ルーチンを終了する。
以上説明した実施例のハイブリッ ド自動車 2 0によれば、 2つのェン ジン E G 1 , E G 2と 2つのモータ M G 1 , M G 2の他には 2つのクラ ツチ C 1 , C 2を備えることでよいから、 簡易な構成とすることができ る。 また、 実施例のハイブリ ッ ド自動車 2 0によれば、 主としてクラッ チ C 2をオフとしてモータ M G 2からの動力により走行する第 1 走行パ ターンと、 クラッチ C 2をオンとしてエンジン E G 2からの動力により 走行する第 2走行パターンと、 から車速 Vに応じて効率のよい走行パ夕 ーンを選択して走行することができる。 したがって、 エネルギ効率の向 上を図ることができる。
実施例のハイブリ ツ ド自動車 2 0によれば、 発進時などの低速時には、 第 1 走行パターンを選択し、 クラッチ C 1 もオフとしてエンジン E G 2 が停止した状態でモータ M G 2からの動力だけで走行することができる。 したがって、 エンジン E G 2を駆動軸 6 5から切り離すことにより、 ェ ネルギ効率の向上を図ることができる。 しかも、 この場合には、 バッテ リ 5 0の残容量 ( S 0 C ) に基づいてェンジン E G 1 を特に効率のよい 運転ポイントで運転してこのエンジン E G 1 から出力した動力をモータ M G 1 によって特に効率よく発電するから、 発電効率の向上を囡ること ができると共にバッテリ 5 0の残容量 ( S O C ) を制御下限値と制御上 限値との範囲で制御することができる。 実施例のハイブリ ッ ド自動車 2 0によれば、 エンジン E G 2を効率よく運転できる中速では、 第 2走行 パターンを選択し、 駆動軸 6 5 に出力すべき トルクが比較的低トルクの ときには、 クラッチ C 1 をオフとし、 主として効率よく運転したェンジ ン E G 2からの動力により走行することができる。 したがって、 より効 率よく駆動軸 6 5 に動力を出力することができ、 エネルギ効率の向上を 図ることができる。 一方、 駆動軸 6 5 に出力すべき トルクが比較的高卜 レクのときには、 クラッチ C 1 をオンとし、 エンジン E G 1 とモータ M G 1 とを駆動軸 6 5に接続し、 主として効率よく運転したエンジン E G 1 とエンジン E G 2とからの動力により走行することができる。 したが つて、 駆動軸 6 5 に高トルクを出力することができると共にエネルギ効 率の向上を図ることができる。 もとより、 実施例のハイブリ ッ ド自動車
2 0によれば、 運転者の要求に応じた動力を効率よく駆動軸 6 5 に出力 することができる。
実施例のハイブリ ッ ド自動車 2 0では、 エンジン E G 2は、 アイ ドル 回転数から駆動軸 6 5の最大回転数までの広範囲な回転数領域で効率よ く運転可能な内燃機関を用いるものとしたが、 アイ ドル回転数より高い 所定の回転数 (例えば、 1 0 0 0 r p mなど) から駆動軸 6 5の最大回 転数までの回転数領域で効率よく運転可能な内燃機関を用いるものとし てもよいし、 通常車両に要求される車速に相当する回転数領域で効率よ く運転可能な内燃機関を用いるものとしてもよい。
実施例のハイブリ ッ ド自動車 2 0では、 モータ M G 2は、 駆動軸 6 5 が回転停止しているとき、 即ち、 車両の発進時に駆動軸 6 5 に出力すベ き トルクとして想定されている最大トルクを出力可能な同期発電電動機 を用いるものとしたが、 最大トルク近傍のトルクや最大トルクより若干 高いトルクまで出力可能な同期発電電動機を用いるものとしてもよい。 実施例のハイブリ ッ ド自動車 2 0では、 エンジン E G 1 は、 所定の運 転ポイント (回転数, トルク) で特に効率よく運転可能な内燃機関を用 いるものとしたが、 所定の範囲内で効率よく運転可能な内燃機関を用い るものとしてもよい。 こうすれば、 エンジン E G 1 は、 クラッチ C 1 を オフとしてバッテリ 5 0に充電するための動力を出力するときだけでな く、 クラッチ C 1 をオンとして駆動軸 6 5に動力を直接出力するときに も効率よく運転することができる。
実施例のハイプリ ッ ド自動車 2 0では、 クラッチ C 2を備えておリ、 エンジン E G 2のクランクシャフ ト 2 7 と駆動軸 6 5 とを接続したリ切 リ離したりすることができるものとしたが、 クラッチ C 2を備えておら ず、 エンジン E G 2のクランクシャフ ト 2 7が駆動軸 6 5に常に接続さ れているものとしてもよい。 こうすれば、 エンジン E G 1 , E G 2とモ 一夕 M G 1 , M G 2との他にはクラッチ C 1 を備えることでよいから、 よリ簡易な構成とすることができると共に制御を簡易なものとすること ができる。 この場合、 発進時や低速時のように第 1 走行パターンで走行 するときには、 エンジン E G 2は駆動軸 6 5の回転数 N dで連れ回され とに/よる。
実施例のハイブリ ッ ド自動車 2 0では、 クラッチ C 1 , C 2を備える ものとしたが、 クラッチ C 1 , C 2を備えていないものとしてもよい。 こうすれば、 エンジン E G 1 , E G 2とモータ M G 1 , M G 2とを備え ることでよいから、 より簡易な構成とすることができると共に制御を簡 易なものとすることができる。
実施例のハイブリ ッ ド用電子制御ュニッ 卜 7 0により実行される駆動 制御ルーチンでは、 第 1 走行パターンが選択されたときには、 モータ M G 1 は、 クラッチ C 1 をオフとしてエンジン E G 2を停止した状態でェ ンジン E G 1 を運転することにより得られる動力を用いて発電するもの としたが、 クラッチ C 1 をオンとしてエンジン E G 1 とエンジン E G 2 とを運転することにより得られる動力を用いて発電するものとすること もできる。
実施例のハイブリ ッ ド自動車 2 0では、 車速 Vと閾値 V r e f との比 較により第 1 走行パターンと第 2走行パターンとを選択するものとした が、 車両全体としてのエネルギ効率が高くなるよう第 1 走行パターンと 第 2走行パターンとを選択するものとしてもよい。 この場合、 第 1 走行 パターンと第 2走行パターンとのうちのエネルギ効率が高くなる走行パ ターンが切り替わるポイントを実験などにより予め定めておき、 そのポ イン卜で第 1 走行パターンと第 2走行パターンとを切り替えるものとし てもよい。 なお、 これ以外の手法により第 1 走行パターンと第 2走行パ ターンとを切り替えるものとしても差し支えない。
実施例のハイプリ ッ ド自動車 2 0では、 車速 Vが閾値 V r e f 以上か 否かにより第 1 走行パターンと第 2走行パターンとを切り替えるものと したが、 ヒステリシスを持たせて第 1 走行パターンと第 2走行パターン とを切り替えるものとしてもよい。 こうすれば、 車速 Vが閾値 V r e f 近傍のときに走行パターンを頻繁に切リ替えることを抑制することがで さる。
実施例のハイプリ ッ ド自動車 2 0では、 プーリ 3 0とプーリ 3 1 は、 同じ径のものを用いるものとしたが、 異なる径のものを用いるものとし てもよい。 例えば、 プーリ 3 0の径がプーリ 3 1 の径に比して大きいも のを用いるものとしてもよい。 この場合、 高速走行しているときに駆動 軸 6 5に出力すべき トルクが比較的大きいときを考えると、 クラッチ C 2をオンとすることにより、 エンジン E G 2の回転数 N e 2は駆動軸 6 5の回転数 N d となる。 プーリ 3 0の径とプーリ 3 1 の径が同じであれ ば、 クラヅチ C 1 をオンとしたときにエンジン E G 1 の回転数 N e 1 も 回転数 N d となるが、 プーリ 3 0の径がプーリ 3 1 の径に比して大きけ れぱ、 エンジン E G 1 の回転数 N e 1 はエンジン E G 2の回転数 N e 2 に比して小さくすることができる。 このように、 プーリ 3 0の径とプ一 リ 3 1 の径との比を調整することによりエンジン E G 1 の回転数 N e 1 とエンジン E G 2の回転数 N e 2との回転数比を調整することができる から、 エネルギ効率の向上を図ることができる。
実施例のハイブリ ツ ド自動車 2 0では、 2つのエンジンと 2つのモー タとから動力を出力して走行する構成の一例について説明したが、 2つ のエンジンと 2つのモー夕とから動力を出力して走行する構成としては、 種々の構成が可能である。 例えば、 図 4の変形例のハイブリ ッ ド自動車 1 2 0に示すように、 モータ M G 1 とエンジン E G 1 とエンジン E G 2 とモータ M G 2とがそれぞれクラッチを介して直列に接続するものとし てもよい。 クラッチ C 3〜 C 8は、 モータ M G 1 とエンジン E G 1 , ェ ンジン E G 1 とエンジン E G 2, エンジン E G 2とモータ M G 2との間 に各 2つずつ取り付けられている。 また、 各 2つずつのクラッチの間に はギヤが取り付けられており、 駆動軸 1 6 5 に取り付けられたギヤと嚙 合している。 この構成では、 6つのクラッチ C 3〜 C 8をオンオフする ことにより、 2つのエンジン E G 1 , E G 2と 2つのモータ M G 1 , M G 2とから駆動軸 1 6 5に任意に動力を出力することができる。 例えば、 エンジン E G 1 とエンジン E G 2との間の 2つのクラッチ C 5, C 6を オフとすると共に残りのクラッチ C 3, C 4 , C 7, C 8をオンとして、 走行抵抗分の動力、 即ち定常走行に必要な動力をエンジン E G 2から出 力し、 駆動軸 6 5 に出力すべき動力の変動分をエンジン E G 1 から出力 することができる。 また、 要求トルクが比較的大きいときには、 クラッ チ C 3〜 C 8の全部をオンとしてエンジン E G 1 とエンジン E G 2 とモ 一夕 M G 1 とモータ M G 2とを駆動軸 6 5 に接続し、 エンジン E G 1 と エンジン E G 2とモータ M G 1 とモータ M G 2 とから駆動軸 1 6 5 に動 力を出力することもできる。 変形例のハイブリ ッ ド自動車 1 2 0では、 2つのエンジン E G 1 , E G 2と 2つのモータ M G 1 , M G 2と、 駆動 軸 1 6 5 と、 をギヤにより接続するものとしたが、 変速機を用いるもの としてもよい。
上述した実施例やその変形例では、 エンジン E G 1 , E G 2とモータ M G 1 , M G 2とを備え駆動軸 6 5, 1 6 5 に動力を出力する動力出力 装置を自動車に搭載するものとしたが、 こう した動力出力装置を自動車 以外の車両や船舶、 航空機などの移動体に搭載するものとしてもよいし、 建設機器などの移動しない設備の動力源として用いるものとしてもよい。 以上、 本発明を実施するための最良の形態について実施例を用いて説 明したが、 本発明はこう した実施例に何等限定されるものではなく、 本 発明の要旨を逸脱しない範囲内において、 種々なる形態で実施し得るこ とは勿論である。 産業上の利用の可能性
本発明は、 動力出力装置や自動車の製造産業などに利用可能である。

Claims

請求の範囲
1 . 駆動軸に動力を出力する動力出力装置であって、
第 1 内燃機関と、
該第 1 内燃機関からの動力を用いて発電可能な第 1 電動機と、 前記駆動軸に動力を出力可能な第 2内燃機関と、
前記駆動軸に動力を入出力可能な第 2電動機と、
前記第 1 電動機および前記第 2電動機と電力のやりとりが可能な蓄電 手段と、
前記第 1 内燃機関の出力軸と前記第 2内燃機関の出力軸との接続およ び接続の解除を行なう第 1 接続解除手段と、
を備える動力出力装置。
2 . 請求項 1 記載の動力出力装置であって、
前記第 2内燃機関の出力軸と前記駆動軸との接続および接続の解除を 行なう第 2接続解除手段
を備える動力出力装置。
3 . 請求項 1 記載の動力出力装置であって、
前記第 1 内燃機関は、 所定の運転ポイン卜で効率よく運転可能な内燃 機関であリ、
前記第 1 電動機は、 前記所定の運転ポイントで運転された前記第 1 内 燃機関からの動力を用いて効率よく発電可能な電動機である
動力出力装置。
4 . 請求項 1 記載の動力出力装置であって、
前記第 2内燃機関は、 所定の回転領域で効率よく運転可能な内燃機関 であり、
前記第 2電動機は、 前記駆動軸が回転停止しているときに該駆動軸に 出力すべき トルクとして想定されている最大トルクの近傍の トルクを出 力可能な電動機である
動力出力装置。
5 . 請求項 4記載の動力出力装置であって、
前記所定の回転領域は、 アイ ドル回転数または該アイ ドル回転数より 大きな第 1 の所定の回転数から前記駆動軸に想定されている最大回転数 までの領域である
動力出力装置。
6 . 請求項 1 記載の動力出力装置であって、
前記蓄電手段の状態を検出する蓄電状態検出手段と、
操作者の操作に基づいて前記駆動軸に出力すべき要求動力を設定する 要求動力設定手段と、
前記蓄電状態検出手段により検出された蓄電状態が所定の状態範囲と なると共に前記要求動力設定手段によリ設定された要求動力に基づく動 力が前記駆動軸に出力されるよう前記第 1 内燃機関と前記第 1 電動機と 前記第 2内燃機関と前記第 2電動機と前記第 1 接続解除手段とを制御す る制御手段と、
を備える動力出力装置。
7 . 請求項 1 記載の動力出力装置であって、
前記第 2内燃機関の出力軸と前記駆動軸との接続および接続の解除を 行なう第 2接続解除手段と
前記蓄電手段の状態を検出する蓄電状態検出手段と、
操作者の操作に基づいて前記駆動軸に出力すべき要求動力を設定する 要求動力設定手段と、
前記蓄電状態検出手段によリ検出された蓄電状態が所定の状態範囲と なると共に前記要求動力設定手段により設定された要求動力に基づく動 力が前記駆動軸に出力されるよう前記第 1 内燃機関と前記第 1 電動機と 前記第 2内燃機関と前記第 2電動機と前記第 1 接続解除手段とを制御す る制御手段と、
を備える動力出力装置。
8 . 請求項 7記載の動力出力装置であって、
前記制御手段は、 前記駆動軸の回転数が所定回転数未満のときには前 記第 2内燃機関の出力軸と前記駆動軸との接続が解除されるよう前記第 2接続解除手段を制御し、 前記駆動軸の回転数が所定回転数以上のとき には前記第 2内燃機関の出力軸と前記駆動軸とが接続されるよう前記第 2接続解除手段を制御する手段である
動力出力装置。
9 . 請求項 8記載の動力出力装置であって、
前記制御手段は、 前記駆動軸の回転数が前記所定回転数以上のときで あって前記設定された要求動力における要求トルクが所定トルク未満の ときには前記第 1 内燃機関の出力軸と前記第 2内燃機関の出力軸との接 続が解除されるよう前記第 1 接続解除手段を制御し、 前記駆動軸の回転 数が前記所定回転数以上のときであって前記設定された要求動力におけ る要求トルクが所定トルク以上のときには前記第 1 内燃機関の出力軸と 前記第 2内燃機関の出力軸とが接続されるよう前記第 1 接続解除手段を 制御する手段である
動力出力装置。
1 0 . 駆動軸に動力を出力する動力出力装置であって、
所定の運転ポイン卜で効率よく運転可能な第 1 内燃機関と、
前記所定の運転ポイントで運転された前記第 1 内燃機関からの動力を 用いて効率よく発電可能な第 1 電動機と、
前記駆動軸に動力を出力可能な第 2内燃機関と、 前記駆動軸に動力を入出力可能な第 2電動機と、
前記第 1 電動機および前記第 2電動機と電力のやりとりが可能な蓄電 手段と、
を備える動力出力装置。
1 1 . 請求項 1 0記載の動力出力装置であつて、
前記第 2内燃機関は、 所定の回転領域で効率よく運転可能な内燃機関 であり、
前記第 2電動機は、 前記駆動軸が回転停止しているときに該駆動軸に 出力すべき トルクとして想定されている最大トルクの近傍の トルクを出 力可能な電動機である
動力出力装置。
1 2 . 請求項 1 0記載の動力出力装置であつて、
前記蓄電手段の状態を検出する蓄電状態検出手段と、
操作者の操作に基づいて前記駆動軸に出力すべき要求動力を設定する 要求動力設定手段と、
前記蓄電状態検出手段により検出された蓄電状態が所定の状態範囲と なると共に前記要求動力設定手段により設定された要求動力に基づく動 力が前記駆動軸に出力されるよう前記第 1 内燃機関と前記第 1 電動機と 前記第 2内燃機関と前記第 2電動機とを制御する制御手段と、
を備える動力出力装置。
1 3 . 駆動軸に動力を出力する動力出力装置であって、
第 1 内燃機関と、
該第 1 内燃機関からの動力を用いて発電可能な第 1 電動機と、 前記駆動軸に動力を出力可能な第 2内燃機関と、
前記駆動軸が回転停止しているときに該駆動軸に出力すべき トルクと して想定されている最大トルクの近傍の トルクを該駆動軸に出力可能な 第 2電動機と、
前記第 1 電動機および前記第 2電動機と電力のやりとリが可能な蓄電 手段と、
を備える動力出力装置。
〗 4 . 請求項〗 3記載の動力出力装置であって、
前記第 2内燃機関は、 アイ ドル回転数または該アイ ドル回転数よリ大 きな第〗 の所定の回転数から前記駆動軸に想定されている最大回転数ま での領域で効率よく運転可能な内燃機関である
動力出力装置。
1 5 . 請求項 1 3記載の動力出力装置であって、
前記蓄電手段の状態を検出する蓄電状態検出手段と、
操作者の操作に基づいて前記駆動軸に出力すべき要求動力を設定する 要求動力設定手段と、
前記蓄電状態検出手段により検出された蓄電状態が所定の状態範囲と なると共に前記要求動力設定手段により設定された要求動力に基づく動 力が前記駆動軸に出力されるよう前記第 1 内燃機関と前記第 1 電動機と 前記第 2内燃機関と前記第 2電動機とを制御する制御手段と、
を備える動力出力装置。
1 6 . 自動車であって、
第 1 内燃機関と、
該第〗 内燃機関からの動力を用いて発電可能な第 1 電動機と、 車軸に連結された駆動軸に動力を出力可能な第 2内燃機関と、 前記駆動軸に動力を入出力可能な第 2電動機と、
前記第 1 電動機および前記第 2電動機と電力のやりとりが可能な蓄電 手段と、
前記第 1 内燃機関の出力軸と前記第 2内燃機関の出力軸との接続およ び接続の解除を行なう第 1 接続解除手段と、
前記第 2内燃機関の出力軸と前記駆動軸との接続および接続の解除を 行なう第 2接続解除手段と、
を備える自動車。
1 7 . 請求項 1 6載の自動車であって、
前記蓄電手段の状態を検出する蓄電状態検出手段と、
操作者の操作に基づいて前記駆動軸に出力すべき要求動力を設定する 要求動力設定手段と、
前記蓄電状態検出手段により検出された蓄電状態が所定の状態範囲と なると共に前記要求動力設定手段により設定された要求動力に基づく動 力が前記駆動軸に出力されるよう前記第 1 内燃機関と前記第 1 電動機と 前記第 2内燃機関と前記第 2電動機と前記第 1 接続解除手段とを制御す る制御手段と、
を備える自動車。
1 8 . 請求項 1 7記載の自動車であって、
前記制御手段は、 前記駆動軸の回転数が所定回転数未満のときには前 記第 2内燃機関の出力軸と前記駆動軸との接続が解除されるよう前記第 2接続解除手段を制御し、 前記駆動軸の回転数が所定回転数以上のとき には前記第 2内燃機関の出力軸と前記駆動軸とが接続されるよう前記第 2接続解除手段を制御する手段である
自動車。
1 9 . 請求項 1 8記載の自動車であって、
前記制御手段は、 前記駆動軸の回転数が前記所定回転数以上のときで あって前記設定された要求動力における要求トルクが所定トルク未満の ときには前記第 1 内燃機関の出力軸と前記第 2内燃機関の出力軸との接 続が解除されるよう前記第 1 接続解除手段を制御し、 前記駆動軸の回転 数が前記所定回転数以上のときであって前記設定された要求動力におけ る要求トルクが所定卜ルク以上のときには前記第 1 内燃機関の出力軸と 前記第 2内燃機関の出力軸とが接続されるよう前記第 1 接続解除手段を 制御する手段である
自動車。
2 0 . 自動車であって、
所定の運転ポイン卜で効率よく運転可能な第 1 内燃機関と、
前記所定の運転ポイントで運転された前記第 1 内燃機関からの動力を 用いて効率よく発電可能な第 1 電動機と、
車軸に連結された駆動軸に動力を出力可能な第 2内燃機関と、 前記駆動軸に動力を入出力可能な第 2電動機と、
前記第 1 電動機および前記第 2電動機と電力のやりとりが可能な蓄電 手段と、
前記蓄電手段の状態を検出する蓄電状態検出手段と、
操作者の操作に基づいて前記駆動軸に出力すべき要求動力を設定する 要求動力設定手段と、
前記蓄電状態検出手段により検出された蓄電状態が所定の状態範囲と なると共に前記要求動力設定手段により設定された要求動力に基づく動 力が前記駆動軸に出力されるよう前記第 1 内燃機関と前記第 1 電動機と 前記第 2内燃機関と前記第 2電動機とを制御する制御手段と、
を備える自動車。
2 1 . 自動車であって、
第 1 内燃機関と、
該第 1 内燃機関からの動力を用いて発電可能な第 1 電動機と、 車軸に連結された駆動軸に動力を出力可能な第 2内燃機関と、 前記駆動軸が回転停止しているときに該駆動軸に出力すべき トルクと して想定されている最大トルクの近傍の トルクを該駆動軸に出力可能な 第 2電動機と、
前記第 1 電動機および前記第 2電動機と電力のやリとリが可能な蓄電 手段と、
前記蓄電手段の状態を検出する蓄電状態検出手段と、
操作者の操作に基づいて前記駆動軸に出力すべき要求動力を設定する 要求動力設定手段と、
前記蓄電状態検出手段により検出された蓄電状態が所定の状態範囲と なると共に前記要求動力設定手段により設定された要求動力に基づく動 力が前記駆動軸に出力されるよう前記第 1 内燃機関と前記第 1 電動機と 前記第 2内燃機関と前記第 2電動機とを制御する制御手段と、
を備える自動車。
PCT/JP2005/003230 2004-03-31 2005-02-21 動力出力装置および自動車 WO2005097536A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/594,988 US20080015760A1 (en) 2004-03-31 2005-02-21 Power Output Apparatus and Motor Vehicle
EP05719573A EP1731345A4 (en) 2004-03-31 2005-02-21 POWER OUTPUT DEVICE AND AUTOMOBILE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-107273 2004-03-31
JP2004107273A JP4066974B2 (ja) 2004-03-31 2004-03-31 動力出力装置およびこれを搭載する自動車

Publications (1)

Publication Number Publication Date
WO2005097536A1 true WO2005097536A1 (ja) 2005-10-20

Family

ID=35124936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003230 WO2005097536A1 (ja) 2004-03-31 2005-02-21 動力出力装置および自動車

Country Status (5)

Country Link
US (1) US20080015760A1 (ja)
EP (1) EP1731345A4 (ja)
JP (1) JP4066974B2 (ja)
CN (1) CN100457492C (ja)
WO (1) WO2005097536A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090242301A1 (en) * 2008-04-01 2009-10-01 Mcclanahan Robert F Efficient Vehicle Power Systems
EP1925491A3 (de) * 2006-11-06 2012-05-09 FAUN Umwelttechnik GmbH & Co. KG Hybridantrieb
US9707835B2 (en) 2008-04-01 2017-07-18 3B Technologies Ii Efficient vehicle power systems

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006003711A1 (de) * 2006-01-26 2007-08-02 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Kraftfahrzeug-Antriebsstrangs
JP4211831B2 (ja) 2006-09-14 2009-01-21 トヨタ自動車株式会社 ハイブリッド車両、ハイブリッド車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
US7647994B1 (en) * 2006-10-10 2010-01-19 Belloso Gregorio M Hybrid vehicle having an electric generator engine and an auxiliary accelerator engine
JP4222414B2 (ja) * 2006-12-04 2009-02-12 トヨタ自動車株式会社 動力出力装置、それを備えたハイブリッド自動車、および動力出力装置の制御方法
ES2337748B1 (es) * 2007-01-03 2011-02-14 Belver Inmaculada Zamora Sistema de generacion y almacenamiento, a bordo, de hidrogeno y oxigeno procedentes de la energia de frenado regenerativo de vehiculos.
DE102007010343A1 (de) * 2007-03-03 2008-09-11 Bayerische Motoren Werke Aktiengesellschaft Hybridfahrzeug mit Splitmotor
US20080243322A1 (en) * 2007-03-30 2008-10-02 Mazda Motor Corporation Control device and method of hybrid vehicle
JP4169081B1 (ja) * 2007-05-25 2008-10-22 トヨタ自動車株式会社 動力出力装置、それを備えたハイブリッド自動車、および動力出力装置の制御方法
JP5060371B2 (ja) * 2008-04-07 2012-10-31 トヨタ自動車株式会社 動力出力装置および車両
KR100957274B1 (ko) * 2008-04-21 2010-05-12 현대자동차주식회사 하이브리드 차량의 보조 부하 보상 방법
FR2943606A3 (fr) * 2009-03-30 2010-10-01 Renault Sas Procede et systeme de pilotage d'un groupe motopropulseur bimoteur de vehicule automobile
DE102009033210A1 (de) 2009-07-15 2011-04-21 Daimler Ag Kraftfahrzeug
DE102009050956B4 (de) 2009-10-28 2024-03-21 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Antriebsstrang für ein Allrad-Hybridfahrzeug mit zwei Verbrennungsmotoren sowie Verfahren zum Betrieb eines Antriebsstranges
DE102009047343A1 (de) 2009-12-01 2011-06-09 Deere & Company, Moline Antriebsanordnung und Verfahren für eine Arbeitsmaschine mit zwei Verbrennungsmotoren
JP5501461B2 (ja) * 2010-06-15 2014-05-21 本田技研工業株式会社 自動車用駆動システムおよび自動車用駆動システムの制御方法
DE102011103771A1 (de) 2010-06-29 2012-01-12 Schaeffler Technologies Gmbh & Co. Kg Antriebsbaugruppe
JP2012121555A (ja) * 2010-11-16 2012-06-28 Honda Motor Co Ltd ハイブリッド車両の制御装置およびハイブリッド車両の制御方法
US8631885B2 (en) * 2010-12-17 2014-01-21 Leo Oriet Multi-use dual-engine, variable-power drive
US9352739B2 (en) * 2011-02-15 2016-05-31 GM Global Technology Operations LLC Method for operating a hybrid vehicle
WO2012123984A1 (en) * 2011-03-11 2012-09-20 Three Eye Co., Ltd. Electric propulsion system
JP5763950B2 (ja) * 2011-03-29 2015-08-12 本田技研工業株式会社 駆動システム
US8323144B1 (en) 2011-05-10 2012-12-04 Deere & Company Dual engine hybrid vehicle drive
SE537677C2 (sv) * 2011-06-10 2015-09-29 Scania Cv Ab Förfarande och system för framförande av ett fordon
SE537676C2 (sv) * 2011-06-10 2015-09-29 Scania Cv Ab Förfarande och system för framförande av ett fordon
CN102303510B (zh) * 2011-06-21 2014-11-05 潍柴动力股份有限公司 一种商用车及汽车动力系统
CN104340036A (zh) * 2013-07-29 2015-02-11 沈勇 一种双排量车用动力系统
DE102016204939A1 (de) * 2016-03-24 2017-09-28 Volkswagen Aktiengesellschaft Antriebsvorrichtung für ein Hybrid-Kraftfahrzeug und ein Verfahren zum Betrieb der Antriebsvorrichtung
JP2019214236A (ja) * 2018-06-11 2019-12-19 トヨタ自動車株式会社 ハイブリッド車両
CN109228854A (zh) * 2018-08-23 2019-01-18 蔚来汽车有限公司 发电系统和具有该发电系统的移动充电车
DE102020115665A1 (de) 2020-06-15 2021-12-16 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Fahrzeugantrieb für Hybridfahrzeuge mit Brennkraftmaschinen und elektrischen Maschinen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023606A (ja) * 1996-07-03 1998-01-23 Hitachi Ltd 自動車の原動機駆動制御方法及び自動車用駆動制御装置
JPH11311137A (ja) * 1998-04-28 1999-11-09 Hitachi Ltd ハイブリッド車
JP2000265910A (ja) * 1999-03-16 2000-09-26 Nissan Motor Co Ltd 自己着火型ガソリンエンジンを備えたハイブリッド車両
JP2003505291A (ja) * 1999-07-27 2003-02-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 自動車のための駆動システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3620362A1 (de) * 1986-06-18 1987-12-23 Magnet Motor Gmbh Kraftfahrzeug
DE4444545B4 (de) * 1993-12-22 2004-05-27 Volkswagen Ag Antriebsstrang für ein Hybridfahrzeug
JPH11136808A (ja) * 1997-10-31 1999-05-21 Nissan Motor Co Ltd ハイブリッド車両の発電制御装置
DE19839231A1 (de) * 1998-08-28 2000-03-02 Peter Pelz Antriebssystem, insbesondere für ein Kraftfahrzeug, Vorrichtung zur Leistungssteuerung eines Antriebssystems und Verbrennungsmotor
JP2002271908A (ja) * 2001-03-13 2002-09-20 Meidensha Corp シリーズハイブリッド電気自動車
US6722458B2 (en) * 2001-08-27 2004-04-20 Fev Motorentechnik Gmbh Multi-engine drive system for a vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023606A (ja) * 1996-07-03 1998-01-23 Hitachi Ltd 自動車の原動機駆動制御方法及び自動車用駆動制御装置
JPH11311137A (ja) * 1998-04-28 1999-11-09 Hitachi Ltd ハイブリッド車
JP2000265910A (ja) * 1999-03-16 2000-09-26 Nissan Motor Co Ltd 自己着火型ガソリンエンジンを備えたハイブリッド車両
JP2003505291A (ja) * 1999-07-27 2003-02-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 自動車のための駆動システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1731345A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1925491A3 (de) * 2006-11-06 2012-05-09 FAUN Umwelttechnik GmbH & Co. KG Hybridantrieb
EP2583856A1 (de) * 2006-11-06 2013-04-24 FAUN Umwelttechnik GmbH & Co. KG Hybridantrieb
US20090242301A1 (en) * 2008-04-01 2009-10-01 Mcclanahan Robert F Efficient Vehicle Power Systems
US9707835B2 (en) 2008-04-01 2017-07-18 3B Technologies Ii Efficient vehicle power systems
US10207575B2 (en) 2008-04-01 2019-02-19 3B Technologies Ii, Inc. Efficient vehicle power systems

Also Published As

Publication number Publication date
JP4066974B2 (ja) 2008-03-26
CN1938173A (zh) 2007-03-28
JP2005295690A (ja) 2005-10-20
EP1731345A1 (en) 2006-12-13
CN100457492C (zh) 2009-02-04
EP1731345A4 (en) 2007-11-28
US20080015760A1 (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP4066974B2 (ja) 動力出力装置およびこれを搭載する自動車
US8271156B2 (en) Hybrid vehicle and control method thereof
JP3947082B2 (ja) 最大全開加速性能を得るためのハイブリッド電気自動車の制御方法
US7270621B2 (en) Moving body and control method of moving body
JP4135681B2 (ja) 動力出力装置およびこれを搭載するハイブリッド車並びにこれらの制御方法
JP6361634B2 (ja) ハイブリッド自動車
JP2007055473A (ja) ハイブリッド車およびその制御方法
JP2004224330A (ja) 切換可能なパワートレイン・マウントの制御システム及び方法
JP6958329B2 (ja) ハイブリッド車両
JP2008143316A (ja) 動力出力装置およびその制御方法並びに車両
JP5974888B2 (ja) 車両の制御装置
US10035501B2 (en) Hybrid car
JP2007112291A (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
JP4254764B2 (ja) 自動車およびその制御方法
JP4263709B2 (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP2005210841A (ja) 自動車およびその制御方法
JP3649201B2 (ja) ハイブリッド車両の制御装置
US10894539B2 (en) Hybrid vehicle
JP7115039B2 (ja) ハイブリッド車両のモータトルク制御装置
JP3998002B2 (ja) ハイブリッド自動車およびその制御方法
JP6614052B2 (ja) 自動車
JP2008162346A (ja) 動力出力装置およびその制御方法並びに車両
JP4165321B2 (ja) 動力出力装置およびその制御方法並びに自動車
JP4062197B2 (ja) 車両および車両の制御方法
JP6996278B2 (ja) ハイブリッド車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580010027.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005719573

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005719573

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10594988

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10594988

Country of ref document: US